
Empirical Validation of the Square

Root Law of Steganography

Catherine Vlasov

University College

University of Oxford

Honour School of Computer Science

Computer Science Project (Part C)

May 2019

Abstract

According to the Square Root Law, the detectability of a hidden message
stays roughly constant if its length is proportional to the square root of the
size of the space in which it hides. This is both a collection of theorems about
probabilistic models of the medium and an empirical observation. However,
the most recent investigation of the phenomenon in practice was done in
2008. Since then, a number of new techniques for hiding (Syndrome-Trellis
codes, adaptive embedding) and detection (rich feature models) have been
developed.

This project parallels the experiments done in 2008. It provides fresh results
by running computation-intensive experiments on two large sets of images,
which show that the Square Root Law continues to hold with the current
best-known algorithms.

Contents

1 Introduction 1
1.1 Outline . 2

2 Background 3
2.1 Steganography . 3
2.2 JPEG Compression . 5

2.2.1 Decompression . 7
2.3 JPEG Steganography . 7

2.3.1 Progress in the Last Decade 8
2.3.2 Distortion Function Minimization 8
2.3.3 J-UNIWARD . 11

2.4 JPEG Steganalysis . 11
2.4.1 Progress in the Last Decade 11
2.4.2 JRM . 13
2.4.3 Low-Complexity Linear Classifier 14

2.5 Square Root Law . 14
2.5.1 Batch Steganographic Capacity 14
2.5.2 Relation to Capacity of Individual Cover Objects . . . 15
2.5.3 Perfect Versus Imperfect Steganography 15
2.5.4 Caveats . 15

2.6 Project Motivation, Goals, and Hypothesis 17
2.6.1 Motivation . 17
2.6.2 Goals . 17
2.6.3 Hypothesis . 18

3 Experiment Design 19
3.1 Images . 19

3.1.1 Image Sets . 19
3.1.2 Preprocessing . 20
3.1.3 Cropping . 21

3.2 Embedding . 22
3.3 Costs . 22
3.4 Features . 23

i

3.5 Classifier . 23
3.6 Pipeline . 23
3.7 Payload Sizes . 25
3.8 Experiments . 26

4 Results & Analysis 27
4.1 Experiment Result Visualizations 27

4.1.1 ROC Curves . 27
4.1.2 Detectability Versus Cover Size 28

4.2 Results From a Decade Ago 29
4.3 Actor3 . 29

4.3.1 ROC Curves . 29
4.3.2 Detectability Versus Cover Size 32

4.4 BOSSbase . 33
4.4.1 ROC Curves . 33
4.4.2 Detectability Versus Cover Size 34

5 Conclusion 37
5.1 Further Work . 37
5.2 Critical Evaluation . 38

Appendix A 47
A.1 Image Sizes . 47
A.2 Proportionality Constants . 48
A.3 Payload Sizes . 48

A.3.1 Actor3 . 48
A.3.2 BOSSbase . 50

ii

Chapter 1

Introduction

On July 5, 2018, a General Electric (GE) employee emailed himself an image
of a sunset [3]. On April 23, 2019, he was arraigned by U.S. authorities [29].
Why? The answer was hidden in plain sight.

Information can be shared over public channels in plaintext or encrypted and
in both cases, all messages are visible to eavesdroppers. They can tell which
people are communicating, how often they do so, and how much information
they are sharing. However, a third option is gaining popularity: hiding one
message inside another to make the hidden message invisible to eavesdrop-
pers. This is called steganography: the art of hiding information.

The sunset image that the employee emailed to his personal address while
at work looked innocent to the naked eye – and to GE’s intrusion detection
system – but it concealed 40 Excel and MATLAB files [3]. Banner advertise-
ments [28], memes [40], and even the 16× 16 pixel “favicons” shown beside
website names in browser tabs [32] have been used for steganography – in
many cases to spread malware. It is therefore important for the security
community to understand how steganography works and how to detect it in
the real world, where theoretical assumptions do not hold.

Intuitively, it should be easier to identify that an image has a hidden pay-
load if the payload is large than if it is small. This idea is formalized by
the “square root law”, which quantifies the relationship between payload
size and the accuracy of a binary classifier whose task is to identify images
with a hidden payload. Informally, the law states that detectability remains
constant if the payload size is proportional to the square root of the number
of pixels in an image.

The law was conjectured in 2006 [18] then empirically validated in 2008 us-
ing state-of-the-art (at the time) embedding and detection algorithms [24].
However, the results in [24] are now – more than a decade later – out of

1

date given how far the field has progressed. The aim of this project is to
empirically validate the law using the current best available tools and there-
fore provide fresh results. By running computation-intensive experiments
on two large sets of images, we find that the square root law still appears to
hold.

As discussed in [24], this result is significant because it puts into question
what unit of measurement is most meaningful when describing the capac-
ity of an image (the amount of information that can be hidden inside it).
Instead of “bits per pixel”, should it be “bits per square root pixel”? The
square root law also has practical implications for users of steganography
algorithms. When deciding how much payload to embed, should they con-
sider the maximum number of bits that can “physically” fit in an image or
some other measurement?

In addition to mirroring the experiments in [24], we explore an idea men-
tioned in the paper’s conclusion. It is suggested that steganographic capacity
might be more precisely modelled as being proportional to

√
N logN (where

N is the number of pixels in an image) due to the behaviour of modern em-
bedding techniques. We find that this does appear to be the case, which is
a new result.

1.1 Outline

Chapter 2 provides background on the field of steganography, including nec-
essary terminology and progress made in the field since 2008, when [24] was
published. I will then give technical descriptions of the algorithms I chose, a
precise mathematical formulation of the square root law, and an overview of
important caveats related to the law’s practical application. Finally, I will
discuss the project’s motivations, goals, and hypotheses.

Chapter 3 covers the design, implementation, and running of the experi-
ments. I outline the experiment requirements and then explain each com-
ponent of my experiment pipeline. The chapter provides sufficient detail to
replicate my results, given access to the image sets and relevant code.

Chapter 4 presents and analyzes the experiment results, which align with
the expected behaviour.

Finally, Chapter 5 summarizes my findings, describes interesting areas of
further research, and discusses how the project goals were achieved.

2

Chapter 2

Background

To see why this project was undertaken, we need to understand its context:
the current state of steganography as well as its state ten years ago.

I will start by introducing key steganography terminology and concepts and
describe how JPEG compression works. Then I will discuss some of today’s
best-known embedding and detection algorithms and compare them to the
best techniques when [24] was written. Finally, I will give a precise formula-
tion of the square root law and lay out this project’s motivation, goals, and
hypotheses.

2.1 Steganography

The word “steganography” comes from the combination of the Greek words
“steganos” (“covered”) and “graphia” (“writing”) [11]. The first known use
of steganography [11] is documented in Herodotus’ influential The Histories
[15], written in 440 BC.

Simmons’ famous prisoners’ problem [35] is typically used to introduce the
field of steganography. Two Prisoners are separated but are allowed to
communicate via a medium monitored by a Warden. They want to discuss
an escape plan, but can only do so by establishing a subliminal channel
that they use to communicate by hiding secret information in innocent-
looking messages. Their goal is to prevent the Warden from detecting that
they are communicating secretly (as opposed to preventing the Warden from
reading their hidden messages).

So far, we have informally been referring to two concepts: hiding (also called
embedding) and detection. In the context of the prisoners’ problem, the
Prisoners are Embedders and the Warden is a Detector. These concepts
are in fact part of two separate but related fields: steganography and

3

steganalysis. The former is the study of hiding information whereas the
latter is the study of detecting hidden information. An object that has
not been modified is referred to as a cover object and an object with an
embedded message is called a stego object.

The input to an embedding algorithm is a cover object, a secret mes-
sage (called the payload), and a secret key shared by the sender and re-
ceiver. The output is a stego object. An embedding algorithm without a
corresponding method for reading the secret message is useless to both the
sender and receiver, so every embedding algorithm has a matching extrac-
tion algorithm. Its input is a stego object and a secret key and its output
is the hidden payload. The embedding and extraction algorithms, together
with the sources of cover objects (such as a camera or microphone), secret
keys, and payloads as well as the communication channel (such as an email
service), make up a stegosystem [20].

It is worth noting that in steganalysis, it is typically assumed that the War-
den knows which embedding method the Prisoners are using. This is a
conservative assumption in line with Shannon’s paraphrasing of Kerckhoffs’
principle: “the enemy knows the system” [34] (in this case the stegosys-
tem).

In a modern context, the objects used for steganography are commonly dig-
ital media such as images, audio files, and videos [23]. In this project we
will study steganography in JPEG images, which makes use of properties of
the JPEG compression algorithm (described in Section 2.2) to hide infor-
mation.

The aim of steganography is to make it impossible for an eavesdropper to
decide whether or not an object contains a hidden payload. A stegosystem
that fulfills this goal is called secure. In addition, an aim of steganography
researchers is to design embedding and extraction algorithms that maximize
a stegosystem’s capacity: the maximum payload size. However, these two
aims are in direct competition. An unsatisfying (and useless) way of fulfilling
the first aim is to always choose a payload of size zero. This way, the
cover and stego objects are identical and therefore an eavesdropper cannot
distinguish between them. However, this does not seem to maximize the
payload size in any sense of the word, therefore failing to meet the second
aim. On the other hand, we can fulfil the second aim by defining capacity
as the number of bits B that used to store the cover object (say a JPEG
file) on a computer. However, hiding a B-bit payload is very likely to make
the stego object look like a garbled sequence of bits. Therefore, a detector
will likely identify such objects as stego objects with near perfect accuracy,
failing to meet the first aim.

As we can see, it is difficult to define the concept of capacity precisely.

4

Despite its lack of a formal definition, capacity is often measured in practice
as an embedding rate: payload size relative to cover size (such as bits per
cover pixel). This project does not attempt to define capacity, but rather
shines a light on what its most appropriate unit of measurement might be
in the context of JPEG steganography.

2.2 JPEG Compression

I will now briefly describe how JPEG compression works, based on the
description in [20]. A complete, detailed account can be found in [30].

