Roll your own Jape logic Contents

PrefaCeooo i eeesmeee Vo
Improvements since 3.0
Outstanding problems still awaiting a fix .
Serious problems which won't be fixed S00Nccccevviiiiiiiiiniesceeee e M,
FULUrE AEVEIOPIMENTS ...ttt et et e e et e e e et e e e sabe e e ettt e e anbsennmananannnanes Vi

Chapter 1
BaSIC PriNCIPIES ...ttt e e e e e e e e e e e e e e e e e eanne

Encoding logics for the Jape proof calculator L1 Flexible syntax...

1.2 Backward proof.........cccccviiiiiiiiiieiiiiien e
1.3 Inference rule matching: instantiation and unification.............ccccccoeiiiiin i 2

Parameters of rules...........cccoveviiiiiniii e 2

1.4 Explicit provisos................... 3

1.5 Conjectures and theorems...........cccocveeeiieeeniineenne e
Proving a conjecture — substitutions and provisos VSR
Applying a theorem: the role of structural rules............coooiiiiiiiiiii e 4.

1.6 Substitution forms and unification....................

Richard Bornat and Bernard Sufrin INVISTDIE PIOVISOSovoveoeereeceeeeeeeeeees s seeseesee e ess s es e s en s seen e sesssenemeeasesaneeneas
Interpreting Predicate NOLALIONoiiiiiie et e eemmmenmmene
September 1997 (Jape version 3.2) 1.7 Binding forms: unification, a-conversion and substitution R

1.8 The tactic language —

1.9 Gestures, MENUS AN PANEISueiiiiiiiiiiiiie et eieee et et e st e e e sbeee s sabeeesabeee s ss e s 8...

1.10 Proof display: trees, boxes and hiding ..

1.11 USING Jape INtEIACLVEIYcccuuiiiiiiii ittt s+ meemmmeene s 9

Chapter 2
Encoding the Sequent CalCulUSccuiiiiiiiiiiieiiiie e 10.......

2.1 The inference rules of the (multiple-conclusion) Sequent Calculus 10....

2.2 Preliminaries — fonts and SYNtaX........c.ccucueeriiiireniiie e e 11..

2.3 Encoding the inference rules....... e 12.

2.4 Automatic application of rules... .13

2.5 Automatic selection of rules 14

2.6 MeNUS.......ccoociiiiiiiiiniiiins .14

The Rules menu ...

2.7 Conjectures..... .15
2.8 The Conjectures panel....... .16
2.9 Global variable settings16
2.10 A very small example......... A7
Chapter 3
Variations on the Sequent CalCUlUSccvvviiiiiiiiee e 18.....
3.1 LF-style variables in quantifier rules ... e 18..
CAVEAL ...ttt .20
3.2 The intuitionistic multiple-conclusion sequent calculus................... .20....
3.3 A multiple-conclusion sequent calculus with multiplicative rules..............ccccoveienineenne 21.

Resolving context-splits with drag-and-adropcooceeieiiieiiiiee e e 22,

Roll your own Jape logic (3.2) Page ii Contents
3.4 MOAIIOGIC .. .eciiiiiie i 23
3.5 Single-conclusion sequent calculus (the intuitionistic fragment)............ccoccevviveeneennen. 23...

INFEIENCE TUIES.....ciiiiiie ettt ettt e ettt e e et e e e s ab e e e s bte e e st s smmmmemcmmmanms e see 23

LF-style variables ...
Syntax
MENUS AN PANEIS.......eiiiiiii ittt ettt e e st e e e sn b e e e n b e smmemmmmmnenanns s 24
Global variable settings
3.6 Box display mode and the hyp ruleoooiiiiiii e 25......
Chapter 4
Encoding natural dedUCHIONc.cvieiiiieiiic e 27......
4.1 |Inferencerules.................. .27
4.2 SyntaX................. .29
4.3 Forward reasoning............ .29
Cut and forward reasoning . ---30
4.4 The Conjectures panelc.ccccvceeevieecennnen. .35
4.5 An alternative natural deduction encodingccccccveiiiiiiiiiiiiiiie i 35.....
Chapter 5
Encoding equational reasoning in functional programsccccocevevieeenrernnineen 36..
5.1 SYNIAX ittt ...36
5.2 The rewrite rule and user definition of substitutions .. 37
5.3 Hiding parts of proofs: the layout tacticalcccccceeviiiiiniecinieene ..39..
5.4 Selecting a subformula: lethypfind, letconcfind, assoceq and flatten40...
5.5 INAUCHION IN JAPEoiiiiiiiiiiiie ittt 43
5.6 Controlling collections Of FUIEScociiiiiiiiiiiic e 44
5.7 Searching collections of rules and theorems: the fold and unfold tacticals......................46...
Chapter 6
Encoding axiomatiC SEt thEOIYcuiviiiiiiiii e 50......
6.1 The natural deduction ENCOTINGeeiiiiiiiiiiie e 50....

6.2 Syntax of set operations

6.3 The axiomatic presentation of naive set theory...

6.4 The NON-8XIOMALIC FUIESeiiiiiiiiiiie ittt sbe et mmmmean 56
Chapter 7

Encoding the Hindley-Milner type-assignment algorithm 58.

Reading the context and specialising a type schemeccooiiiiiii e
The generalisation step
AULOMALIC SEATCI ... ittt e e ettt e e st e e ettt e e sabeee s memmmmmeemmmmn sl
7.3 AN EXAMPIE ettt ettt et e e hb e e e et e e e nb e e e e bt e e e ss s ammme e e
7.4 Jape’s treatment of type-theoretic I0gICScoouiiiiiiiiiiiiii e
Chapter 8
(=l gTeloTo ([o [[oT=T =10 (o o o PP PPRPRPPR 66.......

Chapter 9
ENcoding BAN [OQIC.......cccviiiiiiiiiiiesiie et e e e Dl

Putting rules into menus .. -
Dealing With TUPIES ...t e e e eee e 69

Roll your own Jape logic (3.2) Page iii Contents
9.3 Conjectures with long assumMption lISESccueiiiiiiiiiiie e 70......
Appendix A
The paragraph and formula languagescccccveriieiniiieiiieenec e d L
AL DIFECHIVES ... teee ittt ettt ettt e e e bt e e s sttt e e kbt e e e s bb e e e aab e e e e bb e e e enbb e e e eneeaeantaeeen 71
A.2 Rules, tactics and conjectures .. .25,
The meaning of a rule directive76
Parameters in rule direCtivesScccveerieiiniceii e A7
Instantiating a rule, including interpretation of predicate notation. .
The meaning of provisos in rule and theorem directives.........
The meaning of conjectures (stated in theorem directives)
Proof by resolution............coiiiiiiiee e
The meaning of structurerule directives
Substitution matching..........ccccoceeiiieeen.
The tactic store...........
A.3 Fonts

A.4 Flexible syntax....
SymbOISooviiiiien
Juxtaposition may need care...
Identifier classesc........
Syntactic hierarchy ..
Bracketed formulee
Substitution forms ...
Operator syntax.......
Binding structure...
Sequent structure.

FFUTUNE WOTK ..ttt ettt e e sttt e e e bt e e e sabe e e e bbeeeesbbee e s mmmmnanamnnseee s
Appendix B
The taCiC [aNQUAGEuviiiiiiiiiie et a e e e e e e e aeeeeeeas
B.1 TaCHC VEIDS ...
B.2 The ‘current problem sequent’, the ‘goal’ and the ‘target’ ..
B.3 Guarded and binding taCHCScoooviiiiiiiiii e
Appendix C
The command language, environment variables and the default environment91
C.1 The command [ANQUAGEcoouuiiiiiiie ittt et e s bbe e e see e e e ee e mmnen 91..
Commands YOU MGt WANT 10 USE......c.ueiiiiiiiiiiiie ettt i 9l.....
AICANAoviiiiiiiii .92
C.2 Variables and the default @nVIroNMEeNt............coociiiiiiiiiici 93.....
USEFUI VANHBDIES ... 93
Adding your own variables ... --..94
Debugging Variablescuuiiiiiiiii et smmmemame s 94

Preface

Jape is a lightweight, uncommitted, transparent proof calculator. It's designed to present an excellent
graphical interface and a very short and shallow ‘learning curve’ to all its users, whether novices learning

how to make formal proofs or experts — logicians, teachers, sofware engineers, practitioners of any kind —
describing inference systems. This manual is directed at people who have experimented with one or more
of the inference systems distributed with Jape and now want to develop something of their own, or those
who just want to understand what it is that we have done in our own encodings.

The chapters of this manual describe by example how to encode several interesting logics in Jape. They
are intended to be read in sequence, as the earlier chapters give most description of the early stages of the
encoding, and later chapters concentrate on more esoteric features.

A manual which described a task only by example would be inadequate, and we therefore include a
complete description of the various internal ‘languages’ of Jape:

« thetermorformulaor sequentanguage, in which problems are stated, and which appears on-screen
when a proof is displayed — described in appendix A;

« thetactic language, which includes the statement of the inference rules of a logic, and which allows
the user to control the course of a proof — described in appendix B;

« theparagraphlanguage, which is the notation used to describe a logic and its associated tactics and
stuff to Jape — described in appendix A;

« thedialoguelanguage, which is the notation in which the graphical interface sends commands to the
main proof engine , and in which you can type as text in a graphical interface window — described in
appendix C.

This manual doesn't discuss how to use Jape — that's covered in the various user manuals which we
distribute with the example inference systems that we have already encoded.

This manual describes the state of the system in September 1997 (version v3.2f of the proof engine and
version 3.2e of the logic encodings). The graphical illustrations are taken from the then current MacOS
graphical interface (version 3.2b).

Improvements since 3.0

Since version 3.0 we have implemented proper sequent syrgan@As and that sort of thing), plus
autoAdditivevariables for those who want to be able to state rules and theorems natural-deduction style.
There is an option to allow interpretation of predicate notation, and we now automatically insert essential
but invisible provisos into the statement of some rules and theorems. We've included a drag-and-drop
gesture to support multiplicative rules and certain kinds of weakening rules.

Outstanding problems still awaiting a fix

Some of the examples in this manual reveal deficiences with the current Jape system. If we stopped
writing in order to improve the system each time we described one of its warts we would never finish.
But any experimental system will always, at its frontier, have features which you might wish it didn't.
What we list here are the things that we more or less understand how to fix. By putting the statement of
problems here, we avoid repetitive apologies in the body of the manual.

« Jape doesn’t check the proof store when you redefine a rule or theorem, and re-run all the
proofs that depend on it (though it does now guard against circularities in proofs).

-iv -

Roll your own Jape logic (3.2) Page v Introduction

« Jape can't yet handle sequents in which a side is an optional single formula.

« Jape has no treatment of definitional equality (syntactic equivalence), so you have to handle it
with additional rules.

* You can't prove derived rules with antecedents, despite the fact that a theorem is just a kind
of derived rule in Jape.

Serious problems which won't be fixed soon
There are things about Jape which are wrong, but which we can't fix in a reasonable time.

« Jape cannot yet distinguish between classes of formulae in problem sequents, except for
variables, constants, numbers and strings.

« Jape has a long-standing problem in that it can’t encode ‘families of rules’. We have used
some ingenuity to allow you to encode such families by finite collections of slightly different
rules, but the problem is very unlikely to be fixed without a large research project.

« Jape’s parser generator ought to make it possible to distinguish between lots of user-defined
syntactic categories. It isn't clear how a parser generator can be both simple enough and
powerful enough. We intend to find out, but once again it would have to be part of a large
research project.

Future developments

The field of logical systems is huge and growing. Jape doesn’t cover it all, and no doubt people can
invent logics faster than we can devise ways of encoding them. Nevertheless, we understand how to make
Jape do much more than it can at present, and we are developing it constantly. At the time of writing,
projects on the immediate horizon include modal logic, linear logic and improved support for equational
reasoning as well as work to improve the graphical interface still further.

We are keen to hear from our users about the things that they want Jape to do, so that we can continue to
develop it in practically useful directions.

Chapter 1

Basic Principles

Jape works by applying inference rules to sequents in proof trees. Its fundamental mechanism is
unification, laced with a pragmatic treatment of explicit substitution forms. Put like that, it may seem
rather complicated, but it's really very simple. We decided on unification rather than one-way pattern-
matching because it allows us to use Jape as a Prolog-style calculator, solving problems such as

AXAYXY:_T
which would be completely intractable, or pointless, in a one-way-matching engine.
Tactics in Jape organise the application of other tactics. The simplest tactic is an inference rule.

On top of its basic proof mechanism Jape provides you with the opportunity to organise the graphical
user interface by programming its response to the basic gestures of pointing and clicking, and by defining
what is included in the menus and panels shown to the user.

1.1 Flexible syntax

Jape has a built-in collection of syntactic forms, which you can customise and to which you can add the
particular details which are appropriate to your particular logic. It recognises numbers, strings, identifiers,
unknowns, bracketed formulae, tuples, substitutions, juxtapositions, and formulae made by using user-
defined prefix, postfix and infix operators, with user-defined priorities and associativity. In addition you
can invent various new kinds of brackets and punctuation.

Identifiers — names liké, x or F in conjectures, theorems and rules — rarely stand for themselves. For the
most part they stand for some arbitrary formula, variable or predicate which can appear in an instance of
the conjecture, theorem or rule in which they are used. When you define the syntax of identifiers in your
logic you say which are schematic identifiers and which are constants. At the same time you can define
the syntactic category of the identifiers you use.

The flexible syntax mechanism is illustrated in every chapter, and detailed in appendix A.

1.2 Backward proof

Jape always, always, always works backwards, even when its display mechanism tries to produce the
illusion that it is working forwards. It always works with trees — Gentzen trees — of sequents, even when
its display mechanism is trying to produce the illusion that it is working with Fitch boxes, or something
elsé. If you haven't seen a Gentzen tree, you can learn how Jape handles them if you use one of the
distributed logics that uses tree display mode, or you can switch to tree display mode in one of the
distributed logics that allows it — for example the single-conclusion sequent calculus encoding.

1 currently we have a box display which approximates Fitch boxes. We have the beginnings of a more attractive treatment of
equational chaining proofs (see, for example, chapter 5) and we dream of a kind of Fitchery for linear logic, and more.

-1-

Roll your own Jape logic (3.2) Page 2 Chapter 1: Basic Principles

1.3 Inference rule matching: instantiation and unification
Consider this example rule of the single-conclusion sequent calculus:

rAC TI,BFC
rAOBFC

Its rendition in Japeish (see the file SCS_rules.j) is a straightforward linearisation of theloriginal
RULE "vF"FROMT,A+CANDT,B+CINFERT,AvB+C

Our interpretation of the rule is that it describes a node in a proof tree by pattern: the consequent at that
node has a collection of formulze on its left-hand side, one of which mai¢ii@dor some pair of
formulaeA andB and the rest of which are takenfasnd a single right-hand side formula which matches

C. The node has two antecedents, each of which contains a sequent with the same right-hand side formula
C. The left-hand antecedent will have a sequent whose left-hand Sidegsther with the formul4; the
right-hand antecedent’s left-hand side which tegether withB.

Jape makes proofs by replacing tips of the tree with nodes generated from instances of rules, or
sometimes with subtrees generated by instances of several rules. Given a rule and a tip (leaf node) in a
Gentzen tree, Jape finsistantiatesthe rule, generating a version in which the schematic names — in the
rule above they arg, A, B andC — are replaced by fresh unknowns; thamifiesthe consequent of the
newly-instantiated rule with the sequent at the tip. Typically a rule might unify in more than one way —
there might be more than one left-hand side formula, for example, which could uni#Mth and in

that case Jape requires the user to decide between the possibilities, either by selecting a preferred
principal formul& beforehand, or by choosing from a menu of possibilities afterwards.

In the rule above there are various symbols of the logic as well as the schematic idEn#fi@sndC:

there is the connectivié and there are the punctuation markand comma. Althoughlis in a sense an
identifier, it plays a fixed syntactic role in the logic and in the rule; it would be wrong to instantiate it
with an unknown. Some other identifiers might be non-schematic: there might be constant idengfiers
and false for example. As logic describer you have control over the matter, which you exercise by
organising identifiers into syntactic categories. This not only allows you to distinguish between constant
and other identifiers, but it also allows you to distinguish, for example, between namAswikieh

might be taken to stand for some arbitrary formula, and names \kéch you might wish to stand only

for variables.

Parameters of rules

In simple cases the fact that Jape uses unification rather than one-way pattern matching doesn’t have a
visible effect on the course of a proof. But if a rule doesn’t have the subformula property — if there are
names in its antecedents that don’t appear in its consequent, as for example in
rAFBO-B
rk-A

— then unknowns, generated during the instantiation step, may appear in tRe proof

In these and other circumstances it can be useful to allow the user to provide an argument formula which
modifies the instantiation step. You do that by writing the rule definition with a parameter. The rule
above is written in Japeish as

RULE "--"(B) ISFROMT ,A+B-BINFERT + -A

1 Earlier versions of Jape required that the segment variable syniteobmitted. Now it may optionally be omitted if every
rule is ‘additive’ in the linear logic sense: for examples see chapter 4.

2 A principal formula(sometimesrincipal term in a rule in a sequent calculus is the one which the rule consumes, or
works on. That's the formula which match&sB in this example.

3 This is astrengthof Jape, not a weakness: we don't require the user to decide prematurely on the identity of those
unknowns.

Roll your own Jape logic (3.2) Page 3 Chapter 1: Basic Principles

Given a problem sequerX,Y - = XF=Y, Jape unifies [with XY - =X and A with Y; then it
generates the antecedexity —» =X, Yr_BO~- _B. If it is given the argument formuld to use instead

of _B, it will generate the antecedeKtY - - X,YF X O=-X. In many cases an argument supplied to the
application of a rule can prevent a startling proliferation of unknowns in a proof.

The parameter of a rule may in some circumstances be decorated with thesaeed: That indicates

that in the absence of a user-supplied argument, the instantiation step is to generate a freshly-minted
identifier in its place rather than a fresh unknown. Frequently this is because the rule expresses a
generalisation step in the logic and it is natural for Jape to mint a fresh name. For example, the rule

Mx.A T,Alx\c]FC
C

(FRESH c, ¢ NOTIN [x.A) O-E

is written as

RULE "3-E"(OBJECT c) WHERE FRESH c AND ¢ NOTIN 3x.A IS
FROMT +3x.AANDT ,A[x\c]+ CINFERT+C

OBJECT parameters are used in other circumstances — in particular, see the discussion of substitution
unification below.

1.4 Explicit provisos

Jape’s provisos at present aroTIN andUNIFIESWITH, plus three macro-relatives BDTIN: FRESH
HYPFRESHandCONCFRESH

Provisos are either satisfied or violated, and they constrain the application of rules. If an attempted
application would violate a proviso, whether one contained in the rule itself or one left over from an
earlier stage of the proof, then the attempt fails. If it is impossible to determine the status of a proviso,
because it contains unknowns and/or substitution forms, then it is stored, displayed as part of the proof,
and carried forward in the expectation that its status will become clearer.

The provisox NOTIN E is satisfied ifx doesn’t appear free B! and violated if it doesNOTIN provisos

are either included in the statement of a rule or generated FRESH HYPFRESHOr CONCFRESH
provisos:FRESHX generates a provisSoNOTIN E for every left- and right-hand side formutaof the
sequent matching the ruleyPFRESHX generatesiOTIN provisos only for the left-hand side formulee and
CONCFRESHfor the right-hand side formulae.

The provisoE1 UNIFIESWITH E2 is internally generated. It allows Jape to defer difficult unifications
where it can't find a most-general unifier. This can arise because of difficulties in unifying substitution
forms, or when using multiplicative (context-splitting) rules.

1.5 Conjectures and theorems

We allow the user to state a conjecture usingTH®OREM directive?. A proved conjecture becomes a
theorem and can then be applied as a kind of derived rule; if the state vapiplyleonjecturess set to
true then unproved conjectures can be applied as if they were proved.

The THEOREM directive gives the name of a conjecture and its sequent, and it may also include provisos
which will be enforced both during the proof of the conjecture and whenever the theorem is applied. It is

possible to define a theorem without giving a name, in which case the sequent itself is used as the name.

The THEOREMS directive allows you to state a collection of conjectures, and will give each its own
sequent as a name. For example, the SCS.jt file defines a conjectureaattadiction

THEOREM contradictionISA, -A+B

1 strictly if it cannotappear free, no matter what future unifications may happen and no matter how the schematic identifiers
of the conjecture being proved are instantiated. The praWs®TIN y is not automatically nor trivially satisfied.

2 Conjecture, theorem, which do we mean? There is no split personality here, but there are two Jape authors. One wants to
emphasise that it's a conjecture till it's proved; the other wants to emphasise that it is theorems, after all, thayyau are tr
to prove.

Roll your own Jape logic (3.2) Page 4 Chapter 1: Basic Principles

and the sequent_problems j file includes a large collection of conjectures named by their sequent, some of
which are as follows:

THEOREMS PropositionalProblems ARE
P~(QoR)F (P2Q)>(P-R)
AND P-(Q-R),QFP-R

AND WHERE xNOTINPINFERP v -P, Vx.P-Q, Vx. -P>QF Vx.Q
AND R+ =R, Vx.R>S, Vx. -R>S+Vx.S

AND dy.P+Vy.P
END

The conjectures in this illustration are callee~{Q-R) + (P-»Q)-=(P-R)", “P=(Q~R), Q F P=R",
“Pv-P, ¥x.P->Q, VYx.-P>Q + ¥Yx.Q" (the provisos aren't part of the name),
“Rv R, ¥X.R-S, Vx.-R>S F ¥x.S"and “ 3y.P F Vy.P".

Proving a conjecture — substitutions and provisos

A proof of a conjecture begins with a tree which consists of the base sequent of the conjecture, together
with any provisos which were included in the statement of the conjéciitire proof is then developed
by application of rules and tactics.

One important feature of the proof is Jape’s treatment of the identifiers and unknowns that appear in the
base sequent of the conjecture, and its treatment of other identifiers that may be introduced during the
proof process. Jape’s theorems are theorem schemata, not particular theorem formulee; they may therefore
be instantiated in the same way as a rule, replacing identifiers in the theorem sequent by unknowns or
arbitrary formulee. Identifiers in the conjecture’s sequent can't, therefore, be treated as standing for
themselves during the proof.

In practice this means that substitution forms involving those identifiers may not be simplifiable: if, for
example, identifieré\ andx appears in the conjectured sequent tABx\E] can't be replaced b& unless

it is certain that there will never be an instance of the theorem in which the formula which instantiates
has a free occurrence of the variable which instantiatBst if x is a name introduced during the proof —
for example, by application of a rule which hasaBIECT parameter — and if there are no unknowns in
the base sequent of the proof, so thagnnot be smuggled into the statement of the theorem we are
proving, then we reason that whatever argument formula instanfiates could choose within the

proof to be distinct from all the names Ay and thereforeAlx\E] can be replaced bg. In other
circumstances the assurance thaan’t occur free irA can come from &OTIN proviso, or from meta-
theoretical reasoning about the relationships of names in the conjectured sequent.

Provisos that are introduced during proof of a conjecture, by application of rules or other theorems or
conjectures, and which aren’t evidently satisfied or violated are retained as part of the theorem and
checked whenever the theorem is applied.

The effect of our care with substitutions and provisos is that the proof tree which establishes the validity
of a conjecture stands for all the proof trees of all the instances of that conjecture, and Jape is justified in
using such a conjecture as a derived rule.

Applying a theorem: the réle of structural rules

A theorem is, in principle, a rule with no antecedents. So Jape can instantiate it as a rule and match it to a
problem sequent just as a rule is matched. There are, however, a couple of interesting points.

The first is that in many cases a theorem won't have enough left-hand or right-hand side formulee to
completely match a problem sequent. The theores(G-R) + (P-Q)-(P-R)", for example, matches

1 Jape sometimes adds invisible provisos which it deduces from the binding structure of the formulae in the conjecture. Those
provisos can be made visible: see ‘invisible provisos’ below, and also appendix C.

Roll your own Jape logic (3.2) Page 5 Chapter 1: Basic Principles

only sequents with exactly one formula on the left of the turnstile and one on the right. Often a logic will
include so-called ‘weakening’ rules which enable you to delete a formula from the left- or the right-hand
side or both. If you include such rules and declare their réle to Jape, it will allow you to apply a theorem
even though it does not completely match a problem sequent.

The second difficulty is that sometimes a theorem matches on the right-hand side, but not on the left. In
such a case it is often convenient to prove it ‘by resolution’: that is, to generate an antecedent for each of
the left-hand side formulee and to set about proving them. That step is justified if the logic contains a ‘cut’
rule which enables you to move formulae from left- to right-hand side. Jape will make a resolution step
for you if you declare the appropriate structural rules in your logic, declare their r6les, and also set the
tryresolutionvariable (see appendix C) or use one ofARELYORRESOLVEOr RESOLVEtacticals (see
appendix B).

1.6 Substitution forms and unification

Jape uses explicit substitution formsAfx\c], B[x,y,z\ E,F,G] — where some logics use predicate
notation —P(c), Q(E,F,G). Substitutions are more powerful than predicates because they are more
general; for the same reason they are trickier to handle. Jape’s internal mechanisms are based on
substitution forms, but there is now a mechanism which allows you to write rules and theorems in terms
of predicate formulae. Jape will translate into substitution notation, and construct automatically the
additional parameters and fusegTIN provisos that it needs — see ‘interpreting predicates’ below.

Explicit substitution forms are semantically scandalous, a notorious trap for novices, and an expert will
ask “what does a substitution form in a rule or theamegar?”. It's difficult to give a simple answer. It is

never necessary to include special rules to treat substitution forms — their treatment is a fundamental
mechanism of Jape, and Jape tries to eliminate substitution forms from the proof whereever and whenever
they appear. Therefore we can say that Jape treats a substitution form as equivalent to the result of
carrying out the subsitution. But in some situations it can be persuaded to treat a substitution form as a
structural pattern and will unify one unreduced substitution form with another, even though such
unifications don’t give the most general answer.

A substitution form is introduced into a proof, and if possible immediately eliminated, whenever the
antecedent of a rule contains one. Consider, for example, the problem segugifz.z > y. If we apply
the rule
FEAX\ELA |
MFx.AA

O

then we generate a single antecededt yr(z>y)[z_E], which immediately simplifies to
x>yt E>y provided that we know thatandy are necessarily distirict

Much more interesting is what happens when a rule contains an explicit substitution form such as
Al x\ E] in its consequentWhen the rule is applied Jape must unify that substitution form — or rather, its
instantiated form which in general will beA]_x\ _E] — with some formul8 in the problem sequent.

That sort of unification is notoriously difficult, and Jape uses a number of ad-hoc strategies to help.

i It simplifies substitution forms whenever possible, in order to avoid the problem.

i It defers the unification of an irreducible substitution form for as long as possible, so that the
results of other unifications can be used to simplify it.

ii If the user provides an argument form@an place of parametét, the instantiated form will
be _A_x\F]; when Jape can no longer avoid unifying that form Bith will search for all
instances oF insideB and try to construct a substitution fol#{_x\ F] which simplifies to
B in presence of the provisax NOTIN B; if successful it will unify A with B’ in a context

1 They might not be if, for example, they both appear in the base sequent of the conjecture being proved. They may be if, for
example, one or the other has been generated during the development of the proof, or if there is an explicit proviso which
makes it clear that they are distinct.

Roll your own Jape logic (3.2) Page 6 Chapter 1: Basic Principles

that records the proviso. The process is far more effective if the paranmetcorated with
the wordOBJECT, so that the instantiated form becomé§z\ F] wherezis a fresh variable;
the formula B'[z\ F] is easier to construct and to simplify, and the proziso@TIN B is
easier to chedk

iv If the user text-selects instances of a sub-fornfrutd B, then the logic encoding can employ
the WITHSUBSTSELtactical — see chapter 5 and appendix B — to calc&#aby replacing just
those instances &f by a fresh unknowny; B'[_y\ F] necessarily simplifies tB given the
proviso _y NOTIN B; then Jape will unify A with B', _x with _y and _E with F in a context
which records the proviso. If the parametés decorated with the wor@BJECTthen X is
replaced by and the proviso becomeslOTIN B, which is once again easier to check.

v If all else fails, Jape can generate a provis§ x_E] UNIFIESWITH B, and await
developments.

If Jape has to unify two substitution forms which have identical variable lists then it unifies the base
formulae and the substituted formulae. For example, it can Wjiyy\ A1, A2] with B[x,y\ B1,B2] by
unifying A with B, A1 with B1, A2 with B2. This happens rarely and sometimes it might not be the best
thing to do, but pragmatically it seems to work rather well almost every time it is used.

If Jape has to unify substitution forms with different variable lists then it extends one or the other: for
example, if it has to unifyA[x\ A1} with B[x,y\ B1,B2] it will try to construct A’ such thatA'[y\ B2]
simplifies toA, and then unifyA[x,y\ Al B2] with B[x,y\ B1,B2]. In certain circumstances it will even

do a bit ofa-conversion — but enough! this explanation is sufficiently complicated already.

The message is that Jape’s unification of substitution forms is usefully pragmatic. It does not always
generate a most-general unifier but it can, in practice, often generate just the unifier that the user is
looking for, especially when the encoding uses #®SUBSTSELWITHSUBSTSELmMechanism (see chapter

5 and appendix B) to allow the user to describe the unification to Jape. It most often breaks down when it
has to deal with substitutions using variables which also appear in the base sequent of the theorem being
proved. That breakdown is, we think, inevitable, though we continue to search for ways round the
difficulty.

