
User Interfaces for Generic Proof Assistants
Part II: Displaying Proofs

Bernard Sufrin Richard Bornat

March 1998

Abstract

JAPE is a generic proof editor which (amongst other things) offers the teacher, user, or logic designer the
opportunity of constructing a direct manipulation interface for proofs.

In the first part of this paper we introduced JAPE, illustrated some aspects of proof development by direct
manipulation, and described some of the infrastructure provided for interpreting the gestures which users make at
proofs. In this part we discuss the problem of displaying proofs at appropriate levels of abstraction, and describe
the infrastructure JAPE provides for doing this. We also show how specialised modes of display for proofs which
use cut and identity rules can be exploited to give the illusion of forward (natural deduction style) proof.

1 Introduction

In the first part of this paper we gave an account of the interaction tactics which are used by JAPE to interpret users’
gestures in context in order to invoke proof tactics and rules. We also explained how such tactics provide support for
interactive proof activity at level of abstraction closer to provers’ intuitions than that of the basic inference rules of a
logic might be.
Just as it is important to be able to define tactic programs which implement intuitive proof moves, so it is important
to be able to show proofs at an appropriate level of abstraction: for otherwise the human engaged in a proof has to
abstract the essence of a proof situation from a display which may well present too much detail.
We start this part of the paper by describing the mechanisms which JAPE currently provides for displaying proofs at
a level of abstraction chosen by the interaction designer. Then we describe JAPE’s linear presentation style for proofs
in which identity and cut rules have been used – and show how the use of a simple display transformation coupled
with appropriate interaction tactics can be used to give the illusion of forward proof.

2 Displaying Equational Proofs

Logical presentation masks equational essence

Consider the following proof state, reached during a proof that list-reversal is self-inverting:

This is the second part of a paper whose first part[1] was presented at the workshop “User Interfaces for Theorem Provers”, York, U.K., July
1996.

Computing Laboratory and Worcester College, Oxford
Queen Mary and Westfield College, London

1



id x x id
rev rev x rev rev x rev rev x x

rev rev x x rewrite

rev rev x id x rewrite

rev rev id ext

At an intuitive level we might describe the history of this proof as follows: “The extensionality rule is followed by
unfolding the term id x into x, and this is followed by unfolding the term rev rev x into rev rev x .”
But the display shows so much detail that it can be hard for someone who didn’t do the proof (or who doesn’t care
that an unfolding proof step happens to be implemented by an application of the rewrite rule) to follow what went
on. What’s needed is a way of suppressing the irrelevant logical detail from the proof display whilst preserving its
equational essence. .
One way of doing so would be to augment the basic rules (and definitions) of the the logic in question with specialised
derived rules. For example, from the rule id X = X which defines id, and the rewrite rule

RULE rewrite (X, Y, ABSTRACTION P)
FROM X=Y
AND P(Y)
INFER P(X)

we can derive the rule1

RULE "Fold id"(X, Y, ABSTRACTION P)
FROM P(X)
INFER P(id X)

Using this rule, and the corresponding rule for compositions, the proof would become.

rev rev x x
rev rev x x Fold

rev rev x id x Fold id

rev rev id ext

But this isn’t really a practical proposition: in any interesting logic there will simply be too many derived rules
for us to install before we can start work on the conjectures which really interest us. What is needed is a way of
transforming the presentation of the logical proof state into a presentation in the equational style.

Subtree Selection – a partial solution

In order to explain the partial solution which JAPE currently offers we shall first have to explain the machinery for
displaying proofs. In effect there’s a two-stage pipeline.

Logical
Proof Proof Abstraction Abstracted

Proof Proof Rendering Displayed
Proof

The rendering stage depends on the proof display style currently in use, and constructs a proof layout from the
abstracted proof. The details of this stage of the transformation will become important when we come to discuss
automatic elision of redundant formulae, but they’re not important here.
The abstraction stage is guided by abstraction descriptions which are installed in the logical proof tree as it is being
constructed. This is done by tactics of the form

1Why is the rule called Fold id? Because when we read the proof forward, the transformation is from x to id x. Such a right-to-left use of
a defining equation is generally referred to as a folding transformation.