What makes JPEG compression space-efficient is quantization: for any
x ∈ R and constant quantization factor q, we have x ≈ q[x/q] (where [·] is
the nearest integer function). Instead of storing x, we can store [x/q] (which
is small for large enough q) and approximately recover x by multiplying
[x/q] by q.

Computers typically store colour images using the RGB format: an array
of pixels, where each pixel is three bytes representing the red, green, and
blue colour intensities, respectively. JPEG compression of an RGB image
involves five steps.

Step 1: Colour space transformation Each pixel is separated into one
luminance (brightness) component and two chrominance (colour) compo-
nents via a linear transformation. The human visual system is more sensitive
to changes in brightness than in colour [11], so JPEG reduces the resolution
of the chrominance components for storage efficiency. The remaining steps
are described only for luminance, but the chrominance components undergo
a similar process.

Step 2: Division into blocks The W ×H image is split into dW/8e ×
dH/8e blocks of 8 × 8 luminance values. Zero padding is used if either
dimension is not a multiple of 8.

Step 3: Discrete cosine transform (DCT) This is the heart of the
algorithm and is similar to the discrete Fourier transform. At the expense
of being lossy, the DCT transforms the image from the domain of pixels into
another domain that is easier to compress due to its sparsity. Specifically,
the spatial domain (pixels) is transformed to a frequency domain (also
called the DCT domain or JPEG domain). Each 8×8 block B of pixels
undergoes the DCT to produce an 8× 8 block C of frequencies (referred to
as coefficients).

It is easiest to understand the transformation by considering its inverse. The

5

goal is to choose coefficients C[u, v] for 0 ≤ u, v ≤ 7 such that:

B =
7∑

u=0

7∑
v=0

C[u, v]Au,v

for DCT modes (u, v). The transformation is effectively an orthonormal
change of basis where the blocks Au,v make up the basis and the coefficients
C define the linear combination of these basis blocks. Coefficient C[0, 0] is
called the DC coefficient and the remaining coefficients are called AC
coefficients.

The Au,v are defined as follows for 0 ≤ i, j ≤ 7, where c0 = 1 and ci =
√

2
for all i > 0:

Au,v[i, j] =
cucv

8
cos

(
π

8

(
i+

1

2

)
u

)
cos

(
π

8

(
j +

1

2

)
v

)

Figure 2.1 shows a few examples of these blocks. The result of this step
is that the high- and low-frequency parts of each luminance block B are
separated.

Figure 2.1: Examples of DCT basis blocks (taken from [20]).

Step 4: Quantization Most of the information loss is due to this step
because quantization (dividing by a number then rounding to the nearest
integer) is a many-to-one operation. Within each block C, each coefficient
is quantized separately, with larger coefficients getting larger quantization
factors than smaller coefficients. A matrix of quantization factors Qqf can
be determined according to the quality factor qf (an integer between 1
and 100, inclusive) chosen for the compression. Thus, instead of storing
C[i, j], we store the following, where [·] once again denotes the nearest in-
teger function: [

C[i, j]

Qqf [i, j]

]

Low quality factors result in larger quantization factors, which cause more
coefficients to be quantized to zero. Therefore the compression is more
efficient at the expense of more information being lost.

6

Step 5: Encoding This step is not relevant for this project and a full
description can be found in [30]. It involves losslessly encoding the matrix
of quantization factors as well as the quantized coefficients (stored in a zig-
zag ordering in order to increase the chances of runs of zeros for better
compressibility).

2.2.1 Decompression

Decompression is possible because of the quantization factors: the quanti-
zation step can be approximately reversed by multiplying each quantized
coefficient by the corresponding element of the quantization factor matrix
and performing the inverse DCT. Since information is lost during the quan-
tization step, the decompressed image will almost certainly differ from the
original image.

2.3 JPEG Steganography

Now that we understand how JPEG compression works, we can explore how
to use JPEG images as a medium for steganography. In the remainder of
this report, we will use m to denote payload size (in bits) and N to denote
cover size (in pixels1), unless otherwise noted.

One of the simplest embedding algorithms, called least significant bit
replacement (LSBR), visits the pixels in an image in a pseudorandom
order determined by the secret key and uses the least significant bit (LSB) of
each pixel to carry one bit of the payload2. This works for raw, uncompressed
images (though it is highly detectable [20]), but not for JPEGs due to the
information loss during the quantization step. However, we can still use this
idea, except after information is lost.

Instead of overwriting the LSB of each pixel, we can modify the LSB of each
quantized luminance3 DCT coefficient by adding or subtracting 1. This is
the central idea behind most JPEG embedding algorithms.

Modifying coefficients that are equal to zero tends to have a visually per-
ceptive effect on the decompressed image, particularly in smooth areas (like

1As we learned in Section 2.2, each 8 × 8 block of pixels produces an 8 × 8 block of
DCT coefficients. Thus, N denotes both the number of pixels and the number of DCT
coefficients in an image.

2This assumes we use a grayscale image where each pixel is represented as a single
byte. In the case of an RGB image, we can use each of the three bytes that represent an
RGB value to store one bit of payload.

3The luminance component is almost always the one used for embedding because
changes to the chrominance components can be visually perceptible [20]. From now on, I
will therefore no longer specify that coefficients are luminance coefficients in the context
of embedding. Similarly, I will omit the term “quantized” and assume it to be implied
because coefficients are only modified in their quantized form.

7

the sky). Thus, changing zero-valued coefficients is typically avoided and
so the capacity of JPEG images is often measured in terms of bits per
non-zero DCT coefficient. Changes to the (0,0) DCT mode – which is fea-
tured in Figure 2.1 – are also highly detectable because they cause blocks of
8× 8 pixels to appear brighter or dimmer. Therefore, this is also generally
avoided [20].

2.3.1 Progress in the Last Decade

One of the best-known JPEG embedding methods at the time [24] was
written is called F5. Each bit of the payload is embedded in a non-zero
coefficient by modifying the coefficient’s LSB – if this results in the coefficient
becoming equal to zero, then the same bit is embedded again in the next non-
zero coefficient [39]. Two consequences of this repeated embedding is that
the capacity of images is relatively low and coefficients get pulled towards
zero. The latter effect is referred to as “shrinkage” and it means that the
number of zero-valued coefficients increases, which increases detectability.
In no shrinkage F5 (referred to as nsF5), the effect of pulling coefficients
towards zero is eliminated using wet paper codes [12] (a topic beyond the
scope of this report).

nsF5 was chosen to represent state-of-the-art embedding in [24], but adap-
tive embedding algorithms have since become the new standard [22].
Their goal is to identify embedding changes (such as modifications to the
LSB of a coefficient) that are the least detectable [20]. This is expressed
formally in Section 2.3.2.

2.3.2 Distortion Function Minimization

We will now formalize the task of embedding while minimizing a distortion
function. This is partially based on the formulation in [9], which I have
adapted to describe embedding in JPEGs. I will skip over some details in
the interest of conciseness, but a full account can be found in [9].

Let:

• I = Z be the set of all possible quantized DCT coefficient values

• X = IN be the set of all possible cover images

• x = (x1, ..., xN) ∈ X be a cover image, expressed as a sequence of N
quantized DCT coefficients

Treating cover image x as a constant, let:

• Ii ⊆ I (for 1 ≤ i ≤ N) be the set of possible values for the ith

quantized DCT coefficient of a stego image produced from x

8

• Y = I1 × ...× IN be the set of all stego images that can be produced
from x

• y = (y1, ..., yN) ∈ Y be a stego image produced from x

Each Ii satisfies xi ∈ Ii because it is possible for a coefficient to remain
unchanged. We say embedding is binary if |Ii| = 2 for all i or ternary
if |Ii| = 3 for all i. Changing coefficients by ±1, for instance, yields Ii =
{xi − 1, xi, xi + 1} for all i. In this project, however, we are interested in
binary embedding algorithms for simplicity4.

Let D : X × Y → R be a distortion function that expresses the total cost
of modifying the coefficients that differ in x and y. We are interested in
additive distortion functions, which can be written as:

D(x,y) =

N∑
i=1

ρi(x, yi)

where ρi is a function that gives a bounded cost for replacing cover pixel
xi with yi

5. To simplify notation, let ci = ρi(x, yi). If yi /∈ Ii, we say
ρi(x, yi) =∞. Notice that ρi depends on the entire cover image x, meaning
that it can make use of relationships between coefficients. However, it does
not depend on any other ρj (where i 6= j), meaning that embedding changes
are independent.

Here, we will diverge slightly from the formulation given in [9] and express
formulas in terms of individual coefficients rather than the cover as a whole.
This makes the presentation a bit simpler.

Our embedding algorithm computes probabilities π1, ..., πN such that πi is
the probability that coefficient xi is modified. In the context of binary
embedding, this means that coefficient xi is untouched with probability 1−πi
and coefficient xi is either incremented or decremented by 1 with probability
πi. The choice between incrementing or decrementing is made uniformly at
random. This is in contrast with ternary embedding where there are three
probabilities: one for making no change, one for adding 1, and one for
subtracting 1.

Finally, we introduce the binary entropy function from information the-
ory6:

h(x) = −x log2 x− (1− x) log2 (1− x)

4It is worth nothing that in general, ternary embedding is better because it can embed
the same payload by making fewer changes and therefore achieve a lower detectability [8].

5Ideally ρi would be determined by the detectability of an embedding change (i.e.
modification of a coefficient) but in practice it is set heuristically because there is no way
to measure the detectability of a single change.

6 [22] explains why entropy is relevant.

9

Putting everything together, we can express the problem of embedding while
minimizing a distortion function as two optimization problems, which are
dual to each other:

1. Payload-limited sender (PLS): Embed a payload of a fixed length
of m bits while minimizing the average distortion:

Minimize
π1,...,πN

N∑
i=1

ciπi

subject to

N∑
i=1

h(πi) ≥ m

2. Distortion-limited sender (DLS): Given a fixed average distortion
Cε, embed a payload of maximum length:

Maximize
π1,...,πN

N∑
i=1

h(πi)

subject to

N∑
i=1

ciπi ≤ Cε

From a practical perspective, PLS is a more natural formulation because
someone wanting to send a message tends to have a particular message in
mind. Since PLS and DLS are dual to each other, the optimal solution for
one is also optimal for the other and this can be computed7 to be:

πi =
exp (−λci)

exp (−λci) + exp (−λc∗i)
=

1

exp (−λci) + 1
(2.1)

where λ is fixed and c∗i (= 0) is the cost of not changing coefficient xi.

