
An Error-Resistant Steganography Algorithm For

Communicating Secretly On Facebook

Owen Campbell-Moore

Abstract

This project provides a method for performing steganography on Facebook by
hiding messages in photos using a browser extension. Much effort was expended
ensuring messages survive JPEG recompression given the added restriction that
certain 0s within the image were not to be modified, a combination not previously
studied. The goal was to build a highly usable system which provides a payload
of approximately one “tweet” (140 characters) per 960-by-720px image without
becoming detectable to the naked eye. The extension is now available on the
Chrome Web Store and has been downloaded over 8000 times.

Department of Computer Science, Oxford University

1

Contents

1 Introduction 4

2 Background 5
2.1 Steganography . 5

2.1.1 Active and Passive Wardens . 5
2.2 Chrome Extensions and Native Client 6
2.3 Facebook . 6
2.4 JPEG . 6

2.4.1 JPEG compression and decompression 7
2.5 Steganography in JPEG . 8

2.5.1 Indirect representations . 9
2.6 Coffeescript . 10
2.7 Distinction between steganography and watermarking 10

3 Problem Specification 11
3.1 General steganography properties to be achieved 11
3.2 Interacting with Facebook without an API key 11
3.3 Providing discretion for the user . 12
3.4 Being simple to use . 12

3.4.1 Integrating with the browser . 12
3.5 Not storing unencrypted messages or contact details 12
3.6 Not changing stuck-bits of JPEGs . 13
3.7 Existing steganography tools incompatibility with Facebook 14

3.7.1 Facebook’s JPEG implementation 14
3.7.2 Compressing an image multiple times with the same quantisation

matrix . 15
3.7.3 A new steganography algorithm is required 16

4 Implementation 17
4.1 Robust encodings which avoid modifying stuck-bits 17

4.1.1 Modified Linear Block Codes . 17
4.1.2 Conceptual explanation of the code 18
4.1.3 Modified Linear Block Code usage 18
4.1.4 Code generation . 19
4.1.5 Error correction and stuck-bit capacity of MLBCs 19
4.1.6 Example . 19

4.2 Coffeescript Implementation of MLBCs 20

2

4.2.1 Matrix library . 20
4.2.2 Generating MLBCs . 21
4.2.3 Encoding a single block using Coffeescript 21
4.2.4 Decoding a single block using Coffeescript 22
4.2.5 Transmitting longer messages . 24
4.2.6 Measuring error-correction and stuck-bit capacity of MLBCs in

Coffeescript . 25
4.2.7 Selecting the best MLBC . 25

4.3 JPEG encoder and decoder implementation 26
4.3.1 JPEG decoding with DCT coefficient access in Javascript 27
4.3.2 JPEG encoding with DCT coefficient access in Javascript 27

4.4 Connecting the JPEG implementation to the message encoder/decoder . 27
4.4.1 Connecting the message encoder to the JPEG encoder 28
4.4.2 Connecting the message decoder to the JPEG decoder 29

4.5 User interface implementation . 29
4.5.1 Connecting the extension’s components 29
4.5.2 Injecting code into Facebook . 30
4.5.3 Hotkey based activation . 30
4.5.4 Injecting a form into Facebook to create stego-objects 31

5 Evaluation 33
5.1 User feedback and reception . 33

5.1.1 Usability studies . 33
5.2 Error rate in practice . 34
5.3 Detectability . 34
5.4 Average encoding and decoding time . 35

6 Conclusion 36
6.1 Reflecting on user interface design . 36
6.2 Reflecting on technology choice . 37
6.3 Achieving capacity goals . 37
6.4 Achieving robustness goals . 37
6.5 Achieving visual undetectability . 38
6.6 Future work . 38

3

Chapter 1

Introduction

Facebook is the most popular social network in the world with over 1 billion ac-
tive users [1]. Despite its popularity, little is offered in the way of secure or secret
communication. Therefore, I present a secure mode of communication which utilises
photo sharing on Facebook as an innocent-looking medium for transmitting secret
messages.

The aim of this project is to produce a Chrome Extension written in Javascript which
allows users to secretly embed up to 140 characters of data into any image which is
then transmitted using Facebook. Any of the user’s friends provided with the pre-
shared password can then decode the secret message from the image using the same
extension, despite the image having been recompressed by Facebook.

Communication via social-networking sites contributed to the 2011 Arab Spring in
which many people overthrew their local regimes [2]. The provision of secure com-
munication tools built upon social media is now vital to protect free speech online
since many governments are investing in systems to access and parse private messages
shared on such websites.

The remaining chapters of this project are structured as follows. In Chapter 2 the
relevant technologies are outlined. In Chapter 3 the core problems I will solve are
specified and in Chapter 4 the solutions and implementation details are presented.
Experimental results are provided in Chapter 5 and the conclusion is drawn in Chapter
6.

4

Chapter 2

Background

2.1 Steganography

Steganography is the art of concealed communication where the very existence of the
message is secret [3]. Innocent ‘cover’ data, often in the form of images or videos, are
modified very slightly to produce a ‘stego-object’ containing the secret message. These
stego-objects are then shared on innocent channels from which the payload is received
by a recipient provided with the decoding instructions.

The first known use of steganography was recorded in 440BC by Herodotus who de-
scribes how Demaratus, a recent King of Sparta, carved a message on the wooden sur-
face of a tablet warning of an impending invasion of Greece before applying a beeswax
surface and writing an innocent message on top. In this case the beeswax tablet pro-
vides the innocent appearing cover while only the contact who knows Demaratus’s
method will be able to recover the secret message [4].

Since the introduction of ‘The Prisoners’ Problem’ in [5] we typically model steganog-
raphy as the effort of two prisoners, Alice and Bob, to communicate secretly by passing
messages via a Warden who observes all communication.

2.1.1 Active and Passive Wardens

When the Warden is allowed to tamper with the messages being passed, we refer to
them as an Active Warden.1 If tampering is disallowed, we refer to them as a Passive
Warden.

An ‘intentional’ Active Warden attempts to destroy any hidden message while best
retaining the appearance of the image. In contrast, an ‘unintentional’ Active Warden
may make incidental modifications which damage hidden payload but this was not a
goal for them. For example, a noisy channel is an unintentional Active Warden.

The channel formed by transmitting messages via JPEGs which will be recompressed
is therefore recognised as an unintentional Active Warden since errors will occur but

1The Active Warden is also sometimes permitted to generate fake messages for Alice or Bob to
attempt to decode although we shall not consider that case here.

5

are not intended to destroy payload (although they almost always do).

The majority of research into JPEG Steganography has assumed Passive Wardens
(i.e. images transmitted without modifications). Since our system exhibits an Active
Warden, much of the work presented is original.

2.2 Chrome Extensions and Native Client

Google Chrome is the most popular web browser in the world [6]. It supports many
progressive technologies including installable extensions which are essentially snippets
of Javascript with enhanced permission to run in the background, modify sites dis-
played to the user, store files locally and display notifications to the user. It was
selected as the target platform for this project due to its popularity and developer
tools.

Native Client (NaCL) [7] is an open-source technology which allows websites to deliver
native compiled code to be run within the browser. In this way a website can deliver
C code, specially compiled to meet the security requirements of Native Client, which
is then run in the browser. This allows the use of existing JPEG libraries written
in C within the application without sacrificing the simple browser-only user experi-
ence.2

2.3 Facebook

Facebook is the world’s most popular social networking website. Founded in 2004, it
now has over one billion active users [1]. In August 2012 they reported an average of
300 million photos being uploaded to the site every day [8].

Users are able to upload an unlimited quantity of photos of up to 2048-by-2048px and
view photos uploaded by their friends.

The very large amount of innocent traffic and quantity of photos being transferred
makes Facebook an ideal medium for steganography.

2.4 JPEG

JPEG is the most commonly used image format on the internet [9]. It is used by
Facebook and the majority of cameras. For that reason, my application will be based
on the JPEG format for both cover images and stego-objects.

2My original intention was to write the embedding and JPEG functions in C and run them using
Native Client. For technical reasons, I eventually decided to write the whole project in Javascript. A
discussion of this decision can be found in Section 6.2.

6

Figure 2.1: The 64 cosine modes of an 8-by-8 matrix

2.4.1 JPEG compression and decompression

The JPEG format is based upon the Discrete Cosine Transform (DCT), a close relative
of the Discrete Fourier Transform. Relevant portions of JPEG compression are given
here and further details are explained thoroughly in [10].

The first step of JPEG compression is colour space conversion where luminance (bright-
ness) and chrominance (colour) data are separated and encoded independently. We
will be hiding information only in the luminance channel of the cover image (for rea-
sons explained in Section 2.5) so the effect of compression and decompression on the
luminance of an image alone is presented here.

The image is initially divided into disjoint 8-by-8 pixel blocks which will be treated
independently. Each block undergoes the DCT to produce 64 coefficients, dk(i), rep-
resenting the ith coefficient of the kth block. We number these coefficients 0–63. The
transform function is given below for completeness although its details need not con-
cern us.

dk(u+ 8v) =

7∑
x=0

7∑
y=0

α(u)β(v)gx,y cos

[
π

8
(x+

1

2
u)

]
cos

[
π

8
(y +

1

2
v)

]
(2.1)

where u is the horisontal spatial frequency, for the integers 0 ≤ u < 8,

v is the vertical spatial frequency, for the integers 0 ≤ v < 8,

α(u) =

√

1
8 , if u = 0√
2
8 , otherwise

gx,y is the pixel value at coordinates (x, y) within the kth block,

dk(u+ 8v) is the u+ 8vth DCT coefficient of the kth block.

