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Abstract

Steganalysis aims to detect the presence of hidden information, known
as steganography, in digital images. Modern detectors rely on machine
learning techniques, using features from digital images to classify them
as covers or stegos. Often the ability to detect steganography can be
improved through a process called calibration. Calibration attempts to
establish a reference for cover features independent of an image’s content.
This reference can then be used to aid in the detection of steganography,
which violates the feature characteristics of a cover through the presence
its stego signal. This paper tests the novel idea that using independent
images containing overlapping content for calibration can improve the de-
tectability of steganographic images. To this end, a dataset including
cover and stego objects of overlapping, uncompressed images was cre-
ated and tested with state of the art steganalysis methods. In laboratory
conditions I show that existing steganalysis can be increased by a factor
between 2 and 10 when using cover images with overlapping content for
calibration. The discovery of this new method of calibration suggests that
state of the art steganalysis can be improved when overlapping images are
present, however the extent is subject to further research.
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Chapter 1

Introduction

The need for secure and secret communications has existed for thousands of years.
Early forms of steganography can be traced back to ancient Greece [8]. The desire to
detect secure communications has existed just as long. Today almost all modern soci-
eties have adopted digital communications as the default method of transferring data.
The use of steganography to secretly transfer data in digital communications is be-
coming more widespread, increasingly for undesirable purposes such as malware [18].
Consequently, the need to detect steganography is becoming increasingly important.

1.1 Steganography

The aim of Steganography is to transfer information covertly by hiding it in another
medium. This differs from cryptography, which aims to transfer a message securely by
encrypting it, rendering it unreadable. Steganography, however, attempts to disguise
its very existence, transmitting messages that appear completely benign to an intruder
or eavesdropper.

Steganography has typically been explained through the Prisoners’ Problem [17].1

In the Prisoners’ Problem there are two inmates, referred to as Alice and Bob. Alice
and Bob will soon be separated, but they will still be able to send messages to each
other. They want to coordinate an escape strategy; however, all of their messages
will be inspected by the Warden. If the Warden suspects foul play it will result in
consequences, such as the loss of communications. Thus, the goal of the inmates is
for their secret communications to go unnoticed by the Warden.

In the Prisoners’ Problem we assume that Alice and Bob have had enough time
to coordinate their strategy of sending messages and even select a key before they
are separated. The inmates therefore choose to send messages by hiding them in an
unsuspicious medium. The messages are commonly referred to as payloads. An object
that can carry a payload is referred to as a cover object, or cover. By extension, a
steganographic object, or stego, is a cover object that has a payload embedded in it.
The goal of steganography is, therefore, to send payloads through stego objects, with

1The original intention of the Prisoners’ Problem was to describe authentication in the presence of
impersonation. However, it has been adapted to provide an appropriate analogy for steganography.
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Figure 1.1: Diagram of the general steganographic and steganalytic process as de-
scribed in the Prisoner’s Problem. Alice uses the cover source to create a cover object.
She then creates a stego object by using an embedding method to hide a payload in
the cover and sends it to Bob. Alice and Bob share a secret key that is used for
the embedding and extracting methods. When Bob receives the stego object, he is
able to extract the payload using the secret key. The Warden carries/intercepts the
communications between Alice and Bob and uses a detector in an attempt to find out
if steganography is being used. If a payload is detected, the Warden takes actions
against Alice and Bob.

little to no detectable difference between the covers and stegos. An illustration of the
Prisoners’ Problem is shown in Figure 1.1.

Early forms of steganography relied on hiding information in unexpected places
[15]. However, modern technology allows the modification of digital cover objects,
such as digital images, to carry a payload. One is able to make minor changes to the
pixels of a digital image in order to hide a payload. Digital media files are the most
common mediums used for steganography. Their payload capacity, overwhelming
presence, and susceptibility to minor changes makes them ideal for steganography.
Currently, digital images are the most commonly studied mediums due to their sim-
ple properties and widespread use. This paper focuses specifically on uncompressed
digital images, therefore other image types and respective embedding methods are
not described.

An early and still current embedding method for uncompressed digital images is
Least Significant Bit (LSB) steganography. In LSB Replacement, a specific version
of LSB steganography, the payload is converted into a stream of bits. The cover is
then traversed and the least significant bits of the pixels are modified to contain the
payload. Typically, a secret key is shared between Alice and Bob to create a pseudo-
random order to visit the pixels creating a random distribution for the changes in
the cover image. Furthermore, a payload is often encrypted before it is embedded,
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resulting in a randomly distributed payload as well. Payloads are normally described
in terms of how much information is hidden per unit of the cover image. In the case
of LSBR steganography, a grayscale image could have a payload of 1 bit per pixel
(bpp). This would be the maximum LSBR payload for an image, because each pixel
of the stego image contains a payload bit. A payload of 1 bpp is easily detectable
with modern steganalysis, thus payload sizes are often decreased and other techniques
implemented to provide additional security.

The LSBR embedding strategy illustrates how a cover image can be modified
with little to no visual differences in a way that is relatively easy to implement and
lightweight to use. However, the modifications to the cover introduce statistical dif-
ferences in the noise characteristic of the image, which can be used to distinguish it
from cover objects, leading to the development of other LSB embedding methods.
LSB steganographic algorithms have continued to improve by minimizing embed-
ding impacts with the introduction of coding methods and minimization of distortion
functions; however, detection methods have become more sophisticated as well.

1.2 Steganalysis

Steganalysis (also shown in Figure 1.1) takes the perspective of the Warden in the
Prisoners’ Problem. The Warden is trying to detect with high reliability and few
errors whether or not particular messages (digital images) sent between Alice and
Bob contain steganography.

Early methods of steganalysis designed for LSB embedding relied on specific de-
tectors designed to test how often adjacent pixels changed, revealing inconsistencies
between covers and stegos. These methods of steganalysis proved quite reliable, pro-
ducing high accuracy with even small payloads [9]. However, modern embedding
techniques are designed to foil these detectors by reducing the embedding impact by
maintaining histograms or adjacencies, using coding methods, and/or avoiding more
detectable parts of the cover images. These advances make it challenging to create
new detectors in the same fashion.

The difficulties of writing specific detectors for each new steganographic method
led to modern steganalysis which relies on machine learning strategies. Steganalysis
is treated as a supervised learning problem. By providing a learning algorithm with
labeled cover and stego examples, the learner attempts to find the best statistical
separator between the images in order to classify them accurately. Classification of
images with pixel values would be unreasonably difficult due to the domain size as
well as the dependency on the content of the image. Instead, the values of all possible
covers are reduced to a fixed number of features. These features can then be compared
to highlight the differences between covers and stegos.

An early feature set for spatial domain images was the SPAM (Subtractive Pixel
Adjacency Matrices) feature set which contained 686 features [19]. The SPAM fea-
tures use higher-order Markov chains to create a high-pass filter on an image to
remove the content and reveal the noise characteristic. This noise characteristic can
therefore be used to model the patterns of cover images and reveal symmetries intro-
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duced by stego images. The SPAM features were very reliable at categorizing LSB
implementations with much higher accuracy than the specific detectors. [19]

In addition to machine learning-based steganalysis, a method known as “calibra-
tion” was also introduced to improve the accuracy of detectors. Calibration was first
used to estimate the cover histogram from an image [2], which could then be used
to predict the number of changes made to the image and determine whether or not
steganography was present. The aim of calibration is to create a reference image
whose features characterize cover images irrespective of content. The reference cover
can then be used to provide baseline feature values that can be combined with cover
and stego features to suppress variations in the content of an image and increase the
sensitivity to embedding. [12]

Current feature sets avoid targeting specific embedding algorithms. Instead, they
develop general models of images in order to detect anomalies introduced by steganog-
raphy. The hope in obtaining a general model of images is that irregularities intro-
duced by steganography will violate the generalized cover model, making it detectable.
One such feature set, the SRM features, takes this approach. It uses 12,753 fea-
tures that model the noise characteristics of an image, which are normally affected
by steganography, and is effective at detecting many advanced steganographic algo-
rithms. The SRM feature set, which is used in the experiments in this paper, is
discussed more in Chapter 3.