We can assume c∗i = 0 because PLS and DLS are invariant to adding a
constant to both ci and c∗i .

This optimal solution occurs when
∑N

i=1 h(πi) = m because
∑N

i=1 h(πi)
is a monotonically increasing function. We can therefore pick a value of
λ such that the equality holds for any value of m we want and compute
the probabilities πi with (2.1). λ can be chosen as follows: exponential
search to get an upper (and lower) bound (i.e. increase λ starting from
zero until

∑N
i=1 h(πi) < m), then binary search until, say,

∑N
i=1 h(πi) ∈

[m,m+ 1).

The key takeaway here is that we can simulate the embedding of an m-
bit payload by changing each pixel with probability πi. This is precisely
what is done by J-UNIWARD, the embedding algorithm used in this project
(described in Section 2.3.3).

7The full derivation can be found in [9]

10

2.3.3 J-UNIWARD

UNIWARD (“universal wavelet relative distortion”) [17] is a distortion func-
tion that forms the basis of several embedding methods. The term “univer-
sal” refers to the fact that UNIWARD can be used on any domain, such as
the spatial domain or JPEG domain.

The UNIWARD distortion function is the sum of relative changes to wavelet
coefficients with respect to the cover image. The wavelet coefficients come
from three directional wavelet filter banks, which effectively measure the
horizontal, vertical, and diagonal smoothness of an image. A more tech-
nical description of filter banks and wavelets can be found in [17]. As is
standard practice, an additive approximation of the function is used for the
embedding.

J-UNIWARD is one of the embedding algorithms based on the UNIWARD
distortion function and it operates in the JPEG domain. It has been shown
[17] to significantly outperform nsF5 and another former state-of-the-art al-
gorithm called UED (uniform embedding distortion) and an implementation
is freely available online for research purposes [36], thus making it a good
choice for this project.

Figure 2.2 gives two examples of stego images produced by J-UNIWARD.

2.4 JPEG Steganalysis

Steganalysis is a supervised binary classification problem. Given a set of
training data (consisting of a feature vector and a “cover” or “stego” label
for each of a large number of images), a detector learns how to distinguish
cover images from stego images8. To achieve the best results, features used
in steganalysis should be sensitive to changes caused by embedding while
being indifferent to the content of images.

2.4.1 Progress in the Last Decade

Advances in steganalysis over the last decade were mainly due to the devel-
opment of richer feature sets.

A decade ago, features derived from DCT coefficients enabled classifiers to
achieve the best performance in JPEG steganalysis. This is because features
computed directly from the embedding domain (like RGB values for raw
colour images and DCT coefficients for JPEG images) were considered to
be the most sensitive to changes caused by embedding [13].

8In practice, cover and stego images are represented in the feature space. However, it
is possible in theory to give the quantized DCT coefficients directly to a classifier instead
of features.

11

(a)

(b) (c)

(d) (e)

Figure 2.2: Examples of stego images produced by J-UNIWARD embedding.
2.2(a) is the 320× 240 pixel cover image. 2.2(b) and 2.2(c) are stego images
with small and large payloads, respectively. 2.2(d) and 2.2(e) show (with
enhanced contrast) the result of subtracting 2.2(b) from the cover image and
subtracting 2.2(c) from the cover image, respectively. As we can see, the
small payload results in very few embedding changes, which are impercep-
tible even at high contrast in 2.2(d). On the other hand, the large payload
causes many embedding changes, which are concentrated in the parts of the
image that are not smooth (such as the street and parking lot) and therefore
less detectable.

12

However, feature spaces tended to be quite small: the features used in
[24] had only 274 dimensions. These so-called “merged” features com-
bined:

1. DCT features – such as histograms of DCT coefficient values, his-
tograms of coefficients of specific DCT modes, and dependencies be-
tween coefficients within blocks

2. Markov features – these are derived from a Markov process that mod-
els differences between the absolute values of neighbouring DCT coef-
ficients

These features were used to build several binary classifiers based on soft-
margin support vector machines (SVMs) with Gaussian kernels [31] to iden-
tify stego images produced by different embedding algorithms. Since this
technique was considered state-of-the-art in 2008, [24] used the classifier
trained to distinguish between cover images and images produced by nsF5.

Today, a typical approach to steganalysis consists of defining an image model
and a machine learning model trained to differentiate between cover and
stego images (represented in the image model) [25]. Image models are based
on the embedding domain, but tend to be much more complex than the
feature sets a decado ago. In the context of JPEG steganalysis, they capture
properties of individual DCT coefficients (such as frequencies of coefficient
values) as well as relationships between coefficients (like how often two values
occur beside each other) in the same block and in different blocks. This
results in much richer – and therefore larger – feature sets that help classifiers
achieve better results. The JPEG Rich Model (JRM) is one such model,
which I use in this project and I describe in Section 2.4.2.

In 2012, a well-known machine learning tool was put to use in steganalysis
as a simpler and more scalable alternative to SVMs. Ensemble classifiers,
implemented as random forests, came to light as a new tool with promising
results – they had better detection accuracy by combining the results of
multiple individual classifiers [26]. However, a few years later, it was shown
that a properly regularized (and trained) linear classifier could perform just
as well as an ensemble classifier with a much lower computational complexity
[5]. For this reason, I chose to use one such linear classifier for steganalysis
in my experiments, as discussed in Section 2.4.3.

2.4.2 JRM

The Cartesian-calibrated JPEG Rich Model (CC-JRM) [25] is a state-of-
the-art image model that produces a 22 510-dimensional feature space, irre-
spective of image size. The term “rich” refers to the model’s complexity: it
consists of a large number of submodels that are combined to produce the

13

features. CC-JRM uses some interesting ideas, such as using the differences
between the absolutes values of coefficients.

2.4.3 Low-Complexity Linear Classifier

For my experiments, I used an implementation of a low-complexity linear
classifier that is available online [27]. The classifier takes a set of pairs
of cover image features and corresponding stego image features as input
and splits them 50/50 into a training set and a testing set, keeping cover-
stego pairs together. Then, it selects a regularization parameter with 5-fold
cross-validation on the training set and uses it to regularize the classifier.
Finally, the classifier runs on the testing set and outputs the probability of
error.

2.5 Square Root Law

2.5.1 Batch Steganographic Capacity

The so-called “square root law” (SRL) was first conjectured in 2006 in [18]
in the context of batch steganography, where a payload is spread over a
collection of objects. A year later, it was formalized and proven [19]. Finally,
the law was empirically validated in 2008 both in the spatial domain and in
the JPEG domain [24].

Theorem 1 states the formalized SRL from [19], as paraphrased in [24]:

Theorem 1 (Batch Steganographic Capacity). If a steganographer embeds
a total payload of m bits into N uniform cover objects, then:

1. If M/
√
N → ∞ as N → ∞ then there is a pooled detector which, for

sufficiently large N , comes arbitrarily close to perfect detection.

2. If M/
√
N → 0 as N → 0 then, by spreading the payload equally be-

tween N covers, the performance of any pooled detector must become
arbitrarily close to random for sufficiently large N .

where a pooled detector is one that performs steganalysis on each of a
sequence of N objects separately and then uses the results to decide whether
the entire batch of objects contains a payload. Note that m is not fixed –
we can think of it as a function of N .

Although not directly relevant to this project, it is interesting to briefly
mention two other versions of the SRL: it has been shown to hold if the
cover source can be modelled as a stationary Markov chain [10] or as a
Markov Random Field (including inhomogeneous Markov chains and Ising
models) [21]. These results are significant because they prove that the law
holds under more realistic assumptions about the cover source. Theorem 1,

14

on the other hand assumes that the covers are uniform, which is not realistic.
This and other assumptions are discussed in Section 2.5.4.

As we can see, the SRL is in fact a collection of theorems. Throughout this
paper, however, I only refer to the variant given in Theorem 1.

2.5.2 Relation to Capacity of Individual Cover Objects

How does Theorem 1 – a result about the steganographic capacity of batches
of object – apply to the capacity of individual cover objects? We can answer
this by giving another interpretation of a “batch” of objects.

Let us model a single cover object O as a batch of objects. In particular,
if we can split O into a sequence of small regions, then we can treat these
regions as a batch and apply the theorem directly. In the context of JPEG
steganography, the division of a cover image into many small regions comes
naturally using our knowledge of JPEG compression: simply treat each 8×8
block of coefficients as a separate cover object. However, this transformation
has a catch: the theorem requires the cover objects to be uniform. This is
discussed in Section 2.5.4.

2.5.3 Perfect Versus Imperfect Steganography

Before discussing caveats of the SRL, I will first clarify the difference between
perfect and imperfect steganography and explain why this is relevant. A
stegosystem is called perfectly secure if stego objects come from the same
probability distribution as cover objects, meaning there is no statistical way
of reliably distinguishing between the two [38].

It is well-known that the steganographic capacity of perfectly secure stegosys-
tems is linearly proportional to the cover size [10]. Perfect security, however,
is only possible if the Embedder has full information about their cover ob-
ject source – an unlikely scenario in practice. It is therefore arguably more
important to study the steganographic capacity of imperfect stegosystems,
which is the case for the SRL as stated in Section 2.5.1.

2.5.4 Caveats

This SRL is a powerful result, but it can only be directly applied in fairly ar-
tificial circumstances. In particular, it makes the following assumptions:

• The proof of Theorem 1 relies on both the Embedder and the Detector
knowing the number of cover objects in each batch.

– In general, this is unrealistic. But, interestingly, this might be
slightly more realistic for JPEGs because given an image, the
Detector can compute the number of 8× 8 coefficient blocks and

15

therefore the number of covers potentially used for batch embed-
ding. This is assuming, of course, that the Detector somehow
knows that separate JPEGs are not batched together and that
the Embedder is not treating images as individual cover objects.

