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Introduction

On the face of it the Java virtual machine (JVM) is a very attractive platform for realistic
concurrent and distributed applications and systems. On the other hand, the warnings from at
least parts of the “Java establishment” to neophyte Java programmers who think about using
threads are clear:

If you can get away with it, avoid using threads. Threads can be difficult to use, and they
make programs harder to debug.

It is our basic belief that extreme caution is warranted when designing and building multi-
threaded applications ... use of threads can be very deceptive ... in almost all cases they
make debugging, testing, and maintenance vastly more difficult and sometimes impossible.
Neither the training, experience, or actual practices of most programmers, nor the tools
we have to help us, are designed to cope with the non-determinism ... this is particularly
true in Java ... we urge you to think twice about using threads in cases where they are not
absolutely necessary ...[8]

But over the years a number of Java libraries [7,3,4,1,2] have demonstrated that the occam
programming model can be used very effectively to provide an intellectually tractable dis-
cipline of concurrent Java programming that is harder to achieve by those who rely on the
lower level, monitor-based, facilities provided by the Java language itself.

So in mid-2006, faced with teaching a new course on concurrent and distributed program-
ming, and wanting to make it a practical course that was easily accessible to Java program-
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mers, we decided that this was the way to go about it. We taught the first year of this course
using a Java library.1 †

Our students’ enthusiastic reaction to the occam model was as gratifying as their distaste for
the notational weight of its embedding in Java was dismaying. Although we discussed designs
for our concurrent programs using a CSP-like process-algebra notation and a simplified form
of ECSP [5,6], the resulting coding gap appeared to be too much for most of the students to
stomach.

At this point one of our visiting students introduced us to Scala [9], a modern object-oriented
language that generates JVM code, has a more subtle generic type system than Java, and has
other features that make it very easy to construct domain-specific languages – libraries that
appear to be notational extensions.

After toying for a while with the idea of using Scala’s Actor library [12,14], we decided
instead to develop a new Scala library to implement the occam model independently of
existing Java libraries,2 and of Scala’s Actor library.3 Our principal aim was to have a self-
contained library we could use to support subsequent delivery of our course (many of whose
examples are toy programs designed to illustrate patterns of concurrency), but we also wanted
to explore its suitability for structuring larger scale Scala programs.

This paper is an account of the most important features of the core of the Communicating
Scala Objects (CSO) library that emerged. We have assumed a little familiarity with the
conceptual and notational basis of occam and and some familiarity with Scala.

1. Processes

A CSO process is a value with Scala type PROC and is what an experienced object oriented
programmer would call a stereotype for a thread. When a process is started any fresh threads
that are necessary for it to run are acquired from a pool; they are returned to the pool when
the process terminates.4

1.1. Process notation

Processes (p : PROC) are first-class Scala values, denoted by one of the following forms of
expression:

1a. proc { expr }
1b. proc (name : String) { expr }

A simple process (expr must be a command, i.e. have type Unit)
If a name is not given explicitly, one is automatically associated with the process value
as it is constructed.

2. p1 || p2 || ... || pn
A parallel composition of n processes (each pi must have type PROC)

3. || collection
Parallel composition of a finite collection of PROC values.
When collection comprises p1...pn this is equivalent to p1 || p2 || ... || pn.

A frequently-occuring pattern of this latter form of composition is one in which the collection
is an iterated form, such as: || (for ( i←0 until n) yield p(i)). This form denotes a process
equivalent to: p(0) || p(1) || ... || p(n− 1),

†Notes appear on page 19.
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1.2. Starting and running processes

If p is a process, then evaluation of the expression p() runs the process.5 The following cases
are distinguished:

1a. p is proc { expr }
1b. p is proc (name : String) { expr }
· p() causes { expr } to be evaluated in the current thread (ie. the thread that started the

evaluation of p()).
· The process as a whole terminates when the evaluation of { expr } terminates or throws

an (uncaught) exception.
· The behaviour of the expression p() cannot be distinguished from that of the expression
{expr}, except that its name is used to identify the thread running p until p terminates.
This identification can be helpful when inspecting a running CSO program using the
CSO debugger.

1. p is p1 || p2 || ... || pn
· p() causes all the processes p1...pn to be run concurrently.
· Each of the processes except one is run in a new thread of its own; the remaining

process is run in the current thread.
· The process as a whole terminates only when every component pi has terminated.

But if one or more of the components terminated by throwing an uncaught ex-
ception then when and only when they have all terminated these exceptions are
bundled into a ParException which is re-thrown, unless they are all subtypes of
io · threadcso·process·Stopped; in which case a single io · threadcso·process·Stopped is
thrown.6

2. Ports and Channels

2.1. Introduction

A CSO channel has two ports, one at each end, and in general is intended to transmit to its
input port the data that is written to its output port. Ports are parameterized by the type of data
the channel transmits, and we define the abbreviations ?[T] and ![ T] respectively for InPort [T]
and OutPort[T].

The most important method of an ![ T] is its write method

! ( value : T )

and the most frequently-used methods of an ?[T] are its read method

? ( ) : T

and its read and evaluate method

? [U] ( f : T ⇒ U) : U

The expression port?(f) has exactly the same effect as f(port?()), namely to read a datum
from port (waiting, if necessary, for one to become available) then apply the function f to it.
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The type Chan[T] is the interface implemented by all channels that carry values of type T: it
is declared by:

t r a i t Chan [ T ] extends I nPo r t [ T ] with OutPort [ T ] { · · · }

This makes Chan[T] a subtype of both InPort [T] and OutPort[T]. It makes sense to think of a
Chan as embodying both an InPort and an OutPort.

