
Animating Formal Proof at the
Surface: The Jape Proof Calculator

RICHARD BORNAT1 AND BERNARD SUFRIN2

1Department of Computer Science, Queen Mary and Westfield College, University of London, UK
2Programming Research Group, University of Oxford, 8-11 Keble Road, Oxford, UK

Email: richard@dcs.qmw.ac.uk and sufrin@comlab.ox.ac.uk

Jape is a program which supports the step-by-step interactive development of proofs in formal
logics, in the style of proofs-on-paper. It is uncommitted to any particular logic and is customized
by a description of a collection of inference rules and the syntax of judgements. It works purely at
the surface syntactic level, as a person working on paper might. In that spirit it makes use of explicit
visible provisos rather than a conventional encoding of logical properties. Its principal mechanism
is unification, employed as a search tool to defer decisions about how to proceed at difficult points
in a proof. The design aim is to produce a tool which makes step-by-step proof calculations so
straightforward that novices can learn by exploring the use of a pre-encoded logic. Examples of

proof development are given in several small logics.

Received November 18, 1994; revised April 28, 1999

1. INTRODUCTION

Software engineers are often required to construct formal
specifications of the programs they construct, but rarely ex-
pected to prove a formal relationship between specification
and program. Partly this is because formal proof is intrin-
sically difficult, but partly because software engineers—and
others—find it more difficult than they should. They lack
practice, they lack effective support tools and they are not ex-
pert logicians. Even experienced program-provers will typi-
cally be logically skilful only within some favourite logic.

If this situation is to be remedied—and we take it for
granted that it should be—then it will be necessary to build
proof support tools which practitioners find helpful. To
design such a tool we must consider every part of the
activity: the way that a tool is customized to fit its users’
preferred logic; the way it presents information to its users;
the way that its users can control its operation.

In this paper we report on the development, over the last
six years, of an interactive proof support tool with a high-
quality graphical interface. We have attempted in our design
to allow our users a light touch: the encoder does not have
to specify more than is necessary and the prover does not
see more than they might wish to. We have attempted to
keep it transparently literal in its working: that is, we try to
make the screen display look just like a proof that might be
printed in a book, from the symbols used down to the literal
presentation of provisos as visible constraints on progress.
To do so we have had to do much more than simply bolt
an interface onto a theorem prover: it has been necessary to
construct a system in which every feature is used to support
interaction and to expend ingenuity and computer power to
preserve an illusion of simplicity.

This paper describes the way that we have used Jape to

encode logics and construct proofs. It touches only briefly
on the internal design and construction of the program itself.

2. AN INTERACTIVE, UNCOMMITTED, LITERAL,
LIGHTWEIGHT CALCULATOR

We call Jape aproof calculatorto make an analogy with a
numerical calculator—a device which acts passively under
the user’s control—and to distinguish it from atheorem
prover such as HOL [1], Isabelle [2], 2OBJ [3], Boyer–
Moore [4], LWB [5] or PVS [6]—a device which acts under
program control to search for the solution of a problem.
Systems designed with similar aims to our own include
Mural [7], EUODHILOS [8] and MacLogic [9]. Like a
numerical calculator, Jape acts with perfect precision when
it can act at all, but offers no help or advice. In that respect
it is distinguished from many educational efforts such as
MacLogic and the CMU proof tutor [10].

In designing and constructing the program, we were
greatly influenced by our experience as novice users of
several other formal proof tools. We had some educational
experience of MacLogic [9]: that program inspired us a great
deal in the early stages of our design, especially because
we felt that it would be improved if its user interface were
made more declarative and less history-based. We had
some experience with the B-tool [11] which we found very
difficult to use: at the time its user interface was restrictive
and intricate, and proof-search decisions had to be made
much earlier than we wished. We were influenced by reading
about Isabelle [2], ICLE [12] and Mural [7].

We envisaged a proof assistant with a declarative, non-
historical interface [13]—that is, one which displays at each
stage the state of a calculation rather than a sequence of
commands which led to that state—and which used the

THE COMPUTER JOURNAL, Vol. 42, No. 3, 1999

178 R. BORNAT AND B. SUFRIN

same obedient style of interaction as a calculator or word-
processor. We wanted it to be configured by a description
of a logic and we wanted that description to be derived
transparently from the kind of definition which you might
find in a textbook. We wanted the displayed proofs to look
like those which might be found in the same textbook and
the intermediate stages of proof to be the sort of thing that
a prover might write on paper or on a blackboard whilst
developing a proof. We are conscious that these are large
aims and that we shall always fall short of them; nevertheless
they were valuable in setting the direction of our endeavours.

We wanted our program to be lightweight enough to be
used on machinery available to undergraduates, so that it
could be used in practice for teaching logic. The program
has grown, but advances in computer power have been
spectacular over the same period and Jape is still relatively
lightweight when compared to much of the other application
software that our users employ. We also intended our
program to be useful to experts who were developing small
logical systems for specification and proof in particular
problem areas. In both respects we have had some success:
the program is being used for teaching purposes on courses
at QMW, Oxford, Glasgow and Eindhoven. It has been used
at Oxford [14] and elsewhere to work on serious proofs in
application-oriented logics.

Our approach is in contrast to the tradition of user
interface work in theorem proving, best typified by [15],
in which a user interface is bolted on to an otherwise
unmodified theorem prover. That tradition starts with a proof
engine and fits the user interface to it: we feel that the user
interface should be at the centre of the design, supporting
only as much proof machinery as it will bear. The proof
display in Jape is constantly available and not, as in [16],
extracted from a proof term once the proof is complete. Our
treatment of user gestures differs from that of [17] in that the
interpretation of gestures is relative to a proof context and
any other gestures which might have been made, as well as
being programmable by the user.