• The cover objects must be uniform.

– In the case of JPEG steganography, this means adjacent blocks
of coefficients must be independent. This is not completely im-
plausible when using different cover objects, but is unlikely when
dividing one image into many pieces.

– However, we can consider this a non-issue if we know that JPEG
steganalysis methods only measure properties of coefficients within
each block and treat blocks as independent. A decade ago, this
was indeed the case for most JPEG steganalysis, as mentioned
in [24]. Detectors could be treated as pooling detectors that com-
bine their independent analysis of each coefficient block and the
batch capacity law is therefore obeyed.

– Unfortunately, this uniformity assumption can no longer be ex-
plained away. For instance, the image model I am using to gen-
erate image features (JRM) considers both intra-block and inter-
block coefficient relationships [25]. We must therefore accept that
this assumption does not hold when using state-of-the-art tech-
niques.

• The SRL holds, all other things being equal.

– As with any experiment on real-world data, it is impossible to
guarantee that all factors other than those being tested are con-
stant.

– For example, in these experiments we obtain images of different
sizes by cropping evenly from the top/bottom and left/right edges
of images, therefore keeping the pixels in the middle of the image.
It is known [2] that factors such as local variance and cover satu-
ration affect detection accuracy. Therefore, cropping towards the
centre of an image might not be representative of the original im-
age, so we should not compare the results for images of different
sizes in our experiments.

There is another caveat related to empirically validating the law: we need
access to both a perfect embedder9 and an optimal detector. These do not

9“Perfect” is used in the sense that the algorithm chooses how and where to make
embedding changes so as to minimize statistical detectability, rather than making changes
that are highly detectable (such as only modifiying coefficients corresponding to pixels
depicting a clear blue sky where the colour is smooth and changes are very visible).

16

exist in practice, so we instead have to use the best detection algorithms
currently available. This is an approximation that, as we will see in Chap-
ter 4, does not have a major effect on the manifestation of the SRL in
practice.

2.6 Project Motivation, Goals, and Hypothesis

Given all the necessary background information on the SRL, state-of-the-
art embedding and detection techniques, and what has changed in the last
decade, we are now in a position to justify the need for this research, define
concrete objectives, and give a hypothesis about the results.

2.6.1 Motivation

The last empirical study of the SRL took place over a decade ago [24]. In
the meantime, both steganography and steganalysis techniques have greatly
developed. There is therefore a need to provide fresh results regarding the
existence of a SRL in practice that reflect the current state of the field.

2.6.2 Goals

As the project title suggest, the aim of this project is to empirically validate
the SRL of steganographic capacity. Specifically, the aim is to mimic the
experiments conducted in [24], but using state-of-the-art embedding and
detection algorithms. [24] studied both spatial domain and JPEG domain
steganography, but this project will only study the latter10.

We have the following concrete goals:

• Find two sets of images that:

– Are free and legal to use

– Contain a large number of images (“large” ≈ 10 000)

– Consist of JPEG images all at the same JPEG quality factor (or
raw images so that we can compress them ourselves)

• Choose one state-of-the-art algorithm for embedding and one for de-
tection, ideally with implementations freely available online.

• Design and implement experiments to test detection accuracy on mul-
tiple image sizes and four payload rates: O(1), O(

√
N), O(

√
N logN)11,

10Studying the spatial domain would amount to repeating all the experiments using
different embedding and detection algorithms and thus would not be very interesting.

11This payload rate was not studied in [24], but was mentioned in the paper’s conclusion
as potentially being a more accurate measurement of steganographic capacity for modern
embedding techniques. I therefore decided to include it.

17

and O(N). The experiments should be easy to run and understand,
robust to server failure, reasonably fast (ideally less than a day from
start to finish), and configurable (with respect to image sizes and pay-
load sizes).

• Run the experiments on both sets of images.

• Plot the results in a way that is easy to compare to the results in [24].

2.6.3 Hypothesis

As discussed in Section 2.5.4, we cannot empirically validate the SRL as
stated in Theorem 1 because perfect embedders and detectors do not exist.
We must instead study an approximation of the law using the state-of-the-
art algorithms.

However, as steganography and steganalysis techniques develop, we can rea-
sonably expect their performance to improve. Therefore, I expect the fol-
lowing for each of the payload rates:

• O(1) – detector accuracy decreases as image size increases

• O(
√
N) and O(

√
N logN) – detector accuracy is (approximately) con-

stant for all image sizes

• O(N) – detector accuracy increases as image size increases

18

Chapter 3

Experiment Design

In order to study the square root law, we need a large number of images, tools
for steganography and steganalysis, and a pipeline to process the images.
This chapter describes the steps taken to select and preprocess appropriate
image sets, build the required tools, assemble a pipeline, and run a large
number of computation-intensive experiments. These steps are described
one by one and Section 3.6 summarizes how they fit together.

The code used to run experiments is largely my own. It uses, or is based on,
existing implementations of steganography and steganalysis algorithms. My
supervisor provided me with the image sets and image metadata as well as
a faster, optimised version of one of the algorithm implementations.

3.1 Images

3.1.1 Image Sets

First, the Yahoo Flickr Creative Commons 100 Million Dataset (YFCC100M)
[37] was a natural choice as it contains nearly 100 million images from many
users and is legal to use due to its Creative Commons license. My supervisor
provided me with 13 349 images taken by one user with one camera. From
now on, I will refer to this image set as “Actor3”.

Second, BOSSbase v1.01 [6] is a set of 10 000 raw grayscale images. It
originally consisted of 9 074 images taken by seven different cameras and
was put together in 2010 [1]. Since then, 926 images were added to bring
the total to 10 000. It is the most popular image set for developing and
testing steganographic algorithms, but its most common version is made up
of 512 × 512 cropped versions of the images, which are far too small for
this project. Thus, my supervisor provided me with PGM1 versions of the

1PGM (portable graymap format) is a file format for grayscale images.

19

images, which he produced from the raw, full-size images.

Actor3 was my primary image set, so I ran all experiments on it first and
only then used BOSSbase as a secondary means of validation.

Why repeat the experiments on two different sets of images? It is not the
case that because the SRL appears to hold for one image set, it will neces-
sarily hold for another. This is because with any image set, there is a chance
that all the images have some property that causes embedders and detec-
tors to behave in a certain way. For instance, if a high proportion of user
A’s pictures are zoomed in on grains of sand whereas user B mostly takes
pictures of the clear blue sky, detectability will almost certainly be higher
in all of user B’s images, regardless of the payload size2. This is particularly
relevant for Actor3 because all the images were taken by the same user with
the same camera (and likely the same camera settings). Hence, it is par-
ticularly important to validate our Actor3 experiment findings on another
image set. BOSSbase is a good choice because it contains images taken with
seven different cameras, so if we observe similar behaviour again then it is
likely be a general trend rather than a trend specific to Actor3.

3.1.2 Preprocessing

Actor3 images came in a variety of sizes, the largest and most common size
being 3072 × 2304 pixels. I wrote a script to select all images with these
dimensions (using image metadata supplied by my supervisor), convert them
to grayscale, and rotate the portrait ones to landscape3. This produced a
set of 9 539 images.

The BOSSbase images had many different shapes and sizes. I wrote a script
that converts the PGM files to JPEG4, reads the image metadata (provided
by my supervisor), selects all images that are large enough to be cropped
to 2560 × 1920, and rotates the portrait ones to landscape. An important
difference was that I had to crop at least 32 pixels from each edge of each
image. This is because the PGM images were produced directly from the
raw images and therefore many of them have a thin black frame on the edges.
Figure 3.1 shows an example. My script produced 10 000 images in the same
format as the Actor3 images (except for the image dimensions).

2This is an extreme example, but serves to illustrate the point that image sets can
have properties that alter the behaviour of embedders and therefore detectors. This is not
limited to the subject of the images, which is in fact one of the least important properties
of a set of images in practice. An example of a more important property is the ISO setting
(which specifies sensitivity to light) of the camera when the images are taken.

3I performed these image transformations using a free command-line utility called
jpegtran.

4This was done using a free command-line utility called cjpeg. I used quality factor
80 for the compression, to be consistent with the Actor3 images.

20

Figure 3.1: Grayscale PGM version of one of the raw BOSSbase images. A
thin black frame can be seen on some of the image edges, particularly the
top edge.

3.1.3 Cropping

In order to study the relationship between the payload size and the cover
size, I had to produce images of several different sizes.

I did this by taking central crops of the images in each image set5. A
central crop retains the pixels in the middle of an image and crops pixels
evenly from the top/bottom and left/right edges. I decided to use central
crops (rather than random crops, for instance) since the main subject of
an image is usually in, or near, the center. This meant that cropping was
likely to preserve the general properties of the images and made for a more
meaningful comparison of the classifier’s performance on the large images
relative to the smaller cropped images.

For each image set, I chose a smallest image size and some intermediate sizes
such that the number of pixels in consecutive sizes grows linearly and the
4:3 ratio of the largest image sizes is preserved:

• For Actor3, I chose ten image sizes in total, with a smallest image size
of 320× 240.

• For BOSSbase, I chose eight image sizes in total, with a smallest image
size of 672 × 896. Since it was my secondary image set, I wanted to
have fewer image sizes in order to speed up the experiments.

The computed image sizes can be found in Appendix A.1.

I treated the smallest image size for each image set as a means of quickly test-
ing my experiment pipeline and for this reason the corresponding data points
in my graphs in Chapter 4 are not connected to the other points.

5Once again, I used jpegtran for this.

21

3.2 Embedding

A C++ implementation of J-UNIWARD available online [36] formed the
basis of the implementation I used in my experiments, subject to a few
important modifications.

In this implementation, the payload size must be specified in terms of bits per
non-zero coefficient. However, we are interested in specifying the payload as
a specific number of bits. This ensures that the same amount of information
is embedded in each cover image, regardless of the coefficients. This has
practical implications: users of an embedding algorithm will generally be
interested in the detectability of a specific payload (such as “Meet me at
2pm”), without having to worry about the number of non-zero coefficients.
So, I modified the implementation so the user can specify the payload size
in bits.