1.3 Structure of Paper

In this chapter a brief and general overview of steganography and steganalysis is
given. The steganographer is attempting to send information secretly by hiding it
in a cover object while the steganalyst attempts to detect the presence of hidden
information. Throughout the rest of the paper, we take the perspective of the Warden,
or steganalyst, in an attempt to improve the detection accuracy of state of the art
steganalysis for uncompressed images. The rest of the paper is structured in the
following way:

• The second chapter presents an ideal, hypothetical situation that motivated this
research and the research hypothesis.

• The third chapter describes the setup of the experiments. This includes a de-
scription of the creation and construction of the dataset, the embedding meth-
ods used, the steganalysis method, the calibration strategy, and the computa-
tional requirements for the experiments conducted.

• The fourth chapter contains the results of the experiments as well as an analysis
of their outcomes. The scope of research is then extended by further experi-
ments.

• The fifth chapter concludes the research with a summary of the work done, an
evaluation of the work performed, and proposed future work in the field.
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Chapter 2

Problem Domain

2.1 Motivating Example

Imagine a hypothetical situation in which a steganalyst has been given a set of un-
compressed images, which may or may not contain steganography. The set of images
is composed of photos that contain overlapping content (i.e. images of the same scene
or partially overlapping scenes). The steganalyst also has access to the cover source
for the creation of training data. The steganalyst’s job is to determine with high
accuracy which, if any, of the images in the set contain steganography.

It seems very reasonable to assume a set of photos, perhaps from an individual’s
image library, would contain overlapping content. With the increasing capacities
of digital media devices people are able to take many photos without a need to
be selective or delete any. Therefore, it seems reasonable to expect that a set of
images, perhaps obtained from an individual’s image library, would contain images
with overlapping content. Some situations where one could expect multiple images
of the same or similar scene are:

• Capturing multiple images of the same scene with the intention of choosing the
best one.

• Photographing the same scene with different alignments.

• Attempting to capture a panorama through multiple photographs of different
parts of a scene.

• Retaking an image of people where someone was not looking or smiling.

• Recapturing a scene where changes occur in the background.

These situations are very common when taking photographs, and many of these
images would contain the same frame with minor differences. Thus, the steganalyst
would like to find a way to maximize the accuracy of the detector using the contents
of the training and testing sets, which in this specific case is overlapping images.
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Figure 2.1: Illustration of the steganalyst described in the motivating example. The
warden has access to the cover source and is able to develop training data that can
be used to improve the detector.

2.2 Hypothesis

Calibration has proven to be a useful method for improving steganalysis by creating
reference images. This paper extends the notion of calibration to independent images
with overlapping content. If two images are taken of a scene with the same cover
source and settings, we would expect the images to be very similar. Additionally, we
would expect their noise characteristics and features to be similar. When a payload
is embedded in an image, it introduces a stego signal into the noise characteristic of
that image. Therefore, if there are two independent images with overlapping content,
one which contains a payload and one which does not, we would expect the stego
signal to disrupt the similarities in their features. In this case it would be reasonable
to assume an image of a scene could be used to calibrate, or provide a reference for,
a separate image of that same scene, assuming they were produced from the same
cover source under the same settings.

In order formulate the problem we assume an ideal situation for the motivating
example, under which to conduct our experiments. The following assumptions are
used to describe what is know and presented to the steganalyst:

(i) The steganalyst is able to access the cover source in order to create training
data.

(ii) The payload size and embedding method are known.

(iii) Pairs of images in the set have overlapping content.

(iv) The overlapping images have been taken using the same settings (ISO, exposure,
white balance, etc.).
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(v) In the pairs of overlapping images one image is known to be a cover, but the
class of the other image is unknown.

An illustration of this situation is described in Figure 2.1.
The assumptions provide a limited yet simple starting point, however, most of

the assumptions described could be overcome by future research. Assumption (iii)
could potentially be automated to determine if images have overlapping content.
Assumption (iv) could be determined by examining the EXIF data of the image
to determine what settings were used to take the image. Assumption (v) could be
overcome by testing the image pairings with the images swapped to determine if a
payload is present. Some of these assumptions are visited again in Chapters 4 and
5, but as an initial study we will focus on testing the concept of using overlapping
images for calibration.

Stated simply, the objectives of this paper are to determine: Can using inde-
pendent images with overlapping content for calibration decrease the classification
error of steganography in uncompressed images? Determining if the hypothesis is
feasible requires constructing a dataset of overlapping images, creating stegos using
current embedding methods, and using state of the art steganalysis, such as the fea-
ture set and classifier. Thus, the aims of this paper are to improve upon leading-edge
steganalysis under certain conditions.

12



Chapter 3

Experiment Design

3.1 Laboratory Conditions

The assumptions described in Section 2.2 are extended to “laboratory conditions”
used for the experiments in this paper. These conditions were created specifically
to test the hypothesis and provide a reasonable starting place for future research,
and therefore do not specifically contain “real world” application at this stage. The
assumptions in Section 2.2 are extended to the following:

• A dataset is created containing:

– covers and stegos and

– independent, overlapping images created with the same cover source and
settings.

• Stegos are created from the dataset with:

– different embedding methods and

– different payloads.

• Leading steganalysis methods are used (feature set and classifier).

• Various calibration formulae are used to determine the effects of calibration
using overlapping covers.

Each element will be described in detail, however the overall work flow of the exper-
imental process is shown in Figure 3.1.

Although practical application is not the goal of this paper, many decisions were
made with realistic circumstances in mind. The dataset constructed, for example,
maintains properties that could be similar in many regards to a typical individual’s
image library. The embedding methods are current techniques that could be used in
practice, and the classifier and features used to build detectors are current, state of
the art implementations. Future work is described in Chapter 5.
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Figure 3.1: Flow chart of the experiment process. As discussed in Section 3.2 the cover
sizes (images and features) include all 7 aspects. The LSBM and HUGO embedding
was performed on one aspect with two different payloads, creating the image and
feature size difference visible in the chart.

3.2 Dataset and Terminology

The dataset constructed for the experiments is composed of images that have specific
amounts of overlap. These images are divided into cover images and stego images
created from the covers.

3.2.1 Structure Of Dataset

The cover images in the dataset make up a corpus with 7 sets of images called aspects.
An aspect is a set of images that has a defined amount of overlap with other aspects.
Aspects overlap by amounts of 100%, 75%, 50%, 25%, and 0%. Additionally, aspects
are referred to as letters A-G or by the amount that they overlap. A set of 7 images
(one from each aspect) that were taken at the same location and relative time are
referred to as a scene. Figure 3.2 shows an image from each aspect from the same
scene. The first aspect, aspect A, is referred to as the origin aspect.