The implicit contract of every conventional Chan implementation is that it transmits the data
written at its output port to its input port in the order in which the data is written. Different
implementations have different synchronization behaviours and different restrictions on the
numbers of processes that may access (i.e. use the principal methods of) their ports at any
time. Channels may be closed in various ways, in which case they (eventually or immediately)
cease to transmit data: see section 4 for a fuller discussion of this.

The CSO core comes with several predefined channel implementations, the most notable of
which for our present purposes are:

• The synchronous channels. These all synchronize termination of the execution of a ! at
their output port with the termination of the execution of a corresponding ? at their input
port.7

∗ OneOne[T] – no more than one process at a time may write to its output port or read from
its input port.8 This is the classic occam-style point to point channel. The channel stops
transmitting data when it has been closed for output or closed for input.
∗ N2N[T](writers: Int , readers: Int ) – several different processes at a time may write to its

(shared) output port and likewise several may read from its (shared) input port. Each
value that is read is read by only one of the processes. The channel stops transmitting
data when it has been closed for output writers times or closed for input readers times.

• The buffered channels:

∗ OneOneBuf[T](n) – a one-to-one buffer of capacity n. It stops transmitting data when it
has been closed for input, or when it has been closed for output and no longer has any
buffered data available to input.
∗ N2NBuf[T](n: Int, writers : Int , readers: Int ) – a buffer of capacity n. It stops transmitting

data when it has been closed for input readers times, or when it has been closed for
output writers times and no longer has any buffered data available to input.

Access restrictions are enforced by a combination of:

• Type constraints that permit sharing requirements to be enforced statically.

∗ All output port implementations that support shared access have types that are subtypes
of SharedOutPort.
∗ All input port implementations that support shared access have types that are subtypes

of SharedInPort.
∗ All channel implementations that support shared access to both their ports have types

that are subtypes of SharedChannel.
∗ Abstractions that need to place sharing requirements on port or channel parameters do

so by declaring them with the appropriate type.9

• Run-time checks that offer partial protection against deadlocks or data loss of the kind
that can could otherwise happen if unshareable ports were inadvertently shared.

∗ If a read is attempted from a channel with an unshared input port before an earlier read
has terminated, then an illegal state exception is thrown.
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def producer ( i : i n t , ! [ T ] ) : PROC = · · ·
def consumer ( i : i n t , ? [T ] ) : PROC = · · ·

def mux [ T ] ( i ns : Seq [ ? [ T ] ] , out : ! [ ( i n t , T ) ] ) : PROC = · · ·
def dmux [ T ] ( i n : ? [ ( i n t , T ) ] , outs : Seq [ ! [ T ] ] ) : PROC = · · ·

val l e f t , r i g h t =
for ( ← 0 u n t i l n ) yie ld OneOne [ T ] / / 2 ar rays o f n channels

val mid = OneOne [ ( i n t , T ) ] / / a channel

( | | ( for ( i←0 u n t i l n ) yie ld producer ( i , l e f t ( i ) ) )
| | mux( l e f t , mid )
| | dmux( mid , r i g h t )
| | | | ( for ( i←0 u n t i l n ) yie ld consumer ( i , r i g h t ( i ) ) )
) ( )

Program 1. A network of producers connected to consumers by a multiplexed channel

def producer ( i : i n t , ! [ T ] ) : PROC = · · ·
def consumer ( i : i n t , ? [T ] ) : PROC = · · ·

val con = for ( ← 0 u n t i l n ) yie ld OneOne [ T ]

( | | ( for ( i←0 u n t i l n ) yie ld producer ( i , con ( i ) ) )
| | | | ( for ( i←0 u n t i l n ) yie ld consumer ( i , con ( i ) ) )
) ( )

Program 2. A network in which producers are connected directly to consumers

∗ If a write is attempted to a channel with an unshared output port before an earlier write
has terminated, then an illegal state exception is thrown.

These run-time checks are limited in their effectiveness because it is might be possible
for a single writer process to work fast enough to satisfy illegitimately sharing reader
processes without being detected by the former check, and for the dual situation to remain
undetected by the latter check.

2.2. Examples

In program 1 we show how to connect a sequence of n producers to a sequence of n con-
sumers using a single multiplexed channel that carries values accompanied by the index of
their producer to a demultiplexer that dispatches these values to the corresponding consumer.
Readers familiar with JCSP may find it useful to compare this with the network illustrated in
section 1.5 of [4].

As observed in that paper this isn’t the most efficient way of connecting the producers to the
consumers within a single JVM; and in program 2 we show a network in which producers
and consumers are connected directly.

The signatures of the components producer, consumer, mux, and dmux in programs 1 and 2
specify the types of port (channel end) they require; but the subtype relation between channels
and ports means that when connecting these components we can simply provide the connect-
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def mux1 [ T ] ( i ns : Seq [ ? [ T ] ] , out : ! [ ( I n t , T ) ] ) : PROC =
{ val mid = N2N [ ( I n t , T ) ] ( 0 , 1) / / Many w r i t e r s ; one reader

( proc { while ( true ) { out ! ( mid ? ( ) ) } } | |
| | ( for ( i←0 u n t i l i ns · l eng th ) yie ld

proc { while ( true ) i ns ( i ) ? { v ⇒ mid ! ( i , v )} } )
)

