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Abstract

One goal of steganalysis is to recover additional information pertaining to
the existence of a hidden message in a digital image. A likely situation in
practice (given that there is no cost associated anymore with taking multi-
ple pictures) is for the steganographer to have used images taken with the
same camera under the same conditions, of the same scene. We explore in
laboratory conditions whether such a situation aids us in building a better
model via linear regression that can predict the size of the payload hidden
inside such images. Previous work for classification, rather than regression,
has shown that a technique knows as calibration improves prediction with
overlapping images and now we try to extends these results. We reason this
is possible, by exploring a new hypothesis, that steganographic features can
be represented as the sum of components corresponding to multiple noise
sources (camera, scene, time noises and stego signal), some of which are
shared by overlapping images and cancelled via calibration. When we ex-
plore this, we see that calibration reduces one source of noise, but increases
another and our expectation is that it will lead to a net gain. We will find
this is the case.
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Chapter 1

Introduction

1.1 Steganography

Steganography is the art of hiding information [10] inside apparently inno-
cent media (for example: images, videos, music, text), while steganalysis
is the attempt to discover the existence of such information with a certain
degree of reliability. It is well known that hiding is at its safest when the
medium used consists of independent parts, yet it often happens in practice
for the steganographer’s covers to contain overlapping parts. Can we use this
fact to make better estimates about the payload of a digital image? That is
the question which this project will try to answer.

Steganography is typically illustrated by Simmons Prisoners’ Problem
[15], in which Alice and Bob, two separated prisoners, discuss an escape
plan through a medium monitored by a Warden. The goal of this kind of
communication is to ensure its Secrecy, so that the Warden remains unaware
of the existence of hidden information, since then he would be able to take
measures against it.

Here is some common terminology used in this subject: the message which
Alice wants to send is known as the payload, the possible media that she can
use are regarded as the cover objects, while one where a payload has already
been hidden is a stego object. Alice will be considered the steganographer.
Usually, Alice and Bob would have shared a secret key beforehand, of which
the Warden is unaware, but it will be seen later that this will not matter for
the project.

Because of their wide usage, we will only focus on digital media as cover
objects, and more specifically on RAW images, since they have a huge capac-
ity for embedded payload, without the complex enough structure of music
or videos files for steganography to become unwieldy. A random payload
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assumption will be assumed throughout this report: the payload is a ran-
dom sequence of bits indistinguishable from random coin flips, and since this
property will be maintained by encryption, compression or any other oper-
ations that are applied before the message is sent, there is no need to care
about the existence of a secret key (we say that we simulate embedding).

1.2 Steganalysis

Steganalysis represents the other side of the problem, that of the Warden,
or the steganalyst, who is the enemy of the steganographer. Usually, the goal
is to identify the objects with payload hidden inside them, while reducing
the rate of false positives (cover objects considered stego) and that of false
negatives (stego objects considered covers). There can be a active Warden,
one who will tamper with the media objects, or a passive one, who can only
inspect them, but our focus will only be on the latter.

As an adaptation of the Kerckhoffs’ Principle, which can be summarized
by ”Assume the enemy knows the system”, we consider that the Warden
is aware of the exact embedding algorithms that are used, not an entirely
unlikely situation in practice. Furthermore, he does not know anything about
the secret key (to maintain the random payload assumption), nor about the
payload.

There are two ways in which the Warden could analyse the objects he
encounters: the first one involves building a classifier, which tries to detects
whether the objects are covers or stego; the second one involves a regressor,
which will try to estimate the amount of payload hidden inside the objects,
usually as a ratio of the maximum possible payload size. In the case of the
latter, 0 or negative values can be interpreted as no payload being embedded.

1.3 Steganalysis of Overlapping Images

In this specific case of Steganalysis, Overlapping Images either have been
used as covers or the Warden is capable of creating them. This allows us
to make stronger assumptions then previously, namely that the Warden has
access to the exact same camera (or the same model) used for taking the
covers and that he is capable of developing his own training data. He also
has access to the test objects and is aware of the camera characteristics used,
so he will now be able to recreate them.

In this project, machine learning will be used to gain additional data
about the stego images, namely we will attempt to train regressors capable
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of predicting the amount of hidden payload in each stego image. Since build-
ing an exact model of images is usually impossible (hence why structural
steganalysis, which attempts exactly that, is considered infeasible), machine
learning applied in steganalysis is always done using their features, multidi-
mensional vectors that describe their general characteristics using statistical
properties, filters, projections. Similar endeavours regarding overlapping im-
ages have been undertaken in the past, mostly with classifiers for JPEGs [1]
and for RAW images [17]. We will be comparing how a regressor trained to
detect the difference in payload of two overlapping images would fare against
one that estimates the payload itself and try to improve the performance of
the former.
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Chapter 2

Background

2.1 Overlapping Images

A realistic situation that will occur in practice is for the steganographer to use
a library of digital images taken with the same camera, possibly multiple ones
of the same object, and embed in part of them. In this case we encounter
overlapping images, where significant parts of the content will be similar
(hence the overlap). This might happen because the camera settings will

Figure 2.1: Two Overlapping Images and their Pixel-wise Difference

be reused, and taking multiple captures of the same scene is not a problem
any more as storage capacity for digital media is nearly limitless. As for the
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photographer, it is likely for him to have retakes in order to select the best
photo later and multiple photos (with significant overlapping content) for a
panorama.

Even so, it is important to note that overlapping images need not to
have identical content, due to camera orientation, changes over time in the
scenery, and of physical phenomenons happening when capturing the scene
(we can see this in figure 2.1).

Given this scenario, we will examine whether and how can we use the
overlapping images in order to improve the steganalysis for lossless images.