We have applied Jape in earnest to natural deduction,
to several variations of the sequent calculus, to reasoning
about functional programs, to proof of hardware circuits,
to protocol-authentication logic, temporal logic and to the
Hindley–Milner type-assignment algorithm. We have also
experimented in several other areas including Hoare logic,
group theory, category theory, operational semantics and the
π-calculus.

3. HOW IT WORKS

In operation Jape is two programs: one a proof engine,
building a Gentzen tree of sequents using inference rules;
the other a graphical user interface, communicating with
the engine via a UNIX pipe or MacOS AppleEvents. The
proof engine is about 24,000 lines of Standard ML and when
compiled by SML-NJ is about 1.5 Mbytes of code. There are
currently three implementations of the user interface: one for
X written in Tcl/Tk, one in Java and one for MacOS written
in C.

An important feature of Jape is that it has no type-
theoretic meta-logic of proof in the sense of the meta-logic
of Isabelle or ELF. It is uncommitted to any particular model
of what a logic should be, other than that the logic must be
expressed as inference rules in a two-sided sequent calculus
and that the problem statements must be in some recursively-
definable syntax. We claim that as a result it is easy to
transcribe logics into the Jape notation, though the burden
of interpretation makes the proof mechanism less efficient.
Only when manipulating provisos and substitution forms
does Jape use any built-in rules—all of them to do with
binding and substitution forms—and make simplifications
on its own initiative.

Jape proceeds by matching rules to problem statements,
working all the time in the user’s logic, always at the
surface level. It acts as a slow Prolog interpreter might: the
consequent of an inference rule is treated as if it were the
left-hand side of a Prolog clause and its antecedents as if
they were the right-hand sides; once the rule matches the
antecedents are added to the proof tree. A step fails if the
rule does not match or if any of the provisos applicable to
the proof, including any added by the rule itself, is violated.
This makes Jape a backward-reasoning engine, but we show
below how it can be harnessed to give an illusion of forward
proof.

Jape uses unification as its rule-matching mechanism,
in order to enable the user to defer decisions about the
identity of formulae in a proof. When a rule does not
have the subformula property—that is, when an antecedent
contains a formula which is not derived from anything
in the consequent—Jape will invent an unknown as a
placeholder. When a partial proof contains unknowns, Jape
can defer the checking of provisos and the simplification of
formulae. It augments its basic unification algorithm with
mechanisms designed to supportα-conversion, substitution
forms and both list and bag unification at the level of
sequents (associative and/or commutative matching).

Although the basic internal data structure of Jape is a tree
of sequents, in many cases it is inconvenient or confusing
to show all of the tree or to show it as a tree. Jape has
mechanisms to filter and prune a tree before it is displayed.
It is capable of displaying a proof in a box-and-line style and
uses special mechanisms to hide parts of that kind of display.

4. THE TACTIC LANGUAGE

Following LCF [18], every proof editor and theorem prover
has a programming notation for directing the course of a
proof. Although Jape has mechanisms which support search
for proofs, its tactic language is used as much to control the
display and to interpret user gestures as to control the course
of proof. It would be inappropriate to explain the details of
the language in this paper, but we give below some examples
of how it can be used. A fuller description is provided in the
manual available from the Jape web sites [19].

The primitive operations of the tactic language are
the application of rules, application of previously proved
theorems. If a Jape tactic succeeds, it is because a successful

THE COMPUTER JOURNAL, Vol. 42, No. 3, 1999

THE JAPE PROOF CALCULATOR 179

sequence of primitive steps has been found and therefore
the validity of steps made by the application of tactics
is implicitly guaranteed. Communication with external
decision procedures is also supported.

5. EXAMPLES

The main feature of Jape is that it shows a proof, or partial
proof, at every stage of development. All interaction is
with that proof: clicking or double-clicking on formulae
within the proof; choosing actions from menus to apply
to the selected components of the proof. The aim is to
assist reflection by the user: for the expert at important
decision points; for the novice throughout the process. The
notation of the displayed logic, the content and behaviour of
menus and on-screen panels are all under the logic encoder’s
control, as is the interpretation of a user’s mouse gestures.
Some of the techniques used are illustrated below.

5.1. Reasoning in the single-conclusion sequent
calculus

Our first example is an encoding of the rules of the
intuitionistic fragment of the sequent calculus shown in
Figure 1a. The syntax of the encoding is given in
Figure 1b, and the encoded rules in Figure 1c.1 Formulae
are written in a language which includes juxtaposition
(F1 F2), substitution (F[x1, . . . , xn\F1, . . . , Fn]), tupling
((F1, . . . , Fn)), prefix, postfix and infix operators (•F, F1•
F2 and F•) and user-defined bracketed constructs (for
example,if F1 then F2 elseF3). The logic encoder must
define the range of names that can be used in theorems
and rules, the binary and unary operators with their binding
powers, any additional bracketed constructs which are
needed and the syntax of a sequent.

The first part of Figure 1b describes bracketing forms
for the binding operators and gives them a position
in a hierarchy of operations—the numbers are binding
powers and are set lower than those that follow, so that
quantification in this logic implicitly brackets all other kinds
of operator. The second part gives the priority of the binary
connectives of the logic and their associativity (only→
is right-associative); the third gives the relative priorities
of juxtaposition and substitution forms. The various
declarations of names allow a relatively quiet description of
rules and theorems: for example, every rule is schematic in
names prefixed byA, B, C, . . . , u, v, . . . , 0. In the fourth
part, binding structures are defined by pattern. The syntax
of a sequent is described: it is a comma-separated bag
(multiset) of hypotheses, followed by a turnstile and a single
conclusion; the turnstile can be omitted if the hypothesis list
is empty. Finally, Jape is instructed to interpret predicate
notation (e.g.P(m)) as shorthand for substitution forms.