2



reason branch list tactic tactic

A tactic of this form is executed by running its component tactics in sequence. If this succeeds, then the proof subtree
which it generates is marked to be displayed as an abstraction of the logical proof tree, explained with (a text derived
from) the given reason. The only form of abstraction currently provided is subtree selection, and the branch list is
a (possibly empty) list of the numbers of the branches of the generated subtree which are to be displayed.
For example, if the tactic form

(LAYOUT "Fold id" (1) (rewrite (id x)) id)

is executed in the proof state

rev rev x id x
rev rev id ext

it transforms the logical proof into

id x x id rev rev x x
rev rev x id x rewrite

rev rev id ext

but the proof abstraction stage of the display process ensures that only the second branch (numbered 1) of the new
proof subtree is selected for rendering, as shown below.

rev rev x x
rev rev x id x Fold id

rev rev id ext

It makes sense to generalise this tactic over the rule (or tactic) used to close the left branch of the rewrite tree, so we
define:

TACTIC Unfold(term, rule) (LAYOUT "Fold %s" (1) (rewrite term) rule)

When an application of this tactic is succesful, the reason annotation of the displayed proof node is constructed by
expanding "Fold %s" in the layout tactic – replacing the %s by the name of the rule used at the base of the branch
which is suppressed. Although this simplistic way of constructing the annotation is nearly always good enough, we
shall see later that there are circumstances where it can be uninformative or misleading.
In part 1 we developed a tactic, UnfoldSelectionOrSearch, to support the construction of “fold” moves in
equational proofs. Below we present the production version of that tactic – this reports proof steps made with it
at the appropriate level of abstraction. The last stage of development is very simple: the three three underlined
sequential tactic forms of the original (underlined below) are just embedded in LAYOUT forms which select their
second branch.

TACTIC UnfoldSelectionOrSearch(rulebase) IS
(WHEN

(LETHYP (_L=_R)
(LETSUBSTSEL _TERM

(LAYOUT "Fold with hyp" (1) (WITHSUBSTSEL rewrite) (hyp (_L=_R)))))
(LETSUBSTSEL _TERM

(LAYOUT "Fold %s" (1) (WITHSUBSTSEL rewrite) rulebase))
(LAYOUT "Fold %s" (1) (UNFOLD rewrite rulebase)))

3



Shallow and weak though it is, the form of tree abstraction provided by LAYOUT has been sufficiently powerful to
support coherent proof presentations in several theories based on equational reasoning. These range from a simple
untyped theory of functional programming, to a reasoning system for typed category theory. In the latter theory, the
typing antecedents of rules are decided automatically by tactic, but the proofs of well-typing are suppressed (unless
they fail) in the presentation.

Universally Applied Tree Transformations

In one experimental JAPE implementation, the annotations which guide proof abstraction were described declar-
atively in a tree-transformation notation. For example, the following transformation could be used to present an
unfolding – an application of rewrite whose left subgoal is closed directly by a rule.

TRANSFORM Unfolding (rulename, proof)
Q BY rewrite

FROM
X=Y BY rulename.

AND
P FROM proof.

END
INTO

Q BY (Fold rulename)
FROM

P FROM proof
END

The following transformation could be used to present a more deeply-nested proof – a fold, in fact.

TRANSFORM Folding (rulename, proof)
Q BY rewrite

FROM
X=Y BY "= Symmetric"

FROM
Y=X BY rulename.

AND
P FROM proof.

END
INTO

Q BY (Unfold rulename)
FROM

P FROM proof
END

The declarative style seemed, for a while, to be inappropriate: partly because the notation is rather long-winded,
but mainly because transformations were applied without discrimination to all proof trees of the right form – even if
the tree in question was constructed by applying primitive rules by hand. The resulting display could misleadingly
suggest that high-level proof steps like “unfold” have been employed when they hadn’t.

Selectively Applied Tree Transformations

It took us a while to realize that the selective application of declarative transformations could help us solve a class
of awkward problems which arise from the simplemindedness of the way in which LAYOUT forms construct their
explanations.
Consider programming a Fold tactic – designed to replace an occurence of the right hand side of a definition by the
corresponding left hand side. This tactic is much the same as the Unold described earlier, but we will use the rule
"= symmetric" (defined as FROM X=Y INFER Y=X) before applying the definitional rule.

4



TACTIC Fold(term, rule)
(LAYOUT "Unfold %s" (1) (rewrite term) "= symmetric" rule)

The tactic does the right job, but unfortunately the "%s" in the reason component of this tactic picks up the name of
the "= symmetric" rule – and explains the move as Unfold "= symmetric" when what we really want is
the name of the rule which was actually used.
In situations like this the LAYOUT form is just inadequate. The problem is remedied by introducing the TRANSFORM
tactic form, which is analogous to LAYOUT save that the tree abstraction it performs is described by a declaratively
described transformation of the kind discussed above. The Fold tactic inow written as follows 2

TACTIC Fold(term, rule)
(TRANSFORM Folding (rewrite term) "= symmetric" rule)

Having decided to rehabilitate the more general form of tree transformation described above, several issues are wor-
thy of investigation. For example, apart from the obviously-useful alternation combinator, what ways of composing
transformations will be useful? What other ways of applying transformations will be useful?

