Non-uniformities in the RC4 Stream Cipher

Simon Campbell
under the supervision of
Prof. Andrew Ker

Dissertation submitted for the completion of the
MSc IN COMPUTER SCIENCE

UNIVERSITY OF OXFORD

Trinity Term 2015

Abstract

The RC4 stream cipher is used to protect messages from eavesdroppers in many settings, including
some of the Transport Layer Security (TLS) protocols used to secure much internet traffic. Non-
uniformities in the output of a stream cipher are a weakness that an eavesdropper can exploit to
gain information about the encrypted messages. In this report we verify the size of some non-
uniformities of RC4 in TLS that were recently reported based on experimental observations by Al
Fardan et al. (2013). We extend this work to report on several newly discovered non-uniformities.
We also report methods and results quantifying the vulnerability to eavesdropping of messages
encrypted by RC4 in TLS as a result of these non-uniformities. Based on the resulting analysis,
and in conjunction of the work of others, we add our voice to those urging that RC4 no longer be
used.

Contents

1 Introduction
2 The Problem to be Studied
2.1 Background
2.1.1 The RC4 Stream Cipher
2.1.2 What is a Non-Uniformity?
2.1.3 Predicted and Observed Non-Uniformities in RC4’s Output
2.2 The Problem to be Studied
2.2.1 Single Byte Biases
2.2.2 Double Byte Biases.
3 Methodology
3.1 Identifying and Quantifying Non-Uniformities
3.1.1 Identifying Biases.
3.1.2 Quantifying Biases
3.1.3 Data Requirements
3.2 Data Collection e e e
3.2.1 Source of Pseudo Randomness,
3.2.2 Code Speed and Computing Resources
3.3 Measuring the Loss of Randomness
3.3.1 Empirical Entropy Estimation 0.
3.4 An Attacker’s Perspective
3.4.1 The Attacker
3.4.2 Measuring RC4’s Vulnerability to Our Attacker
4 Results
4.1 Single Byte Biases
4.1.1 Biases in the First 256 Bytes L.
4.1.2 Biases in the Second 256 Bytes
4.2 Double Byte Biases e
4.2.1 Fluhrer-McGrew Biases
4.3 Vulnerability Analysis

11
12
12
12
13
14
14
15
22
22
26
26
28

5 Conclusions 52

5.1

5.2

Scientific Conclusions 52
5.1.1 Confirmed and Unconfirmed Biases 52
5.1.2 Discovered Biaseso 52
5.1.3 Measuring Vulnerability 53
5.1.4 Potential Future Extensions, 54
Other Insights Gained 54
5.2.1 Coding for Speed 54
5.2.2 Continued Use of RC4 54
5.2.3 Lessons for Crypto System Selection, 55

Chapter 1

Introduction

“The nail that sticks out gets hammered down.” - Japanese Proverb

Uniformity is useful when you want to pass unrecognised, it lets you blend into the crowd. In the
field of cryptography, we aim to pass messages so that our adversaries will not be able to read
them. If the way we encrypt our messages makes all messages appear indistinguishable then we
are making things hard for our opponents. Conversely, features which distinguish the encryptions
of particular messages can be exploited by our enemies, and they may be able to read the content
we’ve tried to hide.

The RC4 stream cipher is an encryption system that has found wide applications since the
early 1990’s. For example, RC4 has been included in the Secure Socket Layer/Transport Layer
Security (SSL/TLS) protocols® used to secure much internet traffic. Therefore, vulnerabilities in
this system are worth investigating and it is of interest whether this particular system is providing
enough uniformity to keep our messages unread by those who might want to uncover them. In this
report we address this issue by seeking to answer two questions:

1. How uniform (or not) is the output of the RC4 encryption system? And, as a result,
2. How vulnerable is the system to an attacker who seeks the messages being sent?

In recent years there have been a series of papers published focussing on these questions, in part
because RC4’s use had increased in response to vulnerabilities in other TLS encryption systems
(e.g. the BEAST attack [4]). We will seek to replicate some of the recently observed results
regarding non-uniformities/biases, in particular the results found in Al Fardan et al [3]. We will
also extend beyond the existing literature to see whether we can discover any previously unknown
non-uniformities. We will then consider how vulnerable these non-uniformities make the system.
As a preliminary we will lay out the structure of this report.

The Structure of this Report

This report is made up of 4 further chapters. In the second chapter we will lay out some of the
relevant background to our work. This will include a description of the RC4 stream cipher and what

'The latest (draft) version of TLS 1.3 is at http://tools.ietf.org/html/draft-ietf-tls-tls13 and includes references
to prior versions

we mean by a non-uniformity in its output. We then give an overview of the literature containing
predictions and observations of non-uniformities/biases. We will then state the questions we will
seek to address in this report in formal and precise terms.

In chapter 3 we will describe the methodology we will follow to answer these questions. This
will provide a description of how we will go about identifying and quantifying the non-uniformities
in the RC4 output. We will also outline how we went about collecting the data required for this
analysis. Finally, we go on to report the methods to be used to quantify how vulnerable the RC4
cipher is to an attacker as a result of the observed non-uniformities.

In chapter 4 we report on the results obtained by following this methodology. This includes the
details of several previously undiscovered non-uniformities.

In chapter 5 we seek to draw conclusions from our work. We do so both with regards to the
specific scientific results uncovered regarding RC4, and to the wider implications of our work.
Without further ado we will proceed to chapter 2.

Chapter 2

The Problem to be Studied

2.1 Background

2.1.1 The RC4 Stream Cipher

Let B = {0,1,...,255} be the set of all possible single byte values. We will at various times find
it convenient to refer to these values interchangeably with their canonical binary representations,
{0,1}® = {00000000, 00000001, . ..,11111111}. The RC4 stream cipher is a map

RC4: K x M — C,

where K = B is the space of secret keys, and [is typically between 5 and 32, M = B* is the
message space and C = B* is the ciphertext space. For the implementation used in TLS, | = 16
and throughout this report, unless otherwise stated, we shall assume this value is taken.

RC4’s operation is defined by two algorithms, the Key Scheduling Algorithm (KSA) and
the Pseudo Random Generation Algorithm (PRGA) operating in conjunction with RC4’s
internal state. This state, st, consists of the triplet (i,7,S) where i,7 € B and S is a byte array
containing a permutation of all of the byte values in B.

The definition of the KSA and PRGA are shown as Algorithms 1 and 2. If we take » > 1 and
we let m, be the " byte of the message, and let Z, be the " byte output by the RC4 PRGA,
then the r*® byte of the ciphertext output by RC4, C,., is defined by C, = m, @ Z,., where here,
and throughout, @ is the bitwise XOR operation when the two values are written in their canonical
binary form. We call the values {Z,} the key-stream and the values {C,} the cipher-stream.
This completely defines to operation of the RC4 stream cipher.

The RC4 stream cipher was originally designed by Ron Rivest in 1987 and the details of its
operation were proprietary to RSA Security. In 1994 the algorithm was successfully reverse engi-
neered and published anonymously on the cypherpunks mailing list.! Since this publication the
algorithm has found widespread use including the WEP and WPA wireless protocols [1, 2] as well

!The original post can be found at http://web.archive.org/web,/20080404222417 /http://cypherpunks.venona.com/
date/1994/09/msg00304.html

Input: Key K, of length [bytes
Output: An initial internal state stg

begin
for i =0,...,255 do
| S[i] s
end
J 0

for i =0,...,255 do
J < 3+ S[i] + K[i mod [];
swap(S[i], STj));
end
1,7 < 0;
st < (17]78)7
return stg;
end
Algorithm 1: The RC4 Key Scheduling Algorithm which is run once to initialise the internal
state. All addition involving the state variables is mod 256.

Input: An internal state st,
Output: The succeeding internal state st,; and key-stream output byte 7,11
begin
parse (i,7,S) + st;
141+ 1;
j < j+ Slil;
swap(S[i], S[j));
Zpy1 <= S[Sli] + S[jl];
str41 < (4,7, 8);
return (st,y1,Zy41);
end
Algorithm 2: The RC4 Pseudo Random Generation Algorithm. All addition involving the state
variables is mod 256.

as the SSL/TLS protocols and many other proprietary settings.

Over time weaknesses were uncovered in RC4 and the way it was being utilised. Perhaps the
most penetrating example was the discovery of weaknesses in the KSA reported in [5] which lead to
a catastrophic attack on RC4’s implementation in WEP as described in [15]. This and other work
did not lead to similar problems in the implementation of TLS due to several factors including a
difference in the way RC4 is utilised. Unfortunately, other vulnerabilities have been uncovered that
do apply in the TLS setting. These relate to non-uniformities in RC4’s output.

2.1.2 What is a Non-Uniformity?

Any stream cipher encrypts messages by @-ing the message’s bytes with a pseudo-random stream
of key-stream bytes. From an encryption standpoint, an ideal stream cipher would be a one-time-

pad with truly random and independent bytes used for the key-stream.? Suppose we have such a
stream cipher. Let E be some event in the key-stream e.g. ‘Zs = (’, where Z5 is the second byte
of the key-stream. Then let Pr[E] be the probability of event E taken over the truly random and
independent generation of the key-stream bytes. It should be clear that Pr[Z2 = 0] = 1/256. It
is a result of Shannon’s that using this cipher and given only the ciphertext of any message, an
attacker gains no information about the encrypted message. We have a theoretically perfect cipher.

Now we can also consider the probability of the event E in the output of the RC4 PRGA. This
probability can be taken over the random selection of the RC4 key, K .3 If we define this probability
by P[E] then we say that there is a non-uniformity or bias in the output of RC4 if for any event
E,

PIE] # PalE].

The value P[E] — Pr[E] gives us the size and direction of the non-uniformity (towards or away
from E).

Why are we interested in these non-uniformities?

On a theoretical level, the counterpart to Shannon’s theorem regarding a perfect cipher is that
any non-uniformity in a stream cipher provides an eavesdropper with the theoretical capability to
gain information about the encrypted message from ciphertexts. Knowledge of non-uniformities
provides an attacker with a better than random chance of guessing the stream cipher’s output, Z,.
This can provide the attacker with enough information to learn about the value of m, by observing
the ciphertext C... In the worst case this leads to potential Ciphertext Only Attacks (COAs). In
practice a non-uniformity could be so small or require such a long message that an attacker would
never practically be able to gain useful information. Unfortunately, as we shall see, RC4 has non-
uniformities that do not escape practical exploitation.

2.1.3 Predicted and Observed Non-Uniformities in RC4’s Output

In the last 14 years a range of non-uniformities in the output of RC4 have been identified. In 2001
Fluhrer and McGrew [6] predicted long-term biases in the RC4 key-stream for various value of byte
pairs in neighbouring positions of the stream. Mantin and Shamir [10] also reported a significant
bias towards Zo = 0. At the time they predicted that there were no other biases towards Z, = 0 for
3 < r < 256. However, in 2011 Maitra et al. reported theoretical reasoning to suggest that there
would be biases towards 0 at all of these positions. These and other similar single byte position
biases will be an area of focus in our work.*

ZPractically, this suffers from the limitation of requiring that we secretly share the full pad between Alice and Bob
ahead of time.

3In the TLS setting, the selection of K can effectively be treated as random.

4These and the later predictions of biases were derived in similar ways. They involve finding an event I in the
internal state of RC4 such that the key-stream event E obeys the rule P[E | I] # Pr[E] and P[FE | IC} = Pr[E]. In
general this gives P[E] = P[E | I°]- P[I®] + P|E | I] - P[I] # Pg[E]. The reasoning used in the literature is generally
not conclusive as the condition P[E | I°] = Pg[E], whilst often reasonable, is usually assumed in the literature but
not proved. Experimental validation of the biases is therefore important.

In the meantime Mantin reported in [9] on the existence of biases towards sections of RC4
output of the form Z,,Z,1,...,Z, 1942, Zryg43 = A, B,S, A, B where A and B are byte values
and S is a string of g byte values. This and similar biases will not be a focus for us here but they
are not insignificant.

There were other biases reported prior to 2011 and [14] contains a comprehensive list of the
literature. Subsequent to 2011 there has been a flurry of discoveries reported. Sen Gupta et al. in
[14] reported further theoretical justifications for the biases towards Z, = 0 for 3 < r < 256 and
furthermore provided predictions of additional biases in the distribution of Z;, key length depen-
dent biases towards Z; = 256 — [and many other biases in the internal state of RC4.