The rules in Figure 1c are named (e.g.hyp, `∧, . . .); they
may have parameters (e.g.A, OBJECT m) and provisos
(WHERE . . .); the antecedents, if any, are introduced by

1In this and subsequent illustrations, words written in upper-case are
built-in elements of the logic description notation.

FROM and separated by AND; the consequent is introduced
by INFER. Because Jape cannot, at present, accommodate
definitional equivalence,¬P is converted intoP →⊥ with
two explicit rules (¬` and `¬ in Figure 1). Otherwise
we have a straightforward transcription of a conventional
collection of rules.

Two of the rules in Figure 1c—∃` and `∀—include a
proviso FRESH m. In each case this means that the namem
must not appear free in the problem sequent which matches
the consequent of the rule. If a proviso is satisfied then it
disappears from the record; if it is violated then the proof
step cannot be made; if it cannot be decided immediately
then it is visibly carried forward.

The same rules each have a parameter OBJECTm: this
directs Jape that, when instantiating the rule, it should
use a newly-minted identifier in place ofm rather than an
unknown. The effect is that a new identifier is automatically
introduced into the proof whenever the rule is used without
an argument: this is usually enough to satisfy the proviso.

The quantifier rules of Figure 1a are expressed using
predicate notation and this is reflected in Figure 1c.
Because of the setting of theinterpretpredicatesparameter
in Figure 1b, those rules will be converted to use substitution
forms. For example the∀` rule is read as‘FROM0,
P[x\B] ` C INFER0,∀ x.P ` C’.

The structural roles of three of the rules—hyp, cut and
weaken—are described to Jape following the declaration of
the rules. Uses of IDENTITY and CUT rules are hidden in
the box display of a proof, as illustrated later. The presence
of a WEAKEN rule allows the application of a theorem
with fewer hypotheses than the problem sequent (because
we could have used the WEAKEN rule to eliminate extra
hypotheses from the problem). The presence of a CUT rule
allows the application of a theorem whose hypotheses do not
match those in the problem sequent (we can present them as
additional problems, because we could have done so by a
number of uses of the CUT rule).

The rules of this particular logic areadditive in the
sense of linear logic—that is, unmatched hypotheses are
copied from the consequent to every antecedent—and the
closinghyp rule implicitly includes weakening by ignoring
unmatched hypotheses. This is a choice of the logic encoder:
a more austere presentation using multiplicative rules and no
unmatched hypotheses in thehyp rule is possible in Jape (see
the discussion of multiple-conclusion calculi below) but, as
is well known, such austerity makes a proof search more
difficult.

The AUTOMATCH directive in Figure 1c causes Jape
to try the hyp rule on every open problem sequent at the
end of each proof step. The rule will only be applied ‘by
matching’—that is, when to do so does not change any
unknowns in the proof.

We organize the rules into a menu for presentation to the
user, as shown in Figure 1d. In this example there is one
entry per rule. Conjectures can be presented in a menu or in
a floating panel which includes a scrolling list and buttons
to manipulate entries in the list. Figure 1e shows some of

THE COMPUTER JOURNAL, Vol. 42, No. 3, 1999

180 R. BORNAT AND B. SUFRIN

FIGURE 1a. Rules of a single-conclusion sequent calculus.

FIGURE 1b. Syntax of formulae and sequents.

FIGURE 1c. Encoded rules.

THE COMPUTER JOURNAL, Vol. 42, No. 3, 1999

THE JAPE PROOF CALCULATOR 181

FIGURE 1d. Menu of rules.

FIGURE 1e. Panel of conjectures.

FIGURE 1f. Rules for variable scoping.

the conjectures we present with this encoding.2 The panel
automatically includes a button which allows the user to
define additional conjectures.

Jape’s screen display includes a ‘proof pane’ and a
‘proviso pane’. The illustrations which follow, taken directly
from the screen display of the MacOS implementation,
include the content of the proviso pane whenever it is not
empty. We begin with a proof of the first conjecture from
Figure 1e.3

2Some of the bracketing in these conjectures is redundant, for example
because→ is defined to be right-associative in Figure 1c. Jape preserves
the user’s original bracketing as far as possible, even when it is redundant.

3This, like the other examples in this paper, is a trivial logical problem
and we are well aware that any self-respecting theorem prover would solve

A rule or a tactic can be applied most simply by selecting
it from the menu. In this case the correct step is to apply
`→ once, giving the tree

and then again, expanding it to

it instantaneously. We use examples not to illustrate the power of our
system, but the principles of our design.

THE COMPUTER JOURNAL, Vol. 42, No. 3, 1999

182 R. BORNAT AND B. SUFRIN

Next we need to apply→`, but the rule matches
ambiguously. The rule is
0 ` A 0, B ` C

0, A → B ` C
→ `

To match the consequent of the rule we have to find a match
for A → B, its principal formula. There are two hypothesis
formulae which would match:P → (Q → R) andP → Q.
In this example it does not matter which of the two is chosen,
since either will lead eventually to a successful conclusion.
But Jape requires that we arbitrate and we can do so most
conveniently by formula-selecting one of the two with a
mouse click:

The effect is to focus attention on the selected formula, to
force the tool to unify it with a principal formula of the rule
that is applied.4

The effect of the→` rule is to decompose the selected
formula; at the same time, because of the AUTOMATCH
directive of Figure 1c, Jape tries to applyhyp to each of the
antecedents and succeeds in one case. The result is the tree

Two further applications of→`, each with AUTOMATCH
assistance, complete the proof:

4Without pre-selection Jape would conduct a dialogue requiring us to
choose between the two possible matches. Such dialogues are unnecessarily
confusing and pre-selection helps to avoid them whenever possible. The
slogan we use to explain the gesture to our users is ‘click on the formula
you want to work with’.