}

def mux2 [ T ] ( i ns : Seq [ ? [ T ] ] , out : SharedOutPort [ ( I n t , T ) ] ) : PROC =
| | ( for ( i←0 u n t i l i ns · l eng th ) yie ld

proc { while ( true ) {out ! ( i , i ns ( i ) ? ( ) ) } } )

def dmux [ T ] ( i n : ? [ ( I n t , T ) ] , outs : Seq [ ! [ T ] ] ) : PROC = proc {
while ( true ) { val ( n , v ) = i n ? ( ) ; outs ( n ) ! v }

}

Program 3. Two multiplexers and a demultiplexer

ing channels as parameters, and that the components take the required views of them. This
means we needn’t name the ports explicitly, and significantly reduces the degree of formal
clutter in the network description.10

In program 3 we show how to implement two (unfair) multiplexers and a demultiplexer of
the kind that might have been used in program 1.11

A multiplexer process generated by mux1 is the concurrent composition of a collection of
“labelling” processes, each of which outputs labelled copies of its input, via an N2N[(Int,T)]
channel, to a forwarding process that writes them to the out port. The forwarding process
is necessary because the type-signature of mux1 does not constrain the kind of port that is
passed to it as a parameter, so in programming mux1 we must assume that that the port is not
shareable.

On the other hand, mux2 requires that its out parameter is shareable, so it composes a collec-
tion of labelling processes that write directly to out.

The function dmux generates demultiplexer processes that forward labelled inputs to the ap-
propriate output ports.

3. Extended Rendezvous

3.1. Introduction

As we explained earlier, the synchronous channel implementations ensure that termination of
a write (!) at their output port is synchronized with the termination of the corresponding read
(?) at their input port. Although a standard read (or read-and-evaluate) terminates once the
data is transferred between the writer and the reader process, an extended rendezvous read
specifies that a computation on the transferred data is to take place in the reader process. It
is only when this computation terminates that the read is considered to have terminated and
the writing process is permitted to proceed.

The usual form of an extended rendezvous read from in : ?[T] is12

i n ?? { bv ⇒ body }
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It is evaluated by transferring a value, v, from the process at the output end of the channel
(if necessary waiting for one to become ready), then applying the (anonymous) function
{ bv ⇒ body } to v. The read is considered to have terminated when this application has been
completely evaluated. At this point the writing process is permitted to proceed and the result
of the application is returned from the read.

3.2. Example: monitoring interprocess traffic

An easily understood rationale for extended rendezvous is given in [3]. We are asked to con-
sider how to monitor the interprocess traffic between a producer process connected to a con-
sumer process via a simple channel without interfering with producer-consumer synchroniza-
tion. We want to construct a process that is equivalent to

{ val mid = OneOne [ T ]
producer ( mid ) | | consumer ( mid )

}

but which also copies traffic on mid to a monitor process of some kind.

A first approximation to such a process is

{ val l e f t , mon, r i g h t = OneOne [ T ]
( producer ( l e f t )
| | proc { repeat { val v = l e f t ? ( ) ; mon! v ; r i g h t ! v }
| | consumer ( r i g h t )
| | moni tor (mon)
)

}

But this interferes with producer-consumer synchronization, because once left ?() has been
executed, producer is free to proceed. More specifically, it is free to proceed before consumer
reads from right . If the context in which this network of process runs is tolerant of an addi-
tional degree of buffering this is not problematic; but if it is not, then we need to be able to
synchronize the read from right with the write to left .

The problem is solved by replacing the body of the copying process

{ val v = l e f t ? ( ) ; mon! v ; r i g h t ! v }

with a body in which the outputs to mon and right are part of an extended rendezvous with
the producing process, namely:

{ l e f t ?? { v ⇒ {mon! v ; r i g h t ! v} } }

The extended rendezvous is executed by reading a value from left , then applying the function
{ v ⇒ {mon!v; right !v} } to it. Termination of the write to left is synchronized with termina-
tion of the evaluation of the function body, so the producer writing to left cannot proceed
until the consumer has read from right .

The extended rendezvous doesn’t terminate until {mon!v; right !v} has terminated, but delays
the output to right until the output to mon has terminated. The following reformulation relaxes
the latter constraint, thereby removing a potential source of deadlock:

{ l e f t ?? { v ⇒ { ( proc{mon! v} | | proc{ r i g h t ! v } ) ( ) } } }
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It is a simple matter to abstract this into a reusable component:

def tap [ T ] ( i n : ? [T ] , out : ! [ T ] , mon: ! [ T ] ) =
proc
{ repeat { i n ? { v ⇒ { ( proc{mon! v} | | proc{out ! v } ) ( ) } } } }

3.3. Example: simplifying the implementation of synchronous inter-JVM channels

Extended rendezvous could also be used to good effect in the implementation of synchronized
inter-JVM or cross-network connections, where it can keep the overt intricacy of the code
manageable. Here we illustrate the essence of the implementation technique, which employs
the two “network adapter” processes.

def copyToNet [ T ] ( i n : ? [T ] , net : ! [ T ] , ack : ? [ Un i t ] ) =
proc { repeat { i n ?? { v ⇒ { net ! v ; ack ? ( ) } } } }

and

def copyFromNet [ T ] ( net : ? [T ] , ack : ! [ Un i t ] , out : ! [ T ] ) =
proc { repeat { out ! ( net ? ( ) ) ; ack ! ( ( ) ) } }

The effect of using the extended rendezvous in copyToNet is to synchronize the termination
of a write to in with the reception of the acknowledgement from the network that the value
written has been transmitted to out.