In 2013 Al Fardan et al. [3] and Isobe et al. [8] contemporaneously sought to experimentally
verify and discover biases in the first 256 bytes of RC4 key-stream output and, using these and other
observed biases, sought to convert this knowledge into specific attacks, including COAs revealing
cookies in TLS sessions. These attacks take place in the Broadcast setting where an attacker
can view multiple encryptions of the same message using randomly selected keys. This setting is
possible when Alice is using TLS through a web browser. An attacker may be able to trigger/force
re-keying of the RC4 cipher followed by the resending of the same message encrypted under the
new (pseudo random) key, as demonstrated in [3].

Isobe et al. [8] and Sarkar et al. [12] sought to provide theoretical justifications for the existence
of the newly discovered biases in the first 256 byte positions. Ohigashi et al. [11] extended the
attacks in [8] and the attacks presented in [3] were further developed in early 2015 in Garman et
al. [7] with the results moving much closer to practical exploitation. This was the state of play
when we began our work.

These developments contributed to a recent proposal in February 2015 to entirely remove RC4
from the standard TLS cipher suite.’ Despite this suggestion, RC4 continues to be used to encrypt
internet traffic with a recent survey by the ICSI Certificate Notary showing c¢. 21% of TLS traffic
using this cipher.® (Although, encouragingly, this is down from the c. 50% figure reported in [3]
in 2013). Exploring non-uniformities in RC4 is therefore still relevant in the current environment
and will hopefully help inform the design and selection of ciphers in future as well.

2.2 The Problem to be Studied

In our work we will seek to verify the non-uniformities observed by Al Fardan et al. [3], namely
the biases in the distributions of the first 256 key-stream bytes and the Fluhrer-McGrew double
byte biases. We will also extend these results by observing the distributions of the key-stream byte
values Z, for 257 < r < 512 as well. This will reveal previously unreported biases. We will then
consider the vulnerabilities of the RC4 stream cipher that result from some of these biases, namely
the non-uniformities in the distributions of the first 512 key-stream byte values.

The precise biases that we will seek to verify from [3] are detailed below but first we specify some
notation.

http://tools.ietf.org/html/rfc7465
Shttp://notary.icsi.berkeley.edu/

A note on terminology When discussing RC4 key-stream output we shall reference byte po-
sitions r, where » > 1. Each byte position has a key-stream byte output value, denoted by Z,,
where Z, € B. It will be common when discussing the distribution of values for Z,. over the random
selection of the RC4 keys to consider what we call the second order magnitude biases, b,
defined by the distribution of Z, as follows, Vr > 1, a € B,

1 bl

PlZ, =a] = —
Zr=dl =555+ 3562

These values provide a useful scale to measure non-uniformities in the single byte distributions.

For the double byte biases we are considering long-term biases that are conditional on the
value of the internal state variable i at the time that Z, is output (note that at this moment
i = r mod 256). For convenience we define the conditional biases of magnitude order 1.5,

BZ,b as follows Vr > 1024, and ¢, a, b € B,

71

1 ba,b
+
2562 © (2562)L5

PlZ, =aNAZyy1 =0b|r=imod 256] =

From time to time we will also refer to the portion of key-stream output defined by {Z, : 256(k—1) <
r < 256k} for some k > 1 as the kP page of key-stream output. r = 256k is a natural page break
as this is when the value of i cycles back to 1.

We now turn to the specific non-uniformities reported or identified in [3] and in part drawn
from [14, 10, 6].
2.2.1 Single Byte Biases
We will seek to verify the existence and size of the following single byte biases:

o P[Zy=0]~ 35 i.e. b3 ~ 256

e b} = 0.351089 and b3, b3, ...,b2% is a decreasing sequence with terms that are bounded as
follows
0.242811 < by < 1.337057

For keys of length [bytes, bl256_l > 1.

For keys of length 16 bytes (as used in TLS) biyq < 0.

For positions 1 < 7 < 256 in the key-stream output, b7 ;-5 > 0 and, for that is a multiple
of (the key length) 16, bhs4_, > 0.

2.2.2 Double Byte Biases

We also seek to verify the existence and size of the double-byte biases shown in table 2.1. They
relate to immediately sequential pairs of bytes in the key-stream output beyond just the initial 256
bytes (in fact Al Fardan et al. and we ignore the initial 1024 bytes).

Value(s) of (a,b) = (Z,, Zr41) | Value(s) of i = r mod 256 | Approximate value of b, ;

(0,0) i=1 2

(0,0) i #1,255 +1

(0,1) i 0,1 1

(i + 1,255) i % 254 +1

(255,i + 1) i 254 1

(255,71 + 2) 7 253 +1

(129, 129) i =2 +1

(255, 255) i £ 254 1

(0,i+1) i #0,255 —1

Table 2.1: The Fluhrer-McGrew double byte biases first predicted in [6].

As previously mentioned we will also seek to quantify the vulnerability of the RC4 stream cipher
as a result of the single byte biases we observe. The precise methodology for this will be detailed
in the next chapter.

10

Chapter 3

Methodology

In this chapter we describe the methodology we will follow. In the first section we describe how we
will go about identifying and quantifying non-uniformities in RC4’s key-stream output. This will
involve statistical hypothesis testing and generating confidence intervals for the biases we observe.
The second section of this chapter describes how we went about collecting the data required for
this initial analysis. This includes details of the effort we went to in optimising our code to allow
us to collect this data. These first two sections describe the work that will verify and extend the
observations of biases published in [3].

In the remaining two sections we consider methods for measuring the vulnerability of the RC4
cipher as a result of the observed non-uniformities. In section three we shall consider the feasi-
bility of using entropy as a metric for this purpose. Entropy is in theory the obvious method for
measuring randomness/uniformity and so is worthy of consideration. However, we shall perform a
mathematical derivation which implies that measuring entropy is not practicable at this time for
our purposes. In section 4 of this chapter we consider alternative methods by viewing the question
of vulnerability from the perspective of an attacker and developing metrics based on this.

The resulting quantification will depend on the specific attack used, so we will describe the
attacks considered. Here we only consider attacks on the single byte biases as these appear to be
the most practicable. The single byte non-uniformities depend on the byte number (r, the position
in the output stream) so the measurements will consider each position separately. The method of
quantification could take several forms, two that will be considered are:

e Measuring the average number of repeated encodings of any given message that are required
to get the average number of guesses required to identify the correct message byte below a
fixed threshold, and,

e Measuring the average number of repeated encodings of any given message that are required
to get a fixed level of certainty as to the message byte value on the first guess.

These will be justified by considering two different attack settings, one where the attacker has
multiple chances to guess the correct message byte values and the other where she has only one.

11

3.1 Identifying and Quantifying Non-Uniformities

We seek to observe biases in the distribution of outputs of the RC4 key-stream. The distributions
we seek to measure are over the random selection of the RC4 key (which determines all subsequent
output from the stream). We will therefore collect output from some number of (pseudo) randomly
generated keys and examine the resulting distribution of the outputs for non-uniformities. We will
identify and confirm non-uniformities by performing statistical hypothesis tests for the existence of
the previously reported biases. This will simply be to test whether there is a bias from the uniform
distribution. We will then quantify the biases by deriving confidence intervals for the relevant
probabilities.

All of the statistics we observe in this part of the investigation are binomially distributed. We
are simply counting the number of occurrences of a particular cipher stream event which has a fixed
probability. However, in all cases considered, the number of observations (/) and the probability
of the event being observed (p) are such that the normal distribution approximation is accurate.
For simplicity’s sake we therefore employ this approximation when testing hypotheses and deriving
confidence intervals in the subsequent analysis.

3.1.1 Identifying Biases

We here describe the method followed for testing our hypotheses. Let F be the event under
consideration and p = P[E] be the probability that we seek to quantify. Let N be the number
of independent observations of the event under consideration (e.g. in the single byte case, N
is the number of pseudo randomly selected keys used). In each hypothesis test we define ppy,
to be the value assumed by p under the Null Hypothesis. We define g, = \/ pH, (1 — pm,)/N,
the standard deviation of the normal distribution approximation to Bin(N,pm,)/N. So we will
calculate hypothesis test values (Z scores) using the normal distribution N(pm,,omn,). So, if the
observed experimental probability is,

No. of occurences of F
N

15:

Then the observed Z score value is

D—PH, _ D — PH,
OHg \/pHO) (1 _pHO)/N)

We employ a 99.99% confidence level for all tests as a means to be very confident of our results.
Therefore a two sided test will have threshold Z scores of +3.891.

3.1.2 Quantifying Biases

We here describe the method followed for deriving confidence intervals for the probabilities exam-
ined (i.e. P[E]). Having observed p we can estimate the standard deviation for the distribution
Bin(N,p)/N as ¢ = \/p(1 — p)/N. Using the normal distribution approximation for the distribu-
tion of p, N(p,), we can derive a 99.99% confidence interval for p as follows

(p — 3.8916, p + 3.8916).

We use 99.99% intervals because we want to be very sure of the estimates we give. If this were to
require more data than was feasible we would have considered reducing the intervals to the more

12

traditional 95% which would roughly halve the width of the intervals. In the end this was not
necessary. This can also be converted to a confidence interval for the relevant bias term by simple
linear scaling e.g. if ' is the event Z,. = a, by definition of the second order magnitude bias for
single bytes the relevant confidence interval for b, is

1 1
2562 |p—3.8916 — — | . 2562 |p+3.8016 — — | |.
<56 [p 3.8916 256} , 256 [p+3890 256])

Similarly, if ¥ was the event “Z, = a and Z,41 = b given that r = ¢ mod 256”, then the relevant

. i
confidence interval for b, is

1 1
2563 . |p—3.8916 — —— | , 256% - |p+3.8916 — —— | | .
<56 [p 3.8916 2562} , 256 [p+389a 2562])

3.1.3 Data Requirements

We seek to quantify the biases as accurately as possible. However, we must consider how much
data would be sufficient for our needs. The second order magnitude single byte biases reported in
the theoretical literature are distinguishable in the first decimal place so if we can get confidence
intervals to quantify the biases to 1 d.p we shall be providing useful data. If we can get the range
of the interval to be less than 1072 then this will be more than sufficient. This would require the
range of the confidence interval to be limited as follows

2 % 3.8916 x 2562 < 1072

S0,

A~

p(1 —p)
N

so, using the rough approximation of p ~ 1/256, we require

2 x 3.891 x x 2562 < 1072

2
1 1
N > |2 x 3.891 —— (1 — =) x 256% x 10*| =~ 2820
—[8 3561~ 25g) < 20]
[3] sampled 24 random keys in order to observe the single byte biases for exploitation.

When it comes to collecting data to measure the double byte biases we assume that for any key,
in the long term, successive pages of key-stream output are independent. In particular, we assume
this holds after output byte position 1024. (This assumption is implicit in [3]). The conditional
biases of magnitude order 1.5 predicted in the literature are of size 1 so if we can limit the range of
the confidence interval to 10~! that would be useful. By a similar calculation to that carried out
above for the single byte biases this gives a lower bound on N of 2%3. In fact, due to computing
resource constraints we were only able to collect N = 2% observations. We shall see that this is
sufficient to confirm the biases, although greater accuracy in quantifying them would have been
nice to have. We note that [3] collected N = 242 observations.

13

3.2 Data Collection

We now describe how we went about collecting the data required for our analysis. To collect the
required data we wrote code in C++ (2011 standard). The pseudo-code shown as algorithm 3
details the general procedure that we implemented.

Input: k£ the number of keys required, and L the number of bytes of RC4 output required
per key
Output: hist, a histogram, indexed by events F which counts the number of observations of
each event, N the total number of observations made.

begin
fori=0,...,k—1do
Generate a (pseudo) random key, K;
rc4Stream.keySchedule(K); // Key Schedule an RC4 stream
forr=1,...,L do
Zy < rcdStream.PRGA(); // Collect the next key-stream byte from the RC4
Stream
if an outcome event E can be parsed from the results (Zy,...,Z,) then
N~ N+1;
hist[E] < hist[E] + 1;
end
end
end
return hist, N;
end

Algorithm 3: Our general data collection procedure.

This suggests two immediate questions. What source of pseudo randomness will be used? And,
will our code be fast enough to provide sufficient data with the available computing resources? We
address these questions in turn.