5.2. Proof by pointing

Rule selection in this calculus, as in many others, is a matter
of choosing a formula and applying the rule determined by
the principal connective or binding operator of that formula.
Once a formula is chosen, rule selection can be automatic:
Jape supports automatic rule selection by associating rules
with ‘hits’ (double-clicks) on formulae in either hypothesis
or conclusion positions. The HYPHIT and CONCHIT
directives give a pattern to describe what must be selected
and to differentiate between which side of the sequent has
been ‘hit’. This is proof by pointing at level 1, in the sense
of [17]:

Given these directives, almost every proof in the calculus
can be carried out just by double-clicking formulae—proof
as video game! Such automation is optional and we
intentionally omit it from many encodings—in particular
when we want our novice users to learn how to parse
formulae and select a rule for themselves.

5.3. Variables and provisos

We go to a great deal of trouble to ensure that proofs of
theorems in Jape are schematic in the names used in the
theorem itself: that is, that every substitution instance of the
theorem corresponds to a valid instance of a proof tree. This
can expose some subtle distinctions and non-distinctions
between substitution instances.

For example, consider the theorem schemaλx .λy.x :
T 1 → T 2 → T 1 of the polymorphically-typedλ-calculus.
Given object types int and real and object variablesa andb,
it is quite clear thatλa.λb.a : int→real→ int is an instance
of the theorem and thatλa.λa.a : int→real→int is not,
simply because the first obeys the binding structure of the
theorem and the second violates it. Variables assigned tox
and y in an instance of the theorem must be distinct and
Jape enforces the distinction with an internally generated
proviso. When the theorem is stated, Jape will deduce
from its binding structure that it must be augmented with
x NOTIN y. It will not, without special instruction, show
that proviso to the user, but it is exploited during the proof
of the theorem and it is enforced on instantiation.

One might suppose that schematic names which are
distinct in the statement of a theorem should always require
distinct assignments on instantiation, but that is not so.
For example,λa.λa.a : int→real→real is an instance of
λx .λy.y : T 1 → T 2 → T 2. One would expect to be able to
prove the theorem without having to appeal to a distinction
betweenx and y. Jape’s analysis of the binding does not
show a need for a proviso, so the distinction is not enforced
during proof or instantiation.

It is surprising, though, to find that there is a proof of

THE COMPUTER JOURNAL, Vol. 42, No. 3, 1999

THE JAPE PROOF CALCULATOR 183

∃x .(∀y.Q)`∀y.(∃x .Q) in the logic of Figure 1a which does
not at any stage appeal to a distinction between schematic
variablesx andy:5

Because the proof does not require thatx is distinct from
y, we can substitutez for both, and∃z.(∀z.P)`∀z.(∃z.P)

is a substitution instance of this theorem in the logic of
Figure 1a—a theorem which appears to have quite a different
binding structure to the original.

There is nothing wrong with Jape: the instance is a
theorem of the logic and the tree above with bothx and y
replaced byz, Q by P is a proof of that. There is nothing
necessarily wrong with the logic: the proof does not suppose
that there must be an occurrence ofx or of y in Q and the
instance exploits that. The proof above does depend on the
fact that∀v.R`∃v.R is a theorem of the logic of Figure 1a:
that is so because the rules of Figure 1a implicitly assume
that the universe of quantification is non-empty.

Jape does not have a built-in meta theory of universes and
instances, but it can accept a syntactic description of such
a theory. To accommodate a theory which does not assume
a non-empty universe, it is sufficient to include the syntax
and rules of Figure 1f. Here the assumptionvar c says that
the universe includes an individualc; the goald inscope
demands that the universe includes an individuald and is
proved only by a matching assumptionvar d.

The scoping rules prevent an attempt to prove
∀v.P(v)`∃v.P(v):

Neither of them inscopegoals is provable, so the attempt
fails.

The additional assumptions introduced by the∃` and
`∀ rules of Figure 1f prevent a proof like that above of
∃x .∀y.Q`∀y.∃x .Q. At an early stage in any attempt the
FRESH proviso in either one of those rules will demand a
distinction betweenx andy and the offending instance will
be prohibited:

5To construct this proof in Jape it is necessary to provide, by text
selection, an argument to each rule application:x in the first step,y in the
second and so on. Without those arguments, and without helpful provisos,
it is difficult to find a proof.

Jape’s treatment of schematic variables is subtle but
extremely powerful and is much more than simpleα-
conversion. Where distinctions can be deduced from binding
structure, they are automatically and invisibly enforced
upon instances and exploited during proofs. Where they
are unnecessary, they are not applied. Most users will
not even notice what is going on, since a simple use
of predicate notation will automatically insert an invisible
proviso. For example, a distinction betweenx and y
is automatically imposed if the theorem above is restated
as ∃x .(∀y.R(x, y))`∀y.(∃x .R(x, y)). Conversely, the
possibility of a distinction betweenx andw in an instance
of ∃x .(∀y.P(x, y))`∀v.(∃w.P(w, v)) is exploited during a
proof.

The intention of this treatment is to preserve soundness in
the proof of schematic rules, so that every theorem becomes
a derived rule without antecedents6 and it is never necessary
to re-run the proof of that theorem when establishing an
instance of it.

5.4. Alternative display styles: box or tree

The examples shown so far have been compact, but it
is obvious that Jape’s commitment to interaction with a
full proof display will restrict its range to relatively small
proofs—or at best, with heavy use of lemmas, to sections of
proofs small enough for convenient display.