Another important observation is that the implementation simulates ternary
embedding whereas we are interested in binary embedding. Modifying J-
UNIWARD to simulate binary instead of ternary embedding was a non-
trivial change that involved updating the Payload-Limited Sender (PLS)
implementation.

3.3 Costs

J-UNIWARD simulates embedding by computing a cost ci for changing
each coefficient xi and then using these costs to compute the probability
πi of changing xi, according to the PLS formulation described in Section
2.3.2.

In the original ternary implementation, there were costs for changing coef-
ficient xi by +1 or −1 or not changing it at all (call these c+1

i , c−1
i , and c∗i ,

respectively). A characteristic of the resulting costs is c+1
i = c−1

i . However,
since I use binary embedding, I only need the cost of making any change –
whether it is +1 or −1 does not matter. This is simply c+1

i (or equivalently
c−1
i).

By default, the J-UNIWARD implementation computes costs from scratch
for each image. This is very inefficient since I need to simulate the em-
bedding of many different payload lengths. A much better approach is to
let J-UNIWARD compute and save the costs for each image once and read
them whenever that image is used for embedding. My supervisor noticed
this inefficiency prior to my project and had on hand a faster, optimised
version of J-UNIWARD that saves the computed costs to a file and skips
the embedding. He provided me with a copy of this code, which I used
to compute the costs of all my images. I will refer to this version as J-

22

UNIWARD-COSTS. Consequently, I had to modify the J-UNIWARD code
once more to make it skip the cost computation and instead read the costs
from a specified file.

3.4 Features

I used a freely available [7] MATLAB implementation of JRM to generate
image features. However, I had to write a script to convert the features
(stored in one ASCII file per image) to a MATLAB matrix (stored as a
.MAT file) with the fields expected by the classifier.

A consequence of JRM’s design is that the sum of all features of an image
is a constant. Thus, I occasionally calculated the sum of the features as a
sanity check.

3.5 Classifier

As mentioned in Section 2.4.3, I used a low-complexity linear classifier. A
MATLAB implementation is available online [27] and I wrote a MATLAB
script to read the cover and stego image features from two .MAT files and
run the classifier.

3.6 Pipeline

Figure 3.2 shows how everything comes together.

The first step in the pipeline is the image preprocessing and cropping. This
is done once per image set, producing eight (BOSSbase) or ten (Actor3)
copies of the images – one for each size. Then, each set of images of each
size flows through the rest of the pipeline, independently of the others, once
for each payload size.

To understand the rest of the pipeline, consider a concrete example: the
320 × 240 Actor3 images and a 12 345-bit payload. The final step in the
pipeline is feeding the features of all 320×240 cover images and the features
of their corresponding stego images to the classifier. These can be computed
in parallel. Computing the cover image features is simple: run JRM. For the
stego images, we need to run J-UNIWARD-COSTS to compute the costs of
changing the coefficients, then J-UNIWARD to simulate the embedding of
a 12 345-bit payload in all cover images, and finally JRM to compute the
features of the resulting stego images.

23

Figure 3.2: Experiment design flowchart. The purple boxes are actions and
the orange boxes are inputs and outputs to/from the actions. The “Original
images” box is annotated with the total size of all Actor3 and BOSSbase
images, respectively, before any preprocessing. All other orange boxes are
annotated with the total size of the relevant files for the largest image size
and some payload size for each image set. The green “Classification error
rate” box is the number output by the linear classifier.

24

3.7 Payload Sizes

We are interested in four payload rates: O(1), O(
√
N), O(

√
N logN), and

O(N). In order to get meaningful results, we want the classifier’s probability
of error for all experiments to be spread out between 0% and 50%. If the
classifier has a probability of error of 0% (or 50%) for multiple experiments,
then it is difficult to draw any conclusions. Thus, I somewhat arbitrarily
chose to target a probability of error around 20%.

To determine the concrete payload sizes, I first found a combination of image
size W ×H and payload size m for each image set such that the classifier’s
probability of error (when trained and tested on cover images of size W ×H
and stego images of size W ×H with an m-bit payload) is around 20%. I
found the following:

• Actor3: 36 223 bits of payload in 1056 × 792 images had a minimum
probability of error of 0.2249

• BOSSbase: 41 287 bits of payload in 1792 × 1344 images had a mini-
mum probability of error of 0.2028

For each image set, I chose a “middle” image size: 2048 × 1536 for Actor3
and 1792× 1344 for BOSSbase. Then, I estimated the payload size needed
to produce an error rate of around 20% in images of these two sizes:

• For Actor3, I had to compute the following, under the assumption that
the SRL holds:

36 223 ·
√

2048 · 1536

1056 · 792
≈ 70 252

• For BOSSbase, the middle image size is 1792 × 1344 so no further
calculations were necessary: 41 287 is the desired number of bits.

Next, we need four proportionality constants r1, r2, r3, r4 for each image set
such that we embed the following payloads for each image size:

• O(1): m = r1 · 1

• O(
√
N): m = r2 ·

√
N

• O(
√
N logN): m = r3 · logN

√
N

• O(N): m = r4 ·N

Let Nmid be the number of bits in the middle image size of an image set and
let m∗

mid be the number of bits that should be embedded in images of that
size to produce a probability of error around 20%. For simplicity, I wanted
proportionality constants such that the same number of bits is embedded in
the middle image size for all four payload rates.

25

Hence, I solved the following equations for r1, ..., r4, givenNmid andm∗
mid:

m∗
mid = r1

m∗
mid = r2 ·

√
Nmid

m∗
mid = r3 ·

√
Nmid · logNmid

m∗
mid = r4 ·Nmid

For Actor3, Nmid = 2048 · 1536 and m∗
mid = 70 252 and for BOSSbase,

Nmid = 1792 ·2344 and m∗
mid = 41 287. The resulting constants are in Table

3.1.

Actor3 BOSSbase

r1 70252 41287
r2 39.610 26.604
r3 1.8351 1.2549
r4 0.022333 0.017143

Table 3.1: Proportionality constants chosen for Actor3 and BOSSbase.

Finally, we can compute the payload sizes by multiplying the constants by
1,
√
N ,
√
N logN , and N for each image size N . The results of these

calculations are in Appendix A.3.

In order to more closely mirror the experiments from [24] (as well as provide
a more confident validation of the SRL), I computed two additional sets
of proportionality constants. They were simply 30% smaller and larger,
respectively, than the constants above. I will refer to these as the “small”,
“middle”, and “large” constants, respectively. These constants are in A.2
and their corresponding payload sizes are in Appendix A.3.

3.8 Experiments

Everything is now in place to run the experiments. This involves running
through the one-time preprocessing steps highlighted in Figure 3.2, once for
Actor3 and once for BOSSbase, and then executing the rest of the pipeline
once for each image size and payload size. Finally, the results need to be
plotted, as described in Chapter 4.

26

Chapter 4

Results & Analysis

This chapter presents the experiment results and discusses how they align
with our expectations. Overall, the experiments required 10 months of com-
puting time and generated 10 TB of data in the form of images, features,
and costs.

4.1 Experiment Result Visualizations

Before presenting any results, I will explain the visualization methods I
chose.

4.1.1 ROC Curves

First, I will show receiver operating characteristic (ROC) curves.
ROC curves plot the true positive rate (1 − fn), on the y-axis, against the
false positive rate (fp), on the x-axis, and are a standard tool for evaluating
the diagnostic ability of a binary classifier.

The points making up an ROC curve can be used to compute the minimum
probability of error (PE): PE = min 1

2(fn + fp) over all points (fp, 1 −
fn). Figure 4.1 shows an example of an ROC curve with the minimum PE
(referred to from now on as MinPE) point highlighted.

A straight line from the bottom-left corner to the top-right corner corre-
sponds to the performance of a random classifier. On the other hand, the
closer a curve is to the top-left corner, the closer the classifier is to perfec-
tion. Thus, if we identify the MinPE point on an ROC curve, we expect
it to be one of the closest points to the top-left corner of the graph. This
makes sense because, in our case, the top-left corner corresponds to fp = 0
(no cover images are identified as stego images) and 1− fn = 0 =⇒ fn = 1
(all stego images are identified as stego images).

27

Figure 4.1: Sample ROC curve. This is the curve generated when the clas-
sifier is run on all 2048× 1536 Actor3 cover images and corresponding stego
images with 70 252 bits of payload. The MinPE point is highlighted by a
black dot.

4.1.2 Detectability Versus Cover Size

Second, I will plot detectability against cover size for each payload rate (I
will call these detectability graphs).

How should detectability be measured? [24] considered three metrics (one
being 1−MinPE) and they all exhibited similar results. Here we will only
consider 1 −MinPE, which can be informally interpreted as the classifier’s
accuracy.

These graphs have a similar format to those in Section 4.2 for ease of com-
parison. However, there are a few differences worth noting:

• I express cover size as the number of pixels (or equivalently coeffi-
cients), whereas [24] expresses cover size as the number of non-zero
(AC) DCT coefficients. Both units are correct in their respective con-
texts because they represent the number of places where embedding
changes can be made: the nsF5 embedding algorithm used in [24]
ignores zero-valued coefficients, while J-UNIWARD uses all of them.

• I run experiments with four payload rates whereas [24] only studies
three payload rates. As I mentioned in Section 2.6.2, this is because the
O(
√
N logN) payload rate is mentioned in [24] as a potentially better

measure of steganographic capacity for modern embedding algorithms
that use adaptive embedding.

28

4.2 Results From a Decade Ago

We first remind ourselves of what we hope our results will look like. Figure
4.2 shows the 2008 results for the detection accuracy of a support vector
machine-based classifier for nsF5 embedding in JPEG images.

Figure 4.2: JPEG domain results from [24]. The graphs show the results for
O(1) payloads (left), O(

√
N) payloads (middle), and O(N) payloads (right),

where N is the number of non-zero coefficients. Each graph has three lines,
corresponding to the use of three proportionality constants.

4.3 Actor3

4.3.1 ROC Curves

Figure 4.3 presents ROC curves for each payload rate. As explained in
Section 4.1.1, we can assess how well the classifier performs by looking at
how close a curve is to the top-left corner of the graph.