7

The list of coefficients for each block, dk, represents the weight of each mode (particular
frequency) of the cosine wave to be summed to approximately reconstruct the block
as illustrated in Figure 2.1. In this way we have separated high and low frequency
components.

These coefficients are then quantised by dividing each DCT coefficient by its corre-
sponding element from a quantisation matrix (since high frequency waves are less
perceptible to humans, the quantisation step divides higher frequency coefficients by
larger values, resulting in the prioritisation of lower frequency data over high) followed
by a rounding to the nearest integer.

Dk(i) = round

[
dk(i)

Q(i)

]
(2.2)

This step represents a many-to-one mapping and hence is lossy. These quantised
coefficients allow us to approximately reconstruct the original image by multiplying
the quantised coefficient by the relevant element in the quantisation matrix and then
performing the Inverse Discrete Cosine Transform (IDCT).

The quantised coefficients are finally encoded using a form of lossless encoding called
Huffman coding before being written to file. Details can be found in [10] but are
unimportant to this project.

2.5 Steganography in JPEG

Many existing systems perform steganography with JPEG-compressed images as stego-
objects. In general, they operate by modifying some subset of the quantised coefficients
by ±1 to encode payload [12], creating an image which cannot be distinguished from
the original by the human eye.

The Human Visual System is much more sensitive to brightness than colour so chromi-
nance data is stored with much lower resolution than luminance data. Embedding
equivalent quantities of payload in chrominance, as opposed to luminance, is therefore
significantly more detectable. For this reason, only luminance data are changed by the
majority of steganography systems.

A general embedding function consists of two steps: extracting the Luma DCT coef-
ficients and then applying some embedding function to modify them to represent the
payload data [13].

F5 [22] is a commonly implemented embedding operation which modifies the least
significant bits (LSBs) of the DCT coefficients by decrementing their absolute value
(as opposed to simply replacing the LSBs of the cover with payload since F5 turns
out to be significantly less detectable). It is defined here and implemented in the
project.3

3The actual algorithm given here is F3. For historic reasons this is known as F5 since they are equiv-
alent with the exception that F5 avoids a security flaw in F3 which our application is not susceptible
to.

8

Consider some permutated subset, {e0, . . . , en}, of the extracted DCT coefficients and
a message M = {m0, . . . , en}.

Algorithm 1 F5’s embedding function

for each mi, of M do
if LSB(ei) 6= mi then

if ei > 0 then
ei ← ei − 1

else
ei ← ei + 1

end if
end if

end for

Algorithm 2 F5’s extraction function

for each ei, in {e0, . . . , en} do
mi = LSB(ei)

end for

In this example, the permutation of DCT coefficients may be derived from a pre-
shared password so only the sender and receiver know which order to read/write the
bits. Modifying and reading the coefficients in such an order is known as permutative
straddling. It ensures the changes are distributed evenly throughout the image while
providing additional security since the correct password is required to determine the
order in which bits should be read [22].

2.5.1 Indirect representations

Contemporary steganography tools often utilise an indirect representation of payload
in order to achieve a higher embedding rate (bits of payload stored per bit of cover
changed) compared to simply embedding the raw payload in the cover [22].

With each possible binary message, m, we associate a set of possible encodings, {c}
(with |c| > |m|)4. The association is defined by a multivalued encoding function
E : {0, 1}|m| → P

(
{0, 1}|c|

)
with a corresponding decoding function, D, defined such

that c ∈ E(m) =⇒ D(c) = m.

E is designed such that for every possible message, m, and initial cover sequence, s,
there exists an encoding c ∈ E(m) such that the hamming distance between s and c
is minimal. The encoder can then select the representation with the least hamming
distance from what already exists in the cover, allowing it to convey significantly higher
payload per bit changed than is otherwise achievable [16].

4Note that no two distinct messages share any encodings, i.e. E(m)∩E(m′) = ∅ for every m 6= m′.

9

2.6 Coffeescript

Coffeescript is a language which compiles into Javascript. It provides syntactic sugar,
fixes much of the bizarre behaviour of Javascript and supports class-based inheritance
(which compiles into prototypical inheritance in Javascript).

Since Chrome Extensions are written in Javascript, the majority of the code in this
project was written in Coffeescript and then compiled into Javascript.

Here is an example Coffeescript function [11] which cubes every value in an array:

1 cubes = (list) -> (math.cube num for num in list)

and its Javascript equivalent following all best practices:

1 cubes = function(list) {

2 var num , _i , _len , _results;

3 _results = [];

4 for (_i = 0, _len = list.length; _i < _len; _i++) {

5 num = list[_i];

6 _results.push(math.cube(num));

7 }

8 return _results;

9 };

This example demonstrates the syntactic benefit of using Coffeescript over Javascript.
Refer to [11] for more details on Coffeescript.

2.7 Distinction between steganography and watermark-
ing

Watermarking is the process of embedding a robust marker into an image such that
the marker can survive heavy operations, such as cropping and resizing, being applied
to the image. They are primarily used to identify the copyright holder of images but
have many other uses.

In contrast with steganography, watermarking is primarily concerned with preventing
the removal (intentional or otherwise) of the marker while Active Warden steganog-
raphy is primarily concerned with the undetectability of payload with robustness as a
secondary concern.

Watermarking techniques are therefore allowed to ignore heuristics used to minimise
detectability which must be observed by steganography.

10

Chapter 3

Problem Specification

3.1 General steganography properties to be achieved

• Correctness: Ext(Emb(c, p,m), p) = m for every cover c, password p and message
m where Ext and Emb are the extracting and embedding functions respectively.

• Robustness: Ext(Trans(Emb(c, p,m)), p) = m where Trans represents the trans-
mission of the stego-object. In Passive Warden this is the identity function but in
Active Warden it is a function which causes some (potentially non-deterministic)
errors.

• High embedding efficiency: the (average) number of payload bits hidden for each
cover element changed should be as high as possible. I aim to store 140 ASCII
characters of payload per 960-by-720px image since Twitter has demonstrated
people are happy to communicate in messages of this length, and 960-by-720px
is the largest size available without specifically enabling high definition images
on Facebook.

• Low detectability: the Warden’s ability to discriminate between a stego-object
and an innocent cover should be minimised. Note that this project does not aim to
achieve low detectability since it is an open problem in steganography. Achieving
robustness while transmitting JPEGs with errors is the primary goal.

3.2 Interacting with Facebook without an API key

There is some chance that Facebook would not approve of being used as a medium for
steganography. The application should therefore not depend on Facebook’s approval
in terms of an API key or otherwise.

Facebook supports a feature called Apps where developers are provided an API key to
access the data of users who indicate they wish to use the app. This would provide a
simple way for users to create, upload and manage their stego-objects. Unfortunately,
this would leave Facebook with the power to revoke our API key so it is not an
option.

11

Therefore, a core problem to solve is how to design an application which cannot easily
be disabled by Facebook but is able to interact with a user’s data on Facebook.

3.3 Providing discretion for the user

Given the nature of secret messaging, steganography tools should preferably be subtle
to use. This reinforces the decision not to use a Facebook App since an App’s users
are listed publicly. Furthermore, we should avoid requiring users to connect to any
specific server to generate stego-images since this would be easily detectable by network
analysis.

A problem we therefore must solve is how to design a tool which can operate indepen-
dently of the network and without disclosing its userbase publicly.

Note that we do not consider the distribution and update of the software as a problem
to be solved since this is an open problem in steganography.

3.4 Being simple to use

Any user with a technical background should be able to send and receive messages
without human assistance or prior explanation of the application.

3.4.1 Integrating with the browser

Since the application is highly tied to Facebook, I aim for all interaction with the
software to happen within the browser, or, if possible, within Facebook itself. Hence
having selected Chrome as the target browser and ruled out Facebook Apps, the main
options remaining are Chrome Applications and Chrome Extensions.

3.5 Not storing unencrypted messages or contact details

I wished to avoid the case where gaining access to a computer would allow you to
easily access previous secret conversations or a list of contacts. The following options
are therefore considered:

1. Provide contact and shared-password storage with a single master password re-
quired to access it or initiate a poll for new messages.

2. Require the user to enter their pre-shared password every time they attempt to
encode or decode an image and store nothing persistently.

3. Require the user to share two passwords with each of their contacts, one for
revealing whether payload is stored within an image and the other for decoding
the message. In this way the application could poll stored contacts and find new
stego-objects, then prompting the user for the decoder password to receive the
message.

12

0 5 10 15 20 25 30 35 40 45 50 55 60

20

40

60

80

100

Mode

S
tu

ck
-b

it
ra

te
(p

er
ce

n
ta

ge
)

Figure 3.1: Average stuck-bit rates within modes from a sample of 10 JPEGs

Option 2 was chosen for simplicity, although in the future I would like to implement
option 3, providing the user the option of storing a list of their contacts in the appli-
cation along with the password to detect a message from said contact. The software
could then allow the user to check a “secret messages inbox”, where they would provide
the password to decode the message contents.

3.6 Not changing stuck-bits of JPEGs

It is well documented in the steganography literature that embedding algorithms
should preserve certain features of an image to remain undetectable. Every non-trivial
steganography algorithm avoids changing coefficients from zero to any other number
since this operation is known to be highly detectable. This fact is so well studied that
we shall assume it as a requirement and not explore it further [16].