The tree presentation corresponds directly to the inference
rules of the calculus but is wasteful of space. In single-
conclusion calculi it is easy to be more economical. The
box display, adapted from the notation of [20], writes out
hypothesis formulae no more often than is necessary and
hides applications of IDENTITY rules. The result is a more
nearly linear presentation that is much easier for the user to
search and much more compact on the screen. For example,
the partial proof shown in Figure 2a is already becoming
rather wide and if the subproofs were developed further it
would become completely unwieldy. The equivalent box
display of Figure 2b is far more economical and it is much
easier to search.

In constructing the box version Jape has done no
significant translation. The tree is printed in postfix order—
subtrees first, then root—and a box corresponds to a subtree
whose root has a hypothesis formula that is not in its parent
sequent. The reason printed next to each line quotes the
line (or box) of each antecedent subtree, together with
a reference to any principal hypothesis formulae in the
consequent.7

6Jape has for some time been capable of proofs of derived rules with
antecedents, but the GUI mechanisms required are still under development
at the time of writing.

7Left rules of this logic have principal hypothesis formulae; for example,

THE COMPUTER JOURNAL, Vol. 42, No. 3, 1999

184 R. BORNAT AND B. SUFRIN

FIGURE 2a. Wide tree proof.

FIGURE 2b. Narrower box proof.

The box style of display is best suited to natural deduction
and when used with the single-conclusion sequent calculus
it exhibits some oddities. For example, the justification of
line 6 in Figure 2c cites three formulae:R → S(m) on
line 2 (the principal hypothesis formula in the consequent
of the rule); R on line 4; andS(m) on line 5. ‘Line’ 5 is
a box, in which the conclusionS(m) is proved byhyp from
the hypothesisS(m)—Jape hides the use ofhyp and shows a
single line.

5.5. Unification of substitution forms

In Figures 2a and 2b the lack of an explicit provisox NOTIN
R has forced a substitution form to surface and the display
contains a mixture of substitution and predicate formulae.
It is evident that in Figure 2b we would like lines 4 and 5
to be unified by thehyp rule, but one is a substitution form
and the other is not: AUTOMATCHhypwill not solve the
problem. When directed to usehyp by the user, Jape easily
resolves the problem to produce Figure 2c, which includes

see line 10 of Figure 2b which uses the left∨ rule.

FIGURE 2c. Manual hyp generates proviso.

an inferred proviso. The inference is that since the two forms
are to be the same then there cannot be any occurrences ofx
in R (the only alternative would be thatx andm were always
the same, which is impossible sincex is schematic andm is
internal). Completion of the proof is straightforward.

When the consequent of a rule includes a substitution
form, unification is by no means so simple. To illustrate the
problem we consider an encoding of equational reasoning.
Most of the details of the encoding will not be discussed
here: it is based on a straightforward treatment of equality,
using the rules given in Figure 3a. The encoding takes
advantage of an optional facility in Jape to leave out the
hypothesis part of rules specified in logics in which every
rule is purely additive—a minor textual convenience.

We use set braces rather than square brackets in substitu-
tion forms, because square brackets are conventionally used
to enclose lists in functional programming. The necessary
syntactic directive is

SUBSTFIX 2000{x\A}
The rewrite rule which is the basis of our treatment of
equational reasoning is

THE COMPUTER JOURNAL, Vol. 42, No. 3, 1999

THE JAPE PROOF CALCULATOR 185

FIGURE 3a. Equality rules.

FIGURE 3b. Function definitions as rewrite rules.

FIGURE 3c. Extensionality and induction rules.

0`X = Y 0`A{v\Y }
0`A{v\X}

In the particular realm of functional programming, we
have represented definitions of functions with collections
of equality rules. So, for example, we have the definitions
shown in Figure 3b, using the notation of [21].

In this encoding we treat functions over lists symmetri-
cally in terms of their effect on the empty list [], a single-
ton list [x] and a concatenation of listsxs++ys. To sup-
port these definitions we have rules of extensionality and list
induction, shown in Figure 3c. Each of these rules makes
a step of generalization and so each requires one or more
FRESH provisos—although in practice that proviso is al-
most always rendered redundant by the fact that, unless oth-
erwise directed, Jape will use a freshly-minted internal vari-
able in place of each of the OBJECT parameters.

To prove the theoremrev•rev=id we begin with extension-
ality:

At this point we use(rev•rev)x = rev(rev x), an instance of
the definition(F•G)x = F(G x), to replace the left-hand
side of line 1. This gives the display

Not everything in the tree is displayed, because a tactic has
been employed that applies the rewrite rule, then hides the
left antecedent of the application, which in this case is the
equality (rev•rev)x = rev(rev x). The detail of the proof
step can be uncovered by double-clicking on the justification
of line 2, to see

The particular instance of the rewrite rule which was used in
this step was

`(rev•rev)x = rev(revx) `(x1 = id x){x1\rev(revx)}
`(x1 = id x){x1\(rev•rev)x}

and it is necessary to describe how this instance was selected.
Jape can tackle the problem using one of two mechanisms.

The first, which we callabstraction, is given a subformula
and constructs a substitution by searching for all occurrences
of that subformula. For example, given the problem
of unifying the consequentA{x1\(rev•rev)x} with the
problem formula(rev•rev)x = id x , it converts the problem
formula into the substitution(x1 = id x){x1\(rev•rev)x}
and then unifies A with x1 = id x . The algorithm is a
simplified form of higher-order unification.

