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Abstract

The security of a steganography system is defined by our ability to detect it. It is
of no surprise then that steganography and steganalysis both depend heavily on the
accuracy and robustness of our detectors. This is especially true when real-world data
is considered, due to its heterogeneity. The di�culty of such data manifests itself in a
penalty that has periodically been reported to a↵ect the performance of detectors built
on binary classifiers; this is known as cover source mismatch.

It remains unclear how the performance drop that is associated with cover source mis-
match is mitigated or even measured. In this thesis we aim to show a robust methodol-
ogy to empirically measure its e↵ects on the detection accuracy of steganalysis classifiers.
Some basic machine-learning based methods, which take their origin in domain adapta-
tion, are proposed to counter it.

Specifically, we test two hypotheses through an empirical investigation. First, that
linear classifiers are more robust than non-linear classifiers to cover source mismatch in
real-world data and, second, that linear classifiers are so robust that given su�ciently
large mismatched training data they can equal the performance of any classifier trained
on small matched data.

With the help of theory we draw several nontrivial conclusions based on our results.
The penalty from cover source mismatch may, in fact, be a combination of two types of
error; estimation error and adaptation error. We show that relatedness between training
and test data, as well as the choice of classifier, both have an impact on adaptation
error, which, as we argue, ultimately defines a detector’s robustness. This provides
a novel framework for reasoning about what is required to improve the robustness of
steganalysis detectors. Whilst our empirical results may be viewed as the first step
towards this goal, we show that our approach provides clear advantages over earlier
methods.

To our knowledge this is the first study of this scale and structure.
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Preface

As a steganalysis researcher, I have the great fortune of working in a young research

field with a vast range of fascinating, yet unexplored, problems. If you have never

heard of steganalysis and steganography before, here is the elevator description.

Steganography is a science which studies hidden communication. Its general goal is

to enable perfectly undetectable communication over public communication chan-

nels. It attempts to achieve this by embedding a message into the subliminal channel

of an innocuous digital object, which may then be transmitted publicly. The sub-

liminal channel can be any source of non-determinism present in such digital objects

which are plausible to appear on some public channel (even when the source that

generates them is largely known). Multimedia files of various formats are well suited

to serve as so-called cover objects for embedding steganographic messages.

Steganalysis is the complementary subject to steganography and is primarily con-

cerned with breaking it. A steganographic system is formally considered to be

broken if there exists a steganalysis detector which is better than random at iden-

tifying the presence of hidden communication. This definition takes its roots from

cryptography where the problem of decryption (in our case detection) is modelled

as the Prisoners’ Problem and adheres to Kerckho↵s’ principle, which states that

the enemy knows the system. It is straightforward to see why this may not be a

satisfactory definition for any practical application of steganalysis - the detectors

need to provide robustness guarantees to stand a chance of being deployed in the

real world.
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Robustness has been considered in the literature and the problem of cover source

mismatch has been identified as a major obstacle to achieving successful real-world

steganalysis. Cover source mismatch is a term given to the phenomenon which de-

scribes the di↵erence in detection performance of a steganalysis detector on data

generated by di↵erent sources. It occurs when a detector is tuned to one data set

and tested on a di↵erent data set, which is not the “correct” source of covers. This

represents an obvious challenge to real-world applications, where robustness may be

critical to the success of deployment of a steganalysis system.
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Chapter 1

Introduction

This thesis is an empirical study of steganalysis in heterogeneous covers. The main

focus is on binary classification in digital images. This rather simplified view of ste-

ganalysis has established itself as de facto in modern steganography and steganalysis

literature, where advancements are made from both sides in competition and the

definition of security is strictly empirical - a steganography method is as secure as

its best detector. The ‘best detector’ is a loose term because our ability to detect

steganalysis relies heavily on our knowledge of a great number of variables defining

various practicalities of the problem. Unlike cryptography where Kerckho↵s’ prin-

ciple is su�cient to encompass all of the relevant knowledge about the problem,

in steganography and steganalysis similar conditions only work for covers reduced

to purely theoretical constructs. In these conditions theoretical guarantees about

security have been found [52, 111, 117]. For empirical covers the problem appears

to be harder if not impossible - arguments have been made that a perfect detector

does not exist [15].

This has not, however, stopped the field from trying to improve the practical tools.

Much of this improvement has come from the side of steganography and the consen-

sus is that the practical methods here are more advanced than those in steganalysis.

In steganalysis, research e↵orts have largely been focused on improvements in fea-

ture representations. The first representations were based on structural information,

but modern representations encompass more general statistics and are used as fea-

tures in conjunction with machine learning classifiers. There is fierce competition

3



CHAPTER 1. INTRODUCTION

over the development of new, better features, which has seen gradual improvement

of detection rates. New feature sets have been proposed at an approximate rate

of one every six months claiming to better the state of the art. The most mod-

ern examples o↵er to automate many processes associated with feature engineering,

such as dimensionality control [51]. One can envisage that such automation might

soon be taken one step further and feature engineering will be replaced with Deep

Learning methods, which are designed to automatically construct the best feature

representation.

By definition then, machine learning has become an essential tool in steganalysis.

Most classifiers used to date are unsophisticated, based on the standard machine

learning tools such as the Fisher Linear Discriminant, the Support Vector Machine

with Gaussian kernel and ensemble methods based on buckets of models. Several

atypical proposals, notably the Extreme Learning Machine [88] and Multitask Logis-

tic Regression [86], have been shown to positively contribute to binary steganalysis.

Progress in this area has been slow and there exist many specialised machine learn-

ing methods yet to be explored. On the other hand it may be argued that some

improvements in detection may only be possible through the use of instruments from

machine learning designed specifically to tackle specific learning tasks.

One example of such a task keeps reoccurring despite all the advances in the area

of feature engineering. Cover source mismatch has been reported to a↵ect the de-

tection performance in several publications [4, 20, 40, 59, 94, 44, and more]. It is

known that the di↵erences in digital images that naturally occur in the real world

a↵ect the accuracy of steganalysis. It has been reported that camera model, image

processing and even image scene all have some e↵ect [35]. Individual studies have

been conducted to pinpoint exact e↵ects on features. For example, Ker studied

the e↵ects of cover size on capacity [55]; Böhme [15] studied saturation and local

variance from the point of view of their influence on detection accuracy, Kodovsky

[72] found resizing had negative e↵ect on steganalysis; several other studies exist

[92, 15, 20, 36, amongst others]. Such e↵ects may or may not be specific to a partic-

ular type of covers (e.g. spatial-domain images or JPEG images) and future formats

4



CHAPTER 1. INTRODUCTION

are not guaranteed to have the same e↵ects.

It remains unclear how the performance drop that is associated with the problem

of cover source mismatch is mitigated or even measured [58]. In this thesis we aim

to show a robust methodology to empirically measure the e↵ects of cover source

mismatch on the detection accuracy. Some basic machine-learning based methods,

which take their origin in domain adaptation, are proposed to counter this problem.

We choose a real-world source of images. To our knowledge this is the first study of

this scale and structure.

1.1 Formalising the problem

The idea of viewing steganalysis as a binary classification problem is due to Simmons

[109] who formalised it as the Prisoners’ Problem.

Let us consider Simmons’ problem as it is viewed in contemporary steganalysis

literature. In this model, Alice is trying to communicate secret messages to Bob.

All communications are monitored by the Warden and the two prisoners’ aim is to

communicate e↵ectively without raising suspicion. They can achieve this by using

steganography to hide their messages using subliminal channels of otherwise innocu-

ous objects, called cover objects. We assume digital images as cover objects, but in

practice this can be one of many di↵erent types of multimedia or other high-capacity

digital objects. To enable steganographic communication Alice and Bob agree on a

protocol. Let C be the set of all objects of a fixed type, e.g. JPEG-format images

of fixed quality. Let K be the set of all possible secret keys and M the set of all

possible messages.

The protocol consists of an embedding function Emb, which takes three inputs:

a predetermined1 secret key k 2 K, one of plausible1 cover objects c 2 C and the

1The problem of establishing a shared key is important in practice however we omit the technical
details in this thesis for brevity. The concept of plausible cover objects is closely related to the idea
of a cover source which we will be revisited throughout this thesis.

5



CHAPTER 1. INTRODUCTION

desired secret message m 2M:

Emb : C ⇥K ⇥M! C .

Emb applies embedding changes to cover object c in locations chosen by the secret

key k to embed the message m and produce a stego object c0. Extraction function

Ext that recovers embedded messages from stego objects using the key is written as:

Ext : C ⇥K!M .

The goals of this protocol are three-fold: first, to preserve the correctness of message

delivery:

Ext(Emb(c, k, m), k) = m ,

second, to achieve undetectability, i.e. to avoid perceptible or statistical detection

and, third, to achieve relatively high bandwidth. A skeleton of such protocol is

illustrated in Figure 1.1.

Emb

Cover
objects

Secret
messages

k
i

Ext m
i

k
i

Predetermined stego key

c
i

m
i

public channelc0
i

Detect

Pr(c0 2 stego)

Alice’s domain Bob’s domain

Figure 1: High level diagram of the Prisoners’ Problem.

1

Figure 1.1: High level diagram of the Prisoners’ Problem.
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CHAPTER 1. INTRODUCTION

A minimum of three parts of this protocol must be known only to the participants:

the original cover objects (Alice only), the hidden message (Alice and Bob) and the

shared key (Alice and Bob). All other variables are assumed to be known also to the

Warden under Kerckho↵s’ principle. There are, however, di↵erent levels of knowl-

edge that may represent the real-world steganalysis scenario better. For this reason

Ker categorises the relevant knowledge into the following scenarios (taken verbatim

from [56]):

(A*) The Warden knows the content of the hidden payload and the
embedding algorithm used.

(A) The Warden knows the length of the hidden payload, but not its
content, and knows the embedding algorithm used.

(B) The Warden knows the embedding algorithm used, but nothing
about the payload.

(C) The Warden does not know the embedding algorithm used.

which describe what the Warden knows about the embedding. These go in con-

junction with the Warden’s knowledge about the covers (also verbatim from [56]):

(1) The Warden knows the exact characteristics of Alice’s cover source2.

(2) The Warden does not know the exact characteristics of Alice’s cover
source, but can learn about it by seeing examples.

(3) The Warden does not have information about Alice’s cover source,
but can learn about a similar one by seeing examples.

(4) The Warden knows nothing about Alice’s cover source.

We focus our attention on breaking the second goal of a steganographic system:

undetectability. It is reached when steganographic objects cannot be distinguished

from all other ‘plausible’ objects. The above cases (1)-(4) characterise di↵erent

levels of our knowledge about what is plausible in the system. Whilst obvious game-

theoretic considerations spring to mind which are not covered by these, it is still a

reasonable categorisation and encompasses a wider perspective than is generally ac-

cepted in the literature. It has been argued [15] that covers are the least controllable
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CHAPTER 1. INTRODUCTION

part in steganalysis and steganography due to them being, in part, manifestations of

reality, be it a (part of a) visual scene (in digital images) or compositions of audible

sounds (in music recordings), which explains the often-made simplification to case

(2), where examples from target source are made available to the steganalyst. Hence,

for case (2), the notion of plausible objects is somewhat pre-defined. Under the same

argument, case (1) is thought to be only realisable in theoretical constructs. This

thesis studies cases (3) and (4).

1.2 Thesis scope

We will assume the job of a passive warden whose sole aim is to test a binary

hypothesis:

H
0

: x is a cover image

H
1

: x carries a payload of known length and embedding algorithm

Our task is to learn a decision function h(x) that determines the answer for the above

hypothesis test. Imagine the decision function being a binary (machine learning)

classifier and consider the di↵erence between training h(x) for cases (A)(2) and

(A)(3)/(A)(4). The former leads to a straightforward problem of training and testing

a classifier on data from one (Alice’s) source. The latter however calls for non-trivial

training. It has been shown that a great number of attributes that we may or may

not know about Alice’s source a↵ect the accuracy of the decision function h(x).

Each source has characteristics that may or may not be unique to it therefore the

risk of training a detector on a mismatched source needs to be taken into account.

This thesis is largely about studying the risk associated with this mismatch and

several simple ways of correcting it.

1.3 Thesis statement

This thesis is about steganalysis in real-world data. Specifically, it aims to explore

the benefits, as well as challenges, that arise when we switch from using laboratory

data, where many variables can be controlled for, to using a large collection of mis-

matched real-world sources, where the same levels of control may not be possible

8



CHAPTER 1. INTRODUCTION

due to a steganalyst’s limited knowledge of the source in question. Unsurprisingly

we encounter cover source mismatch - it therefore takes centre stage in several dis-

cussions. Our main approach is simple and takes its motivation from the theory

of statistical learning and can be summarised through the following quote from Ng

et al. [89]: “Assuming that we have a su�ciently powerful learning algorithm, one

of the most reliable ways to get better performance is to give the algorithm more

data.” We make a claim that under the assumptions that steganalysis training data

from the target source may be scarce, if not completely unavailable, it may be ben-

eficial to use large amounts of data from mismatched sources to train a detector

for the said target - it all depends on the relatedness between the target source

and the available mismatched training data. A steganalyst’s choices with regards

to the classifier, training data and, to a lesser extent, features are considered. This

is investigated through the help of three carefully designed experiments which use

real-world data and modern steganalysis classifiers and features. We seek help from

statistical learning theory and its recent extensions to domain adaptation in order to

analyse the results. A number of questions are raised, some of which are answered

with the help of the theory and others are presented as open questions for future

work. To the best of our knowledge this is the first work that puts steganalysis in the

framework of domain adaptation, its theory and its simplest algorithmic solutions.

1.4 Dissertation plan

The remainder of this thesis is organised as follows. Chapters 2 to 4 are designed

to provide a detailed description, as well as any necessary background including

literature reviews, for the tools used in our experiments: steganographic embedding

algorithms, steganalysis features and binary classifiers. Chapters 5, 6 and 7 in turn

introduce our experimental methodology, our experiments and their results and the

detailed analysis using theory. In more detail they are:

Chapter 2

Chapter 2 is about JPEG steganography. It starts with an introduction to

the JPEG image format. One section is devoted to the necessary details of

the components of a typical JPEG steganography scheme. A brief literature

9



CHAPTER 1. INTRODUCTION

review of di↵erent algorithms follows. Finally, we provide details of the nsF5

and PQ steganography schemes which are used in our experiments.

Chapter 3

This chapter provides the background for steganalysis features. We first give

an overview of the common characteristics of steganalysis feature sets and the

challenges that exist in their design. A brief literature review follows. We

conclude with a detailed description of the CC-C300 feature set which is used

in our experiments.

Chapter 4

A description of each of the classifiers used in our experiments is given in this

chapter. It proposes to test classifiers that have not previously been considered

for steganalysis, in particular the Average Perceptron, linear Support Vector

Machine and an online ensemble classifier. Chapter 4 also discusses their

potential advantages.

Chapter 5

Experimental design is the main subject of this chapter. It includes the details

of the data and how it allows us to create multiple distinct models of the

steganalysis problem, including the laboratory conditions, in which we measure

the performance of classifiers trained on matched as well as mismatched data,

and the more realistic conditions, in which a large amount of mismatched

data is made available for training. It also provides an in-depth look at our

experimental methodology including the metrics used to assess the classifiers’

performance.

Chapter 6

Our experiments and their results are presented in this chapter. Experiment 1

replicates the laboratory conditions studied in most steganalysis work to date.

The trained classifiers are evaluated on mismatched testing data in Experiment

2. Experiment 3 proposes a new approach to training a steganalysis detector:

the classifiers are trained from as large and varied selection of images as pos-

sible. We discuss the clear advantages of approach in Experiment 3 compared

10



CHAPTER 1. INTRODUCTION

to the approach in Experiment 2 and point out its deficiencies compared to

the idealised conditions of Experiment 1.

Chapter 7

This chapter puts steganalysis in the framework of theoretical machine learn-

ing, specifically comparing the regular training to domain adaptation based

settings. With the help of recent advancements in statistical learning the-

ory, in particular those that extend it to domain adaptation, we provide an

analysis of our experimental results. Several key findings are made here and

their consequences to steganalysis explained. This chapter raises many open

questions.

Chapter 8

The final chapter summarises the key findings and contributions of this thesis

to the field, as well as providing the necessary critique and limitations. Several

questions open for future work are discussed.

11



Chapter 2

Steganography in JPEG files

Two steganography algorithms were chosen for this study, namely no-shrinkage F5

(nsF5) and Perturbed Quantisation (PQ). As our aim is to evaluate detectors perfor-

mance rather than intrinsic properties of the chosen algorithms, such as embedding

e�ciency or optimality of distortion function, we are able to, without the loss of

generality, simplify our experiments by implementing fast simulations of the two

algorithms. We start this chapter with the necessary introduction to the JPEG

image format, including the compression algorithm, as this will be required for our

simulation of PQ. Section 2.3 provides the necessary details of the components of a

typical JPEG steganography scheme. A brief review of image-based steganography

is given is Section 2.5. This is followed by Sections 2.6.1 and 2.6.2 which provide

details of nsF5 and PQ steganography schemes which we use in our experiments.

The chapter concludes with a brief analysis of the properties of the two algorithms.

2.1 Structure of JPEG files

JPEG [116] is a popular lossy image-compression standard and is by far the most

common format for storing digital images. The lossy compression, which leads to

smaller file sizes, is achieved by approximating images based on the human per-

ception of visual information. The idea is to preserve only perceptually important

content. In practice this means that, for example, brightness is taken as being more

important than colour and low spatial frequency as more important than high spa-

tial frequency. The less important content is approximated or lost through the lossy

12
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steps of downsampling and quantisation. The amount of compression, and as such

the quality of approximation, is specified by the user through the quality factor pa-

rameter f .

Figure 2.1: JPEG compression algorithm illustrated. Copied from [65].

JPEG images consist of a header, which carries the metadata about the image

(e.g. its size and quantisation table), and a losslessly compressed stream of quan-

tised discrete cosine transform (DCT) coe�cients. In outline, the JPEG compression

algorithm performs the following sequence of steps to arrive at the final stream of

data as shown in Figure 2.1:

(1) Colour space transformation linearly transforms each pixel of the original un-

compressed image from the RGB (or grayscale) colour model into the Y C
b

C
r

colour model (if needed)1. This is a linear transform. Y is the luminance com-

ponent and C
b

and C
r

are the blue and red chrominance components. The

three components are then processed separately.

(2) Spatial downsampling: the C
b

and C
r

components are taken at lower resolution

(typically 2 to 1 in both horizontal and vertical directions).

1There are di↵erent ways of encoding information about colour: RGB and Y C

b

C

r

are two well-
known models.
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(3) Discrete cosine transform (DCT) is applied to individual 8-by-8 blocks of pixels

with padding if necessary.

(4) Each block undergoes quantisation using an 8-by-8 table of quantisation coef-

ficients with rounding to integers.

(5) Lossless compression using the Hu↵man coding.

In steganography we are particularly interested in step (4). Quantisation is a lossy

operation and therefore the steganographic embedding changes are naturally made to

the transformed data, i.e. the quantised DCT coe�cients2. We will be using JPEGs

for simulating steganographic embedding using di↵erent algorithms and thus a short

description of DCT transform and quantisation is given below.

The Discrete Cosine Transform (DCT) is a major step in the JPEG compression

algorithm and is used to transform blocks of an image from the spatial domain (pixel

colour values) to the frequency domain (DCT coe�cients). We can visualise this

procedure by looking at the inverse of this operation (IDCT). For a given 8-by-8

block of DCT coe�cients C we can retrieve its corresponding block of pixel values

B using the IDCT transform, which takes the form of a linear combination of DCT

basis vectors Auv multiplied by the respective DCT coe�cients c
uv

2 C (adapted

from [56]):

B =
8X

u=1

8X

v=1

c
uv

Auv .

The elements auv

ij

for i, j 2 [1..8] of each basis block Auv for u, v 2 [1..8] are given

by (adapted from [56]):

auv

ij

=
c
u

c
v

8
cos

✓
⇡

8

✓
i +

1

2

◆
u

◆
cos

✓
⇡

8

✓
j +

1

2

◆
v

◆
,

where c
0

=
p

2 and c
n

= 1 for all n 6= 0. Selected basis blocks Auv are shown in

Figure 2.2. The coe�cients which are closer to the top left corner of a block are

the low frequency coe�cients, and the bottom right corner are the high frequency

2Otherwise a level of redundancy must be introduced to account for errors (e.g. see Yet Another
Steganography Scheme [110]), which goes in tension with one of the main principles of steganography
- minimum distortion.
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v

u

j

i · · ·

· · ·

...
...

. . .
...

· · ·

Figure 2.2: Selected DCT basis blocks for inverse DCT transform.

coe�cients, likewise basis blocks with low indices correspond to low frequency and

block with high indices to high frequency.

Quantisation is the process of rounding often real-valued DCT coe�cients c
ij

to

the nearest integer q
ij

where q
ij

is called the quantisation step and can be di↵erent

for di↵erent coe�cients based on their position (indexed by (i, j), sometimes called

mode) in the DCT-block. Larger q
ij

values result in harsher quantisation and hence

larger information loss. An 8-by-8 table of qs is called the quantisation table Q
f

for

some fixed quality factor f 2 [1..100] and is unique to each of the three components

(Y C
b

C
r

) of an image. The direction of rounding may vary between di↵erent JPEG

compression libraries.

Two example luminance (Y component) quantisation tables Q
f

for quality factors

f = 85 and f = 70 are shown in Figure 2.3. The standard quantisation tables like

these are calculated by a formula from the base table for quality factor 50 and are

15
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0

BBBBBBBBBB@

5 3 3 5 7 12 15 18
4 4 4 6 8 17 18 17
4 4 5 7 12 17 21 17
4 5 7 9 15 26 24 19
5 7 11 17 20 33 31 23
7 11 17 19 24 31 34 28
15 19 23 26 31 36 36 30
22 28 29 29 34 30 31 30

1

CCCCCCCCCCA

(a) f = 85

0

BBBBBBBBBB@

10 7 6 10 14 24 31 37
7 7 8 11 16 35 36 33
8 8 10 14 24 34 41 34
8 10 13 17 31 52 48 37
11 13 22 34 41 65 62 46
14 21 33 38 49 62 68 55
29 38 47 52 62 73 72 61
43 55 57 59 67 60 62 59

1

CCCCCCCCCCA

(b) f = 70

Figure 2.3: Quantisation tables for quality factors 85 (left) and 70 (right)

obtained using the following approximating equation3 [35]:

Q
f

=


Q

50

100� f

50

�
, where Q

50

=

0

BBBBBBBBBB@

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

1

CCCCCCCCCCA

(2.1)

This equation reveals an important relationship between quantisation tables of dif-

ferent quality factors, which is exploited by some steganography algorithms such as

Perturbed Quantisation which we study later. In particular, we can observe that in

Figure 2.3 many of the values of quantisation factors in (b) are a factor (of 2) away

from the values in (a). This property is true for many pairs of quantisation tables,

including all pairs whose quality factors satisfy:

f 0 = 2(f � 50), s.t. f and f 0 2 Z+. (2.2)

It is possible to define custom quantisation tables for JPEG compression. We will

see that calculating them using Equation (2.1), which gives similar but not exactly

the standard JPEG quantisation tables for a fixed quality factor f , will prove to

be particularly useful for steganography. The custom and the standard quantisa-

tion tables would produce very similar images. We use this idea in Section 2.6.2.

3The brackets [ ] in this equation mean integer rounding.
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For simplicity we assume working in luminance (Y ) component only, however all

arguments can be extended to other components in a straightforward manner.

2.2 Usable cover size, embedding rate, e�ciency and
capacity

Before we discuss JPEG steganography in detail we first need to formalise some

concepts of embedding measures that are common to spatial- and JPEG-domain

algorithms. We start with the notion of cover size, which is equal to the total

number of pixels in a spatial-domain cover or the total number of non-zero DCT

coe�cients in a JPEG cover. We define usable cover size as the total number of

elements (pixels or DCT coe�cients) in an image which are eligible for embedding

under the embedding operation of a given steganography algorithm. Embedding

e�ciency is defined as the average number of message bits embedded per one change

to the cover. Capacity is the maximum payload length that can be embedded using

a given steganography algorithm into a given cover expressed as a proportion of the

cover size. Embedding rate is the proportion of capacity used for embedding:

true embedding rate = e�ciency⇥ change rate⇥ usable cover size

cover size
. (2.3)

Throughout this thesis we will use the term “embedding rate” to refer to the quan-

tity:

“embedding rate” = e�ciency⇥ change rate . (2.4)

This allows us to reason about what proportion of the usable cover size was used

for embedding in each case.

2.3 Components of a steganography algorithm

One can di↵erentiate several components of an embedding algorithm: the coding

procedure, the distortion function and the embedding operation. A high-level di-

agram is shown in Figure 2.4. In this thesis we study how steganography changes

the quantised coe�cients. We therefore abstract away everything related to the

message - in our simulation the three components reduce to the embedding opera-

tion only. We note however that this level of simplification can only be achieved
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for non-adaptive embedding schemes or weakly-adaptive schemes (see Section 2.5)

where the distortion function is part of the embedding operation.

EmbeddingCover
objects

c
i

Secret
messages Coding

Distortion
function

k
i

c
i

c0
i

m
i

Alice’s domain

Figure 1: Schematic diagram of the three components of a steganography algorithm: coding
procedure, distortion function and embedding operation.

1

Figure 2.4: Schematic diagram of the three components of a steganography algo-
rithm: coding procedure, distortion function and embedding operation.

2.3.1 Coding procedure

A coding procedure is usually used for one or more of the following purposes:

a) As a workaround for the non-shared selection channel problem.4

b) To increase the embedding e�ciency, which means that fewer embedding changes

of the same magnitude5 are required to embed a given payload.

c) More generally to minimise some expected distortion.

It takes into account the arrangement of LSBs in some predefined locality in con-

junction with the values of several message symbols at a time in order to find the

minimum number of embedding changes required to encode those symbols into that

locality. Examples of a) include Wet Paper Codes [32], examples of b) include

Hamming codes [113] and examples of c) include Syndrome Trellis Codes [30].

4This occurs in some embedding operations such as the F5, when the receiver has only partial
knowledge of the location of the payload.

5By magnitude here we mean the average number of bits changed per one embedded symbol.
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2.3.2 Distortion function

Distortion function measures the cost of embedding and is used by adaptive em-

bedding algorithms as side-information to position the embedding changes into the

low-cost high-complexity areas of the image6. Di↵erent distortion functions may

choose di↵erent embedding paths. Early examples simply counted the number of

embedding changes (see Modified Matrix Encoding (MMx) [64]). All current distor-

tion functions, such as Highly Undetectable Steganography (HUGO) [95], Uniform

Embedding Distortion (UED) [45] and Universal Wavelet Relative Distortion (UNI-

WARD) [50] have di↵erent costs associated with di↵erent possible changes. These

functions are additive which means they can be e↵ectively minimised. Studying

distortion functions is outside of the scope of this thesis and we refer the reader to

the relevant references for more information.

2.3.3 Embedding operation

The embedding operation is the most low level part of the algorithm that deals

with how the cover elements are changed. It is used to perform embedding changes

at locations predetermined by the shared selection channel from the collection of

locations allowed by the distortion function. In JPEG images it has a secondary

function of preserving the undetectability property of the stego system, in particular

to avoid visual detection. Many JPEG embedding operations include heuristics

which are based on our knowledge of the JPEG format. These heuristics are designed

to ensure that obvious visual artefacts are not introduced into the image. The most

common heuristics specific to the JPEG stego system are:

a) The absolute value of a DCT coe�cient should never be increased [68]. The

need for this stems from the fact that changing one JPEG coe�cient a↵ects

its block of 8-by-8 pixels. Furthermore some coe�cients (higher frequency) are

quantised harsher than others, therefore changing low frequency coe�cients. In

practice this means that a one bit increase in the value of a high-frequency

coe�cient caused by an embedding operation such as LSB-replacement will be

multiplied by a large relative value of the quantisation factor and as such have

6The assumption here is that such areas are harder to model.
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a disproportionate contribution to the Y CbCr values of the corresponding block

after the inverse DCT transform.

b) Avoid recompression as it may introduce visual and statistical artefacts, which

might not be present in the original domain of the sender [67]. Visual artefacts

common to JPEG compression include blockiness, colour distortion, ringing and

blurring.

c) If compression is performed during embedding, the algorithm must match that

of the covers [42].