These zero coefficients and their corresponding least significant bit which must not be
changed are hereby known as ‘stuck’.

Since JPEG is a very efficient compressor we find on average that up to 75–95% of
quantised coefficients in an image are zeros. Since apply greater quantisation to higher
frequency modes, the number of zeros, and hence stuck-bit rate, increases as frequency
increases. This is demonstrated in Figure 3.1.

Note that mode 0, the ‘DC mode’, has negligible stuck-bit rate. The DC mode is
encoded differently from the remaining 63 modes in a way such that hiding data in it is
highly detectable. For this reason, it is ignored by steganography algorithms [15].

These high stuck-bit rates mean that steganography algorithms generally only store
payload in the lowest modes, taking advantage of the lower stuck-bit rates [18].

Wet Paper Codes [16] are most frequently used for avoiding stuck-bits, but are incom-
patible with an Active Warden since they require both the sender and receiver to know

13

8 6 6 7 6 5 8 7
7 7 9 9 8 10 12 20
13 12 11 11 12 25 18 19
15 20 29 26 31 30 29 26
28 28 32 36 46 39 32 34
44 35 28 28 40 55 41 44
48 49 52 52 52 31 39 57
61 56 50 60 46 51 52 50

Table 3.1: Quantisation matrix used by Facebook’s JPEG implementation

which bits are stuck, meaning that if any coefficients change to or from zero during
recompression then decoding will fail.

Hence, if Facebook’s recompression introduces no errors then we can implement a
known encoding and embedding method but if (as we shall see is the case) the JPEG
recompression introduces errors, then a problem we must tackle is how to design a new
kind of code which can both avoid changing stuck bits and also fix errors.

3.7 Existing steganography tools incompatibility with Face-
book

The mathematics of JPEG compression and decompression suggest that multiple com-
pressions with the same quality factor (QF) will not cause a change to an image’s
coefficients. This idea is loosly backed by the decision in [19] to omit studying the
effect of compressing an image multiple times with the same quality factor to avoid
“the trivial case”.

I hoped to exploit this by compressing images in the same way as Facebook before
uploading them. They would then be recompressed with no errors and stored on the
site, providing an error free channel.

The first problem with confirming this hypothesis was the lack of direct access to
Facebook’s JPEG implementation which was tacked by running experiments to deter-
mine the settings used by Facebook’s compression algorithm, specifically the QF they
use.

3.7.1 Facebook’s JPEG implementation

The literature states that Facebook uses QF 85 for storing JPEGs [20]. An attempt
was made to verify this by uploading an image compressed at QF 85 to Facebook and
regarding the change in coefficients. The coefficients changed significantly more than
expected and futher experimentation indicated that Facebook now uses QF 75 to store
images.

To confirm this finding I used libjpeg to extract the quantisation matrix of an image
downloaded from Facebook and compared it to that of an image compressed with QF
75 by a reference JPEG implementation (provided by the Independent JPEG Group).

14

The quantisation matrices were equal (provided in Table 3.1), and hence the default
compression functionality of a reference implementation with QF 75 is acceptable as
an approximation to that of Facebook and is as close as can be within the scope of
this project.

3.7.2 Compressing an image multiple times with the same quantisa-
tion matrix

Since Facebook compresses every uploaded image with QF 75, it is of critical impor-
tance to understand the effect of decompressing and recompressing a JPEG with the
same quantisation matrix. Experimentally, it was established that compressing an
image multiple times with the same QF causes a non-trivial amount of change to the
coefficients before and after. To assess the precise nature of these changes, more tests
were run as follows.

I selected 50 uncompressed images at random from the IAN Image library and com-
pressed them at QF 75. I then decompressed and recompressed them at QF 75. These
images exhibited a surprisingly high coefficient-error1 rate of 5–10%. It is a known phe-
nomenon that errors occur upon compressing images whose widths are not a multiple
of 8 since they are padded before compression. Selecting a new sample of 50 uncom-
pressed images whose dimensions are a multiple of 8 reduced this rate to 1–5%.2

I experimentally determined that the coefficient-error rate decreases by approximately
1/2 upon each decompression/recompression cycle (later verified by [21]). For example,
let I1 be a single randomly selected image initially compressed at QF 75. Let Ij be the
same image decompressed and recompressed j times with QF 75. Let ∆(I, J) be the
fraction of DCT coefficients which differ between I and J . When testing 50 images, I
found on average:

∆(I1, I2) ≈ 3.1%
∆(I2, I3) ≈ 1.6%
∆(I3, I4) ≈ 0.9%
∆(I4, I5) ≈ 0.7%

Note that unlike stuck-bit rates, non-zero error rates do not vary dramatically between
modes. I will therefore select an encoding method capable of correcting error rates of
up to 5% while maximising the stuck-bit rate it can deal with. I will then select the
maximum number of modes possible to store payload subject to the condition that the
average stuck-bit rate of the selected modes is less than the stuck-bit rate our encoding
method can handle.

1The coefficient-error rate is defined as the percentage of non-zero coefficients that changed after
compression. We only measure the change in non-zero coefficients since as discussed earlier only these
coefficients are used for storing payload.

2This new requirement for a cover image’s dimensions to be a multiple of 8 should be solved by the
application to prevent users being required to select such images. The solution will most likely be to
crop images to the nearest multiple of 8 before embedding payload.

15

Why this is not the identity operation

It was observed above that taking a compressed image, decompressing it and com-
pressing it again at the same quality factor was not the identity operation as I initially
supposed.

This is most likely due to the DCT and IDCT rounding floating point values and also
producing values which fall outside the valid range [0..255] altogether. Such values
must be clamped to either 0 or 255 [14].

Note that colour subsampling and colour space conversion may also play some role in
the errors experienced.

3.7.3 A new steganography algorithm is required

A review of the literature indicates that existing JPEG steganography techniques
(which avoid stuck-bits) require JPEGs to be transmitted without error if stuck-bits
are to be avoided, since in many cases a single coefficient change has the potential
to destroy the entire payload. I have also shown that it is impossible to avoid errors
when uploading JPEGs to Facebook since multiple compressions always cause small
changes, even in the case where QF match across compressions.

The largest problem that must therefore be tackled is to design embedding and ex-
traction functions which can avoid modifying stuck bits and also survive the 1–5%
coefficient-error rate for doubly-compressing a QF 75 JPEG.

Note that we could sacrifice security by decompressing and recompressing the cover
multiple times before embedding payload. This would decrease the coefficient-error
rate in exchange for introducing a signature. We will therefore only exploit this prop-
erty if we are unable to reach the robustness goal set for the project.

16

Chapter 4

Implementation

4.1 Robust encodings which avoid modifying stuck-bits

The first problem solved was how to design a code which can modify coefficients by
±1 to store payload while not changing stuck bits and being resistant to an error rate
of 1–5%.

By applying the technique of indirect representations presented in Section 2.5.1, we
are able to avoid modifying stuck bits by first filtering possible representations to only
those which would not modify any stuck bits and then selecting the one with the least
hamming distance from the cover.

Selecting the encodings carefully allows redundancy to be included in the codewords
which can be used for error correction. Unfortunately this idea of combining error-
correction with a code to avoid stuck bits is harder than it appears as I will now
explain.

Representing payload indirectly requires codewords for distinct messages to have very
small hamming distances between one another so minor changes can vastly affect pay-
load. This is at odds with error correction which aims to maximise the distance between
codewords, therefore requiring a large number of changes to the bit-stream to change
the payload slightly. Hence combining these two ideas is a hard problem and there
will always be a certain amount of trade-off between high capacity, low dectability
properties and error-resistant properties within any code we create.

I considered a number of potential codes to solve this problem. The most promis-
ing were from a class known as Partitioned Linear Codes which are presented and
implemented below.

4.1.1 Modified Linear Block Codes

The code presented is a Modified Linear Block Code (MLBC) from the class of Parti-
tioned Linear Codes capable of dealing with both random transmission errors as well
as stuck bits with the assumption that the location and nature of the stuck bits are
known to the encoder but not to the decoder [17].

17

4.1.2 Conceptual explanation of the code

In a partitioned linear code, the encoder has a collection of error-correction codes from
which to choose – in this way it is able to choose the one which most agrees with
the stuck-at requirements of the transmission medium. The decoder does not need to
know which error correction code was used due to the algebraic properties of the code
(as we will see), so messages are decoded without the decoder ever knowing which bits
were stuck.

To deal with stuck bits, consider partitioning the set of all possible binary messages
n-bits in length into 2k disjoint sets {A0, A1, ..., A2k} and associate a k-bit message
with each subset. Now when a k-bit message w ∈

{
0, 1, ..., 2k

}
is given to the encoder

along with a description of the stuck-at bits the encoder selects a message x ∈ Aw

such that x satisfies the stuck at requirements. The decoder then identifies x as a
member of Aw and can correctly decode w without knowing the location of the stuck
bits.

To accommodate random errors in conjunction with stuck bits we partition error cor-
rection codes as above. The decoder receives y = x + z, a noisy copy of x, but x can
be decoded since y was encoded with a random error correction code. The decoder
may then proceed as it did previously.

4.1.3 Modified Linear Block Code usage

Let G = [GT
0 , G

T
1]T and H be the (k + l)× n generator matrix and r× n parity-check

matrix where G0, G1 are l× n, k× n matrices and GHT = 0 where n = l+ k+ r. Let
J be a k × n matrix such that G0J = 0 and G1J = I.1

Let G0, G1, H and J be full rank.