2.2 Embedding Algorithms

2.2.1 LSBM - Least Significant Bit Matching

LSB Matching (also known as ±1-embedding) is a steganographic algo-
rithm that embeds the payload using the least significant bits of each pixel
in the cover image, making changes so that each of them will be equal (mod-
ulo 2) to the corresponding bit in the payload. Whenever they do not match,
it will randomly increment or decrement the value of the pixel, both with
equal probability, to avoid structural attacks (which its predecessor, LSB
Replacement, suffered from). A first description of this was done by Toby
Sharp in 2001 [14]. An implementation of the algorithm would translate in
the following formula:

s =


c, if c = m(mod 2),
1, otherwise and c = 0,
254, otherwise and c = 254,
c± 1, otherwise, randomly with 0.5 probability.

When embedding a random payload of size p, we would only need to change
approximately p/2 pixels (since the others would have the correct bit). Then
the formula that simulates LSBM embedding with a random payload of size
p would be:

s =


c, with probability 1− p/2;
1, with probability p/2, if c = 0;
254, with probability p/2, if c = 255;
c+ 1, with probability p/4, otherwise;
c− 1, with probability p/4, otherwise.

Implemented as a Python Script for simulating embedding on pgm files, this
would translate to:

7



import numpy

import os

import io

import sys

...

p=numpy.random.randint (1 ,100)

p=p*0.01

f=io.open(inputFilename ,’rb’)

g=io.open(outputFilename ,’wb’)

g.write(f.read (16))

pixels=bytearray(f.read ())

p=p/2 #and this is the true rate of change

i=0

pixelsLen=len(pixels)

while(i<pixelsLen ):

r=numpy.random.random ()

if(r<p/2):

if(pixels[i]==0):

pixels[i]= pixels[i]+1

else:

pixels[i]= pixels[i]-1

elif(r>1-p/2):

if(pixels[i]==255):

pixels[i]= pixels[i]-1

else:

pixels[i]= pixels[i]+1

i+=1

g.write(bytes(pixels ))

f.close ()

g.close ()

2.2.2 HUGO - Highly Undetectable SteGO

HUGO is a steganographic algorithm for spatial-domain digital images de-
signed by Tomáš Pevný, Tomáš Filler, and Patrick Bas, which uses high
dimensional models to perform embedding [12]. It takes the cover, computes

8



the distortion value at every pixel and assigns the probabilities for each pixel
to change based on it. It also supports model correction, which is an attempt
to estimate the distortion after every change. It is important to note that
the distortion function used has been designed with SPAM (Subtractive Pixel
Adjacency Matrix) features in mind, being resistant to steganalysis based on
them. The payload itself is encoded with Syndrome Trellis Codes.

Even while being Highly Undetectable, it can be defeated just by using a
different set of features for the steganalysis, as the BOSS contest has proved
[4] (additionally, both SRM [3], which are similar to the ones that won the
contest, and PSRM [6] are effective against HUGO).

2.3 Features

Machine learning techniques usually require features that represent the data
that needs to be analysed, so in order for us to make use of them in our
steganalysis experiments, we need to have features that describe every image
of our data set. The ones that are going to be used in this case are the PSRM
(Projected Spatial Rich Model) features, described in [6]. They attempt to
model the noise of each image, by obtaining the noise residuals (usually
defined as the difference between pixel and predicted value), projecting them
randomly on neighbourhoods and then computing the first-order histogram.
Sadly, their are somehow impractical, mainly because of their high calculation
time (20 minutes per Mpix image).

In consequence, we use GPU-PSRM [9], an implementation that changes
the features slightly to make them more efficient to compute, which then
exploits the power and parallelism of GPU Hardware in order to reduce the
extraction time. There will be only 20 kernels per residual, giving a 4680-
dimensional feature vector, which will be reasonably useful for the regressors
(a lower dimensionality makes it faster to train them, without any significant
drops in the accuracy). The code for their extraction has been run by the
supervisor on clusters of Oxford University’s Advanced Research Computing
(ARC) facility, since how the features are computed is not in the scope of
the project.

2.4 Hypothesis

It is very common in steganalysis to think that every image contains noise
(the image noise or cover content) and possibly a signal (which confusingly
is called stego noise) and, in order to solve the problem (classification or
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regression), some processing is done to suppress the former and enhance
the latter. Now, the cover content can be described in terms of three noise
sources: a camera noise (its ”fingerprint” actually, caused by the model and
subtle, but unique differences in lenses and the capture mechanisms; also,
the settings of the camera may slightly alter it), a scene (or space) noise
(caused by the position and orientation of the camera, which identifies the
scene taken) and a time noise (mainly because very few scenes are actually
static, light conditions varying with the passing of time and movements may
occur in the scene). We also consider the signal to be only caused by the
embedding algorithms that the steganographer will use.

The purpose of features is to suppress the image noise (which is why
many developments in steganalysis have focused on developing better filters
to be used in their computation and to design high-dimensional ones so that
they become more efficient). Calibration is used alongside them in order to
further enhance the stego noise and it has been used successfully on both
JPEGs [1] and RAWs [17] to better solve classification.

Now we hypothesise that calibration which uses overlapping images as
reference objects will not only improve the signal, but it will also reduce
camera and scene noise albeit with some increases in time noise. Since those
two represent the most significant natural components of the cover content,
we should be able to use that in building better regressors for lossless images
that will more accurately detect the steganographic signal. Therefore, when
we perform regression on overlapping images, we expect the estimates of
payload difference between two images (from the same scene) to be more
accurate than absolute estimates of payload size. In our experiments, we will
measure this accuracy in terms of bias, absolute error and mean square error.
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Chapter 3

Experimental Design

3.1 Data Set

A Canon PowerShot G16 was used for taking the photos that make the
data set for our experiments. The camera has been placed on a tripod in
103 different positions, with a certain orientation (which we will refer to
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as a scene). For every scene, the focal distance, zoom, and the ISO (light
sensitivity) are constant, the only variable being the light exposure, chosen
to avoid having too dark or bright areas in the picture (the latter make
embedding artificially more detectable). Multiple pictures have been taken
per scene with the aid of a timer and only 500 pictures were kept for the data
set. Thanks to fast SD memory cards, a photo could be taken every second
and each scene was done in about 10-15 minutes. Obtaining the entire data
set (which amounts to 50k photos occupying 1.5TBs) required 20 hours of
continuously taking pictures over a time span of several weeks.