O(1) payload The classifier achieves perfect detection with the smallest
image size since its MinPE has coordinates (0, 1), as we see in Figure 4.3(a).
As image size increases, detector accuracy decreases and approaches that
of a random classifier. This is expected since the number of potential em-
bedding locations (coefficients) to choose from increases with cover size, so
the embedding algorithm will have more low-cost (as measured by the dis-
tortion function) choices. Thus, it can achieve a lower overall distortion in
large images than in small images.

O(
√
N) and O(

√
N logN) payloads The curves and MinPE points are

very close together in both Figures 4.3(b) and 4.3(c). The smallest image
size is a notable exception in both and we will treat it as an outlier. The rest
of the curves, however, show that detectability is approximately constant for
both payload rates. The curves in Figure 4.3(c) are visibly closer together
than those in Figure 4.3(b), suggesting that steganographic capacity is more
accurately measured as being of order

√
N · logN than of order

√
N .

29

(a) O(1) payload (b) O(
√
N) payload

(c) O(
√
N logN) payload (d) O(N) payload

Figure 4.3: Actor3 ROC curves. These results are for the payload sizes
generated by the middle proportionality constants. The legend indicates the
width of each image size and the MinPE point of each curve is highlighted
with a black dot. The gray dotted line represents the performance of a
random classifier and is included as a reference point.

30

(a) O(1) payload (b) O(
√
N) payload

(c) O(
√
N logN) payload (d) O(N) payload

Figure 4.4: BOSSbase ROC curves. These results are for the payload sizes
generated by the middle proportionality constants. The legend indicates the
width of each image size and the MinPE point of each curve is highlighted
with a black dot. The gray dotted line represents the performance of a
random classifier and is included as a reference point.

31

O(N) payload Figure 4.3(d) shows that as image size increases, detec-
tor accuracy increases – the opposite of the trend in Figure 4.3(a). This
behaviour is expected: if we think of each coefficient modification as send-
ing a nearly imperceptible signal to the classifier, then the aggregation of
increasingly many signals (as image size, and therefore payload size, grows)
becomes increasingly perceptible. Another interesting observation is that
the curves in Figure 4.3(d) are closer to the line depicting a random classi-
fier’s accuracy than the curves in Figure 4.3(a). This is not a result of the
payload rate, but rather it is a result of the proportionality constant choice
– if the constant was larger, the curves would all be closer to the top-left
corner. See Figure 4.5 for a concrete example.

(a) m = 0.7 r4N (b) m = r4N (c) m = 1.3 r4N

Figure 4.5: Actor3 ROC curves for O(N) payloads for all proportionality
constants. The legend indicates the width of each image size and the MinPE
point of each curve is highlighted with a black dot. The gray dotted line rep-
resents the performance of a random classifier and is included as a reference
point.

4.3.2 Detectability Versus Cover Size

In Figure 4.6 we see 1−MinPE plotted against cover size, where the MinPE
points are precisely those highlighted in Figure 4.5. It is more straightfor-
ward to assess changes in detectability with these graphs than with ROC
curves because we can compare the detectability metric (MinPE) directly on
the y-axis. The trends discussed in Section 4.3.1 are also visible here.

O(1) payload Figure 4.6(a) shows that detectability decreases as image
size increases.

O(
√
N) and O(

√
N logN) payloads Figures 4.6(b) and 4.6(c) show

that detectability is approximately constant for O(
√
N) and O(

√
N logN)

payloads, respectively. The fact that the ROC curves were closer together
for O(

√
N logN) payloads than for O(

√
N) payloads manifests itself here

32

as well: the lines in Figure 4.6(c) are flatter than those in Figure 4.6(b)
(ignoring the smallest image size, which we also disregarded when assessing
the ROC curves). This may not be obvious to the naked eye, so I computed
the slope of the best fit line1 for these two payload rates, using the middle
constant and ignoring the smallest image size. The slope for Figure 4.6(c)
(−6.425e5) is closer to zero than the slope for Figure 4.6(b) (−1.285e5),
indicating that the former is flatter.

O(N) payload Figure 4.6(d) shows that detectability increases as image
size increases.

4.4 BOSSbase

4.4.1 ROC Curves

Figure 4.4 shows the ROC curves for BOSSbase. There is an evident sim-
ilarity between these curves and the curves for Actor3 in Figure 4.3 for all
payload rates. Therefore, all the analysis in Section 4.3.1 applies here as
well, though with a few slight differences:

• The smallest BOSSbase images do not stand out as much as the small-
est Actor3 images did. This difference is not surprising: the smallest
BOSSbase images have around 10 times as many pixels as the Actor3
images but the number of payload bits as a proportion of the number
of pixels is 14% for Actor3’s smallest images but only 3% for BOSS-
base’s smallest images (for a O(

√
N) payload, as an example). Thus,

a much larger proportion of the pixels (coefficients, to be precise) need
to be used for embedding in Actor3’s smallest images, resulting in
higher detectability. This could have been avoided by choosing the
same image sizes for both image sets.

• The ROC curves for the O(1) payloads and O(N) payloads are much
more spread out for Actor3 in Figures 4.3(a) and 4.3(d) than for BOSS-
base in Figures 4.4(a) and 4.4(d). This can again be attributed to the
fact that different image sizes were chosen for the two image sets. The
difference in the number of pixels between consecutive image sizes is
larger for Actor3 (800 000 pixels) than for BOSSbase (700 000 pixels),
so consecutive image sizes can be expected to behave more similarly
for BOSSbase than for Actor3.

1I used simple linear regression with ordinary least squares to fit a line to the points
in the detectability graph.

33

4.4.2 Detectability Versus Cover Size

Given the similarity of the BOSSbase and Actor3 ROC curves, the de-
tectability graphs for BOSSbase are unsurprisingly similar to those for Ac-
tor3, so the Actor3 analysis in Section 4.3.2 also applies here. It appears
that the SRL is more closely obeyed for O(

√
N logN) payloads than for

O(
√
N) payloads. As with Actor3, I computed the slope of the best fit

line for both payload rates and arrived at the same result: the slope for
Figure 4.7(c) (−7.116e5) is closer to zero than the slope for Figure 4.7(b)
(−1.0932e4).

(a) O(1) payload (b) O(
√
N) payload

(c) O(
√
N logN) payload (d) O(N) payload

Figure 4.6: Actor3 detectability graphs. These graphs plot 1−MinPE (on
the y-axis) against the cover size (on the x-axis) for all ten image sizes. The
legend indicates which line corresponds to which proportionality constant.
The points corresponding to the smallest image size are not connected to
the rest since we treated them as a way to test the pipeline rather than to
get meaningful results, as described in Section 3.1.3.

34

(a) O(1) payload (b) O(
√
N) payload

(c) O(
√
N logN) payload (d) O(N) payload

Figure 4.7: BOSSbase detectability graphs. These graphs plot 1−MinPE (on
the y-axis) against the cover size (on the x-axis) for all eight image sizes. The
legend indicates which line corresponds to which proportionality constant.
The points corresponding to the smallest image size are not connected to
the rest since we treated them as a way to test the pipeline rather than to
get meaningful results, as described in Section 3.1.3.

35

36

Chapter 5

Conclusion

The square root law was first shown to hold in practice in 2008 [24] in both
the spatial domain (raw images) and the JPEG domain using state-of-the-
art (at the time) steganography and steganalysis techniques. We have shown
that the law continues to be observed empirically in the JPEG domain – in
fact, we observed that steganographic payload capacity is of order

√
N logN

rather than
√
N , which reflects the use of state-of-the-art adaptive embed-

dding algorithms.

Our experimental results on two large image sets align with the results
from [24] and confirm our hypotheses from Section 2.6.3:

• For O(1) payloads, detectability decreases as image size increases.

• For O(
√
N) or O(

√
N logN) payloads, detectability is approximately

constant as image size increases.

• For O(N) payloads, detectability increases as image size increases.

This empirical validation of the square root law has practical implications.
Firstly, it indicates to steganographers that secret channels dry out: the
more information they want to send, the slower they need to send it in order
to avoid detection. It also puts into question the units of measurement used
for steganographic capacity: perhaps “bits per square root pixel” is more
appropriate than “bits per pixel”.

5.1 Further Work

The embedding and detection tools that we tested are currently the state-
of-the-art, but another empirical study will be needed once a new suite of
tools are developed, tested, and put to use. In particular, there has been
research into the use of deep learning for steganalysis.

37

For instance, [4] describes a convolutional neural network (CNN) for JPEG
steganalysis that is tested on two embedding algorithms (one of which is
J-UNIWARD) and has promising results. However, it is important to note
that a CNN is not a novel approach and works very much like the current
state-of-the-art: it gives a (learned) set of features to a linear classifier (in
the output layer). There is therefore no reason to believe that the square
root law will manifest itself differently. Arguably, CNNs are not even a good
steganalysis tool:

• A CNN does not work for multiple image sizes because the input vector
has a fixed size. Fixes like zero-padding affect the network’s behaviour.

• Only small image sizes can be supported due to memory constraints.
For example, a 512 × 512 image has to be fed into a network whose
input vector has over a quarter of a million dimensions. This makes
steganalysis infeasible on large, commonly used image sizes.

Nevertheless, it will be interesting to see if there are breakthroughs in
steganography and steganalysis that affect the manifestation of the square
root law in practice.

5.2 Critical Evaluation

From a research point of view, this was an interesting project that taught
me a lot about the theory of steganography and steganalysis as well as the
practice of experiment design and result analysis. There are a few additional
topics I could have addressed given more time:

• The classifier was run only once for each combination of image set,
image size, and payload size. This means that each MinPE value
reported in Chapter 4 is for one training/testing split of the images. If
this project’s results are published, the classifier should be run multiple
times (as a reference point, [24] did this 100 times).

• To more confidently validate the square root law in practice, I could
have tested: more than two image sets, more embedding methods (such
as UED [14] and MiPOD [33]), more detection methods (such as those
described in Section 5.1), and more feature sets (such as DCTR [16]).
However, it is unlikely this would have brought any new insight, so I
considered it out of scope.