To encode a 1×k message w compute x = wG1 +vG0 where v is a 1× l vector selected
to maximise the agreement between x and the stuck-bits.

Let y = x + z where z is noise (and the noise is allowed to affect the stuck bits). If
yHT = 0 then we expect z = 0 and no errors occurred since we assume the least
number of errors which satisfy the equations is what actually occurred and

yHT = (x+ z)HT

= (wG1 + vG0 + z)HT

= wG1H
T + vG0H

T + zHT

= w0 + v0 + zHT

= zHT

If yHT 6= 0 then z 6= 0 and y contains errors which are fixed by finding the noise
vector, z, with the minimum hamming weight (number of non-zero symbols), Wh(z),
such that zHT = yHT . Using y = x+ z we can now compute x.

Now the decoder has x, so compute xJT = wG1J
T + vG0J

T = wI + v0 = w.

1Where capitals represent matrices and lowercase characters represent either vectors or dimensions.

18

4.1.4 Code generation

The systematic form of an (n, k, l) MLBC is given in [17] (where n, k and 2l are
the encoded codeword length, decoded codeword length and number of encodings
the encoder may choose between to avoid stuck bits respectively) with the following
generators:

G1 = [Ik 0k,l P] and G0 = [R Il Q] (4.1)

Where P , Q and R are k × r, l × r and l × k matrices respectively and r = n− k − l.
These give the following parity matrix and decoding matrix:

H =
[
−P T − (Q+RP)T Ir

]
and J = [R Il Q] (4.2)

To generate any MLBC we can therefore simply choose random P , Q and R matrices
and then use the above forms.

4.1.5 Error correction and stuck-bit capacity of MLBCs

For an (n, k, l) MLBC with generators G0, G1 and parity check matrix H define a pair
of minimum distances, (d0, d1) such that

d0 = min
xHT=0
x 6=0

Wh(x) and d1 = min
xGT

0 =0
xG1 6=0

Wh(x) (4.3)

where Wh(x) is the hamming weight of x, the number of non-zero symbols in x.

Now an MLBC with minimum distances d0 and d1 is t-stuck-bit, u-error correcting if
and only if [17]

u <

{
d1
2 , for t < d0
d1
2 + d0 − t− 2, for t ≥ d0

(4.4)

4.1.6 Example

Using the systematic form, we generate a (7, 2, 1) code with sending rate 2/7 capable
of fixing any single error but with no guarantees on stuck bits. It has the following
generator, parity and decoding matrices:

G1 =

[
1 0 0 1 1 1 1
0 1 0 1 1 0 0

]
and G0 =

[
1 1 1 1 0 1 0

]
(4.5)

19

H =

1 1 1 1 0 0 0
1 1 0 0 1 0 0
1 0 0 0 0 1 0
1 0 1 0 0 0 1

 and J =

[
1 0 1 0 0 0 0
0 1 1 0 0 0 0

]
(4.6)

Observe that G0J
T = 0, G1J

T = I, GHt = 0 and G, H and J are full rank, as
required.

Now we encode w =
[
0 1

]
with the stream s =

[
1 0 1 1 1 1 1

]
where the zero

indicates that the 2nd position in the transmission medium (‘stream’) is stuck at 0
while the others can take either 0 or 1. Hence we take v =

[
1
]

so x = wG1 + vG0 =[
1 0 1 0 1 1 0

]
and the 2nd bit in the encoding now agrees with the stuck-bit

in the stream.

Now let z =
[
1 0 0 0 0 0 0

]
to simulate a single error in the first position so

y = x+ z =
[
0 0 1 0 1 1 0

]
.

Now the decoder receives y and observes S = yHT =
[
1 1 1 1

]
6= 0 so an error

is detected. The decoder proceeds by finding z such that zHT = S and Wh(z) is
minimised, resulting in z =

[
1 0 0 0 0 0 0

]
. Now x = y − z can be calculated

and w = xJT =
[
0 1

]
gives the original message despite the stuck-bit and error in

transmission.

4.2 Coffeescript Implementation of MLBCs

Note that the all the theory, algorithms and implementation details that follow are
original work unless otherwise stated.

4.2.1 Matrix library

The first task was to write a matrix library for binary matrices to be used for encoding
and decoding. This was done using 2-dimensional arrays in the obvious way without
more complex optimisations such as Strassen’s Algorithm.

As an example, here is a snippet demonstrating adding two matrices together:

1 addMatrices = (m1, m2) ->

2 if width(m1) != width(m2) || height(m1) != height(m2)

3 throw "Dimensions don ’t match in addition"

4 m = newMatrix(height(m1), width(m1))

5 for row in [0.. height(m1) -1]

6 for column in [0.. width(m1) -1]

7 m[row][column] = (m1[row][column] + m2[row][column])%2

8 return m

I also implemented functions to reduce the given matrix to row-echelon form, multiply
matrices, transpose, scale by a constant, join horisontally and vertically, check for
equality, calculate row rank, and calculate hamming weight. Many Javascript libraries
for matrices are available but many support advanced features and use complex data-
types which make adding functions or modifying behaviour difficult. Since writing my

20

own appeared easy I deemed it small enough to be worth writing myself (it turned out
to be 300 lines of simple code).

4.2.2 Generating MLBCs

Implementing MLBC generation in Coffeescript is simple, combining random matrices
to generate the systematic form as it was stated above. The only detail to be aware
of is that H may not be full rank, so we introduce a loop to keep generating Hs
until we find one with full rank and then proceed as expected. The Coffeescript code
implementing MLBC generation is provided in the appendix.

4.2.3 Encoding a single block using Coffeescript

Recall that to encode a a 1 × k message w we compute x = wG1 + vG0 where v is a
1× l vector selected to maximise the agreement between x and the stuck-bits.

For this, I designed a function named FindBestX which finds the best v produces
x = vG0 + wG1 as required. To find v such that x agrees with the stuck bits in
the stream as much as possible we generate every possible vector v and attempt it
(stopping early only if we find a perfect solution). This naive solution runs in O(2ll2n)
time where l is usually no larger than 10 so this suffices.

Algorithm 3 FindBestX

function FindBestX(wG1, G0, stream, l)
x← undefined
for each v in {0, 1}l do

x′ ← wG1 + vG0

x′.stuckBitsMissed ← 0
for each streami in stream do

if streami = 0 and x′i 6= streami then
x′.stuckBitsMissed++

end if
end for
if x is undefined or x′.stuckBitsMissed < x.stuckBitsMissed then

x← x′

end if
end for
return x

end function

where my implementation which generates {0, 1}l runs inO(l2l) time and is given:

1 allVectors = (n) ->

2 vectors = []

3 if n == 0

4 return vectors

5 vectors.push [0]

6 vectors.push [1]

7 if n == 1

21

8 return vectors

9 for i in [0..n-2]

10 count = vectors.length

11 for j in [0.. count -1]

12 vectors[j+count] = vectors[j][..] #Copy the array to a new

location

13 vectors[j].push 0 #In the first copy add a 0 on the end

14 vectors[j+count].push 1 #In the second copy add a 1 on the end

15 return vectors

4.2.4 Decoding a single block using Coffeescript

Decoding a message is significantly more complex. Recall that the decoder receives
y = x + z where z is noise and xJT is the original message. To calculate x we
compute the syndrome S = yHT and then find the most probable noise vector, z,
which minimises Wh(z) such that S = zHT .

Unlike encoding, the naive approach of exhausting over z quickly becomes unusable
since it runs in O(2nnlk) time where n is the bit-length of the encoded message (often
large). To find z, I considered the problem as one of XOR-satisfiability and designed
a backtracking algorithm which explores solutions in order of increasing hamming
weight.2

Recalling that H is an r × n matrix, for each column i of the 1 × r syndrome S we
have

S1,i =

n⊕
j=1

z1,j ·HT
j,i (4.7)

by the definition of matrix multiplication (modulo 2). Hence I derived the following
pseudo-code algorithm to construct an XOR-satisfiability problem:

Algorithm 4 Constructing an XOR-satisfiability problem

constraints ← {}
for each column, i, of S do

mustXorTo ← S1,i
elements ← {}
for each row, j, in HT do

if HT
j,i = 1 then elements ← elements ∪ j

end if
end for
constraints ← constraints ∪ (elements, mustXorTo)

end for

We have now produced a set of constraints, {(elementsi,mustXorToi)} such that

2I referred to the literature for efficient XOR-satisfiability solvers. These exist but are complex and
designed for problems much larger than those which occur within this application. For that reason I
devised my own simpler backtracking algorithm.

22

⊕
e∈elementsi

z1,e = mustXorToi (4.8)

The algorithm idea for solving such a problem is to attempt to assign each variable to
0 and only re-assign it to 1 if it creates a conflict with any constraint. Initially a value
MaxOnes is set to 1 and only up to that number of 1s are permitted. On each loop
if no acceptable assignment can be found with the given value of MaxOnes then it is
incremented. The algorithm terminates either when we’ve assigned the last variable
and there were no conflicts or when there are no possible backtracks and we are at a
conflict.

To demonstrate the algorithm in practice the following example run is provided.