3 Natural Deduction Displays of Sequent Proofs

As we demonstrated in the previous section, there are certain proofs whose presentations can be improved if the
interaction designer takes the trouble to program interface tactics in a certain way. In this section we show how JAPE
can automatically exploit the presence of certain kinds of structural rule in a logic to eliminate uninformative or
redundant material from proof displays. One consequence of the display transformations we describe in this section
is that it is easy to present a convincing simulacrum of forward proof in the natural deduction-style – despite the fact
that JAPE is a backward proof system based on sequents!
The simplest automatically applicable display transformation is the removal of uninformative identity rules. We can
best explain it by giving a concrete example.

P!(P!Q)  " P!Q

"!

P!(P!Q) , P " Q

!"

P " P

hyp

P, P!Q  " Q

!"

P " P

hyp

P, Q " Q

hyp

Figure 1: A proof in the tree style

The proof tree in figure 1 built using the following rules is shown rendered in the (unameliorated) linear style in
figure 2.

RULE " " FROM , A B INFER A B
RULE " " FROM , A B A AND , B C INFER , A B C
RULE hyp(A) INFER , A A

In this style the proof of each sequent n C is shown in a box, with the hypotheses at the top and the
conclusion at the bottom, and the proofs of any antecedent sub-sequents recursively shown between them (ellipsis

2“Folding” is the proof transform we described on the previous page.

5



10 : P!Q "!  2#9

9 : Q !"  1,3,4#8

8 : Q !"  4,5,6#7

7 : Q hyp  6

6 : assumption

5 : P hyp  2

4 : assumption

3 : P hyp  2

2 : P assumption

1 : assumption

Q

P!Q

P!(P!Q)

Figure 2: The same proof in the linear style

represents an unclosed subtree). If any of the hypotheses have already appeared at the top pf an enclosing box, then
they are omitted, and if this results in a box with no hypotheses at the top, then the conclusion is presented unboxed. 3

Notice that line 8 is justified in part by the P established on line by hyp from the identical assumption on line
2. Likewise line 8 is justified in part by the P established on line 3 by hyp from the assumption on line 2. Finally
notice that line 7 simply duplicates the assumption Q made on line 6. We say that hyp is an identity rule because its
conclusion is identical to one of its assumptions. It seems fair to say that the use of hyp at lines 3, 5, and 7 do not
really add to our understanding of the proof, and that these lines could therefore be eliminated. Figure 3 shows what
happens when this is done.

7 : P!Q "!  2#6

6 : Q !"  1,2,3#5

5 : Q !"  3,2,4

4 : Q assumption

3 : P!Q assumption

2 : P assumption

1 : P!(P!Q) assumption

Figure 3: The same proof with hyp elided

Removing Cuts

A more interesting automatic display transformation is the elimination of cut rules – which take the form

FROM AND , C INFER C

It is used to “cut” the task of finding a proof of C into two parts: that of establishing an intermediate formula
from the hypotheses , and that of establishing the conclusionC from the hypotheses augmented with the intermedi-
ate formula. In figure 4 we show a Cut proof, and its standard linear display. Notice that the intermediate formula

3We note, in passing, that this presentation style is ambiguous for some logics: just because a hypothesis appears at the head of a box, that
doesn’t mean that it’s in scope at the conclusion of all the boxes nested within. For example, the hypothesis P P Q is not in scope at
line 8 of the proof displayed above, because that line comes from the proof of the sequent P P Q Q. In JAPE we resolve the ambiguity
dynamically: when a particular conclusion is selected we “grey out” the hypotheses which aren’t in scope at that conclusuion. Dually, when a
particular hypothesis is selected we grey out those parts of the proof at which it isn’t in scope.

6



appears once at the foot of its own proof, and again – as the new hypothesis opening the subproof which establishes
C.

...
...

C
C

cut

...

...
C

C

Figure 4: A cut proof and its standard linear display

The cut display transformation replaces the vertically adjacent (but structurally separate) occurences of with a
single occurence, as shown in figure 5.

...

...
C

Figure 5: Linear display of a cut proof after transformation

The following concrete example demonstrates the cut transformation in action during a proof of p p q p q
in a natural-deduction style logic, JnJ[3], which includes the following rules:

RULE " -intro" FROM , p q INFER p q
RULE " -elim" FROM p q AND p INFER q
RULE hypothesis(p) INFER , p p

The intuitive approach to this proof for someone who has learned natural deduction is to use " -intro" to
establish the proof state

4 : p!q !#intro  2#3

3 : 

. . .

q

2 : p assumption

1 : p!(p!q) assumption

then to use implication elimination to establish p q. In a backward proof engine such as ours this has to be done
by cutting the proof first, then applying implication elimation. The resulting state is shown in complete detail in the
diagram below on the left, and with applications of the hypothesis rule suppressed on the right.