At the producer end of the connection, we set up a bidirectional network connection that
transmits data and receives acknowledgements. Then we connect the producer to the network
via the adapter:

def producer ( out : ! [ T ] ) = · · ·
val ( toNet , fromNet ) : ( ! [ T ] , ? [ Un i t ] ) = · · ·
val l e f t = OneOne [ T ]
( producer ( l e f t ) | | copyToNet ( l e f t , toNet , fromNet ) ) ( )

At the consumer end the dual setup is employed

def consumer ( i n : ? [T ] ) = · · ·
val ( toNet , fromNet ) : ( ! [ Un i t ] , ? [T ] ) = · · ·
val r i g h t = OneOne [ T ]
( copyFromNet ( fromNet , toNet , r i g h t ) | | consumer ( r i g h t ) ) ( )

4. Closing Ports and Channels (clean termination)

4.1. Introduction

A port may be closed at any time, including after it has been closed. The trait InPort has
method

c lose In : Un i t
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whose invocation embodies a promise on the part of its invoking thread never again to read
from that port. Once it has been invoked, the method canInput will always yield false for
that port. Similarly, the trait OutPort has method

closeOut : Un i t

whose invocation embodies a promise on the part of its invoking thread never again to write
to that port. Once it has been invoked, the method canOutput will always yield false for that
port.

It can sometimes be appropriate to forbid a channel to be used for further communication,
and the Chan trait has an additional method for that purpose, namely:

c lose : Un i t

The important design questions that must be considered are:

1. What happens to a process that attempts, or is attempting, to communicate through a port
whose peer port is closed, or which closes during the attempt?

2. What does it mean to close a shared port?

Our design can be summarised concisely; but we must first explain what it means for a chan-
nel to be closed:

Definition: A channel is closed if it has been closed by enough calls of closeOut at its
OutPort or by enough calls of closeIn at its InPort, or by a call of its close method.

Channel Enough Close takes
type closeOut closeIn effect on readers

OneOne 1 1 immediately
OneOneBuf(n) 1 1 when drained
N2N(n, writers, readers) ̂writers ̂readers immediately
N2NBuf(n, writers, readers) ̂writers ̂readers when drained
ManyOne ∞ 1 immediately
OneMany 1 ∞ immediately
ManyMany ∞ ∞ never

The table above summarises what we mean by “enough” – using the notation n̂um to mean∞
when num = 0 and num otherwise. For example an N2N channel specified with writers >
0, and readers > 0 closes after either writers closeOut calls or readers closeIn calls; but if
writers = 0 then any number of calls of closeOut can be made without the channel closing,
and if readers = 0 then any number of calls of closeIn can be made without the channel
closing.

The rationale for this is that shared ports are used as “meeting points” for senders and re-
ceivers, and that the fact that one sender or receiver has undertaken never to communicate
should not necessarily result in the right to do so being denied to others.13

The effects of closing ports and/or channels now can be summarised as follows:

• Writer behaviour

1. An attempt to write to a closed channel raises the exception Closed in the writing thread.
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def copy [ T ] ( i n : ? [T ] , out : ! [ T ] ) =
proc {

repeat { out ! ( i n ? ( ) ) } / / copying
out · closeOut ; i n · c lose In / / c lose−down

}

Program 4. A terminating copy component

2. Closing a channel whose OutPort is waiting in a write raises the exception Closed in the
writing thread.

• Reader behaviour

1. An attempt to read from a closed channel raises the exception Closed in the reading
thread. If the channel is buffered then this exception is raised only once the last remain-
ing buffered value has been read.

2. Closing a channel whose InPort is waiting in a read raises the exception Closed in the
reading thread.

4.2. Termination of networks and components

The Closed exception is one of a family of runtime exceptions, the Stop exceptions, that play
a special role in ensuring the clean termination of networks of communicating processes.

The form repeat (exprguard) { exprbody } behaves the same as while (exprguard) { exprbody }
except that the raising of a Stop exception during the execution of the exprbody causes it to
terminate normally. The form repeat { exprbody } is equivalent to repeat (true) { exprbody }

The behaviour of repeat simplifies the description of cleanly-terminating iterative compo-
nents that are destined to be part of a network. For example, consider the copy component
of program 4, which has an iterative copying phase followed by a close-down phase. It is
evident that the copying phase terminates if the channel connected to the input port is closed
before that connected to the output port. Likewise, if the channel connected to the output
port is closed before (or within) a write operation that is attempting to copy a recently-read
datum. In either case the component moves into its close-down phase, and this results in one
of the channels being closed again while the other is closed anew. In nearly all situations this
behaviour is satisfactory, but it is worth noticing that it can result in a datum being silently
lost (in the implicit buffer between the in?() and the out!) when a network is closed from
“downstream”.14

In section 1.2 we explained that on termination of all the components of a concurrent process:
(a) if they all terminated normally then the concurrent process itself terminates normally; (b)
if all components that terminated abnormally terminated with a Stop exception then the con-
current process itself terminates by throwing a Stop exception; (c) otherwise the concurrent
process terminates by throwing a ParException.

One consequence of (b) is that it is relatively simple to arrange to reach the closedown phase
of an iterated component that does concurrent reads and/or writes. For example, the tee com-
ponent of program 5 broadcasts data from its input port to all its output ports concurrently:
if the input port closes, or if any output port is closed before or during a broadcast, then the
component stops broadcasting and closes all its ports.15
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def tee [ T ] ( i n : ? [T ] , outs : Seq [ ! [ T ] ] ) =
proc
{ var data = i n · noth ing / / unspec i f i ed i n i t i a l value

val broadcast = | | for ( out← outs ) yie ld proc { out ! data }
repeat { i n ?? { d ⇒ { data=d ; broadcast ( ) }}}
for ( out← outs ) out · closeOut ; i n · c lose In

}

Program 5. A data broadcasting component

This is because closing in results in a Closed exception being thrown at the next in??; and
because closing an output port causes the corresponding out!data to terminate by throwing a
Closed, which is propagated in turn by the || when it terminates.16

Careful programming of the closedown phases of communicating components is needed in
order to assure the clean termination of networks of interconnected processes, and this is
facilitated by the Stop-rethrowing behaviour of ||, and the behaviour of repeat when its body
Stops.