After curating the data, the pictures had to be converted from CR2 (the
proprietary Canon Raw Format) to TIFF (Tagged Image File Format) using
RawTherapee, and then to PGM (Portable GrayMap, a grayscale lossless for-
mat part of the Netpbm project) using ImageMagick. We need the multiple
conversions, because the implementations for the LSBM and HUGO algo-
rithms simulate embedding only in PGM files. The only difference between
uncompressed grayscale and colour images is the number of components per
pixel (brightness for the former and red, green, and blue for the latter), the
steganography and steganalysis being the same, therefore the results could
be extended to colour formats (but it is beyond our scope). Each image has
been divided in 10 slices of resolution 812 X 1518 in order to increase the
size of our data set.

The embedding simulation in the covers using LSBM was done with a
personal Python implementation of the algorithm, while the HUGO embed-
ding simulation uses Binghampton University’s DDE Lab’s C++ implemen-
tation [2]. In both cases, a random payload has been chosen (for LSBM,
values between 0 and 1, for HUGO, between 0 and 0.4).

To perform the experiments themselves, only the PSRM features and the
payload corresponding to each slice are necessary and, for ease of access, they
have been stored as matrices and vectors in the NumPy array format (this
being the Python library which we will use for array and matrix computa-
tions).

3.2 Regression

Prediction is the problem of modelling the relationship between a depen-
dent variable y and one or more independent variables x1, x2, ...xn, while re-
gression is an approach that given sample (or training) data tries to build
a model. This model would then later be used on a different set of (test)
data, in order to make predictions about the dependent variable. We need
to proceed in this way, because, in general, we can not actually observe the
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true model and have no other way of measuring the results.
This is useful in steganalysis, since we set the dependant to be the relative

payload size (or a function of it) for an image, and we then model it in terms
of the corresponding features (which will act as the independent variables).
We measure the payload in terms of bits per pixels (bpp) and, so that the
results are more accurate, all images will be of the same resolution.

In the case of linear regression (which is the one we use in our experimental
design), we assume this dependence can be captured by a linear model, as
following:

y = β̄ · x̄+ ε,

where x̄ = [1, x1, x2, ...xn] is the vector of independent variables (note that we
have added a 1 to capture the relationship when y is independent from the
variables), β̄ is the vector of parameters that describes the linear dependence,
and ε is a random variable that represents the error term. For this to be
useful in practice, E[ε] ' 0 is needed (otherwise, we are dealing with a
biased estimator), meaning that the predictor we get will be the line

ŷ = β̂ · x̄.

As for how we obtain the parameters β̄ via regression on training data, the
exact approaches we will consider are Ordinary Least Squares and Ridge
Regression, while the NumPy Linear Regressor will be used for comparison.

3.2.1 Ordinary Least Squares Regression

In the case of a least-squares procedure, when fitting the line through a
set of m data points ({(x̄1, y1), (x̄2, y2), ...(x̄m, ym)}) the goal is to minimise
the differences between perceived and actual values. In Ordinary Least
Squares, this is done by minimising the sum of squared errors (the vertical
deviations from the fitted line) [16], which is:

SSE =
m∑
i=1

(yi − ŷi)2 =
m∑
i=1

(yi − β0 − β1xi,1 − ...− βnxi,n)2.

A minimum is attained when the derivatives in respect to each βk is set to
zero, which will give us the normal equations [13]:

mβ0 +mβ1

m∑
i=1

xi,1 + ...+ βn

m∑
[i=1]

xi,n =
m∑
i=1

yi,

β0

m∑
i=1

xi,k + β1

m∑
i=1

xi,1xi,k + ...+ βn

m∑
i=1

xi,kxi,p−1 =
m∑
i=1

yixi,k, k ∈ 1, n.
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Since this is a rather complex problem, we will use linear algebra to approach
it. We let X be the m× (n+ 1) matrix

X =


1 x1,1 x1,2 · · · x1,n

1 x2,1 x2,2 · · · x2,n
...

...
...

...
...

1 xm,1 xm,2 · · · xm,n

 ,
and similarly we define Y, Ŷ using the actual, and respectively predicted
values. This means that given the parameters β̂, we compute the predicted
values using the formula: Ŷ = Xβ̂. Therefore, we can now write the normal
equations in matrix form [13]:

XTXβ̂ = XTY,

with solution if XTX invertible:

β̂ = (XTX)−1XTY.

Coincidently, this gives us the Best Linear Unbiased Estimator (BLUE)
of β̂, according to the Gauss-Markov theorem, should the error terms for yi
(εi) be uncorrelated (cov(εi, εj) = 0 with mean 0 (E[εi] = 0) and have the
same finite variance (V (εi) = σ2 <∞) [5].

3.2.2 Ridge Regression

Since Ordinary Least Squares chooses the best parameter values (β̄) for mod-
elling the training data, it will overfit when given noisy data and perform
badly when predicting the test data. Additionally, we have no guarantee
that the matrix we invert (XTX) is well-conditioned, which causes greater
errors when computing the parameters.

This is why, in the case of Ridge Regression [11], we try instead to
minimize:

m∑
i=1

(yi − (β̄Txi)) +mλβ̄T β̄ = SSE +mλβ̄T β̄,

for a fixed λ ≥ 0. The corresponding solution will be obtained from the
equation:

β = (λIn+1 + XTX)−1XTY.