3.2.1 Source of Pseudo Randomness

It is something of an irony that in order to investigate how random RC4 is we need a source of
randomness that is sufficiently random. This is to ensure that the biases we observe are from RC4
and not from the source of our keys. Previous work in this area, including [3] and [16], has used AES
in counter mode as a source of pseudo random data for similar purposes as we are pursuing. This
has the benefit of being believed to be a good pseudo random number generator which has support
in hardware instruction sets (allowing for faster running times in theory). It has the downside
that the period for the output stream is < 2!?® which requires some care when collecting large
data sets. We decided to utilise the Mersenne Twister pseudo-random number generator that is
part of the standard library for C+4-. This has the benefit of running sufficiently quickly whilst
not requiring hardware level instruction implementation. The algorithm also has a much larger
period of 219937 — 1 and is known to pass many tests for statistical randomness. The much larger
state space also helps ensure that, using different seeds for parallel runs, we are much less likely
to produce duplicate data from parallel runs (we ultimately used pseudo random seeds for each
parallel run to help keep this probability low). Furthermore, since, in part, we are seeking to check

14

the observation of known biases as reported in earlier work (particularly in [3]), it is helpful to
utilise a different source of pseudo randomness to that earlier work to eliminate the possibility that
any observations were artefacts of the generator selected.!

3.2.2 Code Speed and Computing Resources

The data collection phase is anticipated to require the collection of output from a significant number
of RC4 output streams keyed by randomly selected keys. The available computing resources include
8 x 16 cores of Intel E5-2640v5 Haswell architecture made available through the University of Oxford
Advanced Research Computing facility. The clock speed of these cores is 2.6 GHz. We were limited
in the amount of time that we could use these cores for as they are a shared resource. We could
only run code for a maximum of 5 days at a time. Furthermore, our total time on the machines was
limited to ¢.10 days. Other resources are available for use, but they consist of orders of magnitude
fewer cores and so ideally we wished to complete all of the main data collection on the shared
resources. Once we had learnt to use the ARC systems we ultimately utilised a total of ¢.1042 CPU
days.

To ensure that the code will be able to run sufficiently quickly we performed some timing tests
on our code. These tests were first performed on versions of the single byte collection code to
identify any problematic bottlenecks and optimise as necessary. The same underlying class code
was used to collect the double byte data with further optimisation performed as described below.

Single Byte Code Optimisation

As earlier discussed, for the single byte data collection, we would like to collect data for at least
24320 keys. In running our code we will want to periodically dump the data collected to ensure an
external failure does not cause us to lose all of the data collected so far. Therefore, we actually set
our lower bound number of keys at 24321 as this gives us a whole number of loops in the program
when we divide the work as follows, 74 batches x 230 keys per batch per core x 27 cores ~ 24321
keys in total. Each of the 74 batches can finish with a data dump.

To collect the single byte experimental probabilities we ran the code shown in code snippet 3.1
as our implementation of the data collection procedure (algorithm 3).

To generate the required data will require that this (or equivalent) code run sufficiently quickly.
If we attempt 243-2! pages and say t is the time in seconds to run 220 pages (i.e. c. 1,000,000 pages)
then the total time to collect the targeted number of pages is:

943.21 4

e — ~ 96.81
Total Time = 520 % 3600 24d&ys /A 2°°0 - t days

Since we have 8 x 16 = 27 cores at our disposal for 5 days at a time we would like to achieve a
run time such that 26-81¢ / 2T <5 days which means ¢ < 5.7 will be sufficient. We should also have
in mind a baseline which is the best we might hope for. There are documented reports of RC4 code
producing 1 byte of output every 7 CPU clock cycles [13]. On a 2.6 GHz cpu this would give a run

time of

243-21 5 956bytes per page x Tcycles per clock

2.6 x 109 x 3600 x 24

~ 81 days

f we found any biases that were artefacts resulting from this use of AES then that would likely be a much more
significant result in practical cryptography than anything else we discover regarding RC4.

15

Code Snippet 3.1: This snippet shows the single byte data collection loop implementing Algorithm
3

//loop to generate multiple rc4 stream outputs
for (int i = 0; i < loopcount; i++) {

//random key generation
randomSource.selectRandomKey (key) ;

//rekey with the newly selected key
rc4Stream.keySchedule (key) ;

//run RC4 stream for the required number of bytes algorithm and collect the
number of occurrences of each byte in each position in histogram counters
for (int i = 0; i < STREAM_OUTPUT_LENGTH; i++) {
histograms[i] [rc4Stream.PRGRound()]++; //increment the relevant histogram count
X
3

This is equivalent to ¢ ~ 0.7 so our target of 5.7 is possible. We therefore begin by checking the in
silica run time of the code and establishing whether improvement is required and if so where best
to focus the optimisation efforts.

Initial Code Speed Observations

The initial test results produced are shown in Figure 3.1. Firstly this control test revealed a value of
t ~ 8.7 which was too large for our purposes. Therefore, we needed to consider means of increasing
the speed of the in silica run time (decreasing t) if we wished to collect this data.

The other tests involved removing sections of the code to see which functionality was con-
tributing the most to the cumulative running time. The main bottlenecks at this stage were in
the RC4Stream PRGRound and KeySchedule methods as when these methods were avoided the
running time dropped most substantially.

Further investigation of the Key Scheduling method revealed that the main bottleneck was the
permutation array scheduling loop (as opposed to the permutation array initialisation loop). In
particular the call to get the next byte of the key for the key scheduling process.

As an initial attempt to improve performance on calls to access the key array and the permu-
tation array we re-factored the class code to use statically allocated arrays (on the stack instead
of the heap). And performed all of the object creation statically as well. By locating these objects
on the stack we hoped to maintain locality in memory and improve cache hits, with a hopeful
improvement in timing. This was partially successful.

To achieve further improvements we experimented with changes in the implementation of the
PRGRound method and the keyScheduling algorithm with varying optimisation settings on compi-
lation. The optimal timing that we discovered involved the code detailed in the following sections
with the -Os optimisation flag on the Intel compiler. Interestingly, manually unrolling all loops and
attempting to reorder code to take advantage of pipe-lining was not as beneficial as making the
more minor changes shown here and allowing the compiler to handle further optimisation.

16

Test Name || Time Spent Initializing and Generating RC4 Streams (s)
Control Test 8.74436
Static Key Test 8.30614
No Re-Keying Test 5.22184
No RC4 Stream Gen. Test 4.53357
No Histogram Lookup Test 7.78659

Figure 3.1: The initial timing test results. The first row is the timings for the loop described in
snippet 3.1 and in subsequent rows we have the results when adjustments to this loop are made by
removing specific functionality /operations. All tests involved generating 220 streams of length 257.

PRGRound method
The initial (pre-optimisation) code is shown in Code Snippet 3.2. For the code after iterated

Code Snippet 3.2: This snippet shows the initial implementation of the RC4 PRGA (Algorithm 2).
PERMUTATION_ARRAY_LENGTH has value 256 and is used for modular arithmetic.

virtual uint8_t PRGRound()

{
_i=(_i + 1) % PERMUTATION_ARRAY_LENGTH;
_j = (_j + _permutationArray[_i]) % PERMUTATION_ARRAY_LENGTH;
//swap ith and jth elements
uint8_t tmp = _permutationArray[_i];
_permutationArray[_i] = _permutationArray[_jl;
_permutationArray[_j] = tmp;
//return the output
return _permutationArray[(_permutationArray[_i] + _permutationArray[_jl) %
PERMUTATION_ARRAY_LENGTH] ;
}

optimisation the best results came when the only change was to use bit wise masking instead of
the % operation for modular arithmetic, i.e. to replace “% PERMUTATION_ARRAY_LENGTH”
with “& MASK_8”.

keySchedule method

The is the initial code before optimisation is shown in Code Snippet 3.3. After our iterative
optimisation efforts the main change related to removing modular arithmetic using the % operation
and instead using bitwise masking. We also changed the RC4 Key class to remove use of %. This
was done by copying the 16 byte key 16 times into an array that is 16 x 16 = 256 bytes long so that
for 0 < i < 256, the look up _key][i] gives the (i mod 16)" byte of the RC4 key without needing
modular arithmetic.

17

Code Snippet 3.3: This snippet shows the initial implementation of the RC4 KSA (Algorithm 1).
virtual void keySchedule(RC4Stream: :Key &key){

//initialize the permutation array to be the identity permutation
for (int i = 0; i < PERMUTATION_ARRAY_LENGTH ; i++) {
_permutationArray[i] = i;

3

//schedule the permutation array
unsigned int j = 0;
for (int i = 0; i < PERMUTATION_ARRAY_LENGTH; i++) {
j = (j + (unsigned int) _permutationArray[i] + (unsigned int)
key.getModuloLength(i)) % PERMUTATION_ARRAY_LENGTH;
//swap ith and jth elements

uint8_t tmp = _permutationArrayl[i];
_permutationArray[i] = _permutationArrayl[j];
_permutationArray[j] = tmp;

}

//initialize the state variables

_i=0;

_j =0;

setModuloLength method

The change in the implementation of the RC4Stream::Key class to store multiple copies of the
key meant changing the method used to set the value of the key bytes. This method is used 16
times, every time a new key is generated, and so we also sought to maintain speed in this code.
Pre-optimisation code is shown in Code Snippet 3.4. After optimisation, as mentioned earlier, the

Code Snippet 3.4: This snippet shows the initial implementation of the setModuloLength method.
_key is a byte array of length KEY_LENGTH.

virtual void setModuloLength(int i, uint8_t byte) {
i = i % KEY_LENGTH;
i= (G >-171: i+ KEY_LENGTH);
_key[i] = byte;

}

internal storage of the key was extended to ensure that the key value could be repeated many
times instead of requiring the modular lookup of the index sought, therefore _key is now of length
PERMUTATION_ARRAY_LENGTH = 256. Instead of using an explicit loop we provided a pre-
unrolled loop that attempted to take advantage of pipe-lining for enhanced performance. This code
is shown in Code Snippet 3.5. In this case, this tactic helped performance.

These were the main changes made to the code after experimenting with a range of possible
optimisations.

18

Code Snippet 3.5: This snippet shows the optimised implementation of the setModuloLength
method.

virtual void setModuloLength(int i, uint8_t byte) {
i =1 & MASK_4; //0 <= i < 16
int j =1 + 16;
int k i+ 32;
_key[i] = Dbyte;
_key[j] = byte;
i +=48; // 48 <= 1i < 62
_key[k] = byte;
j += 48;
_key[i]l = byte;
k += 48;following
_key[j] = byte;
i +=48; // 96 <=1i < 112
_key[k] = byte;
j += 48;
_key[i] = byte;
k += 48;
_key[j]l = byte;
i +=48; // 144 <= i < 160
_key[k] = byte;
j += 48;
_key[i] = byte;
k += 48;
_key[j] = byte;
i +=48; // 192 <= i < 208
_key[k] = byte;
j += 48;
_key[i] = byte;
k += 48;
_key[j]l = byte;
i += 48; // 240 <= i < 256
_key[k] = byte;
_key[i] = byte;

3

19

Optimised Results

The result of these optimisation efforts were that we managed to reduce t to c. 2.23.

Our initial aim was to get ¢t < 5.7. We have therefore exceeded our aims. Handily, we have
gotten the code to a point where our t value is less than half the necessary value. This implies
that we may in fact be able to double the amount of data we collect as compared to our base
requirement.

Given this fact we considered two options with respect to the Single Byte bias data. We could
collect N = 2421 observations for the first page of RC4 output instead of 24321 observations.
Alternatively, we could still ‘only’ collect N = 2%321 gbservations but we could observe the first
two pages of RC4 output instead of just the first page.

At the time of conducting the experiments, there was scant published data on the existence of
biases in the second page of RC4 output. Given that the originally targeted observation count of
24321 was sufficient for our investigatory purposes in regards to the first page biases, we elected to
extend our investigation to the second page as well, instead of increasing the observation count.
This proved fruitful.

Double Byte Code Optimisation

For the double byte biases we need to count occurrences of events of the form “Z, = aand Z,;1 =b
given that r = ¢ mod 256" where 0 < i,a,b < 256. Naively, this would suggest using a histogram
with dimensions 256 x 256 x 256 to count the occurrences. Given the size of the data set required and
because of the parallel computing we can get by with 32 bit unsigned integers to count any given
histogram entry. This would imply a histogram for each core of size 226 bytes (64 MB). Because
subsequent lookups are unlikely to be spatially local in memory (the average distance would be
c. 64 KB) this approach is likely to face speed barriers due to memory lookups/cache misses, and
this was indeed the case. We trialled a range of histogram sizes by varying the first dimension size
(collecting sub sets of the full space of events). The results of the tests can be seen in figure 3.2.