The images were taken in portrait mode using a single camera1. The camera was
set up to take 12 megapixel images (3000×4000 pixels) in RAW format. The focus,
F-stop, exposure, and ISO were set manually for each scene and were not changed

1Canon PowerShot G16
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25% 25% 25%

Figure 3.2: These images illustrate the overlaps of the different aspects of a scene.
Images A (the origin) and B overlap 100% with each other. Aspect C overlaps 75%
with A (and B). Aspect D overlaps 50% with A. Aspect E overlaps 25% with A.
Aspects F and G overlap 100% with each other, but have 0% overlap with A.

between aspects. A tripod was used to limit the amount of movement in the camera
between aspects. The aspects of a scene were created by using a point of reference in
the origin image, such as an object in the frame. The camera was then panned to move
the point of reference 25% of the frame to capture the next image in the scene.2 The
overlaps cannot be expected to be exact due to manual estimation. Therefore, a 25%
overlap is approximately 25% but could be between 20 and 30%. Furthermore, these
approximations can be exaggerated further when considering optical and perspective
distortions in photography. However, these imperfections seem to add to the potential
of practical implementation by introducing realistic, natural differences in overlapping
images.

The dataset is composed of 500 portrait image scenes of 3000×4000 pixel images,
mostly of outdoor photographs in parks and cities. Each image was then divided
horizontally into 5 sub-images and converted to grayscale to both increase the number
of images in each aspect for additional training and testing data for the classifier and
decrease the size of the images for the embedding and feature extraction process.

2Variations in zoom prevent the the use a defined degree rotation to obtain an exact 25% offset
between aspects.
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Figure 3.3: Sub-images, or slices, created from the original image after it is converted
to grayscale.

An example of the image slicing is shown in Figure 3.3. Horizontal slicing creates
images with sky in the top slice, which is normally relatively smooth, and ground in
the bottom slice, which is normally noisy. This greatly diversifies the content of the
dataset which can reduce detector anomalies introduced by similar images. Once the
images are “sliced,” there are 2500 sub-images per aspect of size 3000×800 pixels.
The stego subsets are then created by embedding in the sub-images of the cover
subset.

The images provide a realistic example of overlapping photographs that someone
may take, even though there are consistent overlapping patterns for the individual
images. They contain mild changes in the images between aspects that would occur
in normal photography, such as slight changes in trees due to the wind, movement of
clouds, and people moving in the background. This introduces a “natural” amount of
noise into the images that would be expected in the “real world” overlapping images.
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3.2.2 Dataset Construction

Before the images could be used as covers and stegos, they must be converted and
processed. First, the raw images are converted to the spatial domain 8-bit TIFF
format by using the Digital Photo Professional software supported by Canon. During
the conversion the white balance setting is maintained for each aspect in a scene. The
images are then converted to grayscale and cropped to create the sub-images for each
aspect, using the ImageMagick software. The sub-images are then ready to be used
as cover objects and stego objects.

It is important to mention the software used to develop and process the images,
because different softwares may lead to differences in the images. Adobe Photoshop,
for example may produce dissimilar images due to differences in its grayscale conver-
sion algorithms.

3.3 Steganographic Methods

Two embedding methods were used for the experiments in this paper: LSBM (Least
Significant Bit Manipulation, also known as ±1 embedding) and HUGO (Highly Un-
detectable steGO). These embedding methods are applied to the uncompressed, 8-
bit, grayscale images. Thus, a pixel contains one byte of image information, and all
changes are made to the least significant bit of the pixel value. In these grayscale
images the maximum payload is 1bpp for LSBM and varies for HUGO according to
the image size and content. The decisions for payload sizes were based on the initial
detectability of the steganography in the baseline test. In this test a detector was
built on the covers and stegos of a single aspect without additional information to give
a baseline accuracy. If the baseline accuracy were too high (e.g. 99%), then no no-
ticeable gains can be observed when performing calibration with overlapping images.
If the baseline accuracy were too low (e.g. 51%), then no quantitative comparison for
the detector could be established.3 Payload sizes for the embedding methods were
obtained experimentally.

3.3.1 LSBM

LSB steganography is the most widely distributed and used method of steganogra-
phy in uncompressed images [3]. While LSB Replacement (LSBR) is a completely
flawed method of steganography, LSBM is still considered secure if a small enough
payload is used. LSBM embedding also hides the payload in the pixels of the images
by modifying the value of its least significant bit, however the algorithm is slightly
modified to avoid the pitfals of LSBR. In LSBM the cover is traversed just as it
would be with LSBR. If the payload value is already contained in the pixel, then the
algorithm continues to look at the next payload bit and the next cover byte. If the
pixel value does not contain the payload bit, then the pixel is randomly incremented
or decremented by 1. The two special cases for this method are when the pixel is

3The lowest detector accuracy is 50%, indicating a random cover-stego classification.
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(a)

(b)

(c)

Figure 3.4: Comparisons of cover and stego images highlighting the LSB pixel changes
made to the cover. (a) Cover image (b) LSBM embedding with a payload of 0.01 bpp
(c) LSBM embedding with a payload of 0.005 bpp

the maximum value, in which case it is always decremented, or if the pixel has the
minimum value in which case it is always incremented. Therefore, assuming a random
cover and payload, LSBM only changes the value of a cover pixel 50% of the time.

The LSBM simulator created to produce stego objects in the experiments sim-
ulates a random payload of a defined length with a random key. This is realistic
for steganalysts who do not know the key and where the payload is normally en-
crypted before embedding. For the experiments in this paper, payloads of 0.01bpp
and 0.005bpp were used.

One drawback of LSBM is that the model of images it uses is too general. It
assumes that the pixels are independently and identically distributed throughout the
image. Embedding is performed without considering relationships between pixels.
Thus, the effects of embedding with LSBM appears like the introduction of random
noise as shown in Figure 3.4. However, pixel dependencies are readily present in
natural images, making it detectable with large enough payloads. The LSBM model
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overgeneralizes the structure of an image, but with a small enough payload it is
considered secure.

3.3.2 HUGO

HUGO is a more advanced spatial domain embedding method for uncompressed im-
ages. It is reportedly capable of embedding messages 7 times longer than LSBM with
the same level of security [20]. The HUGO embedding method is separated into two
components: coding schemes and defining a better cover model. These methods allow
HUGO to hide information in the “noisier” parts of the image, as shown in Figure
3.5. When comparing Figure 3.5 to Figure 3.4, one can see the difference in the
two embedding methods. The changes made by the LSBM algorithm are randomly
distributed across the cover, whereas the changes made by the HUGO algorithm are
concentrated in the noisy areas of the image. Fewer changes to the smooth areas of the
image where large amounts of noise are seldom present reduces detectable anomalies
which increases the security of the stego.4

The first component of the HUGO embedding algorithm is to use coding schemes
to embed a payload. Coding schemes aim to represent a given payload with more bits
but using few changes. HUGO uses syndrome-trellis codes to minimize the impact
to the cover image. By reducing the number of changes to the original image, the
probability of detection decreases [1]. Using coding schemes is a common practice
with LSB implementations and is not novel to HUGO. Rather, it is seen as a best
practice approach to steganography.

The second component of the HUGO embedding method aims to gain a better
model of cover images. By considering inter-image pixel dependencies, the HUGO
algorithm quantifies the impact of embedding in each location. This is done by as-
signing a value, or cost, to each pixel before attempting to embed the payload. These
costs are constructed by using pixel adjacencies through the use of SPAM features to
construct high-dimensional models of the embedding impact at each location. By min-
imizing the changes that are detectable by these features and using coding schemes,
the embedding algorithm is able to achieve a much safer embedding method. [20]

The implementation of HUGO used for the experiments and described in this
paper is the Binghamtom HUGO simulator written in Matlab [5]. The algorithm has
not been made publicly available to minimize security risks, however, the simulator
allows an accurate implementation of a random key and payload, given a payload
size, to facilitate the testing of steganalysis methods. The payload values used in the
experiments in this paper for HUGO were 0.1bpp and 0.05bpp.

