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Abstract. There are many detectors for simple Least Significant Bit
(LSB) steganography in digital images, the most sensitive of which make
use of structural or combinatorial properties of the LSB embedding
method. We give a general framework for detection and length estimation
of these hidden messages, which potentially makes use of all the com-
binatorial structure. The framework subsumes some previously known
structural detectors and suggests novel, more powerful detection algo-
rithms. After presenting the general framework we give a detailed study
of one particular novel detector, with experimental evidence that it is
more powerful than those previously known, in most cases substantially
so. However there are some outstanding issues to be solved for the wider
application of the general framework.

1 Introduction

Spatial domain Least Significant Bit (LSB) replacement is a popular and simple
type of steganography. It combines high capacity with extreme ease of imple-
mentation (see [1] for a 2-line embedding program) and, in digital images, is
visually imperceptible. Many of the steganography tools available on the inter-
net use some form of LSB replacement, but in fact it is highly vulnerable to
statistical analysis. The literature is replete with such detectors, the most sen-
sitive of which make use of structural or combinatorial properties of the LSB
algorithm [2,3,4,5,6].

In this paper we present a general framework for structural detectors, which
potentially includes all the combinatorial properties of LSB replacement, by
considering effects of LSB changes on arbitrary groups of samples. As such we
will present it as a generalisation of something akin to Sample Pairs Analysis
(SPA) [3]. In fact, many previously known structural detectors are special cases
of this general framework, although we will only make explicit the connection
with the Sample Pairs method. The value of the framework is both to place the
older methods into a common context and also to provide new, more powerful,
detectors. Because it makes full use of the structural information, in some sense
this framework should be the last word on the detection of LSB replacement,
although many practical questions remain open.

We give a brief re-presentation of the SPA method, slightly modified in detail
and exposition to make the subsequent generalisation work tidily (Sect. 2). The
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general framework is presented in Sect. 3. The optimal implementation of the
method is still unclear, but in Sect. 4 we present a case study of the technique
applied to 3-tuples of pixel groups (we call this Triples Analysis). Despite some
outstanding issues which mean that the method is not applicable to large hid-
den messages, experimental results show that it provides detection (and length
estimation) of LSB steganography which is generally much more sensitive than
the previously known methods.

There is still work to be done apply the framework to larger groups of pixels
effectively, and to avoid potential problems with very large hidden messages, and
we discuss these issues briefly in Sect. 5.

1.1 LSB Steganography and Steganalysis

The LSB embedding method is simple. The secret message consists of a stream
of bits, and the cover medium is expressed as a stream of bytes (typically the
grayscale or RGB pixel values of a bitmap image). The least significant bits of
the cover bytes are overwritten by the secret message. For security, and to spread
the stego noise, the cover is usually traversed in a pseudorandom order.

Despite many detectors for LSB steganography it remains of interest because
it is one of the few embedding methods simple enough to require no special
software [1]. Furthermore it is still possible to use it for secure communication,
if the hidden message is kept very short in relation to the capacity of the cover.
The aim of the steganalyst must be to refine the detection methods so that
reliable detection of smaller messages is possible.

There are, broadly, two approaches to the detection of LSB steganography.
One is to use signal processing techniques to extract feature vectors for a learning
machine of some sort; literature on this ranges from very simple noise detectors
such as [7] to the more sophisticated wavelet methods of [8]. Such detectors
are likely to work for a wide range of embedding methods in addition to LSB
Replacement, but do not provide any information on the nature of the hidden
message and are generally less sensitive than specialised methods.

Other detectors make use of “structural” or combinatorial properties specific
to the LSB embedding method. Such detectors appear to have much in com-
mon. In each case we assume that a cover image is fixed and a random hidden
message, of bit rate p, is embedded. The “Sample Pairs” technique of [3] (discov-
ered independently by this author who called it “Couples”), the “Pairs” method
of [4], and the “Difference Histogram” method of [6] all consider pairs of pix-
els (although they differ in which pairs are selected) and use some macroscopic
quantity F (p) which depends on the secret bit rate p; in each case there is a
claim or proof that F (p) is a quadratic in p, although key parameters of the
quadratic are unknown without the cover image; where necessary, one derives
or estimates F (1) by considering maximal embedding, and an assumption about
natural cover images provides F (0); now there is enough information to deter-
mine the missing parameters and it is possible, given an image with unknown
hidden data, to solve for (an estimate of) p.
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The method of “RS” [2] is more general in that it uses groups of two or more
pixels, but there is a still a quadratically varying quantity, similar algebraic
manipulation, and an assumption about cover images sufficient to solve for the
length of hidden data. The general framework above is explained in [2], in which
similarities between the Sample Pairs method and the RS method are noted1.