20

/E|
7
7
=
7F —
/E'
-
/I:i/
7
6 |- P
=
/
/
51 /
_ o
‘; /
241 /
& /
z /
&
5L /
/
/
#
2| N
E___,__-E’
1
0 1 1 1 1 1 1 1 1 1
1 2 4 8 16 32 64 128 256

z, for histogram of dimensions = x 256 x 256 (log scale)

Figure 3.2: The observed timing to collect 22 pages of double byte output data using histograms

with varying sizes of initial index, from 1 x 256 x 256 upto 256 x 256 x 256.

The jump after size 4 is indicative of increased cache misses causing delays. The largest his-
togram that was workable given the computing and time constraints was a 4 x 256 x 256 histogram?.
This histogram size is large enough to collect data on all of the Fluhrer-McGrew double byte biases
by sensibly allocating the space to collect the counts of selected events. There is a trade-off with
speed in doing this, as any complicated lookup rules would slow down our code. The scheme we
selected managed to provide data on all of the Fluhrer-McGrew events without material damage
to the speed of our code. Under our scheme the histogram captured occurrences of the following

events for r > 1024 and a,b,i € B:
r =14 mod 256, Z, =0, Z,41 =0
r =14 mod 256, Z, =255, Z,.1 =b
r =1 mod 256, Z, = a, Z,4+1 = 255
r =i mod 256, Z, = 129, Z, .1 = b

These cover all of the Fluhrer-McGrew bias events.

This concludes the recounting of our code optimisation efforts.

2The implementation of this histogram was in fact 2MB in size, instead of IMB. This was because we used unsigned
64 bit integers for collecting data, we ultimately decided to collate the counts for some events which resulted in a
higher upper bound requirement for the data types.

21

3.3 Measuring the Loss of Randomness

We have already described the methods to be used in identifying the existence of the predicted single
and double byte biases. We have also described the methods to be used in quantifying the individual
biases. We now come to the final aspect of our analysis, quantifying the vulnerabilities of the RC4
cipher resulting from these non-uniformities. Simply put we wish to attempt to quantify how easily
an attacker might exploit the available biases to carry out an attack and recover plaintext.

3.3.1 Empirical Entropy Estimation

One approach would be to attempt to estimate the entropy of the uni-gram (single byte) RC4 key-
stream cipher output (over the uniform random selection of 16 Byte keys). Entropy is a theoretically
justified metric of randomness (as unpredictability). A natural way to approach this would be to try
and measure the entropy of the distribution of Z, for each r. We could attempt this by calculating
the plug-in entropy. If we let p, be the empirical estimate of p, = P[Z, = a] for some r, then the
plug-in entropy for position r can be calculated as follows:

H== palogy(pa).
a€B

The maximal value obtainable is 8 bits and the scale of any deficit could be taken to indicate the
level of weakness of the cipher at the given byte position.? Unfortunately, it turns out that the data
we have available to us is insufficient to provide a useful estimate for the entropy. That is to say,
our estimates for the entropy will be statistically indistinguishable from a uniform distribution’s
entropy. This is because, given the number of observations we have made of each byte position,
the variance of the estimated entropy will be too large to provide a sufficiently small confidence
interval to eliminate maximal entropy in most cases. To see why we shall first derive an expression
for the variance and expectation.

Expectation and Variance of Experimental Entropy

We start by noting that

2 A~ A . In Aa ..
H=—- Zpa logy(Pa) = — Zpa 11(1p2) by definition.
acB acB

Thus, by linearity of expectation,
~ 1 . .
E[H] = —— > E[paIn(pa)] - (3.1)

Furthermore, since for different values of a, the p, are only very weakly dependent, we can approx-
imate the variance as follows

1 1

Var[H| ~ e > Var[p, In(pa)] = e > Elp2In(pa)’] - Elpa In(pa)]. (3.2)
a€B a€EB

3We shall see that this is a biased estimator for the entropy. There are other estimators that attempt to remove
this bias but we shall see that this does not interfere with our argument.

22

Now we can consider the terms of this expression one by one. We will begin with E [p, In(p,)]. Take
some particular 0 < a < 256. Since N, the number of observations, is sufficiently large relative to
Pe We can estimate the distribution of p, by

Do~ N (pa,02),

1 _
where o, = M

N

Therefore, we can say p, = pa + €4 Where
€a~ N (O, 02)
is normally distributed noise. Now we can advance as follows:

E [pa In(pa)] = E[(pa + €a) In(pa + €4)]

_E [<pa +) <1n<pa> +1In (1 * ;))}

=E[paIn(ps)] + E [eaIn(pa)] + E [(pa +&4)1n (1 + Ea)] by linearity of exp.
=poIn(p,) + 0+ E [(pa +&4)1In (1 + Ea)] as E[e,] = 0 and p, is constant.
Pa

Now, since N is so large, ¢, is tightly distributed around 0 and so ’;—“‘ < 1 almost always. Hence

we can approximate the remaining expectation with Taylor’s expansion of In(1 + z) for |z| < 1 as
follows:

£q &2 3

B pun(pa] ~ patu(pe) + B |9 +20) (52 = 25 4 754 0(:1))]

2 3

£ 5 4
:paln(pa)+]E [5a+2pa_ W+O(Ea):| .

Since g, is normally distributed around 0 the expectation of its odd powers are all 0. Furthermore,
since €, is small we shall ignore powers larger than 4. Hence,

€a

2
E [pa In(pa)] = pe In(ps) + E {QPa] :

So, since E[e,] = 0, we have E[¢2] = Var[e,] = 02 and hence we arrive at the following approximation

2
a

E [paIn(pa)] = pa In(pa) + (3.3)

2,

23

Now we consider the other term in our approximation for the variance, namely, |E [ﬁz ln(ﬁa)Q].
We again use the equivalence of p, = p, + €4 so that we have,

E [p2In(pa)?] ~ E [(pa + ca)* In(pa + a)?]

(Pa + €a)” (ln(pa) +In (1 + Z))j

(P2 + 2paga + €2) (m(pa)2 +21n(pe) In <1 n E“) +1n (1 + 8“) 2)] .

Pa

=K

=K

Expanding further, and using linearity of expectation, we get,

E [p21n(pa)?] ~ E [p2 In(pa)®] + 2pa In(pa)’E [ea] + In(pa)°E [¢2]

2
(P2 + 2paca + €2) <21n(pa)ln <1 4 ;a) tn (1 N 26;))] |

Once again, since €4 ~ N (O, 02), this reduces to,

+E

E [p2 In(pa)*] ~ p2In(pa)® + 0 + In(p,) o

2
(P2 + 2pacq + €2) (2 In(p,) In <1 + ;a) +1In <1 + ?) >] .

We can again apply the Taylor expansion for In(1 4 z) for |z| < 1 to get,

+E

E [p2 In(pa)?] = In(pa)*(p? + 02)
2 3

+E [(pi + 2paq + €2) (21n(pa) <€“ _fa 4 fa 4 (sﬁ)) + (Eg ‘a4 0 (sﬁ)))] :

pa 202 3p2 p: P}

Collecting terms we get,

E [n(pa)’] ~ In(pa)*(p; + 02)
21n(p, 1 — In(p, 21n(p,) — 3
P02+ 2o+) (2o, o 25z 2RO 2008 0 (et).
Pa DPa 3pa

We can further expand the expression in the remaining expectation and then collect terms to get,

3+ 21In(p,
Emymmﬂxmmf@%dﬂﬂpmmmmfuL%m@mﬁ+*1“”£+0@ﬂ.

3Pa
Again, since €4 ~ N (0, Ug) the odd powers of ¢, provide zero moments/expectation, and since &,

is small we will ignore powers higher than 4 in our approximation. Therefore, our approximation
reduces to,

E [p3 n(pa)?] = In(pa)*(ps + 02) + (1 + 3In(pa))E [£7]
= In(pa)*(p; + 07) + (1 + 3In(pa))o.-

Thus we arrive at the following approximation,
E [p7 n(pa)’] = pz n(pa)® + (1 + 31n(pa) + In(pa)?)os. (3.4)

We can now use approximations 3.2 and 3.3 in approximation 3.1 to get an approximation for the
variance as follows,

2\ 2
Var[[] ~ (11112)2 ZI; <p§ (pa)? + (1 + 31(pa) + In(pa)?)o? — <pa In(pa) + 2;))

1 o\ 9 ol
= W <(1 + 2In(pa) + In(pa)*)o; — 4;2> .
a€eB a

For large N, o2 is negligible so we can reduce this to the following,
F 1 2 2
Var[H] ~ 2)? > (1+1n(pa))’o;
aeB
1 2 2
= m2)? C%;;(ln e+ 1n(p,))“o;

1
= g In(ep)202.
2 a) Ya
(1112) aeB

Thus we arrive at the approximation,
Var|[H] ~ Z (04 logs(epa))? . (3.5)
a€B

We also have an approximation for the expectation, by inserting 3.3 into 3.1, which gives,

2
O

EH] ~H-Y TRV (3.6)
a€B

Where H is the true entropy of the distribution defined by {p,}. This shows that our plug-in
entropy estimate will, on average, underestimate the entropy. If we sought a better estimate we
would account for this. For our purposes this is not necessary as even with this under estimate,
the variance will be too large for us to reliably distinguish the distribution from one with maximal
entropy. To demonstrate this we will select a particular set of values {p,} that is close to the actual
distribution for Zs and we will calculate the resulting values of E[H] and Var[H]. I have chosen Zs
somewhat arbitrarily, except to say that it is a byte position that would be of interest in single byte
bias attacks. The results are similar for most other early bytes. The values used here for the {p,}
are those observed in our experimental data collection. These, should be close to the correct values
and are simply meant to be illustrative of the problem. Using our approximations the distribution
provides the following values for the expectation and variance:

A

E[H] ~ 7.999999406911917,
Var[H] ~ 4.211233838743257 x 10712,

25

Even if we only consider a confidence interval that is approximately 1 standard deviation wide then
this already encompasses the value 8:

(E[ﬁ] - %\/Var[f[] , E[H] + ;\/Var[ﬁo ~ (7.9999984, 8.0000004) (to 7 d.p.)

In fact, reducing this confidence interval to exclude the value 8 would require N > 2%1. If we
wished to use a confidence interval 4 standard deviations wide we would require N > 2%°. If we
used an adjusted estimator to account for the plug-in entropy’s bias to under estimate the true
value, then we would require more samples (larger N). This would simply be to distinguish the
distribution from the uniform distribution (i.e. to establish that there is some vulnerability), we
would also wish to use the figures as a means to quantify the level of vulnerability so this would
actually require even more samples. Given the computing resources available, this is not possible

at this time. Therefore, we will not utilise the experimental entropy as a metric for vulnerability.

3.4 An Attacker’s Perspective

An alternative approach is to consider the vulnerability analysis from the perspective of an attacker.
This requires that we specify the strength of the attacker in question.

3.4.1 The Attacker

We shall consider ciphertext Only Attacks in the Broadcast setting. i.e. Eve only has access to
ciphertexts from Alice, however, she can see multiple encryptions of the same plaintext using ran-
domly selected secret keys. We also assume that Eve knows that Alice is using RC4 with randomly
selected keys as the encryption system (as per Kerckhoffs’ Principle).

If RC4 key-stream output were genuinely indistinguishable from a random stream then no
matter how many encryptions she saw, Eve would never gain more information about the plaintext
than she had to begin with. However, since RC4 has non-uniformities in its output, these can be
used to inform Eve in her attempts to discover the plaintext.

The General Single Byte Attack

A general attack in this setting can be as follows. Recalling our notation, C, is the value of the
ciphertext output by Alice when sending an encryption of her r** message byte m,..

If Eve collects k ciphertexts from Alice, all with corresponding message byte m,.. Then she has
made k observations of C,.. Eve knows that C, = Z, ® m, and so that C, ® m, = Z,. Eve does
not know the value of Z, or m,, however, we assume that she does know the distribution of Z, (or
a close approximation of it, established by similar methods to those we intend to use).

Eve knows that some m € B, is the message byte value m,.. So she only has 256 candidate values
to consider, each of which permutes the distribution of Z, differently under &. Eve just needs to
decide which value is the“best” guess which permutes the distribution so that it “matches” the
observed distribution of the C).. Eve has some freedom to decide what counts as a“better” guess
or match and we will consider two specific methods in the following sections.

Eve may also wish to use the output from this process in different ways. She may be happy to
have a sorted list of candidate m, values as output, with the “best” match at the top. As long as

26

the correct m, value is reliably close to the top of the list this might be sufficient for her needs.
Perhaps she is looking for a plaintext that is written in a human tongue, it may be easy to sift a
few candidates for the correct message and then stitch multiple bytes together. Alternatively, she
may only want to use the “best” match from the possible values of m. Perhaps the plaintext has
no known structure and so she needs to reliably receive the right answer to avoid having to do an
exponential search through all possible multi-byte messages.