The purpose of Ridge Regression (also known as Penalized Least Squares)
is to perform regularization on the model, to make it simpler by punishing
complexities, which we measure as the 2-norm (||β̄|| =

∑n
i=0(βi)

2) multiplied
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by a constant, λ, the complexity penalty. Choosing the penalty is there-
fore important, since higher values will make the parameters not model the
training data properly, while lower ones would make it indistinguishable from
Ordinary Least Squares. One simple, quite practical method would be to try
random values for λ and just choose the one that gives statistically better
results. Because of time constraints and the fact that we are dealing with
unsigned integer features (meaning very large X matrices), we have used the
heuristic:

λ = 10−6 max
xi,j∈XTX

(xi,j),

which, in practice, has introduced an appropriate ridge.
In general, this method works reasonably well for almost matrix, but it

has one main drawback: when the matrix to be inverted is already non-
singular it does manage to introduce an error. This is acceptable especially
when we do not have enough training data (why OLSR would fail), although
if it is not the case we should reconsider the approach.

The code listing below is a personal implementation of Ridge Regression
as a Python Script:

import numpy

...

ilambda = pow(10 ,6)

...

def trainRidgeRegressor(experiment ):

mx=numpy.matrix(numpy.load(’.../ Training/xmatrix.npy’),

numpy.float64)

my=numpy.matrix(numpy.load(’.../ Training/ymatrix.npy’),

numpy.float64)

mxt=mx.getT()

mxtx=mxt*mx

mxty=mxt*my

lambda=mxtx.max ()/ ilambda

mr=mxtx+lambda*numpy.matrix(

numpy.identity(mxtx.shape [0]), numpy.float64)

betas=numpy.linalg.solve(mr,mxty)

numpy.save(’.../ Results/betas_ridge.npy’,betas)

det testRidgeRegressor(experiment ):
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mx=numpy.matrix(numpy.load(’.../ Test/xmatrix.npy’),

numpy.float64)

my=numpy.matrix(numpy.load(’.../ Test/ymatrix.npy’),

numpy.float64)

betas=numpy.matrix(

numpy.load(’.../ Results/betas_ridge.npy’),

numpy.float64)

y_=mx*betas

numpy.save(’.../ Results/y_ridge ’,y_)

...#make use of y and y_ to compute errors and so on

def runExperiment(experiment ):

...

trainRidgeRegressor(experiment)

testRidgeRegressor(experiment)

...

3.2.3 NumPy Regression

Although this is not a canonical implementation of regression, we refer to
the linear regressor that the NumPy library provides as a useful black
box to compare it with the previous methods. It computes the minimum-
norm solution to least squares with methods from the C implementation
of the LAPACK library (Linear Algebra PACKage, originally developed for
Fortran), which use the Singular Value Decomposition of the matrix that
needs inverting (in our case XTX). The code handles better in some cases
ill-conditioned matrices and usually runs faster than our implementations,
yet it can be outperformed by a ridge regressor under certain situations.

3.3 Calibration

Calibration is often used with the purpose of improving the accuracy of
many steganalysis methods. It usually involves manipulation of the stego
object in an attempt to recover information about the corresponding cover,
to build a reference object (which is then used in the steganalysis).

There are two main calibration techniques: cropping and re-compressing,
which is commonly used on JPEGs (and possibly similar lossy formats), and
using a library of overlapping images. We will focus only on the latter,
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since it is more adequate for a lossless format and as shown in [17] it makes
classification better. We will try to see whether the same statement holds
for a regressor.

Before describing how we will make use of the overlapping images, it is
very important to remember that the reference objects can themselves be
stego, therefore we can not assume that we will have covers to refer to. As
such, we can assume that we know for a subset of images the embedded
payload size and we will use that to predict for two images the difference
in payload. To make this feasible, rather than using the features directly,
we will use a function applied to two of them. As for these functions, we
have:

• the difference function κ(x̄, ȳ) = x̄− ȳ, the motivation being that this
way we can ”naively” predict the difference in payload;

• the concatenation function κ(x̄, ȳ) = x̄||ȳ, because a more complex
vector might capture the relation for linear regression;

• the concatenation with difference function κ(x̄, ȳ) = x̄||ȳ||(x̄ − ȳ), a
combination of the two above, which is also the most effective of the
three when used for classification [17] against both LSBM and HUGO.

It is important to remark that the hypothesis space corresponding for
each calibration method is a superset for the previous one, so, in theory, it
should be possible to obtain the best model from the most complex one (and
have no need for the others). Sadly, this does not work in practice, since
we would need infinite training data (and we have only a finite amount).
Additionally, the simpler hypothesis have a significant advantage, that of
lower dimensionality, meaning regression will be easier and faster.

As for why calibration will make the regression more effective, we will
refer to our hypothesis. A vector of features (x̄) can be described by the sum
of camera noise (c̄), space noise (s̄), time noise (t̄) and steganographic signal
(or payload, p̄), giving us the formula:

x̄ = c̄+ s̄+ t̄+ p̄.

We assume that each component can be represented by independent random
variables (allowing us to later use the difference of variances V ar(A− B) =
V ar(A) + V ar(B)) and we remark that since the same camera is always
used, then c̄ should be a constant with variance V ar(c̄) = 0. If we consider
2 vectors (x̄1 and x̄2) of features belonging to overlapping images, then we
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have s̄1 = s̄2, therefore the following is true when they are calibrated with a
difference function:

κ(x̄1, x̄2) = c̄+ s̄1 + t̄1 + p̄1 − c̄− s̄2 − t̄2 − p̄2 = (t̄1 − t̄2) + (p̄1 − p̄2),

meaning that the camera and space noise have been cancelled out. The effi-
ciency of our regressions is also reflected in the variance of predicted payload,
since V ar(y − ŷ) = SSE

m−n and the Sum of Squared Errors is what we opti-
mize. So we should have better predictions when the variance is lower. When
our regressor builds the model without calibration, the variance of predicted
payload would therefore be:

V ar(ŷ) = V ar(β̂x̄) = β̂T (Cov(s̄) + Cov(t̄) + Cov(p̄))β̂

= β̂TCov(s̄)β̂ + β̂TCov(t̄)β̂ + β̂TCov(p̄)β̂,

while if we used calibration, we would get:

V ar(ŷ1 − ŷ2) = V ar(β̂(x̄1 − x̄2)) = 2β̂TCov(t̄)β̂ + 2β̂TCov(p̄))β̂.