The detection framework we propose here is different: there is still a macro-
scopic property of images which depends on the length of hidden data, in this
case a vector F(p); we will prove thoroughly how F(p) depends on p along with
some unknown parameters; instead of trying to estimate the latter, we will in-
vert the process: given an image we hypothesise a value for p and compute what
this would imply for F(0). The other novelty is a model for cover images (or,
more precisely, for the macroscopic properties of cover images). Then we can
find the value of p which leads to a value of F(0) closest to the model: this is the
estimator for p. The novel technique is suggested by the detector of [5], and this
paper can be seen as a substantially generalised version of that work (which, like
almost all other detectors, only considers pairs of pixels). The most important
difference between the techniques presented here and most previous detectors is
that g-tuples of pixels are considered in full generality. The functional form of
F(p) will be a vector of polynomials of degree g.

This new framework includes the framework of [2] as a special case, and also
subsumes the steganalysis methods of [3,4,5,6]. We do not give all the details
here; briefly, the connection is made by collapsing the vector F(p) to a single
quantity (by taking a certain linear function of its components, for example).
With an appropriate selection of pixel groups and an appropriate linear function
of F(p), each of the LSB steganography detectors in [2,3,4,5,6] are expressible in
the new framework: their assumptions about the functional form of the relevant
macroscopic property can be justified (and sometimes exposed as approxima-
tions), and an equation for the estimate of p derived. In some cases the derived
equation is not quite identical to the original, but in each case it is possible to
explain why the solutions are approximately equal. The case of RS is particu-
larly interesting, because our new framework predicts a polynomial of degree g
when the mask size is g pixles. It can be shown that, if the parameters of the RS
method are chosen carefully, the higher coefficients vanish to leave a quadratic
equation for p (just as in the standard RS method). However, the collapsing
of the vector F(p) leads to less robust behaviour which our novel detector will
avoid.

2 An Extensible Presentation of Sample Pairs

There are a number of equivalent ways to present the general framework, and we
will do so using terminology somewhat similar to Sample Pairs Analysis in [3].
1 There is some evidence in [1] that, despite the potentially more general form, the

method of RS is slightly inferior to, or at best only as reliable as, that of Sample
Pairs. But in any case the performance of the two methods is extremely close, so too
for the methods of Pairs and Difference Histogram.
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For clarity we will slightly alter some of the notation: we will use throughout
caligraphic letters (X ) for sets, upper-case letters (X) for random variables,
lower-case letters (x) for constants and realisations of random variables, and
will make a clear distinction between nonrandom properties of a cover image and
random properties of stego images based on that cover image (the randomness
coming from the content and location of the hidden payload).

Suppose that a digital image consists of a series of samples s1, s2, . . . , sN

taking values in the range 0 . . . 2M + 1 (typically M = 127). A sample pair is
a pair (si, sj) for some 1 ≤ i �= j ≤ N . Let P be a set of sample pairs; in [3]
it is all pairs which come from horizontally or vertically adjacent pixels. Write
Cm for the subset of P consisting of sample pairs where the sample values differ
by exactly m after right-shifting by one bit (i.e. dividing by 2). Also write Xm

for the sample pairs of P which differ in value by m with the higher value even
and Ym for those which differ by m but with the higher value odd. In this way,
P is partitioned into subsets Cm, 0 ≤ m ≤ M , and each Cm is partitioned into
X2m−1, X2m, Y2m, Y2m+1. In [3] Cm is referred to as a “submultiset”, and Xm

and Ym as “trace submultisets”; we will use the simpler terminology “trace set”
and “trace subset”, respectively. Altering LSBs cannot affect which trace set
a sample pair lies in, but it can move sample pairs between trace subsets as
samples in the pair have their LSB flipped.

Suppose that a random hidden message of length 2pN , where 0 ≤ p ≤ 0.5
is unknown to the detector, is embedded using LSB replacement of a random
selection of samples independent of the content of the cover or hidden message2.
Suppose that a sample pair lies in trace set Cm with m > 0. The probability
that neither sample is altered is (1 − p)2, the probabilities that either sample
is altered is p(1 − p), and the probability that both are altered is p2; each of
these events moves the sample pair amongst the trace subsets of Cm according
to the transition diagram Fig. 1 (transitions are labelled with their probabilities).
m = 0 leads to a special case.

Let cm, dm, xm, ym be the cardinalities of the sets Cm, Dm, Xm, Ym in a
particular cover image (they are nonrandom properties of the cover, but unknown
to the detector), and let C′

m, D′
m, X ′

m, Y ′
m be the random variables representing

the cardinalities of those sets after LSB embedding of a random message of length
2pN . We know that C′

m = cm because Cm is closed under LSB operations. By
considering the probabilistic transition systems in Fig. 1, Dumitrescu et al. derive
the equations analogous to the following:

E
[
p2cm − p(D′

2m + 2X ′
2m−1) + X ′

2m−1
]

= x2m−1(1 − 2p)2 (1)

E
[
p2cm − p(D′

2m + 2Y ′
2m+1) + Y ′

2m+1
]

= y2m+1(1 − 2p)2 (2)

(In [3] the expectation is implicit.) xm and ym cannot be observed by a detector
which only has access to the stego image but there is a plausible assumption:

x2m+1 = y2m+1 for all m; (3)
2 In [3] calculations are performed assuming that pN is the hidden message length.