The alternative mechanism is calledsubstitution selection.
The user describes the particular substitution which is to be
used by text-selecting one or more instances of a subformula
within it. In this case the user would make the single text-
selection

That describes the substitution(x1 = id x){ x1\
(rev•rev)x} which is then unified with the formA{x2\ Y }
from the consequent of the rule to produce the same effect
as the abstraction mechanism. It would be inappropriate
to give full details here: we note that interpretation of the
user’s gesture as a substitution description is by means of a
tactic and that the unification mechanism treats the resulting

THE COMPUTER JOURNAL, Vol. 42, No. 3, 1999

186 R. BORNAT AND B. SUFRIN

substitution carefully, avoiding simplifying it and unifying
by structure if possible.

The induction rule of this encoding, given above, uses
a substitution formula in its consequent and in each of its
antecedents. By placing the correct tactic in the relevant
menu, we ensure that list induction is always applied using
the substitution-selection mechanism. We therefore choose
each of the subformula instances over which we wish to
perform the induction

and then apply the induction rule:

In this encoding, automation has been carried to the point
that the function-definitions panel includes a button which
first invokes a search for a subformula that will unify with
the left-hand side of some function definition, then invokes
the rewrite rule, using the abstraction mechanism with that
subformula as argument, then finally applies the definition
to the left antecedent of the rewrite rule. Applied repeatedly,
this mechanism solves each of the remaining problems,
giving the proof shown in Figure 4.

5.6. Simulating forward reasoning

Jape is a backward-reasoning engine and its fundamental
data structure is a tree of sequents. We have, nevertheless,
found it possible to support a partial simulation of forward
reasoning, based on a mechanism which hides instances of
cut rules when a proof is shown in box style. The effect is to
make natural deduction [22], which in tree form is difficult
to explain [23, 24] let alone to use, sufficiently natural that
it can be introduced to first-year undergraduates without
difficulty.

We illustrate the mechanism using natural-deduction
elimination and introduction rules for→, normally written
as

...
...

A A → B

B
→ −E and

[A]
...

B

A → B
→ −I

but encoded in Jape as
0`A 0`A → B

0`B
and

0, A`B

0`A → B
We consider first a proof of the conjectureP → Q, Q →
R, P`R. As a backward-reasoning problem this requires

two steps with the elimination rule and at each step the user
must either provide an argument to correspond toA in the
rule or must force a unification afterwards; we choose here
to provide an argument in each case in order to cut down the
number of steps.

The first step uses→-E from Q andQ → R to conclude
R; it is sufficient in Jape to text-selectQ as an argument and
apply the rule

The second antecedent of that step is proved automatically
with hyp. The next step is similar, to proveQ from P and
P → R; as before we text-select an instance ofP to serve
as argument to the→-E rule

and the proof is completed with two automatic applications
of hyp

This proof is hardlynaturaldeduction: we have bothP and
P → Q to begin with and what could be more natural
than to use the→-E rule to produceQ? Yet in reasoning
backwards we have had to start with the last step of the proof.
Jape can simulate the more natural forward calculation in its
box display style. The starting position is

We selectP → Q as the formula we want to work with
(Jape does not demand that we select a conclusion because
only one is open)

and apply the rule

The effect is as if a forward step has been taken: from the
hypotheses we have deducedQ and we can use it to establish
R:

P P → Q

Q
...

R
We continue to bridge the gap betweenQ andR to complete
the proof. First we select the other implication hypothesis

THE COMPUTER JOURNAL, Vol. 42, No. 3, 1999

THE JAPE PROOF CALCULATOR 187

FIGURE 4. A completed proof in equational reasoning.

and then we apply the→-E rule once again

This proof is far more convenient to construct than the
backward version, and not only for those users who prefer
to think in terms of forward reasoning steps.

Jape is not committed to making the proof in just the order
shown above: if the assumptions are worked on in the other
order, the effect is apparently to produce the backward proof.
After the first step we have

and the second step produces the same final proof as before.
No artificial intelligence has been used to produce an

apparent discrimination between forward and backward
proof steps. The effects are the consequence of a simple
mechanism. Inside Jape each step has been based on an
application ofcut followed by an application ofhyp.

After the first step in the first example, the inference tree
behind the scenes is

Each of thehyp applications has served to move a hypothesis
from left to right and thecut has moved conclusionQ from
right to left. The box and line display simply hides these
structural steps.

To make a simulated forward step the user selects a
hypothesis and applies an elimination rule. To make a
backward step, a conclusion is selected before the rule is
applied. The mechanism we employ detects whether or not
a hypothesis has been selected and if so runs a tactic to apply
that rule surrounded with the necessary cut and hyp steps.

We associate a tactic with the menu entry of each
elimination rule, as shown in Figures 5a and 5b. The
ForwardOrBackward tactic has to decide which kind of step
to make: it does so by using the construct (LETHYPP(F n
Rule)) to test whether there is a selected hypothesis formula
which can be unified withP; if so it runs the tactic (F n
Rule). If not, it runs the tactic (WITHSELECTIONS Rule),
which applies the rule as if a tactic had not been involved.

The argument F to ForwardOrBackward is always either
ForwardCut or ForwardUncut; ForwardCut applies a cut
step, then the rule (WITHARGSEL Rule), then chooses an
antecedent (SUBGOAL n, which in this example always
selects antecedent number 0 or number 1) and applies hyp
to the selected hypothesis formula (WITHHYPSEL hyp).
ForwardUncut does the same without the cut step.

If nothing is selected when a rule is applied, Jape makes

THE COMPUTER JOURNAL, Vol. 42, No. 3, 1999

188 R. BORNAT AND B. SUFRIN

FIGURE 5a. Menu entries for natural deduction.