Invisible provisos

Consider the conjecturedx.Ay.x:T1 » T2 » T1 and Ox.y.P(x) = P(y). Clearly, in each case, any
instance of the conjecture would have to use two distinct variables. Nothing else would give the right
binding structure: AzAzz:int - real - int isn't an instance of the first conjecture, nor
0z[12.Q(2) =Q(2) of the secondl But Jape’'s mechanisms of rule and theorem instantiation don’t
automatically ensure this: instead, there has to be a proviso sxcioasi y in each case. Such provisos

are fussy, have to do with the internal mechanisms of Jape, and are difficult to explain to Jape’s users.
Therefore Jape generates them automatically, from an analysis of the binding structure of every rule and
conjecture, and then makes them invisible. You can see the invisible provisos in a proof by setting the
showallprovisowariable tatrue.

Interpreting predicate notation

Some of our users prefer predicate notation to substitution, and in certain ways it concisely conveys more
information. In the formuladx.P(x) it is implicit that the predicate formul® doesn’t contain any
instances of; in the corresponding formuIEX.P[v\x] no such inference can be drawn, and the
statement of a theorem which contained such a formula would require a pxoudsoN P to say as

much as the predicate version. Fussy provisos get substitution notation a bad name, so we have

1 |n fact, becauseis a fresh variable, the proviso is usually obviously satisfied. But a proviso is necesssary to constrain the
future course of the proof if there are unknown8irin those and in some other circumstances Jape may also produce
UNIFIESWITH provisos to cater with the process of abstraction in the nasty ffts of

2 strictly speaking, this secomdightbe an instance of the the conjecture, if there are no instanzés@f These are deep
waters ...

Roll your own Jape logic (3.2) Page 7 Chapter 1: Basic Principles

implemented a mechanism which interprets predicate notation, translating it into substitution notation.
When you apply a rule which contairisx.P(x), for example, Jape translates it inﬂ)(.P[v\x],
automatically inserting the necessary proviso. When you begin a proof which contaR(s), Jape
doesn't translate it, but it does insert the same proviso, making it invisible.

If you set the variableterpretpredicateso true, Jape treats every juxtaposition as if it were a predicate
application. Ifinterpretpredicatess false (the default), Jape only interprets those juxtapositions in which
the first formula is amBSTRACTION parameter name. See chapters 4 and 5 for examples.

In one respect Jape’s interpretation of predicate notation is pragmatically helpful rather than careful.
Consider, for example, the sequenk.0y.P(x,y)FOy.[x.P(x,y). Jape translates this to
Ox.0y.P[u,v\x, y|F Oy.0x.P[u,v\x, y], and automatically includes provisesiOTIN P andy NOTIN P, as it
should. Jape also includ&sNOTIN y, which isn’t essential in order to preserve the binding structure,
because it is not required that eitixeor y must appear free in a predica®x,y). The effect is that
certain instances of the theorem are excluded. In practice it seems that our users prefer it this way.

1.7 Binding forms: unification, a-conversion and substitution

Suppose thabvar. formula has been defined to be a binding form: then Jape will proceed as follows:
o it will unify Ox.A with Ox.B by unifying A with B;
e itwill unify Ox.A with O_y.B by unifyingx with _y andA with B;

e it will unify Ox.A with Oy.B by unifying Oz Ax\ z] with OzB[y\Zz], wherez is a fresh
variable, together with the provisesiOTIN A andz NOTIN B.

Jape respects binding forms when carrying out substitutions. Thus, for exanipley.iformula has
been defined to be a binding form ardandy are guaranteed distinct thgilx.A)[x\ E] always
simplifies to Ox.A and, provided thak doesn’t appear free iR, (Ox.A)[y\F] will simplify to

Ox.(Aly\ F]); in other circumstances it will simplify to by-conversion toOz(A x,y\ z, F]) together
with the provis@ NOTIN A, wherezis a fresh variable.

1.8 The tactic language

Although Jape’s basic operation is the application of rules to tips of a proof tree, that is by no means the
whole story. You will often find it necessary to organise the application of rules by writing programs in
the tactic language.

The simplest tactics are inference rules. You can apply tactics sequesta)lydr try one after another

(ALT, WHEN), you can call tactics with arguments, you can repeat tact@g there is a notion of the
‘current goal’ sequent in the tree which is used when tactics are applied in sequence. It is possible, under
very severe constraints, to transform formulee within the goal sedquebt ELATTEN, WITHSUBSTSEL.

Most of the language has to do with the interpretation of gestures and selection of an appropriate
response.

Appendix B gives a complete list of all the verbs of the tactic language. The chapters of this manual give
examples of their use.

Roll your own Jape logic (3.2) Page 8 Chapter 1: Basic Principles

1.9 Gestures, menus and panels

The user can make certain ‘gestures’ at the Jape graphical interface. The way in which the gestures are
made — which buttons and keys are pressed and how the mouse is moved — varies between the interfaces,
and is not discussed here.

« A user camselecta formula in a sequent. If a rule is then applied, Jape requires that the
selected formula is a principal formula in the rule. Thus, for example, if you select the
hypothesisX Y in the sequentt OV, XOY,U - XFU OX and then apply the rule

AC TI,BFC
M AOBEC

you ensure thalA[OB in the rule matcheX JY in the sequenf; matchesU OV,U - X
and, of courseC matchesU O X. If a tactic is applied it can test for formula selection,
discover the formula selected, and modify its behaviour accordingly

« A user can double-click (‘hit’) on a formula, causing the application of a tactic chosen by the
logic description.

« A user can double-click on the ‘reason’ or ‘justification’ of a proof step. If there is hidden
detail behind that step then it will be revealed, or if it has been revealed by an earlier double-
click, it will be hidden again.

« Auser can drag a formula. If there iSRIFIESWITH proviso, generated as a result of context-
splitting in a multiplicative rule, some of the other formulee mentioned in that proviso —
unknown segment variables lik€ or _A1 — will highlight as the formula is dragged across
them.

* A user cartext-selecpart — typically, a sub-formula — of a formula in a sequent. If a rule is
applied, the text selection is provided as an argument to the application. If a tactic is applied,
it can test for text selection, discover the text selected, and modify its behaviour accordingly.

« A user can select an entry in a menu, and Jape will carry out the corresponding command.
Most entries correspond to the commamgbly Tfor some tacticl, but a menu can contain
any of the commands listed in appendix C. A good deal of your user-interface design activity
will go into deciding what goes in which menus, fixing on labels for each entry and choosing
just the right commands.

« A user can press a button in a panel, with or without first choosing an entry from the list of
entries in the same panel. Many panels list conjectures, and their buttons allow users to prove
the chosen conjecture, apply it as a theorem and so on. Other panels may be like menus. The
designer controls what is in the entries and what is on the buttons, and whether or not a
particular button sends just a command, or a command modified by the selected entry.

¢ A user can scroll the proof horizontally and/or vertically.

And that's it. Jape uses a very impoverished vocabulary of gesture: we have chosen to make it so, in an
attempt to make Jape as straightforward to use as any other application in a modern GUI environments.

1.10 Proof display: trees, boxes and hiding

The Gentzen tree is the basic proof structure on which Jape works. Behind the scenes, whatever is on the
screen, is a Gentzen tree. Tactics can be used to hide selected antecedents of a proof step and alter the
‘reason’ or ‘justification’ displayed with the step; the hidden detail can be revealed to a user who double-
clicks appropriate parts of the proof.

Gentzen trees are notoriously wasteful of space, and Fitch boxes famously less so. Jape can display a
proof in an approximation to Fitch box style. The display is a transcription — not a translation — of the
tree, and it can be applied to any kind of logic, not simply natural deduction:

Roll your own Jape logic (3.2) Page 9 Chapter 1: Basic Principles

« the assumptions — left-hand side formulee — of the base sequent are written on the first line
and the conclusion(s) — right-hand side formula(e) — on the last line;

« if a line is the conclusion of a proof step then the lines representing the trees of its
antecedents are written out before it, working left to right through the antecedents;

« the justification of a line which is the conclusion of a proof step references the assumption
line(s) to describe any left-hand side principal formulae, as well as the lines which contain the
conclusions of its antecedents;

« ifaline is the conclusion of a tip then a line of dots is written before it;

« if an antecedent introduces any hypotheses then its lines are written in a box, whose first line
is those hypotheses and whose last line is the right-hand side formula(e) of the antecedent.

That makes a fairly compact description, in which hypotheses are written only once but conclusions may
be written more often, especially when a left-hand side rule is used. It is made still more compact by
hiding applications ofDENTITY (axiom, hypothes)srules, and it is made to support some forms of
forward reasoning (see chapter 4) by hiding, under the right circumstances, applications ofle.

If you select a conclusion formula in a box display, the effect is just as if you had selected the
corresponding conclusion formula in the underlying Gentzen tree. If you select a hypothesis formula the
effect can’'t be so simple, because a hypothesis formula is written only once even though it may occur in
many sequents: Jape finds the set of sequents that you could be pointing to and disambiguates the choice
using any conclusion selection that you might have made.

It doesn’t make sense to use box display with a multiple-conclusion calculus for various reasons, and
Jape’s gesturing mechanisms therefore haven't been adapted to this use.

Our box display isn’t a proper Fitch box display because you can't necessarily use the proof which ends
on linej when making a proof step on a subsequentdjreven though the box structure would allow it.

The reason is that lifemay be part of the proof of some cousirkofot part of the proof df — that is,

parts of the proof which are sequentially related in the box display aren’t necessarily hierarchically
related in the underlying Gentzen tree. We are working on the problem. For the moment we provide some
assistance by making the underlying tree structure more evident when the user selects an assumption or a
conclusion: Jape will ‘grey out’ lines in the box display which are irrelevant because they are not
hierarchically related in the underlying tree.

1.11 Using Jape interactively

Jape normally starts up ‘empty’, with no theory loaded, although it is possible to save a version of Jape
into which a theory has been loaded (using the saveengine command of appendix C: for details of its use
see the technical documentation about your version of Jape).

You can load a new theory into Jape by using a command from the File menu (Load New Theory, or
something like that). At any time you can add additional bits of Japeish to the brew, by using another of
the commands on the File menu (Open Logic file, or something like that). Jape works, like LISP or ML,
by maintaining a store of definitions, and it is always possible to add to those definitions. The effects may
be strange, especially if you try to add a new theory without getting rid of the old one first!

Chapter 2

Encoding the Sequent Calculus

Jape is, at bottom, a backwards-reasoning proof editor working on a tree of sequents. It is therefore no
surprise that it is exceptionally straightforward to encode the sequent calculus in Jape. We describe in this
chapter the encoding of the multiple-conclusion sequent calculus (distributed with Jape in the file MCS.jt
and the files it references).

In the distributed files we have described the syntactic role of tmmnective and included inference
rules and conjectures which make use of it, inherited from MacLogic. We haven't included that
connective in this discussion.

2.1 The inference rules of the (multiple-conclusion) Sequent Calculus

We have encoded a fairly standard version of the sequent calculus. By making our left- and right-hand
sidesbags(aka multisets) of formulee we have avoided the need for exchange rules; by allowing the
axiom rule to ignore unnecessary hypotheses and conclusions we have avoided the need to use weakening
rules in almost every case and/or to describe context-splitting rules. See chapter 3 for an alternative
treatment of quantifiers and variables and for Jape’s treatment of context-splitting (multiplicative) rules.

axiom

———— axiom
rAFAA

Introduction to the right of the turnstile.(. rules)

r’FAA THEBA I,AFB,A A BA L [AFA

rFAOBA MFA - BA rFAOBA MrE=AA
'_

_TrAm).A (FRESH m) FJ _TFAB)A O

I FOXA(X),A I FIX.A(X),A

Introduction to the left of the turnstile ¢.rules)

r,ABFA r'eAA T,BrFA I AFA T,BFA rEAA

I AOBFA NA- BFA I AOBFA I-AFA
rAB)FA _AmEA (FRESH m) TF

M Ox.A(X)FA r,OKAX)FA

-10 -

Roll your own Jape logic (3.2) Page 11 Chapter 2: Encoding the Sequent Calculus

Structural rules

F + F F
M cut l weakent rkA Fweaken
A I, AFA M'FAA
DARS ontractr— TEAAL | contract
I AFA MFAA

Thet, =+, v+ andcutrules don't split their left- or right-hand side contexts — they are additive rather
than multiplicative. Context-splitting rules are harder to use in a backwards reasoning tool, because either
the tool must force the user to decide how to split the context before the rule is applied or else it must
provide machinery to allow the decision to be deferred (see chapter 3, however, for a discussion of Jape’s
treatment of context-splitting rules). In practice, the fact thatatkiem rule ignores unnecessary
hypothesis and conclusion formulae makes context-splitting on either side unnecessary.

Because Jape interprets predicate notation as shorthand for substitutctutdguantifier rules use
substitution. These are the rules which Jape employs, translating those above on input:

I_
erX\m'A(FRESHm)I'D r-Ax\B|,A FO
NOx.AA NFIX.AA
rAX\BJrA r.AXimlrA (FRESH m) [F
I, Ox.AFA I, X.AFA

The difference need hardly detain us: there are no additional provisos, and no substitution-matching is
required. In this logic at least, it's easy to believe that Jape manipulates predicate notation directly.

2.2 Preliminaries — fonts and syntax

Our presentation uses the Konstanz font encoding, due to Roy Dyckhoff. We use names starting with A,
B, C, D, P, Q, R and S in rules and conjectures to stand for any formula; we use names starting with u, v,
W, X, ¥, z. m or n to stand for any variable. Names starting Witim A stand for bags (multisets) of
formulag.

FONTS "Konstanz"

CLASSBAGT A

CLASSFORMULAABCDPQRS

CLASSVARIABLEuvwxyzmn
These directives also cover unknowns: an unknown which stamsll unify with any formula, but one
which starts z will only unify with a variable, a name which stands for a variable, or a similar unknown.

The syntax of sequent calculus formulze is defined as follows:

LEFTFIX 20 V.
LEFTFIX 20 3.
INFIX 100L =

INFIX 110R =
INFIX 150L

INFIX 160L

PREFIX 200 -

JUXTFIX 300
SUBSTFIX 400

1 Note that now there are no commas in these lists of identifier prefixes: in general we have eliminated use of comma as a
separator in the paragraph language.

Roll your own Jape logic (3.2) Page 12 Chapter 2: Encoding the Sequent Calculus

Working from the bottom, this defines substitution forms as the most binding, then juxtaposition. Next
comes - defined as a prefix operator, then the binary connectives (all &g defined to be left-
associative, while> is right-associative). Finally two special bracketed forms are defined, with the lowest
syntactic priority. These definitions allow us to write:

« = prim, whereprim is an atomic formula, a substitution or a juxtaposition (see appendix A);

« f10f2,f10f2 orfl - f2 with the interpretation thdfi‘operators’ have priority ovelrl, and
both have priority over;

o [Ofl.f2andOf1.f2.

Note that the leftfix patterns don’t constrain you to wfiteariable . formula it is only by defining
binding structures and by using variable identifiers in the right way in rule definitions that you can be
sure to constrain the use of these structures.

Because there is no closing bracket, formulae constructed BAttFIX bracketing are liable to have a
visually ambiguous interpretation, so Jape demandsLeritFIX-brackets aren’t used like ordinary
brackets: that is, you can't write things likBOOx.f20f3: you have to write instead either
f10(0Ox.f2013) or f10(0Ox.f2) O f3.

The binding structures are given by pattern:

BIND x SCOPEPIN 3x.P
BIND x SCOPEPIN Vx.P

Any formula which matches one of these patterns is recognised as a binding formula — any variable in
place ofx, any formula, including another binding formula, in plac® dilear matches aren't allowed, so
the constraint to writél variable. formulais enforced.

Note that this defines only single-variable bindings. Jape has no means at present of defining families of
binding structures, except by exhaustively listing them — for example, you mighgigivedirectives

which describe the structure @k,y.E, [x,y,zE and so on as we do in later chapters. But then you would
find that Jape has no means of defining families of inference rules which work across the different kinds
of bindings you can define, and you would have to separately define the rules —@ré&f@mother for

Ox,y.E, another fofx,y,zE and so on.

Our sequents have bags of formulae on either side:
SEQUENTISBAGFBAG

2.3 Encoding the inference rules

Jape is designed to make the encoding of inference rules as transparent and straightforward as possible. In
principle all you have to do is to linearise the normal description of a rule, giving its name, its provisos,

its antecedents and its consequent. Writing { ... } for optional inclusion and { ... }* for repeated optional
inclusion, the syntax of RULE directive is

RULE { name} — rule name
{ (parameter{ , parameteg*) } — parameters
{ WHERE proviso{ AND provisg* } — provisos
{1s}
{ FROM sequen{AND sequerjt } — antecedents
INFER sequent —consequent

Nearly everything is optional, but you have to put in enough reserved words to make it clear where each
section begins and ends. If you leave the name out, the name is taken to be the consequent itself. Where
the name of a rule isn’t an identifier — if itisfor example — it is necessary to enclose it in quotation
marks. Theparametersare each an identifier or the wapgJECTfollowed by an identifier. Parameters in

a rule definition control the process of instantiation and the treatment of argument formulee provided via
text-selection and/or tactics.

Roll your own Jape logic (3.2) Page 13 Chapter 2: Encoding the Sequent Calculus

Because we want to write our rules, and prove our conjectures, using predicate notation, we set a global
parametéelr

Roll your own Jape logic (3.2) Page 14 Chapter 2: Encoding the Sequent Calculus

INITIALISE interpretpredicates true

With that setting, the rules can be defined directly:

RULE axiom(A) INFERT,AFA,A

RULE """ FROMT +A,AANDT FB,A INFERT + AB,A
RULE """ FROMT,A,B+A INFERT,ABFA
RULE "ku" FROMT +A,B,A INFERT + AvB,A
RULE """ FROMT,AFAANDT ,BFA INFERT,AvBFA
RULE "F-" FROMT ,AFA INFERT F -A,A
RULE "-#" FROMT FA,A INFERT,-AFA
RULE "k-" FROMT,AFB,A INFERT + A-B,A
RULE "-H" FROMT +A,AANDT BFA INFERT,A=BFA
RULE "r=" FROMT F A>B,AANDT FB->A,A INFERT F A=B,A
RULE "=t" FROMT, A=B, B>AFA INFERT,A=BF A

RULE "+V"(OBJECT m) WHEREFRESHmM
FROMT FA(m),A
RULE "V+"(B) FROMT,A(B)+A
RULE "r3"(B) FROMT FA(B),A
RULE "3+"(OBJECT m) WHERE FRESHm
FROM T, A(m)+A

INFERT F Vx.A(x),A
INFERT ,¥x.A(x) +FA
INFERT F 3x.A(x),A

INFERT, 3x.A(x) FA

RULE cut(A) FROMT +A,AANDT ,AFA INFERT F A

RULE "weakent"(A) FROMT +A INFERT,AFA
RULE "rweaken"(A) FROMT +A INFERT FA,A
RULE ‘"contractt"(A) FROMT,A,AFA INFERT, AFA
RULE ‘"rcontract”(A) FROMT FAAA INFERT FA,A

The structural rules are declared to Jape with their proper rdles:

CUT cut
LEFTWEAKEN "weakent"
RIGHTWEAKEN "Fweaken"

2.4 Automatic application of rules

It is possible to require Jape to try to apply a tactic at the end of each proof step — that is, after producing
the effects demanded by the user. You can make it apply the tactic in one of two wayg:akieTCH

directive requires that the tactic works without introducing or eliminating any unknowns from the proof
tree, and without introducing or eliminating any provisos;Ab€OUNIFY directive doesn’t have any of

those constraints. With either directive, a rule within the tactic is not applied if there is more than one
distinct possible result.

In the sequent calculus it is reasonable to appigmwhenever possible, but because it would always be
applicable whenever a conclusion or a hypothesis was a single unknown, it's prudent to restrict ourselves
to applications which succeed by identical match, and we therefore include

AUTOMATCH axiom

1 The syntactic form we use is that of an assignment to a variable. This particular variable can only be altered when the store
of rules and variables is empty, so in practice it behaves as a parameter..

2.5 Automatic selection of rules

When the user double-clicks on, or ‘hits’, a formula, the logic designer can provide that a tactic is
automatically applied. The choice of tactic is made by pattern-matching and depends on whether it is a
hypothesis or a conclusion that is hit. If there isn’t an applicable tactic, Jape puts up an error alert.

Description of a ‘hit’ and what to do about it is given by one of the directives

CONCHIT patternistactic
HYPHIT patternisS tactic

The pattern is matched — by one-way matching, not unification — to the formulae which have been
selected and hit. It can be as follows:

* hypothesis<entails>conclusion in which case the user must select (click) one of the two and
hit (double-click) the other;

¢ hypothesisentails> — only irHYPHIT — in which case the user must hit a hypothesis without
selecting a conclusion;

« conclusionor <entails>conclusion— only in CONCHIT — in which case the user must hit a
conclusion without selecting a hypothesis.

In the sequent calculus we can automatically invoke a tactic when any formula is hit. First, we can invoke
a right rule when any conclusion is hit, provided that the user hasn’t confused the issue by selecting a
hypothesis as well:

CONCHIT BC IS"H"

CONCHIT BvC IS"FV"
CONCHIT B-C IS"F-"
CONCHIT -B IS"kS"
CONCHIT vx.B IS"rV"
CONCHIT 3x.B IS"F3"

We can automatically invokaxiomif the user hits a hypothesis having selected an identical conclusion:
HYPHIT AFA ISaxiom
We can automatically invoke a left rule if the user hits a hypothesis without having selected a conclusion:

HYPHIT ~ A-BF IS"-H"
HYPHIT ~ AVBF IS"VH"
HYPHIT ABFH IS"E"

HYPHIT -At IS"-k"
HYPHIT ~ Vx.AF IS"VH"
HYPHIT 3Ix.AF IS"3+"

2.6 Menus

Jape automatically provides some system menus, whose content varies between graphical interfaces and
is therefore not described here. All other menus and panels are produced under the control of the encoder.
The Rules menu

To describe a menu you give its title and its contents. Each entry in the menu has a label — which the user
sees — and a Jape tactic — which is transmitted to the Jape engine when the entry is selected. A rule name
is the simplest form of Jape tactic, and in this logic that is all that we need:

MENURules IS
ENTRY axiom
SEPARATOR

Roll your own Jape logic (3.2) Page 15 Chapter 2: Encoding the Sequent Calculus

ENTRY "H"

ENTRY"VH"
ENTRY "-+"
ENTRY "-+"
ENTRY "V+"
ENTRY "3+"

SEPARATOR

ENTRY "H"

ENTRY "k "
ENTRY "F-"
ENTRY "F-"
ENTRY "rV"
ENTRY "F3"

SEPARATOR

ENTRY cut

ENTRY “weakent”
ENTRY “rweaken”
ENTRY “contract+”
ENTRY “Fcontract”

END

This produces a menu in which every label is the name of a rule, and every command a tactic of the same
name. Jape allows us to save effort by defining the rules within the menu description. If we had written

MENURules IS

RULE axiom INFERAFA

SEPARATOR

RULE"+" FROM+FAANDF+B INFER+AB
END

then it would have produced exactly the same menu.

2.7 Conjectures

The primary object of using Jape is to prove theorems. You can state conjectures in text commands
composed from the keyboard (after pressing the New... button on a conjectures panel), but it is more
normal to state them in a logic encoding file.

A conjecture can be stated inmrTEEOREM directive which gives its name, its parameter identifiers and
provisos if any, and the sequent which is the theorem itself. The effect is to put a conjecture with that
name into the ‘tactic store’, from which it can be retrieved in order to prove it, to apply it during a proof,
or to review its proof.

In the distributed version of the multiple-conclusion sequent calculus, two conjectures are stated in this
way:

THEOREM modusponens ISA,A-BFB

THEOREM contradiction ISA, -At
Note that because this logic includes both a left and a right weakening rule, the contradiction theorem can
be applied, once proved, to any sequent which has a formula and its negation in its hypotheses. It could
even be applied automatically i@ TOMATCH, though we haven’t done that in this encoding.
Interpretation of parameter identifiers and provisos TREBOREM directive is the same as for inference
rules.

Roll your own Jape logic (3.2) Page 16 Chapter 2: Encoding the Sequent Calculus

The THEOREMSdirective allows you to state a collection of conjectures, each of which will be named by
its sequent, in a very economical way. Part offthieOREMSdirective in MCS+SCS_problems.j is:

THEOREMS PropositionalProblems ARE

P=(Q-R) F(P>Q)~(P-R)
AND P-(Q-R),Q FP-R
AND R-S F(P-R) - (P-S)
AND P-(P-=Q) FP-Q
AND Vx.-Q(x), P=(Vx.Q(x)) F-P
AND WHERE x NOTIN P INFER

P+ =P, Vx.P-Q(x), ¥x. -P-Q(x) FVx.Q(x)
AND Rv-R, Vx.R-S(x), Vx.-R->S(x) FVX.S(x)

AND Vx.P(x)=Q(x), ¥x.Q(x)=R(x) FVx.P(x)=>R(x)
AND Vx.P(x)=R(x), Vx.Q(x)= -R(x) FVX.(P(x)=>-Q(x)) (Q(x)=-P(x))
AND S(m,n), Vx.P(x) = -=S(x,n) F=P(m)

The first section adds a number of propositional theorems to the tactic store, each under the name of its
sequent. The second section adds theorems which include quantified formulee, some of which need
individual provisos (we included two versions of some theorems, just to show how the necessary provisos
are generated during the proof if you don’t add them beforehand).

2.8 The Conjectures panel

Panels in Jape have lists of entries and buttonsSORJECTUREPANELautomatically includes buttons
labelled New..., Prove and Show Proof, and has a default Apply button if the user defines no buttons at
all. In the case of the sequent calculus we can use a straightfaressg CTUREPANELwIith a default

Apply button to hold all the problems which we want to display to the user. The distributed version goes
as follows. In MCS.jt we have:

CONJECTUREPANEL "Conjectures"

THEOREM modusponens ISA,A->B+B
THEOREM contradiction ISA,-A+B
END

and in sequent_problems.j we have

CONJECTUREPANEL "Conjectures"
THEOREMS PropositionalProblems ARE

P=(Q-R) F(P-Q)—(P-R)
ANDP-(Q-R),Q FP-R
ANDR-S F(P=R) = (P=S)
AND 3y.P FVy.P
END
END

Note that additions to a panel or a menu can be made in several lumps: that is, panels and menus can be
built up in by disjoint declarations.
2.9 Global variable settings

Jape has a number of variables which control parts of its operation — for a complete list see appendix C.
In our encoding of the sequent calculus we have decided not to allow conjectures to be applied as

Roll your own Jape logic (3.2) Page 17 Chapter 2: Encoding the Sequent Calculus

theorems, not to allow theorems to be applied ‘resolution’ style, generating antecedents if all their
hypotheses don’t match, and to display our proofs as Gentzen trees. The initialisations are:

INITIALISE applyconjectures false Chapter 3
INITIALISE tryresolution false
INITIALISE displaystyle tree
2.10 A very small example Variations on the Sequent Calculus

Here is the progress of a proof of Pierce’s law in this encoding. As intuitionists, we offer no explanation
of the pheonemon. Those who believe, believe.

((P~Q)~P)-P . . . : .
The sequent calculus of chapter 2 is only one of very many possible variants. In this chapter we discuss

((P>Q)-P) +P the way in which we can encode an LF-style treatment of variables in the quantifier introduction and
—_— elimination rules, how Jape deals with non-additive rules, and two versions of the intuitionistic sequent

((P—>QF)_)—>P)—>P calculus — multiple and single conclusion.
: 3.1 LF-style variables in quantifier rules
axiom
F(P>Q),P PP Jape allows redefinition of any rule, theorem or conjeéturke file MSC_LF.j redefines the quantifier
: ; rules to allow a more careful treatment of variahl@he new rules are
F FBi
((P>Q)~P) +P r,var mk A(m),A (FRESH m) O rtA(B),A T FBinscope O
— I FOXA(X), A M FIA(X),A
-0Q)-P)-> FBi
((P~Q)~P)-P r,A(B)FA T FBinscope Or I,var mA(m)rA (FRESH m) O+
r,Ox.A(X)FA M, A(X)FA
axiom
PLQ,P The intention is that a variabteis ‘inscope’ if there is an assumption wara formula is inscope if its
_— - free components are inscope. Note that there is nothing in Jape which demands that we use these words
A (PH)P ;X':’E nor this technique: it's up to the logic decoder.
N
Q, The file sequent_scoping.j defines two low priority prefix operators:
=
PREFIX 10 var
->0)-P) +
((P-Q)-P)+P POSTFIX 10 inscope
[
((P~Q)-P)-P and a structural induction to handle formulee, automatically applied whenever there is an open tip:

RULES "inscope" ARE

", var xF xinscope
AND FROMT FAinscope ANDT +Binscope INFERT F A-Binscope
AND FROMT FAinscope ANDT FBinscope INFERT F ABinscope
AND FROMT FAinscope ANDT +Binscope INFERT FAvBinscope
AND FROMT FAinscope INFERT F -Ainscope
AND FROMT,varxt Ainscope INFERT + Vx.Ainscope
AND FROMT,varxF Ainscope INFERT + 3x.Ainscope
END

AUTOMATCH "inscope"
Encoding of the rules is then straightforward:

1 And it allows itat any timél It ought to check, whenever a rule or theorem is redefined, every proof that relies upon it. It
doesn't at the time of writing, but it will do so Real Soon Now.

2 Explanation for non-expert logicians: the effect is to make it much more careful about the treatment of possibly-empty
domains of quantification. It is impossible, for example, to paw@(x) F 3x.P(x), because the proof would require that
there be somm such thaP(m).

-18 -

Roll your own Jape logic (3.2) Page 19 Chapter 3: Variations on the Sequent Calculus

RULE "rV"(OBJECT m) WHERE FRESHm

FROMT ,varmt+A(m),A
RULE "v+"(B) FROMI,A(B)+AANDT FBinscope
RULE "r3"(B) FROMT +A(B),AANDT +Binscope
RULE "3+"(OBJECT m) WHERE FRESHm

FROM T ,varm,A(m)+A INFERT, 3x.A(x) FA

We would like inscope judgements to behave like side conditions, displayed when they are a problem and
hidden when they are satisfied. But they aren’t provisos, because they relate a particular context and a
particular formula.