These are just a few examples that may lead to a violation of statistical and visible

structures found in JPEG images.

State-of-the-art steganography schemes encompass all three of the above compo-

nents however the distortion function requires side information. Side information

usually means the knowledge of the original uncompressed image (often called pre-

cover) which may or may not be a feasible assumption in the real-world scenario. In

this dissertation we will focus on those JPEG steganography schemes that do not

require the knowledge of the uncompressed image. Because JPEG is a lossy com-

pression algorithm, the steganographic embedding changes must be applied after all

the stages of the algorithm where the information is lost - the embedding changes

will not persist otherwise. The next section introduces all steps of the JPEG com-

pression algorithm and their outputs, paying special attention to those steps where

the embedding can be made.

2.4 Aims of JPEG steganography design

Just like with steganography in spatial-domain images most JPEG-domain algo-

rithms aim for increased security based on some collection of heuristics. The heuris-

tics can include one of the following (alongside examples of their associated algo-

rithms; for more details of these algorithms see Section 2.5):

• Resist existing steganalysis attacks (e.g. LSB-matching (avoids the parity struc-

ture in the histogram), OutGuess (preserves first-order features))
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• Minimise the number of changes (F5, nsF5)

• Minimise a more general distortion function7 (any adaptive embedding tech-

nique which requires original never-compressed image, e.g. HUGO)

• Emulate natural randomness of the operations underlying the JPEG compres-

sion algorithm (PQ)

2.5 Literature review of steganography algorithms

We continue with a brief review of literature on image-based steganography. Look-

ing back at the development of algorithms for steganography one might notice that

only a few of them introduced new embedding operations. Other algorithms utilise

those embedding operations and extend them to improve e�ciency or security or

both through the use of coding and distortion functions.

Whilst it is unclear when or how the Least Significant Bit replacement (LSB-r)

came in to existence, the consensus is that it is probably the first steganography

method for digital images. It is a simple spatial-domain algorithm that can be sum-

marised by its embedding operation (or an 80-character-long Perl code [53]), which

works by overwriting the least significant bits of image pixels with the message en-

coded in binary. Several variants of this algorithm exist that improve its e�ciency

by coding the message using ternary or any more general q-ary symbols and em-

bedding each symbol in two or more least significant bits. A related algorithm is

LSB-matching (LSB-m) [107] which improves the security of LSB-r by defining a

new embedding operation which, if change is required, increases or decreases pixels

at random instead of simply overwriting their LSBs.

To make these types of algorithms compatible with the JPEG image format a modifi-

cation was proposed, called JSteg [112]. Due to the nature of what JPEG coe�cients

represent compared to the normal image pixels, an algorithm that blindly (regardless

of the complexity of the local content) overwrites LSBs with message bits inevitably

7Minimising number of changes can also be viewed as a distortion function. More general
distortion functions minimise the total cost, where each change has non-trivial cost.
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increases the absolute values of low-frequency coe�cients which results in visible

artefacts (appearing as an 8-by-8 checkerboard pattern) in flat low-complexity areas

of an image such as the sky. The algorithm for JSteg addresses the problem by

simply avoiding embedding into the coe�cients with values -1, 0 or 1.

Several other algorithms used LSB-replacement operations. For example, OutGuess

[98] was designed to resist early steganalysis attacks which used first-order statistics.

It keeps track of all unmodified coe�cients and uses them to restore the histogram of

the original image after the message was embedded. It was shown to be detectable

by steganalysis features based on second- or higher-order statistics.

Other embedding operations were also proposed. The F5’s [118] embedding op-

eration, which was later shown to be empirically optimal for JPEG images [68],

only allows changes that decrease the absolute values of image coe�cients. Non-

shrinkage F5 (nsF5) [41], an improved version of the F5 algorithm which uses the

same embedding operation established itself as one of the most widely studied in

JPEG steganalysis research and we use it in this thesis and discuss it in more detail

in Section 2.6.1 of this chapter.

Other algorithms proposing alternative embedding operations were YASS [110] and

Steghide [48]. YASS was designed to make embedding changes in spatial or wavelet

domains in such a manner that they are preserved after subsequent compression

into, say, JPEG. It was shown that the necessary robustness was a major drawback

leading to easy detection given the right features [74]. StegHide introduced a graph-

theoretic algorithm for exchanging the values of two or more “adjacent” pixels. It

also proved to be easily detectable.

It has been shown that the ranking of non-adaptive JPEG algorithms is [61]:

nsF5 > F5 > StegHide > OutGuess > Jsteg

So far all examples we considered assumed uniform cost of embedding changes (apart

from the restricted elements like -1, 0 and 1 in StegHide which had infinite cost). A
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major advancement came with the introduction of side-informed embedding using

the notion of distortion functions. Most modern algorithms such as Highly Un-

detectable Steganography (HUGO) [95], Wavelet Obtained Weights (WOW) [49],

Universal Wavelet Relative Distortion (UNIWARD) [50], Perturbed Quantisation

(PQ) [33] and others were designed to exploit properties of their respective embed-

ding domain through the use of side-information. They are capable of choosing

where the embedding changes are made based on the content of the image which is

found from a pre-cover. In spatial-domain the pre-cover can be the original uncom-

pressed image itself, whilst in JPEG-domain they can be either a never-compressed

image or a higher-quality JPEG that was used to produce the cover JPEG (in the

latter case resulting in a lower quality stego image also in JPEG format). Adaptive

embedding is considered to be more secure, which has so far been supported by

empirical evidence.

An argument is yet to be made about the practicality of adaptive schemes which use

never-compressed images as pre-covers and only select adaptive schemes are capable

of embedding using JPEGs as pre-covers. PQ is one of them and is used in our

experiments. Other examples that are also capable of side-informed embedding into

JPEGs are BCHOpt [104] and SI-UNIWARD [50].

2.6 Steganography techniques for this study

It has been shown that non-adaptive embedding algorithms are not very secure given

the current steganalysis features. On the other hand it can be argued that adap-

tive algorithms, especially those that use never-compressed images as pre-covers,

are not very realistic. Furthermore as a major part of this thesis is based around

a large database of JPEG images we are not able to use spatial domain techniques

for two reasons. First, decompressed JPEGs are only approximations of natural

images - using them as pre-covers in place of never-compressed natural images may

lead to rather biased experimental results8. Second, obtaining circa 2 million never-

8This depends on the quality factor of the given JPEG in the first place. Images in our database
have quality factor of 85 which means they are likely to exhibit statistical artefacts in the spatial-
domain and lead to the aforementioned problem.
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compressed spatial-domain images is infeasible in most circumstances.

In this thesis we chose to work with two steganography algorithms, one from each

group. nsF5 and PQ are two well-established examples from the research literature.

They are perhaps the simplest algorithms in their respective groups (non-adaptive

and adaptive schemes) that are not obviously flawed unlike, for example, StegHide or

YASS. At the time of writing there exist more modern examples which are claimed

to be more secure, but they were not introduced until our experiments for this thesis

were well under way.

Our aim is to study steganography from the point of view of its e↵ects on steganal-

ysis features. We can therefore focus our attention on the embedding operation

and simulate the steganography algorithm by implementing only the functionality

necessary to its embedding operation. We abstract away everything that is related

to the message which means that any intrinsic properties of the steganography al-

gorithm such as embedding e�ciency or optimality of the distortion function are

deliberately not taken into account, allowing us to achieve computational e�ciency.

We use pseudorandom streams of bits as simulated messages.

This section provides a detailed description of nsF5 and PQ and our simulated

implementations of their embedding operations.

2.6.1 Non-shrinkage F5

Non-shrinkage F5 (nsF5) is a more secure version of the F5 steganography algorithm

and uses F5’s embedding operation. The F5 algorithm was first introduced by

Westfeld in [118]. Its embedding operation is straightforward: each message bit

is embedded into one of any non-zero DCT coe�cients of the cover image which

have not yet been visited by either reducing its absolute value by one or leaving

it unchanged if they match. The locations for the payload are chosen according

to a shared selection channel (e.g. they are defined simply by a key used as a seed

to pseudorandom number generator) and all zero-valued coe�cients are skipped.

There is a slight complication to the F5 algorithm, which is called the “shrinkage”:
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in the event when the DCT coe�cient has the value -1 or 1 it will be changed to

zero and must be re-embedded. This “shrinkage” can be easily detected by modern

steganalysis schemes. It was later resolved in the non-shrinkage F5 (nsF5) algorithm,

which avoids re-embedding by the means of Wet Paper Codes [32]. The nsF5 is one

of the most studied algorithms in steganalysis research due to its superior security

compared to other schemes and empirically optimal embedding operation [68].

Algorithm 1 Simulated non-shrinkage F5

1: procedure (simulated) nsF5
2: S  all non-zero coe�cients c

i

of image I
3: repeat
4: choose c

i

from S at random without replacement
5: if change then . with probability of 0.5.
6: c

i

= (|c
i

|� 1)⇥ sgn(c
i

)
7: end if
8: until reached the length of payload
9: end procedure

Our simulation

Our simulation of the nsF5 algorithms follows from the above description and is

shown in Algorithm 1. We assume that a typical message consists of independent and

identically distributed random bits. All non-zero valued coe�cients are contributing

coe�cients. From those we choose p⇥100% of them at random to match the desired

embedding rate p. These are then used to embed a random payload according to

the F5’s embedding operation.

Embedding rate

In this simple version of the nsF5 algorithm the embedding rate (as per Equation

2.4) is equal to the true embedding rate because all non-zero coe�cients can be

used for embedding and the usable cover size and the cover size are the equal. We

will therefore measure nsF5’s embedding rate in bits per non-zero DCT coe�cient.

In sPQ the true embedding rate will be di↵erent as the usable cover size is almost

always smaller than the cover size. We measure the embedding rate for sPQ in bits

per usable DCT coe�cient (bpuc).
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2.6.2 Perturbed Quantization

In nsF5 the minimum impact of a change is 1 as we decrease the absolute value of

DCT coe�cient by 1. PQ goes one step further with expected minimum impact of

change being 0.5. To achieve this PQ requires side information and is therefore an

instance of a content adaptive steganography algorithm. Its aim is to minimise the

intrusiveness of embedding changes by perturbing the normal process of rounding

which is a customary part of the JPEG’s quantisation step (step (4), Section 2.1).

Two working modes can be di↵erentiated. In the first mode PQ requires an orig-

inal uncompressed (or lossless-format) image to calculate the side information. In

the second, it uses an existing JPEG image for side-information and re-compresses

it with a lower quality factor. Both variants produce a JPEG as an output stego

image. Here we discuss the second but both modes follow a very similar algorithm.

For any two given quantisation tables Q and Q0 one can find all DCT modes9 which

satisfy the following equation [33]:

kq
i

= lq0
i

+
q0
i

2
; s.t. k, l 2 Z and

q0
i

g
is even , (2.5)

where q0
i

and q
i

are quantisation steps at position i of tables Q and Q0 respectively

and g is the greatest common divisor of q0
i

and q
i

. For any image I with quantisation

table Q and its re-compressed version I 0 with quantisation table Q0 all pairs of DCT

coe�cients modes q
i

, q0
i

satisfying the above equation are called contributing pairs.

During re-compression every odd coe�cient which appears in a contributing mode

will be rounded10 at quantisation with the rounding error of exactly 0.5. Di↵er-

ent JPEG compression algorithms may perform rounding in di↵erent “directions”.

To embed into this position we simply choose the rounding direction such that the

value of the least significant bit of the resulting (re-)quantised coe�cient matches

the required message bit. If the compression algorithm’s rounding process was not

deterministic, the expected impact of a change would be 0.5.

9We refer to each position in an 8-by-8 block as mode.
10Quantised coe�cients are rounded to integers as discussed in step (4) of Section 2.1.
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If we restrict our selection to only coe�cients in the contributing modes we en-

force a binary distortion function, in which a fixed cost is assigned to embedding

into these coe�cients and an infinite cost is assigned to any other change. A more

general cost function would assign cost inversely proportional to the rounding error

e 2 [0, 0.5] [50].

Because it is coe�cients c0
i

of the re-compressed image I 0 that get changed, we

treat I 0 as the true cover object. The capacity of I 0 grows with the proportion of

contributing modes to non-contributing modes. We can maximise the number of

contributing modes to 64 (i.e. all of them) by enforcing a custom quantisation table

during re-compression. This can be achieved by setting11:

Q0 = 2⇥Q (2.6)

Under these conditions, the rounding step of the JPEG compression algorithm by

design has the desired e↵ect on the coe�cients c0
i

as given in the Equation (2.5).

When comparing the coe�cients of the cover image I 0 to the coe�cient of the original

image I, we can observe the following relationship in most cases :

c0
i

=

8
>><

>>:

c
i

2
if c

i

is even

c
i

2
± 0.5 if c

i

is odd

(2.7)

It simply follows that we can embed into any odd coe�cient c
i

unless its correspond-

ing coe�cient c0
i

in the cover image is di↵erent from
c
i

2
by over 0.5, which happens

on rare occasions due to another e↵ect that we describe below.

In practice not all (c
i

, c0
i

) pairs have this relationship; we observed some c0
i

which

have a larger absolute value than original c
i

. By checking the di↵erence between the

expected values and the true values of coe�cients in the re-compressed image using:

d = |(c
i

�2⇥c0
i

)| we find that d can be as large as 4 instead of the obvious maximum

of 1. Approximately 0.03% of coe�cients (or 0.075 of all non-zero coe�cients) do

11One can also set Q’ = 2 x k x Q for any integer k but this will decrease the number of non-
zero-valued coe�cients.
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not result in the expected value. It means that even when sequentially performing

the decompression and re-compression procedures using standard JPEG algorithms

with exactly the same quantisation tables it may not result in exactly the stream of

coe�cients in the output image.

This is due to re-compression, which involves two operations: decompression to

spatial-domain followed by a JPEG compression using the new quality factor. Even

if the same quality factor is used for the original JPEG and for the new re-compressed

image this turns out not to be an identity function. It can be explained by taking

a closer look at some of the individual operations which take place during this pro-

cedure. In particular, truncation of the values to the [0, 255] range after the inverse

DCT, rounding to integers and, in the case of colour images, the downsampling of

chrominance components may all be partially responsible for this e↵ect. We leave

this issue to further investigation as it does not directly a↵ect our simulation of this

steganography scheme. Because it is only a small number of coe�cients that are

a↵ected by this, we assign infinite cost to them which means they are dismissed from

being part of the contributing coe�cients list.

Implementation

There exists an implementation of this algorithm due to Kodovsky [66], but we

propose a simulation of it which focuses only on PQ’s embedding changes and leaves

the coding strategy out for the reasons of computational e�ciency, as it is essential

to our experimental strategy.

Our simulation

Our algorithm, the simulated PQ, will be based on the idea introduced in Equation

(2.6). Let f be the quality factor of the original JPEG images. Then we are looking

for another quality factor f 0 such that the set of coe�cients that follow the relation-

ship in equation (2.7) is maximised. For example, the JPEG images used for our

experiments have quality factor f = 85. Following the argument from the previous

section, we know that f 0 ⇠ 70 would yield the maximum number of contributing

coe�cient modes. However in practice using the standard JPEG quantisation table
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for quality factor 70 will yield only 44 out of 64 modes as contributing when images

are re-compressed from the quality factor 85. According to Equation (2.7) not every

DCT coe�cient which is located in a contributing mode has the potential to carry

a payload, only those coe�cients with odd values in I.

This is why a self-defined quantisation table, such as Q0 = 2 ⇥ Q will be a better

option - the embedding changes will not be focused to a specific portion of modes

and as such our simulation in this case will be more conservative. With this quan-

tisation table 64 out of 64 modes are contributing modes and every odd coe�cient

in such mode is eligible for embedding12. As such all images in our data sets can be

embedded with a non-negligible payload at a given embedding rate. Then, we find

all possible embedding locations in an image and, as before, use a random selection

of p⇥ 100% of them for embedding a random payload.

Algorithm 2 summarises the simulation of PQ’s embedding changes. Let I be the

original JPEG image compressed with quantisation table Q and I 0 be its PQ cover

image with quantisation table Q0. Let M be the set of all modes which satisfy Equa-

tion (2.7). If Q0 = 2⇥Q then |M | = 64. Put all odd coe�cients c
i

of I in modes M

into set S (contributing coe�cients). Randomly select p ⇥ |S| of those coe�cients

for embedding. For each coe�cient in the selection: if c
i

and c0
i

satisfy the Equation

(2.7) then set c0
i

= c
i

+ 0.5 or c0
i

= c
i

� 0.5 at random with probability 0.5.

Embedding rate

Unlike our implementation of nsF5, in this simulated PQ algorithm the true embed-

ding rate will be di↵erent to our definition of embedding rate from Equation 2.4 as

usable cover size here is almost always smaller than the cover size. sPQ’s embedding

rate is therefore measured in bits per usable DCT coe�cient (bpuc).

12According to Equation (2.7) if q0
i

6= 2 ⇥ q and the equality (2.5) still holds then not all odd

coe�cient values are contributing but only the ones that can be found by c

0 = (2c + 1)
q

0
i

2g
for all

c

i

2 Z.
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Algorithm 2 Simulated Perturbed Quantisation

Require: I - the original JPEG image with quantisation table Q

1: procedure (simulated) PQ
2: Set Q0 = 2⇥Q
3: I 0  image I recompressed with Q0

4: S  indices of all odd coe�cients c of image I
5: repeat
6: Choose i from S at random without replacement
7: if c

i

2 I and c0
i

2 I 0 satisfy equation (2.7) then
8: Set c0

i

= c
i

+ 0.5 or c0
i

= c
i

� 0.5 . with probability of 0.5.
9: end if

10: until reached the length of payload
11: end procedure

In practice, images such as shown in Figure 2.5 (b) have higher capacity than images

such as in Figure 2.5 (a).

(a) (b)

Figure 2.5: Example images for two extremes of PQ capacity from the Facebook
data set: minimum (left) and maximum (right).
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Risk of JPEG compression library leak

It is known that a classifier’s accuracy in an experimental environment can be ar-

tificially boosted by di↵erence in the compression libraries that were used to create

cover and stego images [67]. In the case of sPQ this is not an issue because we

are forced to re-compress to a lower quality factor to create both cover and stego

images from a given precover for training and therefore the e↵ects of the JPEG

compression library will be the same for both classes. It is true, however, that if one

was to inspect images created by such an algorithm in practice, the non-standard

quantisation table, which can be found from the JPEG headers or estimated, may

itself serve as a leak and be treated as a warning sign that the image may have been

tampered with using steganographic embedding.

In the case of nsF5 no re-compression is performed because we are altering already

quantised coe�cients and therefore no library leak will occur. This can be easily

checked by performing a zero-operation embedding (i.e. just rewriting all DCTs with

their original values) and comparing the output file to the original.

We therefore conclude that there should be no risk of boosting the classifier per-

formance through detecting the di↵erences in JPEG compression in addition to the

di↵erences in presence or absence of a stego payload.

Any residual e↵ects of the original JPEG library used at image creation (and in

some cases perhaps two or more JPEG libraries if the social networking website

re-compressed the images) should be erased.

2.6.3 Usage in experiments

In our experiments we focus on the two embedding schemes which were covered in

detail above: the nsF5 embedding scheme [41] and the PQ embedding scheme. In all

experiments we are using simulated versions of their embedding operations (labelled

“nsF5” and “sPQ”) with two embedding rates each: 0.05 and 0.1 bpnc, and 0.2 and

0.4 bpuc respectively. We chose these rates because they gave the most meaningful

detection figures in our preliminary experiments. If the accuracy is too high or
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too low, then the observed di↵erence in the detection rates may be dominated by

the noise introduced by embedding of random payloads and other factors a↵ecting

estimation (see Section 5.3.3 for more details) instead of the true di↵erences in image

sources.
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Chapter 3

Features

Features engineering is the main area of research in steganalysis. In this chapter

we first give an overview of the common characteristics of steganalysis feature sets,

followed by brief literature review. We conclude with a detailed description of the

CC-C300 feature set which was adapted for experiments in this thesis.

3.1 Introduction

Early steganalysis detectors were targeted to specific steganography algorithms and

were derived analytically from an elaborate analysis of statistical artefacts intro-

duced by early steganography schemes. They were often based on a single discrim-

inating statistic, which was a function of images or their transforms taking certain

values in the case of stego images, and other values in the case of innocent cover

images [56]. An example of such a targeted attack was the Sample Pairs detector

[54] which was based on known flaws of LSB-replacement steganography algorithm -

the symmetry that it introduced into the histogram of pixel values. Many detectors

in this style have been proposed, including but not limited to Sample Pairs Analysis

(SPA) and its generalisations [54], Weighted Stego-image analysis (WS) [15] and the

Chi-square attack [119]. In rare occasions, e.g. LSB-replacement, they remain to be

state-of-the-art, because the weakness they exploit is so prominent.

A di↵erent approach is to use a collection of more general statistics, called features,

and to train a machine learning classifier to distinguish the features corresponding
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to cover and stego classes respectively. In practice features may take di↵erent forms

- from image quality metrics to unions of second-order statistics of DCT coe�cients

appearing in specific pairs of modes. By construction, such features are more general

in scope than the features used in targeted steganalysis and can therefore be used

to detect one of many di↵erent steganography algorithms. In the majority of the

research literature that uses this approach the modus operandi is to train a binary

classifier using a set of examples represented as features, with each example corre-

sponding to one of the two classes - typically cover and a class of images embedded

with a specific (known) steganography algorithm, fixed payload and other control

variables that comprise a source as discussed1 in Chapter 1.

Naturally, features for spatial-domain and JPEG-domain images di↵er although it

has been shown that combinations of features from both domains tend to improve

classifiers’ accuracy in JPEGs [74, 71].

Features should provide as full a statistical description of the cover objects as pos-

sible [58]. However it has been argued that features that perfectly model the cover

objects from one source do not exist [15]. On the other hand it has also been shown

that capturing a wider variety of di↵erent statistics allows us to build highly accu-

rate detectors. Ultimately the aim of features engineering is to find the best possible

separation between classes, however as we show this may not be enough for practical

steganalysis of real-world sources.

3.2 Main concepts

Given a mapping (feature extraction) function �, an image I from source � is

mapped to a d-dimensional feature vector x 2 Rd. The dimensionality d is inde-

pendent of the size of I. One of the reasons steganalysis is di�cult is because the

embedding changes are very small in their magnitude, and their count, compared

to the image content. For this reason for many feature sets the mapping � oper-

1We will continue this discussion throughout this thesis.
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ates not on the image itself but on its transform2. Several transformations can be

used to improve the signal-to-noise ratio between the stego signal and the content

noise which aids the separation between classes. They are filtering and Cartesian

calibration and are discussed in more detail in the next sections.

3.2.1 Filtering

In the JPEG domain, the features are calculated either directly from quantised

coe�cients or from their residuals after simple directional filtering. An example of

a horizontal (x-axis) filtering used in many feature sets including Subtractive Pixel

Adjacency Matrix (SPAM) [94] and JPEG Rich Model (JRM) [71] is the following

simple kernel:

K
h

=
⇥
1 �1

⇤

More complex kernels, up to 5-by-5 in size, are used in the spatial-domain. A filtered

image is found by means of convolution between the kernel and the image. In some

instances, mostly in the spatial domain, the resulting filtered image is subtracted

from the original to compute residuals:

X 0 = K ⇤X �X , (3.1)

where ⇤ denotes the convolution operation and X denotes the image. The output

residuals X 0 are then used to compute the necessary features. In the JPEG do-

main, filters are applied to quantised coe�cients and the result of this operation,

the filtered coe�cients, are typically used directly for subsequent computing, unlike

in Equation 3.1 where a di↵erence is taken with the original.

Several modern feature sets employ this technique. For example, the JPEG Rich

Model [73] uses as many as six di↵erent filters for parts of its feature set.

3.2.2 Cartesian calibration

Another technique that is often used in JPEG-domain steganalysis to improve signal-

to-noise ratio is called Cartesian calibration. Cartesian calibration is a popular tech-

nique for improving steganalysis features by providing each feature with a calibrating
2N.B. this is not a classical image transform such as the discrete cosine transform, but a more

general operations such as filtering or cropping; see further text for details.

35



CHAPTER 3. FEATURES

feature calculated from a transformation of the target image. It was originally in-

troduced to steganalysis in [37].

The procedure of calibration is straightforward. Let X 0 be a stego image created

from a cover X. The aim is to create calibrated image X 0
c

such that it is a reference

of the cover X. This can be achieved in the JPEG domain by desynchronising the

DCT blocks which largely deletes the stego noise which was added to X with the

embedding changes when creating X 0. Desynchronisation is often done by applying

small transformations to a decompressed X 0 such as cropping or rotation. One of

the popular transforms for calibrating JPEGs is a horizontal and vertical crop by

4 pixels in both directions. The cropping moves the 8 ⇥ 8 DCT grid out-of-sync

with the content and therefore desynchronises it from the previous compression.

Cropping is performed in the spatial domain, i.e. involving decompression, cropping

transform and subsequent re-compression. Technically we can crop between 1 and

7 pixels (or any multiple thereof if applicable), but 4 is the most commonly used

value, although it has been shown that other values such as 2 can sometimes yield

much better results, e.g. in [67].

Although it has been shown [69] that the features x0
c

= �(X 0
c

) rarely correspond

to features calculated from the original image x = �(X), it has been used in a large

number of publications with positive results. Early works used the di↵erence x� x0
c

as features, but the positive impact of calibration on the accuracy of the detector

was found to be especially pronounced [69] when the reference features extend the

original feature vector calculated from the non-calibrated image therefore increasing

the dimensionality and predictive power of the original feature vector two-fold by

using the union of the two sets of features.

Most modern JPEG-domain feature sets use calibration, which is marked by “CC-”

prefix to their name.
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3.2.3 Histograms, co-occurrences and estimates of conditional prob-
ability mass functions

The feature vector itself typically consists of unions of models which are generally

based around counting statistics such as histograms, co-occurrence matrices or esti-

mates of conditional probability mass functions. Pevny writes [93]: “The rationale

behind [using adjacency histograms] is that neighbouring pixels in digital images are

correlated, which is caused by the smoothness of our world and by the usual image

processing”. These statistics can be calculated either directly from pixels/DCT co-

e�cients or from their residuals after filtering as discussed above.

Let us take the co-occurrence matrix as an example of such a model. It mea-

sures an estimate of the distribution of co-occurring values in a given pair of relative

pixel positions or DCT modes. For a pair of modes X and Y and the set SXY of

all instances of this pair of modes in an image3 I we can define a bin h
ij

of the

co-occurrence matrix h as:

h
ij

=
SXYX

(x,y)

� s.t.

(
� = 1, if i = min(|x|, T )⇥ sgn(x), j = min(|y|, T )⇥ sgn(y)

� = 0, otherwise,
(3.2)

where the size of the co-occurrence matrix is restricted to a small number by a

parameter T , for the reasons of keeping small dimensionality (the number of bins

is (2T + 1)2) and/or keeping the bins well populated. The resulting co-occurrence

matrix is often normalised such that the sum of all bins is 1.

The selection of pairs of modes of interest di↵ers from one features extraction algo-

rithm to another. Some, like the CC-C300 features set, restrict it to a pre-designed

set of pairs, which aims to capture only the most significant dependencies between

two modes. Others use a very dense collection of modes, such as taking all possible

pairs of adjacent modes which appear in the low frequency sub-bands of the DCT

block (the JRM feature set).

3The size of SXY depends on the relative position of the two modes. If they appear in a single
block (intra-block dependency) then this is equal to the number of blocks; otherwise (inter-block
dependency) there may be up to two less blocks per row (or column) that contribute.
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It is straightforward to see how features in this style get costly rapidly in terms

of both the size of the feature set and the time required to compute it. Many

domain-specific heuristics have been devised to keep the dimensionality down. One

was shown in Equation (3.2) as T , which is the truncating parameter that keeps

the size of the co-occurrence matrix small. On the other hand, when T is small,

features are less complete. Other methods exist, including the assumption of sym-

metry about zero that generally holds in the histogram of certain residuals from a

single block , which allows to averaging over the two “sides” of the symmetry [51].