FIGURE 5b. Tactics supporting forward reasoning.

a backward step if it can. Most introduction rules are best
applied backwards in any case. We make no attempt to
support the introduction of arbitrary assumptions: they are
rationally introduced when a conclusion is reduced or a
theorem is invoked. For example, the first two steps in
a proof of P→Q→R`Q→P→R are backward-reasoning
steps using an introduction rule:

followed by a forward step:

5.7. Multiple-conclusion calculi—additive,
intuitionistic, multiplicative

Sequent formulae are treated symmetrically in Jape and
it is as straightforward to treat a calculus with multiple
conclusions as with multiple hypotheses. The most obvious
example is the classical sequent calculus.

Figure 6a is a proof of Peirce’s law in the classical sequent
calculus. The rules used in this example are ‘additive’ in
the sense of linear logic: non-principal assumptions and
conclusions are copied from consequent to antecedents:

Additive copying is by no means essential: we have encoded
intuitionistic versions of the same rules and with these
versions of the rules attempts to prove Peirce’s law fail, as
illustrated by Figure 6b.

We have also encoded ‘multiplicative’—context-splitting—
versions which, in association with a version ofaxiom
that permits only a single conclusion on each side and the
correspondingly necessary weakening and contraction rules,
permits a proof of Peirce’s law as shown in Figure 6c.

THE COMPUTER JOURNAL, Vol. 42, No. 3, 1999

THE JAPE PROOF CALCULATOR 189

FIGURE 6a. Peirce’s law in the classical sequent calculus.

FIGURE 6b. Doomed attempt to prove Peirce’s law in
intuitionistic multiple-conclusion sequent calculus.

FIGURE 6c. Peirce’s law in a calculus with multiplicative rules
and non-weakeningaxiom.

Jape defers context-splitting problems by using the UNI-
FIESWITH proviso and the user can employ a drag-and-
drop gesture to resolve any uncertainty. In an intermediate
stage of the proof using the multiplicative rules, shown in
Figure 6d, the split context is described and the uncertainty
registered with a proviso. We can drag one of the copies of
P into 11 and the other into12 to produce Figure 6e, in
which the uncertainty is resolved.

5.8. Proofs using unknowns

In the examples so far unknowns have appeared rarely and
have been avoided by text-selection of arguments. But
unknowns are often necessary markers of deferred choice
during a proof and can remain visible for several proof steps.
An example of this is found in our encoding of the Hindley–
Milner type-assignment algorithm. Unknowns are used to
stand for so-far-undiscovered type formulae, to be replaced

FIGURE 6d. Intermediate stage of proof with multiplicative rule.

FIGURE 6e. Uncertainty of Figure 6d resolved by drag-and-drop
gestures.

by type variables once the structure of those formulae is
known.

The rules encoded in Jape, shown in Figure 7, are faithful
to the algorithm as presented in [25]. C and C′ are contexts;
the left-hand side of a sequent is a list rather than a bag; we
have omitted rule names for simplicity. We mark a monotype
with a # symbol; we use� for specialization from type
scheme to type and� for generalization from type to type
scheme.

An example problem is shown in Figure 8a. After the first
step (Figure 8b) the type of theλ formula is undetermined
and to calculate the most general type it is necessary either
to guess correctly the type which corresponds toT 3 or to
complete the deduction on the left-hand antecedent before
starting the generalization step. That deduction produces the
tree shown in Figure 8c. Note the proviso that has been
generated as a result of the fact thatx must not appear in
the contexty ⇒ T 3; that proviso will disappear after the
generalization step, onceT 3 is replaced by a type variable.8

Note that there is no provisox NOTIN y: Jape has silently
deduced from the binding structure of the formulaλx .λy.x
thatx andy must be distinct.

The basis of the generalization step is a structural
induction which computes the list of type variables which
are to replace unknowns in the monotype. Each step of
the calculation uses a formulatype•schemein G schemeout :
the rules used are shown, in the order in which they are
considered, in Figure 9a; the operators• andG are arbitrary
punctuation dividing the components. Note thead hoc
treatment of an indexed family of rules ‘new t• . . . ’ used to
generate a range of possible bindings. Using a tactic which

8With a better description of problem syntax, a more capable tool could
deduce that, in this logic, program variable names cannot appear in type
formulae.

THE COMPUTER JOURNAL, Vol. 42, No. 3, 1999

190 R. BORNAT AND B. SUFRIN

FIGURE 7. Some of the rules of the polymorphically-typedλ-calculus.

FIGURE 8a. A problem in the polymorphically-typedλ-calculus.

FIGURE 8b. After the first step of the Hindley–Milner type-assignment algorithm.

FIGURE 8c. After the type of theλ formula has been calculated.

FIGURE 9a. Rules used in the generalization step.

FIGURE 9b. After the generalization step.

employs these rules and hides the resulting subtree, Jape
carries out generalization as a single action. The effect is
shown in Figure 9b.

The rest of the proof is completed in Figure 10, in which
there are several distinct specializations of the type scheme
bound to f . The remaining unknowns in the proof tree, on

THE COMPUTER JOURNAL, Vol. 42, No. 3, 1999

THE JAPE PROOF CALCULATOR 191

FIGURE 10. The completed type calculation.

lines 14, 16 and 17, can safely be ignored: they could be
instantiated to any type formula whatsoever and the proof
would still stand.

6. CONCLUSIONS AND FUTURE WORK

As it stands Jape is evidence that it is possible to build a
system which can aid step-by-step interactive reasoning over
a range of logical systems by animation at the surface level.
It is actively in use in teaching at Oxford, QMW and at other
locations in the UK.

The aim of the design is to encourage reflective
exploration of logical proofs and to operate at the surface
level so that users work on the proof task, rather than the
tool-direction task. We believe that both novices and experts
can benefit from such a mechanism, albeit in different ways.
We hope to be able to adapt it to the needs of users,
not necessarily experts, who must make industrial-strength
proofs.