5. Alternation

5.1. Input-guarded events

Alternation constructs enable an input or output action to be performed after being selected
from those that are ready on one or more ports. The simplest form of an alt consists of a
collection of guarded events:17

alt ( (guard1 && port1) =?=> { bv1 => cmd1 }
| ...
| (guardn && portn) =?=> { bvn => cmdn}
)

An input event of the form (guard&&port) =?=> { bv => cmd }

• is said to be enabled, if port is open and guard evaluates to true
• is said to be ready if port is ready to read
• is fired by reading port, binding the value read to bv and then executing cmd.

The execution of an alt proceeds in principle18 in phases as follows:

1. All the event guards are evaluated, and then
2. The current thread waits until (at least one) enabled event is ready, and then
3. One of the ready events is chosen and fired.

If no events are enabled after phase 1, or if all the channels associated with the ports close
while waiting in phase 2, then the Abort exception (which is also a form of Stop exception) is
raised.

If evs is a collection of guarded events, then serve(evs) executes these phases repeatedly
(until a Stop exception is thrown), but the choices made in phase 3 are made in such a way
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that if the same group of guards turn out to be ready during successive executions, they will
be fired in turn.

For example, the method tagger below constructs a tagging multiplexer that ensures that nei-
ther of its input channels gets too far ahead of the other. The tagger terminates cleanly when
its output port is closed, or if both its input channels have been closed.

def tagger [ T ] ( l : ? [T ] , r : ? [T ] , out : ! [ ( I n t , T ) ] ) =
proc
{ var d i f f = 0

serve ( ( d i f f < 5 && l ) =?⇒ { x ⇒ out ! ( 0 , x ) ; d i f f +=1 }
| ( d i f f > −5 && r ) =?⇒ { x ⇒ out ! ( 1 , x ) ; d i f f −=1 }
)

repeat { out ! ( 0 , l ? ( ) ) }
repeat { out ! ( 1 , r ? ( ) ) }
l · c lose In ; r · c lose In ; out · closeOut

}

Notice that the serve will also terminate if the “wrong” channel closes (for example l if
diff < 5); but following such termination at most one of the subsequent repeats (the “right”
one) can perform a successful read and write.

A prialt is formed in the same way as an alt , and is executed in nearly the same way, but
the choice of which among several ready guards to fire always favours the earliest in the
sequence. A priserve repeats a prialt .

5.2. Output-guarded events

In late 2008 the outport guard notation was added to CSO. Its simplest form is exemplified
in the following implementation of a merging component that buffers no more than 20 inputs
tagged with sequence numbers, and outputs them when there is demand from out. The serve
loop will terminate when none of the guarded events can occur – after which the three ports
are closed.

def taggedMerge [ T ] ( l : ? [T ] , r : ? [T ] , out : ! [ ( I n t , T ) ] ) =
proc
{ var seqn = 0 / / sequence number

var nbuf = 0 / / number bu f fe red
val q = scala · c o l l e c t i o n ·mutable ·Queue [ ( I n t , I n t , T ) ]
serve ( ( nbuf<20 && l ) =?⇒ { x ⇒ q · enqueue ( ( seqn+=1 , 0 , x ) ) ; nbuf +=1; }

| ( nbuf<20 && r ) =?⇒ { x ⇒ q · enqueue ( ( seqn+=1 , 1 , x ) ) ; nbuf +=1; }
| ( nbuf>0 && out ) =!⇒ { nbuf−=1; q · dequeue }
)

l · c lose In ; r · c lose In ; out · closeOut
}

The most general form of output-guarded event is

(guard&&port) =!=> { expression } ==> { cmd }

It is ready if its guard is true and port is ready to be written. It is fired by evaluating
expression (which can be a sequential composition) and writing its value (v, say) to port.19

When it has been written cmd (known as the epilogue) is executed.20

If there is no need for an epilogue, the event can be written:
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(guard&&port) =!=> { expression }

The final guard of the taggedMerge serve loop could have been written with an epilogue,
by doing the buffer-size accounting after the dequeued datum has been transmitted.

| ( nbuf>0 && out ) =!⇒ { q · dequeue } =⇒ { nbuf−=1; }

5.3. Collections of guards

Alternations can be composed of collections of guards, as illustrated by the fair multiplexer
defined below.21

def f a i r P l e x [ T ] ( i ns : Seq [ ? [ T ] ] , out : ! [ T ] ) =
proc { serve ( | ( for ( i n ← i ns ) yie ld i n =?⇒ { t ⇒ out ! t } ) ) }

They can also be composed by combining collections and single guards. For example, the
following is an extract from a multiplexer that can be dynamically set to favour a specific
range of its input ports. It gives priority to its range-setting channels.

def primux [ T ] ( MIN : ? [ I n t ] , MAX: ? [ I n t ] , i ns : Seq [ ? [ T ] ] , out : ! [ T ] ) =
proc
{ var min = 0

var max = ins · l eng th − 1
priserve ( MIN =?⇒ { n ⇒ min = n }

| MAX =?⇒ { n ⇒ max = n }
| | ( for ( i ← 0 u n t i l i ns · l eng th ) yie ld

(max>= i && i >=min && ins ( i ) ) =?⇒ { t ⇒ out ! t } )
)

}

5.4. Timed Alternation

An alternation may be qualified with a deadline and code to be executed in case of a timeout.22

We illustrate this feature with an extended example that defines the transmitter and receiver
ends of an inter-JVM buffer that piggybacks “heartbeat” confirmation to the receiving end
that the transmitting end is still alive.