4Some of the images in the dataset had to be replaced, when the HUGO implementation was
unable to embed the payload. This was likely due to large overexposed areas of the image. When
an image was unable to be used, the entire scene was replaced.
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(a)

(b)

(c)

Figure 3.5: Comparisons of cover and stego images highlighting the LSB pixel changes
made to the cover. (a) Cover image (b) HUGO embedding with a payload of 0.1 bpp
(c) HUGO embedding with a payload of 0.05 bpp

3.4 Steganalysis Method

Most current steganalysis methods utilize machine learning techniques. The research
contained in this paper uses the SRMQ1 features (a version of the SRM features) with
an ensemble classifier to create steganographic detectors. The SRM features are a set
of values that characterize the noise in an image. The ensemble classifier is an off the
shelf classifier that has been designed specifically for steganalysis. Furthermore, it is
currently the state of the art tool for steganalysis due to its accuracy and low time
complexity.

3.4.1 SRMQ1 Features

The SRM (Spatial domain Rich Model) features are a current steganalysis feature set
that aims to generalize the cover model [4]. This feature set was the winning entry
in the BOSS (Break Our Steganography System) contest in 2011 [14]. By combining
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a variety of submodels into a larger general model, the features are able detect a
wide range of steganographic implementations, instead of being limited to a partic-
ular embedding method. Each submodel is created through three steps: computing
residuals, truncation and quantization, and construction of co-occurrences. The aim
of the SRM feature set is to create “a combination of submodels that achieves a good
trade-off between model dimensionality and detection accuracy” [4]. The submodels
are used to construct a model of cover image dependencies that, when broken through
steganography, are detectable.

The first step in the submodel creation is to compute the residuals. A residual is
a measurement difference between the value of a statistical model and the measured.
Thus, the residuals described in SRM show how much observed pixels differ from
a theoretical model, describing the typical noise of an image. By subtracting a de-
noised version of the image from itself, the model is able to reduce the impact of
variations in content of the image. The residuals are essentially the results from
applying linear and non-linear filters to characterize the noise of the image. This is
particularly helpful in steganalysis, because an embedded payload is a signal hiding
in the noise of the image.

Various types of residuals make up the different submodels. The residuals are
calculated in two ways: locally and using the “minmax” [4]. The locally-supported
features are similar to the SPAM features. They are predicted by the neighboring
pixels and are computed by applying a linear high-pass filter. The minmax residuals
are obtained by applying more than one linear filter to a pixel to obtain the value.
Computing the minmax residuals enables the model to obtain non-linear models of
the noise in the image.

The second step in SRM submodel creation is the truncation and quantization
step. The purpose of this step is to use quantization to reduce the domain of the the
residuals. The quantization is computed with different quantization steps to better
detect embedding changes in smooth and textured areas. The algorithm optimizes
the quantization step for each submodel.5 Quantization allows the domain of real
numbers to be put into bins, allowing histograms to be computed from the residuals.

After the residuals are quantized, co-occurrence matrices are constructed. The co-
occurrence matrices are multi-dimensional histograms that show how often a value oc-
curs in a given context. The SRM algorithm uses these four-dimensional co-occurrence
matrices of the quantized residuals to make up the submodels for the feature set.

This process is used to create 45 submodels. There are 12 submodels of 169
features composed from SPAM-like residuals and 33 submodels of 325 features of the
minmax type, giving a total of 12,753 features for the SRM feature set. The SRM
model is successful in detecting many uncompressed image embedding algorithms,
even HUGO which was designed to avoid changes detectable by the SPAM features.

The SRM implementation used in the experiments contained in this paper is an
off the shelf implementation of SRMQ1 written in Matlab [6]. The SRMQ1 features
use a fixed quantization step rather than optimizing for the best quantization step.
The decision to use SRMQ1 over SRM was made to decrease the computation time.

5This is not done with SRMQ1.
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Feature extraction time for SRMQ1 is approximately 1/3 that of SRM which makes
a significant difference in the computational requirements as shown in Section 3.6.
Experimental results show a relatively small loss in accuracy and approximately no
loss for the LSBM. [4]

Once the features are extracted for each image in an aspect, they are combined
into a matrix representing a cover or stego aspect as a whole. Each row contains the
features for a different image and each column holds the values for the same feature.
For example, cover features for aspect A are represented in the feature matrix CA

which has a size of 2,500x12,753. Furthermore, rows with same value from different
aspects or embedding methods correspond to the same scene. In other words, if SA

represents the stego matrix for aspect A, then the a row from SA has its corresponding
cover in the same row of CA. This concept also extends to the other, overlapping
aspects, e.g., a row in CC corresponds to an image that has 75% overlap with the
image used for the same row in CA. Structuring the cover and stego matrices in this
way allows them to be used with the ensemble classifier for classification. Additionally,
the matrix structure allows for calibration formulae to be implemented easily with
overlapping aspects using addition, subtraction, and element-wise operations between
matrices. Calibration methods are discussed in detail in Section 3.5.

3.4.2 Ensemble Classifier

The machine learning algorithm used to learn and classify the images as cover objects
or stego objects is an ensemble classifier utilizing a random forest. This classifier
is a state of the art (for steganalysis), off the shelf, steganalysis classifier written
in Matlab [7]. The advantage of using the ensemble classifier over a traditionally
favored classifier, such as the Support Vector Machine (SVM), is the training time.
The training time of the ensemble classifier is approximately eight times faster than
the SVM if a linear kernel is used and even more so if a Gaussian kernel is used. [13]

The ensemble classifier works by training a number of random forest learners.
Classification is then performed by combining the final decisions of all the learners
in a majority vote. The base learners of the random forest are FLDs. These learners
search for optimal ways to separate the cover and stego classes by creating a linear
classifier for a subset of the SRM features. The subset of features chosen to train
the learners is significantly smaller than the full dimensionality of the SRM features.
This greatly decreases the computational complexity of the learners. The random
forests are trained on a random sample with replacement of the training tuples of
cover and stego images. The FLDs then maximize the “separation,” which is the
ratio of the variance between covers and stegos to the variance within covers and
stegos. Although the individual learners are very poor, the classifier improves with
the number of learners used. Both the number of dimensions used for each learner
and the number of learners is optimized in the classifier. [13,16]

In the experiments performed, false positives and false negatives are considered
equally undesirable, thus no bias is given. The metric used for the accuracy of the
classifier and displayed in results in Chapter 4 is the average classification error. A
10-fold cross validation was used so that the majority of the data could be used for
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training. In other words, ten runs of the classifier were performed, using 9/10 of the of
the cover and stego data as the training set and 1/10 as the testing sets, ensuring that
each testing set is different for each run. The average testing error is the average of
the testing errors for all of these tests. The implementation of the ensemble classifier
used in the experiments was written to allow only the same number of cover and
stego objects, as well as pairing features between the covers and the stegos. Minor
modifications were made to the implementation for different experiments such as
paring features for concatenation calibrations (described in Section 3.5), randomizing
the rows of the cover and stego matrices before training, and allowing for unequal
amounts of cover and stego data for later tests.

3.5 Calibration Method

The calibrations used in the experiments act as element-wise formulae on the fea-
ture matrices before they are passed to the classifier. The calibration methods are
described as functions of x and y. In all cases, unless otherwise defined, x repre-
sents overlapping cover features of a defined amount and y represents the origin cover
aspect and corresponding stego aspect.