Our immediate ambition is to extend Jape’s interactive
behaviour to cover more of the range of two-sided sequent
calculi, more conveniently than it does at present. We hope
thereby to apply the surface polish of Jape to the kind of
logics which industrial users must deal with. If it could
be done, that would make Jape a useful tool for conducting
experiments with industrial-strength logics.

Dealing with industrial-strength problems is a different
matter. It seems unlikely that we could strengthen Jape’s
automatic proof mechanisms so as to challenge the power of
existing industrial-strength theorem provers and we do not
intend to try. Instead, we have begun to experiment with

using Jape as a front-end to a more conventional mechanism,
in the expectation that its high-quality interaction style will
make it easier for an expert user to intervene in a proof
at those points—such as choosing an induction schema
or a rewrite—where search mechanisms are inefficient or
ineffective.

REFERENCES

[1] Gordon, M. and Melham, T. (eds) (1993)Introduction to
HOL: A Theorem-proving Environment for Higher-Order
Logic. Cambridge University Press, Cambridge.

[2] Paulson, L. C. (1990) The foundation of a generic theorem
prover.J. Automated Reasoning, 5, 363–397.

[3] Goguen, J. and Malcolm, G. (1997)Algebraic Semantics of
Imperative Programs.MIT Press, Cambridge, MA.

[4] Boyer, R. S. and Moore, J. S. (1990) A theorem prover
for a computational logic.Automated Deduction—CADE-10,
Lecture Notes in Computer Science 449, pp. 1–15. Springer,
Berlin.

[5] Heuerding, A., J¨ager, G., Schwendimann, S. and Seyfried, M.
(1995) Propositional logics on the computer. InTheorem
Proving with Analytic Tableaux and Related Methods, 4th
Int. Workshop, TABLEAUX ’95. Lecture Notes in Computer
Science 918, pp. 310–323. Springer, Berlin.

[6] Owre, S., Rushby, J. M. and Shankar, N. (1992) PVS: a
prototype verification system.11th International Conf. on
Automated Deduction. Lecture Notes in Computer Science
607, pp. 748–752. Springer, Berlin.

[7] Jones, C. B., Jones, K. D., Lindsay, P. A. and Moore, R.
(1991) mural: A Formal Development Support System.
Springer, Berlin.

THE COMPUTER JOURNAL, Vol. 42, No. 3, 1999

192 R. BORNAT AND B. SUFRIN

[8] Sawamura, H., Minami, T. and Ohashi, K. (1992) EUOD-
HILOS: A general reasoning system for a variety of logics.
In Logic Programming and Automated Reasoning, Int. Conf.
LPAR ’92. Lecture Notes in Computer Science 624, pp. 501–
503, Springer, Berlin.

[9] Dyckhoff, R. (1987) Implementing a simple proof assistant.
In Workshop on Programming for Logic Teaching, Leeds,
July 1987(program available from Machine Assisted Logic
Teaching Project, Computer Science Division, University of
St Andrews).

[10] Scheines, R. and Sieg, W. (1993) The Carnegie Mellon
proof tutor. In Boettcher, J. V. (ed.),101 Success Stories of
Information Technology in Higher Education: The Joe Wyatt
Challenge.McGraw-Hill, New York.

[11] EPC Ltd (1992) The B Tool User Manual. EPC Ltd,
Edinburgh.

[12] Dawson, W. M. G. (1990)A Generic Logic Environment. PhD
thesis, Imperial College, University of London.

[13] Thimbleby, H. W. (1990)User Interface Design. ACM Press,
New York.

[14] Pace, G. J. (1994)From Real-Time Specification to Timed
Circuit Generalization of Proofs. PRG internal memorandum,
Oxford University.

[15] Théry, L., Bertot, Y. and Kahn, G. (1992) Real theorem
provers deserve real user-interfaces.5th ACM Symp. on
Software Development Environments, pp. 120–129.

[16] Coscoy, Y., Kahn, G. and Th´ery, L. (1995) Extracting text
from proof. In 2nd Int. Conf. on Typed Lambda Calculi
and Applications, Lecture Notes in Computer Science 902,
pp. 109–123. Springer, Berlin.

[17] Bertot, Y., Kahn, G. and Th´ery, L. (1994) Proof by pointing.
In Symp. on Theoretical Aspects of Computer Software
(STACS), Sendai (Japan), Lecture Notes in Computer Science
789, pp. 141–160, Springer, Berlin.

[18] Gordon, M., Milner, R. and Wadsworth, C. (1979)Edinburgh
LCF. Lecture Notes in Computer Science 78. Springer,
Berlin.

[19] Jape http://www.dcs.qmw.ac.uk/˜ richard/jape and
http://www.comlab.ox.ac.uk/oucl/users/bernard.sufrin
(visited: 23rd April 1999).

[20] Fitch, F. B. (1952)Symbolic Logic. Ronald Press, New York.
[21] Bird, R. J. and Wadler, P. (1991)An Introduction to Func-

tional Programming(3rd edn). Prentice-Hall International.
[22] Girard J.-Y.et al. (1989)Proofs and Types. Cambridge Tracts

in Theoretical Computer Science 7. Cambridge University
Press, Cambridge.

[23] Reeves, S. and Clarke, M. (1990)Logic for Computer Science.
Addison-Wesley.

[24] Woodcock, J. and Davies, J. (1996)Using Z: Specification,
Refinement and Proof. Prentice-Hall International.

[25] Milner, R., Tofte, M. and Harper, R. (1990)The Definition of
Standard ML. MIT Press.

THE COMPUTER JOURNAL, Vol. 42, No. 3, 1999