Under our hypothesis, this means that the regression will be better in practice
if and only if the variance caused by time noise and steganographic content
is smaller than the space noise:

β̂TCov(s̄)β̂ > β̂TCov(t̄)β̂ + β̂TCov(p̄)β̂.

In summary, when we change from a regression of absolute payload to
one of difference and when given overlapping images, we double the time
and stego noise, while cancelling the space and camera noise. Therefore, this
method will work if the doubled components are smaller than the ones that
get cancelled.

3.4 Training and Testing Sets

For a easier explanation of the defined experiments, we consider the following
notations for representing sets of data:

• cIS,L for cover objects with indices in I, from slices in L of scenes in S;

• sIS,L for stego objects with indices in I, from slices in L of scenes in S;

for arbitrary subsets S ⊆ S, L ⊆ L, I ⊆ I where S is the set of all scenes,
L is the set of all slices and I is the set of all indices of images.

The different classes of experiments we are going to run are:
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Figure 3.1: Decomposition of features into the sum of noises generated by
the Camera Position (ĉ + ŝ), Time (t̂) and Steganographic content (ŝ) and
their respective projections on the regression line
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• Single Slice Experiments, with Training Dataset sIs,l and Test Dataset

sĪs,l, where I ⊂ I chosen randomly 10 times for every s ∈ S, l ∈ L such
that |I| = |I|/2 (250 training/test features);

• Single Scene Experiments, with Training Dataset sIs,L and Test Dataset
sI
s,L̄

where L ⊂ L chosen randomly 10 times for every s ∈ S such that

|L| = 5 (2500 training/test features);

• Multiple Scenes Experiments, with Training Dataset sIs,L and Test
Dataset sIS,L where S ⊂ (S − {s}) chosen randomly for every s ∈ S
such that |S| = 5 (25000 training / 5000 test features).

Having these different classes of experiments will allow us to see the per-
formance of regression in different situations, making it easier to draw conclu-
sions afterwards. Also, for evaluating the different experiments, we consider
3 measures (defined for ε = ŷ − y), namely:

• E[ε], which represents the bias of the predictor (a high value should
never arise here);

• E[|ε|], which is the expected average error;

•
√
E[ε2], which is the square root of the variance (also representing the

Mean Square Error).

We consider the model built by regression to be better, when all these 3
values are closer to 0.

3.5 Implementation

All of the code needed to implement the regression algorithms and run the
experiments can be written using scripts. This is why, I have chosen Python
as the main programming language, since it is a high-level, dynamic, scripting
language with a large number of libraries developed for almost all purposes,
which is exactly what was wanted. Matlab would have been a viable alter-
native, because most of the time, matrix operations had to be performed.
Instead we used the NumPy library, a package for scientific computing that
provides a multidimensional array object of homogeneous data types and
powerful methods for manipulating them. It maintains Python’s simplicity,
while at the same time offering a better performance by executing optimized
pre-compiled C code. This way the main problem of Matlab, namely the slow
execution of code, can be avoided while maintaining the required capabilities.
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While we can improve the performance by using any faster C-like language,
it would not have been as simple to write and it would have required more
work for implementing the needed methods.

Before being able to run experiments, the data needed to be processed
and converted into the right formats, which was been done using scripts that
either called the required commands (for TIFF and PGM conversion and for
the HUGO embedding) or implemented them (the case of LSBM embedding
and storing the features in NumPy array format). For TIFF conversion, we
used RawTherapee, a raw image processing program. It is an obvious choice,
because it is capable to understand the CR2 proprietary format, has com-
mand line support (meaning that it can be easily used in our scripts), and
performs the processing in a much more timely manner than the provided
Canon software (0.1s instead of 10s), avoiding a serious bottleneck. PGM
conversion was done with ImageMagick (a software suite that handles all
the other formats) for very similar reasons. Both were needed because we
could not implement a direct conversion, since neither program could handle
both formats (RawTherapee offers no PGM support, while ImageMagick is
able to partially read CR2 files, but would not perform demosaicing, caus-
ing bad conversions). The LSBM embedding was easy to implement from
scratch, although this is not the case with HUGO, where using the official
implementation as a black box was needed, because of practical concerns.

For a better expression of the data, plotting it was necessary and, to do
so, we used the PyPlot module from the Matplotlib library [7]. This made the
task considerably easier, given the fact that it can handle the large number
of points we needed to plot (which are in the order of thousands, and just
as many plots). The library also has a good enough integration with the
NumPy array, displaying it properly without the need for reconstructing it.

The experiments themselves have been performed on a server with 20
3.1GHz Intel CPU cores and appropriate memory (96 GB RAM) and storage
facilities. In total, approximately 1.5 years of CPU time and 7.9 TB of
storage have been necessary for organising and executing them. More details
regarding time and storage requirements are in the table.
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Process Unit Time/Unit Storage/Unit Core Time Total Storage

Photography Image 1.5s 14.1MB 21.45h 818GB

TIFF Conversion Image 0.076s 32.9MB 1.086h 1.5TB

PGM Conversion Image 12s 11.75MB 7.152d 1.2TB

and Slicing

LSBM Embedding Slice 0.5s 1204KB 2.98d 1.2TB

HUGO Embedding Slice 5s 1204KB 28d 1.2TB

Feature Extraction Scene - 180MB - 53.581GB

Running Regression - - - 1.31y 1.9TB

Table 3.1: Time and Storage Usage
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Chapter 4

Results
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Figure 4.1: Scatter Plots of Actual Values (x-axis) and Predicted Values
(y-axis) pairs from 10000 randomly selected samples from Multiple Scene
Experiments from a Absolute payload size Ridge Regression Model (left)
and Difference in payload size Ridge Regression Model (right)

4.1 LSBM

4.1.1 Confirmation of Hypothesis

We observe that the results of regression applied to our simulation of LSBM
embedding (illustrated in the tables 4.1, 4.2, and 4.3) do confirm our hy-
pothesis, since calibration does overall lead to reduced errors and improved
estimates.