The use of 2pN instead makes the following algebra somewhat simpler.
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Fig. 1. Transitions between the subsets of Cm, and the probability of each. Left, for all
m ≥ 1. Right, for m = 0, where D0 = X0 ∪ Y0.

in [3] this assumption is cast as an expectation but the quantities involved are
nonrandom if the cover image is fixed. It is plausible because sample pairs in
a continuous tone image should not have any particular parity structure. As-
suming that the observed values from the random variables are close to their
expectations, (1), (2), and (3) give enough information to form quadratic equa-
tions for p, one for each m. In [3] these equations are summed to give a single
quadratic, which is solved for an estimator p̂ of p.

Our aim is to extend the sample pairs method to groups of pixels of more
than two. For example, consider 3-tuples of adjacent samples, and trace sets Cm,n

where the successive sample values differ by m and n, after right-shifting one bit.
This does work, giving trace subsets and transition diagrams analogous to Fig. 1.
But there are a number of awkward corners. Firstly, special cases proliferate:
whereas for sample pairs there is the special transition diagram for m = 0, for
3-tuples we reach one special case for m = 0, n �= 0, one for m �= 0, n = 0 and
another for m = n = 0. For g-tuples with g ≥ 4 there are even more special cases.
Secondly, the ad-hoc process by which Dumitrescu et al. derive (1) and (2) is
difficult to generalise when the number of trace subsets rises. We will solve these
problems by using a slightly modified version of the sample pairs technique.

2.1 A Modified, Extensible, Presentation

To remove the special case at m = 0 we have to take slightly finer distinctions
in the trace sets and subsets:

Cm = {(j, k) ∈ P | �k/2� = �j/2� + m}
Em = {(j, k) ∈ P | k = j + m, with j even}
Om = {(j, k) ∈ P | k = j + m, with j odd}

with m now able to take negative values. Em and Om are analogous to Xm and
Ym but the new definitions break reflectional symmetry: no longer do we have
(j, k) and (k, j) always belonging to the same set. The new transition diagram
(probabilities included) is shown in Fig. 2. There are no special cases.



A General Framework for Structural Steganalysis of LSB Replacement 301

E2m+1

O2m−1

O2m

E2m

p(1−p)

p(1−p)

p(1−p) p(1−p)

p2

p2

(1−p)2 (1−p)2

(1−p)2 (1−p)2

Fig. 2. Transitions between subsets of Cm, in the modified presentation

Consider the random variable E′
2m, the cardinality of E2m after a random

message of length 2pN is embedded. It is actually the sum of four multinomial
distributions, but we can reason about its expectation in an elementary manner.
Sample pairs can enter E2m in four ways: either having been in E2m before
and remaining there (and on average a proportion (1 − p)2 of the e2m pairs in
this position should remain), having been in O2m−1 before and moving to E2m

(p(1 − p) of the o2m−1 will do so), having been in E2m+1 (p(1 − p) of e2m+1 will
do so), or having been in O2m (p2 of o2m will do so). Thus,

E[E′
2m] = (1 − p)2e2m + p(1 − p)o2m−1 + p(1 − p)e2m+1 + p2o2m.

We can repeat this for each of O′
2m−1, E

′
2m+1, O

′
2m to get four linear equations

which we express in vector form as
⎛

⎜⎜
⎝

E[E′
2m]

E[O′
2m−1]

E[E′
2m+1]

E[O′
2m]

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

(1−p)2 p(1−p) p(1−p) p2

p(1−p) (1−p)2 p2 p(1−p)

p(1−p) p2 (1−p)2 p(1−p)

p2 p(1−p) p(1−p) (1−p)2

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

e2m

o2m−1
e2m+1
o2m

⎞

⎟⎟
⎠ . (4)

The 4-by-4 matrix is the transition matrix of the transition system in Fig. 2
and it is invertible as long as 2p �= 1. If we make the assumption that the observed
realisations of the random variables e′2m, etc, are close to their expectations, we
can form estimators for the unknown cover image quantities e2m, etc.:

⎛

⎜
⎜
⎝

ê2m

ô2m−1
ê2m+1
ô2m

⎞

⎟
⎟
⎠ =

1
(1 − 2p)2

⎛

⎜
⎜
⎝

(1−p)2 −p(1−p) −p(1−p) p2

−p(1−p) (1−p)2 p2 −p(1−p)