Input:

[{elements : [0, 1, 2],mustXorTo : 0} , {elements : [1, 2],mustXorTo : 1}]

Output:

Step Assignment MaxOnes Backtrack
1 [0, undef, undef] 1 [0]
2 [0, 0, undef] 1 [0,1]
3 [0, 0, 0] 1 [0,1,2] ← Conflict so backtrack to 2

4 [0, 0, 1] 1 [0,1] ← Conflict so backtrack to 1

5 [0, 1, undef] 1 [0]
6 [0, 1, 0] 1 [0] ← Conflict so backtrack to 0

7 [1, undef, undef] 1 []
8 [1, 0, undef] 1 [1]
9 [1, 0, 0] 1 [1,2] ← Conflict so backtrack to 2

10 [1, 0, 1] 1 [1] ← Exceeded MaxOnes so backtrack
to 1

11 [1, 1, undef] 1 [] ← Exceeded MaxOnes and no avail-
able backtracks so reset with Max-
Ones = 2

12 [0, undef, undef] 2 [0]
...

...
...

...
21 [1, 1, undef] 2 []
22 [1, 1, 0] 2 [2] ← Success, return Assignment

The full code for this algorithm is given in the appendix (note that many optimisa-
tions such as propagating constraints and reordering variables to try most restrictive
first were implemented but made little practical difference unless n > 50 and since
I later chose n < 40 they were refactored out to keep the code base as simple as
possible).

Now using z, the decoder can compute (y − z)JT = xJT = wG1J
T + vG0J

T =
wI + v0 = w, the original message (assuming z was found correctly).

23

ASCII
Message

m mp mh
To binary Pad Prepend header

Figure 4.1: The steps involved in encoding long messages

4.2.5 Transmitting longer messages

The implementation provided so far can only encode a single block of binary payload.
The next step was to enable encoding and decoding of long ASCII messages using an
(n, k, l) MLBC. Since the medium is a stream, it was required for messages to include
a header indicating the total message length so the decoder can unambiguously know
the payload is an actual message as well as when to stop decoding.3

A number of methods exist to efficiently construct headers which can be unambiguously
removed. For this application, I assume the message and header are subject to the
following conditions:

1. The header must convey the length of the message

2. The header must be unambiguously removable

3. The header must be padded (or otherwise modified) to fit in blocks of size k

4. The header should occupy minimal space

5. The whole message (including header) should be padded (or otherwise modified)
to fit in blocks of size k

Encoding with k = 3

Since I had selected the (27, 3, 11) code by this point, the implementation of the fol-
lowing assumes k = 3 to simplify certain aspects of padding and headers as indi-
cated.

First convert the message from ASCII into a binary vector m and pad it with |m| mod k
zeros to produce mp. This padding ensures that it fits neatly into blocks of length
k = 3.4

A header is required to ensure the correct number of blocks are decoded (and indeed
to recognise that a message is hidden). The terminal # is appended to the padded
message’s length5, |mp|/k, forming the header, h. The header is then encoded with a
3-repetition code to prevent errors from damaging it and also to ensure it fits correctly
into blocks of size k = 3 without padding.

3Note that including a recognisable header may present a security flaw. The alternative is to force
all messages to take a constant length would require the algorithm to modify coefficients needlessly
for shorter messages. Since statistical undetectability wasn’t a primary goal the header method was
selected.

4Since k = 3 and a single ASCII character is 8 bytes long, the decoder can unambiguously discard
any padded bits since there can never be enough padding to be mistaken for a character.

5The length is in blocks and represented in ASCII for simplicity

24

We now compute the message with header mh = h||mp where || represents sequence
concatenation. This is the final message and is ready to be encoded.

Decoding with k = 3

The decoder takes mj = mh||z where z ∈ {0, 1}∗, the message with a header, followed
by the remainder of the stream, as input. It should keep accepting input while reading
3-repetition encoded ASCII numbers or the terminal #. If this pattern was not found
the decoder should reject its input stream and claim no message was found.

Using the length found in the header, the decoder can now take the correct amount of
input, unambiguously remove the header to produce mp and then decode each block
individually as described in Section 4.2.4.

4.2.6 Measuring error-correction and stuck-bit capacity of MLBCs
in Coffeescript

Recall that an MLBC with minimum distances d0 and d1 is t-stuck-bit, u-error cor-
recting if and only if [17]

u <

{
d1
2 , for t < d0
d1
2 + d0 − t− 2, for t ≥ d0

(4.9)

where

d0 = min
xHT=0
x 6=0

Wh(x) and d1 = min
xGT

0 =0
xG1 6=0

Wh(x) (4.10)

Since we are only using the lowest frequency modes we expect to have significantly
fewer stuck bits to avoid than errors to correct. Therefore we may take t = d0− 1 and
u = bd12 c.

We can find d0 and d1 using the same XOR-satisfiability algorithm as given in Sec-
tion 4.2.4 with the modification that an additional constraint function can be passed
in (taking advantage of higher-order functions in Javascript) which checks valid as-
signments each time one is found. In this way we can add a check at the end for d0
that all of the variables are not assigned to zero and a check for d1 that xG1 6= 0, in
both cases causing a backtrack if they are.

4.2.7 Selecting the best MLBC

For n ∈ {10, . . . , 60}, k ∈ {5, . . . , n− 1}, l ∈ {0, . . . , n− k}, I generated 1000 (n, k, l)
MLBCs, storing a table of the number of errors u and stuck-bits t the best of the 1000
could correct for. The value of 60 as an upper bound for n was chosen to ensure the
encoding and decoding times would be acceptable on average devices.

25

From this table a number of potential codes stood out. The best (27, 3, 11) code is
a 2-error, 3-stuck-bit code with over 10% message rate and seems like a good candi-
date.

The given performance measures provide guarantees for when less than a given number
of errors and stuck bits occur but say nothing about how the codes will perform in
situations where error rates and stuck-bit rates are higher. Since in practice errors and
stuck bits will vary with some distribution I built a simulation tool to experimentally
verify whether the (27, 3, 11) code could withstand real world usage. A snippet of
debug output from the tool demonstrating stuck-bit avoidance and fixing errors is
provided:

1 Now we encode w = 0,1,1

2 origMessage: 0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0

3 stream: 1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1

4 We can avoid 3 of the 3 stuck bits

5 x = wG1 + vG0 = 0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0

6 Introduced 2 errors (based on error rate of 0.04)

7 Let y = x + z = 0,1,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0

8 S = yH^t = 0,0,1,1,1,1,0,1,0,0,0,1,1

9 Errors minimised by z =

0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 with

hammingWeight 2

10 Attempted to fix errors , xNew =

0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0

11 Recovered message w’ = xNewJt = 0,1,1

12 0 errors occurred

In simulation the (27, 3, 11) code has an error rate of 0.001% when the underlying
transmission medium has a bit error rate of 4% and stuck-bit rate of 20%.

960-by-720px images have 10800 8-by-8px blocks and hence 10800 sets of coefficients
per mode which can be modified. With a 3/27 embedding rate this gives an effective
capacity of 1200 bits (150 characters) per mode. Since using only mode 1 provides
capacity in excess of my goal and has stuck-bit rate ≈ 20% I proceeded to imple-
ment the JPEG functionality of the project, aiming to use only mode 1 for storing
payload.

4.3 JPEG encoder and decoder implementation

Javascript is still seen as a lightweight language, incapable of performaning complex
tasks such as JPEG compression and decompression, hence there is very little code
publicly available for these tasks.

Only one open source JPEG encoder and decoder written in Javascript could be found
online. The encoder [24] was ported from an open source Action Script 3 encoder
and the decoder [26] was published on GitHub. The decoder required only minor
modifications while the encoder required major flow restructuring and bug fixing in
order to allow interaction with the DCT coefficients.

26

4.3.1 JPEG decoding with DCT coefficient access in Javascript

Modifying the decoder was relatively simple since I could store DCT coefficients in
a global variable as they became available within the flow of the code. Only minor
tweaks were then required to ensure it was stored correctly.

The decoder’s success callback was then modified to also pass the DCT coefficients
array to the continuation provided by its calling function.

4.3.2 JPEG encoding with DCT coefficient access in Javascript

Modifying the encoder was significantly more complicated than modifying the decoder
since we will need access to all the coefficients before any are written to the file in
order to know how to modify them, whereas in the decoder we could simply collect
the DCT coefficients and pass them out at the end.

Unfortunately the only Javascript JPEG encoder available worked by scanning verti-
cally down the image and producing the output for each line as it went. This approach
is unsuitable for the embedding function since we need access to all of the coefficients in
order to decide where to embed payload. The flow was restructured into three stages:
firstly the whole image is scanned to produce all the DCT coefficients; secondly they
are passed to a higher order function supplied to the encoder which modifies them.
Finally, the encoder is allowed to finish processing the coefficients and writes the data
to a file.

This refactoring caused many hours of difficult bug fixing, particularly in one case
where a deeply call-nested array, outputfDCTQuant, which stores quantised DCT
coefficients during each pass, was modifying references in a most unexpected way.
For example, outputfDCTQuant[i] would be set to a variable x by one pass and then
set to a different variable, y on the next pass. Instead of reassigning the ith cell of
outputfDCTQuant, the assignment outputfDCTQuant[i] = y was evaluated as x =
y, pointing x to y and causing every line of scanned coefficients to be the same as
the final line. A simple outputDCTQuant = new Array(); on each pass proved to
be the solution. Discovering this bug amongst such contrived and side-affect-riddled
code such as writeBits(HTAC[(nrzeroes <<4)+category[pos]]); with variables
named by scheme (e.g. tmp0p2, z3p2) marked a significant personal success within
the project.