For example, the origin feature matrices from a cover and stego, CAand SA are
going to be classified after being calibrated by an overlapping cover reference aspect
CB. Using a calibration formula such as subtraction, represented by x − y, we are
able to calibrate the features before introducing them into the classifier. Therefore,
training and testing the ensemble classifier on the subtraction calibration conducts
the experiment: CB − CA vs. CB − SA.

Another calibration method used is the concatenations operation, which retains
two image feature vectors in a single row of the feature matrix. The concatenation
operation is represented by a •. This calibration could be particularly useful to
combine two calibration methods in hopes to further improve upon the error rate
by using the features of both sub-methods. When the concatenation operation is
used, it is important to maintain the selection of the features from both halves of the
new feature vector in the ensemble classifier. The training algorithm of the ensemble
classifier was modified to pair the features when vectors are concatenated.

By using concatenation as well as a variety of calibrations allows, we are able
to compare the average testing errors from the experiments and determine which
calibration performs the best. All calibration operations described in the results tables
presented in Chapter 4 are element-wise operations. There are some experiments
that involve element division, which will produce undefined values for some of the
calibrated features. In these cases, the undefined values are changed to 0 after the
operation has been performed.

3.6 Computational Requirements

One of the major difficulties to overcome in this research was the computational
requirements needed for the experiments. While some of the steps required minimal
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Figure 3.6: Diagram of the training and testing process with calibration for the
motivating example described in Section 2.1. The cover reference (ref.) images are
used to calibrate the covers and stegos before training the ensemble classifier. The
ensemble classifier produces a detector which is then used on the calibrated testing
data to determine whether steganography is present or not.

computational effort, such as the LSBM embedding algorithm which operates in linear
time, others were more significant. The HUGO embedding method, for example,
required an average of 8 seconds of computational time per sub-image, resulting
in 5 hours 33 minutes per aspect.6 The most significant computational constraint,
however, was presented by the extraction of the SRMQ1 features. The average time
to extract the features for a single sub-image was approximately 4 minutes and 35
seconds and required approximately 3GB of memory during computation. Thus, it
would require 191 hours or almost 8 days to compute a single aspect. Additionally,
the need for usable baseline values described, as described in Section 3.3, resulted in
the calculation of four additional stego aspects (two for LSBM and two for HUGO)
containing different payloads. The payloads of 0.05 bpp and 0.02 bpp used for LSBM

6All computations were performed with an 3.47GHz Intel Xeon X5690 Processor (6 cores).
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were too detectable as were the payloads of 0.4 bpp and 0.2 bpp for HUGO. These
four aspects required embedding and feature extraction, although they were unable
to be used with the calibration tests.

Additional embedding and extraction was needed for aspects to correct errors,
verify features, and confirm results. The total amount of computational time used for
the feature extraction process for the work contained in this paper was computed to
be 743 core days.7 In order to complete these experiments in a reasonable time, the
work was parsed and distributed to a cluster of computers with a job management
system that my supervisor possessed. Learning to use the job management system on
the cluster setup allowed the computational time for feature extraction to be reduced
to just under 18 hours per aspect compared to the 191 hours it would have taken
otherwise.

The ensemble classifier used in the experiments was inconsistent with the compu-
tational time needed to complete the experiments with a 10-fold cross validation due
the optimization of the parameters. Some of the experiments took up to 10 hours,
however many were less than 10 minutes. The total computation time is unknown,
but approximately 390 different experiments were conducted to obtain or lead to the
results contained in this paper.

7Cropped images used for additional experiments described in Chapter 4 required an average of 3
minutes of computation time when the image was 75% of the original and 2 minutes and 20 seconds
when the image was 50% of the original. These result in approximately 5.2 and 4 days per aspect
respectively. The total computational time figure includes these computations as well as the Fixed
Scene extractions used Section 4.3.2.
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Chapter 4

Results and Analysis

4.1 Baseline for Detectors

The first step in determining whether or not calibration is possible with overlapping
images, we must obtain a baseline. The baseline figure for an embedding method and
corresponding payload is computed by training and testing the classifier on covers
and stegos from the same aspect. The baseline test can be described as the cover vs.
stego test which provides an ideal situation for the classifier. The stego was created
from the cover image and any differences in the feature values between the cover and
stego matrices are purely from the embedded payload.

Table 4.1 shows the average testing errors for the different embedding methods
and payloads in the baseline test. The testing errors are representative of current,
state of the art steganalysis for the respective embedding methods and payloads.
Therefore, if calibrating with overlapping images achieves a lower testing error than
the baseline values computed here, the improvements in the detection accuracy are
improving on the state of the art techniques.

Embedding Method Payload Average Testing Error

LSBM 0.01 bpp 0.107

LSBM 0.005 bpp 0.204

HUGO 0.1 bpp 0.065

HUGO 0.05 bpp 0.216

Table 4.1: Average testing error baseline for all embedding methods and payloads.
Payloads are in bits per pixel.

26



4.2 Overlapping Images

After establishing the baseline values, calibration using the overlapping images can
now be tested. This section describes the same process for both the LSBM embedding
method and the HUGO embedding method. The similarities and differences in the
results between the two embedding methods are highlighted.

4.2.1 Calibrating LSBM

The average testing error for LSBM embedding method with a 0.01 bpp payload
for various calibrations and overlaps is shown in Table 4.2. In the best performing
calibration, where there is 100% overlap between the images, the testing error is
approximately 9.7× smaller than the baseline value. Furthermore, the baseline testing
error is improved in the other overlaps by factors of 3.8×, 2.9×, 2.1×, and 1.6×,
respectively. While some of the calibrations in this table make the average testing
error increase, the majority of the calibrations decrease the testing error, improving
the accuracy of the detector. Additionally, we can see that the improvements become
smaller when as the overlap decreases. We would expect this result, considering
the statistical differences in the overlapping images would tend to increase as the
amount of overlap decreases. Towards the bottom of the table there are a number
of concatenations that are combinations of the best performing calibrations. Some
slight decreases in test error can be obtained by these concatenations.

Interestingly, the average testing error is 1.6× smaller than the baseline when
there is no overlap between the images at all. This result implies that an image taken
with the same settings still provides a good enough reference for calibration even if
no overlapping content is present (at least with this embedding method an payload).

After obtaining successful results with LSBM embedding with a payload of 0.01
bpp, the same experiment is performed with LSBM embedding with a different pay-
load (0.005 bpp). Table 4.3 shows the results from this test. In this table we focus
on the calibration methods that performed best in the 0.01 bpp LSBM test.

The results from the 0.005 bpp LSBM experiment show similarities to the 0.01
bpp experiment. The calibrations in this table with 100% overlap all produce testing
errors lower than the baseline value, with the best calibration providing a testing
error 9.3× smaller than the baseline. We see that, again, the performance decreases
as the amount of overlap decreases, and the same calibration from both Tables 4.2
and 4.3 produced the lowest testing error. We also notice that when the payload is
0.005 bpp no gain in performance over the baseline is achieved when the amount of
overlap is less than 50%. Furthermore, calibration begins to perform worse than the
baseline when there is no overlap or 25% overlap between the images and in some
cases when there is 50% overlap.