−p(1−p) p2 (1−p)2 −p(1−p)

p2 −p(1−p) −p(1−p) (1−p)2

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

e′2m

o′2m−1
e′2m+1
o′2m

⎞

⎟
⎟
⎠ (5)

This has enabled us to hypothesise a value for p and then undo the effect of
embedding a hidden message of length 2pN . Certainly we could not expect to
recover the cover image itself, but macroscopic properties of the cover, such as
the cardinalities of the trace subsets, can be estimated in this way.
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At this stage we must use some sort of “model” of cover images. The analogy
to the sample pairs method would be e2m+1 = o2m+1 for each m. Setting ê2m+1 =
ô2m+1 and using the relevant components of (5) (with m and with m + 1) gives

(cm−cm+1)p2+(e′2m+2+o′2m+2+2o′2m+1−e′2m−o′2m−2e′2m+1)p+e′2m+1−o′2m+1 =0

for each m, which is analogous to Dumitrescu’s equation. One can sum all these
equations to reach an estimator for p: it is almost identical to the Sample Pairs
estimator, the minor difference being due to the split between C−m and Cm.

Alternatively, we can consider deviations from ê2m+1 = ô2m+1 to be “errors”,
and solve for p to find the closest image to our model by minimising the sum-
square error

∑
(ê2m+1 − ô2m+1)2. Treating deviations from the assumptions as

errors is a technique described in [5]. We will prefer this paradigm in the gener-
alisation which follows, because it extends to more complex cover assumptions.

Note that we have not used an assumption that e2m = o2m. Although as
plausible as e2m+1 = o2m+1 it is not helpful in estimating p. It is easy to check,
using (4), that when e2m = o2m the same holds for stego images too. Therefore
it does not provide any discrimination between cover and stego images.

3 Generalised Framework

We now generalise by considering g-tuples of sample values, for arbitrary g. The
same overall method will be used: determination of the probabilities of transition
between trace subsets, hypothesising a value for p, inverting the formula to
express the cardinalities of the cover image trace subsets in terms of those of
the stego image, using a model for cover images, and solving for p. Further
investigation is needed to decide how optimally to apply the last step.

Suppose that a set of g-tuples of sample values T is selected (e.g. the in-
tensities of all horizontal rows of g adjacent pixels). The trace sets and subsets
are:

Cm1,...,mg−1 = {(s1, . . . , sg) ∈ T | �si+1/2� = �si/2� + mi for each 1 ≤ i < g}
Em1,...,mg−1 = {(s1, . . . , sg) ∈ T | si+1 = si + mi, with s1 even}
Om1,...,mg−1 = {(s1, . . . , sg) ∈ T | si+1 = si + mi, with s1 odd}

Changing LSBs of samples cannot affect which of the trace sets the tuples
inhabit, but they are moved between the trace subsets according to a 2g-state
transition process. It is convenient to write A0,m1,...,mg−1 for Em1,...,mg−1 and
A1,m1,...,mg−1 for Om1,...,mg−1 , and to abbreviate the subscripts using sequence
notation (we write s for a sequence of integers and s.t for concatenation). We
write P (As, At) for the probability of transition between As and At.

We specify the trace subsets each set Cm1,...,mg−1 is divided into using in-
duction on g, as follows. The base case is g = 1: there is a single trace set C
(all individual samples) divided into two subsets A0 and A1, and P (A0, A0) =
P (A1, A1) = 1 − p, P (A0, A1) = P (A1, A0) = p. If Ct divides into trace subsets
As1 , . . . , Asn then Ct.k divides into

As1.(2k+α1), . . . , Asn.(2k+αn), As1.(2k+α1+1), . . . , Asn.(2k+αn+1)
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where αi is zero if the sum of components in si is even, and minus one otherwise.
The transition probabilities are given by

P (Asi.(2k+αi), Asj .(2k+αj)) = (1 − p)P (Asi , Asj )
P (Asi.(2k+αi+1), Asj .(2k+αj)) = pP (Asi , Asj )
P (Asi.(2k+αi), Asj .(2k+αj+1)) = pP (Asi , Asj )

P (Asi.(2k+αi+1), Asj .(2k+αj+1)) = (1 − p)P (Asi , Asj )

If the trace subsets are considered in the order given, the transition proba-
bilities can be expressed concisely as matrices. The matrices, and their inverses,
are g-fold Kronecker tensor products:

T1 =
(

1 − p p
p 1 − p

)
T−1

1 =
1

1 − 2p

(
1 − p −p
−p 1 − p

)

Tg+1 =

⎛

⎜
⎝

(1−p)Tg pTg

pTg (1−p)Tg

⎞

⎟
⎠ T−1

g+1 =
1

1−2p

⎛

⎜
⎝

(1−p)T−1
g −pT−1

g

− pT−1
g (1−p)T−1

g

⎞

⎟
⎠

Given a trace set Ct divided into trace subsets As1 , . . . , Asn , write ai for the
size of Asi in the cover image, and A′

i for the size of the subset under random
embedding of a message of length 2pN . Just as with (4) we have

E[A′] = Tga.