In measuring vulnerability we will consider both of these two settings in turn. For now we turn
to describing some specific attacks by defining two ways Eve could seek to sort the candidate values
for m, by reference to the data.

The “Max-Peak” Single Byte Attack

We first consider a very naive heuristic approach to quantifying which value of m € B is a better
guess for the plaintext. Let {p, = P[Z, = a]} be the correct distribution for Z, and, let {p¢ =
P[C, = a]} be the observed distribution of the ciphertexts. Then define an order on the values of
m € B from best match to worst match, (m?, ..., m?%), as follows:

First, using the oberved ciphertexts, define an order on the possible values of a € B,

(ao, e ,a255), s.t. ﬁZO Z ﬁgl 2 e Z ﬁ2255.

Second let apq,; = argmax(p,), be the byte value that has the maximal probability in the RC4
a

stream output at position 7.

Then, as our final step, we can define (m°, ..., m?®), by

m' = a' D amaz-
In simple terms, this order looks at the experimental probabilities observed for the ciphertexts in
order from largest to smallest. We then say that the best guess for m, is the value of m that ®-maps
the true peak for the RC4 key-stream output (found at a,e.) to the position that was observed
as the maximum in the cipher-stream, a’. The second best guess is then the value that ®-maps
the true peak to the second highest observed peak, a;, and so on. This measure is essentially
just trying to guess m, by looking at where the maximum peak of the distribution might have
been mapped to and giving more weight to higher peaks. This method therefore ignores a lot of
other information that we might exploit about the observed distribution (e.g. does the suggested
value for m® @-map other features in the distribution in the most plausible way as well). However,
because the distributions for the early RC4 output bytes often have isolated maximum peaks, this
is still likely to be effective for these byte positions. If the distribution had many similar peaks,
or a maximum that was close in value to many other parts of the distribution, then this method
would be less successful. This attack is similar to that employed by Isobe et al. [8].

The Bayesian Single Byte Attack with Uniform Prior

A second, more thorough approach is to utilise the machinery of Bayesian analysis as per the single
byte attack described in [3]. Again we use {p, = P[Z, = a]} to denote the correct distribution
for position r. We also let H, = # of observations where C, = a. We define h, to be the
experimentally observed value of H,. We also now explicitly consider the message byte value to be

27

a random variable M, whose actual value, m,., Eve is uncertain of.
To ascertain the value of m which best fits the data available to Eve, we seek to maximise

MT:m|/\Ha:ha],

a€eB

P

over the values of m. More generally we seek to sort the values of m by reference to these values.
By Bayes’ Theorem, this expression is equal to

P[/\ Ha:ha]MT:m] x P[M, =m]
a€eB

S P[/\ Ha:ha]Mr:m’] x P[M, = m]
m'eB a€B

For the purposes of our analysis we will assume a prior distribution for P[M, = m]| that is uniform
i.e. we assume Eve has no information about the message byte values ahead of time. Since the
value on the bottom of this fraction is independent of m and positive we can disregard it in seeking
to sort the values of this expression. Also the value P[M, = m] = 1/256, is constant for all m by
assumption of a uniform prior, so we can also ignore this term. Thus we simply need to sort the
values of m according to the values of

/\Ha:ha|Mr:m].

a€eB

Recalling that k is the total number of observations made by Eve, this can be written as,

H pa@m

h
255! acB

/\Ha:ha|Mr:m] = T

a€B

The multinomial coefficient at the start of this expression is again independent of m and positive
so we can ignore this when sorting. Furthermore, since the log function is increasing on positive
values we can reduce this all down to the problem of sorting the values of m according to the values

of
log <H pa@m> = Z hq log (paEBm) :

aeB aeB
Given m and the values of {h,} and {logp,}, the values of this expression are relatively quick to
compute. Sorting the values of m according to the resulting calculations is then a relatively simple
step.
This describes a straight forward means to perform what we call the Bayesian single byte attack
with a uniform prior.

3.4.2 Measuring RC4’s Vulnerability to Our Attacker

We have defined two specific single byte attacks at Eve’s disposal. We are now ready to describe
how we will measure the vulnerability of the RC4 cipher is to these attacks. It is worth noticing

28

that whilst the attacker is relatively weak in our setting, only having access to ciphertexts; given
an unlimited number of encryptions, these attacks may be able to expose any message byte in an
RC4 byte position that is non-uniform. If the attacker knows the true distributions for Z, then the
only external limit on the attacker is how many encryptions she can collect. Furthermore, the more
vulnerable a byte position is to an attack, the fewer encryptions we’d expect to be required for the
attack to be “successful.” This informs our measures of vulnerability. As mentioned we consider
two settings, first, a setting where an attacker only seeks that the attack will give them a sorted
list of candidates for m, such that m, is reliably near the top of the list. Second, a setting where
the attacker only cares about the top candidate for m, being correct.

n-shot Guessing

In this setting the attacker is concerned with collecting enough ciphertexts so that they can be con-
fident that their attack will produce an ordered list that contains the correct message byte within
some pre-defined number of places from the top of the list, n. We can quantify the vulnerability of
the particular byte position of RC4 output in this setting by the number of ciphertexts required to
reduce the average placement of the correct message value to be less than n. For a less vulnerable
byte position an attacker will require more ciphertexts to get enough information to successfully
place the correct message byte value within the top n candidates on average. In practice an at-
tacker would likely seek a low value of n. We will perform our analysis with n = 3 and n = 30 for
comparison.

One means of collecting data for this analysis would be to perform attacks with different numbers
of ciphertexts repeatedly, using random keys, and measuring the average position of the correct
message byte and observing when this falls below n. Unfortunately, this is computationally infea-
sible at this time as it would require us to repeatedly collect similar amounts of data as we did for
our bias observation phase and we have not got sufficient computing time available for this purpose.
As an alternative we will simulate this process. We do this by using our bias collection data to
estimate the true distribution of the RC4 outputs. We will avoid the requirement to collect actual
ciphertext samples and directly sample our histogram data. We simulate the repeated collection of
a fixed number of ciphertexts by perturbing the distribution with normally distributed noise with
approximately the correct standard deviation as would be seen in sampling the fixed number of
ciphertexts. We ensure this noise sums to zero across the whole distribution. In doing this we are
using the multivariate normal distribution as an approximation to the multinomial distribution.
This is justified because the sample sizes will be large relative to the probabilities. We then use
the resulting simulated ciphertext data to perform the attack and collect the results as though this
were a genuine sample. We then perform this repeated sampling simulation for different numbers of
ciphertexts to see how the average position of the correct result changes and then we can determine
at what point this value falls below n for the values n = 3 and 30. This will only give us an estimate
for the real figures, but this should be sufficient for the purposes of considering the vulnerability
to our attacks.

In Algorithm 4 we have included pseudo code for the procedure to collect the necessary data for
the n-shot setting using the “max-peak” attack. We implemented this in Matlab (2015-a).

29

Input: p, a vector containing the correct key-stream distribution of Z,.; S, the number of
simulated attacks to be run in collecting our averages.

Output: averages, a vector of the average number of guesses required for each ciphertext
count simulated.

begin

Select random value for m,; // This value will make no difference to the results

d + p with indices permuted by @-ing with m,; // Generate the correct ciphertext

distribution of Z, ® m,

for Number of sampled ciphertexts =t =29 210 ... 2F do

1L
o+~ M; // approx. value of the standard deviation for sampling noise.

Q « nullspace({1}?°%); // @ is a 256 x 255 matrix whose columns are an
orthonormal basis for the null space of the 1 by 256 ones vector.

GaussianNoise < randn(255,.5); // 255 x S matrix of independent N (0, 1)
distributed noise.

SimMultinomialNoise + /22 x o x Q x GaussianNoise; // 256 x S matrix of
scaled Gaussian noise to simulate noise in multinomial sampling of ciphertexts with ¢

samples. Each column sums to 0 thanks to the inclusion of the null space matrix Q.
for simulatedAttackNo =1,...,5 do

synthDistribution < d + SimMultinomialNoise(:, simulated AttackNo); //
Add the noise to the true ciphertext distribution to get the simulated observed
ciphertext distribution.

noOfGuesses < getNoGuessesMaxPeakAttack(synthDistribution, m,); // Run
the attack and check how many guesses are required to get the correct message
byte value, m,..

totalNoOfGuesses < totalNoOfGuesses + noOfGuesses;
end

averages|t| < M; // Calculate the average no. of guesses for this

number of observed ciphertexts.
end
return averages;

end
Algorithm 4: Outputs estimated figures for the average number of guesses required by the
“max-peak” attack to get the correct message byte when provided different numbers of sampled
ciphertexts. We used our experimental data to generate the input p. We set S = 30,000 as with
this value we observed very little variation in the results on repeated runs of the algorithm. The
range of values for t was selected to get the full range of averages, from roughly 128 down to
almost 1.

30

1-shot Guessing

In this setting the attacker only cares about whether their attack produces the correct message byte
as the first guess, any subsequent guesses are treated as useless. In reality this is the more likely
situation as, in general, an attacker may have no way to confirm that their guess is correct, in which
case having multiple guesses is not necessarily useful anyway. In this setting it is natural that the
attacker would be concerned with how confident they can be that the guess resulting from their
attack is correct. Therefore, as a means to quantify vulnerability from this attacker’s perspective
we can ask, how many ciphertexts does the attacker need before they can have ¢% that their guess
is correct? Depending on the context, the attacker might require different values for q. We will
consider ¢ = 50 and 99.

Again, due to the data requirements, collecting real attack data for this analysis will not be possible
in our case, however, as before, we can simulate the results of collecting different quantities of
ciphertexts and use these samples to estimate the probability that the attack gives the correct
answer.

In algorithm 5 we have described the process used for collecting this data, again we only show the
“max-peak” case as an example. The outer loop for this algorithm is essentially the same as that
of algorithm 4 and so when implementing the algorithms it made sense to combine them both.

This concludes the description of our methodology for identifying and quantifying biases in
the RC4 stream, collecting the required data, and then analysing the vulnerability of the cipher
introduced by these biases. We now move on to report on to the observations that we made by
following these steps.

31

Input: p, a vector containing the correct key-stream distribution of Z,.; S, the number of
simulated attacks to be run in collecting our averages.
Output: precentages, a vector of the average success rate on the first guess for each
ciphertext count simulated.
begin
Select random value for m,; // This value will make no difference to the results

d + p with indices permuted by @-ing with m,; // Generate the correct ciphertext
distribution of Z, ® m,

for Number of sampled ciphertexts =t =29 210 ... 2F do

1L
o+~ M; // approx. value of the standard deviation for sampling noise.

Q « nullspace({1}?°%); // @ is a 256 x 255 matrix whose columns are an
orthonormal basis for the null space of the 1 by 256 ones vector.

GaussianNoise < randn(255,.5); // 255 x S matrix of independent N (0, 1)
distributed noise.

SimMultinomialNoise + /22 x o x Q x GaussianNoise; // 256 x S matrix of

scaled Gaussian noise to simulate noise in multinomial sampling of ciphertexts with ¢
samples. Each column sums to 0.

for simulatedAttackNo =1,...,S do

synthDistribution < d + SimMultinomialNoise(:, simulated AttackNo); //
Add the noise to the true ciphertext distribution to get the simulated observed
ciphertext distribution.

success < getSuccessOfMaxPeakAttack(synthDistribution, m,); // Run the
attack and output 1 if we get the correct message byte value, m,., on the first
guess, output 0 otherwise.

totalNoOfSuccesses < totalNoOfSuccesses + success;

end

totalNoOfSuccesses
S

precentages|t] < ; // Calculate the percentage of successes on the
first guess for this number of observed ciphertexts.
end
return precentages;

end
Algorithm 5: Outputs estimated figures for the percentage of successes by the 1-shot “max-
peak” attack in guessing the correct message byte when provided different numbers of sampled
ciphertexts. We used our experimental data to generate the input p. We set S = 30,000 as with
this value we observed very little variation in the results on repeated runs of the algorithm. The
range of values for t was selected to get the full range of percentages, from roughly 1/256 up to
almost 1.

32

Chapter 4

Results

The following chapter presents the results obtained through our work.

4.1 Single Byte Biases

_ 94321

We collected histograms of output bytes for the first 512 output bytes for N randomly

selected RC4 keys.