In order to make these judgements side condidtions we use dape'sT tactical: it allows us to run a

tactic and to decide which subtrees of the resulting proof tree should be displayed and what should be
written as the justification of the step. (Subtrees which contain open problem sequents are always
displayed, so that nothing which might accidentally be important is hidden.) In the casevwhtids+

rules we would like to display the first antecedent proof (numbered 0) and hide the second (numbered 1);
in either case we want to give the name of the rule as the justification of the step. The tactics are

TACTIC "V+ with side condition hidden" ISLAYOUT "V+" (0) (WITHSELECTIONS "V+")
TACTIC "+3 with side condition hidden" IS LAYOUT "+3" (0) (WITHSELECTIONS "+3")

which we put into the menu

MENURules IS
ENTRY "V+"IS"VF with side condition hidden"
ENTRY "+3" IS "+3 with side condition hidden"
END

and into the list of double-click actions

HYPHIT Vx.AF IS"VFwithside condition hidden"
CONCHIT F3x.B 1S"F3withside condition hidden"

We get all this machinery simply by loading MCS.jt, to get the multiple-conclusion sequent calculus, and
then adding MCS_LF.j, to get the extra rules and syntax.

Under this encoding, we can show the progress of a proof in which the variable rules are obeyed:

Ix.P(x)Q(x) F Ix.Q(x)P(x)

INFERT F Vx.A(x),A
INFERT ,¥x.A(x) +FA
INFERT F 3x.A(x),A

varm,P(m)Q(m) F3Ix.Q(x)P(x)
EL

Ax.P(x)Q(x) FIx.Q(Xx)P(x)

varm,P(m)Q(m) FQ(m)P(m)
+3

varm, P(m)Q(m) F3Ix.Q(x)P(x)
Ir

Ax.P(x)Q(x) FIx.Q(Xx)P(x)

1 | guess they could be provisos one day.

Roll your own Jape logic (3.2) Page 20 Chapter 3: Variations on the Sequent Calculus

Note that one antecedent of the final step isn’t shown. We can see the full display by double-clicking on
the justification of that step:

inscope'0

varm, P(m)Q(m) Fminscope
[+3]
varm,P(m)Q(m) F3Ix.Q(x)P(x)
El
Ax.P(x)Q(x) FIAx.Q(x)P(x)

Clearly it is an advantage to hide the side-proof whenever possible; it makes sense to hide it when it is
closed, as in this case. The rest of the proof is straightforward.
Next, the progress of an attempt to preweP(x) + Ix.P(x), which isn’t a theorem in this logic (though
it is one in the logic of chapter 2):

Vx.P(x) F3Ix.P(x)

varm, P(m)Q(m) +Q(m)P(m)

P(_B) F Ax.P(x)
vk
Vx.P(x) FIx.P(x)

_Binscope

P(_B)+P(_B1) P(_B)+_B1inscope

3

P(_B) F Ix.P(x) _Binscope
Y+
Vx.P(x) F3x.P(x)
axiom
P(_B)FP(_B) P(_B)+_Binscope
|
P(_B) F 3x.P(x) _Binscope

vk
Vx.P(x) F3Ix.P(x)

It doesn’t matter what we unify withB: the side conditions won't go away, and we don't have a
theorem.

Caveat

A deficiency of Jape at present is that it has only one class of formula, but the contexts which will be built
up in this encoding include logical formulee and extra-logical remarks like. Vidrat would permit you,

if you were actively incautious, to try to prove nonsense likewarvarn. We'll fix the problem as soon

as possible, but don't hold your breath ...

3.2 The intuitionistic multiple-conclusion sequent calculus

The rules of the intuitionistic multiple-conclusion sequent calculus aren’t simply additive, but they use
little more than specialised weakening. The calculus is just that of chapter 2, with different definitions of
a few rules:

r,AF N I,AFB
rF-AA 'FA - BA

Roll your own Jape logic (3.2) Page 21 Chapter 3: Variations on the Sequent Calculus

F-A v A T,BFA
I,-AFA Ao BFA

These are defined directly in the file IMCS.j, which you can load after MCS.jt (and before or after
MCS_LF.j, if you wish):

RULE "k=" FROMT A+ INFERT F-AA
RULE "-+" FROMT FA INFERT ,-AFA
RULE "+-" FROMT ,AFB INFERT + A-B,A
RULE "-+" FROMT +FAANDT,B+A INFERT ,A=BF+A

These definitions make it impossible to prove Pierce’s law, for which intuitionists may thank goodness:
((P>Q)~P)-P

(P>Q)~P) P

((P~Q)~P)~P

(P-Q) PFP
(P-Q)>P) +P

k>

((P>Q)~P)~P

3.3 A multiple-conclusion sequent calculus with multiplicative rules

The logic is just the normal multiple-conclusion calculus, with all of the branching rules written in
multiplicative style; we have chosen at the same time to use an axiom rule which doesn't ignore
unmatched conclusions:

—— axiom
AFA
r’EAA T'EBA . I AFA T BFA' Fr'EAA T, BEA
r,r'FAOBAA r,r,AOBFAA r,r',A- BrAA
reB,A TI',BFA’
————cut
FrEAL
These rules are defined in MMCS.j, ready to be loaded after MCS.jt:
RULE axiom(A) INFERAFA
RULE "¢" FROMT FA,AANDT'+B,A’ INFERT,I"F AB,AA'
RULE "vH" FROMT,AFAANDT',BFA' INFERT, T, AvBFAA'

RULE "-t" FROMT FA,AANDT",BFA' INFERT,I",A-BFA,A'
RULE cut(A) FROMTFA,AANDT'AFA' INFERT,T"+A,A"
Since we have redefined cut, we have to redeclare its r6le to Jape:

CUT cut

When we use a multiplicative rule, the left and right contexts split. Jape automatically records this fact in
aUNIFIESWITH proviso:

P-(Q-R),QFP-R

Roll your own Jape logic (3.2) Page 22 Chapter 3: Variations on the Sequent Calculus

P-(Q-R),Q,PFR

P-(Q-R),QFP-R

_MrP,_AT _T2,(Q=R)F_A2
-t
P-(Q-R),Q,PFR
k>
P-(Q-R), QFP-R

RUNIFIESWITH _A1, _A2
_I'1, _T2UNIFIESWITHQ, P

In this simple example we have to decide whether to BesadQ into"1 orl"'2, Rinto A1 orA2. The
axiom rule of this encoding was designed to help: we can $tladhe left antecedent and apply axiom:

PP Q,(Q=R)FR
P-(Q~R),Q,P+R

P-(Q~R),QFP-R

All the problems are resolved, for the moment, and the rest of the proof can be completed in the same
way.

Resolving context-splits with drag-and-drop
Consider the following example:
_M,Qr_A1 _M2,RF_A2

vk

P,(QvR)FPQ ,PR

P(QvR) +(PQ) ,(PR)

PUNIFIESWITH_I"'1,_T"2
_A1,_A2 UNIFIESWITHPQ, PR

Roll your own Jape logic (3.2) Page 23 Chapter 3: Variations on the Sequent Calculus

To make progress, we need to send one of the conclBIdRsPOR into _Al and the other intoA2.

Jape has a drag-and-drop gesture, designed for this purpose. Dr&jdingn the MacOS
implementation produces this kind of visual feedback, highlighting the dragged formula, the mouse
position and potential destinations:

SO= PA(0VR) F(PAOI(P.R) =TT

L
P (O RIHPCQL P AR
3

PAfCRIF (PR, (P AR)

ko

Pl Ry (PO (P AR

P UNIFIES'ITH _T1, _rz2
_a1, _a2 UNIFIESWITHP 0, P AR

If the mouse is released at the point illustrated, the proof is redrawn and the provisos simplified to match:
_IN,Qr_A3,PQ _N2,RF_A2

vk

P,(QvR)FPQ ,PR

P(QvR) +(PQ) ,(PR)
P(QvR) +(PQ)v(PR)

PUNIFIESWITH_T2, _T'1
PRUNIFIESWITH _A2, _A3

A similar technique can be used with rules that involve explicit weakening.

3.4 Modal logic

It is our intention to enhance Jape so that it can use modal operators, and to further develop this encoding
to cover all of linear logic. Most of the code is written and included in Jape, but is lying dormant, so it
should be quite soon.

3.5 Single-conclusion sequent calculus (the intuitionistic fragment)

The rules of this logic are very similar to those of chapter 2. In our encoding the right-hand side of a
sequent contains exactly one formula — Jape can’t yet handle sequents with at most one formula on the
right-hand side — and we give rules for negation — Jape can’t yet handle definitional equality. The
encoding is in the file SCS.jt.

Inference rules

Apart from the treatment of negation, these are a pretty ordinary selection. As with the multiple-
conclusion calculus, we have chosen to use a hypothesis rule which ignores additional hypotheses, we
have avoided context-splitting rules, and we have made the left-hand side of a sequent a bag of formulee.

Roll your own Jape logic (3.2) Page 24 Chapter 3: Variations on the Sequent Calculus

Negation is normally described by defining it to be equivalent to implication of absusditis just a

way of writing x —» . Jape can’t handle definitional equality of formulae yet, and therefore we give rules
which implement that equality. With that exception, the rules are more or less the rules of the sequent
calculus with the symbdl deleted.

hypothesis

—
rAaA P

Introduction to the right of the turnstile.(. rules)

A kB r,A-B kA reB MrMFA- L
FO F —— k[—— k0, ——— k=
r'kAOB NINA-B N'FAOB N'FAOB M=A
F
M(FRESH m) O L(B)
I +Ox.P(x) I FIX.P(x)
Introduction to the left of the turnstile ¢.rules)
Ir,ABFC kA r,BrC rALC TI,BFC rA-_1tB v
r,AOBFC rA-BtC r,AOBLC r,-ArB B
r,P(B)+-C r,P(m}tC
4L ——— =[]t — 77— (FRESH M) [
FLirA P OxP(X)FC F o P()rC ¢)
structural rules
F F F F
r'e 7.8 Ccut rec weaken wcontract
reC r,ArC r,AFC

LF-style variables

We haven't encoded a multiplicative single-conclusion calculus, but there is an encoding of an LF-style
treatment of variables in the file SCS_LF.j. It's identical to the treatment of variables in the multiple-
conclusion calculus, with th&e symbol deleted.

Syntax

Formula syntax, and use of names, is exactly as in the multiple-conclusion sequent calculus.

Jape can't at present be configured to handle sequents with an optional formula on the right-hand side,
but can easily be configured to handle those with exactly one. We therefore state

SEQUENT ISBAG - FORMULA

Menus and panels

The Rules menu is almost the same as that in the multiple-conclusion sequent calculus. The Conjectures
panel is identical: the two encodings share the file sequent_problems.j.

Roll your own Jape logic (3.2) Page 25 Chapter 3: Variations on the Sequent Calculus

Global variable settings

Just as in the case of the multiple-conclusion sequent calculus, we don’t want to allow the application of
conjectures as if they were proved theorems and we don’t want to allow the application of theorems if
their hypotheses don’t matehVe therefore include

INITIALISE applyconjectures false
INITIALISE tryresolution false

We do, however, want to allow the user to switch display modes. In placanfraniSe directive for

the displaystylevariable, we include menu entries which control it, by inserting a radio button into the
Edit menu — one of the system menus of the Jape graphical interface. A radio button in a graphical
interface is a control which has a number of mutually-exclusive settings. In a menu this appears is a
number of entries, one of which is ticked.

MENU "Edit"
RADIOBUTTON displaystyle IS
"Box display" ISbox
AND "Treedisplay" IStree
INITIALLY tree
END
END

3.6 Box display mode and thényprule

Unlike the multiple-conclusion sequent calculus, the single-conclusion calculus can reasonably be used in
the ‘box display’ mode, simply as a screen-space saving device. Proofs such as

hyp T hyp T
-P-Q(m),P+P -P-Q(m),P,Q(m)+Q(m) P-Q(m),-P+-P P=Q(m),-P,Q(m)+Q(m)
P-Q(m), ~P—:C£(m), P+Q(m) P-Q(m), ~P->:2F(m), -P+Q(m)

PP P=Q(m), -P-Q(m) HQ(m)

Pv-P, Vx.ﬂP*Q(zg ,P>Q(m) + Q(m)

Pv-P, Vx.P>Q(x) 7‘;’x.-|P—>Q(x) FQ(m)

v

Pv-P, ¥x.P-Q(x), Vx.-P-Q(x) F ¥x.Q(x)
xNOTINP

are over-large because the hypotheses are written out many times, once in each sequent which they occur.

1 These are pragmatic choices, driven by our expected audience of novices learning about logic. There is, of course, nothing
about the logic which forces either choice.

Roll your own Jape logic (3.2)

Page 26

Chapter 3: Variations on the Sequent Calculus

Box display of the same proof is much more economical of screen space:

1:| Pv=P, Vx.P>Q(x), Vx.-P->Q(x)
2:[|P=Q(m)
3:[||-P~Q(m)
4: P

6:[||| Q(m)
7| =P
9:[|||Q(m)
10:/|| Q(m)
11:{ | Q(m)

12:| Q(m)

13:| VX.Q(x)
xNOTINP

assumptions
assumption
assumption
assumption
assumption
-+2,4,5
assumption
assumption
-+3,7,8

vk 1.1,4-6,7-9
v+ 1.3,3-10

vV 1.2,2-11
kY 12

and the gain is of course more dramatic in the case of larger proofs.

Part of the gain is produced by hiding applicationsyi. A reference to a line proved Imyp can be
replaced by a reference to the hypothesis used imyghstep — this happens, for example, on lines 4, 5, 9
and 10 of the box display above. All that is necessary is to declangphale and its structural role to
Jape, which we do as follows:

RULE hyp(A) INFERAFA
STRUCTURERULE IDENTITY hyp

Chapter 4

Encoding natural deduction

The sequent calculus encodings above are each straightforward encodings of a logic, with a few
directives to arrange the elements of the user interface. Natural deduction challenges us to allow forward
reasoning. The challenger isn't finished yet: we can only imitate some kinds of forward step, and some
features of the background tree are still traceable in the box display.

This encoding has been used in a first-year course at QMW for three years, with increasing user
satisfaction as our encoding has more nearly approached the treatment used by the course lecturer. That
lecturer chose the rules we encoded and, in particular, he chose to use a particular classical treatment of
negation, not at all the one which we would have chosen for ourselves nor even the particular classical
encoding which we would have preferred.

4.1 Inference rules

The rules of natural deduction are not normally stated in terms of sequents, but in a notation which is
silent about the hypotheses. In fact the rules were presented to us in Fitch box form and we immediately,
almost without thought, transcribed them into a sequent presentation. The rules that we were asked to
encode were as follows (plus reiteration, which we don't list).

Elimination rules

ir A
i A-B i: AOB i: AOB ... it a-mA
k B S —Ei,j it A o-g(L)i |j:B 0-E(R)i it A ~ - Ei
i: AOB
i |A assumption it IXF(x)
k: .C j: c| F(c)| assumption
1. |B assumption
i Ox.F(x) .. K: A
m:|C :
n: C O-Ei,j.kl.m [j: F(A) O-Ei [I: A -Ei,j.k

-27-

Roll your own Jape logic (3.2) Page 28 Chapter 4: Encoding natural deduction

Introduction rules

i: | A assumption it [A assumption

i A
j: | B j: -
! j: B ! BU-B
k: A B - -li.j k: AOB 0O-1i,j k: =A A=l

Cl ...
i: |F)] - i: F(A)

it A i:B
j: AOB DO-1(L)i j:AOB O-1(Ri | i OxXF(X) - -0O-1i i IKF(X) orli

Themarginak in the3-£ andv-/rules indicates a proviso that the nazrghould not appear free outside
the ‘scope box’ which it labels.

These Fitch-box rules have well-known tree equivalents, where reiteration is replaced by a hypothesis
rule, and the proviso on th&elimination rule is more extensive than you might at first suppose.

Hypothesis (tree)

— h
Ayp

Elimination rules (tree)

' [A] [B]
A A.B B B ADB C C N
AARA2E g O-E(L) 0-E(R) AOB C C .
B A B c A
: : [var ¢,F(c)]
OxF()_Binsuope E XF() A (FRESH ¢, ¢ NOTIN [k.F(x)) 0-E
O - A c,c F(x)) O-
F(B) A
Introduction rules(tree)
[Al o . . A
g A_S A BO-B
- -l o-1 2 0o 1R .
A-B AOB AUB AOB A
[var]
PO (rrestic) -1 F(B) Binscope
Ox.F(x) XF)

To implement the scope boxing mechanism of the original presentation we have used pseudo-predicates
var and inscope; the intention is that all the names in the fonnld-/ andv-£ should be mentioned in

var predicates in the hypotheses. This is not quite the same as scope boxing: in effect we say that the
namec may be used within a particular scope, but we don't say that there may not be other scopes in the
proof where the same name is used. (In practice, because the rules which introduce the var pseudo-
predicate, used normally, always introduce names new to the proof, the distinction won'’t be noticed.)

Roll your own Jape logic (3.2) Page 29 Chapter 4: Encoding natural deduction

These rules have obvious sequent-calculus equivalents.
Hypothesis (sequent)

—
rArA P

Elimination rules (sequent)

A TFA- B r'FAOB r'FAOB r'FAOB TI,AFC T,BFC

—_———— -E ———0-EL) ——— 0-E(R 0E
B A B MC

rk--A . r+0Ox.A(x) T FBinscope -

MEA r+A(B)

r+x.A(x) T,varc AlC)FB

(FRESH ¢, ¢ NOTIN X.A) O-E
B

Introduction rules (sequent)

r,ArB NrNA rrB MA B M AFBO-B
— - o- 0-(L) ——— O0-IR ——— --
rN‘A- B r'FAOB r'FAOB r'FAOB Mk=A
F 3 [
I,var ck A(c) (FRESH ©) O~ | r+A(B) Binscope -
IFOx.A(X) IFOXA(X)

Plainly it is a difficulty, in a backwards-reasoning tool, that each of these is a right-hand rule. Yet if we
are to be faithful to our customer’s intention, these are the rules that we must encode. In order to
understand how to do that, it is necessary to understand how they are intended to be used.

4.2 Syntax

The syntax of formulee in natural deduction is, of course, just like that in the sequent calculus: see chapter
2 for a discussion of the way that syntax is described in ItL_syntax.j. We set two variables (really they are
parameters, because they can only be altered when the rule and theorem store is empty):

INITIALISE autoAdditiveLeft true
INITIALISE interpretpredicates true

The first of these allows us to define rules without mentioning a left context, automatically inserting a
context variabld™ into every sequent in a rule definition (that is, allowing rule definition in the style of
earlier versions of Jape). The second directs Jape to interpret every juxtaposition — everything that looks
like a predicate application — as a predicate application, to translate where necessary into substitution
notation and to include additional rule parameters and invisible provisos to support the translation.

4.3 Forward reasoning

The sort of step that a natural-deduction reasoner might want to make is best illustrated by example.
Consider the problem of proviiy> Q,Q >R, PR (the second problem in the Conjectures panel defined
in the file ItL_problems.j). In box display mode this is shown as

1:| P~Q, Q-R, P | assumptions

2:|R

Roll your own Jape logic (3.2) Page 30 Chapter 4: Encoding natural deduction

To anyone used to forward reasoning, the first step is clear: on line 1 thexedghere is alsb- Q; use
the -»-E rule to conclud&). In the ItL.jt encoding of natural deduction that step can be made by first
selectingP~>Qon line 1

1: P—>Q|, Q~R, P | assumptions
2:(R

and then applying-E from the Rules menu

: P—>Q, Q—>R,P assumptions
2:|Q >-E1.3,1.1

3:[R

It looks like a forward step, and it quacks like a forward step: now you can@el@abn line 1

| P=Q, Q—>RL P | assumptions

2:|Q >-E1.3,1.1

3:[R

and apply=-E again

1:| P~Q, Q-R, P | assumptions
2:|Q >-E£1.3,1.1
3:|R ->-E2,1.2

The proof is complete, and has apparently used forward reasoning. Yet in fact it was all done with right-
hand side rules and backward reasoning. It is also possible to start by eliminating the &@s®vhnt

this isn’t the manual for that discussion: see “Using ItL Jape” which you can get from the MacOS Web
site at QMW.

Cut and forward reasoning

There is a well-known and obvious correspondence between a proof which uses forward reasoning in
(B]

natural deduction and one which uses — betweenB, on the one hand, ane?;c or

: c
C
F F
% on the other. The proof above is based on a similar correspondence between
PP-Q ¢
Q
: and
R

P-QQ-RPP P.QQ RPFP_.Q™ _
P-QQ- RPFQ
P-QQ-RPFR

P-QQ- R,P,QI-Rcut

Roll your own Jape logic (3.2) Page 31 Chapter 4: Encoding natural deduction

In the sequent proof, reading downwards, lilyp step moved - Q from right to left; the- -E step
generate®), and thecut step moves) from right to left, making it available as an hypothesis for use in

the rest of the proof. The sequenbgf rule; cut’ must be reversed in a backwards reasoning engine like
Jape, but in principle that is all there is to forward reasoning in Jape at present, together with box display
mechanisms which hide bollyp andcut steps.

In order to program this mechanism in Jape’s tactic language, we proceed step by step. Weliyglude a
rule, we declare it so that its application is hidden in box display, and we automatically apply it at the end
of every proof step (all this could be done anyway, and has nothing essential to do with the forward
reasoning mechanism):

RULE hyp(A) ISINFERAF A
STRUCTURERULE IDENTITY hyp
AUTOMATCH hyp

Similarly, we include and declacait

RULE cut(B) ISFROMBANDBFCINFERC
STRUCTURERULE CUT cut

The elimination rules are the ones which are usually used forward. Each rule is defined in the usual way,
just as it would be if it were to be used only as a backwards reasoning rule. For example we>éhcode
as follows, givingA as an argument because it isn’'t a subformula of the consequent pattern:

RULE "->-E"(A) ISFROMA AND A-BINFERB

When this rule is applied it is necessary to distinguish ‘backward’ from ‘forward’ application. We have
done this by testing if a left-hand side formula has been selected — which we take as a signal for ‘forward’
reasoning — or not — which is a signal for ‘backward’ reasoning. The entr-fon the Rules menu
applies a tactic, giving the name of a tactic and of the rule as arguments:

ENTRY "~-E"

HereForwardOrBackwardis the tactic which detects whether to use a forward or a backward step;
ForwardCutdoes the necessary work witht, the rule itself, anttyp It includes a step which selects the
antecedent to whichypis to be applied

TACTIC ForwardCut (n,Rule)
SEQ cut (WITHARGSEL Rule) (JAPE (SUBGOAL n)) (WITHHYPSEL hyp)

WITHARGSEL applies a tactic taking account of any text-selections which the user might have made — that
is, adding an argument to the rule if the user text-selects an arguARESUBGOAL n) selects theath
antecedent (they are numbered 0, 1, ...) of the last appliedwileHYPSEL applies a tactic taking
account of any left-hand side selection, and since there will always be one when we call this tactic from
ForwardOrBackward, the effect is that the user’s selected formula is used imyihstep.

ForwardOrBackwardtests whether a left-hand-side formula is selected or not, and chooses to call its first
argument or its second accordingly. Stripped to its bones it is simply:

TACTIC ForwardOrBackward (Forward, n, Rule) IS
WHEN (LETHYP _P (ForwardnRule))
(WITHSELECTIONS Rule)

TheWwHEN tactical takes a number of tactics, each of which except the last must be guarded: it finds and
executes the first guarded tactic whose guard succeeds, or executes its last argument otBenvise. L

is a guarded tactic whose guard succeeds if the user has selected a left-hand side formula which unifies
with its first argument, and fails otherwise. When it succeeds it executes its second argument in the
context produced by the successful unification. In this case, siedll unify with any formula, the

effect of the whole tactic is to test whether any left-hand side formula is selected and if so, to execute the
tactic corresponding to Forward (in our c&sewardCu or if not, to execute the tactic corresponding to

ISForwardOrBackward ForwardCut 1 "—-E"

Roll your own Jape logic (3.2) Page 32 Chapter 4: Encoding natural deduction

Rule (in our case the rule-E), taking account of any user gestures, such as argument selection, that may
have been made.

In conjunction withAUTOMATCH hyp, which automatically closes tips that can be trivially closed, and
hiding of hyp andcut lines, this mechanism has the effect illustrated in the example proof above. To see
how it works, we show what would be seen if the steps of the tactic were carried out one by one, without
any special display aids, in both tree and box form (you can do this for yourself by loading the file
‘displaystyle in Edit menu’ from the ‘useful buttons’ example folder, and then removing the ticks from
the ‘hide cut lines’ and ‘hide identity lines’ entries). Notice how the unknowns introduced in steps 1 and
2 are all resolved bhyp in step 3. That application is on the second antecedent of-theand is
constrained to use the originally-selected left-hand side formula, which in this easg is

1.cut 1:{ P>Q,Q~R, P|assumptions P2Q,Q~R,PF_B P-Q,Q-R,P,_BFR
cut
2| _B P-Q, Q-R,PFR
3! assumption
4:
5 R cut 2,3-4
2.WITHARGSEL “—»-E” 1:| P~Q, Q-R, P | assumptions P-Q,Q-R,Pr_A P-Q,Q-R,Pr_A-_B
SE
2| _B P-Q,Q~R,P+_B P-Q,Q~R, P, _BFR
3: assumption cut
P>Q,Q-R, PFR
4
5 R cut 2,3-4
3. JAPHSUBGOAL1), ;. P-Q,Q-R, P| assumptions hyp
WITHHYPSEL hyp P-Q,Q-R,PHP P-Q,Q=R,P+P=Q
2:(P SE
3:|P-Q hyp 1.1 P-Q,Q-R,PFQ P-Q,Q-R,P,QFR
4: Q ->-E2,3 cut
5: assumption P~Q Q R,P+R
6:
7:[R cut 4,5-6
4. AUTOMATCH hyp 1:| P>Q,Q-R, P | assumptions hyp hyp
2l p hyp 1.3 P-Q,Q~R,PFP P-Q,Q-R,PFP-Q
P i PoQ,QoR,P+ P R P, QFR
- - - -
4 Q ~E2,3 Q,Q>R,P+Q Q,Q-R, P, Q
cut
S: assumption P_’Q Q—>R PFR
6:
7:(R cut 4,5-6

Because the effect is produced by a tactic the user doesn’t see the intermediate steps of the process, and
because box display has been instructed to higeandcut lines, all the user sees, as the original
example shows, is a picture in which lines 2 and 3 have been deleted, with references to them converted
to references to assumptions 1.3 and 1.1, and in whiatutistep has been hidden by overlaying line 5

with line 4 and line 7 with line 6.

The principle, then, is to usaut to implement a kind of forward reasoning. Not every ‘forward’ step
requires a cut, so we have another auxiliary tactic:

TACTIC ForwardUncut (n,Rule) SEQ (WITHARGSEL Rule) (JAPE (SUBGOAL n)) (WITHHYPSEL hyp)

Roll your own Jape logic (3.2) Page 33 Chapter 4: Encoding natural deduction

The complete ForwardOrBackward tactic attempts some error reporting if a rule application fails:
TACTIC ForwardOrBackward (Forward, n, Rule) IS
WHEN (LETHYP _P
(ALT (ForwardnRule)
(WHEN (LETARGSEL_Q
(FAIL (Rule is not applicable to assumption' _P'withargument'_Q"))

)
(FAIL (Rule is not applicable to assumption' _P"))

)
)
(ALT (WITHSELECTIONSRule)
(WHEN (LETARGSEL _P
(FAIL (Rule is not applicable withargument ' _P"))

)
(FAIL (Ruleis not applicable))

)
ALT is a tactic that tries its arguments in turn until one of them is completely successfuljs defined
by
TACTICFAIL(x) IS JAPE (fail x)
and simply puts up messag@as an error alert in the graphical interface.

The rest of the rules of the system can now be stated simply, and it's straightforward to organise them
into a menu (see ItL_menus.))