The general aim of using di↵erent co-occurrence matrices (using, for example, dif-

ferent residuals) is to achieve greater diversity of the statistics they capture, which

allows for building richer models of images.

3.3 Challenges in steganalysis data

There exist many challenges in steganalysis feature design. In this section we give

a brief overview based on two major groups: general challenges and those directly

related to cover source mismatch.

3.3.1 General

First, a major challenge for steganalysis that uses machine learning is in the fact

that we are trying to learn from something that is meant to be hidden. The signal

for the positive class is very small in magnitude and length compared to the image

content. Filtering and cartesian calibration are both used to improve signal-to-noise

ratio (stego signal to content noise), which appears to help by increasing overall

accuracy, therefore the progress in this direction is needed.

The second challenge comes with the uncertainty about the positive class. Whilst it

is generally acceptable to assume that the target embedding algorithm and payload

size are known, it is unlikely to be the case in many real-world situations. Several

solutions have been proposed including quantitative steganalysis (regression) to ac-

count for di↵erent sizes of payload [97], one-class [85, 92] and multiclass [92, 80,

amongst others] steganalysis, banks of experts [103] and unsupervised classification
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techniques [60].

Another challenge that has been discovered recently, with the introduction of large

feature sets, concerns the speed of their extraction and their usage in training clas-

sifiers commonly used in steganalysis such as the kernel Support Vector Machine.

The latter has been approached with divide-and-conquer techniques such as ensem-

ble classifiers [70]. In this thesis we go one step further in complexity reduction and

use linear classifiers with their obvious speed advantages, which is desirable, as we

show later, when dealing with real-world data (and can be improved further with

techniques for parallelisation such as Delayed Stochastic Gradient Descent [77] (not

employed in our experiments)).

Finally, there is the challenge of features correlation. No single steganalysis fea-

ture appears to carry significant discriminative information and as such they need

to work together to allow for good performance. Many methods that assume the op-

posite such as feature selection, L1-sparsification and decision-trees-based methods

may not work very well, especially with the more modern feature sets.

3.3.2 From cover source mismatch

Steganalysis features are also known to be very sensitive to the cover source. Several

authors reported the negative e↵ect that this may have on steganalysis [4, 20, 40, 59,

94, 44, 62]. The “source” in this context appears to be defined not only by the image

acquisition scene (content), but also by camera model, image processing operations

and other factors. Some of these have been found to suppress the noise that exists

in digital images (e.g. blurring, denoising, lossy compression) whilst others have no

e↵ect on noise, but may introduce statistical artefacts such as spikes and valleys in

the histogram (e.g. contrast adjustment and gamma correction) [35]. Some of these

a↵ect statistical dependencies between pixels which in turn a↵ects steganalysis fea-

tures.

In steganalysis, it is common to think of image content as “noise” and stegano-

graphic embedding as “signal”. Based on this the features are often said to need
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to be sensitive to steganographic embedding but not to the content (which can be

thought of as a function of the above discussed properties). More precisely they

should suppress the “noise” (content) and increase the signal-to-noise ratio. Despite

filtering and cartesian calibration (which are largely designed to remove the e↵ects

of image content and consequently the dependence on source) as well as some e↵orts

in controlling for external variables such as image size and quality factor the image

content (and hence source due to its intrinsic influence on the content) still has a

strong e↵ect on steganalysis features.

Several authors have studied the e↵ects of individual variables on steganalysis fea-

tures [92, 15, 20, 36, amongst others]. One of the best understood is the e↵ect of

cover size on its capacity (and thus also steganalysis) which was devised to be gov-

erned by the Square Root Law [55]; the capacity of a cover scales with the square

root of its size. Some basic results have been found for other isolated cover proper-

ties. For example in [72] Kodovsky et al. study the e↵ects of di↵erent image resizing

algorithms on detection performance and devise a predictor which is based on the

cover size and the scaling factor and other properties of the resizing algorithm. It

is easy to see how such a predictor can be used to choose a matching detector. The

success of such a framework rests on the assumption that bias introduced by a par-

ticular cover property is predictable and that it is possible to isolate a particular

property responsible for such bias. This may or may not be possible to do for all

properties of covers - as mentioned earlier, covers are known to be one of the most

di�cult parts of steganalysis system to control for.

It was recently proposed [62] that di↵erent sources may have di↵erent centres in

the feature space. A geometric technique for source mismatch correction based on

centering and calibrating for the direction and rate of feature movement under pay-

load was shown to help with overcoming the cover source mismatch problem. This

style correction requires su�cient data from the target source in case of centering or

from a number of cover sources (not necessarily including target) in case of direction

and rate to estimate parameters for the correcting transformations. Its advantage
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is that it does not require the knowledge of bias introduced by individual character-

istics of sources.

Whilst these are very encouraging results, not many results like these exist yet and

progress in this direction is slow. It is easy to see that the real-world images come

with an abundance of di↵erent properties that may a↵ect steganalysis. Practical

detectors must be robust to these - they must generalise well to unseen sources. In

this thesis (Chapters 6 and 7) we study how to measure the general e↵ects of cover

source mismatch and simple ways to mitigate them.

3.4 Literature review: summary of features sets

The dimensionality of steganalytic features has been increasing over years. Whilst

early attacks were using as little as one feature, modern detectors use models built

from tens of thousands of features. Despite the large dimensionality, the process of

features design involves careful manual feature engineering. Numerous feature sets

have been proposed for both JPEG and spatial domains.

Extending the excellent table from [15] with the newest developments in steganalysis

features we can clearly see the continuing trend for larger feature sets (Table 3.1).

The table shows a selection of features sets for both spatial and JPEG domains.

It is by no means exhaustive and is given with the aim to demonstrate the trends

(towards larger features sets) and basic building blocks (counting statistics). Several

combinations of previous feature sets have also been proposed and proven to work

well in practice. Notable examples of this are CC-PEV features [96] which combined

Markov [108] and DCT features [34] and are still used to date. CDF features [74]

combined spatial-domain features (SPAM [94]) with JPEG-domain features (CC-

PEV [96]). J+SRM [71] combined versions of CC-JRM and SRM features.

With a clear trend towards capturing more di↵erent statistics one can envisage

even larger, more elaborate feature sets in the future. In this thesis we employed the

first feature set that arguably started this trend, the CC-C300 features from [70],

details of which are given in the next section.
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Table 3.1: Selected steganalysis detectors for image steganography. Copied verbatim
from [15] and extended.

year author description domain num. of features

2001 Avcibas et al. [3] Spatial domain and spectral quality metrics Spatial 26

2003 Lyu and Farid [84] Moments of Fourier transform coe�cients and
size of predictor error

Spatial 72

2003 Harmsen and Pearl-
man [46]

Smoothness of histogram Spatial 3

2004 Fridrich [34] DCT histogram measures, blockiness, coe�cient
co-occurrence

JPEG 23

2006 Goljan et al. [43] Moments of residuals of wavelet coe�cients after
Wiener filter denoising (“WAM”)

Spatial 27

2006 Shi et al. [108] Intra-block di↵erence histograms of absolute
DCT coe�cients

JPEG 324

2007 Pevny and Fridrich
[96]

DCT-based global and local histograms, inter-
block co-occurrences, blockiness measures and
based on features from [108] and [34] (“PEV”)

JPEG 274

2008 Chen and Shi [24] Inter- and intra-block conditional-probability-
based features

JPEG 486

2010 Pevny et al. [94] Conditional probability estimates of triples of
adjacent pixel di↵erences along eight directions
(“SPAM”)

Spatial 686

2011 Liu [79] Calibrated inter- and intra-block co-occurrences JPEG 216

2011 Kodovsky et al. [70] Inter- and intra-block co-occurrence based on
top 300 pairs of modes selected using an esti-
mate of mutual information (“CC-C300”)

JPEG 48 600

2012 Kodovsky and
Fridrich [71]

JPEG-domain Rich Model (“JRM”) built from
co-occurrences calculated on filtered DCT
blocks using dense selection of pairs of modes

JPEG 22 510

2012 Kodovsky and
Fridrich [71]

Spatial-domain Rich Model (“SRM”): co-
occurrences from many di↵erent filtered resid-
uals of an image

Spatial 34 671

2012 Kodovsky et al. [73] Compact Rich Model: symmetrised version of
[71] (“CF*”)

JPEG 7 850

2013 Holub et al. [51] Projection SRM: histograms of random convo-
lutions applied to filtered images

Spatial 12 870 / 34 320
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3.5 Example feature set: C300 features

The CF family of features was first presented in [70]. It is based on the idea of

finding pairs of coe�cients that predict each other in cover images; those dependen-

cies may be broken by embedding. Technically, this is done by capturing statistical

dependencies between DCT coe�cients that exhibit high mutual information. Mu-

tual information (MI) is a measure of the amount of information that one random

variable provides about another random variable and can be calculated according to

Equation (3.3). This selection does not depend on the embedding method as only

cover images are used.

The features are found in two steps. First is a design step, which is similar in

its procedure to filter-based feature selection methods used in Machine Learning to

reduce the size of a feature vector [6]. Given an image I, we truncate all of its

quantised coe�cients such that any values outside the range [�T, T ] are replaced

with �T or T , whichever is closer. Let X and Y represent a pair of DCT modes

where coe�cients take values x and y, x, y 2 [�T, T ]. Then we can calculate an

estimate of mutual information I(X, Y ) for that pair as follows (symmetrical for X

and Y ):

I(X, Y ) =
X

x2X

X

y2Y

p̂(x, y) log

✓
p̂(x, y)

p̂(x) p̂(y)

◆
, (3.3)

where p̂(x) and p̂(y) are probability estimates of coe�cients X and Y taking values

x and y respectively and p̂(x, y) is an equivalent estimate of their joint probability.

All probability estimates p̂ are computed from a sample of cover images or their

random crops. A pair of modes (X, Y ) is said to have a high dependency if we can

measure a high mutual information I(X, Y ) for them over a large enough sample of

images. This can be repeated for all possible pairs of modes capturing both inter-

and intra-block dependencies. Due to the fact that MI is symmetric it is safe to

assume that pairs such as ([1,2],[9,2]) and ([9,2],[1,2]) are identical.

The feature dimensionality is controlled using several techniques. First, the DC

mode is not used as most embedding methods avoid it. Second, an assumption is

made that the mutual information between DCT modes decreases with the increase
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in the spatial distance between them, therefore the search can be restricted to a

smaller neighbourhood, e.g. a 3-by-3 neighbourhood of DCT blocks. Finally, all

pairs of modes are ranked by their MI score and a set P of top F pairs is selected

for the final feature set4. To follow in line with previous work [70, 73] we implement

the C300 features using 300 pairs (F = 300).

The second step is feature extraction. Here, the feature vector x 2 Rd for an

image I is calculated using the top F pairs from P. Each pair (X, Y ) 2 P provides

one co-occurrence matrix of dimension (2 ⇥ T + 1)2 which is calculated according

to Equation (3.2). Often used values for T are 2, 3 or 4 and we use T = 4 as per

the original publication [70]. When F = 300 and T = 4 this is a C300 feature set of

24300 dimensions. Its calibrated version has been used as benchmark in [70, 73].

It is possible to use metrics other than MI to select most informative pairs (or

triples, etc) of modes. In [70] the authors suggest the Fisher Linear Discriminant

criterion or the Maximum Mean Discrepancy (MMD) as alternatives. It is also possi-

ble to estimate MI from di↵erent sets of images, perhaps targeting a specific source.

We performed basic experiments to measure the mutual information on di↵erent

data sets and cross-referenced the performance of those features across those data

sets. Even though the sets of features di↵ered quite dramatically between di↵erent

data sets, the classifier performance did not change significantly. This is interesting

because it points to the trend in modern steganalysis feature design which is based

on the idea of capturing many di↵erent statistics (see [51] and [71] for examples).

However, it has also been argued, [71] that the diversity of such statistics is as im-

portant, if not more important, than the overall number of features that that are

based on the same statistic.

This feature set strikes a good balance between training a sensitive detector of

non-adaptive embedding schemes and the speed with which it can be extracted. At

the time when our early experiments for this dissertation were conducted it gave

4N.B. Once the set P has been found from a sample of cover images, it remains fixed for all
images and we can reuse it for images from other sources (see further text).
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the most sensitive detector of nsF5 (and many other embedding algorithms) com-

pared to all other state-of-the-art features [70]. More sensitive feature sets have

been proposed since, at rate of roughly one every six months. They are usually

grouped under the umbrella of large features that provide “rich” models and gener-

ally follow in the same direction capturing as many di↵erent statistics as possible.

However, their current implementations are prohibitively slow to incorporate them

into our experiments5. Two notable feature sets are the JPEG domain Rich Model

(CC-JRM) and the Projection Spatial Rich Model (PSRM, also works for JPEG

images) due to Kodovsky et al. [71] and Holub et al. [51] respectively. CC-JRM

involves additional filtering and calculating more di↵erent co-occurrence matrices

using a denser selection of pairs of modes. Unlike other feature sets, PSRM applies

a random filter (through convolution with a random kernel, the height and width

of which is determined uniformly on the interval [1..8] and entries are Gaussian) to

image residuals before calculating the histogram; this may pick up long range de-

pendencies as a large neighbourhood of pixels is considered. Both feature sets yield

better classification but slower feature extraction - it has been noted [57] that, for

example, PSRM features require on the order of one million floating point operations

per pixel.

5For example, it takes approximately 6 seconds to extract JRM features from one image in our
data set, which makes it infeasible for us to use them for experiments with millions of images.

45



Chapter 4

Classifiers

The aim of a steganalytic classifier is to learn to distinguish features from cover

objects from features from stego objects. Its accuracy depends on features (how

well they model the separation between classes) and its expressive power (the class

of functions that can be represented by it). Features provide a fixed representation.

Many machine learning algorithms are designed to work in this given representation,

these are often linear algorithms, but also include some more powerful non-linear

variants such as Neural Networks and Nearest Neighbour classifiers. Other classi-

fiers, such as kernel-based algorithms, are capable of changing the given representa-

tion and mapping it to an embedded higher-dimensional space. Such algorithms, in

particular the Support Vector Machine based on the Gaussian kernel, have been used

extensively in steganalysis. It is a common belief that non-linear algorithms perform

better in most binary steganalysis applications. However, non-linearity comes at a

cost of increased complexity. It may therefore be beneficial to compare the perfor-

mance of di↵erent types of classifiers in practice. For this thesis we consider several

algorithms from both groups.

4.1 Binary classification

Let x

1

. . .x
n

be a set of n training examples drawn as an independent identically

distributed sample from a given domain1, �. These examples belong to one of the

1We assume that all of Alice’s cover and stego images come from this domain.
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two classes and are given labels y
1

. . . y
n

. Here the two classes correspond to in-

stances of cover and stego images with payload from a known embedding operation

and of a known size. Each class has a distribution over the domain � denoted P
c

and P
s

respectively.

Given a fixed hypothesis class (classifier) H the learning task is to find a hypothesis

h 2 H which given an unseen test example x outputs its prediction ŷ of the true

label y.

Many classifiers can be described as the triplet hh(x), L(✓), Ai which is composed

of a decision function (which can be either an intermediate or the final hypothesis)

h(x), an objective function L(✓) and an optimisation algorithm A. Mathemati-

cally the triplet can take either the primal or the dual form, depending on how

the decision boundary is expressed. We will use this convention in the forthcoming

discussion where possible to describe the classification algorithms used in this thesis.

Any classifier explicitly or implicitly defines a decision boundary which partitions

the example space into classes. For example, linear classifiers define the decision

boundary as a hyperplane whose position in the feature space spanned by the data

is controlled by a set of parameters ✓:

✓

T

x + b = 0 . (4.1)

The parameters ✓ need to be estimated from the training data. The idea is to learn

✓ such that our triplet hh(x), L(✓), Ai produces maximally accurate predictions on

unseen data.

Each prediction that is made by the model defined by the parameters ✓

t

at time

t can be associated with a cost (loss). We can therefore write a loss function as a

function of three arguments: `(x, y,✓), where ✓ uniquely defines the hypothesis h

and y is the true class label of example x, often being modelled as the 0/1 or -1/1

binary response for negative/positive examples depending on the mathematical con-
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venience2. An example of a very simple loss function is the 0-1 loss, which assigns

the cost of 0 to each correct decision and the cost of 1 to each incorrect decision:

`
0-1

(x, y, ✓) =

(
0 if

decisionz }| {
h(✓,x) =

true labelz}|{
y

1 otherwise .

Objective function L(✓) provides a strategy for choosing parameters ✓. The strategy

of Empirical Risk Minimisation looks for values of ✓ which minimise the average error

(also called empirical risk) over the training set:

L(✓) = arg min
✓

1

n

nX

i=1

`
0-1

(x
i

, y
i

,✓) . (4.2)

It is however impractical (NP-hard) to compute this minimisation due to the com-

binatorial nature of the problem and the fact that 0-1 loss is non-di↵erentiable [90].

Instead we generalise the above objective to minimise over the average of some more

general loss function which approximates the 0-1 loss. We will discuss examples of

such functions in greater detail below.

Simply following the empirical risk minimisation strategy often leads to overfitting

and therefore the objective function usually takes the form of a weighted sum of two

terms - the average loss and a penalty (regularising) term (�P ):

L(✓) = arg min
✓

1

n

nX

i=1

`(x
i

, y
i

,✓) + �P . (4.3)

Many convex objective functions exist which can be minimised with popular convex

optimisation algorithms such as the gradient descent (the A part of our triplet). Oth-

ers, like some versions of the SVM, require more complex optimisation algorithms

that take into account certain constraints that bind the solutions of the problem to

a specified range, which is parametrised by the user.

Both functions h(x) and L(✓) can be written in primal or dual forms. Each form

2All classifiers implemented in this thesis use y 2 {�1, 1} labels; other classifiers use y 2 {0, 1},
for example Logistic Regression, which estimates ŷ as class-belonging probability.
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dictates how ✓ is expressed. In the primal form ✓ is a vector w, called the weight

vector. The primal version of the decision function often takes the simple form:

h(x) = sgn(wT

x) ,

where (wT

x) is the inner (dot) product between the weight vector w and feature

vector x describing the input example and sgn(·) is a sign function3.

For the dual form the Representer theorem [47] allows us to express ✓ as a weighted

linear combination of all n training points:

w =
nX

i=1

↵
i

y
i

x

i

,

where ↵
i

2 R represents some weight assigned to example x

i

. In the dual represen-

tation the decision function takes the following form:

h(x) = sgn

 
nX

i=1

↵
i

y
i

(xT

i

x)

!
, (4.4)

which is essential for enabling non-linear classification boundaries. This is due to

the fact that we can define a function k(·, ·), which replaces the dot product xT

i

x in

the dual representation:

h(x) = sgn

 
nX

i=1

↵
i

y
i

k(xT

i

x)

!
. (4.5)

The function k is called the kernel and in the case of a linear classifier it is simply the

dot product: k(x
i

,x) = x

T

i

x. Examples of non-linear kernels are given in Section

4.3.1.

Whilst in theory primal and dual forms provide “equivalent ways of reaching the

same result” [22] they have their advantages and disadvantages when it comes to

practical applications. The primal form is generally used in linear binary classifiers

and is good for a small memory footprint and quick computation of the decision

3N.B. We drop the bias term b (Equation 4.1) by assuming extra w0 and x0 terms in w and x

respectively and that x0 = 1.

49



CHAPTER 4. CLASSIFIERS

function (predictions). The dual form can be faster when the solution is sparse (i.e.

the solution is computed from a subset of the training data, usually support vectors).

More precisely, the complexity of computing w grows (approximately quadratically)

with the number of features, whilst the complexity of computing ↵ grows (also ap-

proximately quadratically) with the number of training examples.

Below we describe our linear classifiers using the primal form. For kernel-based

algorithms, solving the problem in primal form is often an approximation of the

explicit kernel solution provided by the dual form. We discuss this point in more

detail at the end of Section 4.3.1 and the algorithms will be described using the dual

form.

Those learners, which can be expressed in primal form and have convex objective

functions expressed as a sum of di↵erentiable loss functions (as per Equation 4.3),

can be optimised with stochastic gradient descent (SGD). SGD approximates the

regular gradient descent update by taking the gradient of the loss function at the

current example. The convexity guarantees convergence and the di↵erentiability al-

lows for calculating the gradient of the loss function4. In SGD, the gradient of the

loss function r
w

`(w) with respect to w forms the training update:

w

i+1

= w

i

�r
w

`(w
i

,x
i

, y
i

) , (4.6)

where i is the index of a current training example. If we loop over all training ex-

amples using this update our stochastic optimisation of the objective function will

eventually approach convergence [17], having learnt the “optimal” weight vector w.

In the following sections we will use the triplet hy(x), L(✓), Ai to simplify the dis-

cussion of the algorithms employed in this thesis.

Regularisation of the objective function

Minimising the loss function alone often leads to overfitting. Overfitting is the

condition when the classifier trains a model which is too specific to the training data

4N.B. Some loss functions that we will study will not be continuously di↵erentiable but mathe-
matical tricks such as subgradients or approximations of those functions can be used instead.
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set and will fail to generalise well. This is especially true of training on smaller

data sets and manifests itself in large values being assigned to the parameters (✓) in

the trained model. Regularisation is normally used as the primary defence against

overfitting. This is done by including a penalty term in the loss function (shown

as �P in Equation 4.3). There exist a number of di↵erent regularisation functions,

some of which are more suited to some situations than others. An example of an

often used penalty is based on the function kwk
p

, a p-norm of the weight vector w

[11]:

kwk
p

=

 
X

i

|w
i

|p
! 1

p

. (4.7)

We refer to kwk
2

as the `2 norm and it is an often used regulariser (sometimes written

as kwk). It has the e↵ect of keeping the absolute values of the weights of the classifier

from increasing in proportion to the number of iterations and hence overfitting the

training data. Likewise, kwk
1

is the `1 norm and works by a similar principle with

a useful side-e↵ect of causing some weights that correspond to unimportant features

to be exactly zero, hence providing sparser solutions. It is possible to use one or

both of these regularisers to improve generalisation capabilities of a classifier, for

example in the following manner [76]:

L(w) = arg min
w

1

n

nX

i=1

✓
`(w,x

i

, y
i

) + �
1

kwk
1

+
�
2

2
kwk2

2

◆
, (4.8)

where �
1

and �
2

are hyperparameters set by the user.

4.2 Linear classifiers

In this section we give some basic details of the classifiers employed for most of the

experiments presented in this thesis.

4.2.1 Average Perceptron

The Average Perceptron [31] is a version of a classifier known as the Perceptron

with a weight vector averaging step which improves its stability through acting as

a regulariser. By construction this is an online classifier, which means it can be

trained one example at a time.
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The Perceptron, which was first introduced by Rosenblatt in [31], aims to min-

imise the total number of misclassified training examples. Following our framework

from before we define the loss function, the objective function and the update rule

for the Perceptron as follows.

Perceptron loss

`
Perceptron

= max
�
0,�y(wT

x)
�

(4.9)

Perceptron objective function

L
Perceptron

= arg min
w

1

n

nX

i=1

max
�
0,�y

i

(wT

x

i

)
�
, (4.10)

which is approximated with a stochastic update at each step (example) i:

Perceptron update

w

i+1

= w

i

�r
w

max(0,�y
i

(wT

i

x

i

))

=

(
w

i

+ y
i

x

i

if y
i

(wT

i

x

i

) < 0

unchanged otherwise .
(4.11)

The Perceptron mostly follows the normal SGD update5 from Equation 4.6. The

update happens when a new input example (indexed by i) is assigned the wrong

label. On linearly-separable data the Perceptron is guaranteed to converge, that is

it will find a set of parameters w that minimises its objective function L
Perceptron

.

If the classes overlap in the original representation used to encode our examples x

then convergence is not guaranteed. It is therefore essential to monitor the progress

of its training by testing on validation data. It is straightforward to see that when

stopped the Perceptron’s decision boundary may not be optimal. This problem

is overcome using the Average Perceptron. In the Average Perceptron the update

includes the regularisation step, where the average weight vector is updated at every

input example:

w

avg

= w

avg

+ w

i

. (4.12)

5A simplification is made here - we assume the derivative of `
Perceptron

at point y
i

(wT

i

x

i

)) = 0
is equal to zero, whilst its actual value is undefined.
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It was shown [31] that such a weighted combination of weight vectors is guaranteed

to produce better classification than the regular Perceptron algorithm in data which

is not linearly-separable.

The vector w

avg

is used in the final decision function to predict the label of test

example x:

h(x) = sgn(wT

avg

x) .

In its simplest form the online version of Averaged Perceptron does not have pa-

rameters. If trained in batch setting it has the implicit parameter of the number of

iterations needed for early stopping.

4.2.2 Linear Support Vector Machine

The Support Vector Machine is a classic classifier that was developed by Vapnik as

a consequence of the analysis of the Empirical Risk Minimisation principle [114]. It

guarantees convergence to an optimal decision boundary, one that gives the maxi-

mum margin, for a given training data set assuming the correct choice of regulari-

sation parameters. To achieve this SVM finds a maximum margin separator given a

set budget for misclassification6. The margin can be taken as 2

kwk2 , but the objective

is instead normally written in terms of 1

2

kwk2
2

which makes it a convex function in

w. Using hinge loss in the objective from Equation 4.8 and omitting the `1 norm

gives us the soft margin SVM in primal form. The hinge loss encodes the logic

for sparsity and the soft margin (see Section 4.3.1). The update takes place when

the training example x

i

violates the functional margin y
i

(wT

x

i

) = 1. Otherwise

only regularisation is performed. We present here the hinge loss with the associated

objective function and online training update:

Hinge loss

`
SV M

= max
�
0, 1� y(wT

x)
�

, (4.13)

6The budget is specified using a hyperparameter, normally expressed as C (see Section 4.3.1,
but the regularisation parameter � used in the hinge loss e↵ectively does the same job
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SVM objective using hinge loss

L
SV M

= arg min
w

�

2
kwk2

2

+
1

n

nX

i

max
�
0, 1� y(wT

x)
�

, (4.14)

which can be approximated with SGD update at each step (example) i:

SVM update

w

i+1

= w

i

� ⌘
�
�w

i

+r
w

max
�
0, 1� y

i

(wT

i

x

i

)
��

= w

i

�
(

⌘(�w
i

� y
i

x

i

) if y
i

(wT

i

x

i

) < 1

⌘�w
i

otherwise ,
(4.15)

where � is the regularisation parameter. We note that a certain degree of regu-

larisation happens even when the current example is classified correctly. This loss

function, being a maximum function, does not have a derivative at 1� y(wT

i

x

i

) = 0

therefore r
w

max
�
0, 1� y

i

(wT

i

x

i

)
�

= 0 is found using the subgradient method.

4.2.3 Fisher Linear Discriminant

Training Fisher’s Linear Discriminant is a batch procedure and involves estimating

the mean vectors (µ
y=�1

and µ

y=1

) and the covariance matrices (⌃
y=�1

and ⌃
y=1

)

for the two classes using the training data. The decision boundary is given by w:

w =
�
⌃

y=�1

+ ⌃
y=1

)�1(µ
y=�1

� µ

y=1

�
, (4.16)

where superscript -1 means matrix inverse. The decision function h(x) is calculated

as:

h(x) = w

T (x� c) , (4.17)

where c is calculated as:

c =
1

2
(µ

y=�1

+ µ

y=1

) .

In addition to the standard implementation we also implemented a pseudo-online

version of this algorithm which estimates the covariance matrices and the means in

an online fashion therefore allowing us to process larger training sets. We refer to it

as pseudo-online due to the fact that costly operations such as the covariance-matrix

inversion are delayed until all training examples have been visited.
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We only use the FLD classifier as a baselearner in the ensemble (see Section 4.3.2).

4.3 Non-linear classifiers

On their own linear classifiers can only model linear decision boundaries in the given

feature space. There exist a multitude of algorithms for non-linear classification. We

discuss two common approaches here. The first uses the kernel trick to enable lin-

ear classifiers to work in an expanded representation in which the class separation

is better. The second combines classifiers into an ensemble such that non-linear

boundaries can be learnt in the original representation.

It is often assumed that steganalysis problems have non-linear decision boundaries.