4.1.1 Biases in the First 256 Bytes

We consider each previously identified bias in turn and decide whether a) our data confirm the
existence of a bias or not, and b) whether our data confirm the theoretically derived value for the
bias. We provide the experimental value with a 99.99% confidence range.

Single Byte Bias 1

The probability (over a random choice of key) that the second byte of key-stream output by RC4
is equal to 0 is approximately 1/128. i.e b2 ~ 256

The Null Hypothesis is that Pr[Zs = 0] = 1/256 = pp,. The Z-score is

A A~

b — PH, — P — PH,
O Hy \/pHo '(1_pH0)/N)
Using a two sided confidence level of 99.99% (Z score threshold of 3.891) we therefore can reject

the null hypothesis that Pr{Z; = 0] = 1/256.
Now we provide a 99.99% confidence interval for the value of b%:

=199, 968.

256.323 < b3 < 256.337.

This is equivalent to,

1 0.323 1 0.337
— <PlZy =0] < — + —.
18 " zsez = P12 =0 55 T e
The theoretically proposed figure for P[Zy = 0] of 1/128 therefore approximately correct and the
data suggests that this is a slight underestimate.

33

Single Byte Bias 2
b = 0.351089 and b3, b3, ..., b2 is a decreasing sequence with terms that are bounded as follows
0.242811 < by < 1.337057.

The experimentally observed values for these probabilities with N ~ 24321 samples for each

byte position are shown in Figure 4.1 (we have not included the confidence interval as these are
visually indistinguishable from the plotted data).!

1.337057 -

Experimental bj

0.351089 J

0.242811 -

0 1 1 1 1 1 1 1 1
32 64 96 128 160 192 224 256
RC4 Output Byte Position (r)

Figure 4.1: The experimentally observed values for b defined by Pr[Z, = 0] = s + % for
3 < r < 255.

The Z-scores derived from the data for 3 < r < 255 all provide sufficient evidence to reject the
null hypothesis of uniformity with a 99.99% confidence level. The graph shows that the observed
data is consistent with the pattern of biases proposed with one caveat. Namely, that the data for
4 < r < 255 is not monotone decreasing. There are several areas of deviation visible, where the
values b increase with r. These sets of values are r = 4,5, r = 31,32, 33, r = 34, 35, and r = 64, 65.
For the specific values for r = 3,4,255 we can compare the proposed values of bjj to the observed

"We have chosen to plot our discrete bias data with lines joining our data points. These should clearly not be
read to interpolate between the discrete z-axis values. We use the lines as a means to make it easier to read from

the graph where the more dramatic changes in the bias values occur. Often there are isolated peaks in our data and
these would be harder to identify without the neighbouring lines.

34

confidence intervals. The intervals are,

0.348 < b3 < 0.358,
1.302 < b3 < 1.312, and
0.242 < b2%° < 0.252.

The first and last intervals include the postulated values for the bias. However, the second interval
does not.

Single Byte Bias 3

For keys of length [bytes, the I*" byte of key-stream output is biased towards 256 — [with a bias
greater than 1/2562. i.e. bl25671 > 1.

For the implementation of RC4 in TLS the key length [is 16 bytes. The null hypothesis in this
case is that P[Z1s = 240] = 1/256, i.e. py, = 1/256. The 2 sided Z-score threshold for a 99.99%
confidence level is +3.891. The observed Z-score was 711 so we have sufficient evidence to reject
the null hypothesis of uniformity. In fact a 99.99% confidence interval for the value of bl ; = b33

1S
9.114 < biS, < 9.124.

So the bias is in fact roughly 9 times greater than that proposed in the literature.

Single Byte Bias 4

For keys of length 16 bytes (as used in TLS) the first key-stream byte is biased away from 129. i.e.
bly <0

To test the existence of the bias in this case the null hypothesis is that Pr[Z; = 129] = 1/256,
pH, = 1/256. From the data we get a Z-score of —1,343, so we have sufficient evidence to reject
the hypothesis in favour of the bias at a 99.99% confidence level. A 99.99% confidence interval for

the correct value of bl is
—1.726 < blyg < —1.716

Single Byte Bias 5a
For positions 1 < r < 256 in the key-stream output, there is a bias towards value r. i.e.

by mod 256 > 0

The data provides sufficient evidence to reject the Null Hypothesis of uniformity for 1 < r < 256.
However, the biases are not all towards r. In the cases of r = 1, 2,256 the biases are negative. The
observed values for the biases for all r are plotted in Figure 4.2.

35

1.591 |-

Experimental b]. value

-3.332 |-
1 1 1 1 1 1 1]
32 64 96 128 160 192 224 256
RC4 Output Byte Position (r)
. . . r _ 1 bl
Figure 4.2: The experimentally observed values for by defined by Pr[Z, = r] = g5 + 55 for

1 <r < 256.

Single Byte Bias 5b

For r that is a multiple of (the key length) 16, there is also a bias towards 256 — . i.e by . >0

The data is sufficient to reject the Null Hypothesis of uniformity for all r except » = 89, 90, 91, 92.
The data are shown in Figure 4.3 and we can see that there is an apparent positive bias for most
the values of r < 88 (even those which are not multiples of 16) as well as those r < 128 which
are multiples of 16. Furthermore, the pattern of biases before and after r = 128 are very different
(for the multiples and the non multiples of 16). In fact the probabilities for 128 < r < 256 appear
almost constant and slightly below 1/256, it appears then that there is in fact no positive bias for
r > 128 when r is a multiple of 16.

36

9.119

6.133

4171

2.845

Experimental bysg .

1.717
1.067 |-

632 -
8.61)90 u LJ

-0.636

1 1 1 1 1 1 1]
32 64 96 128 160 192 224 256
RC4 Output Byte Position (r)

1 b3s6—r

Figure 4.3: The experimentally observed values for byss . defined by Pr[Z, = 256 —7] = 55 + 5562
for 1 <r < 256.

4.1.2 Biases in the Second 256 Bytes

We also sought to extend the existing literature by exploring the second page of RC4 output for
single byte biases.

Non-Uniformities in the Distribution of Zsg57

The experimental distribution of the first byte of the second page (r = 257) reveals some non-
uniformities. Figure 4.4 shows the observed bias values. The most striking bias is for a = 0. The
data is sufficient to reject a null hypothesis of uniformity for P[Zss7; = 0] at a 99.99% confidence
level and a 99.99% confidence interval for 6357 is

0.342 < b3°" < 0.352.

From the graph we also see a general slope in the biases, culminating in a hump, which results
in a preference towards higher byte values over lower ones. We shall see that a similar (though
shallower) slope is a general feature of the distributions of bytes on the second page until roughly
the 128" position on the page (r = 384).

Non-Uniformities in the Distributions of Zs55 and Zagg

Figure 4.5 shows the observed bias values for r = 258. We can see from the scale that the biases

37

Experimental Estimate
— — 99.99% Confidence Interval

0.2

<

=

ot
T

Experimental Bias Value (b,
<
T

&

=

S
T

_0.1 L 1 1 1 1 1 1 1 1
0 32 64 96 128 160 192 224 256

RC4 Output Byte Value (a)

Figure 4.4: The experimentally observed values for b2°7 for a € B with a 99.99% confidence interval.

38

Experimental Estimate
— — 99.99% Confidence Interval

)
&
(=]
[}

Experimental Bias Value (b;

'
(=4
(=)
—

:
<
=)
2

-0.03

-0.04

-0.05 Lt 1 1 1 1 1 1 1 1
0 32 64 96 128 160 192 224 256

RC4 Output Byte Value (a)

Figure 4.5: The experimentally observed values for 2°® for a € B with a 99.99% confidence interval.

39

0.2

Experimental Estimate
— — 99.99% Confidence Interval

0.15 |-
)

% 0.1}
>
w
=
m
=
b=

£ 0051
g
)
o
i
m

0

0.05 L 1 1 1 1 1 1 1 1
0 32 64 96 128 160 192 224 256

RC4 Output Byte Value (a)

Figure 4.6: The experimentally observed values for 62°? for a € B with a 99.99% confidence interval.

are smaller than at » = 257. However, we again see the slope up to a hump for higher values of a
and a peak on the far left. The peak on the left occurs at @ = 2. The 99.99% confidence interval
for b3%8 is

0.030 < b3°® < 0.040.

Figure 4.6 shows the observed bias values for r = 259. Again we see a peak followed by a slope and
hump. In this case the peak is at @ = 3 and is larger than at r = 258, here the confidence interval
is

0.169 < b3 < 0.179

At this point we might conjecture that future bytes will have a similar peak, slope & hump pattern.
In fact we find something slightly different from here onwards on the second page.

3 T s
Biases by .4 256 and by 04 256 On the Second Page

In Figure 4.7 we show the biases b, for various values of 260 < r < 336. Whilst we can see that
there is still a sloping feature up to a hump, there is no longer a strong peak to the left. Instead, as
r increases we see that the graph becomes increasingly uniform. In all of the graphs there appears
to be a discontinuity at ¢ = r mod 256. To the left of this position the graph is much closer to
uniform, then at @ = r + 1 mod 256 There is a sudden drop. Graphically it appears that there is
a wave rolling through the distributions at ¢ = r mod 256 which washes away a large amount of
the non-uniformity. We can dig a little deeper to observe the position dependent biases b] ;956

40

o)

Experimental Bias Value (b

r =4+ 256
0.05 r =10+ 256
r =20+ 256
r =30+ 256
0.04 | r =40 + 256
r =50+ 256
r = 60 + 256
0.03 |- r =704 256
r =80+ 256
0.02 |-
0.01 -
A
O — ’ v‘ '/é/
/q!) ” i y \
l‘ § '. ‘
-0.01 | i
-0.02
-0.03 |-
-0.04 +
-0.05 L1]]]]]

0 32 64 96

RC4 Output Byte Value (a)

224 256

Figure 4.7: The experimentally observed values for b), for a € B, and various values of r.

41

0.01 -

s
br mod 256

b:+l mod 256
0.005 |-

| i HMM WMW [

-0.005 |-
-0.01 |-
-0.015 |-

-0.02 -

Experimental Bias Value

-0.025 |-

-0.03 |-

-0.035 |-

_0.04 L1 1 1 1 1 1 1 1 1
256 288 320 352 384 416 448 480 512

RC4 Output Byte Position (r)

Figure 4.8: The experimentally observed values for 0] 056 and bl | 4056 for 260 <7 < 512.

42

and b | 04 256 tO illustrate this. Figure 4.8 shows these values. The difference between the two
lines is the height of the “wave-front” for each value of r. We can see that the differences flip
sign at around r = 352 (r mod 256 = 96), which is also where we can see that the “wave-front” in
figure 4.7 will “run into” the sloping part of the distribution. After this point we can anticipate
a much more uniform distribution and this is what we find. Figure 4.9 shows the distributions
for r = 357,407,457, and 507. We can see that their range of biases are much smaller and the
distributions are harder to distinguish from the uniform distribution. However, we do still see the
hints of a slope followed by a hump until at least » = 407. Beyond this there is one other sequence
of strong biases that is apparent from the data.

Biases b3, , 4256 for 7 = 0 mod 16 on the Second Page

In figure 4.10 we show the distribution of biases at several positions r where r = 0 mod 16. As well
as the previously described position related jump at a = r mod 256 we also see a strong bias at a =
27 mod 256. Figure 4.11 shows the biases b, | 1956 for 257 < r < 512. The strong peaks clearly
occur only where 7 = 0 mod 16 and they appear to degrade and disappear by r = 384 = 128 + 256.
Since such a peak was not observed for other values of r we hypothesise that this is a key length
dependent bias.

4.2 Double Byte Biases

We collected histograms of output bytes for selected triplets (i, a,b) with N = 245,

4.2.1 Fluhrer-McGrew Biases

We began by checking the data to see whether it provides sufficient evidence for the existence of
the Fluhrer-McGrew double byte biases in table 4.1, and if so to check whether the data provided a
confidence interval which included the proposed values for the biases. We had data which allowed
us to check all of the biases. The evidence was sufficient to reject uniformity in all of these cases
at a 99.99% confidence level and the 99.99% confidence intervals all included the values predicted
by Fluhrer and McGrew. In table 4.1 we have include a selection of the confidence intervals as
examples. In figures 4.12 and 4.13 we show the observed bias values and confidence intervals for
the Fluhrer-McGrew events that we observed.

4.3 Vulnerability Analysis

We now turn to our analysis of the vulnerabilities introduced to the RC4 cipher by the single byte
non-uniformities that we have observed. We will use the metrics laid out earlier, this involves two
settings (n-shot and 1-shot) each with two attacks (“max-peak” and Bayes). Figures 4.14 and
4.15 show the results from our synthetic sampling analyses for each setting respectively. Several
observations stand out from the data.