MENURules IS
ENTRY "—>-I"
ENTRY "-I"
ENTRY "v-I(L)" IS ForwardOrBackward ForwardCut O "v-I(L)"
ENTRY "v-I(R)" IS ForwardOrBackward ForwardCut 0 "v-I(R)"
ENTRY "=-|"
ENTRY "v-I"
ENTRY "3-" IS"3-Itac"
SEPARATOR
ENTRY "->-E" IS ForwardOrBackward ForwardCut 1 "—>-E"
ENTRY "-E(L)" IS ForwardOrBackward ForwardCut O "-E(L)"
ENTRY "-E(R)" IS ForwardOrBackward ForwardCut O "-E(R)"
ENTRY "v-E" ISForwardOrBackward ForwardUncut O "v-E"
ENTRY "--E" ISForwardOrBackward ForwardCut O "-~-E"
ENTRY "V-E" IS"V-Etac"
ENTRY "3-E" IS ForwardOrBackward ForwardUncut 0 "3-E"
SEPARATOR
ENTRY hyp

END

Two of the entries are given indirectly, because they can be overriden in other files which form part of the
ItL.jt collection:

TACTIC"V-E tac" ISForwardOrBackward ForwardCut 0 "V-E"
TACTIC"3-Itac" IS"3-I"

The rules are given in ItL_rules.j (note that this collection, for historical reasons, doesn’t implement
scope boxing; that's done in ItL_LF.j and is described below). Because we haveagbthaditivelLeft

Roll your own Jape logic (3.2) Page 34 Chapter 4: Encoding natural deduction

variable totrue, we can define these rules natural-deduction style, mentioning nothing but the principal
formulee, and Jape will automatically insert a context varialfto every sequent:

RULE "--E"(A) ISFROM A AND A-B INFERB
RULE "-E(L)"(B) ISFROMA BINFER A
RULE "-E(R)"(A) ISFROMA BINFERB
RULE "v-E"(A,B) ISFROMA « BAND A+ CANDBFCINFERC
RULE "~-E" ISFROM =~A INFER A
RULE "V-E"(B) ISFROM Vx. A(x) INFER A(B)
RULE "3-E"(OBJECT ¢) WHERE FRESH ¢ AND ¢ NOTIN 3x.A
ISFROM Ix.A(x) AND A(c) F CINFERC

RULE "--I" ISFROMAFBINFERA-B
RULE"-I" ISFROMAANDBINFERA B
RULE"v-I(L)"(B) ISFROMAINFERA v B
RULE "v-I(R)"(A) ISFROMBINFERA v B

RULE "~-I"(B) ISFROMA B -BINFER -A
RULE "V-I"(OBJECT c) WHEREFRESHc ~ ISFROMA(c) INFER Vx.A(X)
RULE "3-"(B) ISFROM A(B) INFER 3x.A(x)

Scope boxing is done by adding the file ItL_LF.j, which includes the syntax of the pseudo-predicates,
plus new versions of the quantifier rules:

PREFIX 10 var
POSTFIX 10 inscope

RULE "V-I"(OBJECT c) WHERE FRESH ¢
RULE "3-1"(B) ISFROM A(B) AND Binscope INFER 3x.A(x)

RULE "V-E"(B) ISFROM Vx. A(x) AND Binscope INFER A(B)
RULE "3-E"(OBJECT c) WHERE FRESH c AND ¢ NOTIN 3x.A
ISFROM 3x.A(x) AND varc, A(c) F CINFERC

Just as in chapter 3, we define a collection of rules for the inscope judgement, which Jape automatically
arranges into aALT tactic called “inscope”, and then we require that the tactic be tried at the end of
every proof step:

RULES "inscope" ARE

INFER var x + xinscope
AND FROM Aiinscope AND Binscope INFER A-Binscope
AND FROM Aiinscope AND Binscope INFER AB inscope
AND FROM Aiinscope AND Binscope INFERAvBinscope
AND FROM Ainscope INFER -Ainscope
AND FROMvar x + Aiinscope INFER Vx.A inscope
AND FROMvar x + Alinscope INFER 3x.Ainscope
END

AUTOMATCH "inscope"

Finally we provide tactics which use theyouT tactical to require that only the first antecedent (labelled
0) should normally be displayed (see chapter 3 for a little more explanation, and/or appendix B); then we
ensure that these tactics are referenced from the menu:

TACTIC "V-E with side condition hidden" ISLAYOUT "V-E" (0) (WITHARGSEL "V-E")
TACTIC "3-lwith side condition hidden" ISLAYOUT "3-I" (O) (WITHARGSEL "3-1")

TACTIC "V-E tac" IS ForwardOrBackward ForwardCut O "V-E with side condition hidden"
TACTIC "3-Itac" IS "3-lwith side condition hidden"

ISFROMvar c - A(c) INFER Vx .A(x)

Roll your own Jape logic (3.2) Page 35 Chapter 4: Encoding natural deduction

There is also a file ItL_hits.j, which implements double-clicking: we don’t reference this in ItL.jt, because
we don’t want to provide it by default to our novice students.

4.4 The Conjectures panel

Since we can apply rules either forward or backward, it would be irksome if we could only apply
theorems backward. We define a tactic which can do the job. If a hypothesis has been selected it cuts and
applies the theorem, requiring that the selected hypothesis be one of the principal formulae which match
the theorem sequent. If no hypothesis is selected it tries in order to apply the theorem to the present
problem sequent, to apply it ‘by resolution’ (matching only the right-hand side of the theorem sequent
and the problem sequent and generating antecedents for each left-hand side theorem formula: see chapter
1), and finally tries to apply it forwards, one way or the other. All of the steps are made
‘WITHSELECTIONS — that is, using any argument selection which the user may have made:
TACTIC TheoremForwardOrBackward(thm) IS
WHEN (LETHYP _P cut (WITHSELECTIONS thm))
(ALT (WITHSELECTIONS thm)
(RESOLVE (WITHSELECTIONS thm))
(SEQcut (ALT (WITHSELECTIONS thm) (RESOLVE (WITHSELECTIONS thm))))

)

The overall effect is to allow a prover to introduce a theorem into the proof whenever it is helpful to do
Sso.

The Conjectures panel activates this tactic from its Apply button. The panel is defined in the following
manner (for a full listing see the file ItL_problems.j):

CONJECTUREPANEL Conjectures
THEOREMS NaturalDeductionConjectures ARE
P,P>Q+Q
AND P-Q,Q-R,PFR

END
THEOREM "G(c) F Vx.F(x) = G(x) NOT"
THEOREM " (Vx.F(x)) = (¥x.G(x)) F VX.F(x) = G(x) NOT"
THEOREM "(3x.F(x)) (Ix.G(x)) F Ix.F(x) G(x) NOT"
PREFIXBUTTON Apply IS apply TheoremForwardOrBackward
END

The last three conjectures are specially named because they are intended to fail.

When the Apply button is pressed with a conjec@iselected, the effect is to send the command “apply
TheoremForwardOrBackwak@’ to theproof engine and then the tactic takes over.

See appendix C for a complete listing of commands that can be attached to panel buttons.

ISG(c) F Vx.F(x) = G(x)
IS (WVx.F(x)) = (¥x.G(x)) F VXx.F(x) = G(x)
IS (Ix.F(x)) (Ix.G(x)) F Ix.F(x) G(x)

4.5 An alternative natural deduction encoding

There is an alternative natural deduction encoding, distributed ak jmp¢t described in “Using J'n'J in
Jape”, available from the Oxford Jape web site. It will be described in a future edition of this manual.

1 it doesn’t work under MacOS yet, because of problems with font encoding.

Chapter 5

Encoding equational reasoning in functional
programs

Previous chapters have dealt with the encoding of logics which are, more or less, variations on the
sequent calculus. This chapter describes our treatment of a very different logic. The problem here is to
control a large number of equations used to reason about functional-programming formulae, and to
present an interface which makes it look as if equational reasoning is taking place, despite the Gentzen
tree in the background. The treatment is distributed in the files referenced by the file functions.jt.

5.1 Syntax

Jape provides juxtaposition as a primitive syntactic construction, and so it is convenient to represent
function application as juxtaposition. In the same way we take the syntax of tupling directly from Jape.

FONTS "Konstanz"
INITIALISE autoAdditiveLeft true
SEQUENT ISBAG F FORMULA

USE "equality_rules.j"
USE "equality_menus.j"
USE "functions_rules.j"
USE "functions_menus.j"

AUTOMATCH "= reflexive"

Note that we don’t automatically translate predicate notation in this encoding: we use juxtaposition
mostly to represent function application. We use ABSTRACTION keyword to label those few
parameters of rules which are to be treated as predicates: see below for examples.

The file equality_rules.j covers more than simple equality, since it is intended to be shared between
different encodings. Apart from that, it is pretty straightforward. The syntactic description is:

CLASS VARIABLE xy
CLASSFORMULAABCFGXYZ
CONSTANT L

SUBSTFIX 2000 {x\ A}
JUXTFIX 1000

INFIX 200L =2<=<>
INFIX 250L +-

INFIX 260L */

INFIX 270L A

Reading from the bottom, we define some binary operators, all left-associative, then we define the
priority of juxtaposition and substitution. The syntax of substitution is slightly variable in Jape: you can
specify the bracketing symbols and the separating symbol as well as defining whether the variables come

-36 -

Roll your own Jape logic (3.2) Page 37 Chapter 5: Equational reasoning in functional programs

before the names or vice-versa. The spaces between symbols and names are essential to delimit the
various components of the syntactic form. We have chosen to forakela { variables\ formulae} the

syntax of a substitution form, because that liberates square brackets for use in their conventional réle in
functional programming as list brackkts

Then there are some simple definitions, intended to make what follows easier to read:

TACTICFAIL(x) IS JAPE (fail x)
TACTIC FAILREASON(x) IS JAPE (failgivingreason x)

and a perfectly normal definition of an identity rule:

RULE hypISAFA
IDENTITY hyp

There follow the basic rules of equality. Because Jape doesn’t yet have any treatment of families of rules,
we can only give a tuple-equality rule for a fixed finite number of tuple sizes, and here we restrict
ourselves to paifs

FEX=Y MkY=2Z rEX=Y

= reflexive =transitive
kEX=2Z ey =X

m =symmetric

MFEX0=X1 FI—YO=Y1_()
rH(X0, Xy =(Yo,yy
Although most of these rules can be derived from ‘= reflexive’ plus the rewrite rules given below, it is

convenient to have them available directly. In any case, Jape doesn't yet have facilities to prove derived
rules with antecedents. In Japeish the rules are:

RULE "= reflexive" IS INFER X =X
RULE "=transitive"(Y) ISFROMX=YANDY=Z INFERX=Z
RULE "=symmetric" ISFROMX =Y INFERY =X

RULE"(,)=" ISFROMX0=X1 ANDYO0=Y1 INFER (X0, Y0)=(X1,Y1)
Extensionality rules are straightforward but because each implicitly incorporates a step of generalisation,
we are careful to includerRESHprovisos:
rF(x) = G(x)
NrNF=G
In the Japeish version we uSBJECT parameters so that the rules, normally used backwards, introduce
new identifiers rather than unknowns:

MFE(xy) = G(x,y)

(FRESH x) ext rFE=G

(FRESH x,y) ext2

RULE ext (OBJECT x) WHERE FRESH x ISFROM F x = Gx INFERF =G
RULE ext2(OBJECT x, OBJECT y) WHERE FRESH x, y
ISFROM F (x,y) =G (x,y) INFERF =G

That, so far as this encoding is concerned, is where the simple bit ends.

5.2 The rewrite rule and user definition of substitutions

We base our treatment of equational reasoning on rewrite rules. We can replace occurrences of a sub-
formula X within a formulaA by an alternative sub-formuM provided only that we can provée=Y.
Because an equality can be used to rewrite in either direction we include two rules, whose names are
arbitrarily chosen:
FEX=Y TEA[X\Y}
rEA(X\X}

FrEX=Y rrAx\x}

rEA[X\Y}

rewrite rewritebackwards

1 We would have reversed the order of formulze and variables had the author of the encoding not already hijacked the ‘'
operator.
2 But see our treatment of BAN logic in a later chapter: we are beginning to be able to handle some simple families of rules.

Roll your own Jape logic (3.2) Page 38 Chapter 5: Equational reasoning in functional programs

In Japeish, as by now you must expect, we give the first rule a paratreetdrthe second a parameter
Just for fun we write the rules in predicate notation, which Jape immediately translates into the rules
written above.

RULE rewrite (X,ABSTRACTION AA) ISFROM X=Y AND AA(Y) INFER AA(X)
RULE rewritebackwards (Y,ABSTRACTION AA) ISFROM X=Y AND AA(X) INFER AA(Y)

The problem formula which match@sA(X) or AA(Y) will itself be an equation in all the conjectures
which we shall consider, but we don’t need to take account of that in the rewrite rules thémselves

In principle, and in practice, it is possible to use the rewrite rule by providing just the argument
corresponding tX in the rewrite rule o¥ in the rewritebackwards rule: Jape will search for instances of
that argument on the right-hand side of the problem sequent and, in effect, construct a substitution which
it unifies with _A{x_X} or _A{x_Y}. That process finds every instance of the argument formula in the
right-hand side of the problem sequent, and sometimes that is just what is required.

When we want finer control, which we do when working under direct user control rather than via a search
controlled by a tactic, we use thETSUBSTSELandWITHSUBSTSELtacticals. The basis of the technique
which we use in encoding equational reasoning with functional programs is exemplified by the following
fragment

WHEN (LETSUBSTSEL _A (WITHSUBSTSEL rewrite))
LETSUBSTSELpatterntactic ... is a guarded tactic whose guard succeeds if:
« the user has made at least one text-selection;

« all text-selections are of identical subformitawithin the same formul& in the current goal
sequent;

+ itis possible to construct a substitution foFf{V\E} , wherev is a fresh variable, such that
F'{W\E} reduces t& in the presence of the provisaloTIN F;

« patternunifies with F’{v\E}, without simplifying the substitution unless it is unified with a
non-substitution form.

If all four conditions are satisfied, the sequeraetic ... is executed within the context created by the
unification ofpatternwith F'{V\E}. The substitution formF'{\\E} is specially marked so that it is not
simplified during the unification process unless it is matched with a non-substitution form: the effect is
that it will be unified by structure-matching with a substitution fornpattern if one is provided.
F'{V\E} is equivalent to the original formulg, and if it isn't used immediately in a unification it is
simplified out of existence: that's the reason that we have to have®rsbBSTSEL to check if we can
make the substitution form at all, and th@ITHSUBSTSEL to make it again and to use it immediately in a
rule application.

WITHSUBSTSELtactic ...is a tactic which requires that the first three of th&SUBSTSELconditions are
satisfied and, if they are, it applies the sequenc#ic ...to a copy of the problem sequent in which
formula F has been replaced W{_V\E}. this time using a fresh unknowr to facilitate unification

with the consequent of a rule which uses a corresporatagCTparameter. As before, the substitution
form F’{_v\E} is specially marked so that it can be unified component-by-component with a
corresponding substitution form in the consequent of a rule, and it's eliminated very easily by
simplification, so the first rule dhctic ... is usually the only one that gets a bite at it.

The effect of all this machinery is that it is possible for a user to specify, simply by text-selecting them,
the instances of a subformawhich are to be replaced by working backwards with the rewrite rule —

or Y with X, working backwards with rewritebackwards. Based on that bit of magic, a great deal becomes
possible.

1 We are beginning to realise how to display linear equational proofs using transitivity in much the same way that forward
reasoning steps use cut. Once we have perfected the technique our rewrite rules will have to take a different form.

Roll your own Jape logic (3.2) Page 39 Chapter 5: Equational reasoning in functional programs

5.3 Hiding parts of proofs: theLAYOUT tactical

When we use the rewrite rule in this logic-encoding, for the most part we employ straightforward
function definitions for the left-hand antecedefit Y. These definitions — ‘facts’ likenap f[] =[] — are
supposed to be well-known to the user, and are therefore best kept as marginal notes in the proof. Our
eventual goal is to be able to show a linear equational proof like those in Bird and Wadler, in which every
step transforms a formula by equality-substitution:

rev(rev[]) = rev]] by rev[] =[]
= by rev[] =]
=id[] by id x =x

In this style the definitions used in each step are noted in the justification of an equality, not included as
antecedents of an inference step. The facilities of Jape don’t quite stretch to linear equational proofs yet,
but we're close.

What we can do is to hide some of the antecedent proof trees of a proof step, and to alter the displayed
justification of that step to record some of the information which is hidden. Ths is done witty ther

tactical, which is given the justification of the step, a description of the antecedents that should remain
visible, and a tactic which generates the proof tree itself. One of the tactics we use in our encoding, for
example, reads as follows:

TACTIC UnfoldOneSel(x) IS
WHEN (LETSUBSTSEL _A (LAYOUT "Fold %s" (1) (WITHSUBSTSEL rewrite)) x)
(LETARGSEL _A (FAIL (The formulayou selected (_A) is not a proper subformula)))
(FAIL (Please text-select an expression))

LETSUBSTSELchecks that the user has selected some instance or instances of a sub-formula which
describe a substitution, and if ®aTHSUBSTSEL appliesrewrite to the user’s selection; finally the
argument tactix is applied to the first antecedent of the rewrite ((he Y antecedent). TheayouT

tactical says in its second argument that only antecedent 1 of the rewrite step — that is, the right-hand
antecedent — should be shown (antecedents are numbered 0, 1, ...); the first argument says that it should
be shown with a text which starts with Fblaind continues with a summary of the hidden subtree. The

rest of the code tries to explain what has gone wrong if the user mis-applies tfe tactic

Here is an example proof using our encoding, after two steps:

1:rev(rev x)=x
2:rev(revx)=idx Foldid1
3:(reverev)x=idx Folde2
4:reverev=id ext3

Lines 1, 2 and 3 can be read as a partly-completed linear equational proof, up the left-hand side and down
the right:

1 A backwards step of unfolding is a folding step when read forwards. Proofs in this encoding are made backwards but read
forwards: we have labelled our buttons and hamed our tactics in the backward sense, but the labels on the proofs, which are
inserted byLAYOUT and the Fold/Unfold with hypothesis rules, are written in the forward sense.

2 The attempt to analyse errors in the application of this tactic, USINGUBSTSELandLETARGSEL to pick out different
cases, doesn't really work. To do a proper job, the tactic would to distinguish between at least these possibilities:

« the subformulee you select aren't identical;

« they don't all come from the same formula;

« one or more of them isn’t a proper subformula;

¢ you didn't select anything at all.

In practice the tactic’'s error message is often inappropriate, but we show it as it is in order to illustrate the difficulty.

Roll your own Jape logic (3.2) Page 40 Chapter 5: Equational reasoning in functional programs

(reverey x =revrevx) by (feg)x=f(gx
=X by ...

=id x byid x =x
LAYOUT only hides antecedents, it doesn’t destroy them: by double-clicking on the justification of line 2
or line 3 the hidden detail can be revealed. Here is what you see if you double-click on line 3:

1: (reverev)x=rev(revx) e

2:rev(rev x)=x

3:rev(revx)=idx Foldid 2
4: (reverev)x=id x [rewrite] 1,3
5:reverev=id ext 4

5.4 Selecting a subformulaLETHYPFIND , LETCONCFIND , ASSOCEQ and FLATTEN

LETSUBSTSELandWITHSUBSTSELdon't solve all the problems of rewriting, because Jape has a very
simple-minded treatment of subformula selection. It provides only character-sequence selection, and the
user can select any sub-sequence of the characters which make up a formula. It is possible to select a
section of text which isn’t a formula at alla-+ b), for example, inx+(a+b) . Worse, it is possible to

select text which is a formula but not a proper subformula+y, for example, inf x+y. There are
well-known user-interface solutions to this problem, exploiting the syntactic structure of a formula to
guide selection, but we haven’t implemented any of them. The reason is partly lack of effort, but we have
our eyes on a higher prize: we want eventually to include a proper treatment of subformula selection in
logics which include associative operators: those whichHilkendx in school algebra, don’t need to be
bracketed when they occur in sequence.

The problem begins when a formula is input. In Jape’s treatment of syntax, just as in any ordinary
programming-language compiler, binary operators have relative priorities (or precedences) and an
formula such asA x B+ C, wherex has higher priority tham, is treated internally just likéAx B) + C

but displayed in its unbracketed fokn8ince we treat all operators as either binary or unary, Jape has to
be told, faced with the formul& + B+ C, whether to read it left-associatively @&+ B) + C or right-
associatively asA+ (B + C). Whichever you tell it, it will display the result unbracketedfasB +C,

and then inevitably some textual segmenB=+C in the left-associative casé+ B in the right-
associative — can be read as a formula even though it is not a structural subformula of the whole.

We might hope to tell Jape that the operatds neither left- nor right-associative agsociativen the
mathematical sense, so that- B+ C should be read at will as eithéA+B)+C or A+(B+C) as
circumstances dictate — and then you can imagine that it ought to be possible to tell+itighat
commutative as well, so tha&+ B+ C can be read a6A+C) + B if that is what you wish. We intend

that a future version of Jape will incorporate a more seamless syntactic treatment of associative and
commutative operators that will allow some of these alternative readings, based on the mechanisms which
already underly our treatment BAGs andLISTs in sequents. For the time being we provide support for

the explicit manipulation of associative operators in the tactic language.

Our treatment is based on the principle that a formula whose operator is associative can be rewritten in a
canonical form, and we provide means to access an internal mechanism of Jape which converts formulee
to their canonical form via the built-in judgemexsisocEqformulal formula?d and the tacti€LATTEN

formula

1 Jape tries to keep the user’s bracketing structure. If the input is bracketed, so will be the display.

Roll your own Jape logic (3.2) Page 41 Chapter 5: Equational reasoning in functional programs

The first problem is to convert a formula so that the selected text is a proper sub-formula. For example,
consider the following proof-in-progress of one of the conjectures from functions.jt:

1:| JeH=id, HeF=HeG | assumptions

2:| JoHeF=G

3:| ideF=G Unfold with hypothesis 1.1,2
4:|F=G Fold using Theorem F=ideF 3

Next we want to use the second assumed equality, to reidlaéewith H «G. But the « operator in this
encoding is left-associative, and to make the step we must first change the structure of the conclusion
formula on line 2, changing its structure from the left-associative f¢dmH)eF =G into
Je(H+F)=G. The step won't work unless there is a proof that ¢ is associative — i.e. unless a conjecture
with the form(F+G)+H = F«(G+H) or one with the fornF+(G+H) =(F+G)+H exists and is either

proved or can be assumed proved because ‘apply conjectures and theorems’ is ticked in the Edit menu.
We text-selectH « F and apply Find from the Rules métwalter the structure of the formula:

:| JeH=id, HeF=HeG | assumptions

| Je(Hem)=6

2

3:| JeHeF=G Associativity 2

4:| ideF=G Unfold with hypothesis 1.1,3
5:| F=G Fold using Theorem F=ideF 4

Now the H F = H « G equality can be used:

H J'H:id,H'F:H'G assumptions

.J.;(HOG):G

2:

3:| Jo(HeF)=G Fold with hypothesis 1.2,2
4:| JoHeF=G Associativity 3
s:[ideF=G Unfold with hypothesis 1.1,4
6:| F=G Fold using TheoremF=ideF 5

Now we would like to apply the first assumption again, ButH isn’'t a textual subformula as the
formula is written, so we have first to modify the conclusion. Flatten from the Rules menu does the trick:

1: J'H:id, HeF=HeG | assumptions

2:| JoeHeG=G

3:| Jo(HeG)=G Associativity 2

4: J'(H'F):G Foldwith hypothesis 1.2,3
5:| JeHeF=G Associativity 4

6:| ideF=G Unfold with hypothesis 1.1,5
7:|F=G Fold using Theorem F=ideF 6

1 Or from either of the panels — one of us doesn't think that this is good GUI / HCI practice, but the other one made the
encoding.

Roll your own Jape logic (3.2) Page 42 Chapter 5: Equational reasoning in functional programs

The rest of the proof is straightforward. It remains to explain how all this is done.

The LETHYPFIND andLETCONCFIND tacticals allow the user to rebracket a formwaTHYPFIND
(old,new) tactic ... tacticsucceeds if

« the user has made a single text-selection in a hypothesis formula, dividing it in effect into
before middleandafter texts;

« the hypothesis formula unifies with the pattetd;

* middleis a valid formul;

« the textbefore(middle) afteris a valid formula and unifies witiew

* the sequenctactic ... tacticsucceeds in the context produced by those unifications.

(LETCONCFIND is similar, but demands a selection in a conclusion formula.) The tactical succeeds
silently, without runningactic ... tactic if before(middle) after turns out to be structurally equal to the
original unmodified formula — a test which does not call upon information about associativity. So
LETHYPFIND andLETCONCFIND match, and run their argument tactics, if your text selection reorganises
the structure of the formula.

In functions_menus.j an entry is put in the Rules menu, and an associated tactic is defined:

MENURules IS

ENTRY "Find" ISFindSelection

TACTIC FindSelection IS
WHEN (LETHYPFIND (_XOLD=_YOLD, _XNEW=_YNEW)
(ALT (LAYOUT "Associativity" (2)
(rewriteHypotheticalEquation _XOLD _XNEW _YOLD _YNEW)
EVALUATE EVALUATE
)
(LETARGSEL _XSEL (FAIL ("%sisn"tasubterm", _XSEL)))
)
)
(LETCONCFIND (_XOLD=_YOLD, _XNEW=_YNEW)
(ALT (LAYOUT "Associativity" (2)
(rewriteEquation _XOLD _XNEW _YOLD _YNEW)
EVALUATE EVALUATE
)
(LETARGSEL _XSEL (FAIL ("%sisn't asubterm", _XSEL)))

)
The FindSelection tactic calls either rewriteHypotheticalEquation or rewriteEquation: those rfiles are
RULE rewriteEquation(X, X', Y, Y', OBJECT x) IS
FROMASSOCEQ (X, X') AND ASSOCEQ (Y, Y') ANDX'=Y' INFER X=Y

RULE rewriteHypotheticalEquation(X, X', Y, Y', OBJECT x) IS
FROM ASSOCEQ (X, X") AND ASSOCEQ (Y, Y') ANDX'=Y'FPINFER X=Y+P

The built-in ASSOCEQjudgement flattens its arguments, using any relevant theorems / rules about
associativity. Each of these rules therefore replaces an equation with a provably equivalent equation. The

1 Maybe we don't need this condition, but it would be very odd not to impose it.

2 The fact that FindSelection splits the selected formula into two, and the rules pick up that split, is an artefact ohétte way t
ASSOCEQiIs currently implemented; we will fix the problem Real Soon Now. The existence of two rewrite rules, rather
than a single one plus a tactic that can use cut, is because the encoder doesn’'t want the kind of ugly trees that result from
that kind of simulated forward reasoning.

Roll your own Jape logic (3.2) Page 43 Chapter 5: Equational reasoning in functional programs

EVALUATE tactic interprets the judgement; the useLa¥oUT in FindSelection hides this internal
working and gives Associativity as the justification for the step.

The reverse operation is provided by th@TTEN tactic. The menu entry indexes the Flatten tactic (see
equality_menus.j)

TACTICFlattenIS
LAYOUT "Associativity" (0)
(WHEN (LETARGSEL _A (FLATTEN_A))
(LETGOAL (_X=_Y) (IF(FLATTEN(_X))) (IF(FLATTEN(_Y))))
(LETGOAL _X (FAIL (Cannot Flatten _X)))
)

This tactic gives the same justification as FindSelectionFMETEN it accesses the same machinery.
The argument t&FLATTEN is used to determine the principal operator of the formula to be flattened;
subformulee of which that is the operator alone are flatfened

The effect of all this machinery is to enable the user to manipulate formulae which use associative
operators without too many uses of associative rewrite laws.

5.5 Induction in Jape

Jape makes no special treatment of induction. It is handled in the same way as any other logical
generalisation rule, using theRESH proviso. We encode a form of list induction which uses
concatenation rather thaong:

FEA] THAX] T, A(xs), Alys)F Alxs+ys)
r+A(B)

We have collapsed into one step that which usually takes two (by an induction principlépuisfe;
then inferA(B) by specialisation). There is no need to introduce quantification into equational reasoning,
and our one-step rule is perfectly convenient. We encode it directly:

RULE listinduction (B, OBJECT x, OBJECT xs, OBJECT ys, ABSTRACTION A)
WHERE FRESH x, xs, ys IS
FROM A[JAND A[x] AND A xs, Ays F A(xs++ys) INFER A(B)

Sometimes you will want to make a proof by induction of a proposition which is expressed in terms of
some variable or other, and then you would want induction to apply to every instance of that variable.
Other times you may want to be more precise in specifying just what instances of what sub-formula are to
be the basis of induction, and so we require the user to specify those instances. We could allow both
mechanisms, activated by different entries in a menu, but we have instead required our users always to
select the particular instances of a subformula which they wish to be the subject of induction. The entry in
the menu which gives the user access to the list induction principle connects to a tactic which uses the
LETSUBSTSEUWITHSUBSTSELmMechanism:

TACTIC "listinduction tactic" IS
WHEN (LETSUBSTSEL _A (WITHSUBSTSEL listinduction))
(FAIL(Please select a sub-formula on which to performinduction))

(FRESH X, XS, yS)

1 This is the reason that, at present, the FindSelection mechanism splits the formula to which it is matched. It's a bug in our
existing mechanism, which will be fixed.

2 Definining lists with concatentation rather thesnshas advantages, in particular the fact that it doesn't favour either end
of a list when making a reduction. It has difficulties, but it is valid. The sceptics (Richard is ashamed to admit that he was
once one of them!) should note that you can derive this rule from the more fagpitiaversion. As for evaluation
strategies, or function definition by concatenation, that's a different story!

Roll your own Jape logic (3.2) Page 44 Chapter 5: Equational reasoning in functional programs

5.6 Controlling collections of rules

One of the problems of reasoning in functional programming, as we have set it up in this encoding, is that
each function definition corresponds to a number of individual statements of equality. The definition of
map for example, gives three:

map f[] =]
map f[x] = f x
map f (xs+ys) = map f xs+map f ys
It would be tedious to be required to give a name to each individual equality, and in any case we expect

our users to be happy to refer to them as a collection — ‘use onenséegjualities’, rather than ‘use the

map equality which applies to singletons’.

The RULES directive allows us to make and name collections of rules. If we turn all the function
definitions into collections of rules we can use them, with some instantiation of their variables, to close
the left-hand antecedent ofewrite rule application or to close a tip of a proof tree in the normal way.
The definition ofmap for example, goes as follows:

RULES map

AREmapF[] =[]

AND map F [X] =[FX]

ANDmapF (Xs++Ys) =mapFXs++mapFYs
END

This generates three rules, caledp' map'landmap'2 plus a tactienap
TACTICmap ISALT map’0 map’1 map’2

In addition, for control of searching of our collections of rules, we group them into collections called
‘theories’. Part of theist theory, for example, as it is given in functions_rules.j is

THEORY List IS
RULES length

RULE none ISnoneX =[]
RULE one ISoneX =[X]
RULE cat IScat =fold (++) []
RULESrev

RULES ++
RULES map

RULE filter IS filter P = cat ® map (if P (one, none))
RULES zip

RULES fold

RULE rev2ISrev2 =foldrcat[] ® mapone
RULE rcatISrcat XsYs=Ys ++Xs
RULE ":"IS X:Xs = [X] ++ Xs

END

The effect ofTHEORY is to define all the rules and tactics described by its components, plus a tactic
which allows search of those components. In this case the tactic is

TACTICList ISALT length none rev (++) map filter zip fold rev2 rcat (:)

Roll your own Jape logic (3.2)

Page 45 Chapter 5: Equational reasoning in functional programs

We put the rule-collections — but not the theory-collections — into a panel of definitions. The panel is
described in functions_menus.j as

TACTICNANEL "Definitions"

TACTIC "Use any rule enabled by Searching" IS SearchTactic

ENTRY "
ENTRY o
ENTRY !
ENTRY "®"
BUTTON "Unfold *"

PREFIXBUTTON "Unfold"
PREFIXBUTTON "Fold"
PREFIXBUTTON "Apply"

BUTTON "Flatten"
BUTTON "Find"
END

The effect, on the Macintosh, is a panel which looks like this:

IS apply RepeatedlyUnfold
IS apply UnfoldObvious

IS apply FoldObvious

IS apply

IS apply Flatten

IS apply FindSelection

H:

: Definitions

[=

-
E
]
++
cat
del
filter
faold
f=t

if

id

ins
length
map
move
none
one
rat
ref
rewv
Feva
=nd
Swap
zip

L

R

Use any rule enabled by Searching |1

&

[(Unfold = J[unfold |

(_Ford Ji__ ey}

[Flatten J[Find |

[&|

We discuss the effect of the tactics bound to the buttons and entries below.