Cropped Images

The results obtained in the initial LSBM tests support the hypothesis, and the lowest
testing errors with both payloads were achieved when the images overlapped 100%
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Overlap

Calibration
100% 75% 50% 25% none

payload 0.01 bpp

(none) baseline 0.107

x • y 0.023 0.063 0.086 0.101 0.111

x− y 0.015 0.037 0.044 0.072 0.066

x− y

x+ y
0.019 0.043 0.078 0.088 0.114∣∣∣∣∣x− y

x+ y

∣∣∣∣∣ 0.092 0.295 0.363 0.422 0.456

(x− y)2 0.204 0.3672 0.402 0.411 0.432

(x− y)2

x+ y
0.095 0.299 0.364 0.396 0.408

x2 − y2

x2 + y2
0.019 0.051 0.070 0.119 0.122

x • x− y 0.021 0.061 0.074 0.096 0.096

y • x− y 0.023 0.060 0.072 0.100 0.098

x • y • x− y 0.022 0.070 0.090 0.104 0.107

x− y • x− y

x+ y
0.012 0.024 0.041 0.051 0.067

x− y • x
2 − y2

x2 + y2
0.011 0.028 0.037 0.052 0.065

Table 4.2: Average testing error for detecting LSBM embedding with a payload of
0.01 bits per pixel for various calibration methods. Bold numbers indicate the best-
in-column value if it is better than the baseline.
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Overlap
Calibration

100% 75% 50% 25% none

payload 0.005 bpp

(none) baseline 0.204

x • y 0.076 0.161 0.192 0.206 0.222

x− y 0.044 0.169 0.204 0.230 0.240

x− y

x+ y
0.062 0.174 0.218 0.232 0.246

x2 − y2

x2 + y2
0.039 0.176 0.215 0.238 0.253

x− y • x
2 − y2

x2 + y2
0.022 0.096 0.192 0.220 0.228

Table 4.3: Average testing error for detecting LSBM embedding with a payload of
0.005 bits per pixel for various calibration methods. Bold numbers indicate the best-
in-column value if it is better than the baseline.

Overlap (Cropped) Overlap (Cropped)
Calibration

75% 50% 75% 50%

payload 0.01 bpp 0.005 bpp

(none) baseline 0.107 0.125 0.149 0.204 0.145 0.192

x • y 0.058 0.089 0.145 0.192

x− y 0.029 0.069 0.147 0.200

x− y

x+ y
0.044 0.086 0.151 0.204

x2 − y2

x2 + y2
0.044 0.077 0.156 0.201

x− y • x
2 − y2

x2 + y2
0.027 0.034 0.099 0.177

Table 4.4: Average testing error for detecting LSBM embedding with payloads of
0.01 and 0.005 bits per pixel for various calibrations methods in overlapping images
cropped to have 100% overlap. Bold numbers indicate the best-in-column value if it
is better than the original baseline.
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(although there still improvements with less overlap). Initially it was believed that
calibration with overlaps less than 100% could be improved by removing the portions
of the image that did not overlap. In the case of a 75% overlapping reference, the 25%
that does not overlap is hindering the calibration. In order to test this assumption, the
original covers, stegos, and overlapping covers were cropped to create smaller images
with 100% overlap. After cropping the images, the features were extracted, and the
calibration tests were repeated, focusing on a subset of the original calibrations. The
results for both LSBM payloads are displayed in Table 4.4.

Some of the error rates were lower in the cropped images; however, overall no
significant improvements are observed. It seems that too much of the stego signal is
being removed by cropping the images making it less detectable. This is explained by
the Square Root Law of steganographic capacity (SRL) [11]. In the case of LSBM we
would assume that the payload is evenly distributed throughout the image, therefore
removing 25% of the image is also removing approximately 25% of the payload. Ac-
cording to the Square Root Law for the IID cover model, which shows that the secure
capacity of a stego object shrinks with the square root of its cover size, this is making
the payload less detectable. So, by linearly reducing the cover size and payload size,
detectability is decreasing. Therefore, the marginal gains are likely due to noise.

4.2.2 Calibration HUGO

The experiments conducted in the previous section were repeated with the HUGO
embedding algorithm using payloads of 0.1 bpp and 0.05 bpp. The results from the
calibration tests are shown in Tables 4.5 and 4.6 for the payloads of 0.1 bpp and
0.05bpp, respectively.

In Table 4.5, which shows HUGO with a payload of 0.1 bpp, the best performing
calibration is again the 100% overlap which is approximately 5.9× smaller than the
baseline. Similar to the 0.01 bpp LSBM tests in Table 4.2, as the amount of overlap
increases the error rate increases, and gains are still observed even when there is no
overlap between the aspects.

The 0.05 bpp HUGO test results are shown in Table 4.6. Once again the best
performing calibration is the 100% overlap which is 2.6× smaller than the baseline.
The average error also increases as the overlap decreases, however it performs worse
than the baseline if the overlap is less than 75%.

The results from HUGO experiments are similar in many respects to the results
obtained in the LSBM experiments. Testing error increases as the amount of over-
lap decreases, and improvements in the accuracy of the detectors are achieved with
calibration although the greatest improvements are achieved with different formulae.
However, many of the HUGO tests performed poorly, increasing the error rate above
the baseline. Also, no additional benefit was achieved with the concatenation of the
calibrations. Therefore, we can deduce that HUGO noise is better at modeling cover
noise than the LSBM embedding method.

In both Tables 4.5 and 4.6 the x − y calibration performs the best which differs
from the LSBM method. And although Table 4.5 improves even when there in no
overlap between the images (similar to Table 4.2), Table 4.6 shows that there is no
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Overlap

Calibration
100% 75% 50% 25% none

payload 0.1 bpp

(none) baseline 0.065

x • y 0.036 0.059 0.068 0.073 0.072

x− y 0.011 0.021 0.034 0.041 0.050

x− y

x+ y
0.127 0.172 0.198 0.206 0.210∣∣∣∣∣x− y

x+ y

∣∣∣∣∣ 0.198 0.382 0.445 0.466 0.478

(x− y)2 0.210 0.432 0.482 0.511 0.499

(x− y)2

x+ y
0.145 0.336 0.401 0.431 0.452

x2 − y2

x2 + y2
0.120 0.163 0.196 0.202 0.217

x • x− y 0.023 0.050 0.069 0.058 0.069

y • x− y 0.026 0.037 0.049 0.060 0.061

x • y • x− y 0.038 0.057 0.087 0.082 0.083

Table 4.5: Average testing error for detecting HUGO embedding with a payload of
0.1 bits per pixel for various calibration methods. Bold numbers indicate the best-in-
column value if it is better than the baseline.
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Overlap
Calibration

100% 75% 50% 25% none

payload 0.05 bpp

(none) baseline 0.216

x • y 0.141 0.216 0.249 0.255 0.262

x− y 0.082 0.189 0.239 0.251 0.251

x− y

x+ y
0.241 0.303 0.321 0.329 0.336

x • x− y 0.138 0.217 0.249 0.254 0.263

x • y • x− y 0.138 0.218 0.248 0.250 0.263

Table 4.6: Average testing error for detecting HUGO embedding with a payload
of 0.05 bits per pixel for various calibration methods. Bold numbers indicate the
best-in-column value if it is better than the baseline.

Overlap (Cropped) Overlap (Cropped)
Calibration

75% 50% 75% 50%

payload 0.1 bpp 0.05 bpp

(none) baseline 0.065 0.107 0.154 0.216 0.259 0.311

x • y 0.094 0.151 0.235 0.294

x− y 0.066 0.137 0.215 0.275

x− y

x+ y
0.183 0.221 0.309 0.349

x • x− y 0.088 0.151 0.234 0.288

x • y • x− y 0.098 0.152 0.236 0.288

Table 4.7: Average testing error for detecting HUGO embedding with payloads of
0.1 and 0.05 bits per pixel for various calibrations methods in overlapping images
cropped to have 100% overlap. Bold numbers indicate the best-in-column value if it
is better than the original baseline.
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gain with less than 75% overlap between the image sets.