The experiment class does have an effect on the error measures we obtain:
in general, the best predictions are done in Single Slice Experiments, while
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the highest errors happen in the Single Scene ones, with the Multiple Scene
Class being somewhere in between. This situation is to be expected given
the size of the training data available for each of them, which influences the
quality of models we build.

We see that it also changes the efficiency of calibration, which works well
for Single and Multiple Scenes, but not that great for Single Slices (compare
the columns in 4.1). This is due to calibration halving the number of training
samples that we model and possibly increasing the dimensionality of features.
This introduces more inaccuracies when the dimension of features (4680) is
already higher than the dataset size (500, respectively 250, without and with
calibration for Single Slices), which will make the already under-determined
equation even more difficult the solve.

On the other hand, when given enough data, the benefits of calibration
will accommodate for the loss in training samples, which happens for both
Single and Multiple Scene Experiments. We can see this by comparing the
columns in 4.2 and 4.3: the average error and variance are lower when cal-
ibration is used compared to when we avoid it. This is because the larger
data sets, even when reduced, still allow the matrices which need inverting
to be somehow well-conditioned.

There are greater effects on prediction caused by the regression algorithm,
which is why we are going to explore their results in more detail.

Ordinary Least Square Regression behaves almost as expected, having
higher average errors, variances and even bias. In the case of Single Scene
Experiments, the bias (E[ε] = 1.119) is higher than the maximum payload
size (1bpp), meaning that the model it built is of no practical use. When we
compare it against the other algorithms, its errors a few orders of magnitude
greater and this also holds for Single Slices, indifferent to whether or not
calibration was used.

This is because the method is very vulnerable to outliers, which can cause
significant changes in the regression line. We are also dealing with many
cases when the matrix to be inverted is almost singular, due to low distances
between features of overlapping images in their own space, making their mea-
surement (which is what OLSR does) pointless. As such, when the models
built by OLSR are then used to make predictions even for well-behaved data,
the errors accumulate. There is only one exception, that of Multiple Scene
Experiments, when it behaves as well as the NumPy regressor. We attribute
this to the many available training samples, which makes modelling easier
and allows calibration to work properly.

Compared to OLSR, we obtain better results when using either Ridge or
NumPy Regression. They also show similar performance regarding the cali-
bration method used: the lowest errors are always for the difference function,
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followed by concatenation with difference, and then plain concatenation. The
results of concatenation can be blamed on the increased dimensionality of fea-
tures, although it will not explain why using the difference when building the
model is better than not (whether or not we combine it with concatenation).
It is very likely that the stego signal is amplified by the difference (as we
have hypothesised), while the major noise sources are cancelled. Interest-
ingly, NumPy Regression models have lower errors and variances when no
calibration or just difference have been used, while Ridge models are better
when using the concatenation functions.

We can also explain, why avoiding calibration gives the best results for
Single Slice Experiments (and why it works differently in the other classes).
In the case of Single Slices, the camera and space noise is always the same,
so there is little noise to be cancelled, which is not true for the others (since
we do have captures from multiple slices and even different scenes). Because
we do not have too much noise to cancel, it will certainly be smaller than
the one which we double via calibration. This is what introduces the errors
in our model for the Single Slices.

4.1.2 Illustration

In the three tables, we have the biases, expected average error, and variances.
Another way to illustrate this data is in the eight figures we have included.

In the first four (in Figures 4.2 and 4.3), within each ten rows we have a
scene, each of them being a slice and every point a capture. They show the
errors (by the position of dots), average bias of a slice (marked with crosses),
and average bias of the scene (shown with a line). This data is given only
for 10 randomly selected scenes out of the 103, when Ridge Regression has
been performed on the Multiple Scene Experiments.

Without any calibration (Figure 4.2), we can see that the bias varies
within the scene and even within the slices in their respective scene. This
illustrates that every slice capture different camera and scene noises, even
within the same scene. This is because they represent different tenths of
the original picture (which is why the camera noise can also vary, since it
may not be uniformly introduced by the sensor) and our features manage to
isolate their respective textures.

The other three diagrams (difference function in Figure 4.2, and con-
catenation without and with difference in Figure 4.3) also illustrate why our
hypothesis is true. The bias gets cancelled along with the camera and space
noise when calibration is applied to our features, which we believe to be much
greater than the time noise which we double). It also shows the lower errors
of our predictions, since they are now much closer to the zero-error line.
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The remaining four diagrams (in Figures 4.4, 4.5) show the variance (not
its square root) of our predictions for each slice (marked with a cross) within
their respective scene (the y-coordinate) and the average variance, plotted on
a logarithmic scale. These have been drawn for the same experiment class
and regressor. We see that no matter what calibration we have used, the
variance gets reduced by up to an order of magnitude (illustrated through
the left movement of the crosses in the other figures compared to the first
one).