Observing the stego image we can count the realisations of the random variables
Ai, say a′

i. Assuming that the realisations are close to their expectations, we can
form estimators for the unknown values ai:

â = T−1
g a′.

Note that Tg depends on p. Finally, we need a model for cover images, the
analogue of (3); this may include es = os, although (as in Sect. 2) not all s will
provide a useful discrimination between cover and stego images. We estimate p by
finding the value which makes our estimate of â the closest fit to the model. How
best to do this depends on the cover image assumptions, but the technique of [5]
(in which deviations are treated as errors and the sum-square error minimised)
should generally be applicable.

4 Case Study: g = 3

The case g = 1 is degenerate. We have seen that the case g = 2 is very similar
to the Sample Pairs method or the more robust modification of [5], depending
on the cover image model used. We now consider the case g = 3, which we call
Triples Analysis (by analogy with our name for SPA, “Couples”), showing in
detail how the general framework can be used for steganalysis. Experimental
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E2m+1,2n−1

O2m−1,2n

O2m,2n−1

O2m−1,2n+1

E2m,2n

E2m,2n+1

E2m+1,2n O2m,2n

Fig. 3. The 8 trace subsets of Cm,n. Subsets connected by an edge are related by the
flipping of the LSB of exactly one sample in the 3-tuple.

results are included to demonstrate that the extension to 3-tuples provides a
substantially more sensitive detector.

Fix a trace set Cm,n; it is divided into 8 trace subsets. The full transition
diagram contains a lot of information and we do not display all of it. Instead, in
Fig. 3 we show how 3-tuples are moved amongst the trace subsets when a single
sample has the LSB altered. In general, the probability of transition from one
trace subset to another is pi(1− p)3−i, where i is the length of the shortest path
between them in Fig. 3. If the trace subsets are enumerated in the order E2m,2n,
O2m−1,2n, E2m+1,2n−1, O2m,2n−1, E2m,2n+1, O2m−1,2n+1, E2m+1,2n, O2m,2n then
the transition matrix is

T3 =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

(1−p)3 p(1−p)2 p(1−p)2 p2(1−p) p(1−p)2 p2(1−p) p2(1−p) p3

p(1−p)2 (1−p)3 p2(1−p) p(1−p)2 p2(1−p) p(1−p)2 p3 p2(1−p)

p(1−p)2 p2(1−p) (1−p)3 p(1−p)2 p2(1−p) p3 p(1−p)2 p2(1−p)

p2(1−p) p(1−p)2 p(1−p)2 (1−p)3 p3 p2(1−p) p2(1−p) p(1−p)2

p(1−p)2 p2(1−p) p2(1−p) p3 (1−p)3 p(1−p)2 p(1−p)2 p2(1−p)

p2(1−p) p(1−p)2 p3 p2(1−p) p(1−p)2 (1−p)3 p2(1−p) p(1−p)2

p2(1−p) p3 p(1−p)2 p2(1−p) p(1−p)2 p2(1−p) (1−p)3 p(1−p)2

p3 p2(1−p) p2(1−p) p(1−p)2 p2(1−p) p(1−p)2 p(1−p)2 (1−p)3

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

The inverse of T3 consists of third order rational polynomials in p. A very con-
venient substitution is q = 1/(1 − 2p); then we have (after some simplification)

T−1
3 =

1
8

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

(1+q)3 (1−q)(1+q)2 (1−q)(1+q)2 (1−q)2(1+q) · · ·
(1−q)(1+q)2 (1+q)3 (1−q)2(1+q) (1−q)(1+q)2 · · ·
(1−q)(1+q)2 (1−q)2(1+q) (1+q)3 (1−q)(1+q)2 · · ·
(1−q)2(1+q) (1−q)(1+q)2 (1−q)(1+q)2 (1+q)3 · · ·
(1−q)(1+q)2 (1−q)2(1+q) (1−q)2(1+q) (1−q)3 · · ·
(1−q)2(1+q) (1−q)(1+q)2 (1−q)3 (1−q)2(1+q) · · ·
(1−q)2(1+q) (1−q)3 (1−q)(1+q)2 (1−q)2(1+q) · · ·

(1−q)3 (1−q)2(1+q) (1−q)2(1+q) (1−q)(1+q)2 · · ·

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

. (6)
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(Only half of T−1
3 is displayed, but the rest can be deduced by rotational sym-

metry). Given a stego image we consider each trace set Cm,n in turn and count
the trace subsets to make a vector x′. Then we can hypothesise a value of p and
form estimates for the sizes of the trace subsets of the cover image using:

x̂ = T−1
3 x′.