One classifier that became the benchmark for binary steganalysis classification is the

kernel Support Vector Machine, which we discuss in the following section and use as

a benchmark in our experiments. KSVM is indeed widely accepted as a robust tool

for non-linear classification of many di↵erent problems. However when the training

data and features become too large KSVM becomes ine�cient for practical experi-

ments. For this reason we consider other non-linear classifiers which are capable of

faster and more memory-e�cient computation.

We start this section with an introduction to the kernel SVM. Next, the ensemble

classifier is discussed, for which we propose an improvement using online updates.

Finally, we discuss a selection of alternatives which are not implemented in this

project.

4.3.1 Kernel Support Vector Machine

We give a standard criterion for training kernel Support Vector Machines. First,

reformulate the hinge loss to introduce slack variables ⇠:

⇠ =

(
0 if y(wT

x) � 1

1� y(wT

x) otherwise ,
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which is equivalent to writing

y(wT

x) � 1� ⇠

⇠ � 0
(4.18)

simultaneously. Along with reformulating � as 1

C

we obtain a constrained SVM

objective function (cf. Equation (4.14)):

L
SV M

= arg min
w

1

2
kwk2

2

+ C
nX

i

⇠
i

,

subject to constraints from (4.18), 8i.

This objective function gives rise to the standard kernel formulation of the SVM

based on the dual form. Making use of the Equations (4.1) and (4.5) and introduc-

ing Lagrange multipliers ↵ 2 Rn and simplifying, we arrive at the dual form of the

kernel SVM objective function:

L
SV M

= arg max
↵

nX

i

↵
i

� 1

2

nX

j=1

nX

i=1

↵
i

↵
j

y
i

y
j

k(xT

i

x

j

) , (4.19)

subject to constraints

nX

i=1

↵
i

y
i

= 0

0  ↵
i

 C, 8i.

The decision function takes the classic dual form shown previously in Equation 4.5.

The kernel SVM was designed to produce high accuracy from small data through

the use of the kernel trick and the soft margin. These make it very suitable for a

typical steganalysis problem, as we know it, i.e. a binary classification problem with

very limited training data. The size of training data is limited because of O(n2)

training.

Throughout our experiments we use the radial basis function kernel (see below),

following the example of most steganalysis literature. In this configuration, the ker-

nel SVM has two parameters to optimise, cost C and kernel width �. The parameter
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C defines the trade-o↵ between the penalty of misclassification and the size of the

margin between classes [11], which essentially balances training accuracy with the

generalisation capabilities of the model. The � parameter is discussed below.

For our KSVM tests we used an established open source library libsvm [21] with

its extensive toolkit for parallelisation and other tools to control space and time

trade-o↵s.

Radial basis function kernel

In the absence of any prior knowledge about the problem one might choose to use

a universal7 kernel such as the RBF kernel. It is by far the most often used kernel

in steganalysis. To fall in line with the previous research we also employ the RBF

kernel in our experiments. It is defined as:

k(x
i

,x
j

) = exp
�
�||x

i

� x

j

||2
2

�
. (4.20)

Together with the regularising cost parameter C, � needs to be found using a grid-

search or a similar procedure which allows finding a balance between the complexity

of the model and its generalisation accuracy.

Kernels like this are used to compute the dot products in a representation which is

di↵erent to the original representation defined by the features. This representation

is determined by the complexity of the kernel. This technique is used to find bet-

ter separation between classes to that which is allowed by the current representation.

Working in the expanded space implicitly through the use of a kernel function

was thought of as saving time and space - consider the following argument. For

polynomial kernel of degree d and feature vector of length n there are O
�
n+d

d

�
fea-

tures in the embedded space. For higher degrees of this kernel and other more

complex kernels, like the RBF kernel, this might be too large (or in some cases

impossible - the exponential expands into an infinite series) to calculate explicitly.

7RBF kernel was shown to be capable of universally approximating any arbitrary function to
small error ✏ [47].
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In contrast to using the dual form representation in conjunction with a non-linear

kernel function k, we can explicitly transform the feature vector into an embed-

ded space. There exist kernel approximations which compute quick approximations

of the expansion using ideas from compressed sensing. These approximations are

much shorter (O(log
�
n+d

d

�
) cf. O

�
(n+d)

d

�
) and allow for using kernels together with

the primal form of a linear classifier. Several references to specific examples of such

algorithms are given in Section 4.3.3.

4.3.2 Ensemble classifiers

A di↵erent approach to non-linear classification is to use ensembles of classifiers,

such as the voting ensembles of randomly-projected linear FLDs which are used in

this dissertation.

There exist many variants of combining classifiers into an ensemble. Some are rather

complex and are known for their performance guarantees, for example, the AdaBoost

algorithm. Others are simpler, such as the ensemble used here. The ensemble clas-

sifier used here is our version of the classifier first introduced to steganalysis in [70]

as an alternative to SVMs with the promise of more e�cient computation and thus

better scalability to rich features.

This ensemble strategy is often referred to as the random subspace method. The

ensemble consists of multiple base learners which learn from the same data, each

using di↵erent (sub-)features. The sub-features are random slices from the original

feature set. As a result, the ensemble allows for training a non-linear classifier on

large features in reduced time.

Many di↵erent classifiers can play the role of a baselearner. The final decision is

typically calculated by taking the majority vote from all baselearners, but more ad-

vanced strategies exist involving weighing the contributions of di↵erent votes based

on the output values of the baselearners’ decision functions.

An ensemble classifier will be online-capable if it uses online algorithms as base
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learners. Using the Average Perceptron as the base learner in [81] and here allowed

us to train the ensemble on large data sets.

4.3.2.1 Ensemble FLD

Two versions of this classifier are used in our experiments. The first version is our

own reimplementation of the classifier first introduced by Kodovsky [70] which is a

batch algorithm. The second version is based on the quasi-online method we pro-

posed in Section 4.2.3. The two will be used interchangeably in our experiments

depending on the computational constraints and we refer to both as EFLD through-

out this thesis8.

In this configuration, L Fisher Linear Discriminant base learners are trained on L

di↵erent subsets of k dimensions drawn at random from a feature set. The decision

function combines the predictions from individual base learners using the (binary)

majority vote:

h(x) =

8
><

>:

+1 if
LX

l=1

sgn
�
w

T

l

(x� c

l

)
�

> 0

�1 otherwise ,

where w and c are the parameters of the l’s Fisher’s discriminant baselearner, � is

the Kronecker delta and y is the label of training example x.

This method has shown very promising results using the CC-C300 feature set [70]

and similar large feature sets [73, 51] and is currently considered to be a state-of-

the-art classifier for binary steganalysis. A major advantage was shown to be the

speed of training and the reduced complexity of parameter optimisation.

Chaumont et al. [23] have demonstrated a weighted version of EFLD which was

shown to improve its performance on typical steganalysis tasks.

8Whilst the two algorithms may in practice produce di↵erent results, in our experience the
di↵erence was small enough for us to assume their performance equal and use them interchangeably.
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4.3.2.2 Ensemble Average Perceptron

We introduced another version of this classifier in [81]. This is the online ensemble

Average Perceptron (OEAP), which fuses the advantages of the stochastic nature of

online learners with the non-linearity of ensembles classifiers. The set up remains

identical to the ensemble FLD, with the same number of learners, same number of

randomly-chosen features per learner (discussed in Chapter 5), and the majority

vote which establishes the final decision. The main di↵erence is in the choice of

baselearner, which in this case is the Average Perceptron.

4.3.3 Other non-linear methods

Only a few non-linear classifiers are capable of training with stochastic updates.

Even fewer of these have been widely studied and/or have available implementa-

tions. One might consider k-Nearest Neighbour classifier as being part of this group,

but more sophisticated algorithms exist. One of these algorithms is the kernel ap-

proximation which was mentioned above (see one of [120, 100, 78] for examples). A

similar approach using explicit preprocessing (mapping) of the data is described in

[25]. Another example of an online non-linear algorithm is the online version of the

Learning Vector Quantisation [16]. Some other, perhaps more exotic, variants exist,

such as the Locally Linear SVM due to Ladicky [75] or the kernelised stream SVM

[101]. These algorithms have not yet been considered for steganalysis and we do not

consider them in our study.

4.3.4 Analysis

Finding the right classifier for a particular learning task is partially a problem of

balance. When data is scarce one might want to use the most powerful classifier

possible. Therefore based on the historically-defined view of steganalysis being a

binary classification problem in images from a single (small) source the KSVM might

be a sound choice. On the other hand when data is abundant we want to use as

much of it as possible to reduce the generalisation error. It is common knowledge in

machine learning that for ERM-like methods (most classifiers used in steganalysis to
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date) large training samples are required for good generalisation9. In such a situation

a sensible strategy might be to improve performance using more data. Once no

further improvement is possible one might consider using better representations and

hence more complex models. But, as we show, it may not always be computationally

feasible to train those models on enough data to achieve same or better levels of

generalisation accuracy. We consider this point in more detail in the upcoming

chapters.

4.4 Conclusion

This chapter presented a selection of linear and non-linear classifiers that will be

used in our experiments. In many ways these classifiers are very similar, if not

identical, to those used in contemporary steganalysis research literature. Some of

these classifiers, such as the kernel SVM have been considered to be state-of-the-art

in many publications. Others, such as the ensemble classifier have challenged that

point of view and shown equivalent or better performance when combined with the

modern rich feature representations. One contribution of this thesis to the field is

a demonstration that with the new rich features we can achieve better classification

accuracy by training simpler models on larger data sets instead of using non-linear

models and being computationally restricted in the size of the training data. Our

view is that such classifiers may not only yield better models if trained on large

enough data such that a well trained, if not converged, model is produced but

may also facilitate our attempt to overcome some of the problems that arise when

steganalysis is viewed as a domain adaptation problem and the associated cover

source mismatch occurs. Some domain adaptation techniques such as importance

weighting [26] (see Chapter 7) often use linear classifiers to achieve them.

9This is a fundamental result of Statistical Learning Theory which will be discussed in detail in
Chapters 6 and 7.
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Chapter 5

Designing experiments

Having discussed our selection of features and classifiers, in this chapter we will look

at what other ingredients go into our experiments and their overall design. We start

with discussion of the data. Our aim is to create a set of realistic testing conditions

for classifiers of binary steganalysis problems. This will enable us to compare, in

practical terms, how such conditions di↵er from the often used laboratory conditions

from the point of view of their ability to influence the classifiers’ accuracy.

5.1 Data

Images acquired from real-world sources are best suited to our study due to their

variety and abundance. They are not required to share some common properties, in

particular the properties that may a↵ect steganalysis statistics - we are interested

in testing exactly the opposite. In order to acquire such data we needed a source of

public images. The Internet contains many such images and they are often easily

discoverable and downloadable using a Web crawler.

All images for the experiments presented here were acquired by my supervisor,

Dr. Andrew Ker, at the University of Oxford. The data set consists of albums of

photographs made publicly-visible by Facebook users from the Oxford University

network. In total over 4 million JPEG photographs were acquired, although in this

thesis we restrict ourselves to two smaller subsets. For the first subset we selected

all users with at least 4000 images. There were 26 such users in total. The second
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subset consists of 1711 users with at least 500 images each. All downloaded content

was anonymised, but the natural split into one subset per user was preserved. A

sample from this data set is given in Figure 5.1.

These images have some important characteristics. Two characteristics were en-

forced by Facebook automatically, through resizing and recompression at upload,

and are therefore shared between all images; their size (approximately 1 megapixel

but not fixed) and the JPEG quality factor (85). The latter makes it feasible to use

these images in our study1. All other characteristics of these images are variable

between users, including those that are related to their acquisition (camera model,

focal length, exposure, ISO factor, scene and more) and those that are related to

their processing (resampling, original size and JPEG compression, denoising, colour

filtering, added synthetic content (date/comments) and more). At the time of writ-

ing it is largely unknown exactly how these characteristics, individually or in com-

bination, a↵ect steganalysis features, we are thus required to treat them as unknown.

There is consensus, however, that these di↵erent characteristics have a negative

e↵ect on the overall reliability of steganalytic detectors [4, 20, 40, 59, 94, 44], which

manifests itself as the problem known as cover source mismatch. This means that

even the conventional approach of training and testing on images from the same data

set (in our case - the same actor) should be expected to yield variable performance

from one data set to the next. Furthermore there are a significant number of out-

liers - images that are not completely natural photographs; they may be montages,

have captions, or be entirely synthetic. We view this as further contributing to the

realism and, perhaps, the di�culty of this data set.

The only pre-screening that was performed on these images was aimed at the re-

moval of images with little or no content and those with a non-standard compression

quality factor. This was done by deleting any image with a file size smaller than 5KB

and any image with a non-standard quality factor. Less than 1% of all downloaded

1State-of-the-art steganalysis features are incompatible with varying JPEG quality factors (see
Section 3.3).
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Figure 5.1: Sample images from the Facebook data set, anonymised.

The images originally presented here cannot be made freely available via ORA because of copyright. The images were sourced at http://www.facebook.com.
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images were a↵ected.

We will treat the di↵erent users (also called “actors” here) as di↵erent sources.

Onwards, the terms “user”, “actor” and “source” will be used interchangeably, ex-

cept in the domain adaptation context when we may refer to source domains as those

users for which we have labelled data and which can be used for training (similarly

target domain will be used to describe testing data from one or more users).

Two assumptions have to be made about these images, because we have no means

of guaranteeing the correctness of any test for alternatives using the modern tools.

First, let us consider the question of ground truth. Unless we have perfect detec-

tors or have been informed though other means, there is always a danger that a

real-world source of images will be contaminated with steganography. We like to

think that at present the likelihood of steganography being used by the members

of the Oxford University network on Facebook is very small2. We thus assume that

this data is free of steganography and label all downloaded images as covers. Sec-

ond, with the absence of reliable metadata there is a possibility that an image set

from one user may be composed of more than one source (if, for example, they use

di↵erent cameras or di↵erent post-processing). Whilst no formal check has been

performed we assume that the vast majority of actors provide a homogeneous or

near-homogeneous set.

5.2 Experimental modelling of classification-based ste-
ganalysis scenarios

What is particularly special about this data set is that it allows us to create mul-

tiple distinct models of the steganalysis problem. In particular, if we recall Ker’s

categorisation of steganalysis scenarios from Chapter 1, three of those are of special

interest because we can model them here: in scenario (2) we do not know exact

characteristics of Alice’s cover source but have examples to learn from, (3) - we

don’t have examples from Alice’s source but can learn from similar examples and

2This is also considering that the acquisition process took place before the existence of Secretbook
[19].
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(4) - we know nothing about Alice’s cover source. Each scenario provides di↵erent

challenges for training a classifier which we explore in our experiments. Some of

these are better studied than others.

The most obvious way to model Alice here is to choose an actor at random from

our data set. However, the choice of training data to use in order to train a good

detector for Alice’s (testing) data is non-trivial. It depends on which of the above

categories we are trying to model. Take category (2) as an example. In this situa-

tion we assume the possession of training data that matches Alice’s source. Whilst

an unlikely scenario, it is widely studied in steganalysis literature as a testbed for

creating new features or breaking new steganography schemes. It is widely consid-

ered to be “optimal” for training steganalysis detectors. We will refer to it as a

homogeneous-matched data scenario under “laboratory” conditions. It is matched

because training and testing data come from the same source and it is homogeneous

because there is only one source of data that we are interested in. For this scenario,

the Facebook data set provides 26 di↵erent actors with 4000 cover images each. For

the binary problem studied in Chapter 5 we can split each of these 26 data sets into

3000 training pairs of images and 1000 testing pairs of images.

In categories (3) and (4), the source of testing images is unknown and we may

or may not have unlabelled testing data at training time. The literature that tested

steganalysis in this scenario used training and testing data from di↵erent homoge-

neous data sets. We call this a homogeneous-mismatched data scenario and can

simulate their results on the data from the aforementioned homogeneous-matched

scenario by taking any two mismatched training and test sets. There are up to 650

such combinations, although we restrict ourselves to 26 for the reasons described in

Chapter 5. A di↵erent strategy is to pick as diverse a training set as possible. With

the lack of understanding of what makes a source, the preferable option is to assume

that the diversity of sources should generally come with their quantity. Whilst it

has been argued that this guarantees mismatch between training and test sets [58],

we see two distinct situations arising. In the first situation, which corresponds to
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Ker’s category (3), we are able to find training data that matches the target ac-

tors. We call this a heterogeneous-matched data case. It is not clear whether this

is generally possible and techniques for this are yet to be developed. A possible

solution is discussed in Chapter 7. Whilst this situation is not formally tested in the

present thesis, an optimistic variant, which assumes a successful match, appeared

in our previous work [81]. The second situation corresponds to category (4), the

heterogeneous-mismatched scenario, which will be compared directly to the two sce-

narios based on homogeneous data discussed above. We reserve a fixed set of 100

actors selected randomly to be testing sources. Each of these actors provides 500

cover images and we aim to test our detectors on each of them independently. The

full binary testing set is composed of 50 000 images. The remaining 1611 actors will

be used for training which provides for a heterogeneous-mismatched case by design.

We summarise the above into the following definitions. A homogeneous data

set is composed of images from one actor. Most images in such a data set are likely

to share common characteristics, such as originating from the same camera. A het-

erogeneous data set is composed of images from multiple actors. A heterogeneous

training set may be highly diverse, containing small number of images from many

di↵erent actors, or less diverse, in which case only a small number of actors con-

tribute many of their images. Matched data means training and testing sources are

the same. Mismatched data means training and testing data come from di↵erent

sources.

The matched/mismatched and homogeneous/heterogeneous properties of training

and testing data sets make it less or more di�cult for feature-based steganalysis.

We test each scenario in a separate experiment in Chapters 5 and 6. Let us define

the following matrix for convenience:
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Experiment 1
m
a
tc
h
ed

homogeneous

Experiment 4

heterogeneous

Experiment 2

m
is
m
a
tc
h
ed

Experiment 3

te
st
in
g
so

u
rc
es

training sources

The matrix shows that3:

Experiment 1 tests the matched-homogeneous situation with 26 di↵erent data

sets.

Experiment 2 instantiates the mismatched-homogeneous situation by building upon

experiment 1 and testing the models trained in Experiment 1 against mis-

matched testing data.

Experiment 3 corresponds to the mismatched-heterogeneous situation - training

and testing data comes from a number of mismatched sources and hence is

heterogeneous and mismatched.

Experiment 4 (see [81], also reproduced in Figure B.1 in the appendix) is con-

cerned with an intermediate situation where the data comes from an unknown

mixture of sources and where the information about their origin is unknown.

Experiment 1 replicates the conditions studied in most steganalysis work to date.

Experiment 2 has also been studied but to a lesser extent. The added advantage of

using 26 di↵erent image sets in both of these experiments is that it allows us to reason

about the detectors’ accuracy from a statistical point of view by looking at means,

standard deviations, minimums and maximums of their performance. Experiment 3

3A more detailed description of these experiments is given in the next chapter.
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provides a new approach to training a steganalysis detector, whilst conditions similar

to Experiment 4 were studied in [63].

5.3 Methodology

When designing experiments for steganalysis, as well as any other discipline where

statistical modelling/machine learning is involved, one must take into account many

possible sources of error. Furthermore, there exist certain conditions that are spe-

cific to steganalysis which have been shown to impact the performance of a classifier.

In this section we discuss these in more detail.

The data and the scenario models discussed in Section 5.2 allow for testing steganal-

ysis in new conditions. These are closer to a simulation of real-world steganalysis

classification than ever before. To be able to make inferences about the real-world

from such simulations we must account for sources of potential error. Borrowing

from the statistical literature we can describe the following four sources of error,

each of which is discussed in further detail in this section:

1. Model error - concerned with the classifier choice.

2. Calibration error - how the classifier is trained and how the parameters are

chosen.

3. Computational constraints - to do with finite time and space budgets to

train the classifier.

4. Uncertainty quantification - metrics, statistical tests and their interpreta-

tion.

The following subsections provide a closer look at some of these points with exam-

ples. But first let us consider how the performance will be evaluated.

5.3.1 Performance measures

Our performance measure is the classification accuracy, which is defined as the

proportion of correctly classified examples to the total number of examples in the
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data set in question:

accuracy = 1� P
FP

+ P
FN

2
= 1� E , (5.1)

where P
FP

and P
FN

are probability estimates of having a false positive and a false

negative respectively. The data will often be split into three non-overlapping data

sets. The training set will be used to train the classifier. The validation set will be

used to evaluate the performance of di↵erent hyperparameters during their optimi-

sation (e.g. in a grid-search). The test set will be used to evaluate the classifier’s

performance using the final hyperparameter values. A classifier’s performance can

be measured on the training set (E
train

), on the validation set (E
val

) or on the test-

ing set (E
test

).

Another measure of performance, that is often reported in steganalysis literature,

is the testing error achieved by the classifier with its threshold adjusted to some

optimal value (in contrast to E
test

which is measured using the default threshold

of 0 or 0.5 depending on the classifier). The idea behind this is that by the means

of adjusting a classifier’s threshold to minimise its E
train

or E
val

it is possible to

minimise the probability of it misclassifying future data based on the assumption

that the test data comes from the same distribution as training or validation data

respectively:

P
E

= min
P

FP

+ P
FN

2
, (5.2)

In the literature the threshold is selected to minimise the number of false positives

and false negatives when the classifier is tested on training data. Whilst this may be

a good strategy in the case of conventional steganalysis when training and testing

data is matched, we deviate from this for two reasons. First, in some of our exper-

iments the training set may be prohibitively large to use for adjusting threshold.

Second, when the test data comes from a mismatched source the same distribution

assumption may not hold any longer. We therefore adjust it based on the validation

set. In Chapter 6 we report 1� P
E

.
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The multitude of target sources that we can test on in Chapter 6 allows us to mea-

sure the classifiers’ performance in a statistical manner. Several statistics will be

displayed. Formally, if E1

test

...En

test

are errors on each of n sources then the average

detection accuracy of a classifier, displayed as “µ”, will be calculated as:

µ = 1� 1

n

nX

i=1

Ei

test

.

Similarly for �, the standard deviation:

� =

vuut 1

n

nX

i=1

��
1� Ei

test

�
� µ

�
2

.

Both µ and � will be serving as a general measure of a detector’s robustness. µ tells

us about its generalisation - if we were to pick an image from a random actor this is an

empirical estimate of how accurate our classifier’s prediction will be on that image.

We are also interested in �, which allows us to reason about the detector’s variability

in di↵erent sources. Higher µ and lower � scores should indicate a better classifier.

It is important to note, however, that even though we often measure steganalysis

security in terms of the detectors generalisation accuracy (µ), there are real-world

situations where other measures may be considered equally important. For example,

let us consider a situation where a legal decision has to be made based on predictions

from our binary detector. If the accuracy of the classifier varies between di↵erent

sources (as expected based on the current state-of-the-art), then it is the worst case

detection accuracy that is likely to be decisive when choosing the best detector. It

may be di�cult to measure the true worst case scenario performance from a fixed

sample of sources. It can be shown that as the number of examples in each test

source tends to infinity the generalisation accuracy of a classifier tends to the worst

case. We will be using the minimum accuracy (displayed as “min”) as a rough

estimate.

5.3.2 Model error

Model error relates to the choice of statistical model, or in our case, the choice of

classifier and whether it is capable of capturing the patterns that exist in the data,

whilst allowing for desired computational cost given a fixed representation (features).
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The theory of statistical learning applies here and we discuss it in further detail in

Chapter 7. To account for model error we propose to test multiple classifiers of

di↵erent complexity - linear and non-linear ensemble and kernel-based classifiers.

5.3.3 Calibration error

Calibration error may arise from data-related and classifier-related issues. Some

examples are given below.

5.3.3.1 Data-related issues

To minimise the e↵ects of calibration error due to data format and handling we

perform a number of steps, most of which are used regularly in steganalysis research.

Many of these are self-explanatory, others are discussed in more detail.

• All final testing is performed on testing data which are disjoint from the train-

ing or the validation data (obvious in mismatched cases but also important for

matched tests).

• The data sets used for validation and testing should be large enough such

that the measurement error is low for our statistical tests to be viable. In

other words the standard error should be smaller than the expected standard

deviation between di↵erent testing sets. The smallest testing set for us is

composed of 1000 test examples and with the expected accuracy of 85% the

confidence interval is ±2.2% at 95% level4. For the larger matched data set it

is 1.6%.

• Throughout all experiments we assume a binary problem with equal prior

probabilities on the two classes, i.e. all data sets contain an equal split be-

tween cover and stego images. In addition, no cover-stego pair is split between

training and testing data sets. Preserving cover-stego pairs has been shown

[106, 67] to be important for training binary classifiers for steganalysis, par-

ticularly during hyperparameter optimisation because estimation procedures,

4For the binary case this is calculated as C.I. = z

r
p(1� p)

n

, where z = 1.96 (for 95% level),

p = 0.85 and n = 1000.
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such as cross-validation, may be sensitive to this and it would otherwise lead to

finding a suboptimal set of hyperparameter values. It was shown [67] to a↵ect

smaller payloads to a greater extent where the separation between classes is

worse. Whilst we have not formally tested whether this problem occurs when

optimising on larger data sets, most of our hyperparameter optimisation is per-

formed on data sets of similar size to [67] and as such we follow this guideline.

A testing data set composed of cover-stego pairs may introduce dependencies

between false positives and true positives (and between false negatives and true

negatives), which may slightly a↵ect performance statistics such as accuracy

and the receiver operating characteristic curve. In this thesis we use paired

testing following the convention in steganalysis literature.

• The images creating cover-stego pairs are drawn at random from the data set

and the sequence in which they are visited is randomised.

• Normalisation of the data is performed to zero mean and unit variance. Or-

dinarily the normalisation factors (the mean and the standard deviation) are

calculated on the training set. Whilst this may be practical for smaller data

sets, it was not for our mismatched training set. This is especially problematic

if a training set is large enough to require online-only training in practice. One

might consider approximating the normalisation factors as training examples

arrive, but we decided to use the validation data set instead. We calculate

multiple sets of normalisation parameters - one for each di↵erent type of pay-

load.

• The training and testing actors’ selection is preserved between the tests of

di↵erent classifiers, however some noise may be present in the results due to

the di↵erent random payloads embedded.

• When the computational requirements of a classifier restrict us to training on a

subsample of the full training set we perform five such samples in order to min-

imise the chance of a bad sample producing a biased model and a↵ecting the

final testing results. The mean, standard deviation, minimum and maximum

metrics in these cases are calculated over all five runs.
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• For the situation when the classifier cannot be trained on all of the training

data it is important to ensure good sampling. We compared two strategies: a)

a more diverse data sampling strategy in which we sample images at random

from from a mixture of training sources; and b) a less diverse data sampling

strategy where we select a small set of sources and use all of their images for

training. In [82] we tested both strategies and include the summary table here

for completeness (consider the second column of Table 5.1). It was found that

the more diverse data sampling strategy is statistically better - it produces

models which are more stable when tested on our mismatched testing set of

100 actors. This is reflected in the reduced standard deviation (�2) figures,

where the reduction tested to be statistically significant (p⌧ 0.001) as shown

in the second column of Table 5.1. With this in mind the heterogeneous-

mismatched experiment (Experiment 3) of the next chapter is based on using

this sampling strategy.

5.3.3.2 Classifier-related issues

Many classifiers allow for tuning their learning through the use of hyperparameters.