7



9 : p!q !#intro  2#8

8 : q cut  5,6#7

7 : 

. . .

q

6 : p!q assumption

5 : p!q !#elim  3,4

4 : p hypothesis  2

3 : p!p!q hypothesis  1

2 : p assumption

1 : p!(p!q) assumption

7 : p!q !#intro  2#6

6 : q cut  3,4#5

5 : 

. . .

q

4 : p!q assumption

3 : p!q !#elim  1,2

2 : p assumption

1 : p!(p!q) assumption

Whilst these details may be illuminating to a specialist, someone who’s simply trying to do a natural deduction proof
would almost certainly be overwhelmed by the technicalities of the left-hand display, and would find the right-hand
display uninformative.
Fortunately, application of the identity and cut-suppression transformations reveals just how simple the (natural
deduction) proof situation is4

5 : p!q !#intro  2#4

4 : 

. . .

q

3 : p!q !#elim  1,2

2 : p assumption

1 : assumptionp!(p!q)

Now novices shouldn’t have to know that forward application of elimination rules requires the use of cut! How do
we arrange that simply invoking the implication elimination rule ends up doing the right thing?
We do so by defining an interaction tactic [1] which assumes that when both a hypothesis and a conclusion are
selected, rules are to be applied in the forward direction, but when only a conclusion is selected, rules are to be
applied backwards. One minor difficulty is the problem of deciding what is meant when the middle formula ( ) is
selected in a transformed display such as the one in figure 5. Did the user intend to select the conclusion (in the left
antecedent of cut) or the conclusion (in the right antecedent). Our approach to this is simple: if there’s a selection
below it in the display, then it is the hypothesis; if there is no other selection, or if the other selection is above it in
the display, then it is the conclusion.
The forward application of a proof rule R, from aa hypothesis is implemented by the sequential composition of
cut, R, and hypothesis . This is easily arranged: an approximation to the interaction tactic used for this purpose in
the presentation[4] of the logic is shown below

TACTIC ElimRule(rule)
(WHEN

(LETHYP _p
(ALT (SEQ cut (WITHARGSEL rule) (WITHHYPSEL hypothesis))

(FAIL ("%s is not applicable to %s", rule, _p))))
(FAIL ("Select an assumption before applying %s", rule)))

The sequence of proof states which this evokes during the forward application of " -elim" by (ElimRule
" -elim") described above is shown in Figures 6 through 8. Before the user sees the proof again, the automatic
invocation of the hypothesis rule specified by the presentation designer will have disposed of the outstanding proof
obligation in the left-hand subproof of figure 8.

4JAPE automatically applies the display transformations described above only when declarations are made which inform it of the existence
(and names) of the structural rules in question.

8



p!(p!q)  " p!q

!#intro

p!(p!q) , p " q

cut

p!(p!q) , p " _p1 p!(p!q) , p, _p1  " q

Figure 6: Proof state after cut

p!(p!q)  " p!q

!#intro

p!(p!q) , p " q

cut

p!(p!q) , p " _p1

!#elim

p!(p!q) , p " _p2!_p1 p!(p!q) , p " _p2

p!(p!q) , p, _p1  " q

Figure 7: Proof state after (WITHARGSEL -elim)

p!(p!q)  " p!q

!#intro

p!(p!q) , p " q

cut

p!(p!q) , p " p!q

!#elim

p!(p!q) , p " p!p!q

hypothesis

p!(p!q) , p " p

p!(p!q) , p, p!q  " q

Figure 8: Proof state after (WITHHYPSEL (p (p q)))

9



4 Conclusion and Prospects

Although JAPE is a generic tool, we believe that the techniques we have described here could easily be adapted for
use in provers designed for specific logics, and would be of considerable benefit to users. Without the complexities
induced by JAPE’s generic nature they might also be much easier to implement!
I apologize to reviewers for having been forced to curtail this section of the submitted paper because several dead-
lines have hit me simultaneously.
I expect to be writing about two main topics here, namely the problem of displaying proofs formed from transitive
relations, and the problem of designing “little languages” for describing display layouts and transforms.

References

[1] Richard Bornat & Bernard Sufrin. User Interfaces for Generic Proof Assistants: Part I. Presented at
UITP-96, York, England
http://www.comlab.ox.ac.uk/oucl/users/bernard.sufrin/JAPE/PAPERS/UITP96-paper.ps.gz.

[2] Richard Bornat & Bernard Sufrin. Displaying sequent-calculus proofs in natural-deduction style:
experience with the Jape proof calculator.
Presented at PTP-97, Schloss Dagstuhl, Germany
http://www.comlab.ox.ac.uk/oucl/users/bernard.sufrin/JAPE/PAPERS/PTP97-paper.ps.gz.

[3] Jim Woodcock and Jim Davies. Using Z. Prentice-Hall International.

[4] Bernard Sufrin & Richard Bornat. JnJ in Jape.
http://www.comlab.ox.ac.uk/oucl/users/bernard.sufrin/JAPE/PAPERS/jnj.ps.gz.

10