In the case g = 2 there was just one property which we assumed that cover
images have: e2m+1 = o2m+1 for each m. In the case g = 3 there is an analogous
property, which we will refer to as parity symmetry:

em,n = om,n

for each m and n. However, there are also some other plausible symmetries which
might enrich our cover image model. One is order symmetry:

em,n = en,m

for each m and n (similarly om,n = on,m), and another is reflectional symmetry:

em,n =
{

e−n,−m, if m + n is even
o−n,−m, if m + n is odd

(and similarly for om,n with even and odd swapped). Between them, the assump-
tions of order and reflectional symmetry state that pixels within groups can be
considered in any order without changing the size of the trace subsets.

Recall, from Sect. 2, that some cover assumptions may not distinguish covers
from stego images: this lead us to discard e2m = o2m when g = 2. Here, it is
routine to check that parity symmetry, if true for covers, is also true for stego
images when m and n are both even, or m = n, and that order symmetry, if
true for covers, is also true for stego images when either m or n is even, or
m = n. Finally, reflectional symmetry never gives discrimination between covers
and stego images.

Consider just one case of parity symmetry, e2m+1,2n+1 = o2m+1,2n+1. To use
the generalised framework to make an estimate of p, we compute “error terms”
for each m and n, εm,n = ê2m+1,2n+1 − ô2m+1,2n+1. Then we find the value of p
which minimises the sum-square of the errors. First, write

d0 = e′2m+1,2n+1 − o′2m+1,2n+1
d1 = e′2m+1,2n+2 + e′2m,2n+2 + o′2m,2n+1 − o′2m+1,2n − o′2m+2,2n − e′2m+2,2n+1
d2 = e′2m,2n+3 + o′2m−1,2n+2 + o′2m,2n+2 − o′2m+2,2n−1 − e′2m+2,2n − e′2m+3,2n

d3 = o′2m−1,2n+3 − e′2m+3,2n−1

(each di also depends on m and n, but in the interests of readibility we will leave
these parameters implicit.) Then, using (6) and gathering similar terms,

εm,n = 1
8 (d0(1 + q)3 + d1(1 − q)(1 + q)2 + d2(1 − q)2(1 + q) + d3(1 − q)3)

= 1
8 ((d0 + d1 + d2 + d3) + q(3d0 + d1 − d2 − 3d3)+

q2(3d0 − d1 − d2 + 3d3) + q3(d0 − d1 + d2 − d3))
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We will find the value of q to minimise S(q) =
∑

m,n ε2m,n. Writing

c0 = d0 + d1 + d2 + d3, c1 = 3d0 + d1 − d2 − 3d3,
c2 = 3d0 − d1 − d2 + 3d3, c3 = d0 − d1 + d2 − d3,

(again leaving m and n implicit) we have

S(q) = 1
64

∑
m,n c2

0 + q(2c0c1) + q2(2c0c2 + c2
1) + q3(2c0c3 + 2c1c2) +

q4(c2
2 + 2c1c3) + q5(2c2c3) + q6(c2

3). (7)

so that

S′(q) = 1
64

∑
m,n 2c0c1 + q(4c0c2 + 2c2

1) + q2(6c0c3 + 6c1c2) +

q3(4c2
2 + 8c1c3) + q4(10c2c3) + q5(6c2

3). (8)

(To include other instances of parity symmetry or order symmetry in the cover
model, the above calculations are repeated with the appropriate εm,n and in-
cluded in the sum.) There will always be at least one real root of the quintic
(8), but it could lead to up to 5 roots for q. We can discard implausible roots
inside the range (−10, 10/11) (because these would give obviously wrong esti-
mates of p outside (−0.05, 0.55)) and substitute the remaining roots back into
(7) to determine the location of the minimum q̂. Finally, p̂ = 1

2 (1 − 1
q̂ ).

4.1 Experimental Results

Triples Analysis was implemented and widely tested. We comment on some
implementation choices: we used all triples of horizontally adjacent pixels for T
(some basic experiments indicate that it makes negligible difference if vertical
groups are also included). For colour images the red, green and blue components
were initially considered separately, and the trace subsets for each channel added
together. After some initial experiments we found that it was marginally most
accurate to use only the assumption e2m+1,2n+1 = o2m+1,2n+1, although further
research is needed to determine why this would be the case. Finally, we used
only m, n in the range −5 to +5, because the trace sets are very small outside
of this range.