They are often explicitly stated and have well-defined e↵ects on the learning algo-

rithm in theory. In practice, their values must be found empirically by performing a

search through the hyperparameter space. This allows us to maximise the chances of

selecting good parameters for each learning problem. Several techniques automating

this search have been proposed, for example the adaptive learning rate used by the

Vowpal Wabbit (VW) implementation [76] (see Section 5.4). In many situations

simpler techniques are preferred such as five-fold cross-validation (KSVM) and out-

of-bag error estimate (ensemble classifiers). These procedures are straightforward to

implement and allow us to explore the parameters space by sampling from discrete

points using training and validation data only. Simplicity equates to transparency

and ease-of-use, although it also leads to a substantial increase in the computational

cost. For example, the grid search needs to visit i⇥ j points, where i and j are the

number of distinct values tried for the two hyperparameters respectively. In our case

we often explored grids of 9-by-9 or larger. At each point the measurement had to be

as precise as allowed by the available data hence the need for tools such as five-fold
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Table 5.1: Comparison of the more diverse (subscripted with “1”) and the less diverse
(subscripted with “2”) training data sampling strategies (see text for details). The
two strategies are compared for two classifiers, KSVM and EFLD, using the Student
t-test (µ

1

vs µ
2

) and the F -ratio test (�2

1

vs �2

2

). A higher mean (µ) means better
accuracy on average, whilst a lower variability (�2) means better robustness. The
last column shows the results. There is no statistically significant di↵erence in the
average performance (µ) for either of the two classifiers at 95% confidence level
(p > 0.5 for both KSVM and EFLD). There is however statistically significant
di↵erence between the two sampling strategies in the variability (�2) in performance
they yield for both classifiers (p-value was significantly lower than 0.001 for both
KSVM and EFLD). The conclusion can be drawn that the more diverse training
data sampling strategy produces more robust classifiers. Middle column is given
for reference with the performance in matched experiments. Table reproduced from
[82].

Test
matched v more diverse v

more diverse less diverse

K
S
V

M

µ
1

> µ
2

t = 11.03 t = 0.54

df = 62.80 df = 154.21

p⌧ 0.001 p > 0.5

�2

1

< �2

2

F = 2.59 F = 3.28

df = 99, 25 df = 99, 99

p < 0.05 p⌧ 0.001

E
F
L
D

µ
1

> µ
2

t = 8.88 t = �0.29

df = 57.20 df = 172.86

p⌧ 0.001 p > 0.5

�2

1

< �2

2

F = 2.21 F = 2.23

df = 99, 25 df = 99, 99

p < 0.05 p⌧ 0.001

cross-validation, which are designed to facilitate the hyperparameter search when

training and validation data is limited. Accounting for cross-validation, which was
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performed when optimising for the homogeneous-matched experiments and some of

the heterogeneous-mismatched experiments, a 9-by-9 grid search amounts to 405

runs of the classifier. The procedure may need to be repeated for each embedding

payload as this may change the learning pattern of the classifier, and hence the op-

timal values of hyperparameters (more on this to follow below). For each classifier

and each learning problem we perform an extensive search.

We continue this section with a description of di↵erent techniques used for hy-

perparameter optimisation. We first consider optimising algorithms trained in the

batch/iterative setting. Here the minimum processing unit is a single iteration (or

in the case of FLD and KSVM - the full training run) and the loss and training and

validation errors are measured on per-iteration basis. Then online training will be

discussed, where a processing unit is a single example.

Optimising linear classifiers

Early stopping is a simple technique which can be used to avoid overfitting in simple

linear classifiers such as Average Perceptron or non-regularised Logistic Regression5

and can be viewed as an implicit hyperparameter (number of iterations) when train-

ing in batch mode. Here, we train the classifier iteratively until convergence and

evaluate its performance on a validation set at each iteration. The model that gives

the highest accuracy is picked for the final test. Convergence happens when there

is no further improvement in the value of the loss (or the training error E
train

does

not improve any further). The best model according to the early-stopping criterion

is the best performing model on validation data (E
val

) before or at convergence.

Figure 5.2 shows an example graph generated from training AP on nsF5 0.05. Here

the best model is selected from the region which is closest to the red min(E
val

) line.

If a classifier’s objective function incorporates the `
1

or `
2

regularising terms, these

are often controlled via hyperparameters, e.g. �
1

and �
2

. The advantage of using

this form of regularisation is that the final model, after some n iterations, will be as

5Although VW’s implementation of LR includes l1 and l2 regularisation; in this project we use
l2.
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Figure 5.2: AP regularisation via early stopping. Figure 5.3: SVM regularisation using `
2

norm.

close to the best model as allowed by the �
1

or �
2

parameter. The number of itera-

tions n must be large enough for the model to converge. However the introduction

of the extra �
1

and/or �
2

hyperparameters requires further parameter optimisation

via, for example, a grid-search. Results from an example of such a grid search are

shown in Figure 5.4.

Some linear classifiers, such as the Logistic Regression and the linear Support Vector

Machine, naturally incorporate regularisation into their objective function.

Often di↵erent problems call for di↵erent values of hyperparameters, therefore the

above graphs are only illustratory and would generally have the optimal regions at

di↵erent points through the training. However, given enough iterations and the right

value of the � parameter the optimal region will be any point at or after convergence.

Optimising KSVM using the grid search

Grid search is one of the most popular methods to tune hyperparameters for the

Kernel SVM. It is a straightforward but expensive procedure: the classifier is trained

repeatedly with hyperparameters selected from a pre-defined grid of values. This
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Figure 5.4: SVM regularisation via grid search. The figures in boxes show E
val

values for
di↵erent combinations of ⌘ and � hyperparameters.

grid is typically on a log-scale, for example:

C 2
�
2i | i 2 {1, 3, ..., 21}

 
and � 2

�
2j | j 2 {�23,�21, ..., 5}

 

We also use a second finer grid around the region of interest. The combinations of

parameter values that yield the best performance are selected for final training. For

those experiments that involve the homogeneous data and therefore incur a limit on

how much training and testing data is available for each run we pair this method

with five-fold cross-validation. In heterogeneous cases where data is ample we create

one training and one validation set of the same size for each experimental run.

One problem was found with the results of the cross-validated grid-search, which

yielded unusual spikes on the contour-graph (see Figures A.1 and A.2 in the ap-

pendix). Under closer inspection these proved to be abnormal as the respective

hyperparameter values produced vastly suboptimal test performance. We attribute

this instability to one (or both) of the following factors: a) the training data set that

was available was too small to produce reliable results under the grid search b) the

folds were too small (perhaps a ten-fold cross-validation would work better) and the

data within the overall training set not independent enough to train an unbiased

model. In the heterogeneous cases when there was enough data to perform only

a single training-test run for each point on the grid these problems did not occur.

This is somewhat counter-intuitive because one would expect that the homogeneous
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data, which is considered to be easier than the heterogeneous data, should yield

more reliable results (especially given the grid search); however this was not the

case. For an illustration of this issue compare Figures A.1 and A.2 in the appendix.

Figures 5.5 and 5.6 show the final results of a grid-search for KSVM on hetero-

geneous data with nsF5 payload embedded at 0.05 bpnc. For this we used two

disjoint sets of 3000 cover-stego pairs, one for training and one for finding the val-

idation error. It is evident that the classifier is more sensitive to the kernel’s �

parameter than the cost parameter C (shown by the longer vertical ridges of the

contour graph). We can see that relatively small values of the � parameter, between

2�17 and 2�21, provide best results which means that the classifier favours highly

complex models. The situation is similar for other payloads and scenarios with the

plot shifted towards the lower part of graph when payload is increased (i.e. the cost

of misclassification can be lowered with the higher embedding payload).

Figure 5.6 depicts the second finer grid-search around the optimal region. It can

be seen that it is relatively unstable with a general trend of declining performance

towards the top left corner of the contour plot. However the instability is within the

region of 0.5%. The conclusion from this is that a finer grid search is probably not

required.

Figure 5.5: Kernel SVM grid search. Figure 5.6: Zoomed-in on the region of interest.
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Optimising the ensemble classifier with line search

The procedure used for optimising the hyperparameters of the ensemble classifier

proposed in [70] is e↵ectively a line search with extra steps around the critical val-

ues to localise the minimum. We adopt a similar procedure here. As per Section

4.3.2 there are two hyperparameters: the number of base learners L and the size

of subfeatures space for each base learner k. From our experience the error con-

verges to a stable “optimal” value once both hyperparameters’ values exceed their

respective critical points, say L
opt

and k
opt

, which mostly echoes the findings in [70].

In practice this means that given a large enough computation budget we can set

L > L
opt

and k > k
opt

without the risk of increasing error. The crucial step is then

to find L
opt

and k
opt

. We performed a line search first on L followed by a search on k.

In contrast to [67], where the author used the out-of-bag error to estimate the

classifiers’ parameters, we use the validation error as for all other tested classifiers.

This is arguably a better estimate of the generalisation error for our experiments,

especially those experiments where the source (training) and the target (testing)

data are drawn from di↵erent data sets. This is due to the fact that out-of-bag error

is measured on the training set and is therefore by definition biased towards the

source data and not the target data as it would be preferable. Whilst the validation

data used in our mismatched experiments is also drawn from a di↵erent set to the

target data it is not biased to the training (source) data set and therefore should in

theory allow for a better estimate of parameters.

The initial values for the two hyperparameters that were used in our experiments

which appeared in [81] and [82] were chosen by this search. In experiments appear-

ing in Chapter 6 (next chapter) we confirmed these by simple manual search to cater

for the other payloads.

Hyperparameters and online training

Some simplification arises when training is done in an online as opposed to the batch

setting. In this case a classifier is generally less prone to overfitting because each ex-

ample is only seen once. On the other hand, the parameters such as the learning rate
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and the �
1

and �
2

regularisation parameters have a direct impact on the model which

is produced at the end of a one-pass run. For example, Vowpal Wabbit’s implementa-

tions of LR and SVM allow for very fine control over the learning rate through the re-

lationship which can be described with the following equation (reproduced from [76]):

⌘
t

= �dk

✓
t
0

t
0

+ w
t

◆
p

,

Figure 5.7: Tuning VW’s learning rate.

where � is the learning rate parameter, t
0

is the initial weight and w
t

is the weight

of example t. In our experiments these were optimised for both LR and SVM. In an

online setting the dk term is constant, where d is the learning rate decay parameter

with k being an iterations counter. Then, the graph for ⌘
t

takes the general shape

illustrated in Figure 5.7. The scale, the curvature and (the asymptotic properties

of) the tails are controlled by the parameters �, t
0

and p respectively. In our exper-

iments these parameters were largely optimised by grid search with t
0

chosen using

a manual search.

Other online-capable classifiers can be controlled in the same manner. From our

experience setting the AP’s learning rate to 1 appears to work well in practice.

Fine-tuning these parameters to data of particular di�culty and size requires skill

and there is a plethora of heuristics available at a practitioner’s disposal [18]. Re-

gardless of the optimality of the parameters, one-pass-optimal performance may not

necessarily match performance of a model trained iteratively. It has been argued
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[17], that with a finite training set a classifier’s optimal performance is not neces-

sarily achievable in one-pass using standard first-order optimisation methods such

as the SGD. The solution is to use second-order algorithms which have been shown

to achieve near-optimal test set performance [17], however these are generally com-

putationally expensive, which may or may not be justified by the problem given a

fixed time and space budget. Whilst the above holds true for our experiments (see

Table 5.3), most of the statistical results presented in the next chapter would still

hold. We restricted our online experiments to first-order SGD-based optimisation.

When tuning a classifier for one-pass training it is important to look for convergence.

Convergence can be measured using the validation error as we progress through the

training set. Figure 5.8 shows the validation error graphs for four di↵erent online

learners (Average Perceptron, Logistic Regression, SVM and online ensemble Aver-

age Perceptron), highlighting their online training progress through the 1.6M data

set6. We can see that there are no signs of overfitting from any of the classifiers

including the weak-regularised AP. This points to the decreased danger of over-

fitting when performing one-pass online training.Figure 5.9 also shows the region

where the OEAP ensemble learner is starting to converge in terms of the number of

baselearners needed to achieve the minimum error. For this graph the baselearners

were selected in a greedy fashion using their individual validation error. It can be

seen that a significant number of baselearners, approximately 100, is required for

the ensemble to achieve this7.

Other interesting observations that can be gleaned from this graph are as follows.

The ensemble classifier approaches its minimum validation error faster than oth-

ers, approximately 1/8th of the way into training8. This reiterates our previous

findings where the FLD-based ensemble appears to converge early resulting in no

further improvement with added training examples [81]. Whilst the linear classifiers

6Please note the non-linear x-axis.
7Please note that the x-axis is on non-linear scale.
8We depict the performance of the ensemble classifier as discreet points rather than a line to

highlight the added cost of testing this type of classifier, however it is still in this instance trained
online.
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Figure 5.8: One-pass online training. Figure 5.9: Forward greedy baselearner selection.

also demonstrate a tendency towards convergence in the later stages of the online

one-pass training run they do not match the same detection performance as can be

achieved using iterative training9 (see Section 5.3.4.1 and Table 5.3 for details) which

confirms our point above with regards to the optimality of one-pass training using

first-order algorithms. We will revisit this point with regards to the linear classifiers

in Section 5.3.4 where we compare their performance figures from a single one-pass

(i.e. online training) and multiple iterations over the full training set. Please note

that the relative instability in their validation accuracy that can be observed from

the graph in Figure 5.8 in the range between 800 000 and 1600 000 is contained

within 1% in most cases.

5.3.4 Computational constraints

Some of the classifiers have very di↵erent time and space complexities. There exist

problems for which the complex algorithms such as the kernel SVM may be too slow

and we will argue in the next chapter that steganalysis may be one such problem.

Most optimisation algorithms associated with such classifiers currently o↵er only

super-O(n) training time complexity. In particular, KSVM’s time complexity is of-

ten quoted to be between O(mn2) and O(n3), where m is the number of features

9We used the same SGD-based optimisation algorithms to train these classifiers in both one-pass
and iterative experiments.
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and n is the size of the training data. Taking into consideration the requirement of

careful hyperparameter selection, the practical computation time of such algorithms

increases even further. This limits the size of problems that can be solved with such

algorithms. To illustrate this consider a situation when we have a high-bandwidth

distributed learning system that trains at as many as 470M features per second -

the bandwidth of one of the fastest “classifiers” tested to date [2]. Even at such high

bandwidth if it uses a quadratic optimisation algorithm it will require years to train

on our full data set of 1.6M training examples. This problem is exacerbated by the

complexity of modern steganalytic feature sets, which contain tens of thousands of

features. There is potential for even larger and perhaps sparse representations in

the future which would render it impossible to use KSVM-like classifiers.

The problem of scaling steganalysis experiments to larger features has been encoun-

tered recently in [70], where KSVM was reported to scale poorly with the number

of features given a fixed data size. This forced the designers of the first “rich” fea-

ture set to introduce the ensemble classifier based on random projections for their

experiments [70]. A supporting result using the same features but scaling to larger

data sets was given in [81], also favouring simpler classifiers.

What this means for the experiments presented in Chapter 6 is the following. The

above complexity requirements raise the need to limit the size of training data for

KSVM (and also the ensemble classifier, see discussion below). Before we discuss

how we decide on the necessary limits let us consider the computational resources

that are available at the time of writing.

The experiments for this thesis were run on a combination of computing resources,

which are shown in Table 5.2. The majority of linear and ensemble experiments

were performed on the first two systems, Arcus and Caribou, which are both part

of the Advanced Research Computing (ARC), an Oxford University supercomput-

ing facility formerly known as the Oxford Supercomputing Centre. Arcus was used

extensively for parallelised grid-search and parallelised testing. Caribou was used to

84



CHAPTER 5. DESIGNING EXPERIMENTS

set the timing benchmarks for AP and KSVM and for some of the most resource-

intensive experiments using KSVM and iterative linear classifiers on large data sets.

Table 5.2: Computing resources used in our experiments

Owner Name Description Memory

Andrew T7500 12-core server 196 GB

Andrew “the cluster” 8 + 1 4-core computing nodes 8⇥ 8 GB + 1⇥ 24 GB

ARC Arcus a cluster of 80 + 4 16-core nodes 80⇥ 64 GB + 4⇥ 128 GB

ARC Caribou 64-core system 1 TB shared memory

Such computing resources allow for some very large scale experiments and it is

important to give good consideration to the practical limits of running certain al-

gorithms. Several di↵erent paradigms for training the linear and ensemble clas-

sifiers were explored - a fully online system with on the fly computation as well

as iterating over the full data set loaded in memory. Unsurprisingly the fastest

of our approaches was the second, however this was only possible on Caribou10.

The speedup that can be gained from training linear classifiers (e.g. AP) with the

full heterogeneous-mismatched training set (1 600 000 examples, approximately 580

GB) loaded in memory is as follows. For example, Average Perceptron takes ap-

proximately 12 minutes per iteration plus time to embed and extract the data and

load it (approximately 30 hours if cover and stego examples are extracted in parallel

or faster11). With all the processing being done sequentially and “on-the-fly” the

same computation takes over five days. The throughput that was achieved using the

faster approach was approximately 50M features per second (including the necessary

I/O operations) which is only one order of magnitude slower than a distributed VW

system with 1000 nodes that we mentioned earlier - one of the highest bandwidth

learning systems tested to date [2].

10Caribou is a system shared by many users and sometimes has limited availability.
11This is an example of an embarrassingly parallel computing problem where each image can be

processed independently of all others and the I/O bandwidth becomes the performance bottleneck.
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For a fairer comparison a decision was made to allocate the classifiers to computing

resources of the same order of magnitude, however we restricted ourselves to limit-

ing time only and not space. The main question then concerned the heterogeneous-

mismatched experiments where over 500 GB of training examples were available to

train from. Specifically a decision needed to be made with regards to how much

time we were to make available for training the KSVM based on the allowed re-

sources. Kernel SVM’s training and testing time is known to be dependent on the

choice of hyperparameters and the complexity of the learning problem. The poten-

tial for training on multiple cores using LIBSVM’s support for multithreading using

OpenMP (Open Multi-Processing) complicates things even further. On Caribou

we were able to run up to 64 parallel threads allowing for a significant speedup in

training and testing. The link in reference [21] gives further details on where the

parallelism is available in the LIBSVM implementation.

In addition it was decided to limit the time budget of the EFLD classifier because it

was found that there was no accuracy to be gained from using more training exam-

ples as we have shown in [81] (and reproduced in Figure B.1), where it was found

that a minimum of 20 000 training examples was su�cient [81]. This was supported

by the observation we made earlier about the OEAP’s convergence during one-pass

training (see Figure 5.8).

The final decision was to limit the wall-clock time of KSVM to the same order

of magnitude as that needed to train the fastest classifier in our tests - the Average

Perceptron. This was found experimentally by a trial-and-error procedure using the

final values for hyper-parameters from the grid-search and training sets of di↵erent

sizes. All possible options for speedup were enabled including the OpenMP multi-

threading and the option for enlarged bu↵er12 which regulates the proportion of the

Gram matrix to be stored in cache.

An estimate was done using the following heuristic. Taking the problem of de-

tecting nsF5 embedded at 0.05 bpnc as a baseline we were able to establish that AP

12This is controlled through the “-m” option on the command line.
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required no more than 20 iterations to converge when trained on the full training

set of 1.6 million examples. At 12 minutes per iteration this amounted to 4 hours

of wall-clock time. It was measured that I/O was taking an additional 2 - 30 hours

to load the data set into memory depending on the availability of resources. In

comparison the wall-clock time used by KSVM when trained on 6 000 and 20 000

examples was 40 minutes and 20 hours respectively. A KSVM run using 40 000 ex-

amples was aborted after 30 hours of wall-clock time (and approximately 600 hours

of CPU time). It was decided that 20 000 examples was a good compromise with

a large enough safety time margin in case some of the more di�cult problems such

as detecting sPQ with 0.2 payload were to take longer. The runtime of all other

classifiers was adjusted accordingly.

For ease of exposition, the post-factum training times on the binary problem of

classifying cover versus nsF5 0.05 payloads are summarised under the relevant head-

ings below13. Two benchmarks are provided: the total walltime and per-example

training times. For iterative experiments the walltime is measured as training time

until best model14 - any additional time spent training is considered as part of op-

timisation. For one-pass classifiers both timings include on-the-fly embedding and

feature extraction. The timings shown are for illustrative purposes only and should

not be used as a formal benchmark.

Average Perceptron

Using iterative training and over 500 GB of memory AP took only 10 hours

to train on the full training set. This amounted to per-example benchmark of

0.00045 seconds. In contrast a one-pass training run with minimum memory

overhead required over 80 hours. The online update, which included our sim-

ulation of payload embedding as well as on-the-fly feature extraction required

0.18 seconds.

Support Vector Machine

The third-party implementation of SVM used 40 hours to train until conver-

13Please note that there is some noise in these measurements which is due the availability of
resources/scheduling as well as di↵erent implementations of classifiers.

14Best model is found using validation error.
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gence in iterative setting, which gives an average of 0.00113 seconds per update.

The factor of four di↵erence in walltime benchmarks is slightly inflated due to

I/O, which was longer in the SVM’s case due to scheduling. In practice the

training updates were taking between 2 and 3 times longer.

Online training with the same system and a single pass through the data

required approximately 120 hours in total or 0.27 seconds per update.

Ensemble Fisher Linear Discriminant

EFLD’s training on 20 000 examples required approximately 10 hours and 1.8

seconds per example in the batch setting or 2.7 seconds per example in the

pseudo-online15 setting.

Online Ensemble Average Perceptron

OEAP was trained on the full training set of 1.6M examples in 320 hours or

approximately 0.72 seconds per example16.

Kernel Support Vector Machine

This could only be trained in batch setting and required 22 hours to train on

a subset of 20 000 examples, which is approximately 3.96 seconds per training

example.

5.3.4.1 One-pass or iterations until convergence?

Processing the linear classifiers in memory on the full mismatched training set al-

lows for fast execution of multiple iterations. However doing this requires abnormal

computational resources, in particular to store circa 580 GB of data in memory. To

evaluate whether this yields a significant improvement over online training of the

linear classifiers we performed several tests. An intermediate solution between these

two cases would be to perform mini-batch training. We have not fully investigated

this option except in [81] where some positive results were found (reproduced in this

dissertation in Figure B.1 in the appendix).

15See Section 4.2.3 for more details.
16No iterative training was performed here because OEAP appeared to converge well within the

progress of a single pass (see Figure 5.8).
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In normal circumstances, when we have limited computational resources, we might

be forced to do online or mini-batch training due to a fixed resource budget. In online

training the speed is traded for the storage and memory resources. The empirical

evidence of this trade-o↵ can be seen in the di↵erences in speed per example of the

SGD trained linear algorithms (AP and SVM), which were given as “per example”

training times in the previous section. In the fully-online training the extra time is

taken by payload embedding and feature extraction both of which combined are up

to 150 times slower than a classifier’s training update. Table A.1 in the appendix

gives a full breakdown of timing benchmarks for these operations for AP and EFLD

- the fastest and the slowest of our online-capable classifiers.

To investigate how much performance is lost by having only a single pass some

extensive experiments were performed to mirror those that appear in Chapter 6.

The results are included in Tables C.1 and C.2 in the appendix for completeness.

We started by looking at the case of detecting nsF5 using a batch-trained AP, which

yields approximately 1% gain in µ and min results over the model trained in one

iteration. The question of whether the full 1.6M example training set was required

for training our classifiers (those that were capable) requires careful consideration.

A simple answer is provided in Table 5.3, but we will return to this issue in more

detail in Chapter 7. The table shows that using less training data seems to have

a negative impact on the success of AP (the µ column). Here the tests in which

subsets of 16 000 and 160 000 examples (also shown in Figure 5.10) from the training

set were used for iterating until convergence and were each repeated five times using

a random subsample each time with the more diverse sampling strategy. In contrast

in the tests marked with * only one training run was performed because no resam-

pling is possible all examples were used for training. On a closer inspection, we can

see that for sPQ the di↵erence between one-pass and batch figures is rather large.

In the subsequent experiments we therefore use batch training where possible.
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Table 5.3: Heterogeneous mismatched results using AP in batch and online settings.
In batch setting we continued iterating until early stopping criterion satisfied. A
single pass was made in online setting.

Payload
Training Training

µ
Training

regime size accuracy

nsF5 at

0.05 bpnc

batch

16 000 0.7956 0.9322

160 000 0.8375 0.8915

1 600 000 0.8640 0.8755

online 1 600 000 0.8530 –

nsF5 at

0.1 bpnc

batch

16 000 0.9087 0.9936

160 000 0.9630 0.9793

1 600 000 0.9701 0.9766

online 1 600 000 0.9689 –

sPQ at

0.2 bpuc

batch

16 000 0.6437 0.8843

160 000 0.6763 0.7638

1 600 000 0.7085 0.7276

online 1 600 000 0.6808 –

sPQ at

0.4 bpuc

batch

16 000 0.7856 0.9655

160 000 0.8340 0.9093

1 600 000 0.8758 0.8934

online 1 600 000 0.8495 –



Figure 5.10: Convergence of AP as a function of increasing training set size. Please
note the non-linear x-axis.
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5.3.5 Uncertainty quantification (benchmarks)

In order to gain a solid understanding of the results all important comparisons are

tested for statistical significance. We employ two statistical tests:

t-test is used for establishing if the di↵erence between the means of two results

is statistically significant. We employ Student two-sample t-test and, to ac-

count for unequal population variance, the Welch’s degrees-of-freedom (df)-

adjustment [102] is used. A classifier’s accuracy on each actor’s test data is

taken as one data point.

F -ratio test is used to compare the variances. A classifier with lower variance is

more stable, which is a desired property of any steganalysis detector and is a

proxy for its tolerance to cover source mismatch.

It is unclear how we can measure the inherent amount of cover source mismatch that

is present in a detection problem. In the experiments below we view this problem in

terms of its a↵ect on the classifiers’ generalisation accuracy. We propose to measure

it by statistically testing the di↵erence of the variance of the best classifiers. This

definition is somewhat analogous to the definition of steganographic security given

in Chapter 1, where we say that the security of a steganography system is defined

by the best detector. In Chapter 7 we give an example of a predictor of the cover

source mismatch which is given as an empirical measure of discrepancy between the

training and testing data.

5.4 Some implementation details

The code to perform our experiments incorporated many languages and libraries.

We have the following stages in the processing pipeline, which can be done on a per-

example basis in one-pass experiments or a per-data-set basis in batch experiments:

1. Payload embedding (own implementations of simulations in C and Python

with interfaces to Independent JPEG Group’s libjpeg library17)

17
http://www.ijg.org
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2. Feature extraction (own reimplementation of Kodovsky’s Matlab code18 in C)

3. Classifier training update/test (own implementations of all classifiers in Python

(with occasional interface to the Basic Linear Algebra Subprograms (BLAS)

[12]) except for linear SVM and LR (Vowpal Wabbit [76]) and KSVM (LIB-

SVM [21]))

18
http://dde.binghamton.edu/download/feature_extractors
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Chapter 6

Experimental results

This chapter is devoted to introducing our experiments and their results. We aim

to contribute to the field of steganalysis through a focus on real-world, large data to

investigate cover source mismatch in a variety of settings, including some that have

not previously been analysed. Specifically, we test a selection of classifiers in a series

of three experiments, to examine whether choosing to train on large, mismatched

data can have a positive e↵ect on mitigating the cover source mismatch.

6.1 Background and motivation

There is a discrepancy between data used in steganalysis research and real-world

data. One distinctive characteristic of real-world data is its abundance. Digital

images are the most used type of media on the Internet and users upload millions

of new pictures every day. The o�cial figures from Facebook, from 2012, report

that it has on average 300 million [28] photos being uploaded to it every day. Other

major photo-sharing websites such as Flickr have comparable figures [1]. Unlike in

other supervised image-based machine learning problems such as sentiment analysis

where labels must often be annotated by hand, in steganalysis it is easy to acquire

new examples; one simply downloads more images to get additional cover data and

embeds a payload of choice to create stego data (assuming the source of images is

known to contain only covers). The associated pipeline operations that are required

for a typical experiment, namely payload embedding, feature extraction and class

labelling, entail no manual processing and can be fast. With the right choice of clas-
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sifier this, in theory, allows us to process virtually unlimited data. Many supervised

classification algorithms apply, however simple linear learners are often associated

with such problems owing to their fast training and straightforward convergence

guarantees1.

There are currently two caveats linked to real-world data. First, the data from

a real-world sample, such as images from Facebook, contains examples from many

di↵erent cameras, each example exhibiting a di↵erent mixture of characteristics that,

as we established earlier, define a source (so images from Facebook would belong to

many di↵erent sources). This creates di�culties for training a detector that gener-

alises well to examples from a new source, as we show in the due course. Second,

it is not generally possible to guarantee that all downloaded data are covers. We

have to assume that it is and take it as the ground truth. Even if it is not, the

likelihood of it having a visible e↵ect on our results is very small as we do not

believe that steganography is widespread enough on Facebook (or on the Internet

in general) for our sample to be highly contaminated. Furthermore, given the fact

that real-world data is generally noisy with images containing synthetic content and

other anomalies, a small number of stego examples will simply compound that noise.