First we define a Scala type Message whose values are of one of the forms Ping or Data(v).

t r a i t Message
case object Ping extends Message {}
case class Data [ T ] ( data : T ) extends Message {}

The transmitter end repeatedly forwards data received from in to out, but intercalates Ping
messages whenever it has not received anything for pulse nanoseconds.23

def t r a n s m i t t e r [ T ] ( pulse : Nanoseconds , i n : ? [T ] , out : ! [ Message ] ) =
proc
{ serve ( i n =?⇒ {x⇒ out ! Data ( x )} | a f te r ( pulse ) =⇒ { out ! Ping } ) }

The receiver end (whose deadline should be somewhat larger than the transmitter’s pulse)
repeatedly reads from in, discarding Ping messages and forwarding ordinary data to out. If
(in each iteration) a message has not been received before the current deadline, the receiver
backs off a little more, but eventually a message is sent to the fail channel.
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def r ece i ve r [ T ] ( pulse : Nanoseconds , i n : ? [ Message ] , out : ! [ T ] , f a i l : ! [ Un i t ] ) =
proc
{ var backo f f = 10

serve ( i n =?⇒ { case Ping ⇒ backo f f = ( backo f f +1) % 10
case Data ( d : T ) ⇒ out ! d ; backo f f = ( backo f f +1) % 10}

| a f te r ( pulse+pulse / backo f f ) =⇒
{ i f ( backo f f ==1) f a i l ! ( ) else backo f f −=1 }

)
}

Though timeout is cheap and safe to implement, the technique used above may not be suitable
for use in components where there is a need for more subtle interplay between timing and
channel input. But such components can always be constructed (and in a way that may be
more familiar to occam programmers) by using periodic timers, such as the simple one
shown in program 7.

For example, program 6 shows the definition of an alternative transmitter component that
“pings” if the periodic timer ticks twice without an intervening input becoming available
from in, and “pongs” every two seconds regardless of what else happens.

def t r a n s m i t t e r 2 [ T ] ( pulse : Nanoseconds , i n : ? [T ] , out : ! [ Message ] ) =
proc
{ val t i c k = per iod icT imer ( pulse )

val tock = per iod icT imer (2∗Sec )
var t i c k s = 0
priserve ( tock =?⇒ { case ( ) ⇒ out ! Pong }

| i n =?⇒ { case t ⇒ out ! Data ( t ) ; t i c k s = 0 }
| t i c k =?⇒ { case ( ) ⇒ t i c k s +=1; i f ( t i c k s >1) out ! Ping }
)

t i c k · c lose
tock · c lose

}

Program 6. A conventionally-programmed transmitter

In the periodic timer of program 7 the fork method of a process is used to start a new thread
that runs concurrently with the current thread and periodically writes to the channel whose
input port represents the timer. Closing the input port terminates the repeat the next time the
interval expires, and thereby terminates the thread.

def per iod icT imer ( i n t e r v a l : Nanoseconds ) : ? [ Un i t ] =
{ val chan = OneOne [ Un i t ]

proc { repeat { sleep ( i n t e r v a l ) ; chan ! ( ) } } · fork
return chan

}

Program 7. A simple periodic timer

5.5. Restrictions on alternation

For reasons of efficiency and to keep implementations simple at most one port of a channel
may participate in an alternation construct at any one time.24
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6. Port Type Variance

As we have seen, port types are parameterized by the types of value that are expected to be
read from (written to) them. In contrast to Java, in which all parameterized type constructors
are covariant in their parameter types, Scala lets us specify the variance of the port type
constructors precisely. Below we argue that the InPort constructor should be covariant in
its type parameter, and the OutPort constructor contravariant in its type parameter. In other
words:

1. If T ′ is a subtype of T , then a ?[T ′] will suffice in a context that requires a ?[T ]; but not
vice-versa.

2. If T ′ is a subtype of T , then a ![T ] will suffice in a context that requires a ![T ′]; but not
vice-versa.

Our argument is, in effect, by contradiction. To take a concrete example, suppose that we have
an interface Printer which has subtype BonjourPrinter that has an additional method, bonjour.

Suppose also that we have process generators:

def p r i n t S e r v e r ( p r i n t e r s : ! [ P r i n t e r ] ) : PROC = · · ·
def bon jou rC l i en t ( p r i n t e r s : ? [ Bon jou rP r i n te r ] ) : PROC = · · ·

Then under the uniformly covariant regime of Java the following program would be type
valid, but it would be unsound:

val connector = new OneOne [ Bon jou rP r i n te r ]
( p r i n t S e r v e r ( connector ) | | bon jou rC l i en t ( connector ) ) ( )

The problem is that the server could legitimately write a non-bonjour printer that would be
of little use to a client that expects to read and use bonjour printers. This would, of course,
be trapped as a runtime error by the JVM, but it is, surely, bad engineering practice to rely
on this lifeboat if we can avoid launching a doomed ship in the first place!25 And we can: for
under CSO’s contravariant typing of outports, the type of connector is no longer a subtype of
![ Printer ], and the expression printServer(connector) would, therefore, be ill-typed.