Roll your own Jape logic (3.2) Page 46 Chapter 5: Equational reasoning in functional programs

5.7 Searching collections of rules and theorems: tiOLD and UNFOLD tacticals

It's quite possible, using the Unfold and Fold buttons on the Definitions panel, plus the Unfold with
hypothesis and Fold with hypothesis entries in the Rules menu, to construct proofs entirely by hand —
selecting the subformula to be replaced, the definition or hypothesis to be used, pressing the appropriate
button or choosing the appropriate menu entry. But it's also quite easy to program Jape to do a sort of
evaluation step. This involves identifying helpful equations (in the form of rules or theorems) which can
be used to rewrite part of the conclusion of the problem sequent.

Jape has a number of built-in mechanisms which help with the procesaLThactical allows an
undirected search amongst a number of possibly-applicable tactics, and we have illustrated above how the
RULES andTHEORY directives automatically construatT s which may be useful in searching for a proof.

But in equational reasoning the problem is somewhat different: we are looking for a subformula which is
replaceable and a definition or hypothesis which matchestitis not sufficient to do the job.

In the future Jape will support such searching by a mechanism based on mapping tactics over a list of
subformulee of a formula. For the moment our support is more ad-hoc: although based on the same
principles, it is closely adapted to the particular problem of equational rewriting.

Jape’s support for search in equational reasoning is at preseAptie UNFOLD, FOLDHYP and
UNFOLDHYP tacticals. The=oLD andUNFOLD tacticals take a rewrite rule and anT tactic, which is

treated as a collection of rules. They filter the rules to consider only those whose consequents have a
conclusion of the fornL op Rfor some formulad andR and a binary operatap?; they search for
subformulee of the conclusion of the problem sequent which matéh(#@ D) or L (UNFOLD) of one of

the rules, and when they find a coincidence try to apply the rewrite rule followed by the matching filtered
rule. FOLDHYP andUNFOLDHYP are similar, except that they take a pattern which allows the user to
defineop, and they search the list of hypotheses rather than a collection of rules.

However ad-hoc, these techniques are fast and they work well. In this encoding our rules are such that
automaticFoLDing is little use: too many equalities have right-hand sides which are similar, and
searching witlaLT for a match rarely finds a useful one. But automakieoLDing can often be fruitful:

if there is a subformula which matchmapF (Xst+Y9, for example, then unfolding with the ruteap F

(Xst+Yg =map F Xs+ map F Yss probably worthwhile.

Our search mechanism, then, is based on the tactic
TACTIC Unfold(x) ISLAYOUT "Fold %s" (1) (UNFOLD rewrite x)

which is given amLT tacticx and which searches for (backwards) unfold actions which it can carry out
by rewriting with the rules withim.

The magic by no means stops with theOLD tactical, because we also use the collections of theories to
control the search. The idea is that you should be able to ‘turn on and off’ the definitions and theorems in
particular theories when searching. Because the variable-processing facilities of Japeish are still in their
infancy, we have done this in the most naive way possible, B8DEBUTTONS in a special Searching
meni?.

We have grouped the equality rules into three theories: List (illustrated above), Functions and Reflect. We
have grouped conjectures into collections, some of which we are prepared to search. Here, for example, is
the Listthms collection:

THEOREMS ListThms

ARE reverev =id

AND rev2 =rev

AND mapFemapG =map (F e G)

1 The rules — actually rules and theorems — are doubly filtered because we eliminate all unproved conjectures unless the
applyconjectures variable is set to true.

2 These controls would have been easier to use if they had been simple checkboxes, but at present Jape can't make much use
of the values of variables during tactics. This will be remedied soon.

Roll your own Jape logic (3.2) Page 47 Chapter 5: Equational reasoning in functional programs

AND mapF e cat =cat e (map (mapF))

AND noneeF =none

AND mapF e none =none

AND mapF e one =oneeF
AND mapF erev =revemapF
AND mapid =id

AND lengthemapF =length

AND zip ® (map F® map G)
AND mapF ¢ifP(G,G")
AND filterP

END

These, once proved, can be searched when automatically unfolding equalities; they can even be searched
before they are proved, if applyconjectures is set to true.

Our basic technique at preskist to use variables each of which is set to the name of a theory if we want
to search that theory, or to the name of a tactic which is certain to fail, if we don’t want to search it. The
JUSTFAIL tactic is

TACTICJUSTFAILIS (ALT)
and the Searching menu is

MENU "Searching" IS
RADIOBUTTON dohyp IS
"Search hypotheses" IS DoHyp
AND "Ignore hypotheses" IS JUSTFAIL
INITIALLY DoHyp
END

RADIOBUTTON listIS

"List rules enabled" IS List

AND "Listrulesdisabled" IS JUSTFAIL
INITIALLY List

END

=map (F®G)
=ifP(mapF ¢ G,mapF *G")
=map fst e filter snd e zip ® (id® map P)

END

1 This paragraph reflects a temporary hack to get around the fact that Jape doesn’t yet have any analoguecathe ML
expression, which we can use to direct the activity of a tactic according to the value of a variable. It probably toak longer t
type this footnote than to implement the mechanism — but the manual must come first!

Roll your own Jape logic (3.2) Page 48

Chapter 5: Equational reasoning in functional programs

On the Macintosh this produces a menu

Windows
+ Search hypotheses
Ignore hypotheses

« List rules enabled
List rules disabled

List theorems enahled
+ List theorems disabled

+ Function rules enabled
Function rules disabled

Function theorems enabled
« Function theorems disabled

Reflect rules enabled
+ Reflect rules disabled

Reflect theorems enabled
+« Reflect theorems disabled

The AUTO tactic is set up either to unfold or to fold — though for the reasons given above, we never

actually use it for folding — and is defined as

TACTIC Auto(foldunfold, foldunfoldhyp) IS
ALT (dohyp foldunfoldhyp)
(foldunfold list)
(foldunfold listthms)
(foldunfold function)
(foldunfold functionthms)
(foldunfold reflect)
(foldunfold reflectthms)
(FAIL (Cannot find anything to foldunfold))

It's called from the Unfold * button with the tactic

SEQ (AutoUnfold UnfoldWithAnyHyp)
(DO (Auto Unfold UnfoldWithAnyHyp))

— sinceDO always silently succeeds, we wanted to make the button fail noisily if there was nothing at all
that it could do; hence the double invocation of the tactic.

We use the same tactic — but only singly, without repetition — if you double-click on a conclusion:

CONCHIT CIS Auto Unfold UnfoldWIthAnyHyp

The remaining parts of this jigsaw are the UnfoldWithAnyHyp tactic
TACTIC UnfoldWithAnyHyp IS UNFOLDHYP "Fold with hypothesis" (_A=_B)

and the Fold/Unfold with hypothesis pair of rules:

Roll your own Jape logic (3.2) Page 49 Chapter 5: Equational reasoning in functional programs

RULE "Fold with hypothesis" (X, OBJECT x) ISFROMX=Y - AA[X\Y]INFER X=Y F AA[x\X]
RULE "Unfold with hypothesis" (Y,0BJECTX) ISFROMX=Y F AA[X\X]INFERX=Y F AA[X\Y]

These rules are named for forward reading, so the menu entries which enable them to be used by hand
have to be contrariwise.

All of the other techniques that we have used are discussed in earlier chapters.

Chapter 6

Encoding axiomatic set theory

The treatment of equational reasoning in the previous chapter introduced the ways in which Jape can hide
parts of a proof and use substitution to achieve replacement of subformulae with rewrite rules. This
chapter shows how the same techniques can be used to support the encoding of a very naive version of
axiomatic set theory, which uses rewriting to support equality-style reasoning in both forward and
backward steps. Our treatment was inspired by that of David Schmidt (“Natural Deduction Theorem
Proving in Set Theory”, CSR-142-83, Edinburgh).

The encoding presents four distinct things to the user: an encoding of natural deduction, as a menu of
commands; an menu of rewrite actions; a menu of set-theoretic inference rules; and a panel of axioms
expressed as definitioisrmula = formula, equipped with buttons which allow those definitions to be
used as left-to-right or right-to-left rewrite rules. In addition there’s a menu of conjectures equipped with
buttons which allow the user to exploit proved theorems as rewrite rules.

This is the most ambitious use of Japeish so far to produce a slick on-screen encoding with a lot of
different — but easy to use — facilities. We may have gone too far with some of the user interface tricks we
have used, and the encoding can hardly be described as ‘transparent’. The tactic programming is, indeed,
at times rather subtle. We expect, as we learn from this and other examples under development, to be able
to generalise and therefore simplify it.

6.1 The natural deduction encoding

This is contained in the files BnE-Fprime.jt and the files that it invokes; it is derived from theFfoigic

“The Language of First-Order Logic” by Barwise and Etchemendy. It is very similar to the encoding
described in chapter 4 above, with the addition of rules for a bi-implication operator, a falsity constant,
equality, and a unique-existence operator:

I AFB TI,BFA l''B TFA~ B A TFA- B
— — " " L -EL) ——Z—~_ -E(R
’FAo B A B
3 k= +
reP k=P, LI R A=A
re0 rpP r’FA=A
F FB= +
rFAX\B] T AX\crB C(FRESHC,CNOTINB)EI—E mEI—E
rFOx.A Mx.A

plus a pair of rewrite rules for each of the bi-implication and equality operators:
A o B THP[V\B] MNFA o B THEPV\A]

rewrite o « rewrite o »
FFPV\ A IFP[v\B]
'tA=B TFP[v\B] . FrFA=B THPV\A])
rewrite=« rewrite=»
FFPV\ A] IFP[v\ B]

These are encoded, completely straightforwardly, in the file BnE-Fprime_rules.].

-850 -

Roll your own Jape logic (3.2) Page 51 Chapter 6: Axiomatic set theory

The rules are inserted into the menu as
MENU "SystemF""IS

Roll your own Jape logic (3.2) Page 52 Chapter 6: Axiomatic set theory

ENTRY "—>-I"
ENTRY "e-|"
ENTRY "-I"

ENTRY "v-I(L)"ISFOB ForwardCut "v-I(L)"
ENTRY "v-I(R)"ISFOB ForwardCut "v-I(R)"

ENTRY "--I"
ENTRY " L-I"
ENTRY "v-I"
ENTRY "3-I"

SEPARATOR

ENTRY "—>-E"
ENTRY "e-E(L)"
ENTRY "e-E(R)"

ISFOB "~-E forward" ">-E"
ISFOB "&-E(L) forward" "e-E(L)"
ISFOB " &-E(R) forward" "-E(R)"

ENTRY "-E(L)" ISFOB ForwardCut "-E(L)"
ENTRY "-E(R)" ISFOB ForwardCut "-E(R)"
ENTRY "v-E" ISFOB ForwardUncut "v-E"
ENTRY "--E" ISFOB ForwardCut "~-E"
ENTRY " L-E" ISFOB ForwardCut " L-E"
ENTRY "V-E" ISFOBSS ForwardCut "V-E"
ENTRY "3-E" ISFOB ForwardUncut "3-E"
SEPARATOR
ENTRY "A=A"
ENTRY hyp

END

HereFoB is essentially the tactic ForwardOrBackward of chapter 4, ForwardCut and ForwardUncut are
also as described in chapter 4, and the entries for bi-implication use the tactics

TACTIC "e-E(L) forward"(Z) IS "« -E forward" "<-E(L)"
TACTIC "e-E(R) forward"(Z) IS "« -E forward" "e-E(R)"
TACTIC "e-E forward"(rule) IS

WHEN (LETHYP (_A< _B) (ForwardCut2 rule))

(LETHYP _A (ForwardCutrule))
(JAPE(fail(what's thisin rule forward?)))

Using the rewrite rules is, as we have seen in chapter 5, a little more complicated. The Substitution menu
is

MENU "Substitution"

ENTRY"Ae..." IS ForwardSubst "rewrite « «" "rewrite © »" (&)

ENTRY"...eB" IS ForwardSubst "rewrite « »" "rewrite © «" (&)

ENTRY "A=..." ISForwardSubst "rewrite = «" "rewrite = »" (=)

ENTRY"...=B" ISForwardSubst "rewrite = »" "rewrite = «" (=)
END

The ForwardSubst tactic extends the techniques of chapter 5 to allow rewriting in forward as well as
backward reasoning style. We require that the user must text-select some subformula and also may select
a hypothesis which is to be usedfs=B or A~ B in the rule. The tactic is rather suBtlé’'s given a left-

1 Pperhaps, at this point, you might begin to wonder whether the complexity of our tactic programming doesn’t undermine the
claim that Jape is simple and easy to program. Our answer is twofold: first, this is work in progress, it is much simpler than

to-right rewrite ruleruleLR, a right-to-left rewrite ruleuleRL, and a patterpat which it uses in error
alerts. Note how the menu entries alternate the use of the rewrite rules to get the correct rewriting effect
when working either forward or backwards.

TACTIC ForwardSubst (ruleLR, ruleRL,pat) IS
WHEN (LETHYPSUBSTSEL _P
cut
ruleRL
(WHEN (LETHYP_Q
(ALT (WITHHYPSEL hyp)
(FAIL (the hypothesis you formula-selected wasn't a pat formula))))
(JAPE (SUBGOAL 1)))
(WITHSUBSTSEL hyp))
(LETCONCSUBSTSEL _P
(WITHSUBSTSEL ruleLR)
(WHEN (LETHYP_Q
(ALT (WITHHYPSEL hyp)
(FAIL(the hypothesis you formula-selected wasn't a pat formula))))
SKIP))
(JAPE (fail(please text-select one or more instances of a sub-formula to replace)))

LETHYPSUBSTSELpattern tactic ..succeeds when the user’s text-selections describe a substitution in a
hypothesis (left-hand side) formulee TCONCSUBSTSELsucceeds when they describe a substitution in a
conclusion (right-hand side) formula.

Working backwards withETCONCSUBSTSELthe tactic is fairly straightforward: it applies ruleLR (one of
the argument rewrite rules) on the substution formula that the user has defined, and then, if the user has
selected a hypothesis, tries to unify it with the conclusion of the first antecedent of the rewrite.

Working forwards it does eut and then applies ruleRL (the other rewrite rule, which will do its work in

the opposite direction to ruleLR) and then either applies the user’s selected hypeitiesis ¢r skips

the first antecedentAPESUBGOAL 1)) and then doesITHSUBSTSELhyp, which uses the user’s original
text-selection to construct a substitution in the current problem sequent, andbals@n automatic
WITHHYPSEL on it, so that th@ypis bound to make use of that hypoth&si$he automatiovITHHYPSEL

enables us, as in this example, to distinguish between two selected hypotheses: the one selected for
application as an equality, and the one text-selected for rewriting.

6.2 Syntax of set operations

Apart from the various operators, which have been encoded in the obvious way, the only important
syntactic feature of this encoding is the treatment of set abstractions. Jape’s parser-generator isn't very
sophisticated at present, so we have made some drastic simplifications.

The form of a set abstraction, in this encoding, igafiable [formula}, and the occurrence of the
variable to the left of the bar is a binding occurrence; we also allovafiablevariable> | formula}.
We include, therefore, in set_syntax.j

CLASSVARIABLEuvw

CONSTANT@ LUEQ

PREFIX 1000 Pow
PREFIX 800 mn

it used to be, and that we are still working on it. But second, we now realise that while encoding the rules of a logic in Jape
and arranging them in menus is straightforward and transparent, the work required to hide parts of proofs or to achieve
concise effects by hiding gestures is programming, and programming is always potentially intricate.

1 |t seems reasonable thatTHSUBSTSELshould include an automat¢ITHHYP/WITHCONCSEL because if the newly-
constructed hypothesis isn't to be used, why was it constructed?

Roll your own Jape logic (3.2) Page 53 Chapter 6: Axiomatic set theory

POSTFIX 800 *
INFIX 700L -
INFIX 720L e
INFIX 740L x
INFIX 600L <
INFIX 500L €-e
OUTFIX <>

OUTFIX {1}

BINDySCOPEPIN{yIP}
BIND xy SCOPEPIN { <x,y> 1P}

The priority numbers chosen are higher than the priority of any operator in BnE-Fprime_syntax.j, and
otherwise have no particular significance. We misuse the linear togjjobol as our representation of
set negation, but we do use it as a postfix opérator

Given theOUTFIX andBIND directives above, together with the standard interpretation of comma as a
zero-priority associative operator, we allow the following as formulee:

{ which we interpret as the empty set;

{ formula} which we interpret as a singleton set;

{ formula ... ,formula} which we interpret as a literal description of a set;

{ variable| formula} which we interpret as a set abstraction;

{ <variable variable> |formula} which we interpret as a set abstraction, a set of pairs.

Allowing set brackets with and without the vertical bar is a trick of which we are slightly ashamed. In
future we hope that these shapes of formulae, and more, will be recognised by a more principled parser.

6.3 The axiomatic presentation of naive set theory

We first observe, just to get it out of the way, that this encoding of set theory does not attempt to avoid

Russell's paradox. Schmidt's treatment was based on Godel-Bernays set theory and had a judgement

“Set A”, which we have not carried forward into our treatment, principally because our client didn’'t want
us to.

The axioms of comprehension and extension in this naive treatment are
comprehensiontIP.0AX DA o P(X)
extension:0A,B.A=B « (OxxOA « xOB)

Of course the axiom of comprehension, stated as above, isn't first order, but that doesn’t bother Jape. We
haven't yet found a way to incorporate comprehension as a single rule, just because of the existence

operator, and so we have followed Schmidt and incorporated it as two rules for each of our set-abstraction
forms:
rHP(A) rAD{y|P(y)}
reAD{y|P(y)} rrP(A)

The rules are encoded as a coupleLafs

RULES "abstraction-I"(A, OBJECT y,OBJECT z) ARE
FROMP(A) INFER Ae{y|P(y)}

AND FROMP(A,B) INFER <A,B>€¢{ <y,z>P(y,z) }

END

r+P(A B)

r+(AB) 0{(y.2) | P(y.2)}
rH(AB) DO{(y.2)| P(y.2)}

r+P(A B)

1 putting a smiley face here, in Windings font, adds about 300k bytes to the PostScript version of this file. Consider yourself
smiled at.

Roll your own Jape logic (3.2) Page 54 Chapter 6: Axiomatic set theory

RULES "abstraction-E" (A, OBJECTy, OBJECT z) ARE
FROM Ae{yIP(y) } INFERP(A)

AND FROM <A,B>¢{ <y,z>|P(y,z) } INFERP(A,B)

END

and are incorporated into the SetOps menu in the usual way

ENTRY "abstraction-I" ISFSSOB ForwardCutwithSubstSel "abstraction-I"
ENTRY "abstraction-E" IS FOBSS ForwardCut "abstraction-E"

TheFoBssandFsSsOBtactics are each a variation of #hes tactic, requiring that the user makes a text
selection when reasoning backwardgsg or forward ESSOB:

TACTIC FOBSS (Forward, Rule) IS
WHEN (LETHYP_P
(ALT (ForwardRule)
(WHEN (LETARGSEL _Q
(JAPE(failgivingreason(Rule is not applicable to assumption' _P"'
withargument'_Q"))))
(JAPE(failgivingreason(Rule is not applicable to assumption' _P"))))))
(LETCONCSUBSTSEL _P
(ALT (WITHSUBSTSEL (WITHHYPSELRule))
(LETGOAL _Q
(JAPE(failgivingreason(Rule is not applicable to conclusion' _Q"'
with substitution' _P"))))))
(ALT (WITHSELECTIONSRule)
(JAPE(failgivingreason(Rule is not applicable to that conclusion))))

TACTIC FSSOB (Forward, Rule) IS
WHEN (LETHYPSUBSTSEL _P (Forward Rule))
(ALT (WITHSELECTIONSRule)
(WHEN (LETARGSEL _P
(JAPE(failgivingreason(Rule is not applicable with argument' _P'))))
(JAPE(failgivingreason(Rule is not applicable)))))

TACTIC ForwardCutwithSubstSel(Rule) IS
SEQ cut
(WHEN (LETSUBSTSEL _A Rule (WITHSUBSTSEL hyp))
(JAPE (fail(please text-select one or more instances of a sub-formula))))

We can incorporate extension, however, as an axiomatic definition. We don'’t include the outer
quantification, as our rules are schemata. The rule is

A=Bz0yyOA - yOB
encoded ds
RULE (OBJECTy) ISINFER A=B 2 (Vy.ycA<>yeB)

When we use this rule we will normally do so with a rewrite: replace some subformula which matches
one side or other of the definition, closing the first antecedent of the rewrite with an instance of the
axiomatic definition above. But we don’t want to see the particular instance of the axiom as part of the
proof: just as in the functional programming example, it is best referred to in the justification of the

rewrite step, and otherwise hidden from view.

1 1t's obvious from this example that Jape needs a simple way of expressing rules whose name is just the consequent of the

rule. It will have it, one day.

Roll your own Jape logic (3.2) Page 55 Chapter 6: Axiomatic set theory

We include the rule as part of a Definitions panel, then, and have two buttons on the panel which allow
left-to-right and right-to-left rewriting. As with the Substitution menu, switching the rewrite rules around
in the tactics associated with each button allows forward or backward rewriting:

PREFIXBUTTON "A=..." IS apply ForwardSubstHiding "rewrite 2 «" "rewrite 2 »"
PREFIXBUTTON "...2B" IS apply ForwardSubstHiding "rewrite 2 »" "rewrite 2 «"

The tactic ForwardSubstHiding is rather subtle, because it allows the user to rewrite
« either a hypothesis or a conclusion;
« after text-selecting a number of instances of a subformula, just those instances;
« without text-selecting, the whole hypothesis or conclusion.

In fact it is only forward rewriting without text selection that is more subtle than what we have already
seen.

TACTIC ForwardSubstHiding (ruleLR, ruleRL, thm) IS
WHEN (LETHYPSUBSTSEL _P cut (LAYOUT () (1) ruleRL thm (WITHSUBSTSEL hyp)))
(LETCONCSUBSTSEL _P (LAYOUT () (1) (WITHSUBSTSEL ruleLR) thm))
(LETHYP _Pcut (LAYOUT () (1) ruleRLthm
(LETGOAL (_P'[_v_Q]) (WITHHYPSEL(hyp _Q)))))
(LETGOAL _P (LAYOUT () (1) (ruleLR _P) thm))

The first alternative in the/HEN is activated when the user has text-selected in a hypothesis: it cuts, uses
one of the rewrite rules, closes the first antecedent with the theorem, and the second using the text-
selection that the user made. The second alternative is activated when there is a text-selection in a
conclusion: it uses the other rewrite rule followed by the theorem. The last alternative is activated when
there is no recognisable text-selecti@nd no hypothesis selection: it activates the same rewrite rule as
the second alternative, but gives it the whole conclusion formula instead of the user’s text selection: that
is a particularly easy ‘abstraction’ for the substitution-unifier to resolve, and the effect is to unify the
whole consequent with the left- or the right-hand side of the theorem, depending on the particular rewrite
rule that is used.

The third alternative is the tricky one. It calls the same rewrite rule as the first alternative, but gives it
nothing to work on, so that rule will necessarily succeed by deferred unification of the consequent of the
rewrite with the conclusion. Then it closes the first antecedent of the rewrite with the theorem: that alters
the consequent of the rewrite, but won't introduce enough constant material to enable the deferred
unification to be resolved. Somehow we have to unify the selected hypothesis with one side or other of
the theorem, just as in the fourth alternative. The trick is to realise that after the theorem is applied, the
second antecedent of the rewrite step will be a substitution: we take the substituting formula from that
substitution and, usinigyp, unify that with the whole substitution and the originally-selected hypothesis.
The effect is like magic: the whole of the selected hypothesis is unified with one side or the other of the
theorem, just as in the fourth alternafive

Each of the entries in the Definitions panel is intended to be used as a two-way rewrite rule, using the
buttons above. One entry in the Definitions panel is given in BnE-Fprime_menus.j (where also the
buttons are defined):

RULEIS A=B = ~(A=B)

1 Actually, and unfortunately, when there isvadid text selection.
2 |t's quite a clever bit of tactic programming, and that's the problem. In the future we hope to be able éitiaiont the
formulae -A or B — in the rewrite rule to be provided as argument.

Roll your own Jape logic (3.2)

Page 56

This definition makes it unnecessary to have ruleg¥oirhe others are in set_menus.j:

RULE IS A-¢B = =(A¢B)

RULEIS@ = {}

RULE (OBJECT x) ISEQ = {xIx=x}

RULE (OBJECT x) IS {A} = {xIx=A}

RULE (OBJECT x) IS {A,B} = {xIx=Avx=B}

RULE (OBJECT x) IS {A,B,C} 2 {xIx=Avx=Bvx=C}

RULE (OBJECT x) IS {A,B,C,D} = {xIx=Avx=Bvx=Cvx=D}
RULE (OBJECTy) ISAcB = (Vy.ye A>yeB)

RULE (OBJECTy) IS A=B = (Vy.ye A< yeB)

RULE (OBJECTy)ISAB= {ylyeAvyeB}

RULE (OBJECTy)ISAnB= {ylyeAyeB}

RULE (OBJECTy)ISA-B= {ylyeAy-eB}

RULE (OBJECTy)ISA™* = {yly-€A}

RULE (OBJECT x, OBJECTy) IS (C) = {x|3y.xeyyeC}
RULE (OBJECT x, OBJECT y) IS (C) 2 { x| Vy.yeCoxey }
RULE (OBJECT x) ISPow(A) = { xIx<A}

RULE (OBJECT x, OBJECTy) ISA%B = { <x,y> | xeAyeB}
RULE (OBJECT x, OBJECTy, OBJECT z) ISA®B = { <x,z> | Jy.<x,y>€cA<y,z>cB}

6.4 The non-axiomatic rules

A proof using the axioms will typically introduce and then eliminate logical connectives. Here is the

beginning of such an axiomatic proof:

1:| A=B assumption

2:| Vy.yeAeyeB A=Bz(Vy.ycAoyeB) 1
3:[| ceA assumption

4:|| ceAeceB V-E'0 2

5:| | ceB <-E(R)3,4

6:| ceA—>ceB >-13-5
7:|Vyl.yleA->y1eB| v106

8:| AcB AcBz(Vy.ye A-yeB) 7
9:| BcA

10:| AcBB<A -1 8,9

11:| AcBB<A assumption

12:| A=B

13: A=Be AcBB<A ©11-10,11-12

Chapter 6: Axiomatic set theory

1 In the future we hope to be able to handle this sort of definition by ‘definitional equality’, where yodwBisnd Jape
interprets it as A=B) but displays it a®#B; compare the treatment oA-as equivalent td— L in many treatments of
the intuitionistic sequent calculus, which we also can't handle at the moment as transparently as we would wish.

Roll your own Jape logic (3.2) Page 57 Chapter 6: Axiomatic set theory

It is clear that there will be lots of repetitive application§&leE, U-1, —-E, —-I, and similar logical rules
during this proof. It is clear that there could be introduction and elimination rules for each of the set
operators. These are the ones relevant to the proof above:

rcOAFcOB Mr’COA THFAOB
——————— (FRESH¢) O -1 ———————U0-E
r’cAOB rCoB
r’FAOB TFBOA 'FA=B NrNFA=B
_——— =- ———— =-E(L) ————— =-E(R
MrNA=B r'AOB rNBOA

and here is the proof completed using these rules, rather than the axiomatic definitions:

1:| A=B assumption
2:| Ac<B =-E(L)1

3:| BcA =-E(R) 1
4:| AcBB<A 4123

5:| AcBBcA assumption
6:| AcB -E(L) 5
7:| B<A ER) 5
8:| A=B =16,7
9:AzBeAcBB<A ©-11-4,5-8

Somewhat simpler! The rules are encoded in the obvious avay/likewise organised into a menu.
Naturally we regret that Jape cannot yet deal with proofs of derived rules such as these.

1 Jape is currently unequipped to allow the user to prove derived rules from the axioms. We intend that in the near future it
should permit it — the mechanism we have for proving theorem schemata is almost all that we need.

Chapter 7

Encoding the Hindley-Milner type-assignment
algorithm

We consider a version of the algorithm for the lambda calculus with tupldstéeitec bindings.
CX:TFE:T' CFF:T - T CHG:T

CEAXE:T - T CHFG:T'

CHEL:T1 CHE2:T2

CHELE2): (T1x T2)

CFE:T1 CFT1<S CxXx:SHFF:T .

Ctletx=EinFend: T
C(X)>S S>-T
Ckx:T

In each of these rules the contéxis a sequence of bindings of program variables to type schemes which
can be read, right to left, as a mapping from variables to type schemes. The jud@ment...
interprets the context in just that way. The judgen@®t < S is thegeneralisation stepn which ‘type
variables’ free in the typ€ but not free in the contet are used to transform tygento type schem&

The judgementS>T is the correspondingpecialisation stepwhen the schematic variables®#re
replaced by type formulee.