First, within each setting, like-for-like comparison clearly shows that the Bayesian attack is
“stronger” than the “Max-Peak” attack. Here we say stronger in the sense that it requires fewer
ciphertexts to achieve equivalent success (whether success is measured by average number of re-
quired guesses or the percentage of correct first guesses). This is as expected, but the exact scale

43

0.015 -
—— Experimental Estimate
— — 99.99% Confidence Interval
—~ 0.01F lf" l'l’ ™y " 1
5 R I
DS " i
0.005

Experlmental Bias Value (b

)

407
a

Experimental Bias Value (b,

L N l'”"u | " A
“\'J\Ilj ‘/\, ’\r‘ﬁj\ll‘(I ‘ I,
I |
-0.005 -
v
o
[}]
-0.01 “I\Al‘ﬂlll\l ’, M\‘
y ” i
\:l‘{l’
-0.015 v L L L L L L L L

0 32 64 96 128 160 192 224 256

RC4 Output Byte Value (a)

(a) r =357
0.015
Experimental Estimate
— — 99.99% Confidence Interval
— 0.01
Iy
e "| ["\'\""
\ 'lﬁ w'»(\/ roby "l 'ﬂ"ml \NU
0.005 WL 1, 5'“' ' RTINS
A | 'l | Jl u \
l‘l” ,\,uv 1'}&, \ | vu ‘n,"‘\'\\ﬁ
lﬂ‘.l’f‘ I
OF

[N

l Iy
f [Wu Iy kst \\)
/\/‘ “”{l ”5‘, /"\}|‘|Il l|1 \|| \]Al,\l |rl ! "U M

Experlmental Bias Value (b7

07)

51
a

Experimental Bias Value (b

-0.005 | i I o
TS ”WMM ! W ‘Ilulr"\ll
A { il
i |
-0.01 -'I’lu W '
1
_04015 1 1 1 1 1 1 1 1 1
0 32 64 96 128 160 192 224 256

RC4 Output Byte Value (a)
(c) r =457

0.015

0.005

[e=}
T

-0.005

-0.01

Experimental Estimate
— — 99.99% Conﬁdence Interval

;‘

n
W (i
| ¥ l'(.\Jl

“ n'l‘ ‘"“’ml \
I ‘ 411\1},4[\\ \I{I/\W l]{‘“[‘”\ﬁ‘l‘lvllj/l ;‘I')
M 18] |
!

L
AI’ I\, A'lﬂh"lhllt”r‘/wh d’ ﬂl' 1
Ay "\, { I|
T ! iy

-0.015

0.015

0.005

-0.005

-0.01

-0.015

0 32 64 96 128 160 192 224 256
RC4 Output Byte Value (a)

(b) » =407

Experimental Estimate
— — 99.99% Confidence Interval

- b
i :MH ‘l‘ i M Ih h
| Ahf i “l‘(".‘J"‘Hlll(l{ I N gAY "I1v|w 1IU ,\’w“\,u i) \ASA ,V
WA Ltk

ll

l\ b '

'l‘l i h !
" 1ol wl/. ‘“/'\\I\I/A
[«.'w"“, "”"\!".'"f'l\‘w" o ”"’\"”“ i

i Ah
1'(1”1‘1' H '

32 64 96 128 160 192 224 256
RC4 Output Byte Value (a)

(d) r =507

Figure 4.9: The experimentally observed values for b, for a € B and r = 357,407,457, and 507

with 99.99% confidence intervals.

44

0.015
—~ 0.01} —~
& 2 00Lf
£ &
E ol E 0.005 |
< <
> == 0
n n
< <
A -0.01F /3 -0.005
3 =
g “g -0.01 F
g -0.02
£ £ o1}
[%
A Z 002t
M -0.03+ Mo
-0.025
-0.04 L L L L L L L L L -0.03 L L L L L L L L L
0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256
RC4 Output Byte Value (a) RC4 Output Byte Value (a)
(a) r = 272,2r = 32 mod 256 (b) r = 288,2r = 64 mod 256
0.02 - 0.02 -
0.015 0.015 L
g g
= 001t =
- o 0.01F
= =
< 0.005 <
> = 0.005}
=2 =
3 OF 3
3 ER
2 0.005F g
£ £ 0008
= = -0. L
g -o001f g
% i
= =
-0.015 -0.01 F
_0.02 L L L L L L L L L _0.015 L L L L L L L L L
0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256
RC4 Output Byte Value (a) RC4 Output Byte Value (a)
(c) r = 304, 2r = 96 mod 256 (d) » = 320,2r = 128 mod 256

Figure 4.10: The experimentally observed values for b for a € B and r = 272,288, 304, and 320
which are all multiples of 16.

45

Experimental Bias Value
o
(=]
=2
T

_0.04 L 1 1 1 1 1 1 1 1
256 288 320 352 384 416 448 480 512

RC4 Output Byte Position (r)

Figure 4.11: The experimentally observed values for by, 956 for 257 < r < 512. We have cut off
the trough at r = 257 as this is a special case which is not relevant.

Value(s) of Value(s) of Approximate Selected Confidence
(a,b) = (Zy, Zrs1) i = r mod 256 value of BZJ) Interval
(0,0) i=1 +2 1.959 < by o < 2.045
(0,0) i # 1,255 +1 0.961 < by o < 1.047
0,1 i#£0,1 11 0.957 < by, < 1.043
0,1
(i +1,255) i # 254 +1 0.945 < by 555 < 1.031
(255,i + 1) i # 254 +1 0.960 < byss , < 1.046
(255,i + 2) i # 253 +1 0.948 < byes o < 1.035
(129,129) i=2 +1 0.949 < bigg 199 < 1.034
(255, 255) i # 254 -1 —1.062 < bogs 955 < —0.976
(0,i+1) i # 0,255 -1 —1.070 < by, < —0.984

Table 4.1: The Fluhrer-McGrew double byte biases first predicted in [6] with a selection of our
observed confidence intervals.

46

— —
S 1 =
= - S

Experimental Bias Value (b

Experimental Bias Value (b

Experimental Estimate
-1k — — 99.99% Confidence Interval

1 | A A S A AT A AR A S A A AR R AT A
mAA VAN TANM R AOIN Y A~ VIV AR A A W e A A
0.5+
ok
0.5+
1 Experimental Estimate
— — 99.99% Confidence Interval
L L L L

0 32 64 96 128 160 192 224 256
i

(a) (a,b) = (0,0)

L A A A Y A S A A M A A O ARG VAN
LSty S/ MGV StV W AV wp AWV aag VM Ay /)

—~ —

8 3
S E &
= 051 [

o o

= =
G G
== ==
£ of 2
[aa) M
2 2

= =

< <

2 05} E
e g

3} 3}

o o
& &

Experimental Estimate
1
— — 99.99% Confidence Interval
L L L L L

0 32 64 96 128 160 192 224 256
i

(b) (a,b) = (0,1)

I A g B NN e e VARV T S AN A A ot R T 1
0.5
0k
-0.5F
a1k Experimental Estimate
| . . . -— 99;99% Confidence Interval

0 32 64 96 128 160 192 224 256
2

(c) (a,b) = (i + 1,255)

0 32 64 96 128 160 192 224 256
2

(d) (a,b) = (255,i + 1)

Figure 4.12: The experimentally observed values of E;b for selected values of (a,b) and for i € B.

They also include a 99.99% confidence interval.

47

)

255,i+2

4

Experimental Bias Value (b

55.255)

Experimental Bias Value (5;

1 | AR A M A S A AV A A AR RS A M 1 — Experimental Estimate
= NLANW AN RAIRNT o r o VXN TV e Wy NN SN Y e e e Wy — — 99.99% Confidence Interval
E
0.5+ = 0.5
E
G
=
w NV VAN~ A SV A A N AA NV A~ ¢ A Ay~ s A
0F E (O "'\::'*’:I\“"\'v.'vnfu/\\—-\;\,-/\v "’\./\/\’\:"‘:“‘1‘:""""""1\‘-#_»#\»’\
[aa]
E
=}
3}
-0.5+ £ -05¢
‘g
D
o
"
=
Ak —— Experimental Estimate al
— — 99.99% Confidence Interval
0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256
7 7
(a) (a,b) = (255,i + 2) (b) (a,b) = (129,129)
1L Experimental Estimate 1L Experimental Estimate
— — 99.99% Confidence Interval — — 99.99% Confidence Interval
3
Sy
0.5 ~ 0.5F
Q
G
=
g 0
0F 8 L
[aa]
E
=}
<
-0.5F S 05}k
3
[oR
]
=
N VAR W m A VAo =y A~y r A P A NN AN LM A A A
-1 -l /\'\,/4:,\,—\./\\. N:NVM\:A_V:»“:qMV- TACNS VWA RSN WANT

0 32 64 96 128 160 192 224 256

2

(c) (a,b) = (255, 255)

0

32

64 96 128 160 192 224 256
7

(d) (a,b) =(0,i+1)

Figure 4.13: The experimentally observed values of E;b for selected values of (a,b) and for i € B.

They also include a 99.99% confidence interval.

48

of the difference might lead an attacker to use one attack over the other depending on the total
running time resulting from the number of ciphertexts sought and the algorithm selected.

Second, as we would expect from the size of the observed biases, the second page of output is
generally less vulnerable than the first page. Roughly speaking achieving equivalent success on the
second page appears to require increasing the number of ciphertexts by a factor of approximately
210 with the Bayesian attack and 2'? with the “Max-Peak” attack.

Third, the relative weakness of the “max-peak” attack is more costly in the second page than
the first. This is apparent not just from how many more ciphertexts are required on average for
the second page under the “Max-Peak” attack, but also from the wide variation in the figures for
the second page under the “Max-Peak” attack as opposed to the relative consistency seen in the
Bayesian attack. This means that to decipher the whole second page in the 1-shot setting requires
over 2%0 ciphertexts compared to roughly 240 for the Bayesian attack. This is likely a result on
the structural weakness in the “Max-Peak” attack that we described earlier in that it solely looks
for candidates for the maximum peak. In the second page, where the distributions are much more
uniform, there are many more candidates for the maximum that are close together resulting in
more frequent failures with this attack.

Fourth, we can see clearly that the key-length related biases at positions r = 16, 32, 48, 64, 80,
and 96 and the strong bias towards 0 at r = 2 provide significant vulnerabilities relative to the
other positions.

This concludes our report of the observations made as a result of our experiments. We now
proceed to the final chapter of our report, detailing the conclusions we have drawn from our work.

49

N
a1
=}
1

N
'S
a
T

N
KN
o
T

n
[
a
T

N
@
=}
T

Average Number of Guesses < 3
Average Number of Guesses < 30

N
N
a

N
n
=}
| I—

Number of Cipher-Texts Required (log scale)

2151
S0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
RC4 Output Byte Position (r)
(a) Bayesian Attack
250 _
545

N
N
o
T

n
@
a
T

Number of Cipher-Texts Required (log scale)
"
I

Average Number of Guesses < 3
Average Number of Guesses < 30

N
N
a1

N
n
=}
T

N
o
T

N
o
T

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
RC4 Output Byte Position ()

(b) “Max-Peak” Attack

Figure 4.14: The minimum (integral power of 2) number of ciphertexts required to reduce the
average number of guesses under each of our n-shot attacks to below 3 and 30 for byte positions
1 <r<bh12.

50

1 AWUY

N
w
@
T

N
©
=}
T
=

Percentage Success > 50%
Percentage Success > 99%

N
N
a1
—_—

N
n
=}

Number of Cipher-Texts Required (log scale)

215 |
210 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

RC4 Output Byte Position ()
(a) Bayesian Attack

70

270 -

260 |-

|
AR

240 -

2% P_ —

Number of Cipher-Texts Required (log scale)

220 o

Percentage Success > 50%
Percentage Success > 99%

210 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
RC4 Output Byte Position (r)

(b) “Max-Peak” Attack

Figure 4.15: The minimum (integral power of 2) number of ciphertexts required to get the success
rate of our 1-shot attacks over 50% and 99% for byte positions 1 < r < 512.

51

Chapter 5

Conclusions

5.1 Scientific Conclusions

5.1.1 Confirmed and Unconfirmed Biases

The data we have collected confirms the existence and scale of most of the biases reported in the
work of Al Fardan et al. [3] as well as Isobe et al. [8]. This includes many of the most significant
biases in the first page of the RC4 key-stream and the Fluhrer-McGrew biases. However, there are
several discrepancies which we must point out.