Cropped Images

As with the LSBM tests, the cropping image tests were also performed with the
HUGO embedding method. The same operation was performed: The images with
75% and 50% overlap were cropped with the origin image and its corresponding stego
to have approximately 100% overlap with one another, albeit with a smaller size. The
features were extracted, and the calibration experiments were performed. The results
are displayed in Table 4.7.

In the results obtained only one of the calibrations performed better than the
baseline; however, it is only a 0.5% difference which could be attributed to noise.
It seems that the cropped image experiments performed with HUGO supports the
observation made for the cropped LSBM experiments. While the HUGO embedding
method does not support the IID cover model of images, it seems that a significant
amount of the stego signal is lost when the images are cropped, making it more
difficult to detect.

4.3 Further Exploration of Results

The results obtained for both the LSBM and HUGO embedding methods support the
hypothesis that using overlapping images for calibration can increase the detection
of steganography. While a variety of calibrations outperformed the baseline, the

x − y • x
2 − y2

x2 + y2
method was most successful for calibrating LSBM, and x − y was

best for calibrating HUGO. This implies that there is not a best calibration for all
embedding methods, rather embedding methods have different effects on features that
can be emphasized through different formulae. Let us now turn our attention to some
additional experiments to further our understanding of steganalysis with overlapping
images.

With the general consistency of the results in the previous section, further exper-
iments will focus on the more advanced embedding scheme, HUGO. In the following
experiments, the HUGO embedding method and 0.05 bpp payload are fixed, unless
otherwise indicated, in order to focus on possibilities and discrepancies presented with
overlapping images.

4.3.1 Potential Objections

An initial argument that could be made is that the calibration experiments are pro-
vided with more cover data for training and testing than the baseline test, which could
be causing the improvements in the performance of the detector. In order to test this
quandary, the baseline experiment was conducted two more times with double the
amount of cover images: firstly, with additional covers from the 100% overlapping
aspect and secondly with additional covers from the 0% overlapping aspect. This can
be represented symbolically as CA, CB vs SA which produced an average test error of

33



0.213 and CA, CG vs SA which produced an average test error of 0.212 compared to
the original baseline average test error of 0.216. The testing errors with the additional
cover aspects are marginally better (perhaps due to noise), but can be considered in-
significant when compared to the gains achieved with the x− y calibration. So, while
an additional cover aspect is used in the calibration experiments, the improvements
in detection are due to calibration and not the presence of more data.

Although doubling the amount of cover data for training did not meaningfully
improve the testing error, it is reasonable to believe that the presence of more training
data could improve the baseline. An additional baseline test, using half the training
data (1,250 covers and 1,250 stegos) produced a higher testing error of 0.230 and
using a quarter of the training data produced a still higher testing error of 0.242.
The baseline, therefore, seems to be improving with the addition of training data,
but the difficulty is knowing how much training data is needed. A rule of thumb for
machine learning is that you need roughly 10 times as many training examples as you
have features. In the case SRM features, this would require 127,000 cover and stego
images. Developing such a dataset is not practical when considering the motivating
example proposed in Section 2.1 and the computational time required to extract the
features in Section 3.6. Therefore, it is possible that with enough training data the
baseline test could produce similar results to those achieved by calibration. However,
this paper shows that we are able to achieve significant improvements in testing error
by using calibration with a much smaller dataset.

4.3.2 Covers and Stegos in Feature Space

The successful classification of the cover and stego data shows that they are separable
in feature space. Furthermore, calibrating with overlapping covers was very successful,
implying that an overlapping cover provides a good noise characteristic reference for
the origin image. We would expect the stego signal to disturb the noise characteristic
of the cover image, however is the difference between the noise characteristic of a cover
and its corresponding stego greater than that between a cover and an independent
overlapping cover?

The noise characteristic of the images is being represented in the SRM feature
space. The Mahalanobis distance, given by the following formula

D(a,b) =
√

(a − b)TΣ−1(a − b)

was used to compute the distance in feature space between the overlapping covers
and stego (HUGO with a 0.05 bpp payload). Where a and b are feature vectors for
the images and Σ is the covariance matrix of the origin cover aspect. This process
was performed for each image in the dataset. In order to determine how significant
the effects of embedding are on the noise characteristic in feature space, the ratio of
the average cover-cover distance to the average cover-stego distance was computed,
yielding a value of 3.685. This means that difference in the noise characteristic rep-
resented by the SRM features is much greater between covers than it is between a
cover and stego.
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In the previous experiment there was a significant amount of variation in the
content of the images which could cause the covariance matrix to impact the result.
Therefore, an additional test was performed to comfirm this result with a set of images
that are very similar. The same camera and settings as described in Section 3.2.1
were used to capture 500 new images of a single scene. The development of the images
and extraction of the features process described in Figure 3.1 was performed on the
new images (only HUGO embedding with a 0.05 bpp payload was used), and then
the distances between the covers and stego aspect were computed. The ratio of the
average distances for this new dataset was 3.701, which is very similar the first test.

These tests provide insight into what is happening to overlapping covers and
cover-stego pairs in feature space. The results from these two experiments shows
that the differences in the noise characteristics of overlapping covers is approximately
3.7× greater than the differences between covers and stegos. Therefore, for the stego
signal to be detectable it must be moving the noise characteristic of the cover in
a consistent “direction” in feature space that is different from the direction of an
overlapping cover. In other words, using HUGO to embed a payload into an image
has a consistent effect in feature space that is different from the noise characteristic
of an overlapping cover image. This is why the reference cover can be useful for
calibration, because the reference image is removing noise introduced by the various
changes in the environment without removing the stego signal. Ambitiously, we could
imagine that if an embedding method is moving the noise characteristic of an image
in a consistent direction, the size of the payload could impact the distance moved in
the stego direction.

To illustrate this idea, feature reduction techniques are used to visualize the data
in feature space. A Principal Component Analysis (PCA) was used on the origin
cover aspect to reduce the dimensions and illustrate the impact of the stego signal on
the noise characteristic of the cover. Additionally, Fisher’s linear discriminant (FLD)
was used to obtain a vector for a linear separator between the origin cover and stego
(HUGO embedding with a payload of 0.1 bpp) data, defined by the formula:

w = (ΣCover + ΣStego + εI)−1(µStego − µCover)

Where w is the FLD vector, Σs are covariance matrices, εI is a small multiple of the
identity matrix to ensure that the matrix is invertible, and µs are mean vectors. The
FLD provides a vector that best separates the origin covers and HUGO stegos with
a 0.1 bpp payload in feature space. This method should perfectly separate these two
sets of data in order to show the effects of HUGO embedding.

Using the vectors obtained from the PCA and FLD, we can project cover and
stego data down to two dimensions. Figure 4.1 shows the projection of the data on
these two vectors. The figure shows that the direction HUGO embedding moves a
cover and this direction is generally maintained even when a smaller payload of 0.05
bpp is used.1 This trend means that it may be possible to train the classifier with

1While this figure presents an important visual aid, it is purely for illustrative purposes. It would
perform very poorly for classification, because it is “over-trained” on the data. This is demonstrated
by the distribution of the 100% overlapping cover which would often be classified incorrectly if this
were used as a classifier.
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Figure 4.1: Illustration of cover and stego (HUGO) data in feature space. The FLD
component uses the HUGO with a 0.1 bpp payload data and the origin cover data
to separate the covers and stegos, while the PCA Component is generated from the
origin cover. When plotting the 0.05 bpp stego images on the graph, it is in the same
direction as the 0.1 bpp images, suggesting that there is a consistent direction with
a varied magnitude in feature space.

one payload and still be able to detect another.
In order to test this idea, the ensemble classifier was trained with the HUGO stego

with a 0.05 bpp payload and then tested on the HUGO stego with a 0.1 payload to
determine if it is feasible. 2 Symbolically this can be described as: training on CB−CA

vs. CB −SA(0.05) and testing on CB −CA vs. CB −SA(0.1). This experiment produced
an average testing error of 0.011 which is equivalent to the best performing case in
the calibration tests performed purely on HUGO with a payload of 0.1 bpp presented
in Table 4.5. Thus, it is feasible to train the classifier with a smaller payload and still
detect stego objects with a larger payload.