The difficulties of encoding the Hindley-Milner algorithm are just those of representing the schematic
‘type variables’, representing and interpreting the type context and implementing the generalisation and
specialisation steps.

application — |

tuple—1|

C,X:TIFE:T1 CFT1<S CX:SFF:T
Ctletrecx =EinFend: T

letrec— |

identifier type

7.2 Syntax

We represenk formulee as aErTFIX formula, and we give that formula a lower priority than the colon
operator, so that we don’t unnecessarily have to bract@mulae. The type-tupling operatois treated

as an associative operator, rather like comma. We need an == operator (blechh!) because = is used in the
let / letrecsyntax. We use « for generalisation and » for specialisation. We use a double-arrow operator
rather than a colon in the contexts, for no particularly good reason that we can remember. We have
included additional operatossand< which are used in the generalisation-step induction.

We have represented type schemes which include schematic variables— so-called polytype$ eras
OtL,t2.T and so on, with up to four schematic variables. Those which have no schematic variables — so-
called monotypes — asT#whereT is a type formula. This is faithful to Milner’'s treatment in the ML
description, where he describes the sch&ras a shorthand faf). T.

We have included constarttgl, t| andnil which are useful in describing list-processitrge andfalse
which are useful in handling booleans; we have included constant type-baohestring andnum

-58 -

Roll your own Jape logic(3.2) Page 59 Chapter 7: Hindley-Milner type assignment Roll your own Jape logic(3.2) Page 60 Chapter 7: Hindley-Milner type assignment

First the program names: CLASSLISTC
CLASS VARIABLE xy z e fg map SEQUENT ISLIST F FORMULA
CLASSFORMULAEF G 72 Rul
CLASS CONSTANT ¢ : ules
CONSTANT hd tinil The structural rules are very straightforwardly encoded, following the algorithm directly. Note the use of
CLASSNUMBERN a type schemeT in the rule which deals with formulze.
g;ﬁéﬁi}zﬁt‘i;‘alse RULE"FG:T" FROMCFF:T1->T2ANDCHFG:T1 INFER CFFG:T2
RULE"AX.E:T1-T2" FROMC,x=>#T1FE:T2 INFERCFAMX.E: T1-T2
and then the type names: RULE"(E,F):T1xT2" FROMCFE:T1ANDCHF:T2 INFERCH (E,F): T1xT2
CLASS VARIABLE t RULE "ifEthenETelse EF fi: T" . .
CLASSFORMULA ST /*we use T for types, S for type schemes in the rules which follow */ FROMCHE:bool ANDCHET: TANDCHEF:T INFERCFif EthenETelse EFfi: T
CONSTANT bool string num There are some simple rules which deal with constants:
Next operators for programs: RULE "n:num" INFERCF n:num
SUBSTFIX 500 {E/x} RULE "s:string" INFER C+ s:string
JUXTFIX 400 RULE "true:bool" INFERCF true:bool
INFIXC 140L +- RULE "false:bool" INFER C+ false:bool
INFIXC 120R = which we apply whenever possible — in this casEOUNIFY seems to be the best mechanism:

INFIXC 100L =/*we need this because we also havelet f=...*/

AUTOUNIFY "n:num" "s:string" "true:bool" "false:bool"

LEFTFIX 75 .

INFIX 50L = Dealing with the various forms ¢t andletrec formulae is a matter of tedious listing. Here arelétec
rules:

OUTFIX[]

OUTFIX letrecinend RULES letrecrules ARE

OUTFIX let inend FROMC,x=#T1+E:T1 ANDCFT1«S1 ANDC,x=S1+F:T

OUTFIX if then else fi INFERCFletrecx=EinFend: T

AND FROMC,x1=#T1,x2=>#T2+E1:T1 ANDCx1=>#T1,x2=>#T2+E2:T2

and operators for types: ANDCHT1«S1 ANDCFT2«S2 AND C,x1=51,x2=S2 HF:T

INFIX 150T x INFERCFletrecx1=E1,x2=E2inFend: T
INFIX 100R - AND FROMC,x1=#T1,x2=>#T2,x3=>#T3FE1:T1 ANDC,x1=>#T1 x2=>#T2,x3=>#T3+E2:T2
LEFTFIX 75 V. AND C,x1=>#T1,x2=>#T2,x3=>#T3+E3:T3 ANDCFT1«STANDCFT2«S2
PREFIX 75 # ANDCFT3«S3 AND C,x1=S1,x2=>S2,x3=>S3+F:T
INFIX 55L e INFERCFletrecx1=E1,x2=E2,x3=E3inFend: T
INFIX 50L T AND FROMC,x1=#T1,x2=#T2,x3=>#T3,x4=>#T4+E1:T1
Now bindings: AND C,x1=#T1,x2=#T2,x3=#T3,x4=>#T4 FE2: T2
AND C,x1=#T1,x2=>#T2 x3=>#T3,x4=>#T4+E3:T3
BIND x SCOPEEIN)x.E AND C,x12#T1,x2=>#T2 x35#T3 x4=#T4+E4: T4
BINDtSCOPETINVt.T ANDCFT1«STANDCFT2«S2 ANDCHT3«S3 AND CHT4«S4
BINDt1t2SCOPETINVt1,t2.T AND C,x1=>S1,x2=>52,x3=>53,x4=>S4 - F:T
BINDt1t2t3SCOPETINVt1,t2,t3.T INFERCFletrecx1=E1,x2=E2,x3=E3,x4=E4inFend: T
BINDt1t2t3t4SCOPETINVt1,t2,t3,t4.T END
BIND x SCOPEF INletx=EinFend Reading the context and specialising a type scheme
BIND x1 x2 SCOPEF INletx1=E1,x2=E2inFend
BIND x1 X2 X3 SCOPEF INletx1=E1,x2=E2,x3=E3inFend Things get more interesting when we consider how to handle the context-evaluati@{>gtep S: C
BINDx1x2x3x4 SCOPEE INletx1=E1,x2=E2,x3=E3,x4=E4inF end mapsx to schemeS. The context is just a list of namescheme bindings, and it should be read right-to-
_ left, so that the most recent bindings take precedence. Because program names can’t appear in types in
BIND x SCOPEEF INletrecx=EinFend this logic, we can use ROTIN proviso to help us to read the context in this way. Because variables and
BINDx1 x2 SCOPEE1E2 F INletrecx1=E1,x2=E2inFend constants are different syntactic classes, we need two rules:
BIND x1 x2 x3 SCOPEETE2 E3F INletrecx1=E1,x2=E2,x3=E3inFend
BINDx1x2x3x4 SCOPEETE2E3E4F INletrecx1=E1,x2=E2,x3=E3,x4=E4inF end RULE"CF x=S" WHERE X NOTINC'ISINFER C,x=S5,C' F x=S

. o . RULE "C+c=S" WHERE c NOTINC'ISINFER C,c=S,C't c=S
Finally, the definition of a judgement:

Roll your own Jape logic(3.2) Page 61 Chapter 7: Hindley-Milner type assignment

We declare these two #&ENTITY rules so that their application is hidden in a box-and-line display of a
proof:

IDENTITY "CF x=>S"
IDENTITY "CFc=>S"

We have rules for the types of the constant function identifiers which we have used:

RULES constants ARE
Crhd=>Vtt.[tt]>tt

AND CHtl=Vvtt.[tt]-[tt]

AND Cr(:)=Vtt.tt~[tt]->[tt]

AND CHnil=>Vtt.[tt]

AND CF(+)=#num-num-num

AND CF(-)=#num->num-num

AND CF(==)=Vtt.tt>tt~bool

END

Typing a variable or a constant is a matter of finding the type scheme and then specialising to some type.
Specialisation is just a matter of substituting types for schematic variables:

RULES "S»T" ARE
INFER#T» T
AND INFERVtt.TT» TT{T1/tt}
AND INFERVtt1,tt2. TT»TT{T1,T2/tt1,tt2}
AND INFERVtt1,tt2,tt3.TT» TT{T1,T2,T3/tt1,tt2,tt3}
AND INFERVtt1,tt2,tt3,tt4.TT» TT{T1,T2,T3,T4/tt1,tt2,tt3,tt4}
END

Then two rules put these together in just the way that the algorithm does:

RULE "CFx:T" ISFROM Ckx=>S AND S»T INFER Crx:T
RULE "CFc:T"ISFROM Crc=>S AND S»T INFER Crc:T

In the menu we use a tactic which looks in three places for a type scheme and then specialises, showing
none of its working when it succeeds, but trying to give some error messages when it fails:

TACTIC"x:T"IS
SEQ (ALT (LAYOUT"C(x)=S;S»T"()"Ckx:T""CFx=>S")
(LAYOUT "C(c)=S;S»T" () "Crc:T""CFc=>S")
(LAYOUT "constant" () "CFc:T" constants)
(WHEN (LETGOAL (_E:_T)
(JAPE(fail(x:T can only be applied to either variables or
constants: _E is neither)))
)
(LETGOAL _E (JAPE(fail(conclusion _Eisnota'name:type ' judgement))))

)
"S))T"

The generalisation step

The technique used here is to perform a structural induction on theTl typerder to calculate its
schematic variables. These will be unknowns, because of course we don'’t judiciously introduce type
variables when running the algorithm (though we might): we simply introduce unknowns as necessary, as
we go.

Roll your own Jape logic(3.2) Page 62 Chapter 7: Hindley-Milner type assignment

The generalisation step is run by a tactic, and all the working is normally hidden from the user. It works
with a formulatype e schemg < schemgyy, in which the operators and< are no more than punctuation.
The starting rule is

RULE "T«S"IS FROMCFTe#T<S INFERCFT«S

The induction works with rules which take a type apart, and two rules which are the base case. The
structural rules are

RULE"T1-T2e..." FROMCFT1eSin<SmidANDCF T2 e Smid<Sout
INFERCF+T1-T2 e Sin<Sout
RULE"T1xT2e.." FROMCFTTeSin<Smid ANDCFT2 e Smid < Sout
INFERCFT1xT2 e Sin<Sout
FROMCFT e Sin< Sout
INFERCF[T] e Sin<Sout

The tactic applies these rules, we shall see, ‘by matching’: they aren’t allowed to make any substantial
unifications which alter the problem sequent to which they are applied. So if the problem sequent is
unknowne schemg, < schemgyt, none of these rules will be used.

The rules which deal with an unknown do so by unifying it with a freshly-minted variable name and
making sure that it doesn’t appear in the context or the original type:

RULES "new te..." (OBJECT t1) WHERE t1 NOTIN C ARE
Crtl e #Tavtl.T

AND CrtleVttl.T<viet] t1.T

AND CrtleVtt],tt2.TaVtt],tt2,t1.T

AND Crtl e Vit tt2,tt3. Tavttl,tt2,tt3,t1.T

END

The only formula which can possibly unify with a freshly-minted type variable is a type unknown, and
these rules have a proviso that the result shouldn’t be free in the c@nféle effect is to replace an
unknown type by a type variable, and to include it in the context.

If none of these rules applies, then we must have an unknown dbésappear in the context: that
unknown must be left alone:

RULE "sameTe..." INFERCFT e S<S

The whole is stitched together with a tactic which tries first the structural rules by matching, then the
variable rule and finally the leave-alone rule; that tactic is used by another which starts the process, calls
the induction and hides all its working:

TACTIC geninduct IS
ALT (SEQ(MATCH(ALT"T1-T2e...""T1xT2e...")) geninduct geninduct)
(SEQ (MATCH"[T]e...") geninduct)
"newte..."
"sameTe...

TACTIC generalise ISLAYOUT "generalise" () "T«S" geninduct

We also provide a ‘single-step’ tactic which carries out the same tasks, so that users can view the process
as it evolves:

TACTICgenstep|S
ALT "T«S"
(MATCH"T1->T2e...")
(MATCH"T1xT2e...")
(MATCH"[T]e...")
"newte..."
"sameTe...

RULE "[T]e..."

Roll your own Jape logic(3.2) Page 63 Chapter 7: Hindley-Milner type assignment

Automatic search

In this chapter we are dealing with an encoding oalgrithm, not simply a logic. It's possible to get
strange answers by running the steps in the wrong order. On the other hand, it's easy to write a tactic
which automatically runs the algorithm. That tactic is long-winded because it has to deal, case-by-case,
with the various sizes of binding structures. If only Jape could handle families of rules ...

TACTIC AutoIS
WHEN (LETGOAL (_x:_T)"x:T")
(LETGOAL (_c:_T)
(ALT "x:T""n:num" "s:string" "true:bool" "false:bool"
(JAPE (fail (_cisn't aconstant from the context,
orone of the fixed constants)))

)
)
(LETGOAL (_F _G:_T) "FG: T" Auto Auto)
(LETGOAL ((_E,_F):_T) "(E,F): T1xT2" Auto Auto)
(LETGOAL ((A_x._E):_T) "xx.E:T1->T2" Auto)
(LETGOAL (if _E then _ET else _EF fi:_T) "if E then ET else EF fi: T" Auto Auto Auto)
(LETGOAL (let _x=_Ein_Fend:_T)
letrules Auto generalise Auto)
(LETGOAL (let _x1=_E1,_x2=_E2in_Fend:_T)
letrules Auto Auto generalise generalise Auto)
..etc...
(LETGOAL (letrec _x=_Ein_Fend:_T)
letrecrules Auto generalise Auto)
(LETGOAL (letrec _x1=_E1,_x2=_E2in_Fend:_T)
letrecrules Auto Auto generalise generalise Auto)
..etc...
(LETGOAL (_E:_T) (JAPE (fail (_E is not arecognisable program formula (Auto)))))
(LETGOAL _E (JAPE (fail (_E is not arecognisable judgement (Auto)))))

There’s a similar AutoStep tactic which lets the user make just one step of the algorithm.

Roll your own Jape logic(3.2) Page 64 Chapter 7: Hindley-Milner type assignment

7.3 Anexample

The algorithm will calculate, for example, the typenadpand use it correctly in an application:

1:|C assumption
2:| |[map=>#(t1-t2)~>[t1]->[t2], f=#num-num assumptions
f=2#t1-t2 assumption

4:| ||| xs=>#[t1] assumption

s:| ||| (==):[t1]=[t1]=bool constant

6:| ||| xs:[t1] C(x)=S;S»T

7:/ ||| (==)xs:[t1]-=bool FG:T5,6

8:| ||| nil:[t1] constant

9:[| | xs==nil:bool FG:T7,8
10:(||| nil:[t2] constant

11 []] 2):t2-[t2]-[t2] constant

12: fit1-t2 C(x)=S;S»T
13:| ||| hd:[t1]-t1 constant

14: xs:[t1] C(x)=S; ST
15:| ||| (hdxs):t1 FG:T 13,14
16:| ||| f(hd xs):t2 FG:T 12,15
17:(||| G)(F(hdxs)):[t2]-[t2] FG:T11,16
18: map:(t1-t2)->[t1]-[t2] C(x)=S; ST
19: fit1-t2 C(x)=S;S»T
20: map f:[t1]-[t2] FG:T 18,19
21 || th:[tT1]=[t1] constant
22:| ||| xs:[t1] C(x)=S;S»T
23| ||| (tIxs):[t1] FG:T 21,22
24: map f(tlxs):[t2] FG:T 20,23
25: f(hd xs)::map f(tlxs):[t2] FG:T 17,24
26 if xs==nil then nil else f(hd xs)::map f(tIxs)fi:[t2] ifEthenET else EFfi: T 9,10,25
27: Axs.if xs==nil then nil else f(hd xs)::map f(tI xs)fi:[t1]->[t2] AXE:T15T2 4-26
28:[| Af.xs.if xs==nil then nil else f(hd xs)::map f(tI xs)fi:(t1->t2)->[t1]>[t2] AE:T1-T2 3-27
29:| [map=>#(t1-12)~>[t1]-[t2], f=#num-num assumptions
30:| | [x=>#num assumption
31:[|| (+):num=num-num constant
32:(|| x:num C(x)=S$; ST
33:[|| (+)x:num=num FG:T 31,32
34:(|| x:num C(x)=S;S»T
35:[|| x+x:num FG:T 33,34
36:[[Ax.x+x:num-num AxE:T1-T2 30-35
37:[(t1-12)~[t1]-[t2]«Vt1,12.(11>12)>[t1]>[t2] generalise
38:[num=num«#num-num generalise
39:| [map=Vvt1,t2.(t1-t2)->[t1]-[t2], f=#num->num assumptions
40:| [map:(num-=num)-[num]-[num] C(x)=S;S»T
41:| [f:num-=num C(x)=S;S»T
42: |map f:[num]=[num] FG:T 40,41
43:[|(z2):num=[num]-=[num] constant
44:| [0:num ninum
45:[|(::)0:[num]=>[num] FG:T 43,44
46:[| (z2):num=[num]->[num] constant
47:|[1:num ninum
48:| | (:z)1:[num]=>[num] FG:T 46,47
49:]):num-[num]-[num] constant
50:| | 2:num ninum
51:[[(:)2:[num]=[num] FG:T 49,50
52:| [nil:[num] constant
53:[| 2:nil:[num] FG:T 51,52
54:|[1: I:[num] FG:T 48,53
55:[| (0::1::2z:nil):[num] FG:T 45,54
56:[| map f(0::1::2::nil):[num] FG:T 42,55
57: letrec map=Xf.\xs.if xs==nil then nil else f(hd xs)::map f(tl xs)fi,f=xx.x+x in map f(0::1::2z:nil)end:[num] | letrecrules'1 2-28,29-36,37,38,39-56

Roll your own Jape logic(3.2) Page 65 Chapter 7: Hindley-Milner type assignment

This example shows that it is necessary for Jape to learn how to fold long formulae when displaying a
proof (it can fold long lists of formulee — see, for example, the BAN logic encoding).

7.4 Jape’s treatment of type-theoretic logics

In simple, ‘pure’ logics, we can reasonably claim that Jape can transparently encode the inference rules,
and all the magic is hidden in its treatment of substitutions, bindings and unification. In the case of the
Hindley-Milner logic and, we surmise, other type-theoretic logics, that isn't so. We've made some
creative choices and had to program an encoding of the treatment of contexts. If the treatment in this
chapter is to serve as a model of how Jape can encode type-theoretic logics, there are a number of
questions which have to be answered.

First, and trivially, we ought to able to deal with the monotype / polytype distinction without the ugly
syntactic mechanism we have used here. That's a matter of improving our parser generator, we believe,
and is simply a question of development.

More seriously, our treatment has no judgement equivalent to ‘C is a context’, and we have pushed the
question into the context-interpretation rule, treating the context as a mapping and making sure with a
proviso that we aren’t overlooking a later binding. Meta-theoretically it is clear that the context might
easily be formed by ensuring that every name it contains is distinct; the necessamersion, however,

makes it hard for a human prover to keep track of what is going on. It seems to us, therefore, that we are
pragmatically correct to treat the context as a mapping. Also, our rules are context-validity preserving.
But it is still possible to state a conjecture with a nonsense context and yet prove it in our system:
GARBAGEFAx.x:T - T will be a theorem. It would be absurdly inefficient to check the validity of the
context at every rule application; nevertheless, we must find ways in which we can check its validity at
crucial points in a proof.

We intend, in future work on type-theoretic logics, to continue to develop the approach used here. We
expect to invent proviso mechanisms which allow us to state that the names in some type judgement are
not rebound by the context to their right, or something similar. We dream, even, of user-defined provisos
which will allow close control of the meaning of such provisos. We hope to find the right place to put ‘C

is a context’ judgements.

Chapter 8

Encoding Hoare logic

This chapter has very little to say. The encoding defined in the file hoare.jt and the files that it invokes is
chiefly interesting for what iloesn’tdo. Jape is perfectly capable of encoding the program syntax and
the rules of inference about predicates, but it falls down when it tries to handle arithmetic. You could, in
principle, prove thak<x+1 by induction (really!) but induction is absolutely no help when it comes to
deciding that 84. Experience with this encoding shows that Jape needs an ‘arithmetic oracle’, and one is
under construction.

The problem of arithmetic is tricky, and we realise that provision of an arithmetic oracle won’t make it go
away. Jape lacks a ‘the user is an oracle’ mechanism, as for example is provided in the Imperial College
proof editor Pandora. Such a mechanism would make it possible to certify certain steps in a proof and for
the steps to be accepted without further ado. That makes difficult arithmetic the responsibility of the user:
certainly not sound, but far more convenient than Jape’s current incapacity.

- 66 -

Chapter 9

Encoding BAN logic

Burroughs-Abadi-Needham (BAN) logic is a logic of authentication-protocols. It's of interest to us
chiefly because it is a logic in which the rules don't fit into a tidy introduction / elimination structure, so
that we have to use some ingenuity to design menus and double-clicking mechanisms to suit. Also,
conjectures seem naturally to require long lists of assumptions, which makes it possible to demonstrate
Jape’s mechanism for folding long association lists. And its use of tuples allows us to demonstrate some
new ways in which Jape can deal with families of rules.

9.1 Syntax

The syntax of the logic is very simple, although it includes a number of novel operators which we
managed to add to our Konstanz font. We've had to transform some of the notation to linearise it: for
example, we have made £ B (A and B share private key K) in{e\, B) - K and we've madg X}

into {X}K. We've usedK"” rather thanK ™. Otherwise, we believe, we have faithfully described the
syntax, even if we have had to guess at the syntactic hierarchy of operators.

CLASS VARIABLE x k
CLASSFORMULAWXY Z
CLASSCONSTANTPQRKNT
CONSTANTABS
SUBSTFIX 700

JUXTFIX 600

PREFIX 500 #
POSTFIX 500 *
INFIX 300L =pe
INFIX 200R +
INFIX 150R &
LEFTFIX 110 V.
INFIX 100R E
INFIX 50L <«
OUTFIX{ }

OUTFIX < >

BIND x SCOPEPIN Vx.P
SEQUENT ISBAG F FORMULA
INITIALISE autoAdditiveLeft true

9.2 Rules

The rules of the logic are depicted in [“A Logic of Authentication”, Burrows Abadi, Needham] which is
available on the Web from Martin Abadi’'s home page, or in paper form as (Proceedings of the Royal
Society, Series A, 426, 1871 (December 1989), 233-271). Two of the rules lfiera R’ side-condition

-67-

Roll your own Jape logic (3.2) Page 68 Chapter 9: Encoding BAN logic

which we haven’t reproduced (and which is discussed in the paper though not depicted there). The rules
are given natural-deduction style, without mentioning a context of hypotheses:

K K B
PEQ-P P{x}, PEPQ P{x},. PEQ=P PY(X),

PEQFX PEQFX PEQFX
PE#X PEQHX PEQSX PEQEX
PEQEX PEX

PEX PEY PE(X.Y) PEQE(X,Y) PEQH(X.Y)

PE(X,Y) PEX PEQEX PEQFX
P<(X,Y) Pa(X),

P<X P<aX
PEQ-P PYX}, PEMP PYX}, PESQ PYX}, -

Pax PaX pPaX

PE#X
PE#(X,Y)
PERS R PEQER & R PER=R PEQER=R
PER < R PEQER & R PER <R PEQER <R

PEOV,..v, (QX)
PEQ=X[v,...v,\Y,...Y,]

The rules which don’t deal with tuples are very straightforwardly encoded:

RULE "PE(Q,P) ¢ K, P<{X}K = PEQFX" IS FROM PE(Q,P) <K AND P<{X}K INFER PEQI-X
RULE "PEQK, P<{X}K* = PEQFX" IS FROM PEQ-K AND P<{X}K* INFER PEQFX

RULE "PE(P,Q)=Y, P<<X>Y = PEQFX" IS FROM PE(P,Q)=Y AND P<<X>Y INFER PEQFX
RULE "PE#X, PEQFX = PEQEX" IS FROM PE#X AND PEQFX INFER PEQEX

RULE "PEQ=X, PEQEX = PEX" IS FROM PEQ=X AND PEQEX INFER PEX

RULE "P<<X>Y = P<X" IS FROM P<<X>Y INFER P<X

RULE "PE(P,Q) <K, P<{X}K = P<X" IS FROM PE(P,Q) <K AND P<{X}K INFER P<X
RULE "PEP—K, P<{X}K = P<X" IS FROM PEP~K AND P<{X}K INFER P<X

RULE "PEQr K, P<{X}K* = P<X" IS FROM PEQ K AND P<{X}K* INFER P<X

RULE "PE(R,R")K=PE(R',R)<K" ISFROMPE(R,R") < KINFER PE(R",R) <K

RULE "PEQE(R,R") <K =PEQE(R,R") K" ISFROMPEQE(R,R") ©KINFERPEQE(R',R) <K
RULE "PE(R,R")=K = PE(R",R)=K" ISFROMPE(R,R")=KINFERPE(R",R)=K

RULE "PEQE(R,R")=K=PEQE(R",R)=K" ISFROMPEQE(R,R")=KINFER PEQE(R',R)=K

RULE "PEVx.X(x) = PEX(Y)"(Y,ABSTRACTION X) ISFROM PEVx.X(x) INFER PEX(Y)

We've had to includéyp so that we can use assumptio@st allows us to mimic forward proof. Left-
weakening means that we can use theorems which don’t match all the hypotheses:

RULE hyp ISINFER X + X
RULE cut(X) ISFROMX AND X+ Y INFER Y
RULE weaken(X) ISFROMY INFERX F Y

IDENTITY hyp
CUT cut
WEAKEN weaken

Roll your own Jape logic (3.2) Page 69 Chapter 9: Encoding BAN logic

Putting rules into menus

Organising these into menus is quite a problem. We've included a menu for each operator and put each
rule into all the menus which seem relevant to it: for examipE(Q,P) <K, P<{X}K = PEQFX" is in the
menus fore, < andr. Only hypand the rule dealing with are in a menu labelled ‘Logic’.
We have implemented forward reasoning in the style of chapter 4; then, for exampléPEtER) <K,
P<{X}K = PEQFX" is included in the> menu we have
ENTRY "PE(Q,P) <K, [P<{X}K] = PEQrX"
IS ForwardOrBackward ForwardCut O "PE(Q,P) K, P<{X}K = PEQ~X"

in the< menu we have

ENTRY "P<{X}K, [PE(Q,P)«K]=PEQrX"IS
ForwardOrBackward ForwardCut 1 "PE(Q,P)< K, P<{X}K = PEQrX"
The square-bracketted antecedent in the menu entry is the oisnthfdcussed upon in that step. The
whole gory details are in the file BAN_menus.j. We may not have included the rules in enough menus or
enough times (for example, we probably ought to H®=Q,P)«K, P<{X}K = PEQ~X" in the~ menu

twice, focussing once on each antecedent). We haven’t had enough users to know if we have got this bit
of user interaction right.

Dealing with tuples
We've generalised some of the BAN rules: for example, we have implemented
PEX, .. PEX, PE(..., X,...)
PE(X,,.... X,) PEX
for 2-, 3- and 4-tuples. We've done it, as you ought to expect, by listing each version of the rule and
combining them with theuLES directive:

RULES"...PEX...=PE(...,X,...)" ARE
FROM PEX AND PEY
AND FROMPEXAND PEY AND PEZ
AND FROMPEW AND PEX AND PEY AND PEZ

INFER PE(X,Y)
INFERPE(X,Y,Z)
INFERPE(W,X,Y,2)

END
RULES "PE(...,X,...) = PEX"(X) ARE

FROM PE(X,Y) INFER PEX
AND FROMPE(Y,X) INFER PEX
AND FROMPE(X,Y,Z) INFER PEX
AND FROMPE(ZX,Y) INFER PEX
AND FROMPE(Y,Z,X) INFER PEX
AND FROMPE(X,Y,Z,W) INFER PEX
AND FROMPE(W,X,Y,Z) INFER PEX
AND FROMPE(Z,W,X,Y) INFER PEX
AND FROMPE(Y,Z,W,X) INFER PEX

END

The second group gives us an interesting forward proof problem. We would like to be able to select an
item of a tuple and pick it out using one of these rules. To do so we need to be able to search the
collection. Since our forward proof steps are all sequermgs fule; select subgoal; hypve have to

make sure on the second step that we select the right rule. We don't have a very good mechanism for that
in our tactic language at present. The best we have come up with is a sort of automatic backtracking using
WITHCONTINUATION.

WITHCONTINUATION tacticy tacticy ... tactic, sets the sequentactic; ... tactic, as a continuation, and
runstactic. If tacticp is anALT, or ends with amLT, it will add that continuation to each of its

Roll your own Jape logic (3.2) Page 70 Chapter 9: Encoding BAN logic

alternatives. The effect is that an alternative won't succeed unless the contiriaation... tactic,
succeeds as well. thcticy doesn’t end with aALT, then the effect is the same s&Qtacticy tacticy ...
tactich. We make our forward step tactics W8@HCONTINUATION:

TACTIC ForwardCut (n,Rule)
SEQcut (WITHCONTINUATION (WITHARGSEL Rule) (JAPE (SUBGOAL n)) (WITHHYPSEL hyp))

TACTIC ForwardUncut (n,Rule)
WITHCONTINUATION (WITHARGSEL Rule) (JAPE (SUBGOAL n)) (WITHHYPSEL hyp)

Then we include in the menu

ENTRY "PEQE(...,X,...) = PEQEX"
IS ForwardOrBackward ForwardCut 0 "PEQE(...,X;...) = PEQEX"

and Bob’s your uncle.