The alternative approach has underpinned the majority of steganalysis research to

date. Steganalysis literature either implicitly or explicitly makes the assertion that

an approach to steganalysis works if the classifier in question works on a data set

from a single source (or a small collection of sources). Complex kernel-based clas-

sifiers are common throughout the literature [94, 70, 84, 44, amongst many others]

and a typical testing scenario includes one or several image sets. These image sets

typically come from a single cover source or a limited selection of sources. Often

this is a personal photo library or a public image database such as the Natural Re-

sources Conservation Service (NRCS) photo gallery [91]. One popular library that

was first used in the Break Our Steganographic System (BOSS) contest in 2010

contains 10 000 images (version 1.0) from 7 di↵erent cameras [5]. In the literature,

1For example the Perceptron is guaranteed to find a separating hyperplane if one exists given
long enough to train; SVM is guaranteed to find an optimal separator for a given training set, as
its size tends to infinity; etc.

95



CHAPTER 6. EXPERIMENTAL RESULTS

such a library is typically split into training and testing examples and the testing

examples would serve as a proxy for the generalisation error of the detector. This

setting is artificial not only because it is limited to one source (or a small selection

of sources) but also because smaller data sets tend to produce undertrained models

when using modern highly-dimensional feature representations. As we show further,

there is a certain gap between the performance of detectors trained in this setting

versus those that are trained on more realistic data.

Historically steganalysis was tested using this artificial approach, which is the reason

why the steganalysis image libraries are relatively small (in the number of exam-

ples) compared to those used in other classification based machine learning related

tasks. We show that this may be a problem for detectors based on machine learning

classifiers. However it is generally di�cult to acquire many images from a single

source. One must take photographs with the same camera in a variety of di↵er-

ent real-world conditions and process them using the same tools for compression,

denoising and other operations which have also been found to contribute to the defi-

nition of a source. This is naturally a costly process and it would take an individual

years before they could collect hundreds of thousands of “well-distributed” images.

As it stands, the size of such individual homogenous data sets varies between 2000

(e.g. [59]) and 10 000 images; this figure is typically doubled if we consider the binary

classification problem, because each image contributes two examples: one cover and

one stego. Taking our sample of Facebook users as an example, out of more than

60 000 users visited only 26 had more than 3000 images and 1711 had more than

500 images. A similar situation was encountered in Flickr data.

In this artificial setting, many binary detectors have been shown capable of incredibly

accurate performance [71, 51, and others], especially when detecting non-adaptive

hiding schemes - furthermore they seem to be specialising to these conditions. How-

ever, in a realistic steganalysis situation the data is unlikely to be from a known

source. Not knowing the source means that our classifiers need to be robust - they

cannot be trained on data from the same distribution as the target data and a cer-

tain degree of performance degradation may be expected.
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In steganalysis this problem is referred to as cover source mismatch and only a

few publications have benchmarked the artificial setting against alternatives [4, 20,

40, 59, 94, 44]. The consensus amongst this research was for increased detection error

in this setting, ranging from apparently significant to dramatic. It has been shown

that combining data sets has a negative impact on the detection rates [43, 4, 94].

For example in [94] (Tables II and V) Pevny shows that training a KSVM model on

images from four sets lead to the classification error increasing two-fold. A similar

result was achieved in [4] with an FLD-based classifier.

As discussed in Chapter 3, the degradation in performance is often explained by

the features being oversensitive to image content, e.g. Fridrich [35] suggests that

steganalysis features like those used in [43, 4, 94] are sensitive to “microscopic”

properties of the source. Because the content of images varies so widely and the

stego signal is so weak, the features need to capture many local statistics about im-

age pixels or their transform domain counterparts. These features have proven to be

sensitive to many natural sources of variation that exist in images. It is known that

di↵erent camera models, image processing tools (e.g. di↵erent implementations of the

JPEG compression algorithm [67]) and even shooting conditions all have some e↵ect

on steganalysis features. It is still yet to be discovered how each of these factors (or

perhaps some complex combination of them if they have some non-trivial interplay)

influences the features. It is a challenging problem, because for many of these it is

virtually impossible to vary them independently in order to measure their impact

on steganalysis detection error. Furthermore, new feature sets have been proposed

at a rate of one every six months which makes such evaluation problematic.

6.2 A review of solutions

There are several possible solutions to the cover source mismatch problem, however

it is important to note that this problem remains largely unexplored [58]. Let us

consider solutions which have been proposed previously in steganalysis literature.

First, one could gather or create new images from the correct source, however it
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is unclear how to define a homogeneous source. As discussed above the physical sit-

uation which leads to it is dependent on many factors. Whilst it is possible to find

a great deal of information about the target images using various image forensics

tools such as extraction of the camera fingerprint [4, 83, 29, 39] it is not always pos-

sible to capture the full information about the cover source which therefore makes

it very di�cult to replicate the conditions in which the covers were created and thus

to build a bespoke set of training images that represents exactly the target source

distribution. This is referred to as forensics-aided steganalysis and it has not yielded

improvement in a recent steganalysis competition [39].

Another solution [92] is to design a bank of experts system where an image in

question would be first examined for known cover properties by an expert, such as

a classifier trained to detect the presence of double compression and subsequently

passed on to the next layer where a dedicated classifier trained on, say, double-

compressed images only would make the final decision with regards to the presence

of hidden payload of a known type. The bottleneck in this solution is in the require-

ment of the knowledge of what properties to test for in the first place - it is not yet

well understood whether it is possible to identify and decorrelate all possible cover

properties that may create mismatch.

An alternative solution is to design features that are less sensitive to cover source

and therefore would not require training and test data to come from the same ho-

mogeneous source. This was largely the impetus behind the design of the 24 993-

dimensional features which won the BOSS competition in [39]. Whilst in many

cases (specifically the spatial domain) it has been shown that other modern high-

dimensional steganalysis features (the “rich” models) improve accuracy in the situ-

ation of heterogeneous sources when compared to other features [39, 38, 51, 81], it is

unclear whether this improvement is attributed to the general increased performance

of such features or their reduced sensitivity to variations in the cover content. This

idea is echoed by some recent theoretical studies, based on the theory of generalisa-

tion bounds for domain adaptation. Ben-David et al. [8] gives an upper bound on

the generalisation error of a classifier trained and tested on data from two di↵erent
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distributions - they discus how this bound depends on the features: “we see that a

good representation [...] is one which achieves low values for both training error and

domain A-distance2 simultaneously”.

However, finding steganalysis features that provide a complete model of an em-

pirical source is considered to be a hard problem. More importantly, if Alice was

able to find such features there would be a danger of perfect steganography [15, 58].

Therefore, a more feasible solution perhaps would come from the field of machine

learning, in particular the works that deal with the general problem of learning

across domains and tasks. The plethora of relevant literature includes the topics of

domain adaptation, transfer learning and multi-task learning amongst others. To

our knowledge, the only published steganalysis work of this nature was [86], which

was based on multi-task learning and yielded a statistical improvement in generali-

sation performance over the standard approach.

The main idea of domain adaptation (DA) is to build more robust models for the

situation when training and test data are potentially generated by di↵erent sources.

The success of a DA-based solution depends on the training (source) and the testing

(target) data as well as their relatedness. The DA literature suggests that the choice

of training data (matched or some mixture of mismatched sources or a combination

of the two) is non-trivial [7, 87, 27] in contrast to the implicit assumptions in ste-

ganalysis literature [58], where matched data is favoured exclusively. For example,

Theorem 5 from the domain adaptation work of Ben-David [7], which we study more

closely in the next chapter, gives a uniform convergence bound for multi-source do-

main adaptation algorithms which minimise convex combinations of empirical source

and target error. It makes explicit the trade-o↵ between the size of data from the

source domain (or a collection of sources) and the accuracy that can be achieved

using target-only data. In some works [10] the authors go as far as saying that in the

most optimistic scenario (i.e. under conditions that appear to be most favourable

2Domain A-distance is a measure of distance between the distributions of training and test data
- we define it more formally in Chapter 7 (shown as a more general disc

`

).
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to DA) a DA approach will always3 succeed in the limit of training data size 4.

Steganalysis is yet to be tested for most of these properties and assumptions.

Our work is perhaps the first step towards understanding of how ideas from domain

adaptation can be applied to steganalysis. We look at the simplest solution which is

sometimes referred to as conservative domain adaptation [99, 9, 10], but can also be

thought of as not using domain adaptation (because we are not explicitly enriching

the learner with any information about the test data). Formally, this approach en-

tails training a maximally discriminating classifier on large quantities of mismatched

training data. Several questions are apparent: Does this improve detectors’ perfor-

mance? What does “large” data mean - do we need hundreds of thousands or millions

of training examples? Does the choice of classifier matter? We try to answer these

questions here with the help of three experiments: 1) using homogeneous-matched

data as a reference point for the “perfect” case; 2) using homogeneous-mismatched

data for a simulation of the standard setting in which cover-source mismatch has

been encountered; and 3) heterogeneous-mismatched data to test the proposed strat-

egy. We argue that approach 3 is better than 2 but also can match or exceed the

performance of 1 in some cases. The added di�culty to our analysis arises with con-

sideration of classifiers of di↵erent complexity, because we cannot ultimately train

O(n2) or slower classifiers on millions of training examples given modern tools (and

normal practical constraints).

6.3 Hypothesis

We argue that the advantage of training a classifier on mismatched data many orders

of magnitude larger than is normally possible in steganalysis in the matched case,

may outweigh the loss caused by the mismatch between such data and the testing

data. This is motivated by a fundamental result from the theory of statistical learn-

ing which tells us that a loss-minimising classifier is most likely to converge to the

optimal solution in the limit of the training data5 [114]. We show that this holds

3Or rather with high probability.
4More details to be discussed in next chapter.
5We will revisit this point more closely in the next chapter.
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even for classifiers of di↵erent complexity and in Chapter 7 provide an analysis of

why this might be the case.

We will work with the following hypotheses:

Hypothesis 1 : linear classifiers are more robust than non-linear classifiers to cover

source mismatch in real-world data (because they can be trained on more

data).

Hypothesis 2 : linear classifiers are so robust that given su�ciently large mis-

matched training data they can equal the performance of any classifier trained

on small matched data.

We test our two hypotheses using three experiments. Hypothesis 1 will be supported

by our results, whilst Hypothesis 2 will be invalidated. In turn, the sections below

present the three experiments each providing empirical evidence either in favour or

against the above hypotheses based on real-world data. In Experiment 1 we evaluate

the classifiers’ performance on matched data from one source. The assumption here

is that each source is small. In Experiment 2 we test models from 1 on unseen

sources - this provides the commonly accepted benchmark for cover source mismatch.

Experiment 3 extends this to large data where the training data is a mixture of

sources and the testing data is a collection of targets. In each experiment, the

quality of the classifiers’ predictions will be benchmarked against what is considered

to be a state-of-the-art detector - a large feature set (“rich” model) coupled with a

complex ensemble- or kernel-based classifier.

6.4 Experiment 1: Steganalysis in “laboratory” condi-
tions

In this first experiment, we aim to replicate the typical laboratory conditions for

steganalysis research, where the performance of classifiers is evaluated on a simple

binary problem and training and test images come from the same data set. We

deviate from the literature in two (small) ways. First, we repeat it for twenty-

six di↵erent data sets instead of the one or two that would be typical. Second, we
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consider only a small number of di↵erent problem parameters such as the embedding

method and size of payload. Otherwise, this experiment is in line with many previous

works appearing in the steganalysis literature. The preliminary results from this

section were published previously in [82].

6.4.1 Procedure for Experiment 1

Here we are testing the fully-matched scenario which requires images in the training

and test sets to be drawn from the same source, therefore one actor provides samples

for both training and test sets. We assume that the image source is homogeneous

for each actor but because this data was collected from real-world users there is a

small chance of some users’ images representing a mixture of sources.

The fully-matched data set B is composed of 26 actors having 4 000 cover images

each. We follow the procedure described by Algorithm 3.

In this experiment the accuracy is measured on images T
e

from the same actor

B

i

as the training images T
r

. Training on T
r

and testing on T
e

involves creating

cover and stego pairs of images from T
r

and T
e

respectively, i.e. stratified training.

The experiment is repeated four times - on for each di↵erent payload: nsF5 with

either 0.05 or 0.1 bits per non-zero DCT coe�cient or sPQ with either 0.2 and 0.4

bits per usable DCT coe�cient.

Algorithm 3 : Fully-Matched Data (Experiment 1)

1: for B

i

2 B do
2: Pick T

r

, T
e

2 B

i

, s.t. |T
r

| = 3000, |T
e

| = 1000 and T
r

\ T
e

= ;
3: Create pairs of cover and stego images from T

r

and T
e

4: Randomise order of T
r

5: Train on T
r

keeping track of estimated threshold t⇤

6: Test on T
e

using t⇤ or default t
7: end for

6.4.2 Results for Experiment 1

The results are given in Table 6.1, which shows the summary statistics across all

26 actors. The columns titled “µ” and “�” show the average and the standard
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deviation of detectors’ testing accuracy across all actors. For more details on how

these are calculated please refer to Section 5.3.1. The column “min” displays the

worst testing accuracy achieved on any of the 26 actors and similarly for the “max”

column. From the minimum and maximum figures we can see that the classifiers’

accuracy varies up to 12% between di↵erent actors (compare the “min” and “max”

columns in Table 6.1). This is a direct e↵ect of the CC-C300 features’ oversensitivity

to variabilities in cover source and echoes our findings in much earlier spatial-domain

WAM features6 [59].

From the results, it is apparent that linear classifiers produced somewhat less accu-

rate models when compared to KSVM and especially the EFLD. These results have

been tested for statistical significance for two best classifiers in each group (AP and

EFLD respectively), which is shown in the last two columns of Table 6.1. For all

payloads the t-test shows a statistically significant advantage of EFLD over AP (all

p-values are smaller than 0.01 which gives us 99% confidence level). At the same

time, the two classifiers appeared to produce equally stable performances based on

the F-test which showed no statistical significance in the di↵erence of their vari-

ances7.

In the unlikely scenario when we have access to larger training data set under the

same conditions as used in this experiment (i.e. training and test data generated by

the same distribution) there is potential for improving the performance of individ-

ual classifiers. However under the assumption that the data from the same source

is likely to be limited it is safe to conclude that the results hold. We will use these

figures as a benchmark when analysing the loss in generalisation accuracy which is

due to cover source mismatch.
6Although it must be noted that the di↵erence there was as large as 40% (cf. 12% for CC-C300

features) between some of the data sets
7Here and throughout this chapter we use the following null hypothesis: the true ratio of variances

is equal to 1. If the resulting p-value is less than, say, 0.05 we can reject the null hypothesis at the
95% confidence level.
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Table 6.1: Results from Experiment 1 comparing classifiers’ accuracy in matched-
homogeneous data using nsF5 at embedding rate of 0.05 and 0.1 bpnc and sPQ at
embedding rate of 0.2 and 0.4 bpuc.

Problem Classifier
Training Testing

µ � min max
t-test F-test

size size µ
EFLD

> µ
AP

�2

EFLD

< �2

AP

nsF5

at 0.05

bpnc

AP

6 000

images

2 000

images

0.8640 0.0280 0.810 0.918
t = 3.448

df = 49.63

p < 0.01

F = 1.187

df = 25, 25

p > 0.1

SVM 0.8646 0.0267 0.816 0.926

KSVM 0.8727 0.0262 0.818 0.934

EFLD 0.8902 0.0257 0.843 0.942

nsF5

at 0.1

bpnc

AP

6 000

images

2 000

images

0.9549 0.0125 0.935 0.979
t = 8.468

df = 46.95

p < 0.01

F = 1.660

df = 25, 25

p > 0.1

SVM 0.9571 0.0116 0.935 0.982

KSVM 0.9779 0.0092 0.958 0.993

EFLD 0.9820 0.0097 0.954 0.997

sPQ

at 0.2

bpuc

AP

6 000

images

2 000

images

0.6761 0.0227 0.635 0.739
t = 2.809

df = 49.07

p < 0.01

F = 0.758

df = 25, 25

p > 0.1

SVM 0.6761 0.0227 0.635 0.739

KSVM 0.6817 0.0228 0.637 0.738

EFLD 0.6954 0.0260 0.635 0.761

sPQ

at 0.4

bpuc

AP

6 000

images

2 000

images

0.8120 0.0245 0.783 0.884
t = 4.541

df = 49.99

p < 0.01

F = 1.032

df = 25, 25

p > 0.1

SVM 0.8164 0.0268 0.776 0.885

KSVM 0.8280 0.0266 0.781 0.899

EFLD 0.8504 0.0241 0.803 0.914

6.5 Experiment 2: Cover source mismatch in “labora-
tory” conditions

A simple extension to the above experiment is to perform conservative DA over

all actors - that is to see how the models from Experiment 1 generalise to new

targets. Here the data from each actor is used as “source” in turn while the other 25

actors are used as “targets”. This produces the total of 650 performance samples8.

However for a stable F-test the performance samples must be independent therefore

it is necessary to limit this experiment to 26 tests. In each test we train on actor

i and test on actor i + 1. More formally this procedure is shown in pseudocode in

8Appendix D.1 includes the detailed 26-by-26 tables, which include the 25 matched tests.
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Algorithm 4. This experiment models exactly what is most commonly referred to

as cover source mismatch problem. The particular contributions of this experiment

compared to literature are two-fold: a) in the number of di↵erent data sets tested

and b) in the variety of metrics used to report the results. We present the summary

statistics from this experiment in Table 6.2.

Algorithm 4 : Homogeneous-Mismatched Data (Experiment 2)

1: for B

i

2 B do
2: j = i + 1
3: Pick T

r

2 B

i

, s.t. |T
r

| = 3000
4: Pick T

e

2 B

j

, s.t. |T
e

| = 1000
5: Create pairs of cover and stego images from T

r

and T
e

6: Randomise order of T
r

7: Train on T
r

keeping track of estimated threshold t⇤

8: Test on T
e

using t⇤ or default t
9: end for

6.5.1 Results for Experiment 2

The extent of the cover source mismatch is apparent from the summary statistics

shown in Table 6.2. In all cases the di↵erence in average performance between Ex-

periments 1 and 2 is between 6% and 7%, which is statistically significant as shown

by the t-test in Table 6.3. The standard deviation (“�” column in Table 6.2) in-

creased nearly three-fold. The most significant result however is the extent to which

the cover source mismatch a↵ects the worst-case classification accuracy. Here the

observed absolute loss in performance is as high as 35% compared to the mean ac-

curacy and the discrepancy between highest and lowest score is as high as 40% (cf.

12% in Experiment 1). In some cases the classification decisions were close to near-

random (see column titled “min” in Table 6.2). This holds true across the board for

all classifiers tested.

The statistical tests shown in Table 6.2 (the last two columns) also pinpoint that the

di↵erence between classifiers does not disappear in this setting (at 90% confidence

level - the largest p-value appears for sPQ payload at 0.4 bpuc) even though the

means indicate they are very close - the AP is still not as good as EFLD statistically.

105



CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.2: Results from Experiment 2 comparing classifiers’ accuracy in mismatched-
homogeneous data using nsF5 at changerate of 0.05 bpnc and sPQ at 0.4 bpuc.

Problem Classifier
Training Testing

µ � min max
t-test F-test

size size µ
EFLD

> µ
AP

�2

EFLD

< �2

AP

nsF5

at 0.05

bpnc

AP

6 000

images

2 000

images

0.7844 0.0737 0.542 0.885
t = 2.291

df = 41.92

p < 0.05

F = 0.390

df = 25, 25

p < 0.05

SVM 0.7903 0.0741 0.536 0.889

KSVM 0.7864 0.0880 0.509 0.911

EFLD 0.8011 0.0845 0.550 0.911

nsF5

at 0.1

bpnc

AP

6 000

images

2 000

images

0.8546 0.0720 0.637 0.951
t = 2.285

df = 48.05

p < 0.05

F = 0.665

df = 25, 25

p > 0.1

SVM 0.8655 0.0721 0.698 0.958

KSVM 0.9038 0.0850 0.613 0.983

EFLD 0.9066 0.0883 0.658 0.990

sPQ

at 0.2

bpuc

AP

6 000

images

2 000

images

0.6371 0.0295 0.539 0.687
t = 1.958

df = 48.93

p < 0.1

F = 0.742

df = 25, 25

p > 0.1

SVM 0.6371 0.0295 0.539 0.687

KSVM 0.6369 0.0287 0.537 0.682

EFLD 0.6547 0.0342 0.543 0.702

sPQ

at 0.4

bpuc

AP

6 000

images

2 000

images

0.7555 0.0528 0.558 0.827
t = 1.724

df = 48.79

p < 0.1

F = 0.727

df = 25, 25

p > 0.1

SVM 0.7588 0.0556 0.550 0.830

KSVM 0.7717 0.0407 0.678+ 0.848

EFLD 0.7835 0.0618 0.572 0.861

Analysing the related tables in Appendix D.1, which give a breakdown of perfor-

mance scores by actor for di↵erent classifiers and payloads, we can see that the

columns of the tables are clearly more stable than the rows - this means that easy

testing data will be classified well by most models, whilst a given model will not gen-

eralise well to many sources. Moreover a good performance by a model on matched

data does not imply good generalisation (and vice versa). It may therefore be coun-

terproductive to try to select the “best” model from a pool of single-source-trained

models. A better strategy would perhaps be finding a source that is “closest” in

terms of features to a given target. This is, however, problematic when the dimen-

sionality of features is high because the distances in high dimensions are likely to be
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unstable9.

This experiment represents the most conservative domain adaptation - we tried

adapting to a new domain without informing the model about it in any way. We

argue however that by adopting the simplest solution which does not entail chang-

ing the training regime we can improve on the results from Experiment 2 (and also

from Experiment 1 to some degree). Our approach entails training on a su�ciently

large and diverse mismatched data set therefore allowing the classifier to estimate

better parameters (as more data is given). The diversity of data provides further

advantages, which we discuss in Chapter 7. Experiment 3 follows to test this.

Table 6.3: Comparing classifiers’ performance on matched-homogeneous and
mismatched-homogeneous data (Experiment 1 (µ

1

) v Experiment 2 (µ
2

)).

Payload
AP EFLD

µ
1

> µ
2

µ
1

> µ
2

nsF5 0.05

t = 9.084 t = 5.040

df = 38.03 df = 29.57

p < 0.001 p < 0.001

nsF5 0.1

t = 6.862 t = 4.233

df = 26.51 df = 25.63

p < 0.001 p < 0.001

sPQ 0.2

t = 5.243 t = 4.731

df = 46.88 df = 46.66

p < 0.001 p < 0.001

sPQ 0.4

t = 5.476 t = 5.039

df = 35.32 df = 32.44

p < 0.001 p < 0.001

9Several solutions were tested without success (see “Future work” section in Chapter 8).

107



CHAPTER 6. EXPERIMENTAL RESULTS

6.6 Experiment 3: Real-world data: linear and non-
linear classification in mismatched data sources

Here we use data from the same data set as in the previous two experiments but

expand it to incorporate the total of 1600 training and 100 testing actors. Each actor

is represented by a set of 500 cover images. This allows for as many as 1.6M training

examples for binary classification which is several orders of magnitude larger than

any steganalysis data set used previously with the exception of [63] where up to

several hundreds of thousands of images were used for training. For this experiment

we introduce a second ensemble-based non-linear classifier - the online ensemble

Average Perceptron (OEAP), which has the advantage of speed over the other two

non-linear classifiers and can therefore be applied to the full data set in a reasonable

time.

6.6.1 Procedure for Experiment 3

Algorithm 5 describes the general procedure employed in this experiment. Unlike in

the other two experiments where training data varied with each training actor (hence

potentially providing a training set of di↵erent relative di�culty), here the training

set is fixed (all 1.6M examples) for all linear classifiers and the OEAP classifier.

For KSVM and EFLD we used subsets of this data for training for the reasons of

computational complexity. For these classifiers the experiment was repeated five

times to eliminate any possibility of noise in the results due to an unlucky sample.

As before, we test four di↵erent binary classification problems, in each case detecting

one of the following payloads amongst covers at even proportion: nsF5 embedding

operation with 0.05 and 0.1 bpnc and sPQ embedding operation with 0.2 and 0.4

bpuc. A fixed testing set of 100 actors is used and is disjoint from the set of training

actors. This procedure is described in pseudocode in Algorithm 5.

6.6.2 Results for Experiment 3

We will use this section to briefly discuss the results that are local to this experiment

and perform a formal comparison between all three experiments in the next section.
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Table 6.4: Results from Experiment 3 showing the summary statistics from classi-
fiers’ performance on mismatched-heterogeneous data.

Experiment Classifier Threshold Training Size Testing Size µ � min max

linear
classifiers

nsF5
0.05 bpnc

AP
default

1 600 actors

⇥
1 000 images

100 actors

⇥
1 000 images

0.8640 0.0361 0.658 0.912

adaptive 0.8647 0.0354 0.657 0.914

SVM
default 0.8756 0.0382 0.658 0.918

adaptive 0.8644 0.0432 0.646 0.931

non-linear
classifiers

nsF5
0.05 bpnc

KSVM
default

5 ⇥ 20 000 images

100 actors

⇥
1 000 images

0.8381 0.0392 0.648 0.906

adaptive 0.8384 0.0383 0.646 0.907

EFLD
default

5 ⇥ 20 000 images
0.8400 0.0384 0.637 0.892

adaptive 0.8370 0.0384 0.633 0.902

OEAP
default 1 600 actors ⇥

1 000 images

0.8482 0.0427 0.648 0.908

adaptive 0.8497 0.0379 0.648 0.900

linear
classifiers

nsF5
0.1 bpnc

AP
default

1 600 actors

⇥
1 000 images

100 actors

⇥
1 000 images

0.9701 0.0271 0.771 0.991

adaptive 0.9701 0.0271 0.770 0.990

SVM
default 0.9764 0.0266 0.778 0.996

adaptive 0.9769 0.0257 0.781 0.996

non-linear
classifiers

nsF5
0.1 bpnc

KSVM
default

5 ⇥ 20 000 images

100 actors

⇥
1 000 images

0.9682 0.0272 0.798 0.994

adaptive 0.9685 0.0270 0.800 0.993

EFLD
default

5 ⇥ 20 000 images
0.9688 0.0301 0.759 0.994

adaptive 0.9687 0.0303 0.757 0.994

OEAP
default 1 600 actors ⇥

1 000 images

0.9711 0.0278 0.790 0.993

adaptive 0.9714 0.0278 0.778 0.992

linear
classifiers

sPQ
0.2 bpuc

AP
default

1 600 actors

⇥
1 000 images

100 actors

⇥
1 000 images

0.7085 0.0345 0.575 0.773

adaptive 0.7145 0.0305 0.589 0.763

SVM
default 0.7171 0.0336 0.581 0.770

adaptive 0.6839 0.0350 0.541 0.765

non-linear
classifiers

sPQ
0.2 bpuc

KSVM
default

5 ⇥ 20 000 images

100 actors

⇥
1 000 images

0.6685 0.0257 0.577 0.739

adaptive 0.6689 0.0254 0.578 0.578

EFLD
default

5 ⇥ 20 000 images
0.6855 0.0280 0.574 0.742

adaptive 0.6762 0.0289 0.565 0.730

OEAP
default 1 600 actors ⇥

1 000 images

0.6627 0.0364 0.550 0.741

adaptive 0.6824 0.0299 0.576 0.746

linear
classifiers

sPQ
0.4 bpuc

AP
default

1 600 actors

⇥
1 000 images

100 actors

⇥
1 000 images

0.8758 0.0376 0.692 0.937

adaptive 0.8760 0.0372 0.697 0.929

SVM
default 0.8781 0.0412 0.684 0.930

adaptive 0.8755 0.0422 0.667 0.932

non-linear
classifiers

sPQ
0.4 bpuc

KSVM
default

5 ⇥ 20 000 images

100 actors

⇥
1 000 images

0.8142 0.0394 0.654 0.894

adaptive 0.8142 0.0394 0.654 0.894

EFLD
default

5 ⇥ 20 000 images
0.8325 0.0420 0.686 0.889

adaptive 0.8266 0.0424 0.659 0.901

OEAP
default 1 600 actors ⇥

1 000 images

0.8358 0.0464 0.638 0.907

adaptive 0.8399 0.0444 0.654 0.901
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Algorithm 5 : Heterogeneous-Mismatched Data (Experiment 3)

1: if not using full training set then
2: for iteration 1...5 do
3: Split D into training actors T and testing actors A

4: Pick T
r

⇢
S
T , s.t. |T

r

| = 10 000
5: Pick A

0 ⇢ A, s.t. |A0| = 10
6: T

e

=
S
A

0
7: Randomise order of T

r

8: Train on T
r

, keeping track of estimated threshold t⇤

9: Test on T
e

using t⇤ or default t
10: end for
11: else
12: Split D into training actors T and testing actors A

13: T
r

=
S
T

14: Pick A

0 ⇢ A, s.t. |A0| = 100
15: T

e

=
S
A

0
16: Randomise order of T

r

17: Train on T
r

, keeping track of estimated threshold t⇤

18: Test on T
e

using t⇤ or default t
19: end if

Table 6.4 summarises the results. As before we compare linear and non-linear clas-

sifiers’ performance. The mean and the minimum accuracy figures indicate that in

this mismatched setting the non-linear classifiers did not produce the best models

unlike in the other experiments. Based on the two metrics the most accurate models

overall were produced by SVM and OEAP in the linear and non-linear groups of

classifiers respectively.