Further initial experiments also indicate that the Triples estimator has a flaw:
when the hidden message is long, the estimator gives wildly inaccurate results.
In fact this can be explained theoretically, but for reasons of space we do not
do so here. It is not a substantial problem: we can “screen” the method by first
applying the standard SPA estimate, and proceeding to the Triples estimate only
when the SPA estimate is below, say, 0.53. In any case, our main interest is in
the difficult case of detection when p is small.
3 Here and hereafter we use p in the more usual way, to represent the proportionate

length of the hidden message (previously this quantity was called 2p). For screening,
it seemed best to use a modification of the detector in [5] (which, as published,
contains a few bugs) and proceed to the Triples estimate only for p̂ < 0.3.
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Triples Analysis was compared with the standard methods of RS4 and SPA.
LSB Steganography was simulated on a number of sets of cover images, and
detection statistics computed. To avoid overspecialisation, and in view of the
wide variation in results depending on the cover image type noted in [1], we
used a variety of sets of cover images:
Bitmap images: 3000 uncompressed bitmaps downloaded from http://photo
gallery.nrcs.usda.gov, very high resolution images apparently scanned from
film, reduced in size to approximately 640 × 450.
JPEG images: three digital stock photo libraries: one of 5000 “high-quality”
images, stored at quality factor 75, all sized 900 × 600; one of 10000 “medium-
quality” images, stored at quality factors between 50 and 75, of similar size; and
one of 20000 smaller “low-quality” images, 640 × 400, quality factor 58.

The experiments were repeated with each set of covers separately, and also
with the bitmap images subject to JPEG compression prior to use as a bitmap
cover image (to examine in isolation the effect of JPEG compression). Note that
we have restricted our experiments to colour covers.

4.2 Reliability as an Estimator

We used the methods of RS, Sample Pairs and Triples to estimate the value of
p, for each image in each set. This was repeated with the true value of p varying
from 0 to 1, at intervals of 0.05. As with RS and Sample Pairs, the Triples
estimator is approximately unbiased: for example, over the set of 3000 bitmaps
the average error was observed to be between −0.016 and 0.009, depending on
the true value of p.
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Fig. 4. Standard deviation of estimators, observed from a set of 3000 cover images
subject to JPEG compression at quality factor 75, as p varies.

4 The RS “mask” used was the standard [0, 1, 1, 0], from [2].
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Table 1. Standard deviation5 of estimators (×102) when the true value of p is zero

3000 Uncompressed Bitmaps Other sets of JPEG images
Detector

Unaltered
JPEG q.f. 5000 high 10000 med. 20000 low

90 75 50 quality quality quality

RS 2.67 10.94 11.38 10.64 3.63 4.34 9.51
SPA 2.56 8.56 8.64 7.87 2.62 3.31 7.17
LSM 2.96 3.90 2.71 2.49 1.29 1.41 2.63
Triples 2.36 2.08 1.40 1.20 0.55 0.35 1.35

We compare the estimators by their sample standard deviation: one graph
is shown in Fig. 4. We observe that, for this set of cover images, the Triples
estimator is very substantially more accurate than the RS or SPA estimators in
the case of small hidden messages. Indeed, it is surprising quite how unreliably
the standard estimators performed – this is due to JPEG compression artefacts
which cause the RS or SPA cover image assumptions to fail, whereas the Triples
method treats errors in the cover assumption more robustly. Note that the poor
performance of RS and SPA is mitigated as the hidden message length increases.

Rather than repeat such charts for every set of cover images, we merely
compare the estimators when the true value of p is zero, i.e. for cover images.
This gives a reasonable summary of relative performance, because the graph
shapes are broadly similar in all cases, with the methods converging to similar
performance near p = 1, and because small hidden messages are of particular
interest (their detection being difficult). Table 1 shows this information for each
cover image set, also including the robust modified SPA estimator of [5].

In the case of uncompressed bitmaps the Triples estimator is somewhat more
accurate than RS or SPA. In the case of JPEG compressed covers it is very
substantially more accurate: whereas the RS and SPA methods lose accuracy
because of compression artefacts, the Triples method actually gains accuracy.
Our conclusion is that the Triples method is more reliable and very much more
robust to artefacts in the cover images.

4.3 Reliability as a Discriminator

A different question is how well the detector discriminates between the case p = 0
and p = p1, for fixed p1. In [1] it is shown that the discrimination problem is not
necessarily optimally solved by an estimator for p. Following the methodology
of [1] we should use a discriminator which shows how well an image under analysis
matches the cover assumptions. This would simply be S(0). However, S(0) does
not make a good discriminator because cover images vary (a lot!) in how well
they meet the cover assumptions. A better discriminator is S(0)/S(p̂) – this
5 According to [9] the sample standard deviation is not a consistent estimator for

measuring magnitude of error; subsequent experiments using a robust scale estimator
yielded comparable results.
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Fig. 5. Receiver Operating Characteristic curves, observed for the set of 3000 cover
images subject to JPEG compression at quality factor 75. Random messages of length
2% of the maximum have been embedded. Detectors shown are the RS and Triples
estimator of p, two discriminators from [1], and the Triples quantity S(0)/S(p̂).

statistic should be near 1 for cover images and higher for stego images. We
emphasise that this value is not merely testing whether p̂ = 0: it is a measure
of how certain we are that p �= 0; when the function S has a low gradient near
p̂ we should have correspondingly lower confidence in the estimate, and this is
reflected in the quotient discriminator6.