9.3 Conjectures with long assumption lists

On educational grounds we thought it best to include lots of assumptions in each conjecture, simply
because the problem for novices is to decide which assumptions are relevant and how. This makes very
long conjectures. For example, one of the conjectures about the Needham-Schroeder protocol is

THEOREM "Needham-Schroeder: A<{Na,(A,B) < Kab,#((A,B)«Kab),{(A,B)«Kab}Kbs}Kas F AE(A,B)«Kab" IS
AE(A,S)eKas, SE(A,S)«Kas, BE(B,S)«Kbs, SE(B,S) < Kbs, SE(A,B)«<Kab,
AE(Vk.SE(A,B)« k), BE(VK.S=(A,B)«k), AE(VK.SE#((A,B)«k)),

AE#Na, BE#Nb, SE#((A,B)<Kab), BE(Vk.#((A,B)«k)),
A<{Na,(A,B)eKab,#((A,B)«Kab),{(A,B)«Kab}Kbs}Kas
+AE(A,B)«Kab

Jape automatically folds long assumption lists in a box display to fit the proof window. The proof of this
conjecture, in a moderately-sized window, is
1:AE(A,S)eKas, SE(A,S)«<Kas, BE(B,S)«Kbs
2:SE(B,S)<Kbs, SE(A,B)«Kab, AE(Vk.S=(A,B)«k)
3:BE(Vk.S=(A,B)«k), AE(Vk.S=#((A,B)«k)), AE#Na
4:BE#NDb, SE#((A,B)«Kab), BE(Vk.#((A,B)«k)) assumptions
5:A<{Na,(A,B)«Kab,#((A,B)«<Kab),{(A,B)«Kab}Kbs}Kas assumption
6:AE(S,A)«Kas PE(R,R) K= PE(R',R)K 1.1
7:AESH(Na,(A,B)< Kab,#((A,B)«Kab),{(A,B)eKab}Kbs) Pe(QP)«K,P<{X}K=PEQ-X 6,5
8:AE#(Na,(A,B)«<Kab,#((A,B)«Kab),{(A,B)«Kab}Kbs) PE#X = PE#(...,X,...)'5 3.3
9: AESE(Na,(A,B)«Kab,#((A,B)«Kab),{(A,B)eKab}Kbs) pPe#X, PEQ-X=PEQEX 8,7
10: AESE(A,B)<Kab PEQE(...,X,...) > PEQEX'6 9
11: AESE(A,B)<Kab PEVX.X(x) = PEX(Y) 2.3
12:AE(A,B)«Kab PEQ=X, PEQEX=PEX 11,10

assumptions
assumptions

assumptions

Appendix A

The paragraph and formula languages

The paragraph language is the one in which logics, their syntax, their rules, the tactics you intend to use
and the menus of commands you intend to display are all defined. It uses a lot of reserved words: we add
to the list as the need arises but all are multi-letter upper-case words, so it is a good idea to avoid use of
that kind of word in your encodings.

At the time of writing the complete list of reserved words is

ABSTRACTION, AND, ARE, AUTOMATCH, AUTOUNIFY, BAG, BIND, BUTTON, CHECKBOX, CLASS,
CONCFRESH CONCHIT, CONJECTUREPANEL CONSTANT, CURRENTPROOECUT, END, ENTRY,
FONTS FORMULA, FRESH, FROM, HYPFRESH HYPHIT, IDENTITY, IN, INFER INFIX, INFIXC,
INITIALLY , INITIALISE, | S, JUDGEMENT, JUXTFIX, LEFTFIX, LEFTWEAKEN, LIST, MENU,
MENUKEY, NOTIN, NUMBER, OBJECT, OUTFIX, POSTFIX, PREFIX, PREFIXBUTTON PROOF
RADIOBUTTON, RIGHTWEAKEN, RULE, RULES, SCOPE SEPARATOR SEQUENT, STRING,
STRUCTURERULE SUBSTFIX, TACTIC, TACTICPANEL, THEOREM, THEOREMS THEORY,
UNIFIESWITH, USE, VARIABLE , VIEW, WEAKEN, WHERE

A.1 Directives

In this description | use [... | ...] to describe alternatives, { ... } to describe optional components and
ellipsis to denote optional repetition.

ABSTRACTION: decorates a parameter iRaLE or THEOREM directive. When the rule is instantiated,
applications of this parameter to arguments are translated into substitutions, with a
substitution variable which is made @rJECTparameter of the rule. The effect is to simulate
predicate notation with that parameter.

AND: separator

ARE: separator

AUTOMATCH tacticname, ..., tacticnamat the end of each proof step, run the tactics (usually they are
rules) specified over each open tip of the tree, but only allow them to work by ‘matching’ —
that is, don't allow any unknowns in the tree to change as a result of running the tactic (see
alsoMATCH in the tactic language).

AUTOUNIFY tacticname, ... , tacticnameame a2UTOMATCH but without the restriction on working
by ‘matching’. This directive is less used thanTOMATCH, chiefly because it is easy to
make automatic steps which make large and/or unexpected and/or unhelpful changes to a
proof. But sometimes it is the right thing: see for example the way that the Hindley-Milner
algorithm encodings us&JTOUNIFY to determine the type of constants.

BAG { <kind>} names see the discussion of flexible syntax below.

BIND variable ... variablescoPEname ... namé\ formula see the discussion of flexible syntax
below.

BUTTON: this allows you to attach a command to a label in a menu or a button on a panel. See
appendix C for information on the command language.

-71-

Roll your own Jape logic (3.2) Page 72 Appendix A: Paragraph and Formula languages

CHECKBOX variable label{ INITIALLY [true | false] }: a checkbox is created associated with the
named variable. If the variable doesn’t exist in Jape’s default environment this directive
declares it, and its range of values will be true and false; if it exists, those must already be its
range. The initial value, if included, is immediately assigned to the variable.

In a menu)abel appears ticked or unticked according to whether or not the vakeziable
is true or false; in a panel you see a proper user-interface checkbox with that label.

CLASS <kind>namessee the discussion of flexible syntax below.

CONCFRESHvariable proviso thatvariable doesn't occur free in any right-hand-side formula of the
consequent of a proof step. S#ESH

CONCHIT { { formulal} <entails> } formula2is tactic: if the user double-clicks on a right-hand-side
formula matchindormula2then runtactic. If formulalalso appears, then either the sequent
must have a single left-hand-side formula matching it, or the user must also have selected a
left-hand-side formula matching it. See alsPHIT below.

CONJECTUREPANELName{ 1S} [entry| button]* END: build a panel of conjectures. Eaafitry is one
of ENTRY, THEOREM, THEOREMS PROOF, CURRENTPROOF eachbuttonis one ofBUTTON,
PREFIXBUTTON RADIOBUTTON, CHECKBOX. ENTRY, THEOREM andTHEOREMS add entries
to the list of conjectures which forms part of the paPRpPOFandCURRENTPROOFare used
in the proof save and reload mechanism.

In addition to the buttons explicitly described, every conjecture panel always has “New...”,
“Prove” and “Show Proof” buttons, and if there isn’t a description of an “Apply” button then
one is added as if you had writteAREFIXBUTTON Apply IS apply”. Like MENU (q.v.), a

panel description can be divided into sections, and the complete description is just the
concatenation of the various parts.

CONSTANTname ... namethename are defined to have the syntactic classNSTANT. See the
discussion of flexible syntax below.

CURRENTPROOMame sequer{t WHERE ProvisoAND ... AND proviso} IS tactic. same a®ROOF(Q.v.
below), except that the proof séquenbuilt by tactic need not be complete, is not recorded
in the proof store, and is displayed on the screen.

CUT rulename synonym forSTRUCTURERULECUT; declares that the rule calledlenameis a ‘cut’
rule, provided that it meets certain conditions (see below). Applications of the rule will
normally be hidden in the box display mode of Jape. This directive is required before Jape
will properly interpret the ‘tryresolution’ variable (see appendix C).

END: closer in lots of directives.

ENTRY name{ { IS} tactic} { MENUKEY letter}: used to describe an entry in a menu or in the list of a
panel. May only appear as part oMaNuU or PANEL directive;MENUKEY is permitted only
when part of a1ENU directive. The label iname if the tactic component is omitted then the
tactic expressiomameis used; if theENUKEY component is included théetter is used as
the ‘command key’ of that label. When the label is selected in a menu, the command “apply
tactic” is transmitted to the proof engine; when the label is selected in a panel, there is no
effect until aPREFIXBUTTON(q.v.) is pressed.

FONTS name the font-encoding nameameis transmitted to the graphical interface. At the time of
writing our interfaces only recognise “Konstanz”, but watch this space ...

FORMULA name ... namahename are declared to be in the syntactic ck@BMULA. See discussion
of flexible syntax below.

FRESHvariable proviso in a rule or theorenvariable mustn’'t appear free in any hypothesis or
conclusion of the sequent to which the rule or theorem is applied; is translatesbinto
provisos for each of the formulee of that sequent.

FROM: separator ilRULE directive.

Roll your own Jape logic (3.2) Page 73

Appendix A: Paragraph and Formula languages

HYPFRESHvariable variabledoesn't occur free in any hypothesis of the problem sequentrREsel

HYPHIT formulal <entails>{ formul& } IS tactic: if the user double-clicks on a left-hand-side
formulal then rurtactic. If formula2 appears then either the sequent must have a single right-
hand side which matchdsrmula2, or the user must also select a right-hand-side formula
matchingformula2 in order for the directive to fire.

IDENTITY rulename synonym for STRUCTURERULEDENTITY ; the rule namedulenameis declared to
be a ‘identity’ rule. Instances of the application of this rule are normally hidden in box display
mode.

IN: connective in binding directive.
INFER: connective irRULE directive.

INFIX precedencd L | R | T Joperatorname ... operatornaméhe names are declared to be infix
binary operators with the given precedence; L means left-associative, R right-associative, T
tupling. Instances of formulae such Ap B are then treated internally as if they were
‘uncurried’ function applications — that is, as if you had writtep)(@,B). See discussion of
flexible syntax below.

INFIXC precedencé L | R | T Joperatorname ... operatornameery similar toINFIX (g.v. above), but
parsed ‘curried’ so that op B is then treated internally as if you had writtep)(A B.

INITIALLY : part of theRADIOBUTTON andCHECKBOX directives.

INITIALISE variablenamevalue the variable named is assigned the value given. See the discussion of
variables in appendix C.

IS: connective, often omitted.

JUDGEMENT IS[BAG | LIST | FORMULA] turnstile [BAG | LIST | FORMULA]: same aSEQUENT
directive (see below), except that in box displayu@GEMENT form is always displayed
complete, on a conclusion line. That is, the left-hand side is not treated as a collection of
hypotheses in box display.

JUXTFIX precedencedefines syntactic precedence of juxtaposition: see discussion of flexible syntax
below.

LEFTFIX precedence leftbra purict.. punctN defines syntactic precedence and form of bracketed
form which misses a closing bracket. See discussion of flexible syntax below.

LEFTWEAKEN rulename synonym forSTRUCTURERULELEFTWEAKEN; declares that the rule called
rulenameis a ‘left weakening’ rule. Essential if Jape is to be able to apply theorems which
don’t have enough hypotheses to match the whole of the problem sequent.

LIST <kind>namessee the discussion of flexible syntax below.

MENU namels entry entryeEND: the effect of the entries (which can RELE, RULES, TACTIC,
THEOREM, THEOREMS THEORY, PROOF CURRENTPROOE ENTRY, BUTTON, RADIOBUTTON,
CHECKBOX or SEPARATOR are added to the menu namea@ime MENU directives for the
same menu are accumulated in sequence, and need not be given all in one place.

MENUKEY letter. part of theENTRY directive when used insidev&ENU description.

nameNOTIN formula a proviso thahamemust not occur free iformula Often generated as the result
of aFRESH HYPFRESHOr CONCFRESHproviso; sometimes included in its own right.

NUMBER name ... namethe names are declared to be in the syntactic claSBIBER. See the
discussion of flexible syntax below.

OBJECThame decorates a parameter iR@LE or THEOREM directive. When the rule is instantiated,
the parameter is replaced by a newly-minted object variable rather than an unknown, unless
this default assignment is overridden by provision of an argument formula.

OUTFIX leftbra punct ... punctN rightbrasee the discussion of flexible syntax below.

Roll your own Jape logic (3.2) Page 74

Appendix A: Paragraph and Formula languages

POSTFIXprecedence operator ... operateee discussion of synctactic directives below
PREFIX precedence operator ... operateee discussion of synctactic directives below.

PREFIXBUTTONIabel{ Is} commandin a panel, a button with lablabelis added. When the button is
pressed and an entry which indexestis selected, then the stringdmmand teXtis passed
to the proof engine.

PROOF name sequenf{ WHERE proviso AND ... AND proviso } Istactic: both PROOF and
CURRENTPROOFare generated when you save proofs. You will probably never want to write
one yourself, but this is wha@ROOFmeanssequents a statement of the conjecture named
name andtactic, when run, will produce a proof of that conjecture with the given provisos. If
it all works out: ifsequentnifies with the statement of conjecturame if tactic produces a
completed proof without introducing any additional unifications or inventing more or less
provisos, then the resulting proof is stored undamnein the proof store.

RADIOBUTTON variablename 1S} label{ 1S} value{ AND label{ IS} value}* { INITIALLY value}
END: a radio button with the list of labels given is associated with the named variable. If that
variable doesn't exist it is declared by this directive, and its range of possible values is those
given here; if it does exist the values given here must be in its range. If an initial value is
given, the variable is assigned that value immediately.

In a menu a radio button is shown as a sequence of labels, one of which is ticked according to
the value of the variable; in a panel it is a proper Macintosh-style radio button.

RIGHTWEAKEN: same asSTRUCTURERULERIGHTWEAKEN. Similar toLEFTWEAKEN above, and plays
a similarrdle in theorem application.

RULE rule: definition of a rule. Puts a rule with namameinto the tactic store; if it appears inside a
MENU definition then the effect is also aNTRY namels name See ‘rules, tactics and
conjectures’ below for more explanation.

RULES name{ (params) } { WHEREprovisos} ARE rulel AND ... AND ruleN END: definition of a
number of rules, organised automatically intoaan tactic.

Eachrule is an unnamed rule definition (see ‘rules, tactics and conjectures below); each is
considered to be qualified paramsand provisosfrom the head of the directive, filtered
according to the names that occur in each rule (that is, if a particular parameter doesn’t occur in
a rule, you don’t get that parameter declaration with that rule, and you don’t get any provisos
that mention it). The rules are entered into the tactic store under the mamed. ... name’;N

at the same time a tac#eT name’1 ... name’l$ entered underame

If it occurs in @ menu or a pan®ULESname ...has the effect also &NTRY name that is,
only one entry appears in the menu.

SCOPE part of theBIND directive.

SEPARATOR used in the definition of ENU, gives a division between entries. On a panel, probably
has no effect.

SEQUENT IS BAG |LIST | FORMULA] <entails>BAG | LIST | FORMULA]: see discussion of flexible
syntax below.

STRINGhame, ... , namesee the discussion of flexible syntax below.

STRUCTURERULEKind IS name kind must beCUT, IDENTITY, LEFTWEAKEN, RIGHTWEAKEN or

WEAKEN; namemust be the name of a rule in the tactic store. See ‘structural rules’ below,
and see the discussion of each ofkimgls in this list.

suBsTFIX precedencd bra fst sep snd két defines the syntactic precedence of substitution forms
and, optionally, their appearance as well. See the discussion of flexible syntax below.

Roll your own Jape logic (3.2) Page 75 Appendix A: Paragraph and Formula languages

TACTIC name{ (namd, ..., nameN } { 1S} tactic: puts a tactic with nameameand parameters
name, ... , nameNnto the tactic store. If it appears insid®@NU or PANEL definition then
the effect is also GENTRY name in aTACTICPANEL it has the effect ENTRY namels apply
name See ‘rules, tactics and conjectures’ below for more explanation.

TACTICPANEL name{ IS } [entry | button]* END: very like CONJECTUREPANELabove, except that
there are no extra buttons and no default buttons and each entry labels a command rather than
a conjecture. Tactics, rules and conjectures included TAGTICPANEL description are
associated with the command “applgmeé where nameis the name of the tactic, rule or
conjecture.

THEOREM conjecture puts a conjecture into the tactic store. Jape’s conjectures are always ‘theorem
schemata’, in the sense that they stand for any substitution-instasequsEnt See ‘rules,
tactics and conjectures’ below for more explanation.

THEOREMSname{ params} { WHEREprovisos} ARE theoremlAND ... AND theoremNEND: define a
collection of conjectures which are organised intaian tactic.

Eachtheoremis an unnamed conjecture (see ‘rules, tactics and conjectures’ below); each
theorem is added to the tactic store prefixegpdpmsandprovisosin the same way as in the
RULESdirective (g.v. above); at the same time a tagtic theorem1l ... theoremid added to

the tactic store undarame If included in a menu or panel description,BNTRY is created

for each conjecture. The effect is to define a number of conjectures with evocative names, and
to allow searching of the collection if desired. See @l#OREM above.

THEORY name{ IS } directive ... directiveEND: the directives may bRULE, RULES TACTIC,
THEOREM, THEOREMS Or THEORY; anALT tactic is made of the various directives and added
to the tactic store undeame If THEORY occurs in a menu or panel description, the effect is
as if the directives occurred separately (that is, Jape does not add an entry corresponding to
the overallALT tactic).

formula UNIFIESWITH formula a proviso which requires that the two formulee should unify. Used to
delay unification when difficult substitutions get in the way.

collectionUNIFIESWITH collection a proviso which helps when contexts are split. See chapter 3.
USE“filenamé: same effect as C’s #includélénamé.

VARIABLE name ... namesee the discussion of identifier classes below.

WEAKEN: synonym folLEFTWEAKEN (g.v. above).

WHERE: prefixes a list of proviso declarations.

A.2 Rules, tactics and conjectures

The syntax of rules and conjectures can take various forms. The syntax is:
{ name} { (param, ... ,param) } { WHEREpProviSoAND ... AND proviso}{ IS} body

Note that almost every part is optional, apart from the body of the rule or conjecture. Note also that, for
obvious reasons, if parameters or provisos are included then eithemtbed must be included, or else
bodymust start wittFROM or INFER.

In a conjecturebodyis
{ INFER} sequent
In a rule,bodyis
{ FROMantecedenaND ... AND anteceden} { INFER} consequent

If the conjecture is un-named, its name is taken teelgientif a rule is un-named, its name is taken to
beconsequent

Roll your own Jape logic (3.2) Page 76 Appendix A: Paragraph and Formula languages

Eachparamis either a nameyBJECTfollowed by a name oxBSTRACTION followed by a name: in every
case the name must have been declarectimasdirective. Each proviso is either

CONCFRESH1ame ... ,name
HYPFRESHName ... ,name
FRESHName ... ,name
nameNOTIN formula
formulaUNIFIESWITH formula

where the names used must be parameters of the rule or conjecture.

The meaning of RULE directive
Ignoring parameters for the moment, the rule

antel ... anteM
conse

(provy,..., provN) rule

with namerule, antecedent sequeraatel... anteM consequentonseand provisosprovl.. provNis
stated as the rule directive

RULE rule WHEREProv1AND ... AND provNIS FROMantel AND AND anteMINFER conse

A rule is schematic in all names appearing in the antecedents, consequents or provisos which are declared
in acLAss directive. When the rule is applied to a problem sequent, a version of the rule is produced in
which all the schematic names have been replaced by new unknowns, and then the consequent of that
version is unified with the problem sequent.

Rule matching is linear — formulee that are matched in the consequent are used up, and aren’t copied to
the antecedent unless you write them there. For example the sequent calcatughe left’ rule

Fr'FAA T,BFA
NA- BFA
is stated as
RULE" »F" ISFROMI +FA,AAND ', BF A INFERT,A-BF A
and the ‘multiplicative’ or ‘context-splitting’ version of that rule

MrAAL T2,BFA2
FLr2,A - BFALA2

as
RULE“ »F" ISFROMI1 +A, A2 AND 2, BFA2 INFERT1, 2, AL B+ AL, A2
If you want a version in which the implication formula is not used up
NA- BFAA T,BrFA
rA- BrA -

F

then you can have it:
RULE“ »F” ISFROMI, A-B+A, AAND I, B+FAINFERT,A-BFA
If either of theautoAdditivevariables is set ttrue (see appendix C) then some of these rules can be

defined as rules often are in natural deduction presentation, without mentioning unmatched hypotheses
and/or conclusions. For exampleaiftoAdditiveLefts true, the rule

A I,BrC
rNA- BrC

Roll your own Jape logic (3.2) Page 77 Appendix A: Paragraph and Formula languages

can be stated as
RULE“ —F" IS FROMAAND B+C INFERA-BFC

Parameters irRULEdirectives
Rule parameters are used for a number of reasons:

« On instantiation the first parameter is replaced by the user’s text selection, rather than an
unknown. This is useful when that parameter doesn’t appear in the consequent or is the replacing
formula in a substitution form in the consequent (see the discussions of substitution matching
below and in various chapters above);

¢ A parameter which is decorated wilBJECTis replaced with a freshly-minted name, rather than
a new unknown.

« a parameter which is decorated WMBSTRACTION is treated as a predicate, and juxtapositions
involving that parameter are translated into substitution forms — see below.

« parameters are used to drive the ‘proof reload’ mechanism.

Instantiating a rule, including interpretation of predicate notation

When a rule is instantiated, each of its schematic names is replaced by a freshly-minted unknown, whose
name is based on the schematic name itself. This instantiation is modified in case the name is a parameter
(see above), if anutoAdditiveparameter is set to true, otfinterpretpredicatess true.

When anautoAdditiveparameter is true, a rule is automatically extended so that all the hypotheses
(autoAdditiveLeft and/or the conclusionsaaitoAdditiveRight are extended with a freshly-minted
segment variable, and all the antecedents likewise; then the augmented rule is instantiated normally.
Wheninterpretpredicatess true, juxtapositions in the rule are interpreted as predicate formulee and
replaced by substitution forms; at the same time the parameter list is extendedJ®ititparameters as
appropriate and the rule is augmented with invisible provisos. For example, a juxtagR(giypmill be
replaced byP[u,v\x, y]; the parameter list will be extended widBJECTuU, OBJECTV, and an invisible
provisox,y NOTIN P will be added to the rule; every other ‘predicate’ applicatioR of the rule then has

to have exactly two ‘arguments’ and the same variabksdv will be used in those cases as well. Jape
avoids substitution forms wherever possible by noting the context: for example, it will translate
Ox.0y.P(x,y) as Ox.0y.P and then would translate(E, F) as P[x, W\E, F] and in such an example there

. L . P|xX\E
is no need for extr@aBJECTparameters. For example, it will transla&g% into %'%1
P(x .

The latter form of rule is well-suited to backwards reasoning. The effect is to allow a kind of predicate
notation while preserving Jape’s existing unification mechanisms.

The meaning of provisos RULE and THEOREMdirectives

Provisos are side conditions. At present we have a small number of built-in provisos, listed above. All the
forms of FRESH provisos are automatically translated into a collection@fIN provisos — one for each
unmatched hypothesis and/or conclusion as appropriate.

Each time a rule is applied, its provisos are added to the set which is displayed in the bottom pane of the
proof window. At the end of each proof step, that set of provisos is checked, and if any proviso is
violated, the proof step is cancelled (memo to implementers: change the proof engine so that this is more
obviously the way that things happen ...). At the same time provisos which are satisfied are deleted from
the set. The ones that are left are those whose status can't be decided, because of the presence of
unknowns, substitution forms or names over which the conjecture being proved is quantified.

Roll your own Jape logic (3.2) Page 78 Appendix A: Paragraph and Formula languages

The meaning of conjectures (statedHEOREMdirectives)

A conjecture is stated as a rule without antecedents. Normally the first thing you do with a conjecture is
to try to prove it. If that proof is successful, you can store it in the proof store and it will appear in the
conjecture panel as a proved theorem. The provisos of a proved theorem are those given in the statement
of the conjecture, plus any which arise and aren’t satisfied during the proof.

Jape will normally refuse to apply a conjecture until it is proved, but you can tell it not to be so cautious if
you wish by setting the variabégplyconjectureg¢see appendix C).

If the consequent of a theorem matches a problem sequent, but in so doing it doesn’t use up all the
hypotheses and conclusion formulae of the problem, then Jape is cautious. If the logic you are using has a
declared EFTWEAKEN rule and there are too many hypotheses, then you could have first eliminated the
extra hypotheses by applications of that rule, and then the theorem would have exactly used up all the
remaining ones; similarly if it has a declarGHTWEAKEN rule and there are too many conclusions. But
unless all that applies, the theorem will be said to be inapplicable.

Proof by resolution

There is a facility to use a sort of resolution step when applying a theorem. If a theorem’s conclusion(s)
match but its hypotheses don't, and if there is a declavadrule, then it would be possible to use a
sequence of cuts to introduce the necessary extra hypotheses. In those circumstances Jape can introduce
an antecedent for each of the hypotheses, and label the step with the name of the theorem. This feature is
turned on and off by assigning to thgresolutionvariable (see appendix C). The effect is that if you

have both right-weakening and cut, we treat a theotdm.,H, +FC as equivalent to the rule
W provided thatl",H,,...,H,FC is a theorem; if you have cut but not right-weakening,

. . CHH, THFH, .. T,H,.,H._FH
we treat it as equivalent to—2——1 ZFP-C L n-l

™ with the same proviso.

The meaning ac§TRUCTURERULHirectives

It is necessary for the application of conjectures as rules (see above), and for the proper operation of the
box display mechanism, for Jape to be informed of the presence of certain kinds of structural rules in the
logic. The rules we cater for are the various kinds of identity (hypothesis, axiom), cut and weakening
rules.

At present Jape will recognise a rule as of the right form if it is in one of the following paftesns fag
of formulee,A a list of formulee, B and C are formulee).

cut (B)FRomI +BANDI, B+ CINFERI +C
B)FRoMI F B, AND [, BF I INFERT + T
B)FRoMI ¢ B, "AND ", B+ " INFERT, " ', T

WEAKEN, LEFTWEAKEN
(B) FROMT + CINFERI,B+C
(B) FROMT + " INFERT,B+T'

RIGHTWEAKEN
(B) FROMT + " INFERT + Bl

IDENTITY
rBrB
rB+BI'
ABA'+B

Roll your own Jape logic (3.2) Page 79 Appendix A: Paragraph and Formula languages

Substitution matching

Substitution forms are used in Jape to describe the operation of rules. They aren’t intended to be
interpreted as themselves — that is, they are not a special sort of formula with associated introduction and
elimination rules. There are instead mechanisms inside the proof engine designed to eliminate
substitution forms whenever they arise by carrying out the substitutions they describe, and the intention is
that substitution forms should normally be read as naming the formula to which they simplify. For
example, consider Dijkstra’s weakest precondition calculus assignmenip(ste= e, R) = R}, expressed

in the notation of Hoare logic:

{Rix=dR ~

This can be expressed in Japeish as follows (see the file hoare_rules.j):
RULE “:=” ISINFER <{R[x\E]} x:=E {R}>

Now suppose that we apply this rule to the problem seguyedfx:=1 {x=1}>. If we apply the asignment
rule then a version will be generated expressed in terms of new unknowns, which #ilRhe1_E]}
_x1:=_E {_R}>. However the unification proceeds, it will eventually have unified)[x\1] with _Q.
Before that formula is displayed to the user it will be simplifiet=tg and the rule will have done its job.

If the problem sequent had been=1} x:=1 {x=1}>, then the unification process might first come across
the problem of unifying R[_x1_e] with 1=1. Since that involves a substitution which won't simplify, it
is deferred until later on. Unification e£1 with _x1:=_e and ofx=1 with _R mean that when the deferred
problem must finally be considered, it has been transformed into that of urifying\11 with 1=1: the
substitution form simplifies to=1 and the unification is trivial.

But not every use of substitution forms in rules gives so little difficulty. When you define a rule with a
substitution form in the consequent, and there aren’t other occurrences of the components of the
substitution form which will help to simplify it, matching becomes a problem. For example, consider the
natural deductioft] elimination rule:

MFOx.P

———— [elim
MFP[x\ E]

If the problem sequent is, sag,=b,b=cF(a+b)+c=a+(b+c), then there are fourteen significantly
different ways in which the consequent of the rule can match the problem:

. (atb)+c=at(btc); x:
: (xtb)+c=at+(b+c); x :
. (atb)+c=x+(b+c); x :
: (x+b)+c=x+(b+c); X :
. (atx)+c=a+(b+c); x :
: (atb)+c=at+(x+c); x :
: (atx)+c=at(x+c); X :
: (atb)+x=at(b+c); X :
. (atb)+c=at(b+x); X :
. (atb)+x=at(b+x); X : X;
: x+c=at(b+c); x: x; E: atb

. x=at+(b+c); x: x; E: (ath)+c
: (atb)y+c=at+x; x 1 x; E : b+c

: (atb)+c=x; x : x; E : at(b+c)

XX XXXXXX
mmmmMmMmmmmmmm
0O0OO0OTTCOTO®® M

VTUVTUTUVTUUUTUTUTUTUTUTTUT

14.

It's clearly necessary to say in just which way the formula should match. Jape has two mechanisms which
help. A statement of the rule which can make use of either mechanism is

RULE “0 elim”(E, OBJECTX) IS FROMT + OX.P INFERT + P[X\E]

Roll your own Jape logic (3.2) Page 80 Appendix A: Paragraph and Formula languages

The first mechanism, called ‘abstraction’, finds matches in which every instance of a particular
subformula is replaced by the substitution variable: for example, numbers 4, 7, 10, 11, 12, 13 and 14 in
the lists of matches above. The abstraction mechanism is a kind of higher-order unification.

The first parameter of the rulg, can be replaced by an argument which is provided by text-selection (if
you provide no argument then an unknown will silently be used): if you text-sefectexample, thei

must be replaced byin the version of the rule that is generated. The second pararésedeclared to

be anoBJECT. This means that instead of generating an unknown, a freshly-minted identifier will be used
in place ofx in the version of the rule that is generated. The parameter declarations say nothing about the
nameP: it will always be replaced by an unknown.

Suppose, now, that you text-selaand apply the rule. The generated consequent willlhé>[x\a], and

the problem sequent=b,b=ck(a+b)+c=a+(b+c). Jape will try to unify P[x\a] with
(atb)+c=at+(b+c) and, by default, will try to turn the problem formula into a substitution by finding every
occurrence oé (the replacement formula in the substitution form) in the problem formula and replacing
each of them by (the replacement variable in the substitution form). It succeeds, producing the formula
(x+b)+c=x+(b+c), which it unifies with P. That is, of course, do@®t generate a most general unifier of

the original pair of formulee, but pragmatically it is often the one which you want.