Other bugs include my choice to use i as a counter within a for-loop where some nested
call also used i without the var keyword, overwriting the outer value. A final notable
bug was caused by the original author’s decision to name a variable fDCTQuant within
a function which was also named fDCTQuant.

4.4 Connecting the JPEG implementation to the message
encoder/decoder

We now have access to an image’s DCT coefficients and the ability to encode an ASCII
message by providing the encoder a stream indicating which bits are stuck and must

27

remain zero and which can be changed. The next step is to piece the two together.
In the case of creating a new stego-object we take a cover image and modify its DCT
coefficients during compression by choosing some permutation of coefficients (based
on a password), calculating which bits are stuck and then using this to inform the
encoder on how to encode the ASCII message. We then modify the coefficients of the
cover using the F5 operation (outlined in Section 2.5) so the least significant bits of
the stego-object match the encoded message.

To decode the payload from a stego-object the LSBs of the permutated subset of
coefficients are extracted and the technique outlined above for decoding large messages
is applied, correcting for errors as it goes.

4.4.1 Connecting the message encoder to the JPEG encoder

Now that we have a method to gain access to the DCT coefficients of an image dur-
ing encoding, we need to specify how we pass information from the coefficients to
the MLBC encoder along with the message and password and then use the resulting
information to modify the DCT coefficients.

This is all carried out by a function passed into the encoder and is illustrated by the
following snippet:

1 # LUMA_ARRAY is a 2d array of blocks of coefficients belonging to modes.

The number of blocks is given by the variable ‘blocks ’

2 LUMA_ARRAY = DU_DCT_ARRAY [0]

3 # List references to all the coefficients in mode 1 so we can shuffle

them and use this order to modify them

4 coeffOrder = getValidCoeffs(LUMA_ARRAY , blocks)

5 # Apply knuth shuffle to coeffOrder

6 shuffle(coeffOrder , password)

7 # Generate the ‘stream ’ of stuck bits from LUMA_ARRAY , accessed in the

order determined by coeffOrder

8 stuckBitStream = coeffsToStuckBitStream(coeffOrder , LUMA_ARRAY)

9 # Apply MLBC encoding to the message using the generated stuck -bit

stream

10 messageToHide = encodeLongMessage(mlbc , message , stuckBitStream)

11 # Modify the LUMA_ARRAY using the F5 algorithm to hide the message

12 stuckBitErrors = makeChanges(messageToHide , coeffOrder , LUMA_ARRAY)

The getValidCoeffs function takes D (known above as LUMA ARRAY), an array of
arrays where LUMA ARRAY[k][i] = Dk(i) represents the coefficient of the ith mode
of the kth block. It returns a list of coefficients which will be shuffled to create a
‘coefficient order’, the list representing in which order coefficients are to be modified to
store the payload. The indices in the coefficient order are stored in the format 64k+ i
representing the index of the ith mode’s coefficient within the kth block.

The shuffle function generates the order c in which to access the coefficients. This
permutation is generated by a Knuth Shuffle which utilises a pseudorandom generator
seeded by the password. This permutation is used identically in both embedding and
extracting so the users can store their data in a seemingly random order. This has
the benefit of only allowing users with the correct password to access the message
while spreading changes caused by the algorithm evenly throughout the cover (which

28

minimises detectability and is a technique known as Permutative Straddling [22]). The
implementation is given:

1 shuffle = (arr , password) ->

2 Math.seedrandom(password)

3 for i in [arr.length -1..0] by -1

4 j = random(0, i)

5 swap = arr[j]

6 arr[j] = arr[i]

7 arr[i] = swap

8 Math.seedrandom ()

Note that the final Math.seedrandom() resets the seed for enhanced security. This is
a minor concern but may prevent accidentally leaking information about the seeded
password to elsewhere within the code.

The coeffsToStuckBitStream function produces an array s of 0s and 1s, where

si =

{
0 if Db(ci/64)c(ci mod 64) = 0

1 otherwise
(4.11)

where ci is the ith element of coeffOrder and as before, Dk(i) is the coefficient of the ith
mode within the kth block. Intuitively si = 1 means that the ith bit can be changed
to 0 if necessary while si = 0 indicates that the ith bit is stuck and must remain equal
to 0.

The makeChanges function implements the F5 embedding operation outlined in Sec-
tion 2.5. It takes the encoded message mh, the coefficient order c and the array of DCT
coefficients D. It decrements the absolute value of Dk(i) so Dbcj/64c(cj mod 64) mod
2 = mh(j) for j ∈ {0 . . . length(mh)}.

The function which carries out these steps was passed as a higher-order function into
the JPEG encoder which applies it to the DCT coefficients after quantisation but
before applying huffman encoding and writing them to a file.

4.4.2 Connecting the message decoder to the JPEG decoder

Connecting the decoders is similar but slightly simpler. First we generate c, the
coefficient order, as above and then extract the LSBs of D in that order to pro-
duce mj , the padded message with header followed by junk, such that mj(i) =
Dbci/64c(ci mod 64) mod 2 where mj(i) is the ith value in the binary vector mj .

mj is then decoded to produce the original ASCII message as in Section 4.2.5.

4.5 User interface implementation

4.5.1 Connecting the extension’s components

The actual encoding and decoding functions are running in a ‘background script’ within
Chrome which can communicate with other aspects of the extension, such as code

29

injected into Facebook. A small snippet of Javascript is injected into Facebook to
manage decoding messages from images and opening an iframe which allows the user
to create a new stego-object. Both the iframe for encoding and the decoding Javascript
communicate with the background page to encode or decode messages.

This was necessary for two reasons. Firstly, because injecting complicated Javascript
into Facebook itself risked code collisions and increased detectability. Secondly, since
creating a new stego image happens within an iframe whose domain is the extension
while decoding a message happens within the domain of Facebook so both would re-
quire an independent copy of the code due to Chrome’s security features not allowing
cross-domain communication. Therefore running a single copy of the encoding/decod-
ing code and allowing sections of the extension to communicate with it was the best
architectural choice.

Working with the extension messaging API in Chrome was relatively simple but a
single bug (where a message would simply go missing) took many hours to solve, since
it turned out to be a bug within Chrome itself. I implemented a temporary work-
around and the bug has now been fixed in the current version.

4.5.2 Injecting code into Facebook

Chrome Extensions allow developers to easily specify which code to inject into which
website. Each extension has a manifest file where this can be specified.

In this case I added the following to my extension’s manifest file:

1 "background ": {

2 "page": "background.html"

3 },

4 "content_scripts ": [{

5 "js": ["js/jquery -1.9.1. js", "js/keymaster.js", "js/inject.js"],

6 "matches ": ["http ://www.facebook.com/*", "https ://www.facebook.com

/*"]

7 }],

8 "web_accessible_resources ": [

9 "index.html"

10]

which automatically launches background.html in the background and injects the three
Javascript files into Facebook which will overlay index.html on top of Facebook to
provide a form for creating stego-objects.

4.5.3 Hotkey based activation

Activating the UI with hotkeys was simple. I injected the Keymaster library [25], along
with the following line into Facebook:

1 key(‘ctrl+alt+a’, function (){ activate (); });

30

Figure 4.2: Screenshot of the user interface injected into Facebook for creating stego-
objects

4.5.4 Injecting a form into Facebook to create stego-objects

If the user is not currently looking at an image on Facebook when they press the
hotkey they are prompted to create a new stego-object. To manage the user interface
the following javascript is injected into Facebook:

1 function activate () {

2 var url = getImage ();

3 if (url) {

4 var password = prompt (" Please enter your password to decode the

message.", "");

5 var message = decodeMessage(url , password);

6 if (message) {

7 alert (" Message received :" + message);

8 } else {

9 alert ("No message could be found");

10 }

11 } else { // Couldn ’t find the image

12 openStegoObjectCreation ();

13 }

14 }

Where decodeMessage communicates with the background script to receive the decoded
message and the openStegoObjectCreation function injects an iframe into the center
of the screen, rendering the form to generate stego-objects. Injecting an iframe was
preferred to adding element to Facebook since it minimises the possibility of Facebook

31

making breaking changes or naming conflicts occurring between Facebook’s and the
extension’s Javascript libraries.

The iframe is contained in a wrapping div in order to allow the iframe to be horisontally
centered using the “margin: 0 auto” CSS property.

If a user is currently viewing an image when they press the hotkey then they will
be prompted for a password and the extension will attempt to decode the stego-
object.

32

Chapter 5

Evaluation

5.1 User feedback and reception

I wrote a blog post on April 7th announcing the release of the extension and submitted
it to Hacker News. The post trended to the top of the home page, resulting in its
discovery by tech journalists.

Wired and Mashable both requested interviews and published articles documenting
the extension. These lead to the announcement’s discovery by the Daily Mail who
published a factually incorrect article including the subtitles “First time anyone has
worked out how to hide messages in computer files” and “There is a fear that the
technology could be used by terrorists”. This article was then discovered by CNN
and NBC News, the former running a TV segment on the extension and the latter
publishing an article to their website.

A search on Google News now returns over 120 articles in various languages document-
ing the extension. These articles have now been tweeted over 5k times and according
to the Chrome Web Store, the extension has 8,240 users [23].

This reception was far beyond anything I had expected and discounting the Daily Mail
article, I was very satisfied with the response.

5.1.1 Usability studies

I carried out three usability studies on successive versions of the extension. In each
case the user was asked to hide a message on a friend’s ‘wall’ and receive a message I
posted on theirs.