Regressor x x− y x||y x||y||(x− y)

OLS E[ε] −3.983× 10−2 1.129× 10−1 8.851× 10−2 −2.374× 10−1

E[|ε|] 2.016 37.191 1.55 18.897√
E[ε2] 34.261 754.108 41.739 233.736

Ridge E[ε] 1.072× 10−6 1.615× 10−5 1.296× 10−5 −1.220× 10−6

E[|ε|] 6.647× 10−3 9.425× 10−3 1.143× 10−2 1.054× 10−2√
E[ε2] 1.703× 10−2 2.304× 10−2 3.161× 10−2 2.966× 10−2

NumPy E[ε] −1.629× 10−7 1.602× 10−5 6.180× 10−6 2.533× 10−6

E[|ε|] 6.108× 10−3 9.432× 10−3 1.097× 10−2 1.038× 10−2√
E[ε2] 1.701× 10−2 2.304× 10−2 3.120× 10−2 2.935× 10−2

Table 4.1: LSBM Single Slice Experiments

Regressor x x− y x||y x||y||(x− y)

OLS E[ε] 1.119 −4.615× 10−1 2.399 4.478× 10−1

E[|ε|] 4.994 50.454 15.053 28.273√
E[ε2] 27.43 760.524 240.826 254.113

Ridge E[ε] 1.47× 10−2 6.379× 10−5 2.522× 10−4 6.465× 10−4

E[|ε|] 1.371× 10−1 4.113× 10−2 5.921× 10−2 5.276× 10−2√
E[ε2] 2.288× 10−1 7.967× 10−2 1.131× 10−1 9.807× 10−2

NumPy E[ε] 1.815× 10−2 6.160× 10−5 7.859× 10−4 9.495× 10−4

E[|ε|] 1.091× 10−1 4.111× 10−2 6.3625× 10−2 5.624× 10−2√
E[ε2] 1.783× 10−1 7.936× 10−2 1.185× 10−1 1.048× 10−1

Table 4.2: LSBM Single Scene Experiments
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Regressor x x− y x||y x||y||(x− y)

OLS E[ε] −7.524× 10−3 −6.745× 10−5 −5.205× 10−3 3.939× 10−3

E[|ε|] 1.009× 10−1 3.652× 10−2 6.951× 10−2 7.272× 10−2√
E[ε2] 1.484× 10−1 5.508× 10−2 1.025× 10−1 1.060× 10−1

Ridge E[ε] −5.132× 10−3 −1.567× 10−5 3.750× 10−4 3.396× 10−4

E[|ε|] 1.188× 10−1 4.008× 10−2 5.189× 10−2 3.860× 10−2√
E[ε2] 1.752× 10−1 6.318× 10−2 8.003× 10−2 7.468× 10−2

NumPy E[ε] −7.524× 10−3 −6.745× 10−5 −5.206× 10−3 4.382× 10−3

E[|ε|] 1.009× 10−1 3.652× 10−2 6.951× 10−2 7.520× 10−2√
E[ε2] 1.484× 10−1 5.508× 10−2 1.025× 10−1 1.093× 10−1

Table 4.3: LSBM Multiple Scene Experiments
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Figure 4.2: LSBM Bias and Error Plot for regression on Multiple Scene
Experiments with no calibration (upper) or with difference (lower)
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Figure 4.3: LSBM Bias and Error Plot for regression on Multiple Scene
Experiments for concatenation without (upper) or with difference (lower)

29



10 8 6 4 2 0
0

20

40

60

80

100

10 8 6 4 2 0
0

20

40

60

80

100

Figure 4.4: LSBM Variance Plot for regression on Multiple Scene Experi-
ments with no calibration (upper) or with difference (lower)
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Figure 4.5: LSBM Variance Plot for regression on Multiple Scene Experi-
ments for concatenation without (upper) or with difference (lower)
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4.2 HUGO

4.2.1 Confirmation of Hypothesis

If HUGO is a better embedding algorithm than LSBM, it will be harder to
estimate the payload sizes, which will translate into higher biases, errors, and
variances. We can see that this is actually the case, by observing the tables
4.4, 4.5, and 4.6, which have greater values then the ones for LSBM. This
is because it has been designed to minimize the distortion it causes in the
images, which will be captured to a smaller degree by our features.

Even so, the results from HUGO experiments show a similar story to the
ones obtained from LSBM, with some differences.

OLSR is still on par with the NumPy one for Multiple Scene Experiments
(see table 4.6), yet it has incredible overall biases for Single Scene (1.119,
when maximum payload size is now 0.4) and errors. When errors are that
greater than the range of values, the predictor becomes useless.

Surprisingly, the best performance is almost consistently attained by
Ridge Regression, especially when more than one slice is involved in the ex-
periments. This is most likely because the matrices are less well-conditioned
compared to LSBM.

Excluding these minor differences, the results behave similar to the ones
for LSBM, keeping their tendencies: reduction of bias, errors and variances
when calibrating features, except for Single Slice Experiments, and the dif-
ference function is still the best calibrator. As such, the same arguments
hold and these results again confirm our hypothesis.

4.2.2 Illustration

The three tables contain the biases, average errors and variances that we
have discussed for HUGO. This data is also illustrated with the help of eight
plots.

The first four of the diagrams (Figures 4.6, 4.7) show prediction errors
and average biases within slices and scenes, for 10 randomly selected scenes.
This allows us to see when calibration is not used, the errors and biases are
higher. We do not observe it as clearly in the table, since we encounter
positive and negative biases just as often, and they average to values near 0.
We also see that the biases not only vary with the scene, but also with the
slice, which get cancelled with calibration.

The other four diagrams (Figures 4.8, 4.9) show the variances (and their
average) of the prediction errors resulting from the same experiments and
regressor as above. We still see that the variance is higher if no calibration

32



function is applied to the features.