Performance of the discriminators, in the case p1 = 0.02 and for one partic-
ular set of cover images, is displayed in Fig. 5. We have included the RS and
Triples estimators of p, along with three discriminators which do not estimate p:

(a) from [1]: compute the estimate for p by applying the standard SPA calcu-
lation separately to each trace set Ci, call it pi; take the minimum of p0, p1
and p2.

(b) from [1]: compute the relative difference of x′
1 and y′

1, these quantities as
defined by the standard SPA method [3].

(c) novel: the ratio S(0)/S(p̂) (including all four useful cover assumptions).

The embedding rate of 0.02 is below reliable detectability by the standard meth-
ods. In this case the Triples method is superior, and the discriminator which
does not estimate p has even better performance at low false positive rates.

Again, it is impossible to include such graphs for each cover set and each
value of p1. Instead, we follow [1] by showing the lowest value of p1 for which
a certain (fairly arbitrary) level of reliability is achieved. This data is shown
6 Some initial experiments suggested that, for discrimination, it was best to include

all three useful cases of parity symmetry, and the one useful case of order symmetry,
in the computation of S. This is in contrast to the case of simple estimation and
some further work should be undertaken to investigate this.
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Table 2. The lowest embedding rate p1 for which “reliable” discrimination from p = 0
is achieved. Here, “reliable” is taken to mean a false positive rate of 5% and a false
negative rate of 50%. Figures above 0.1 are accurate to 0.01; figures between 0.01 and
0.1 are accurate to 0.002; figures below 0.01 are accurate to 0.001.

3000 Uncompressed Bitmaps Other sets of JPEG images
Detector

Unaltered
JPEG q.f. 5000 high 10000 med. 20000 low

90 75 50 quality quality quality

RS 0.054 0.26 0.28 0.27 0.072 0.080 0.22
SPA 0.052 0.21 0.22 0.20 0.052 0.058 0.17
LSM 0.062 0.098 0.072 0.060 0.024 0.024 0.060
Triples 0.042 0.040 0.026 0.018 0.010 0.005 0.016

(a) 0.028 0.090 0.068 0.052 0.022 0.020 0.050
(b) 0.12 0.13 0.064 0.046 0.022 0.012 0.032
(c) 0.054 0.016 0.012 0.018 0.006 0.003 0.009

in Tab. 2. The Triples method is vastly superior in every case except for simple
uncompressed covers, in which case discriminator (a) from [1] is most sensitive.
This suggests that further improvements to the final stage of the Triples method
may be possible, if a number of uncorrelated estimates for p can be produced.

5 Conclusions and Further Work

We have described a general framework for steganalysis of LSB Replacement,
which can consider arbitrary tuples of pixels. It involves a new paradigm for
detection, in which the effects of embedding a message of known length can
be inverted, and a cover image model against which a best fit is found. The
framework can include many of the previously known detectors, although we
have not, in this paper, given the mathematical details of such relationships.

To demonstrate that the framework is worthwhile, we have tested one case,
called Triples Analysis, which is a generalisation of the Sample Pairs/Couples
method to include 3-tuples of pixels. It is necessary to screen the Triples method
by first applying a standard estimator, because of inaccurate results when the
hidden message length is high. A range of experiments verify that this makes for
a reliable detector and estimator of hidden messages, performing somewhat bet-
ter than the standard detectors on uncompressed covers, and very much better
on images where the cover has artefacts. We conclude that it is a more robust
detector, less prone to floods of false positive results caused by the cover type.
(Although for reasons of space we have not included further experimental re-
sults, we observed that Triples Analysis maintains superior performance when
the cover images are JPEGs which have been reduced in size – even when the
reduction is as much as a factor of 5.)
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Although the general framework uses all the structure of the LSB embedding
method, it does not close the book on LSB detectors. We should apply it to tuples
of pixels larger than 3, in the hope that even further improvements will result.
However there are problems: increasing the group size g divides the set of tuples
T into ever-smaller trace sets, and the assumption that random variables are
close to their expectations causes errors when the law of large numbers cannot
be relied upon (indeed, Triples Analysis already suffers with poor performance
on very small images). It will be necessary to combine some of the trace sets,
but to do so in a way which does not reduce the method back to the case of
lower g. Further work is needed to identify how best to do this, how to produce
the results at the final stage (i.e. whether minimising the sum-square error is
optimal), and whether there are better ways to select T than simply horizontal
rows of pixels.

Finally, we might hope to use denoising techniques to determine further in-
formation about the cover image, combining the best attributes of the structural
detectors with those based on signal processing.
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