User 1 was a non-technical student. They were presented with a version which required
them to choose an image whose dimensions are a multiple of 8. This proved too difficult
and the user became frustrated. The user also failed to append the download with .jpg
when prompted and were hence unable to re-upload it to Facebook. These issues were
solved by using an HTML5 canvas to automatically resize and crop the cover and by
using a trick which allows developers to prompt data URI downloads to bear a certain
name (given in the appendix).

33

User 2 was a computer scientist working with the improved version. They remarked
“Hey, it’s pretty easy to use” and successfully created a stego-object without any
prompts. They then proceeded to upload the cover image instead of the stego-object
but realised when the message wouldn’t decode. Although they blamed themselves I
added a further reminder to the instructions regarding this. They commented “the
decoder works great” and successfully received the message posted on their wall.

User 3 was a non-technical student. They remarked the instructions were too long so
a ‘Quick start’ chapter was introduced. They successfully created a stego-object and
posted it on Facebook without prompts. They also successfully received a message,
remaking “It’s very easy”.

The usability is therefore determined to be suitable, especially considering the appli-
cation is mostly of interest to technical individuals.

5.2 Error rate in practice

To assess error rate in practice, 200 large JPEG photos were selected from the IAN
Image Library as a representative sample to be tested. I hid a 100-character random
message into each and then uploaded them to Facebook. They were then downloaded
and the encoded payload was compared to the decoded payload.

122 errors occurred out of a total 168000 bits transmitted, giving a 0.000726 bit-error
rate. This can also be viewed as a 0.0058 character-error rate or a 0.609 message-error
rate (one character or more incorrect).

Hence average messages experience minor errors frequently but messages are by-and-
large able to be understood.

5.3 Detectability

Figure 5.1: Before and after embedding a secret message and a difference with high
contrast all viewed at a zoom of 200%. Changes are slight enough that without access
to the original it would be impossible to visually detect the presence of a secret message.

By simulating filling capacity it was established that hiding random 136-character
messages in 200 large JPEG photos resulted 855631/1679467 ≈ 49% of the non-zero
coefficients of mode 1 being altered.

34

On average, each image had 446126 non-zero coefficients (in total across modes 1–63),
so this represents a modification of 0.97% of the non-zero coefficients available in all
modes.

Unsurprisingly, strong correlations exist between the various modes within an image.
For that reason, changing (on average) 50% of DCT coefficients within an individual
mode is trivial to detect. This is a mildly disappointing result since we only modify
0.97% of coefficients overall but by clustering the changes in mode 1, the application
causes itself to be easily detectable.

5.4 Average encoding and decoding time

Hiding random 100-character messages in the same 200 large JPEG photos took 268
seconds on a Macbook Air with a 1.8GHz dual-core Intel Core i5. This is equivalent
to an average encode time of 1.3 seconds. This is deemed acceptable since the process
of creating a stego-object is relatively infrequent and waiting for one to two seconds is
not a surprising or uncomfortable delay for such a process.

Decoding the same messages took 116 seconds, giving an average decode time of 581ms
per image. Displaying the message half a second after being provided a decoding
password is fast enough that users do not wonder if an error has occurred. If this delay
increased significantly then some form of activity notification would be desirable, but
in this case it isn’t deemed necessary.

35

Chapter 6

Conclusion

A Chrome Extension has been presented enabling Facebook users to communicate
secretly and securely. This is the first publicly available steganographic system for
JPEGs which avoids modifying stuck bits while supporting recompression as found on
most social networking sites.

This is distinct from low-detectability watermarking algorithms since we have success-
fully preserved ‘stuck-bits’ within a robust framework, where watermarking would have
overwritten them.

6.1 Reflecting on user interface design

Given the nature of the application, great consideration was given to the user interface
and interaction in order to allow maximum discretion and security. During the course
of building the application the user interface changed significantly from being push-
based with contact storage, polling and notifications to a discrete hotkey-activated pull
system where no past messages or data on the user’s contacts are stored.

I initially decided the project should be a Chrome Application with a launch icon on
the New Tab Page allowing the user to manage their contacts and stored passwords
as well as send new messages. The first version polled Facebook every minute and
scanned contacts new uploads for hidden messages, popping up a notification with
the message if one was found. I later deemed this undesirable since it would be easy
for somebody other than the user with access to the computer to quickly collect the
passwords and list of contacts.

I also decided that subtlety was likely to be a priority for users so this was added
to the problem specification and the application was designed around a hotkey-based
activation system where users press ctrl+alt+a while on Facebook to reveal the user
interface to send or receive messages without notifications or otherwise visible UI.

These changes resulted in throwing away large amounts of code for polling Facebook
and persistent secure local storage (non-trivial in only a web browser without a server
connection). In the future I will spend more time deciding on user interfaces up front
to avoid wasting effort.

36

6.2 Reflecting on technology choice

Initially I selected Google’s Native Client technology for the JPEG and coefficient
modification functionality since it allows standard C libraries such as libjpeg to be
used. I wrote embedding and extracting functions in C before recompiling them using
a toolchain provided by Google to allow the code to be run by Chrome securely.

Code compiled to Native Client is limited and sandboxed to prevent malicious attacks.
This applies particularly to memory management and passing data between the tab
process and the Native Client process. These restrictions proved insurmountable, with
the task of passing a local JPEG into the specially compiled libjpeg library taking sev-
eral days due to outdated documentation and lack of debugging tools. For this reason
I decided to move the entire project to Javascript and rewrite the JPEG embedding
and extraction procedures.

Despite its reputation as a slow language, Javascript proved suitably fast for this
application.

6.3 Achieving capacity goals

The extension achieves a capacity of 136 ASCII characters per 960-by-720px image,
almost reaching my goal of 140 characters. The fundamental limitation on capacity
when using Modified Linear Block Codes is which modes of DCT coefficients can be
used. In this application only mode 1 (of 0–63) were used since MLBCs can only deal
with relatively low (realistically up to 20% stuck-bit rate) and the higher frequency
modes all incur much higher stuck-bit rates ranging from ∼45% for mode 2 to ∼98%
for mode 63. Other codes would be required if these modes are to be used for capacity
in the future.

The requirement of using only a single mode results in high statistical detectability
since achieving full capacity of 140 characters requires the utilisation of every coefficient
in the mode, changing on average 50% of them which causes significant statistical
(although not visible) change.

6.4 Achieving robustness goals

The application exhibits a character-error rate of 0.0058. This proves suitable for
transmitting short messages due to the high redundancy of English. If binary data
were to be transmitted then another error-correction code would have to be nested
within the current one, reducing capacity further, or a new form of code would have
to be used which can provide higher error-correction capabilities as well as stuck-bit
avoidance.

37

6.5 Achieving visual undetectability

The resulting images are successful in passing visual inspection. Filling payload capac-
ity causes us to change on average, 50% of the mode 1 coefficients which results in high
statistical detectability. This is unfortunate but acceptable within the requirements of
this project.

6.6 Future work

This application has effectively converted the problem of private communication to one
of key exchange. It remains for secure, secret key exchange to be solved in steganog-
raphy as it was in cryptography by techniques such as Diffie-Hellman and Public Key
Cryptography.

In the future I would like to include support for symmetric encryption to prevent
attackers guiding a brute force by exploiting predictable patterns caused by MLBC
encoding. This would reduce capacity but protect messages from being read even if
they are detected.

I would also like to try other approaches to encoding such as nesting powerful error
correction codes within more naive stuck-bit avoiding codes.

Since the majority of image hosting websites compress images similarly to Facebook,
it would also be nice to build a more general version of the extension by parameter-
ising the embedding and extraction functions to take a quality factor which could be
extracted from images hosted on the site.

38

Acknowledgements

I would like to thank Dr Andrew Ker for suggesting such a challenging and interest-
ing project and for imparting some of his excellent knowledge of steganography. His
attentive assistance was invaluable to this project.

I would also like to thank Andreas Ritter [24] and notmasteryet [26] for their Javascript-
based JPEG Encoder and Decoder without which I would most likely still be wrestling
with a Native Client version of the project.

39

Bibliography

[1] Facebook, 2013. Facebook Reports First Quarter 2013 Results. Accessible
from: http://investor.fb.com/releasedetail.cfm?ReleaseID=761090 [Accessed 3
May 2013].

[2] Howard, P.N., et al., 2011. Opening Closed Regimes: What Was the Role of Social
Media During the Arab Spring?. Project on Information Technology & Political
Islam.

[3] Fridrich, J, 2009. Steganography in Digital Media: Principles, Algorithms, and
Applications. Cambridge University Press, Cambridge.

[4] Herodotus, 1996. The Histories. Penguin Books, London. Translated by Abrey de
Sélincourt.

[5] Simmons, G. J, 1983. Prisoners’ problem and the subliminal channel. In: Advances
in Cryptology: Proceedings of CRYPTO 83. D. Chaum, ed. Plenum, pp. 51-67.

[6] Cullen, A., 2012. Independent web analytics firm StatCounter confirms mile-
stone as Chrome overtakes IE globally for first calendar month. Accessible from:
http://gs.statcounter.com/press/chrome-overtakes-ie-globally-monthly [Accessed
17 April 2013].

[7] Yee, B., et al., 2009. Native Client: A Sandbox for Portable, Untrusted x86 Native
Code. 30th IEEE Symposium on Security and Privacy, pp. 79-93.

[8] Facebook, 2012. Big Data Whiteboard. Accessible from:
http://www.scribd.com/doc/103621762/Big-Data-Whiteboard-082212 [Accessed
17 April 2013].