The speed advantage of linear classifiers allowed for performing multiple iterations

over the full training data which resulted in an extra performance advantage. We

provide one-pass accuracy figures of linear classifiers in Tables C.1 and C.2. Whilst

it might have been possible to train the ensemble classifiers in the same manner with

extra time allowance, we expect this would not have yielded better performance fig-

ures because, as was shown in the previous chapter (Figure 5.8), they appear to

converge 1/8th of the way into a one-pass training run.
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Statistically neither of the three non-linear classifiers matched the results of the

linear classifiers. This is highlighted by the following results from statistical tests

(Table 6.5) where the comparison figures are given for the two best classifiers from

both groups. SVM statistically outperforms ensemble classifiers in terms of averages

(t-test at 99.9% confidence level) in all payloads, except for the nsF5 with 0.1 bpnc.

The same cannot be said about the F-test results, which showed no significance in

the di↵erence of their variances across all four payloads.

The above discussion goes in line with our first hypothesis and we can conclude that

we found no evidence to reject it. This means that in accordance with the given

figures the linear classifiers perform better than non-linear classifier in mismatched

data when using modern large feature sets and detecting some of the commonly-

studied payloads. We leave a closer analysis of why this might be the case until the

next chapter.

Table 6.5: Comparing the performance of the best performing classifiers from linear
and non-linear groups of classifiers on data from mismatched-heterogeneous sources:
SVM (µ

1

, �2

1

) v ensembles (µ
2

, �2

2

).

Test

nsF5 sPQ

0.05 0.1 0.2 0.4

SVM v OEAP SVM v OEAP SVM v EFLD SVM v OEAP

µ
1

> µ
2

t = 4.7486 t = 1.3819 t = 7.1882 t = 6.7773

df = 195.561 df = 197.646 df = 191.76 df = 195.187

p < 0.001 p > 0.1 p < 0.001 p < 0.001

�2

1

< �2

2

F = 0.7991 F = 0.9188 F = 1.4402 F = 0.7856

df = 99, 99 df = 99, 99 df = 99, 99 df = 99, 99

p > 0.1 p > 0.1 p < 0.1 p > 0.1
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6.7 Reconciling results across the three experiments

The variability of the detection accuracy between actors is an indicator of the extent

of the penalty incurred by our classifiers due to cover source mismatch, which is what

we are ultimately interested in in this part of the thesis. This penalty is referred to

as adaptation loss. As was hinted at by the brief analysis in the results sections of

the first two experiments two metrics reflect it best: the absolute minimum and the

standard deviation over multiple targets (test actors). By design our reference point

is the performance figures from the best detector trained and tested on matched

data (i.e. Experiment 1), which is the best-case scenario for training a detector. Our

comparison utilises the figures from the three experiments in straightforward F-tests

of the variances of the best models.

We start with the comparison of the results from Experiments 2 and 3. Given a

fixed classifier by training on a mixture of mismatched sources, as per Experiment

3, we consistently gain between 12% and 15% in minimum accuracy compared to

a straightforward mismatch from Experiment 2 (see columns “min” in Tables 6.2

and 6.1 respectively). In addition, the standard deviation (“�” column) decreases

dramatically. The significance of this performance improvement is shown in Table

6.6. Using an F-test on AP and EFLD as an example (all others follow the same

pattern) we show that for both classifiers the reduction in variance is statistically

significant - all p-values are smaller than 0.05 which gives us a 95% confidence level,

with the exception of the sPQ 0.2 case. This, however, is probably due to the F-test

not being strong enough for this case - it is clear from the figures that the classi-

fier from Experiment 3 is superior. Similarly, this also holds for the EFLD classifier.

More interesting, perhaps, is the di↵erence in classifiers performance between Ex-

periments 1 and 3 because it serves as the first indicator of whether our second

hypothesis holds: the classifiers trained on large heterogeneous-mismatched data

can be as good as classifiers trained on small homogeneous-matched data. As be-

fore we take AP and EFLD as example classifiers. In contrast to our hypothesis,

Table 6.7 shows that at 95% confidence level (p < 0.05) the models trained on
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Table 6.6: Comparing classifiers’ performance on mismatched-homogeneous and
mismatched-heterogeneous data (Experiment 2 (�2

1

) v Experiment 3 (�2

2

)).

Classifier nsF5 0.05 nsF5 0.1 sPQ 0.2 sPQ 0.4

AP
�2

1

< �2

2

F = 2.2021 F = 7.2909 F = 0.7528 F = 2.0237

df = 25, 99 df = 25, 99 df = 25, 99 df = 25, 99

p < 0.01 p < 0.001 p > 0.1 p < 0.05

EFLD
�2

1

< �2

2

F = 4.9964 F = 8.8796 F = 1.5401 F = 2.2298

df = 25, 99 df = 25, 99 df = 25, 99 df = 25, 99

p < 0.001 p < 0.001 p > 0.1 p < 0.01

heterogeneous-mismatched data produced significantly more variability in their per-

formance that those trained on homogeneous-matched data. As with the previous

discussion of Table 6.6, here we also have outliers (AP tested on nsF5 at 0.05 bpnc

payload and EFLD tested on sPQ at 0.2 bpuc payload).

Finally, the test for statistical significance of the di↵erence in the variability of

the best models from Experiments 1 and 3, is given in Table 6.8. This allows us to

test our second hypothesis in full. Shown are the results of F-test comparing the

variance of linear SVM trained on large heterogeneous-mismatched data with the

variance of the non-linear EFLD classifier trained on small homogeneous-matched

data. Again they contradict our second hypothesis (all p-values are smaller than

0.05, with the exception of the outlier in the sPQ 0.2 tests), which leads us to con-

clude that there is su�cient evidence to reject it. In addition to the Table 6.8,

Figure 6.1 provides violin plots for the ease of exposition of our results. A violin

plot is similar to a histogram - it provides a view of the shape of an estimate of the

probability distribution of the data (in our case data points are accuracy values).

The solid horizontal line shows the median and the top and bottom dashed lines

show the 75th- and 25th-percentile respectively. A notable feature in these plots is

the “tails” introduced by the cover source mismatch tested in Experiments 2 (red
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Figure 6.1: Violin plots for the best classifier in each of the three experiments (red,
green and blue) presented in this chapter; grouped by payload type and size. The
red violins are based on 650 performance samples each (see Section 6.5) for details.
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Table 6.7: Comparing classifiers’ performance on matched-homogeneous and
mismatched-heterogeneous data (Experiment 1 (�2

1

) v Experiment 3 (�2

2

)).

Classifier nsF5 0.05 nsF5 0.1 sPQ 0.2 sPQ 0.4

AP
�2

1

< �2

2

F = 0.6194 F = 0.2198 F = 0.4441 F = 0.4373

df = 25, 99 df = 25, 99 df = 25, 99 df = 25, 99

p > 0.1 p < 0.001 p < 0.05 p < 0.05

EFLD
�2

1

< �2

2

F = 0.4604 F = 0.1072 F = 0.8902 F = 0.3396

df = 25, 99 df = 25, 99 df = 25, 99 df = 25, 99

p < 0.05 p < 0.001 p > 0.1 p < 0.01

Table 6.8: Comparing performance of the best classifier in matched-homogeneous
experiment and the best classifier in mismatched-heterogeneous experiment (Exper-
iment 1 v Experiment 3).

Classifier nsF5 0.05 nsF5 0.1 sPQ 0.2 sPQ 0.4

�2

EFLD

< �2

SV M

F = 2.154 F = 7.295 F = 1.618 F = 2.824

df = 99, 25 df = 99, 25 df = 99, 25 df = 99, 25

p < 0.05 p < 0.001 p > 0.1 p < 0.01

violins) and Experiment 3 (blue violins) and the rather large di↵erence between

them. It is easy to see how the performance in the latter is far less variable.

Consider the di↵erences between the top two plots and the bottom two plots. In

the top two plots the performance of the detector trained on small homogeneous-

matched data (green violins) is notably superior to that of the detector trained on

large heterogeneous-mismatched data (blue violins), which is also supported by the

mean figures and the F-tests. In the bottom two plots this is also the case, which is

made transparent by the violin plots whilst being masked by the mean scores from
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the tables.

Three main results emerged from the comparison between Experiments 1, 2 and

3:

1. It is straightforward, from the figures and the plots, that detectors from Ex-

periment 3 are better than the detectors from Experiment 2. Instead of having

an enormous loss due to cover source mismatch in the case of the mismatched-

homogeneous setting (Experiment 2) we now have a much smaller loss under

the mismatched-heterogeneous setting (Experiment 3). Table 6.6 shows sta-

tistical tests to support this10.

2. Despite what the µ scores might suggest (especially in the case of detecting

sPQ), the models from Experiment 3 are still statistically worse than the

models from Experiment 1 (at least until we can fix the minimum accuracy

via some DA-based means - to be discussed in Chapter 7). This is reflected

by the violin plots and the F-test in Table 6.8. As the discussion above shows

it is not just the mean of detection accuracy/error that matters. The average

sometimes masks poor performance, which is visible in the violin plots given in

Figure 6.1. If a robust detector was needed and a choice of small homogeneous-

matched and large heterogeneous-mismatched data was given then one should

choose to use the small matched data for training, providing there is enough

data to train a good model - a point which we discuss in more detail in the

next chapter. We propose that detectors’ performance should be measured on

individual sources and displayed, for example, using a violin plot.

3. There is a discrepancy in the ranking of linear and non-linear classifiers between

Experiments 1 to 2 and Experiment 3. There are two potential reasons for the

lower relative performance of the non-linear classifiers in the third experiment:

a) ensembles do not work well in the mismatched setting, which is reflected

10We opted for not performing statistical tests on the figures for minimum performance for two
reasons: a) because we cannot expect the minimums to be comparable if one sample size is four
times larger than the other sample size; and b) because such tests are likely to be unstable as they
are very sensitive to the underlying distribution which we do not know. Therefore only the F-test
is given in this case.
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in the lack of performance improvement beyond certain point during their

training; and b) kernel classifiers are undertrained on this data due to the

computational constraints put upon them. We will explore this point further

in the next chapter.

All three points support our argument that there is value in training on more data

as it tends to produce better models. We can conclude that we found no evidence

to reject our first hypothesis as per point 3 above. However our second hypothesis

must be rejected based on the evidence from the F-test. The test which is shown

in Table 6.8 indicates a statistically significant di↵erence in the variance of the best

models from each of the experiments in question in favour of Experiment 1 which

modelled the matched setting.

The vast improvement in results between Experiments 2 and 3 as well as the improve-

ment in the mean accuracy scores between some of the tests (sPQ) in Experiments

1 and 3 suggests that there is promise in DA-based solutions given that we have

only tried the most conservative DA regime in which the classifier was not informed

with any information about the targets. Consider the following argument. Imagine

we are prepared to accept the same level of minimum accuracy as that which ap-

peared in the worst-case scenario from the best classifier (EFLD) from the matched

setting of Experiment 1. Then we can see how often the best classifier (SVM) from

Experiment 3 yields lower performance in the heterogeneous-mismatched scenario.

It turns out that the levels are violated 14 out of 100 times in the nsF5 0.05 test,

11 out of 100 times in the nsF5 0.1 test and only 4 out of 100 times in both sPQ

0.2 and 0.4 tests. All other results are admissible under the above conditions. This

comes in contrast with the results from Experiment 2 where the admissible versus

violating counts are reversed. If we were able to find some special treatment for the

anomalous cases we would have a state-of-the-art detector for binary steganalysis

which uses mismatched -only data. We review some possible solutions in the next

chapter.
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6.8 Conclusions and critical assessment

Whilst 6000 training examples in the matched case might seem like an arbitrary

number, in many applications we cannot reasonably expect to be provided with a

matched training set of any particular size and almost certainly not of the same or-

der of magnitude as the mismatched data set used in Experiment 3. Two scenarios

come to mind in which it might be possible: a) folders which are explicitly labelled as

containing cover/stego images were found and another folder containing images with

unknown labels and all of them appear to have been taken by the same camera in

similar conditions, etc. b) the source camera got seized so we can take as many pic-

tures as we like with it (and the shooting conditions/other parameters for the target

pictures can be replicated as well). In these particular applications large matched

training data may be available, but one should not expect it to be a standard feature.

It must be noted that the link between our simulation and the real-world is still

somewhat tenuous. There are certain assumptions that have been made, such as the

equal distribution of cover and stego examples in the test sets; a fixed change rate;

our perfect knowledge of the embedding schemes and some others, which may pro-

duce a di↵erent kind of mismatch and thus require more elaborate training regimes.

However we believe our simulations have been valuable in the sense that they came

closer than ever to the real-world situation and helped us understand the value of

larger training sets. We performed experiments in order to observe the cover source

mismatch when the classifiers are trained and tested on di↵erent users and proposed

a selection of di↵erent ways to measure it. We have shown that looking at vari-

ability and the worst-case accuracy is invaluable when considering the cover source

mismatch because the average accuracy can be misleading. We have shown some

evidence in favour of the hypothesis that, in practice, linear classifiers work better

with the modern rich steganalysis features than the more complex non-linear clas-

sifiers. A basic DA-based method to reduce the impact of cover source mismatch

was proposed. It was based on the idea that training over a large data set com-

posed of a mixture of mismatched sources may produce a well-generalising classifier

if the training sources are “similar enough” to the testing sources. This idea has
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good theoretical foundations as we see in the next chapter, albeit with some strong

assumptions about the relationship between the training (source) and the testing

(target) data. It was shown to have particular promise owing to it yielding an in-

creased performance relative to other settings at least in terms of some of the metrics.

We can summarise the findings with this feature set as follows.

• Given a fixed feature set and similar time constraints, linear classifiers are

capable of producing better performance than complex classifiers.

• Linear and complex classifiers produce equally good models from small matched

and large mismatched training data if evaluated on average scores, but statis-

tically di↵erent if evaluated on minimum scores.

• In steganalysis the worst-case performance is crucial.

• Sampling: in a mismatched scenario more diversity between training sources

is better.
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Chapter 7

Analysis

In the previous chapter we showed that our classifiers, when trained on a large

data set composed of di↵erent mismatched sources (Experiment 3), were capable

of producing performance which was equivalent to, or better than, the matched

case (Experiment 1) for the majority of testing sources. This is contrary to previ-

ous findings in the steganalysis literature as well as our result from Experiment 2

which employs largely the same strategy. We consider all those cases as examples

of successful domain adaptation and this chapter is devoted to explaining this re-

sult. Statistical learning theory and its recent developments with respect to domain

adaptation are employed.

We begin this chapter with a brief introduction of the necessary concepts from

statistical learning theory. This is followed by the presentation of a major theo-

retical result from Ben-David et al. [7]: a learning bound for conservative domain

adaptation based on the measures of relatedness between the source (training) and

target (testing) data. We show how this theory explains some of our findings from

Chapter 6. This is followed by a second major result from [7]: an extension to the

first learning bound, which considers a simple combination of labelled source and

target data. Some general deliberations of what this result entails for steganalysis

and steganography follow. This chapter leads to many open questions for steganal-

ysis.

The training regime described and tested in Experiment 3 is commonly referred
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to in the literature as conservative domain adaptation [99]. In this setting the train-

ing data will be referred to as the source domain (or a collection of source domains)

and the testing data as the target domain (each actor is a di↵erent target domain).

In contrast, adaptive domain adaptation uses prior information about the target

domain such as, for example, a (large) set of unlabelled examples from the target

domain with the aim of improving on the conservative approach. Examples of adap-

tive learners include numerous heuristics which are largely aimed at minimising the

discrepancy between the domains. Examples include importance weighting [26] and

pivot features [13]. In this chapter we will concern ourselves with only conservative

domain adaptation.

7.1 Statistical learning theory for steganalysis

7.1.1 Introduction

As stated in Section 1.3, our motivation for this study comes from the idea that

more (labelled) data helps with training a better model. This may be especially

important in adversarial conditions that may be natural to steganalysis when we

might not have any prior knowledge, or have reservations about the correctness of

our prior knowledge, of the distribution of the target data. The setting in which we

assume no prior knowledge is called agnostic learning. This idea is deeply rooted in

statistical learning theory.

Statistical learning theory is concerned with several theoretical models of learn-

ing including empirical risk minimisation [114]. It makes the assumptions of the

training data being independent and identically distributed, same distribution for

training and testing data (as per Experiment 1) which is also fixed over time. Many

machine learning classifiers, including regularisation-based algorithms such as Sup-

port Vector Machines, as well as ensembles such as presented here fall under this

theoretical framework.

A major contribution of statistical learning theory is the definition of generalisa-

tion bounds, which are central to our analysis. Before we can discuss generalisation
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bounds we need to introduce several important concepts.

Conservative domain adaptation is the empirical risk minimisation (ERM) over the

available training data. Therefore, it describes exactly the regime that was used in

Experiment 3 of Chapter 6. Statistical learning theory will not only help us analyse

the results, but will also put steganalysis in the framework of theoretical machine

learning, specifically comparing the regular training to domain adaptation based

settings.

7.1.2 Formalising concepts

Recall from Section 4.1 that we can think of a classifier in terms of the class H
of all hypotheses h it can represent. As stated, we assume that both the training

and the test data are drawn as independent identically distributed samples from the

same domain � and that the joint probability distribution P of example-label pairs

(x
i

, y
i

) 2 (X, Y ) over � is fixed.

In agnostic learning, the learning task is to use the training examples in search

of a hypothesis h 2H with minimum expected risk over any examples generated by

P , including all test examples. In classification the expected risk of some hypothesis

h can be defined using 0-1 loss:

R(h) = E
(x,y)⇠P

(`
0-1

(x, y, h)) .

Recall that 0-1 loss assigns a fixed cost of 1 to each wrong prediction and 0 to each

correct prediction. It is clear that a hypothesis h is better than another hypothesis g

if R(h) < R(g). Given P we can define the hypothesis h
Bayes

that gives the minimum

risk R(h
Bayes

) as the so called Bayes-classifier [115]:

h
Bayes

(x) =

(
1 if Pr(Y = 1|X = x) � 0.5

�1 otherwise.

Therefore given n training examples x1...xn

and a fixed classifier H, our task is to

find h
Bayes

if it is contained in H or find an h
n

such that is as close to it as possible

in terms of their expected risks, i.e.:

h
n

= arg min
h2H

(R (h
n

)�R (h
Bayes

))
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If we look closer at the quantity R(h
n

)�R(h
Bayes

), it can be decomposed into two

terms [115]:

R(h
n

)�R(h
Bayes

) =
⇣
R(h

n

)�R(hH)
⌘

| {z }
estimation error

+
⇣
R(hH)�R(h

Bayes

)
⌘

| {z }
approximation error

, (7.1)

where hH is the best function in H:

hH = arg min
h2H

R(h).

Assuming a perfect model and infinite data we should be able to find a fit such

that both estimation and approximation error terms are reduced to zero. This is

impossible in practice in most cases, however we should aim to find the right balance

between the complexity of the model and the amount of data we can train it on.

The estimation error depends largely on our algorithm for finding the best h from

some fixed class H and the available training data (say of size n) as well as various

limiting resources such as space and time. The approximation error depends on how

well functions in H can approximate the true solution. This depends on the capac-

ity of a classifier, the given representation (power of features) and the underlying

distribution P which is often unknown (and which may change with a change in

representation).

Generalisation bounds provide us with some insights into what is necessary for

the quantity R(h
n

) � R(h
Bayes

) to be ✏-small with some high probability for all

distributions P :

Pr
⇣
R(h

n

)�R(h
Bayes

) > ✏
⌘
! 0 as n!1. (7.2)

A classifier that consistently produces such h
n

on any P is called universally Bayes-

consistent [115]. This means that with high probability the function h
n

that was

found by such an algorithm from some training set of size n will be equal or close to a

Bayes-classifier as n approaches infinity. It requires minimising both estimation and

approximation error terms which appear on the right hand side of the Equation (7.1).

Minimising the approximation error (second term of Equation (7.1)) is however a

hard problem [115] and statistical learning theory as well as its domain adaptation
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extensions mainly concern themselves with minimising the estimation error (first

term of Equation (7.1)) and hence look for an algorithm that satisfies the property

of universal consistency instead of (7.2):

Pr
⇣
R(h

n

)�R(hH) > ✏
⌘
! 0 as n!1. (7.3)

The quantities h
Bayes

, R(h
Bayes

) or even R(h) for some h cannot generally be eval-

uated because we do not have access to P . Instead we use the notion of empirical

risk for the generalisation bound or (in practice) its approximations. The empirical

risk is used in many classification algorithms and for binary classification was shown

in Equation (4.2) as:

R
emp

(h) =
1

n

nX

i=1

`
0-1

(x
i

, y
i

, h) . (7.4)

The empirical risk minimisation principle states that to find the optimum h we

simply minimise the empirical error (as it is e↵ectively the only (approximately)

measurable quantity available at the time of training):

h = arg min
h2H

R
emp

(h). (7.5)

Vapnik and Chervonenkis [114] proved that the following condition which uses the

empirical risk R
emp

(h) is necessary and su�cient for universal consistency (see (7.3))

of the ERM principle:

Pr
⇣

sup
h2H

|R(h)�R
emp

(h)| > ✏
⌘
! 0 as n!1, (7.6)

The use of supremum here means we are looking for the worst case. A major result

of statistical learning theory is that this probability can be bound using the following

general form (rewriting (7.6) as a uniform convergence bound and using the concept

of classifier’s capacity) [13]:

R(h)  R
emp

(h) + O

 r
capacity(H)

n

!

| {z }
complexity term

+ O

0

@

s
log(1

�

)

n

1

A

| {z }
confidence

, (7.7)

which holds with probability at least 1 � � for all hypotheses h that are found by

a learning algorithm, including h
n

found by ERM (7.5) or any of its improvements
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such as regularised algorithms some of which were presented in Chapter 4. The third

term is non-negative and is related to our confidence in the bound - it grows with

smaller values of � because, intuitively, for more confidence in our bound it needs

to be looser. The second term (labelled as “complexity term”) in the right hand

side of (7.7) explains the conditions required from H and n such that the ERM

principle is consistent. It is clear that consistency is achieved when the complexity

term converges to 0, which requires a small capacity or large n. Too small a ca-

pacity, however, leads to underfitting and thus a high approximation error. For the

approximation error to decrease we often want high capacity. On the other hand,

with the ratio in the complexity term too large we experience overfitting. This is

why in practice we often need to employ regularisation (with a higher regularisation

parameter � for smaller n) which restricts the number of eligible hypotheses and can

thus be thought of as a technique for controlling the capacity of H (and why, for

example, KSVM with Gaussian kernel has a finite VC-dimension in practice [105]).

Many bounds exist which di↵er in constants and the capacity terms. The capacity

can take the form of the shattering coe�cient, VC-dimension [114], Rademacher

complexity [115] or something more specific to the class of functions H, e.g. a

function of the margin in SVMs. All of these bounds have their advantages and

disadvantages. Two bounds used in theoretical domain adaptation work which we

recall in the next section are based on the VC-dimension [7] and the Rademacher

complexity [87].

The VC-dimension of H is the maximum number of examples that can be sepa-

rated in all possible ways by some h 2H, i.e. h must be able to assign any arbitrary

labelling to these examples by separating them with its decision boundary. When

the decision boundary is a hyperplane (linear classifiers), the VC-dimension can be

shown to be d + 1 where d is the (operational) dimensionality of the problem.

Using VC-dimension as capacity and denoting it d the uniform convergence bound
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becomes [13]:

R(h)  R
emp

(h) + O

0

@

s
d log(n

d

) + log(1
�

)

n

1

A . (7.8)

7.1.3 Link to steganalysis

One of the consequences of this bound is that the size of training data is important

and to build detectors with minimal risk of misclassification we should explore the

possibility of training with a large n. Previously, much focus in steganalysis was di-

rected towards features engineering which e↵ectively minimised the approximation

error. The exception to this is when dimensionality was considered and reduced

- this additionally minimises the estimation error through reducing the classifier’s

capacity, which is a non-negative additive term in the uniform convergence bound.

The same focus perhaps also explains the often-used KSVM as the classifier of choice

in steganalysis. Early in this thesis we motivated our study with the idea that us-

ing more training data will lead to better classifiers, which is an alternative to the

previously mentioned works. It is easy to see that this idea is a direct consequence

of the above bound.

An example of how this bound can be instantiated was shown in Figure 5.10 in

Chapter 5. There the AP classifier and the CC-C300 features in conjunction pro-

vided a fixed hypothesis class H and a (largely) fixed capacity. If we assume no

cover source mismatch for the moment then we can see that the empirical risk

(R
emp

(h) shown as training error E
train

) converges to as close as 1.2% away1 from

the expected risk (R(h) estimated by the mean test error shown as E
test

) at 1.6M

training examples. The 1.2% “gap” may be solely due to adaptation error, which

we discuss in the next section, or may possibly be improved further with a larger

n; nevertheless it is small enough (relative to the magnitude of µ) for us to say

that µ, in this case, is a good proxy for R(hH), which means (given necessary and

su�cient conditions for universal consistency) empirical risk (and estimation error)

has been e↵ectively minimised. The same does not hold for when we train on 16 000

1This is the di↵erence between µ and E

train

as measured by AP on the problem of detecting
nsF5 embedded at 0.05 bpnc, but similarly small figures were achieved for other problems as can
be seen from Figure 5.10 and the complimentary Table 5.3.
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or 160 000 examples - the graph in Figure 5.10 shows the gap between training and

test error being considerably larger. With this in mind we can reason about the dif-

ference in test error from the point of view of domain adaptation in the next section.

It is known that smaller payloads and more advanced embedding methods create

smaller separation between classes, which is given by the joint probability distri-

bution P . In practice, we have seen that this is also reflected in our estimates of

the AP’s convergence rates on the di↵erent problems - it is evident from Figure

5.10 that it converges faster on larger payloads (compare the left two figures to

the right two). The uniform convergence bound given in terms of the concept of

VC-dimension (Equation (7.8)) is not dependent on P because the VC-dimension

does not capture this [115]. Other capacity concepts, such as Rademacher complex-

ity, which by definition depends on n and P [115, 87], will lead to better bounds

which reflect how the convergence rate changes with the di�culty of the classification

problem, which in our case is governed by the embedding rate or embedding method.

As discussed previously simply looking at the means does not give us the full picture

because of the problem of cover source mismatch. Mismatch between the distribu-

tions of training (source) and testing (target) calls for extra error terms in the

convergence bounds.