Regressor x x− y x||y x||y||(x− y)

OLS E[ε] −9.593× 10−2 1.527 4.545× 10−2 4.699× 10−1

E[|ε|] 4.011 19.320 4.085 22.842√
E[ε2] 130.074 923.811 92.792 960.250

Ridge E[ε] 2.508× 10−5 7.727× 10−5 7.211× 10−5 −9.198× 10−5

E[|ε|] 2.950× 10−2 4.101× 10−2 4.877× 10−2 4.513× 10−2√
E[ε2] 4.801× 10−2 7.242× 10−2 9.245× 10−2 7.409× 10−2

NumPy E[ε] −1.643× 10−5 7.687× 10−5 7.133× 10−5 −9.178× 10−5

E[|ε|] 2.640× 10−2 4.101× 10−2 4.733× 10−2 4.460× 10−2√
E[ε2] 4.746× 10−2 7.244× 10−2 9.406× 10−2 7.334× 10−2

Table 4.4: HUGO Single Slice Experiments

Regressor x x− y x||y x||y||(x− y)

OLS E[ε] 2.668 −1.544× 10−1 3.080× 10−2 −9.014× 10−1

E[|ε|] 24.311 15.472 37.287 11.771√
E[ε2] 200.503 138.079 293.421 41.089

Ridge E[ε] 3.907× 10−2 −1.859× 10−4 3.104× 10−3 −8.141× 10−4

E[|ε|] 3.487× 10−1 7.462× 10−2 1.250× 10−1 1.158× 10−1√
E[ε2] 5.209× 10−1 1.466× 10−1 2.169× 10−1 2.089× 10−1

NumPy E[ε] 5.431× 10−2 −1.792× 10−4 1.612× 10−2 −3.589× 10−3

E[|ε|] 3.467× 10−1 7.662× 10−2 1.957× 10−1 1.793× 10−1√
E[ε2] 5.708× 10−1 1.496× 10−1 3.430× 10−1 3.319× 10−1

Table 4.5: HUGO Single Scene Experiments
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Regressor x x− y x||y x||y||(x− y)

OLS E[ε] −4.159× 10−3 4.936× 10−5 3.005× 10−2 −8.445× 10−3

E[|ε|] 2.461× 10−1 6.885× 10−2 2.059× 10−1 1.902× 10−1√
E[ε2] 3.490× 10−1 9.810× 10−2 3.036× 10−1 2.708× 10−1

Ridge E[ε] −5.191× 10−3 −1.447× 10−4 2.179× 10−3 −1.174× 10−3

E[|ε|] 1.591× 10−1 6.318× 10−2 8.315× 10−2 7.714× 10−2√
E[ε2] 2.101× 10−1 9.168× 10−2 1.193× 10−1 1.101× 10−1

NumPy E[ε] −4.159× 10−3 4.936× 10−5 3.005× 10−2 −8.117× 10−3

E[|ε|] 2.461× 10−1 6.885× 10−2 2.059× 10−1 1.893× 10−1√
E[ε2] 3.491× 10−1 9.810× 10−2 3.036× 10−1 2.665× 10−1

Table 4.6: HUGO Multiple Scene Experiments
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Figure 4.6: HUGO Bias and Error Plot for regression on Multiple Scene
Experiments with no calibration (upper) or with difference (lower)
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Figure 4.7: HUGO Bias and Error Plot for regression on Multiple Scene
Experiments for concatenation without (upper) or with difference (lower)
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Figure 4.8: HUGO Variance Plot for regression on Multiple Scene Experi-
ments with no calibration (upper) or with difference (lower)
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Figure 4.9: HUGO Variance Plot for regression on Multiple Scene Experi-
ments for concatenation without (upper) or with difference (lower)
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Chapter 5

Conclusion

We hypothesised that every image has cover content described by multiple
noise sources (camera, space and time) and possibly some stego signal and
that by making use of this we can perform better regression when calibrat-
ing with overlapping images. The results of our experiments confirm this
hypothesis, which has interesting ramifications for both steganography and
steganalysis at the same time.

Performing regression on calibrated overlapping images allows us to more
reliably detect the difference in payload. While this may not appear useful
when handling two images with close payload sizes, when it actually observes
a difference, it is almost certain that at least one of them is a stego object.
This means we have just confirmed the existence of secret communication and
we can begin investing resources with the purpose of recovering the message.
Previous work has assumed that it is necessary to have some images to be
covers and possibly know which these are, our work shows that we do not
need to have this knowledge, although with an insignificant drawback. Our
method is not reliable when comparing two cover images or two stego with
similar payload size, allowing the steganographer to either not embed in
overlapping images or to embed in all of them. The first option means that
cover selection needs to be done properly, having the steganographer invest
more time and resources in choosing his covers, since his options are now
much more limited (no overlapping images, nor any for which overlapping
ones can be easily taken), making it slightly impractical. The latter option
will certainly cause problems later on, since it is especially vulnerable against
pooled steganalysis, as shown in [8] (regression for the average payload size).

We have also discussed the differences between 4 noises (camera, scene/s-
pace, time and stego), which have not been separated until now, as this does
requite a large number of captures in different conditions (and no one else
has done this). The results we have obtained do show that they are actually
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different and, based on that, we can make trade-offs via calibration, by en-
hancing some of them at the cost of others (difference calibration is the most
illustrative, as camera and space noise are suppressed, while time and stego
are amplified). Better designs in calibration functions may result as a conse-
quence of this fact, since having some trade-offs might make the measuring
of certain statistics easier and more reliable, especially when given images
with significant overlapping content.

There are certainly some ways this project could have been improved,
which may count as future work in this field. Firstly, having more cap-
tures for the Single Scene Experiments, might have made some of the results
clearer (regarding the drop in performance). Another would be repeating
the experiments for up-to-date embedding algorithms (like the UNIWARD
family), which could not be attempted, mostly because of time constraints
(while effective, the algorithms are still too slow). There is also the Ridge
Regression, for which we have used a simple heuristic. Investigating the ef-
fects of different parameters on the efficiency of models would likely lead
to better results. Lastly, there is the concern of how to better separate the
noise sources, which, for example, may involve repeating the experiment with
overlapping images from different cameras.

There are also lessons to be learned from the project. Building a large
dataset takes time, running the experiments take even more time, as 1.5
years of CPU time clearly show. Working with this much data can also
cause unexpected problems (PDF readers will crash when rendering vector-
based plots of several hundred thousands of points) and even small mistakes
can be time-consuming, requiring all the experiments to be repeated.

Taking all in consideration, we did obtain an important result: calibrat-
ing overlapping will cancel some noise components at the expense of double
others. In consequence, using calibrated features to perform regression for
the difference in payload (or some other metric) will lead to better models
and predictions.
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