• I did not include error bars in my detectability graphs, unlike in [24].
This was beyond the scope of my project and would have required
running the classifer multiple times for each point and performing
statistical calculations.

• The classifer split my cover and stego images 50/50 into training and

38

testing sets and I did not consider the effect of the number of images
used for training on detectability. It would have been interesting to
study this and plot training set size against accuracy to see how many
training images the classifier needs until its detectability becomes (ap-
proximately) constant for a given combination of image set, image size,
and payload size.

• I would have also liked to study how the classifier performs when
trained on images of many different sizes. This would be relevant
for steganalysis in practice because it is infeasible to have a trained
classifier for every possible image size. Having a classifier that works
well for multiple image sizes would be practical.

From a software engineering point of view, this was a fun and challenging
project that involved:

• Studying code in several languages from a few different sources and
understanding it to a point that I could modify it to meet my needs

• Learning about Bash and Python scripting in order to automate my
experiment pipeline

• Learning how to parallelize computations in Python for improved ex-
periment efficiency

• Learning (the hard way) how to write code that can deal with server
failure, running out of memory, etc.

39

40

Acknowledgements

I would like to thank my supervisor Dr. Andrew Ker for his support not only
with this project, but also with my studies over the last four years. I have
had an incredible time at Oxford and this is largely due to his wonderful
tutorials and project meetings, extra-curricular advice and encouragement,
and general thought-provoking discussions. The last year has been both fun
and challenging and I am grateful to Dr. Ker for his time and energy.

41

42

Bibliography

[1] P. Bas, T. Filler, and T. Pevný. “Break Our Steganographic System”:
The Ins and Outs of Organizing BOSS. pages 59–70, May 2011.

[2] R. Böhme and A. D. Ker. A Two-Factor Error Model for Quantitative
Steganalysis. 6072, February 2006.

[3] D. Bradbury. GE Engineer Charged for Novel Data Theft,
April 2019. https://www.infosecurity-magazine.com/infosec/

ge-engineer-charged-data-theft-1/, accessed May 2019.

[4] M. Chen, V. Sedighi, M. Boroumand, and J. Fridrich. JPEG-Phase-
Aware Convolutional Neural Network for Steganalysis of JPEG Images.
In Proceedings of the 5th ACM Workshop on Information Hiding and
Multimedia Security, pages 75–84. ACM, June 2017.

[5] R. Cogranne, V. Sedighi, J. Fridrich, and T. Pevnỳ. Is Ensemble Clas-
sifier Needed for Steganalysis in High-Dimensional Feature Spaces? In
2015 IEEE International Workshop on Information Forensics and Se-
curity, pages 1–6, 2015.

[6] Downloads. http://dde.binghamton.edu/download/, accessed May
2019.

[7] Feature Extractors for Steganalysis. http://dde.binghamton.edu/

download/feature_extractors/, accessed May 2019.

[8] T. Filler and J. Fridrich. Minimizing Additive Distortion Functions
with Non-Binary Embedding Operation in Steganography. In 2010
IEEE International Workshop on Information Forensics and Security,
pages 1–6. IEEE, 2010.

[9] T. Filler, J. Judas, and J. Fridrich. Minimizing Additive Distortion in
Steganography Using Syndrome-Trellis Codes. IEEE Transactions on
Information Forensics and Security, 6(3):920–935, 2011.

[10] T. Filler, A. D. Ker, and J. Fridrich. The Square Root Law of Stegano-
graphic Capacity for Markov Covers. In Media Forensics and Security,

43

https://www.infosecurity-magazine.com/infosec/ge-engineer-charged-data-theft-1/
https://www.infosecurity-magazine.com/infosec/ge-engineer-charged-data-theft-1/
http://dde.binghamton.edu/download/
http://dde.binghamton.edu/download/feature_extractors/
http://dde.binghamton.edu/download/feature_extractors/

volume 7254, page 725408. International Society for Optics and Pho-
tonics, February 2009.

[11] J. Fridrich. Steganography in Digital Media : Principles, Algorithms,
and Applications. Cambridge University Press, 2009.

[12] J. Fridrich, T. Pevnỳ, and J. Kodovskỳ. Statistically Undetectable
JPEG Steganography: Dead Ends, Challenges, and Opportunities. In
Proceedings of the 9th Workshop on Multimedia & Security, pages 3–14.
ACM, 2007.

[13] M. Goljan, J. Fridrich, and T. Holotyak. New Blind Steganalysis and
Its Implications. Proceedings of the SPIE, 6072, February 2006.

[14] L. Guo, J. Ni, and Y. Q. Shi. Uniform Embedding for Efficient JPEG
Steganography. IEEE Transactions on Information Forensics and Se-
curity, 9:814–825, May 2014.

[15] Herodotus. The Histories. Penguin Classics, 2013. Translated by Tom
Holland.

[16] V. Holub and J. Fridrich. Low-Complexity Features for JPEG Ste-
ganalysis Using Undecimated DCT. IEEE Transactions on Information
Forensics and Security, 10:219–228, February 2015.

[17] V. Holub, J. Fridrich, and T. Denemark. Universal Distortion Func-
tion for Steganography in an Arbitrary Domain. EURASIP Journal on
Information Security, 2014(1):1, 2014.

[18] A. D. Ker. Batch Steganography and Pooled Steganalysis. In Interna-
tional Workshop on Information Hiding, volume 4437, pages 265–281.
Springer, July 2006.

[19] A. D. Ker. A Capacity Result for Batch Steganography. IEEE Signal
Processing Letters, 14:525–528, September 2007.

[20] A. D. Ker. Information Hiding Notes (Advanced Security Course), 2016.
https://www.cs.ox.ac.uk/teaching/materials15-16/advsec/.

[21] A. D. Ker. The Square Root Law of Steganography: Bringing Theory
Closer to Practice. In Proceedings of the 5th ACM Workshop on In-
formation Hiding and Multimedia Security, pages 33–44. ACM, June
2017.

[22] A. D. Ker. On the Relationship Between Embedding Costs and Stegano-
graphic Capacity. In Proceedings of the 6th ACM Workshop on Infor-
mation Hiding and Multimedia Security, pages 115–120. ACM, June
2018.

44

https://www.cs.ox.ac.uk/teaching/materials15-16/advsec/

[23] A. D. Ker, P. Bas, R. Böhme, R. Cogranne, S. Craver, T. Filler,
J. Fridrich, and T. Pevnỳ. Moving Steganography and Steganalysis
from the Laboratory into the Real World. In Proceedings of the First
ACM Workshop on Information Hiding and Multimedia Security, pages
45–58. ACM, June 2013.

[24] A. D. Ker, T. Pevný, J. Kodovský, and J. Fridrich. The Square Root
Law of Steganographic Capacity. In Proceedings of the 10th ACM Work-
shop on Multimedia and Security, pages 107–116. ACM, 2008.

[25] J. Kodovskỳ and J. Fridrich. Steganalysis of JPEG Images Using Rich
Models. In Media Watermarking, Security, and Forensics 2012, volume
8303, page 83030A. International Society for Optics and Photonics,
2012.

[26] J. Kodovsky, J. Fridrich, and V. Holub. Ensemble Classifiers for Ste-
ganalysis of Digital Media. IEEE Transactions on Information Foren-
sics and Security, 7:432–444, April 2012.

[27] Low-complexity Linear Classifier. http://dde.binghamton.edu/

download/LCLSMR/, accessed May 2019.

[28] L. Mathews. Malware Hidden In Banner Ads Served Up To Millions,
December 2016. https://www.forbes.com/sites/leemathews/2016/
12/08/malware-hidden-in-banner-ads-served-up-to-millions/,
accessed May 2019.

[29] E. Nakashima. U.S. Charges American Engineer, Chinese
Businessman with Stealing GE’s Trade Secrets, April 2019.
https://www.washingtonpost.com/world/national-security/us-

charges-american-engineer-chinese-businessman-with-

stealing-ges-trade-secrets/2019/04/23/cb32c78a-65f5-11e9-

82ba-fcfeff232e8f_story.html, accessed May 2019.

[30] W. B. Pennebaker and J. L. Mitchell. JPEG: Still Image Data Compres-
sion Standard. Chapman & Hall Digital Multimedia Standards Series.
Springer US, 1992.

[31] T. Pevnỳ and J. Fridrich. Merging Markov and DCT features for Multi-
Class JPEG Steganalysis. 6505, February 2007.

[32] D. Sancho. Steganography and Malware: Why and How, May
2015. https://blog.trendmicro.com/trendlabs-security-

intelligence/steganography-and-malware-why-and-how/, ac-
cessed May 2019.

[33] V. Sedighi, R. Cogranne, and J. Fridrich. Content-Adaptive Steganog-
raphy by Minimizing Statistical Detectability. IEEE Transactions on
Information Forensics and Security, 11:1–1, January 2015.

45

http://dde.binghamton.edu/download/LCLSMR/
http://dde.binghamton.edu/download/LCLSMR/
https://www.forbes.com/sites/leemathews/2016/12/08/malware-hidden-in-banner-ads-served-up-to-millions/
https://www.forbes.com/sites/leemathews/2016/12/08/malware-hidden-in-banner-ads-served-up-to-millions/
https://www.washingtonpost.com/world/national-security/us-charges-american-engineer-chinese-businessman-with-stealing-ges-trade-secrets/2019/04/23/cb32c78a-65f5-11e9-82ba-fcfeff232e8f_story.html
https://www.washingtonpost.com/world/national-security/us-charges-american-engineer-chinese-businessman-with-stealing-ges-trade-secrets/2019/04/23/cb32c78a-65f5-11e9-82ba-fcfeff232e8f_story.html
https://www.washingtonpost.com/world/national-security/us-charges-american-engineer-chinese-businessman-with-stealing-ges-trade-secrets/2019/04/23/cb32c78a-65f5-11e9-82ba-fcfeff232e8f_story.html
https://www.washingtonpost.com/world/national-security/us-charges-american-engineer-chinese-businessman-with-stealing-ges-trade-secrets/2019/04/23/cb32c78a-65f5-11e9-82ba-fcfeff232e8f_story.html
https://blog.trendmicro.com/trendlabs-security-intelligence/steganography-and-malware-why-and-how/
https://blog.trendmicro.com/trendlabs-security-intelligence/steganography-and-malware-why-and-how/

[34] C. E. Shannon. Communication Theory of Secrecy Systems. Bell Sys-
tem Technical Journal, 28(4):656–715, 1949.