7.2 Domain adaptation bounds for classification

Theoretical analysis of domain adaptation can be viewed as an extension of the

standard statistical learning theory. It is devoted to studying the additional error

terms that occur due to adaptation, the nature of those terms and ways to min-

imise them. The same assumptions hold, e.g. data from source and target domains

are both generated as independent and identically distributed samples. Formally, a

labelled source domain sample S will be generated by its distribution P
S

with the

labels assigned by its labelling function Y
S

. Similarly, for the target domain we have

a sample T from a domain defined by distribution P
S

and labelling Y
S

. Without

loss of generality we can assume that a collection of source domains can be treated

as one source [7].
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Several generalisation bounds using 0-1 loss (classification) have been proposed for

conservative domain adaptation including the works of Ben-David et al. [8], Blitzer

et al. [14], Mansour et al. [87] and more, which we discuss here. They take the

following general form (cf. Equation (7.7) from the previous section):

RT (h)  RS(h) + disc
`

(P
S

, P
T

)| {z }
distance

between

P

S

and P

T

+ �|{z}
distance

between

Y

S

and Y

T

. (7.9)

Note that, unlike the standard bound, here both left-hand-side and right-hand-side

risk terms R are expressed as expected risk. Both disc
`

(P
S

, P
T

) and � are non-

negative measures of relatedness between domains and are relative to (i.e. dependent

on) H. Just like the capacity term from the uniform convergence bound presented

in Equation (7.7), several definitions for disc
`

(P
S

, P
T

) and � exist.

Let us have a closer look at the additional error terms. First is the discrepancy

distance between source and target distributions for the 0-1 loss, which is given by

[87]:

disc
`

(P
S

, P
T

) = max
h

S

,h

T 2H
|R

T

(hS , hT )�R
S

(hS , hT )| ,

for any two hypotheses hS and hT in H trained on source and target domains re-

spectively. Just like R
T

(h) measuring the expected risk (loss) with respect to the

true labels of the target domain (as assigned by the labelling function Y
T

), the quan-

tity R
T

(hS , hT ) measures the expected loss between two labelling assignments on

source domain examples - one given by hypothesis hS and the other by hypothesis

hT . Similarly for R
S

(hS , hT ). The loss function ` can take the form of 0-1 loss or

one of any more general loss functions. Blitzer [13] shows that disc
`0-1(PS

, P
T

) can

be estimated from unlabelled samples from two domains by training a maximally

discriminating classifier to separate between them. Obviously this estimate depends

on the classifier and the size of two samples and is susceptible to its own estimation

and approximation errors. Approximation error in this case is exactly the subject

of interest because it is a proxy for the divergence between domains that the clas-

sifier in question will experience. Cortes et al. [27] point to a problem with the
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disc
`

(P
S

, P
T

) when measured using 0-1 loss - there exists a possibility for it being

zero even when the source and target distributions are di↵erent. This is the topic

of current research in domain adaptation.

The second error term � is the notion of the di↵erence in the labelling functions.

Ben-David et al. [7] define it as:

� = RS(hS[T

H ) + RT (hS[T

H )

where hS[T

H is some optimal hypothesis which is a minimiser for both target and

source risks. � is assumed to be small otherwise (i.e. if such single joint good hy-

pothesis does not exist), conservative adaptation will not succeed.

We will refer to the two terms simultaneously as adaptation error terms.

Using these definitions the following gives uniform convergence bound for conserva-

tive domain adaptation similar to the standard bound based on the VC-dimension

shown previously in Equation (7.8) [7]:

RT (h)  RS(h) +
1

2
disc

`0-1(PS

, P
T

) + 4

s
2d log(n) + log(2

�

)

n
+ �. (7.10)

Although it is known that this bound does not reduce (as it should) to the standard

uniform convergence bound when the source and target data comes from the same

domain (Mansour et al. [87] provide an alternative which does, using Rademacher

complexity and other definitions for empirical and adaptation errors) we view it as

su�cient for the purposes of exposing the basic ideas.

7.2.1 Analysis of experimental results

In this section we provide several observations about the results we reported in

Chapter 6, using the theory. We attempt to decompose the observed error of various

classifiers which was given in the tables in Chapter 6 into approximation, estimation

and adaptation error terms.
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Observation 1

The results from experiments 1 and 3 are both attempting to provide a ref-

erence point. The aim of the former is to give an estimate of R(h
n

) where

n is perhaps a typical size of a matched steganalysis training set and the lat-

ter attempts to give an upper bound on RT (hH) where T is an unknown target.

Let us first focus on the µ figures from Experiment 3. In the previous sec-

tion we argued that in the case of linear classifiers µ is a good proxy for

RS(hH). Making the same observation as before with regards to the closeness

of training error to test error and using Equation (7.10), we can say that lin-

ear classifiers’ µ given in Experiment 3 is not only a good proxy for RS(hH)

but also a good proxy for RT (hH) where T is an average target (assuming all

targets are equally likely).

The theory also says that for non-linear algorithms, which have higher ca-

pacity than the linear algorithms, the rate of convergence2 is slower (higher

capacity-to-n ratio), at least in the worst case. They may therefore require

a larger n for empirical risk to converge to the expected risk and thus also

RS(hH) and RT (hH) (i.e. more training examples are needed to obtain the

minimum estimation error, such that only approximation and adaptation error

terms are left). Therefore, similarly strong conclusions cannot be drawn about

KSVM because estimation error may not have been minimised.

Observation 2

This observation concerns classifiers’ variability in Experiment 3. Having es-

tablished that for linear classifiers the estimation error is near-zero and that

µ (i.e. average RT (h)) is a good proxy for the approximation error, we can

now make the following statement: the observed variability in linear classi-

fiers’ performance in Experiment 3 is due to the adaptation error terms.

As before, we cannot make a similarly strong statement about the error of

2Here the term “rate of convergence” is used to denote how fast the right hand side of Equation
(7.7) converges to the left hand side not how fast a specific algorithm such as SGD find the minimum.
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those classifiers which are less likely to have converged given the practical

computing limits.

Observation 3

The new bound is good for providing an exposition for what is required for do-

main adaptation to succeed. The smaller the discrepancy between the source

and target domains (disc
`

(P
S

, P
T

)), as well as their labelling functions (�), the

closer RT (h) will be to RS(h). An obvious strategy would be to attempt to

minimise disc
`

(P
S

, P
T

) and/or �. Whilst in this thesis we mainly focused on

the other (estimation) error term, in some circumstances using a large diverse

source can also be thought of as minimising the discrepancy between source

and target distributions. Consider the di↵erence in variability (�) between

Experiments 1, 2 and 3.

The di↵erence in di�culty between sources which is depicted in the variability

in Experiment 1 is likely to be amplified by the estimation error. The same

error contributes to the huge variability shown in Experiment 2, where it is not

only the di�culty of the source that varies but also the target. The full tables

where the results are broken down by actor (see the Appendix D.1) provide

an intuitive explanation; the variability within each row is a proxy for changes

in disc
`

(P
S

, P
T

)3, whilst the variability between the average of rows tells us

about the variability in estimation error.

Additionally, compared to Experiment 3, where we know that the only sig-

nificant source of variability is adaptation error, the variability in Experiment

2 is also amplified due to the fact that we are likely to have higher adaptation

error (discrepancy and � terms) than in Experiment 3. This is due to the

fact that in Experiment 2 we have a single source domain, which may or may

not match well to the target domain, and in Experiment 3 the training data

is comprised of a large collection of source domains, which appear to provide

small discrepancy on average. This is why we can think of conservative DA

3As mentioned earlier, to practically compute a proper estimate of disc
`

we would need to follow
the procedure outlined in [13].
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additionally as a strategy that minimises the discrepancy. This is in line with

our previous findings [82] that more diverse sampling from the source domain

yields better results than less diverse sampling (please refer back to Table 5.1

for more details on this result).

This leads directly to the following observation.

Observation 4

In order to measure the adaptation error, we have to minimise the estimation

error. This, as we have shown, is easier to do with lower capacity which means

either a) smaller features or b) simpler classifiers.

Observation 5

There are several possible explanations as to why some target domains (actors)

yielded a qualitatively lower accuracy in Experiment 3. In Section 6.7 of Chap-

ter 6 we argued that there were 14 out of 100 actors in the case of the problem

of detecting nsF5 embedded at 0.05 bpnc stego payload amongst covers using

linear SVM that required special treatment due to a lowered accuracy. The

observed di↵erence in accuracy between them and the average may be due to

an inherent discrepancy between sources or simply due to a higher number

of outlier4 images present. For example, in nsF5 at 0.05 bpnc the di↵erence

between the accuracy of µ = 0.8756 and min = 0.658 in 500 images is approxi-

mately 110 images, which means that the di↵erence is more likely to be due to

the former than the latter explanation. Whilst no formal forensic analysis was

performed this was supported by the following observation. We found that if

for each of these outlier target domains we measure the discrepancy distance

(disc
`0-1(PS

, P
T

)) between it and the training data, we get a perfect or near-

perfect separation which indicates a large divergence between the source and

the target data. Ben-David [9] argues that small disc
`0-1(PS

, P
T

) distance and

small � are necessary and su�cient to guarantee successful domain adapta-

tion. This explains why in these situations conservative domain adaptation

4The meaning of outliers is defined in Section 5.1.
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was not successful. Furthermore, simple adaptive strategies such as impor-

tance weighting, where weights are often based on the same quantities that

are used for estimating disc
`0-1(PS

, P
T

), will not work (this was confirmed by

simple spot checks). An important question then is whether we can always

identify the target domains where such a strategy will not succeed. Can we

use disc
`0-1(PS

, P
T

) or (disc
`

(P
S

, P
T

) for any more general loss such as hinge

loss) as a predictor for when we should not attempt DA?

7.3 Can we do any better?

The discussion above provides us with some understanding of what happens when

the discrepancy between the source and the target is too large - we get a qualitative

drop in performance, which is what happened with those (few) actors that created

the “tails” that can be seen in Figure 6.1. What about �? Does there always exist

a classifier that performs well when the data is combined? Here we had to make the

assumption that this is the case. It has been argued [13] that � cannot be measured

e↵ectively for a DA problem (if it could then there would be no need for adaptation

in the first place - there would be enough examples with labels from the target do-

main to train a good classifier). Our previous findings [81], which we omit from this

thesis for the purpose of brevity (main results are reproduced in Figure B.1 in the

appendix), have shown that � appears to be small on average.

Conservative domain adaptation, as per Experiment 3, is one of the simplest pos-

sible solutions to the cover source mismatch problem. It may or may not work

in some situations. We have shown that in steganalysis it appears to work in sig-

nificantly more situations than it does not. We briefly discussed that its success

largely depends on a) the relatedness between source and target data; and b) the

size of labelled data available from the source and target domains. Many adaptive

DA learners are based on minimising the discrepancy and/or utilising the labelled

target domain data - in other words their practical value rests on the availability

of labelled or unlabelled images from the target domain. In this section we give

further details on some conditions for which conservative domain adaptation may

be suboptimal. We start with going back to the matched case.
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7.3.1 Agnostic learning in target domain > domain adaptation

To understand when learning solely from the target domain will consistently provide

superior results to using some of the conservative domain adaptation strategies, such

as the strategy we used in Experiment 3, Ben-David et al. [7] consider a learner which

minimises a convex combination of empirical source and target risks:

R↵

emp

(h) = ↵RT

emp

(h) + (1� ↵)RS

emp

(h)

for some weighting factor ↵ 2 [0, 1]. They show how it is possible to derive the

optimal value for ↵ which then leads to an important observation which states that

↵ takes the value of 1 (which indicates that it is optimal to use only target data for

training) when the following holds:

n
T

� d

A2

, (7.11)

where, as before, d is some measure of capacity5 of our hypothesis class H and A is

an empirical estimate of the divergence (disc
`

(P
S

, P
T

)) between source and target

data and is dependent on H. This means that unless we have as many as n
T

labelled

examples from the target domain we run a risk of training a suboptimal detector (of

capacity d) under the fact of existence of some other labelled (source) data which

yields the given A.

It points towards the same tradeo↵s that we have discussed earlier between the

sizes of the available labelled target and source data sets, the capacity of a given

classifier and the divergence between source and target data as perceived by that

classifier. Following up on our discussion from Section 7.1.3, it is important to note

that the capacity measure d will in practice also depend on the distribution P of

the two classes (or in other words the convergence rate of the classifier on a partic-

ular problem), so di↵erent values of n
T

may be required for di↵erent problems. For

example, based on our estimation shown in Figure 5.10, AP’s convergence rates are

faster on nsF5 embedded at 0.1 bpnc than at 0.05 bpnc. This means that the mini-

mum number of training examples from the target domain (n
T

) required to train a

5N.B. As before, capacity here can be thought of as a combination of operational (i.e. true)
feature dimensionality and the classifier’s complexity.
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matched classifier will be smaller for the former than the latter problem.

What is remarkable about this bound is that it provides us with an insight into

how much training data is required for matched and mismatched (domain adapta-

tion) cases. In steganalysis it is not clear what is a reasonable assumption on n

- the size of a matched training data set (i.e. the size of a target domain training

sample), if any, may be available to train a detector for a real-world situation. It

is a rather philosophical question for which we have no empirical evidence, except

for the previously-mentioned fact that amongst more than 60 000 Facebook users we

visited, only 26 of them had more than 3000 images each. Hence we leave it to the

reader to decide on the magnitude of n for themselves.

7.3.2 Further works on domain adaptation

We have only touched the surface of the vast literature that exists on domain adap-

tation, and related topics, that may be applicable to steganalysis (transfer learning,

multitask learning, etc). There is no doubt that the ideas of DA are inherent to

many steganalysis problems, such as cover source mismatch, and many more gen-

eral problems which arise due to some other mismatch between training and testing

data, such as dealing with di↵erent quantisation tables. We have taken the first steps

towards understanding the basics from the point of view of some theory, but in ad-

dition to the theoretical work discussed above, the empirical DA literature (and its

related topics) is rich with propositions of heuristics to deal with di↵erent scenarios

of domain adaptation, including many adaptive methods. Reference [99] provides

a good survey. Many of these propositions, which often fit well with the theory

presented here, were tested as solutions to specific domain adaptation applications

such as sentiment analysis or visual object recognition amongst others. A better

understanding is yet to be developed of whether some of these may be applicable to

steganalysis.

7.4 Consequences for steganalysis

This chapter represents the first step towards understanding how domain adapta-

tion ideas can be applied to steganalysis. We framed cover source mismatch as a
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problem of domain adaptation and discussed the tradeo↵s that exist in it, using

statistical learning theory and its domain adaptation extensions. We analysed the

error introduced by cover source mismatch and provided a robust methodology for

estimating it, which involves minimising classifier’s estimation error. That allowed

us to demonstrate that the choice of classifier for steganalysis is non-trivial as is the

choice of training data or features representation. Specifically, an analysis was given

as to why a simpler (smaller capacity) classifier may outperform a more complex

(large capacity) classifier, which reiterated our empirical results from the previous

chapter. We have argued that steganalysis features need to be designed such that

they are maximising the separation between classes and minimising the discrepancy

between sources, at the same time. We have shown that there exists a DA-based

framework which can be used for approximately measuring the discrepancy. Lastly,

we have shown empirically and explained in theory that using only matched data

for training may not necessarily be the optimal option for a steganalyst. A known

framework from DA literature was introduced to help one reason about this. Many

open questions remain, which need to be investigated in order to complete our un-

derstanding of which DA solutions may lead to the optimal choice of strategy when

tackling cover source mismatch and similar steganalysis problems.
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Conclusions

The security of a steganography system is defined by our ability to detect it. It is

of no surprise then that steganography and steganalysis both depend heavily on the

accuracy and robustness of our detectors. This is especially true when real-world

data is considered, due to its heterogeneity.

Until now it has been asserted that matched data (which means same source and

no heterogeneity, i.e. all characteristics are identical and/or near-identical) is strictly

necessary to train accurate and robust detectors. Several problems can be identified

with this approach. First, in reality, situations may occur when matched training

data is unavailable. Second, one must have absolute certainty in the ground truth

(i.e. perfect knowledge of the properties of the source), otherwise the cost is high

(performance drop due to cover source mismatch is enormous) as the researchers

have repeatedly encountered and we confirmed experimentally. Even when the first

two issues are resolved, this thesis shows that in light of modern tools - large feature

sets coupled with complex non-linear classifiers, this still may not be the best strat-

egy due to elevated estimation and adaptation error (if applicable). Our empirical

results motivate this observation, which goes in line with modern theory of domain

adaptation.

Motivation for this thesis initially came from the idea that using more training data

could improve steganalysis detectors. We investigated this through two hypotheses,

first, that linear classifiers are more robust than non-linear classifiers to cover source

mismatch (in the view of the presence of normal limiting factors such as space and
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time) and second, that linear classifiers are so robust that given su�ciently large

mismatched training data they can equal the performance of any classifier trained

on small matched data. We have shown that our first hypothesis was supported by

our results and theory. Whilst our second hypothesis was not supported by empir-

ical evidence we have shown that a non-trivial situation1 may arise (n
T

> d/A2),

which happened in a large number of tests on mismatched actors. In conjunction

with several domain relatedness conditions, which are known to be necessary and

su�cient, this allows us to reason about when conservative domain adaptation is

applicable to steganalysis.

With the help of real-world data we have shown that the penalty that is often

associated with cover source mismatch may, in fact, be a combination of two error

terms. The first of these is the estimation error, which is due to small training

data sets and a high capacity classifiers-features combination. The second is the

adaptation error, which is due to mismatch between training and test data and (for

a fixed representation) depends on the divergence between underlying distributions

that generate the training and test data and the choice of classifier. We argue that

a simple strategy of training on an unweighted combination of a large number of

di↵erent sources allows us to approximately minimise both terms. The success of

such a strategy was shown to (in theory) depend on the relatedness between the

domains from which training and test data were generated respectively. It was con-

firmed that for di�cult domains, for which our proposed method did not work very

well, the relatedness was low. In-depth analysis was provided, raising many open

questions. To our knowledge, this is the first work in steganalysis framing it in terms

of theoretical domain adaptation.

8.1 Open questions

Can we predict when conservative DA will succeed?

The success of domain adaptation is a function of relatedness between source

1By trivial situation, here we mean that the size of matched training data is prohibitively small
for training.
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and target domains (small disc
`

and � are required) and, in the case of ERM-

like training, the size of source domain data available for training. It was

tested that disc
`

was large for those sources for which our detectors showed

lowered performance. This raises the immediate question: is disc
`

a good pre-

dictor for steganalysis cover source mismatch? If the answer is yes then we

can always construct a state-of-the-art classifier for mismatched sources which

yield small enough disc
`

using a simple conservative DA strategy (empirical

risk minimisation over a large collection of sources). Obviously, the measure

of disc
`

for a given target domain is dependent on the classifier and features,

as well as what source domain data is available.

Similarly, there might be an impact on steganography. If a steganographer

can measure the discrepancy between sources then they might want to choose

to design a source (without raising suspicion in any other way - i.e. images

must still be plausible) in such a way that the discrepancy is maximised which

would in turn yield a larger adaptation error for the potential detector. Such

process would be costly, but one needs to evaluate the consequences of this.

Can we do better than conservative DA?

For all other sources (those for which disc
`

is large), one might choose to use a

di↵erent strategy for steganalysis - perhaps one that would allow us to explic-

itly minimise the discrepancy between training and test data and it is yet to

be discovered which domain adaptation method is best for steganalysis (many

exist) and if one would always succeed.

Many general-purpose adaptive DA heuristics exist such as importance weight-

ing and pivot features. Some of these may or may not be applicable to steganal-

ysis and it is yet to be fully understood which ones would be. Our preliminary

results have shown that importance weighting, for example, might not work.

This is a topical area of research in domain adaptation, which will undoubt-

edly yield better solutions in time.

Other approaches to tackle cover source mismatch, which are not based on
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solutions from the theory and practice of domain adaptation exist. Some of

them are concerned with predictable bias such as in [72, 62] and this is a topic

of ongoing research in steganalysis.

Can non-linear algorithms lead to smaller disc
`

distance?

Faster, non-linear classification algorithms exist, which were not evaluated in

this study. A natural extension to our thesis would be to see whether it is

possible to e↵ectively minimise their estimation error on typical steganalysis

problems. What will happen to approximation and adaptation errors in this

case? We predict that the adaptation error would increase (based on the

intuition about how the discrepancy distance can be approximated - a better

algorithm should better discriminate between examples from source and target

distributions). If they do make the adaptation error smaller (or it stays the

same) then this contradicts our previous claim [82] that non-linear classifiers

overfit the source. Further investigation is required.

How can we use the convergence rates?

Theory says that the rate of convergence of ERM (and ERM-like algorithms,

such as regularised classifiers) on di↵erent problems depends on the capacity

of a classifier (its complexity coupled with the complexity of features) and the

complexity of the problem (not according to VC-dimension but according to

Rademacher complexity for example) with respect to that capacity. This goes

in line with our observations.

An important open question is whether steganalysts (or even steganographers)

can use the information about convergence rates to their advantage?

8.2 Limitations

Finally we would like to discuss some potential limitations that may be associated

with the present work:

Features

Only one set of features was tested. Subsequently to undertaking the exper-

iments presented in this thesis, several versions of similar large features sets
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have been proposed which use filtered residuals of DCT coe�cients instead of

using their values directly. They have been shown to improve detection perfor-

mance in general. As of yet, however, there is no evidence to suggest that such

features (specifically the filtering) reduce the adaptation penalty. It has been

shown [80] that earlier feature sets that also used filters were still susceptible

to it, for example the SPAM feature set. It is unclear whether the same holds

for JRM, PSRM or other similar new-style feature sets. We have no reason to

believe they are very di↵erent to other feature sets in terms of how much they

are a↵ected by the adaptation error. We leave the investigation of this issue

for future work.

Classifiers

Other classifiers may have allowed for better results. This is likely to require

non-linear decision boundaries and e�cient training (perhaps kernel approx-

imation methods). For example, in [10] k-Nearest Neighbour classifier was

shown to exhibit desirable properties when applied to a model domain adap-

tation problem. Further understanding of how classifier complexity a↵ects the

discrepancy distance between source and target is required.

Time and space constraints

Di↵erent allowances for training time and/or smaller or larger data sets would

have yielded di↵erent figures for the results tables given in Chapter 6. This may

have led to a di↵erent ranking of classifiers and/or training regimes (standard

or with domain adaptation) in our experiments. However, we have shown a

general technique to minimise the estimation error and what it entails in terms

of the trade-o↵s that exist between data size, classifier capacity, training time

and space and the presence and severity of data mismatch.

Better priors

The thesis was concerned with the agnostic learning setting, for which regu-

larised ERM-like methods are optimal. This allows us to build a model from

given data and if data is limited so is our model through the estimation er-

ror. Bayesian methods allow for a better usage of data by encompassing prior

knowledge into the model. Training then allows us to correct that model for

141



CHAPTER 8. CONCLUSIONS

any bias based on the data. If such priors can be found for steganalysis this will

inevitably lead to faster rates of convergence and thus smaller requirements

from the point of view of data availability.

8.3 Further work

Cover source mismatch can be thought of as a particular instance of a more general

problem of model mismatch that is inherent to steganalysis. Recall Ker’s categorisa-

tion of steganalysis scenarios from Chapter 1. The lettered and numbered scenarios

can be dealt with via di↵erent means. In this thesis we made an often-used sim-

plification about the knowledge about the embedding (category (A) (payload size

and embedding method are known)) which meant that the binary problem was fixed.

This allowed us to focus on cover source mismatch which we showed has close connec-

tions with problems from domain adaptation. Categories (B) (embedding algorithm

known, payload size unknown) and (C) (neither is known) represent a di↵erent type

of model mismatch and might require di↵erent tools2. Transfer learning or multitask

learning may be applicable here. Other instances of mismatch may also arise, for

example when the JPEG quantisation tables di↵er, and are likely to require special

treatment. Furthermore a combination of the above may also occur. Many of these

problems are yet to be solved, tools from machine learning are likely to be applicable

but this area remains largely unexplored.

In the light of the open questions presented at the beginning of this chapter, we

can conclude that there is without doubt more work needed for us to understand

the full extent of the impact domain adaptation ideas may have, not only on cover

source mismatch, but also on many related steganalysis problems. We hope that

the first step we have made towards that goal is valuable moving towards future

research in this area.

2These have previously been approached with either regression or multiclass classification algo-
rithms respectively.
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APPENDIX A.

A.1 KSVM grid search on homogeneous and heteroge-
neous data

Figure A.1: KSVM grid search on homo-
geneous data using five-fold cross-valid-
ation on 6000 examples.

Figure A.2: KSVM grid search on heterogeneous
data without cross-validation on 6000 examples.
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Figure B.1: Testing accuracy for all classifiers in the heterogeneous-matched exper-
iment as a function of training set size. Above, payload of 0.1 bpnc. Below, payload
of 0.2 bpnc. Note the nonlinear scale on the x-axis. Linear classifiers and ensemble
AP trained in one-pass. Reproduced from [81]. For more details refer to the full
paper.
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APPENDIX C.

C.1 Results from the final models when the classifiers
are trained online under the normal computational
constraints

Table C.1: Comparison of classifiers trained in one-pass on mismatched data with
nsF5-embedding.

Experiment Classifier Threshold Training Size Testing Size µ � min max

linear
classifiers

nsF5 @ 0.05

AP
default

1 600 actors

⇥
1 000 images

100 actors

⇥
1 000 images

0.8530 0.0381 0.648 0.907

adaptive 0.8549 0.0371 0.646 0.907

LR
default 0.8539 0.0386 0.652 0.912

adaptive 0.8495 0.0402 0.648 0.910

SVM
default 0.8526 0.0427 0.646 0.917

adaptive 0.8502 0.0434 0.648 0.914

non-linear
classifiers

nsF5 @ 0.05

OEAP
default 1 600 actors ⇥

1 000 images

0.8482 0.0427 0.648 0.908

adaptive 0.8497 0.0379 0.648 0.900

linear
classifiers

nsF5 @ 0.1

AP
default

1 600 actors

⇥
1 000 images

100 actors

⇥
1 000 images

0.9689 0.0284 0.768 0.992

adaptive 0.9672 0.0282 0.760 0.992

LR
default 0.9699 0.0252 0.796 0.991

adaptive 0.9699 0.0252 0.796 0.991

SVM
default 0.9756 0.0267 0.776 0.995

adaptive 0.9757 0.0266 0.776 0.995

non-linear
classifiers

nsF5 @ 0.1

OEAP
default 1 600 actors ⇥

1 000 images

0.9711 0.0278 0.790 0.992

adaptive 0.9714 0.0278 0.778 0.992
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Table C.2: Comparison of simple and complex classifiers trained in one-pass on
mismatched data with sPQ-embedding.

Experiment Classifier Threshold Training Size Testing Size µ � min max

linear
classifiers
sPQ @ 0.2

AP
default

1 600 actors

⇥
1 000 images

100 actors

⇥
1 000 images

0.6805 0.0322 0.566 0.746

adaptive 0.6949 0.0281 0.588 0.744

LR
default 0.7010 0.0307 0.580 0.764

adaptive 0.7016 0.0302 0.586 0.764

SVM
default 0.6995 0.0320 0.578 0.753

adaptive 0.7007 0.0329 0.581 0.754

non-linear
classifiers
sPQ @ 0.2

OEAP
default 1 600 actors ⇥

1 000 images

0.6627 0.0364 0.550 0.741

adaptive 0.6824 0.0299 0.576 0.746

linear
classifiers
sPQ @ 0.4

AP
default

1 600 actors

⇥
1 000 images

100 actors

⇥
1 000 images

0.8495 0.0410 0.681 0.913

adaptive 0.8511 0.0405 0.695 0.909

LR
default 0.8486 0.0421 0.677 0.905

adaptive 0.8442 0.0431 0.660 0.907

SVM
default 0.8527 0.0468 0.667 0.914

adaptive 0.8480 0.0473 0.652 0.913

non-linear
classifiers
sPQ @ 0.4

OEAP
default 1 600 actors ⇥

1 000 images

0.8358 0.0464 0.638 0.907

adaptive 0.8399 0.0444 0.654 0.901



Appendix D

D.1 Combined tables for homogeneous-matched (major
diagonal, highlighted in bold) and homogeneous-
mismatched (o↵-diagonal entries).
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[73] J. Kodovský, J. J. Fridrich, and V. Holub. Ensemble classifiers for steganalysis

of digital media. IEEE Transactions on Information Forensics and Security,

7(2):432–444, 2012.
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