First, the biases bf, do not all fit the pattern predicted in the literature found in Gupta et al.
[14] and, whilst the data in [3] and [8] appear to be consistent with our observations, they do not
explicitly mention the deviations from these predictions. These deviations were found at the values
r=4,5r=31,32,33, r = 34,35, and r = 64,65 where we see runs of increasing biases instead of
the predicted decreasing biases. The theoretical prediction of these bias values in [14] is the result
of an approximation so it is possible that inaccuracy in this calculation is the source of the observed
discrepancy. However, it seems more likely that it is the result of some key length dependent con-
tributions to the biases which are not considered explicitly as part of the theoretical calculations.
We have seen other key-length dependent biases and the r values producing the discrepancies are
local to even multiples of the key length, 16.

Second, contrary to [3], the biases b]. are not always positive for 1 < r < 256. They are in fact
negative for r = 1,2,256. This appears to be in accordance with the figures presented in [§].

Third, the biases bjs4_,. are not positive for all » which are multiples of 16 on the first page as
appears to be proposed in [3]. This, in fact only holds for r» < 128. These biases for 128 < r < 256
are not explicitly discussed in [8].

5.1.2 Discovered Biases

We have discovered new single byte biases on the second page of the RC4 key-stream. The largest
discoveries are a factor of 10 smaller than the largest biases on the first page but they are prominent
never-the less. The most significant biases are as follows:

52

e The first three byte positions of the second page, r = 257,258,259, have biases towards
Z, = 0,2, 3 respectively.

e For 260 < r < 384, our data suggests that the values b]. | ;955 are negative and increasing,
although the upper limit on » may be slightly lower when they turn positive. These biases
manifest at the leading edge of a sequence of biases b, for 0 < a < r which are much closer
to 0.

e For r = 0 mod 16 and 257 < 7 < 384, by, 4956 1S Positive. Whilst we were completing our
work this bias was independently discovered and published by Vanhoef and Piessens [16].

e Beyond the above there appears to be a general trend of biases away from lower byte values
and towards higher ones for the second page. This trend peaks at around a = 192 before the
biases begin to decrease again. This trend gets less prominent as we move through the second
page and, with our data, is essentially unverifiable by the end of the page.

5.1.3 Measuring Vulnerability

Entropy is a well justified theoretical measure of non-uniformity in a probability distribution. The
lost entropy in the key-stream output at a particular byte position would give us precisely the
amount of information gained about the message byte value from one ciphertext. In theory then,
entropy is an ideal measure of vulnerability to ciphertext only attacks. Unfortunately, we have
found that it is not effective in our setting of a broadcast attack on single bytes of RC4 output.
With the data we were able to sample from RC4 key-stream outputs estimating the entropy doesn’t
even allow us to distinguish the key-stream distributions from uniform. An attacker who only took
this information into account might therefore conclude that COAs on RC4 would not be possible.

However, our other metrics of vulnerability imply that this would be far from true. Our other
measures show that an attacker can in many cases gain great confidence of the message bytes with
potentially practicable numbers of ciphertexts, especially on the first page. This suggest that the
key-stream single byte entropy loss can be misleading as a measure of vulnerability if blindly trusted.

Whilst our work has focused on particular metrics of vulnerability, we have not had the time
to pursue the practical implementation of our attacks and consider their danger in the wild. Al
Fardan et al. [3] implemented attacks to recover plaintexts from HTTPS traffic using both single
and double byte biases. They found the ciphertext requirements for the single byte attack to be
in accordance with our results that 232 ciphertexts should be sufficient to get high confidence for
all of the first page bytes. However, recovering a HT'TPS cookie required significant amounts of
time (c. 2000 hours) and bandwidth that was not clearly feasible for practical exploitation. This
work was followed by Garman et al. [7] who further developed the Bayesian attack scheme to take
account of non-uniform priors over the message space. This is a plausible assumption, particularly
when the plaintext is restricted to human readable text. In parallel, the recent work by Vanhoef
and Piessens [16] has sought to improve on the Al Fardan et al. attack by simultaneously exploit-
ing various multi-byte biases with the single byte biases. This attack was able to recover HT'TPS
cookies in 52 hours, a significant improvement from earlier work. We can anticipate that using
this simultaneous exploitation of different biases together with non-uniform priors would further

53

improve on the running time of potential attacks.

At this time then, the vulnerabilities of RC4 are within reach of practical exploitation and with
increasing hardware speed this will of course get worse.

Our measures of vulnerability could prove useful in considering the potential weaknesses in other
stream-ciphers. Any stream-cipher producing similar values to RC4 might not be immediately
breakable in practical time spans. However, if it were not immediately discarded out of precaution,
it would still merit further investigation for other biases before being adopted for any high-value
use.

5.1.4 Potential Future Extensions

In terms of bias discovery we hypothesise that there will be single byte biases on the third page
of the RC4 key-stream but that they will be smaller again than the second page. Whether these
biases might be usefully exploited would be worth exploring.

With sufficient resources we would have liked to collect sufficient data to resolve the Fluhrer-
McGrew biases to a greater degree of accuracy. We would be interested to test the accuracy of the
predicted values further and this is an obvious area for extension.

We have already mentioned the potential for attacks simultaneously exploiting single and multi-
byte biases as well utilising non-uniform priors over the message space. This may involve the use
of more involved analytical tools such as Markov Chain modelling for the computation of posterior
distributions over the message space which may involve higher running times. The feasibility of
such an attack would be worth investigating further.

5.2 Other Insights Gained

5.2.1 Coding for Speed

Our work required us to produce significant amounts of RC4 output. As a result we had to optimise
our code for speed. As well as learning many techniques for achieving this the author also came
to appreciate the amount of effort that can be saved by following the adage of Knuth, “premature
optimization is the root of all evil.”

5.2.2 Continued Use of RC4

Based on our results and the practical exploitation performed by others including [8, 3, 7, 16], we
join in strongly urging that RC4 no longer be used. If the published attacks or similar schemes
have not already been implemented in the wild then we should not expect our luck to hold. The
resources required to carry out these attacks are within reach for non-state actors, and ignorance
is no longer a viable excuse for inaction.

54

5.2.3 Lessons for Crypto System Selection

Finally, we feel it is sensible to consider some wider lessons for crypto system selection based on
the history of RCA4.

It is worth asking why RC4 became so widely used in the first place. Was it because it was
easy to implement and relatively fast? Because it was an RSA commercial product and people
trusted the source? Or perhaps, because no one knew a way to brake it? We are not in a position
to know for sure but it seems plausible that a combination of these factors helped. From a security
perspective these factors are at best proxies for the central question of how vulnerable a cipher is
to attack. However, they may have been the best available evidence on which to base a decision.
In the early analysis of RC4 it seems that the broadcast attack setting was not even considered.
This is perhaps understandable based on the fact that a typical use cases of the mid-nineties would
make the most recent attacks completely impractical. However, we should consider why it took
until recently to discover the multiplicity of biases in RC4 given that some initial significant biases
were already discovered in 20017 Was it a paucity of attack models, a lack of computing or a lack
of interest?

The history of RC4 indicates that cipher selection has on occasion taken place based on im-
perfect /incomplete information and, despite the impressive efforts of cryptanalysts, the available
resources have not been sufficient to fill this gap. This is not to say that further resources could
not be made available. However, there are ongoing barriers to this. In general private companies
suffer disincentives to committing resources towards publishing cryptanalysis work because the
benefits of the work are shared with all and sundry, leading to a tragedy of the commons situa-
tion. Governments have large incentives towards getting cipher selection right, especially as many
public protocols form parts of critical national infrastructure. However, they also have conflicts of
interest. Carrying out surveillance for national security reasons is seen by most governments as a re-
quirement, therefore, their cryptanalytic output is not always trusted.! Finally, non-governmental
organisations, who have lead the design of public protocols to date, generally do not have the spare
resources to increase focus on cryptanalysis.

The problems that the story of RC4 highlights are therefore not easy to solve. However, we
hope that the ubiquity of RC4 combined with its growing tapestry of weaknesses should lead to
some further reflection about the process for cipher selection in protocol design.

! Aspects of the Snowden documents relating to NSA’s contribution to the design of Dual EC DRBG have further
damaged trust in this regard.

95

Acknowledgements

The author would like to acknowledge the use of the University of Oxford Advanced Research
Computing (ARC) facility in carrying out this work. http://dx.doi.org/10.5281/zenodo.22558.

I would also like to thank Prof. Kenny Paterson of Royal Holloway for his kind help.

Finally, I would like to thank my project supervisor, Prof. Andrew Ker, for his ever helpful and
insightful guidance throughout this project.

Bibliography

[1]

802.11-1997 - IEEE Standard for Information Technology- Telecommunications and In-
formation Exchange Between Systems-Local and Metropolitan Area Networks-Specific
Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications, 1997.

802.11i-2004 - IEEE Standard for Information Technology- Telecommunications and In-
formation Exchange Between Systems-Local and Metropolitan Area Networks-Specific
Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) specifications: Amendment 6: Medium Access Control (MAC) Security Enhancements,
2004.

Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G. Paterson, Bertram Poettering, and
Jacob C. N. Schuldt. On the Security of RC4 in TLS. In Proceedings of the 22Nd USENIX
Conference on Security, SEC’13, pages 305320, Berkeley, CA, USA, 2013. USENIX Associa-
tion.

Thai Duong and Juliano Rizzo. Here Come the ® Ninjas. Ekoparty, 2011.

Scott Fluhrer, Itsik Mantin, and Adi Shamir. Weaknesses in the key scheduling algorithm of
rcd. In Serge Vaudenay and AmrM. Youssef, editors, Selected Areas in Cryptography, volume
2259 of Lecture Notes in Computer Science, pages 1-24. Springer Berlin Heidelberg, 2001.

Scott R. Fluhrer and David A. McGrew. Statistical Analysis of the Alleged RC4 Keystream
Generator. In Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, and Bruce Schneier, editors,

Fast Software Encryption, volume 1978 of Lecture Notes in Computer Science, pages 19-30.
Springer Berlin Heidelberg, 2001.

Christina Garman, Kenny Paterson, and Thyla van der Merwe. Attacks Only Get Better:
Password Recovery Attacks Against RC4 in TLS. Technical report, Johns Hopkins University
and Royal Holloway, 2015.

Takanori Isobe, Toshihiro Ohigashi, Yuhei Watanabe, and Masakatu Morii. Full Plaintext
Recovery Attack on Broadcast RC4. In Proc. the 20th International Workshop on Fast Software
Encryption, 2013.

Itsik Mantin. Predicting and Distinguishing Attacks on RC4 Keystream Generator. In Ronald
Cramer, editor, Advances in Cryptology EUROCRYPT 2005, volume 3494 of Lecture Notes in
Computer Science, pages 491-506. Springer Berlin Heidelberg, 2005.

57

[10]

[11]

[12]

[13]

Itsik Mantin and Adi Shamir. A Practical Attack on Broadcast RC4. In PROC. OF FSFE 01,
pages 152-164. Springer-Verlag, 2001.

Toshihiro Ohigashi, Takanori Isobe, Yuhei Watanabe, and Masakatu Morii. How to Recover
Any Byte of Plaintext on RC4. In Selected Areas in Cryptography - SAC 2013 - 20th Interna-
tional Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers, pages
155-173, 2013.

Santanu Sarkar, Sourav Sen Gupta, Goutam Paul, and Subhamoy Maitra. Proving TLS-attack
related open biases of RC4. Designs, Codes and Cryptography, pages 1-23, 2014.

Bruce Schneier and Doug Whiting. Fast software encryption: Designing encryption algorithms
for optimal software speed on the intel pentium processor. In Eli Biham, editor, Fast Software
Encryption, volume 1267 of Lecture Notes in Computer Science, pages 242-259. Springer Berlin
Heidelberg, 1997.

Sourav Sen Gupta, Subhamoy Maitra, Goutam Paul, and Santanu Sarkar. (Non-)Random
Sequences from (Non-)Random Permutations - Analysis of RC4 Stream Cipher. Journal of
Cryptology, 27(1):67-108, 2013.

Adam Stubblefield, John Ioannidis, and Aviel D. Rubin. Using the Fluhrer, Mantin, and
Shamir Attack to Break WEP. In NDSS. The Internet Society, 2002.

Mathy Vanhoef and Frank Piessens. All Your Biases Belong To Us: Breaking RC4 in WPA-
TKIP and TLS. In USENIX Security 2015, 2015.

58