[35] G. J. Simmons. The Prisoners’ Problem and the Subliminal Channel. In
D. Chaum, editor, Advances in Cryptology, CRYPTO ’83, pages 51–67.
Plenum Press, August 1983.

[36] Steganographic Algorithms. http://dde.binghamton.edu/download/
stego_algorithms/, accessed May 2019.

[37] B. Thomee, B. Elizalde, D. Shamma, K. Ni, G. Friedland, D. Poland,
D. Borth, and L. J. Li. YFCC100M: The New Data in Multimedia
Research. Communications of the ACM, 59:64–73, January 2016.

[38] Y. Wang and P. Moulin. Perfectly Secure Steganography: Capacity,
Error Exponents, and Code Constructions. IEEE Transactions on In-
formation Theory, 54(6):2706–2722, 2008.

[39] A. Westfeld. F5 - A Steganographic Algorithm. Lecture Notes in Com-
puter Science, 2137:289–302, October 2001.

[40] A. Zahravi. Cybercriminals Use Malicious Memes that Communi-
cate with Malware, December 2018. https://blog.trendmicro.

com/trendlabs-security-intelligence/cybercriminals-use-

malicious-memes-that-communicate-with-malware/, accessed May
2019.

46

http://dde.binghamton.edu/download/stego_algorithms/
http://dde.binghamton.edu/download/stego_algorithms/
https://blog.trendmicro.com/trendlabs-security-intelligence/cybercriminals-use-malicious-memes-that-communicate-with-malware/
https://blog.trendmicro.com/trendlabs-security-intelligence/cybercriminals-use-malicious-memes-that-communicate-with-malware/
https://blog.trendmicro.com/trendlabs-security-intelligence/cybercriminals-use-malicious-memes-that-communicate-with-malware/

Appendix A

A.1 Image Sizes

This section gives the image sizes for Actor3 and BOSSbase, as described in
Section 3.1.3.

Width Height Total pixels

320 240 76 800
1056 792 836 352
1472 1104 1 625 088
1792 1344 2 408 448
2048 1536 3 145 728
2304 1728 3 981 312
2528 1896 4 793 088
2720 2040 5 548 800
2912 2184 6 359 808
3072 2304 7 077 888

Table A.1: Actor3 image sizes.

Width Height Total pixels

896 672 602 112
1280 960 1 228 800
1536 1152 1 769 472
1792 1344 2 408 448
2016 1512 3 048 192
2172 1632 3 544 704
2368 1776 4 205 568
2560 1920 4 915 200

Table A.2: BOSSbase image sizes.

47

A.2 Proportionality Constants

This section gives the three sets of proportionality constants described in
Section 3.7 for both image sets.

Actor3 BOSSbase

0.7 r1 49176 28900
r1 70252 41287

1.3 r1 91327 53673

0.7 r2 27.727 18.623
r2 39.610 26.604

1.3 r2 51.492 34.585

0.7 r3 1.2845 0.87844
r3 1.8351 1.2549

1.3 r3 2.3856 1.6314

0.7 r4 0.015633 0.012000
r4 0.022333 0.017143

1.3 r4 0.029032 0.022285

Table A.3: Actor3 and BOSSbase proportionality constants.

A.3 Payload Sizes

This section gives the payload sizes (in bits) for Actor3 and BOSSbase for
all three sets of their respective proportionality constants, as described in
Section 3.7.

A.3.1 Actor3

Width Height Pixels O(1) O(
√
N) O(

√
N logN) O(N)

320 240 76 800 49 176 7 683 5 777 1 200
1056 792 836 352 49 176 25 356 23 111 13 074
1472 1104 1 625 088 49 176 35 345 33 785 25 404
1792 1344 2 408 448 49 176 43 029 42 261 37 650
2048 1536 3 145 728 49 176 49 176 49 176 49 176
2304 1728 3 981 312 49 176 55 323 56 194 62 239
2528 1896 4 793 088 49 176 60 702 62 410 74 929
2720 2040 5 548 800 49 176 65 312 67 790 86 743
2912 2184 6 359 808 49 176 69 922 73 212 99 421
3072 2304 7 077 888 49 176 73 764 77 762 110 647

Table A.4: Actor3 payload sizes for proportionality constants
0.7r1, 0.7r2, 0.7r3, 0.7r4 (given in Table A.3), with the total number of
pixels as a reference.

48

Width Height Pixels O(1) O(
√
N) O(

√
N logN) O(N)

320 240 76 800 70 252 10 976 8 253 1 715
1056 792 836 352 70 252 36 223 33 016 18 677
1472 1104 1 625 088 70 252 50 493 48 264 36 292
1792 1344 2 408 448 70 252 61 470 60 373 53 786
2048 1536 3 145 728 70 252 70 252 70 252 70 252
2304 1728 3 981 312 70 252 79 033 80 278 88 912
2528 1896 4 793 088 70 252 86 717 89 158 107 042
2720 2040 5 548 800 70 252 93 303 96 843 123 919
2912 2184 6 359 808 70 252 99 889 104 589 142 030
3072 2304 7 077 888 70 252 105 378 111 089 158 067

Table A.5: Actor3 payload sizes for proportionality constants r1, r2, r3, r4
(given in Table A.3), with the total number of pixels as a reference.

Width Height Pixels O(1) O(
√
N) O(

√
N logN) O(N)

320 240 76 800 91 327 14 269 10 728 2 229
1056 792 836 352 91 327 47 090 42 921 24 281
1472 1104 1 625 088 91 327 65 641 62 744 47 180
1792 1344 2 408 448 91 327 79 911 78 485 69 922
2048 1536 3 145 728 91 327 91 327 91 327 91 327
2304 1728 3 981 312 91 327 102 743 104 361 115 586
2528 1896 4 793 088 91 327 112 732 115 905 139 154
2720 2040 5 548 800 91 327 121 294 125 895 161 094
2912 2184 6 359 808 91 327 129 856 135 966 184 640
3072 2304 7 077 888 91 327 136 991 144 416 205 487

Table A.6: Actor3 payload sizes for proportionality constants
1.3r1, 1.3r2, 1.3r3, 1.3r4 (given in Table A.3), with the total number of
pixels as a reference.

49

A.3.2 BOSSbase

Width Height Pixels O(1) O(
√
N) O(

√
N logN) O(N)

896 672 602 112 28 900 14 450 13 087 7 225
1280 960 1 228 800 28 900 20 643 19 698 14 745
1536 1152 1 769 472 28 900 24 772 24 252 21 233
1792 1344 2 408 448 28 900 28 900 28 900 28 900
2016 1512 3 048 192 28 900 32 513 33 034 36 577
2176 1632 3 551 232 28 900 35 093 36 021 42 614
2368 1776 4 205 568 28 900 38 190 39 639 50 465
2560 1920 4 915 200 28 900 41 287 43 291 58 981

Table A.7: BOSSbase payload sizes for proportionality constants
0.7r1, 0.7r2, 0.7r3, 0.7r4 (given in Table A.3), with the total number of pixels
as a reference.

Width Height Pixels O(1) O(
√
N) O(

√
N logN) O(N)

896 672 602 112 41 287 20 643 18 695 10 321
1280 960 1 228 800 41 287 29 490 28 140 21 064
1536 1152 1 769 472 41 287 35 388 34 646 30 333
1792 1344 2 408 448 41 287 41 287 41 287 41 287
2016 1512 3 048 192 41 287 46 447 47 192 52 253
2176 1632 3 551 232 41 287 50 134 51 459 60 877
2368 1776 4 205 568 41 287 54 557 56 627 72 094
2560 1920 4 915 200 41 287 58 981 61 844 84 259

Table A.8: BOSSbase payload sizes for proportionality constants r1, r2, r3, r4
(given in Table A.3), with the total number of pixels as a reference.

50

Width Height Pixels O(1) O(
√
N) O(

√
N logN) O(N)

896 672 602 112 53 673 26 836 24 304 13 418
1280 960 1 228 800 53 673 38 337 36 582 27 384
1536 1152 1 769 472 53 673 46 005 45 040 39 433
1792 1344 2 408 448 53 673 53 673 53 673 53 673
2016 1512 3 048 192 53 673 60 382 61 350 67 930
2176 1632 3 551 232 53 673 65 174 66 896 79 140
2368 1776 4 205 568 53 673 70 925 73 615 93 722
2560 1920 4 915 200 53 673 76 675 80 398 109 536

Table A.9: BOSSbase payload sizes for proportionality constants
1.3r1, 1.3r2, 1.3r3, 1.3r4 (given in Table A.3), with the total number of pixels
as a reference.

51

	Introduction
	Outline

	Background
	Steganography
	JPEG Compression
	Decompression

	JPEG Steganography
	Progress in the Last Decade
	Distortion Function Minimization
	J-UNIWARD

	JPEG Steganalysis
	Progress in the Last Decade
	JRM
	Low-Complexity Linear Classifier

	Square Root Law
	Batch Steganographic Capacity
	Relation to Capacity of Individual Cover Objects
	Perfect Versus Imperfect Steganography
	Caveats

	Project Motivation, Goals, and Hypothesis
	Motivation
	Goals
	Hypothesis

	Experiment Design
	Images
	Image Sets
	Preprocessing
	Cropping

	Embedding
	Costs
	Features
	Classifier
	Pipeline
	Payload Sizes
	Experiments

	Results & Analysis
	Experiment Result Visualizations
	ROC Curves
	Detectability Versus Cover Size

	Results From a Decade Ago
	Actor3
	ROC Curves
	Detectability Versus Cover Size

	BOSSbase
	ROC Curves
	Detectability Versus Cover Size

	Conclusion
	Further Work
	Critical Evaluation

	Appendix
	Image Sizes
	Proportionality Constants
	Payload Sizes
	Actor3
	BOSSbase