2The x− y calibration is used for best performance.
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4.4 Moving Toward Real World Application

Let us now return to the assumptions of the hypothesis given in Section 2.1. With the
original hypothesis confirmed in laboratory conditions, we can begin to relax some of
the assumptions to further the research presented in this paper. The tests that follow
provide interesting results for a scenarios which may inspire directions for further
research.

The first assumption that we revisit is assumption (ii). Assumption (ii) states
that the steganalyst knows the payload size and embedding method are known. With
the understanding that embedding methods, specifically HUGO, moves in a general
direction in feature space and that larger payloads move further in the same direction.
Perhaps the assumption could be revised to: the embedding method and a bound for
the payload size were known (e.g. the HUGO embedding method is used and the
payload is greater than 0.05 bpp).

Additionally, the second assumption that could be revisited is assumption (v). As
previously stated in Section 2.1 it must be known that the first image of the pair of
overlapping images is the a cover while the other is to be determined. It was also
noted that this stipulation could be overcome by trying the different paring orders,
which is now attempted. If we also include the modification to the first condition,
allowing for two separate payloads with the HUGO embedding (a more thorough
analysis would include a range of payloads), there are 9 possible cover-stego pairs
that could be presented. For this experiment we again perform the training and
testing of the classifier separately: training on CB −CA vs. CB − SA(0.05) and testing
on CB −CA vs. x− y parings. When the order of the parings are reversed, swapping
the labels would be sufficient. 3 Table 4.8 contains the average testing error for each
of the possible parings.

In Table 4.8, we see that although the classifier is trained on the HUGO embedding
method with a 0.05 bpp payload, it is able to correctly classify the 0.1 bpp payload
when the 0.05 bpp payload is used for calibration. Also, when the pairings are in
the opposite order, reversing the labels produces accurate classification. As we would
expect the diagonal elements in this table show that when calibration is performed
with the same type of image, classification is unsuccessful. This is intuitive when
considering the cover-cover calibration, because it should be difficult to classify covers
into different groups. It is also intuitive when considering using a stego to calibrate
another stego with the same payload. The direction that the stego signal moves the
cover image in feature space after embedding would be removed or greatly reduced by
calibrating with a stego image with the same payload. However, when an image with
a smaller payload is used for calibration, the stego signal after calibration may be
reduced, but it is still detectable because the magnitude of the stego signal in feature
space was greater. This approach provides a means of detecting whether or not two
overlapping images have different payloads (above a certain payload threshold) for
a given embedding method. This method could be very useful in practice, like in
the motivating example where the steganalyst is trying to determine whether or not

3Multiplying each calibrated feature by −1 would invert the effect of the x− y calibration
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Type Cover HUGO (0.05) HUGO (0.1)

Cover 0.5 0.082 0.011

HUGO (0.05) 0.052* 0.5 0.027

HUGO (0.1) 0.012* 0.036* 0.5

*Calibration labels were swapped

Table 4.8: Average testing error for the different parings of overlapping images with
HUGO embedding with payloads of 0.1 and 0.05 bits per pixel. The x− y calibration
method is used in all experiments. A 0.5 average testing error shows performance is
comparable to a random guess.

steganography is being used in overlapping images, because determining a difference
in the payloads of two images indicates that steganography is being used.

While specific conclusions have be drawn from these results, general conclusions
and applications would require further experimentation beyond the scope of this pa-
per. However, these findings do indicate that practical application is not unrealistic,
but plausible through further development.
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Chapter 5

Conclusions

5.1 Summary

Calibration is a commonly used method to improve steganalysis by providing an image
reference to characterize the noise characteristic of a cover image. This paper presents
a new approach to calibration, using independent overlapping images created from the
same cover source and settings. The experiments performed on uncompressed images
using LSBM and HUGO embedding methods in laboratory conditions show that this
is true. When calibration was used with the LSBM embedding method, the average
testing error was 9.7× smaller than the baseline with a payload of 0.01 bpp and 9.3×
smaller than the baseline with a payload of 0.005 bpp. Similarly, the calibration with
HUGO embedding method achieved an average testing error 5.9× smaller than the
baseline with a payload of 0.1 bpp and 2.6× smaller than the baseline value with a
payload of 0.05 bpp. We can summarize the initial results obtained in this paper as
follows:

• Independent overlapping images provide a good reference image for calibration,
improving the testing error of the detector.

– Improvements to the baseline are more significant when there is more over-
lap in the images.

– No significant improvement to the baseline is obtained when images are
cropped to contain a 100% overlap.

– Improvements to the baseline are more significant when the baseline accu-
racy starts out higher.

• Improvements in testing error are not due to the presence of more cover data.

• Calibration with an independent, overlapping stego image with a smaller pay-
load also improves the testing error.

These results can be seen as improvements to state of the art steganalysis methods
(assuming certain conditions about the data).

After confirming the hypothesis, additional experiments were performed to provide
insight into the results obtained, revealing that:
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• The distance between the noise characteristic of independent, overlapping covers
is more approximately 3.7× larger than the distance between a cover and its
corresponding stego.

• Embedding a payload with the HUGO algorithm makes consistent changes to
an image in feature space.

• A larger payload is a larger distance from the cover in feature space.

• It is possible to determine whether or not independent, overlapping images
contain different payload sizes (above a threshold) for a particular embedding
method (HUGO).

These conclusions allow the hypothetical assumptions needed for the laboratory con-
ditions to be relaxed, providing direction for future research.

5.2 Evaluation

Calibration has commonly been used to improve steganalysis; however, to the au-
thor’s knowledge, overlapping images have never before been used for calibration.
The results obtained in this paper show that using overlapping images can provide
significant improvements to the testing error, greatly improving upon state of the art
steganalysis in some situations. This is a significant discovery when considering how
likely the presence of overlapping images would be in practice. However, with the
early state of this research the impact that it could have on the future of steganalysis
is still unknown. The results obtained are dependent on the correct type of training
data, i.e., same cover source and cover settings. Therefore, before this research could
be used in practice, a number of hurdles must be overcome.

5.3 Future Work

The presence of steganography is growing rapidly [18] and steganalysis will likely grow
with it. Much of the research in this paper deals with the discover that overlapping
images can be successfully used for calibration. The extent to which this is possible
is still relatively unknown. This paper presents successful attempts under laboratory
conditions for uncompressed images, but it is unknown whether or not this is possible
in compressed images, which are far more prevalent today. Each of the tests previously
performed could also be done on the compressed version to determine if similar results
are obtained.

As described in Section 2.1 and 4.4 there are a number of steps that could be taken
to actually to provide a real world solution to the motivating example discussed. In
Section 4.4 we briefly explored some potential possibilities to see if they were plausible.
These assumptions would need to be readdressed before a real world application is
possible.
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A far-reaching future work would be in the field of mass detection of steganography
using images from social media. We can imagine using geo-tagged images with the
EXIF date and time properties to find images from various users that overlap. These
images could be used for calibration to increase the accuracy of mass steganalysis.
Work in batch steganography [10] is a very recent field, so there are a number of
significant advancements that would need to be made before this would be feasible.
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