Discussions of the variance of type constructors are easier to understand if we think of the
subtype relation as capturing “satisfies all the assumptions we can make about”. In what
follows we write T ′ ≥ T to mean “a value of type T ′ satisfies all the assumptions we can
make about a value of type T ”, or alternatively, “a T ′ has all the methods of a T .”

It is a general principle that if a variable var has type T , then it is acceptable to associate var
(by binding or assignment) with a value whose type is ≥ T , for any uses of var in its scope
can require no more of it than is required of a T , and any T ′ ≥ T provides this.

We rationalize the variances we have assigned to these constructors as follows:

1. If T ′ ≥ T then ?[T ′] ≥ ?[T ]
Rationale: a process that reads from an input port associated with a variable declared by
var : ?[T ] expects to receive objects of type ≥ T . Thus any port of type ?[T ′] (where
T ′ ≥ T ) can be associated with var.

2. If T ′ ≥ T then ![T ] ≥ ![T ′]
Rationale: a process that writes to an output port associated with a variable declared by
var : ![T ] must send objects of a type that is ≥ T . Thus any port of type ![T ′] (where
T ≥ T ′) can be associated with var.
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7. Prospects

We remain committed to the challenge of developing Scala+CSO both as a pedagogical tool
and in the implementation of realistic and efficient programs. Several small-scale and a few
medium-scale case studies on networked multicore machines have given us some confidence
that our implementation is sound, though we have neither proofs of this nor a body of suc-
cessful (i.e. non-failed) model checks. The techniques pioneered by Welch and Martin in [10]
show the way this could be done.

In the first version of this paper, we wrote:

“The open nature of the Scala compiler permits, at least in principle, a variety of compile-
time checks on a range of design rules to be enforced. It remains to be seen whether there
are any combinations of expressively useful Scala sublanguage and “CSO design rule” that
are worth taking the trouble to enforce. We have started our search with an open mind but
in some trepidation that the plethora of possibilities for aliasing might render it fruitless –
save as an exercise in theory.”

We regret to report that the very rapid evolution of the Scala compiler has made it impractical
for us to attempt to use it to enforce design rules, or (more importantly) to provide a practical
way of using CSO-specific laws to guide compile-time optimizations. On the other hand, the
rapid advance of the functionality of IDEs for Scala now offers the intriguing prospect of
incorporating rules of this kind in an IDE.

A few years ago Andrew Bate implemented a very high performance variant of CSO, in
which huge numbers of running processes can be multiplexed (as “fibres”) across smaller
numbers of threads. We would very much like to make Andrew’s dialect and the dialect
described here compatible at the source-code level, but Andrew’s implementation depended
on extensive post-processing of the JVM code generated by Scala/Java, and keeping it up to
date would require the evolution of the Scala compiler to be tracked: something we don’t
have the resources to commit to.

8. Distributed Programming with CSO

The prototype CSO library eieio (Extensible Interface to External I/O) provides components
that can be used to implement distributed and networked programs. It maps external sockets
to internal channels and handles the details of serializing and deserialising data.
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Appendix: Thumbnail Scala and the Coding of CSO

In many respects Scala is a conventional object oriented language semantically very similar
to Java, though notationally somewhat different.26 It has a number of features that have led
some to describe it as a hybrid functional and object-oriented language, notably

• Case classes make it easy to represent free datatypes and to program with them.
• Functions are first-class values. The type expression T⇒U denotes the type of functions

that map values of type T into values of type U. One way of denoting such a function
anonymously is { bv ⇒ body } (providing body has type U).27

The principal novel features of Scala we used in making CSO notationally palatable were:

• Syntactic extensibility: objects may have methods whose names are symbolic operators;
and an object with an apply method may be “applied” to an argument as if it were a func-
tion.

• Call by Name: a Scala function or method may have have one or more parameters of type
⇒ T, in which case they are given “call by name” semantics and the actual parameter
expression is evaluated anew whenever the formal parameter name is mentioned.

• Code blocks: an expression of the form {...} may appear as the actual parameter corre-
sponding to a formal parameter of type⇒ T.

The following extracts from the CSO implementation show these features used in the imple-
mentation of unguarded repetition and proc.

/ / Implementing unguarded r e p e t i t i o n
def repeat (cmd : ⇒ Uni t ) : Un i t =
{ var go = true

while ( go )
t ry { cmd }
catch { case i o · threadcso · process · Stopped ( , ) ⇒ go= fa lse }

}

/ / D e f i n i t i o n o f proc syntax
def proc ( body : ⇒ Uni t ) : PROC =

new Process · Simple ( ( ) ⇒body ) ·withName ( Process ·genName)

Implementation of the guarded event notation of section 5 is more complex. For example, the
formation of an input event from the Scala expression (guard&&port)=?=> rhs takes place
in two stages: first the evaluation of (guard&&port) yields an intermediate GuardedInPort
object, ev; then the evaluation of ev=?=> rhs yields the InPortEvent that will be a candidate
for selection and execution. An unguarded event is constructed as an InPortEvent in a simple
step.
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Appendix: JCSP Fair Multiplexer

Program 8 shows the JCSP implementation of a fair multiplexer component (taken from [3])
for comparison with the CSO implementation of the component with the same functionality
in section 5.3.

public f i n a l class Fa i rP lex implements CSProcess {
private f i n a l Al t ingChanne l Inpu t [ ] i n ;
private f i n a l ChannelOutput out ;
public Fa i rP lex ( A l t ingChanne l Inpu t [ ] in , ChannelOutput out )
{ th is · i n = i n ; th is · out = out ; }

public void run ( ) {
f i n a l A l t e r n a t i v e a l t = new A l t e r n a t i v e ( i n ) ;
while ( true ) { f i n a l i n t i = a l t · f a i r S e l e c t ( ) ;

out · w r i t e ( i n [ i ] · read ( ) ) ;
}

}
}

Program 8. Fair Multiplexer Component using JCSP

Notes

[1] This was derived from an earlier library, written in Generic Java, whose development had been inspired by
the appearance of the first public edition of JCSP. The principal differences between that library and the
JCSP library were the generically parameterized interfaces, InPort and OutPort akin to what JCSP called
“channel ends.”