[9] Morkel, T., et al., 2005. An Overview Of Image Steganography. Proceedings of the
Fifth Annual Information Security South Africa Conference (ISSA2005), Sandton,
South Africa, June/July 2005.

[10] Hung, A.C., 1993. PVRG-MPEG CODEC 1.1. Department of Computer Science,
Stanford University.

[11] Coffeescript. Coffeescript homepage and examples. Accessible from:
http://coffeescript.org/ [Accessed 16 April 2013].

[12] Fridrich, J., et al., 2007. Statistically undetectable jpeg steganography: dead ends
challenges, and opportunities. MM&Sec 2007, pp. 3-14

40

[13] Johnson, N.F. and Katzenbeisser, S., 2000. A Survey of steganographic techniques.
S. Katzenbeisser and F. Petitcolas (Eds.): Information Hiding, pp. 45-49.

[14] Newman, R., 2002. A Steganographic Embedding Undetectable by JPEG Compat-
ibility Steganalysis. Proc. Information Hiding Workshop, pp. 261.

[15] Sallee, P., 2005. Model-based methods for steganography and steganalysis. Interna-
tional Journal of Image and Graphics 5(1), pp. 167190.

[16] Fridrich, J., et al., 2004. Writing on wet paper. In: ACM Workshop on Multimedia
and security, Magdeburg, Germany.

[17] C. Heegard, 1983. Partitioned linear block codes for computer memory with stuck-
at defects. IEEE Trans. Inf. Theory, vol. IT-29, no. 6, pp. 831842.

[18] Goel, M.K. and Jain, N., 2008. A Novel Visual Cryptographic Steganography Tech-
nique. International Journal of Computer, Electronics & Electrical Engineering
Volume 2 Issue 2 pp. 40.

[19] Milani, S., Tagliasacchi, M., Tubaro, S., 2012. Discriminating multiple JPEG
compression using rst digit features. In: Proc. of the IEEE ICASSP, pp. 3.

[20] Castiglione, A. et al., 2011. A forensic analysis of images on online social net-
works. Third International Conference on Intelligent Networking and Collabora-
tive Systems, pp. 682.

[21] Huang, F. et al., 2010. Detecting double JPEG compression with the same quanti-
zation matrix. IEEE Transactions on Information Forensics and Security, 5(4):848-
856.

[22] Westfeld A., 2001. F5A Steganographic Algorithm: High Capacity Despite Better
Steganalysis. Proc. 4th Internationall Workshop Information Hiding, Springer-
Verlag, pp. 289302.

[23] Chrome Web Store. Secretbook. Accessible from: http://goo.gl/o7Pth [Accessed
18 April 2013].

[24] Ritter, A., 2009. Javascript JPEG encoding. Accessible from:
http://ajaxian.com/archives/javascript-jpeg-encoding [Accessed 18 April 2013]

[25] Thomas Fuchs, 2012. Keymaster. Accessible from:
https://github.com/madrobby/keymaster [Accessed 20 Dec 2012]

[26] Notmasteryet, 2011. Simple JPEG/DCT data decoder in JavaScript. Accessible
from: https://github.com/notmasteryet/jpgjs [Accessed: 18 April 2013]

41

Appendix

Generating an MLBC in systematic form

1 newMLBC = (n, k, l) ->

2 debugOutput ("This is an ("+n+", "+k+", "+l+") code with sending rate

" + k/n)

3

4 r = n - k - l

5

6 if (2^r) > n

7 debugOutput (" Increase n or decrease k or decrease l. You can ’t

make H full rank with this .")

8 return {success: false}

9

10 correct = false

11 attempts = 0

12 # Keep trying to generate an MLBC until H rank == n

13 while !correct

14

15 # Generate random matrices here.

16 P = newRandomMatrix(k, r)

17 Q = newRandomMatrix(l, r)

18 R = newRandomMatrix(l, k)

19

20 # Generate H according to spec

21 Pt = transpose(P)

22 RP = multiplyMatrices(R, P)

23 QplusRPt = transpose (addMatrices(Q, RP))

24 Ir = identity(r)

25 H = horisontalJoin(horisontalJoin(Pt , QplusRPt), Ir)

26

27 correct = (columnRank(H) == n)

28

29 attempts ++

30 if count > 100000

31 debugOutput ("We tried 100000 matrices. Giving up.")

32 return {success: false}

33

34 # Generate G1 according to spec

35 Ik = identity(k)

36 zeroskl = newMatrix(k, l)

37 G1 = horisontalJoin(horisontalJoin(Ik, zeroskl),P)

38

39 # Generate G0 according to spec

40 Il = identity(l)

41 G0 = horisontalJoin(horisontalJoin(R, Il), Q)

42

42

43 # Generate J according to spec

44 Ik = identity(k)

45 Rt = transpose(R)

46 zeroskr = newMatrix(k, r)

47 J = horisontalJoin(horisontalJoin(Ik , Rt), zeroskr)

48 debugOutput ("J:")

49 debugOutput(matrixString(J))

50

51 # Generate G by joining G0 , G1

52 G = verticalJoin(G0 , G1)

53

54 # Generate more useful things for later use

55 Ht = transpose(H)

56 Jt = transpose(J)

57

58 # Verify the checks work:

59 if !verifyMLBCCorrectness(G, G0, G1, Ht, Jt, n, k, l, r)

60 throw "MLBC is invalid"

61

62 return {k: k, n: n, l: l, r: r, G1: G1, Ht: Ht, Jt: Jt, G0: G0}

Algorithm for solving XOR-satisfiability problems

1 # constraints is an array of objects like {elements: [0,1,2], mustXorTo:

1}

2 solveMinimally = (variableCount , constraints) ->

3

4 # Takes a single constraint and an assignment and returns whether the

constraint is violated

5 satisfies = (constraint , assignment) ->

6 xor = 0

7 for element in constraint.elements

8 # If one of the variables hasn ’t been assigned

9 if assignment[element] == undefined

10 # Since it could be either 0 or 1 the constraint isn ’t

violated

11 return true

12 xor = (xor+assignment[element])%2

13 return xor == constraint.mustXorTo

14

15 # assignment[i] represents the assignment to element i. Initially

undefined forall i

16 assignment = []

17 # We progress left to right while assigning. This is a list of

indices we can backtrack to and restart from there

18 validBacktracks = []

19 # We explore the options in order of increasing hamming weight by

allowing up to maxOnes ones and incrementing this value

20 maxOnes = 1

21 # How many ones are currently in the assignment?

22 currentOnes = 0

23 # Which element are we currently assigning?

24 current = 0

25

26 # While we haven ’t assigned every variable

27 while current < variableCount

28

43

29 debugOutput "Current: "+ current +" assignment: "+ assignment.

toString ()+" validBacktracks: "+ validBacktracks.toString ()+"

currentOnes: "+ currentOnes +" maxOnes: "+ maxOnes

30

31 # Always try 0 first

32 if assignment[current] == undefined

33 assignment[current] = 0

34 # This is backtrackable since we could change it to a 1

35 validBacktracks.push current

36 # We ’ve backtracked so try setting this to a 1

37 else if assignment[current] == 0

38 assignment[current] = 1

39 currentOnes ++

40 # assignment[current] == 1 will never happen since current would

not have been in validBacktracks

41

42 backtrack = false

43 # Check whether we ’ve violated any constraints and potentially

backtrack

44 for constraint in constraints

45 if !satisfies(constraint , assignment)

46 backtrack = true

47 break

48 # If we ’ve assigned more ones than allowed

49 if currentOnes > maxOnes

50 backtrack = true

51

52 if backtrack

53 debugOutput "We assigned "+ current +" to "+ assignment[current]+"

and it violated so backtrack to the last pos in ["+

validBacktracks.toString ()+"]"

54 if validBacktracks.length > 0

55 current = validBacktracks.pop()

56 # Decrement currentOnes for every 1 in assignment after

current

57 if current +1 <= variableCount -1

58 for i in [current +1.. variableCount -1]

59 if assignment[i] == 1

60 currentOnes --

61 # Reset assignments for variables with index > current

62 assignment.length = current + 1

63 else # No backtrack options , can we increase maxOnes?

64 if maxOnes < variableCount

65 debugOutput "Nowhere to backtrack to so increment maxOnes

and go back to the start"

66 maxOnes ++

67 # Reset the whole assignment and restart

68 assignment.length = 0

69 current = 0

70 currentOnes = 0

71 else

72 debugOutput Nowhere to backtrack to and maxOnes is

already "+ variableCount +" so no assignment is valid"

73 return {success: false}

74 else # If we didn ’t have to backtrack , simply continue!

75 debutOutput "We assigned "+ current +" to "+ assignment[current]+"

and didn ’t violate so continue ."

76 current ++ #We didn ’t have to backtrack and we ’re not done ,

increment and loop!

44

77

78 # Since we’re out of the loop either we assigned the last variable

and there was no conflict or we timed out

79

80 debugOutput "Loop finished because we assigned the last variable and

it didn ’t violate.

81 return {success: true , assignment: assignment}

Prompting a file download with a specific name

This method exploits the new ‘download’ attribute provided by Chrome which allows
data URI links to suggest a name for the downloaded file. I create a link with such an
attribute and then fire a click event using Javascript as follows:

1 function downloadWithName(uri , name) {

2 var link = document.createElement ("a");

3 link.download = name;

4 link.href = uri;

5 link.fireEvent(’onclick ’);

6 }

45