[2] Although Scala interoperates with Java, and we could easily have constructed Scala “wrappers” for the
JCSP library and for our own derivative library, we wanted to have a pure Scala implementation both to
use as part of our instructional material, and to ensure portability to the .NET platform when the Scala
.NET compiler became available.

[3] The (admirably ingenious) Actor library implementation is complicated; its performance appears to scale
well only for certain styles of use; and it depends for correct functioning on a global timestamp ([14] p183).

[4] The present pool implementation acquires new worker threads from the underlying JVM when necessary
and “retires” threads that have remained dormant in the pool for more than a certain period.

[5] The expression run(p) has exactly the same effect as p(). The expression fork(p) runs p in a new thread
concurrent with the thread that invoked fork, and returns a handle on the running process. The new thread
is recycled when the process terminates.

[6] This is because io · threadcso·process·Stopped exceptions signify anticipated failure, whereas other
types of exception signify unexpected failure, and must be propagated rather than silently ignored. One
useful consequence of the special treatment of io · threadcso·process·Stopped exceptions is explained
in section 4: Closing Ports and Channels.

[7] Other forms of synchronous channel, mostly now obsolete, are:

• ManyOne[T] – No more than one process at a time may access its input port; processes attempting to access
its output port get access in nondeterministic order. The name is a contraction of “From Many possible
writer processes to One reader process.” The other forms of synchronous channel are named using the same
contraction convention.

• OneMany[T] – No more than one process at a time may access its output port; processes attempting to access
its input port get access in nondeterministic order.
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• ManyMany[T] – Any number of processes may attempt to access either port. Writing processes get access
in nondeterministic order, as do reading processes.

[8] The name is a contraction of “From One writer process to One reader process.”

[9] See, for example, the component mux2 defined in program 3.

[10] The reduction of formal clutter comes at the cost of forcing readers to refer back to the component sig-
natures to ascertain which ports they actually use. The JCSP designers made the tradeoff in the other
direction.

[11] We have used the plain form of read (mid?()) and its read-and-evaluate form (ins(i)?v ⇒ mid!(i, v))
simply to give an example of the latter.

[12] The most general form of extended rendezvous read is in??f where f denotes a function of type T⇒U.
The type of in??f is then U.

[13] This is a deliberate choice, designed to keep shared channel semantics simple. More complex channel-like
abstractions – such as one in which a non-shared end is informed when all subscribers to the shared end
have disappeared – can always be layered on top of it.

[14] i.e. from the out direction. On the face of it it looks like this could be avoided by reprogramming the
component with a stronger guard to the iteration, viz as: repeat (out·canOutput) { out!( in ?()) } but
this is not so, because the out·canOutput test and the out! action are not joined atomically, so the channel
associated with the output port could be closed between being polled in the guard and being written to in
the body of the loop.

[15] We observe, without much enthusiasm, that there is no particular constraint on the order in which the ports
are closed, so they could be closed in parallel by the more complicated:

(|| (for (out←outs) yield proc out·closeOut ) || in ·closeIn )()

[16] Although it is incidental to the theme of this example, it is worth noticing that we construct the concurrent
process broadcast before starting the iteration. While this is not strictly necessary, it provides an improve-
ment in efficiency over: repeat { in ? { d ⇒ {|| (for (out←outs) yield proc { out!d })() }}}.
This is because the expression: ||( for (out←outs) ... ) that constructs the concurrent broadcast process
is evaluated only once, rather than being evaluated once per broadcast.

[17] Guard expressions must be free of side-effects, and a (guard) that is literally (true) may be omitted.

[18] We say “in principle” because we wish to retain the freedom to use a much more efficient implementation
than is described here, namely an adaptation of that described in [13].

[19] An early version of CSO provided an even more general form, in which the epilogue was a function, and the
value of the expression was passed to this function once it had been transmitted. This proved incompatible
with the Scala type system.

[20] The operator =⇒ that introduces the epilogue is pronounced “and then”.

[21] It is perhaps worthwhile comparing this construction with that of the analogous JCSP component shown
in program 8 (page 19).

[22] The implementation of this feature employs a nonzero timeout for the wait in phase 2, and is not subject
to any potential race conditions.

[23] Nanosecond is now the unit of resolution of CSO time. It’s not yet realistic to measure delays or timeouts in
small numbers of nanoseconds, so appropriate multipliers, such as microSec, milliSec, Sec, Min, Hour, Day
are provided as part of the CSO package.

[24] Gavin Lowe [16] worked with an earlier version of CSO to remove this restriction.

[25] This difficulty is analogous to the well-known difficulty in Java caused by the covariance of the array
constructor.

[26] The main distributed Scala implementation translates directly into the JVM; though another compiler trans-
lates into the .net CLR. The existence of the latter compiler encouraged us to build a pure Scala CSO
library rather than simply providing wrappers for the longer-established JCSP library.

[27] In some contexts fuller type information has to be given, as in: { case bv: T⇒ body }. Functions may
also be defined by cases over free types; for an example see the match expression within receiver in
section 5.4
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