If Jape can't find every instance of the replacement formula in the problem formula — for example, if
there are unknowns in either or both of them, or if either or both of them contain names over which the
theorem being proved is quantified — then it will generate a ‘deferred unification’ proviso. That's a
provisoformulauUNIFIESWITH formula When those appear it is often because you have done something
silly: either you are going through the proof in an unhelpful order, or there is some additional information
which could help to clarify the situation and avoid the deferred unifications.

The second mechanism is called user-defined substitution matching. The mechanism works together with
the WITHSUBSTSELtactic (see appendix B and chapter 5). The user must text-select all the subformulas in
the problem sequent which they want to be considered — bo#s tfier example, or one of thes Then

the tacticwITHSUBSTSEL“O elim”) firsts constructs a ‘stable substitution form’ based on those
selections: if both thas it would build ((v+b)+c=_v+(pt+c))[_v\a]; if the first b it would build
((at+_v)tc=at(b+c))[_V\b]. Then it applies the rule elim”, which causes it to unify the new substitution

form with _P[X_E] from the rule: the unification process recognises the stable substitution form as
something special, and pattern-matches the two, unifyfhgvith its body,x with v and E with its
replacement formulaa(in the first exampleb in the second). Jape hasn’t constructed the most general
unifier this time either, but it has justification, because it constructs the one which you asked for.

The tactic store

Theorems are a kind of rule; rules are a kind of tactic. Tactics are programs whose primitive proof steps
are the application of rules and/or theorems to problem sequents. The tactic store therefore contains all
three in a single soup, indexed by name.

A.3 Fonts

Presentations of logics in textbooks and technical papers make use of special logical symbols, sometimes
invented specially for the purposes of that particular logic, which can't easily be representessiniithe
character set. In polished presentations of logics in Jape we use special fonts — but it is perfectly possible
to use, and in the first instance you may want to use, combinatiasgnicharacters to approximate the
special characters. Whatever font you use, it will need at least to include the asana@haracters for
identifiers, numbers, round and square brackets, quotation marks, backslash and comma as well as the
special characters you need for your logical connectives and operators.

A description of a logic will therefore often begin by describing the font in which the logic is intended to
be viewed. This will necessarily also be the font in which the logic description itself is written, and

Roll your own Jape logic (3.2) Page 81 Appendix A: Paragraph and Formula languages

therefore you will need an 8-biscil text editor to create and modify the logic descrigtidm practice

the graphical interface part of Jape may use more than one font and more than one character size to
handle proof display, menus and buttons. You therefore use the name of a ‘font encoding’ to describe the
whole scheme to Jape. The graphical examples in this manual are taken from the current implementation
of Jape on MacOS, and they use Roy Dyckhoff's Konstanz and Detroit fonts in varioés Eieesame

of the encoding is Konstanz, and there is a similar encoding in X Jape. The directive used in this and the
other encodings in this manual is therefore

FONTS "Konstanz"
Other encodings are in preparation.

A.4 Flexible syntax

There are various ways in which you control what formulae can be written down and how they will be
interpreted by Jape.

Symbols

The rules of a logic are written in terms of various symbols — logical operators and connectives as well as
identifiers likeA, B or x. Jape reserves a few special characters — they are double-quote, underscore,
opening or closing parenthesis (round bracket), space, newline or tab — which can’t be used in symbols.

Jape recognises four distinct kinds of symbol:

« identifiers which are rather like programming language identifiers or mathematical variable
names: sequences of characters which start with an alphabetic character and optionally
continue with any sequence of alphabetic and/or numeric characters and/or p$oes (
single quotes). Actually Jape’s identifiers can start with any defined sequence of characters,
given in aCLASS directive, though some choices — like using commas or arithmetic operator
characters — may be more confusing than useful.

« unknownswhich are are written as an underscore followed by an identifier.
« numberswhich are sequences of numeric characters.

¢ strings which start with amscill double-quote, continue with any sequence of characters not
including newline or double-quote, and end withagcil double-quote.

« special symbolswhich are user-defined sequences of characters containing anything other
than Jape’s reserved characters. Everything else goes, though some choices — like using
primes or commas inside a special symbol — may be more confusing than useful. Special
symbols are defined iNFIX, PREFIX, POSTFIX LEFTFIX andOUTFIX directives.

Special symbols are always used as constants, and usually as operators or some kind of brackets, and they

are defined implicitly by including them in various kinds of syntactic definitions. Identifiers can also be
used as operators or brackets, by using them in just the same kind of syntactic definition.

Numbers, strings and special symbols are always constants of a logic — they stand for themselves and not
for anything else. Identifiers can be constants or they can stand for classes of things, like formulee,
variables, or whatevér

1 Under MacOS, we've found BBEdit Lite (freeware) very useful in preparing Jape logic descriptions, and thank its authors
for their skill and philanthropy. Under X, Bernard has produced an 8-bit editor of his own called jed; it's part of the
standard UNIX distribution of Jape.

2 Konstanz and Detroit fonts were produced by Roy Dyckhoff as part of the MALT project at the University of St Andrews.
We are grateful to Roy for permission to use them and to distribute them with MacOS Jape.

3 We haven't done the ‘whatever’ bit, or not very much of it. But we know what we want to do, and we know how to do it ...

Roll your own Jape logic (3.2) Page 82 Appendix A: Paragraph and Formula languages

Juxtaposition may need care

Jape’s syntax allows juxtaposition of formulee. You may have to use white space (blanks , spaces,
newlines) to separate juxtaposed identifiers in some way, -without spacing, is usually a single
identifier, whereax y is usually two juxtaposed identifiers and is equivalenk(9, (x)y or X)(y).
Similarly, x1 is usually a single identifier, whereasl is an identifier followed by a number. The
syntactic priority of juxtaposition is user-defined.

Usually you can juxtapose special symbols without separation. If you define - to be a special symbol, for
example, and you don't also define -—, thex is-read as two = symbols followed by an identifier.

Identifier classes

Typically, you start the definition of a logic by saying what the various identifiers you are going to use
‘stand for’ or ‘range over’. You can say that an identifier ranges over formulee, variables, numbers,
strings, or constants; you can say that any identifier which starts with a particular prefix ranges over one
of those categories. The directives are

<kind>names
CLASS<kind>names

where <kind> iSSFORMULA, VARIABLE , CONSTANT, STRING, NUMBER, BAG <kind> orLIST <kind> and
namess a comma-separated list of identifiers or identifier prefixes.

The unprefixed directives — such as, for exampgleNSTANTmap fold, filter — define particular
identifiers which are of a particular class. They are ‘object language’ names and when they appear in
rules or theorems, they won't be instantiated with anything. But they will unify with unknowns of the
same kind.

The prefixed directives — such as, for example\SS VARIABLE X, Y, z— define identifier prefixes which

are of a particular kind. Every identifier or unknown which starts with one of those prefixes is of the
specified kind and they are all ‘general’ or ‘schematic’ or ‘meta-language’ names: when they appear in
rules they are always instantiated with an unknown or an argument of the same kind.

Unknowns follow the same rules as identifiers: given the directives abmaggwould be an unknown
that would only unify with constantsx33would be one that unified only with variables.

There isn't, at present, any way of defining a name that is of a kind which is a mixture of primitive kinds
(VARIABLE andCONSTANT, for example), butORMULA includes all the other kinds.

Syntactic hierarchy

Jape has a built-in notion of certain syntactic forms:

« identifiers — likeA, ABC, Al, x, y, y37f, ...

* strings — ‘anything at all

*« numbers-1, 2, 46

« fully-bracketed formulae -f¢grmula)

« substitutions — by defaulormula[variable list\ formula list], but the order ofariable list
andformula list can be reversed if you wish, and you can choose different symbols in place
of [, Vand ;

* juxtaposition (like function application in functional language&rmula formula

« prefix operators ep formula

« postfix operators formula op

« infix operators formula op formula

e LEFTFIX bracketing —bra f, sep, f, sep,...sep,_; f,

Roll your own Jape logic (3.2) Page 83 Appendix A: Paragraph and Formula languages

* OUTFIX bracketing -bra f, sep, f, sep,...sep,_; f ket

In addition, comma (‘,") is always a zero-precedence tupling operator, so that tfigieaia, formula,

... ,formula— are automatically available, with or without brackets.

Both substitution and juxtaposition associate to thé;lgéiu define the associativity of infix operators as
well as their precedence. Prefix operators, postfix operators, substitution forms, juxtaposition and
LEFTFIX bracketed forms all have user-defined precedence.

There are well-known pitfalls in the definition of flexible precedence grammars (but probably no deeper
than the holes beneath other forms of grammar). If your definition falls into a hole, Jape may not give
much assistance, nor even provide readable parsing diagnostics.

Bracketed formulee
Jape recognises bracketed formulee which use round brackets (parentheses). You can define other kinds of
brackets for yourself inEFTFIX andOUTFIX directives.
OuUTFIX directives allow you to define new kinds of opening and closing brackets together with internal
punctuation as well. You list the opening bracket, the internal separators and the closing bracket. For
example you might write

OUTFIX if then else fi
and then Jape will recognise

if formulathenformulaelseformulafi

At present the parser allows you to bring in the closing bracket early, before the list of internal
punctuation symbols is exhausted, so that giverotherix directive above any of the following will be
recognised as a formula:

if fi

if formulafi

if formulathenformulafi

if formulathenformulaelseformulafi

This is a temporary hack, pending a more flexible parser-generator.

LEFTFIX directives allow you to define opening brackets which have no corresponding closing bracket:
you list the syntactic precedence, the opening bracket and the separating symbols. For example you might
write

LEFTFIX 100 letrec be in
and then Jape will recognise formulae of the form
letrecformulabeformulain formula

LEFTFIX formulee are notoriously ambiguous — experts will recognise this as the ‘dangling else’ problem.

In effect the final separator has the priority given in the declaration, and Jape will not allow the opening
bracket to be preceded by an operator which is of higher priority than that given in the declaration. For
example, if you have

INFIX 120
LEFTFIX 100V .

then you could writé]x.AB , but notC x.AB . That restriction, we hope, eliminates visual ambiguity
in the use of bracketed forms without a closing bracket. If you want to write a formula which breaks these
rules, you can always use brackets, as for exam|@é inx.AB).

1 substitutionhasto associate to the left, but we can imagine right-associative juxtaposition. Another enhancement for the
fugure (sigh).

Roll your own Jape logic (3.2) Page 84 Appendix A: Paragraph and Formula languages

Substitution forms

You can define the relative priority of substitution and juxtaposition as well as that of operators.
Normally substitution is the highest priority form, and juxtaposition is either the next or follows some
prefix/postfix operators, but the choice is yours. You write

JUXTFIX precedence
SUBSTFIXprecedence
SUBSTFIXprecedence bra id1 sep id2 ket

The second form afuBsTFIX allows you to define the syntax of a substitution form, choosing opening
bracket (by default "), separator (by default ‘/’) and closing bracket (by default T'). At the same time
you choose whether the variable list or the formula list comes first, by putting a variable identifier and a
formula identifier in place ofd1 andid2. Because Jape uses this directive as a definition of some of the
symbols, there must always be white space between its various components.

Operator syntax

You define connectives and other such symbols in your logic by defining (uPRBAIX, (unary)
POSTFIX operators and (binary)FIX operators together with their syntactic precedence; in addition infix
operators need an associativity. You write

PREFIXprecedence op op ...
POSTFIXprecedence op op ...

INFIX precedence&associativity>op op ...
INFIXC precedence&associativity>op op ...

Theops are special symbols, but they may be made up of any characters that you wish — they don’'t have
to be made up of non-alphanumeric characters. <Associativity> is a single character: L means left-
associative, so tha op B op Gmeans A op B op C R means right-associative, so tiabp B op C
meansA op (B op Q; T means tupling or non-associative, so thaip B op CmeansA op B op C

Mixing operators of the same precedence and different associativity may cause confusion, but Jape
doesn't prohibit it. The difference betweaFix andINFIXC is to do with the way that formulee are
parsed.

As in many modern programming languages, we permit a bracketed operator as a formula, so you can
write formulee like (+), [)), (++) once those symbols have been defined as operators. Operation formulae
are parsed as juxtapositions, so thafixop formulais parsed as the juxtapositigoréfixop) formula

formula postfixopis parsed asppstfixop formula f1 infixop f2is parsed asrfixop) (f1,f2) andfl

infixCop f2is parsed asr{fixCop) f1 f2, the reverse transcription is made when the formulee are printed
out.

Binding structure

Binding structure is defined by pattern: you give some variable names and some formula names and then
give a pattern using those names. Any formula or subformula which matches the pattern is automatically
a binding formula. Because substitution or unification mustn't be allowed to change the structure of a
formula, Jape checks for ‘near miss’ patterns and complains if it finds them.

The sort of thing you write is

BIND x SCOPEPIN 3x.P
BINDy SCOPEPIN{yIP}
BIND x,y SCOPEPINVx,y .P

It's normal to useEFTFIX or OUTFIX patterns, as in these examples, but it isn’t obligatory.

The last of the three examples above defines a parallel binding: one that at the same time binds two
variable names. At present Jape has no means of defining families of parallel binding formula structures
except by exhaustively listing each alternative. And it has no way of defining serial bindings at all.

Roll your own Jape logic (3.2) Page 85 Appendix A: Paragraph and Formula languages

Sequent structure

At present sequents are always double-sided, and each side is one of
¢ an optionally-empty comma-separated bag/multiset of formulae BASapr BAG FORMULA;
« an optionally-empty comma-separated list/sequence of formulael+s3ayr LIST FORMULA;
¢ asingle formula — sayORMULA

The SEQUENT directive gives you the opportunity to say what can appear on either side, and what the
entailment symbol is. You write

SEQUENTIhs entailment rh§ AND Ihs entailment rhs .}.

You can have as many different kinds of sequent as you wish, provided that their entailment symbols are
unique.

In version 3.2 we have introduced@bGEMENTdirective. This works in just the same waySEQUENT,

except that in box display AIDGEMENT is always written on a single line — that is, its lhs is not
interpreted as a collection of hypotheses and its rhs a conclusion. We are fairly sure we have chosen the
wrong word for this directive (and indeed &EQUENT). Watch this space or send us a suggestion.

Future work

In the future we intend to provide a more powerful form of syntax definition for Jape’s users, providing in
particular a more efficient means of defining binding forms and ways of making finer distinctions
between syntactic categories. More structure in sequent forms would be a step still further, and we don't
yet envisage it.

Appendix B

The tactic language

There are no reserved words in the tactic language. It is written in a very restricted sub-dialect of the
formula language, without the restriction that the class of every identifier must be pre-declared. When it
comes to the application of a rule — the simplest kind of tactic — then the arguments must be stated in the
formula language.

Although there aren’t any reserved words, there are a lot of tactic language verbs. As in the paragraph
language, these are all in upper case. You don'’t have to avoid these names in the statement of rules and
theorems, but if you start using them as tactic parameter names you might confuse things.

Since version 3.0, tactic applications are written in ‘curried’ styerbargl ... argN, where each
argument is bracketed if necesdary a tactic starts with a verb which isn’t one of those listed below, it

is treated as an application of a named tactic, rule or conjecture. The verb and arguments of a tactic
application are evaluated in the current environment — that means that any names they contain which are
parameters of the current tactic, or parameters of the curent. tactical, are replaced by the
corresponding formulee.

When a named tactic is applied to arguments, a new environment is created by zipping together tactic
parameters and supplied arguments. If there are too few arguments, the remaining parameters are ignored.
When a name is evaluated which doesn’t have a value in the current environment, the name itself is taken
as the result.

B.1 Tactic verbs

ALT tactic ...tactic: try each of the tactics in turn, until one is found that succeeds. If none succeeds,
ALT fails.

APPLYORRESOLVEtactic: rules applied byactic will be tried first normally, where both hypotheses
and conclusions must match, and then ‘by resolution’ where only conclusions need match
and extra antecedents are inserted to prove each of the hypotheses. The ‘resolution’ step
requires that the logic havecaT structure rule.

ASSIGN variable value the named variable, which must be part of the global enviroment (see
appendix C) is assigned the given value. Some variables can't be altered once anything has
been loaded into the tactic/rule/conjecture $tore

DO tactic applytactic repeatedly until it fails, thebo succeeds.

EVALUATE formula: evaluate one of a fixed number of built-in judgements. Where used, this tactic
is explained in one of the distributed encodings; at the time of writing it is used only in the
functional programming encoding to evaluatesocedfl, f2), a judgement that two
formulee are identical when rewritten with maximal use of associativity EW8.UATE is
intended to be the basis, one day, for a mechanism of communication with oracle programs.

1 The older ‘uncurried’ style, with arguments provided as a bracketed tuple, is now withdrawn. That means we have curried
applications and uncurried definitions. One day ...
2 Those variables are properly parameters and for clarity we ought to have a syntax for handling them. Patience, patience.

-86 -

Roll your own Jape logic (3.2) Page 87 Appendix B: Tactic language Roll your own Jape logic (3.2) Page 88 Appendix B: Tactic language

EXPLICIT name ... ,name succeeds if evergameis a parameter for which an argument has been LETHYP pattern tactic ... tacticOne of the ‘guarded tactics’ for usevirHEN; also a ‘binding tactic’
supplied. | think. Opposite of1PLICIT below. | think. (see below). If the user has formula-selected a hypothesis formula, unify gattn then
FLATTEN formula ‘flattens out’ all subformulae dbrmulain the conclusion of the current problem proceed as normal for a binding tactic.
sequent by rewriting according to the rules of associativity. It's based on the same machinery LETHYPFIND pattern tactic ... tacticjust like LETCONCFIND (g.v. above), except that the single text-
asASSOCEQ SeeEVALUATE above and chapter 5. selection must be made in a hypothesis formula
FOLD rulenametactic: Automatically ‘folds’ collections of rules. See chapter 5 above. LETHYPSUBSTSELpattern tactic ... tacticlike LETSUBSTSEL(Q.v. below) except that the text-
FOLDHYP pattern tactic Automatically ‘folds’ hypotheses. See chapter 5 above. selection must be made in a hypothesis formula of the current problem sequent.
IF tactic: runtactic, but succeed even if it fails. LETMATCH patl pat2tactic ... tactic One of the ‘guarded tactics’ for useWHEN; also a ‘binding

IMPLICIT name.. nameN succeeds if none of afamé ... nameNis a parameter for which an tactic’ (see below). Ipatl unifies withpat2 proceed as normal for a binding tactic.
argument has been supplied. | think. Opposi®xaiLiCIT above. | think. LETMULTISEL pattern tactic ... tacticOne of the ‘guarded tactics’ for useWHEN; also a ‘binding

tactic’ (see below). Unify all the user’s text-selections, expressed as a tuple of formulae, with

JAPESstuff: probably deserves a section on its own. Was originally called the ‘AdHoc’ tactic, and it pattern then proceed as normal for a binding tactic.

shows. Usuallystuff is nothing more than “faimessagé but can also be “showalert)) . .) -
messageand “write messageand lots more which it would be tedious and embarrassing to LETSUBSTSELpattern tactic ... tacticOne of the ‘guarded tactics’ for useWwHEN; also a ‘binding
list. Likely to change soon and without notice. tactic’ (see below). If the user has made a number of text selections within a single formula,

each an instance of an identical sub-formula, convert that to a substitution (see chapter 1) and

LAYOUT pattern numberdactic ... tactic: the way in which a tactic can hide part of a pré&ttern unify it with patterr; then proceed as normal for a binding tactic.

is either () orstringl or (stringl, string2); numberss a tuple of integers. Ruactic ... tactic

as a sequence and if that succeeds, mark the subtree it produces so that it is displayed in a MAPTERMStactic: i_f the c_urre'nt problem sequent has a concIL_Jsion which is a single formula, try to
special way determined Ipatternandnumbers The tree is displayed either in ‘hidden’ or apply tactic (which is probably some sort of rewrite rule) to each of the structural
“full’ form: by double-clicking on the justfication at the root of the tree the user can force subformulee of that conclusion formula.

Jape to switch between forms. In ‘hidden’ form only the antecedents selectathbgrsare MATCH tactic: runstactic so that any rules which it applies are required to succeed without visibly
shown, and all others are hidden: antecedents are numbered from left to right, starting with 0, changing the unification context — that is, without changing the interpretation of any
so that ifnumbersis (1,3), for example, only the second and fourth antecedents will be unknowns in the problem sequent.

shown. In ‘full’ form all antecedents are shown. In ‘hidden’ form the justification shown at PROVEtactic. detaches the current goal from the proof tree; tries to prove it; and then plugs in the
the root of Fhe subtree is con_trol_lgd i_;lymgL if included, or by th_e ‘varlable ‘hiddenfmt’ proof if it's complete, otherwise fails. A way of ensuring that a tactic builds a subtree with no
otherwise; in ‘full’ form that justificaiton is controlled kstring2, if included, or by the open tips.

variable ‘unhiddenfmt’ otherwise. In either form the controlling string is used as a format tactic tactic but i it © . d eliminati f substituti
string rather as in a very simple kind of C printf, and occurrences of %s in that string are REPLAY a(; |c.drur; ac_fl_c i’ useU ergw_equa| ?I(upd' cortljversmn a_tn e |m|nta |obn 0 El: fs Itu 'Otr;f) th
replaced by a summary of the justifications on hidden parts of the subtree; in ‘full’ format Ins eal o uhnl ication. Used In proot loading, because It seems 1o be a bit taster than the
occurrences of %s in the controlling string are replaced by the justification of the node at the normafl mechanism.
root of the subtree. RESOLVEtactic: rules and theorems applied tagtic will all be applied ‘by resolution’ in which only
LETARGSEL pattern tactic ... tacticOne of the ‘guarded tactics’ for useVHEN; also a ‘binding the conclusions need match and extra antecedents are inserted for each hypothesis. See
tactic’ (see below). If the user has madsirsgle text selection, parse that text and unify it SIMPLEAPPLY below andAPPLYORRESOLVEabove.
with pattern then proceed as normal for a binding tactic. SAMEPROVISOStactic: rules applied byactic mustn’t add or delete any provisos from the current

LETCONC pattern tactic ... tacticOne of the ‘guarded tactics’ for usevitiEN; also a ‘binding tactic’ unification context. Used to be used in proof reloading; may now be obsolete.

(see below). If the user has formula-selected a conclusion, unify ipafitérn then proceed SEQtactic ... tacticN: run the tactics in sequence. Fail if any of them fails.

as normal for a binding tactic. SIMPLEAPPLY tactic: each of the rules applied Igctic will be applied in ‘normal’ style, without
LETCONCFIND pattern tactic ... tacticOne of the ‘guarded tactics’ for usevitiEN; also a ‘binding using the ‘by resolution’ mechanism.

tactic’ (see below). If the user has made a single text seldstinra conclusion formul&€ SKIP: succeed.

so thatC consists off1 followed by fs followed byf2, if the textfl (fs) f2 is a parseable
formula, and if the formulaG, f1 (fs) f2) unifies withpattern then: ifC is not structurally

the same formula a4 (fs) f2 proceed as normal for a binding tactic; if they are the same
formula, succeed silently, without running the sequeactc ... tactic

LETCONCSUBSTSELpattern tactic ... tacticlike LETSUBSTSEL (q.v. below) except that the text-

THEORYALT : generated internally, and used when a particular mechanism, used only in the
functional programming encoding, is searching for and caching rules. It's all rather horrid
and extremelyd hog and no further details will ever be released.

UNFOLD rulename tacticseeFoLD above.

selection must be made in a conclusion (right-hand side) formula. UNFOLDHYPformula tactic seeFOLDHYP above.
LETGOAL pattern tactic ... tacticOne of the ‘guarded tactics’ for usevithiEN; also a ‘binding tactic’ UNIQUE tactic runtactic so that any rules it applies are required to succeed in only one way (i.e.
(see below). If the current problem sequent has a single conclusion formula, unify it with prevents application of those rules from offering the user a choice of alternative matches).

patterry then proceed as normal for a binding tactic. Used in proof reloading.

Roll your own Jape logic (3.2) Page 89 Appendix B: Tactic language

WHEN guardedtactic... guardedtactic tactictry each of the guarded tactics in turn until one is found
whose guard unifies, then run the tactics it guards; if none of the guards succeeds, run the
final alternativetactic. The guarded tactics must each be one ofL#e.. variety: see
‘guarded and binding tactics’ below.

WITHARGSEL tactic: runtactic, giving it as argument the current text-selection, provided that there is
only a single text selection and it parses properly as a formula. Fails if there is a single text
selection but it can't be parsed.

WITHCONCSELtactic: if the user has formula-selected a conclusion formula, rules applietty
must consume it (that is, explicitly match it).

WITHCONTINUATION tacticl tactic tactic .:.tacticlis run so that its continuation is the sequence
tactic tactic ... Has no effect unlessmcticl ends with amALT/THEORYALT; then it will
ensure that no alternative of thatT succeeds unless the sequetaatic tactic ...succeeds
afterwards. Makes alternative choice a little more lazy.

WITHFORMSEL tactic. a combination ofvITHCONCSEL above andvITHHYPSEL below.

WITHHYPSEL tactic: if the user has formula-selected a hypothesis formula, rules appliedttiy
must consume it (that is, explicitly match it).

WITHSELECTIONStactic: a combination oWITHARGSEL, WITHCONCSEL andWITHHYPSEL

WITHSUBSTSELtactic. normally used inside EETSUBSTSELtactical. The user’s text selections have
to be entirely within one of the hypotheses or conclusions of the current problem sequent:
rewrite that hypothesis or conclusion as a substitution form, based on the text selections
given, and then rutactic. Fails noisily if the text selections don't describe a substitution in
just the right way; fails normally if the substitution is described, thatic fails. Rules
applied bytactic must consume (i.e. explicitly match) the reconstructed formula.

In addition to all those there are two that can occur insfdenaulainside a tactic:

ANTIQUOTE (formula): everything insiddormulais liable to ‘evaluation’ in the current tactic
environment, unless it QUOTEd. Arguments in applications of tactics are treated as if they
WereANTIQUOTEd.

QUOTE(formula): nothing insidgformulais liable to ‘evaluation’ unless it ENTIQUOTE.

B.2 The ‘current problem sequent’, the ‘goal’ and the ‘target’

When you start a proof there is only one problem sequent. When you apply a rule with two antecedents,
there are two to choose from. When you are well into a proof, there may be many.

Each time Jape makes a proof step (by application of a rule or in a small number of other ways, mostly to
do with the more exotic of the tactics likeND or FLATTEN, and sometimes caused by the dialogue
language) it selects a new problem sequent if the current one is closed, or replaced by a subtree. It always
finds the ‘next rightmost unclosed tip’ and makes that the current problem sequent. The ‘next rightmost
unclosed tip’ is the first one in the fringe of the tree to the right of the current one, or the first one in the
fringe if there isn’t one to the right of the current one.

The current problem sequent is called the ‘goal’; the problem sequent from which we moved to the
current one because application of a rule succeeded is called the ‘target’ (not a very good name, ‘target’,
but that's the way it is).

B.3 Guarded and binding tactics

Jape’s tactic language is ‘eager’ — whether it should be so continues to be a matter of debate — with
backtracking on failure. If a tactic fails, then the enclosing tactic either fails, or if it AA&ntries

another alternative starting from the state in which it first applied the sub-tactic that failed. That sort of
backtracking search is fine sometimes, but not always. It can be modified — slightly — by
WITHCONTINUATION.

Roll your own Jape logic (3.2) Page 90 Appendix B: Tactic language

TheWHEN tactical takes ‘guarded tactics’ and applies them carefully, accepting the result of the first one
of them whose guard matches. Note that the whole guarded tactic may fail after its guard has matched,
and in that cas&/HEN won't backtrack, it will simply fail.

Each of the guarded tacticals — they are all called.. — takes g@atternand atactic sequence. The
patternis matched against something by unification: if the unification succeeds then the environment is
updated to reflect that unification. Roughly speaking you can assume that unkngeatteinwill be

added to the environment as parameters corresponding to the stuff they unified with, and if they are used
again in the tactic sequence, they will be replaced by that same stuff. You don’t have to worry that the
unknowns you use might already appear in the unification context: Jape invents new ones, based on the
ones you use, so that the effects of a successful binding tactic never leak into the unification context used
in proof steps.

Appendix C

The command language, environment variables
and the default environment

C.1 The command language

Jape communicates with its graphical interface in a language of ‘words’, space separated unless they are
enquoted "...". You may want to attach commands to buttons, you may want to include commands as
entries INTACTICPANELS, and you can type commands into the system — on the Mac into the Text
Command box, on X into the command window — so here goes with a description. I've divided it into
two: the ones you might want to use, and the arcana.

Note that the language described heradshocand subject to change without notice or any sign of
visible regret on the part of the implementors. Be warned.
Commands you might want to use

addnewconjectur@anelnameconjecture this command is sent by the New... button in a
conjecture panel, after the user has typed the conjecture into a dialogue box.

applytacticexpressionthis command is used a lot: it is the way that menus and panels apply
tactics. Don't forget that a rule name is a tactic expression.

assigmamevalue the way that Jape’s environment variables (q.v. below) are given values.
backtrack: command sent by the Backtrack button in the Edit menu.

closedbugfile: close the top dbug file on the stack of such files (see createdbugfile below);
redirect diagnostic output to the file below, or to the console if the stack is empty.

collapse: the way that the Hide/Show detail entry in the Edit menu does its work.

createdbudfile: create a file, using the normal file selection dialogue, and redirect diagnostic input
into it. There’s a stack of these dbug files.

layout: has the same effect as double-clicking on the justification of the selected sequent.
lemmapanelnameonjecture synonym for addnewconjecture above.

print flename generates a listing of the currently-focussed prodiféname in a form suitable
for LaTeX processing.

proof finished: (two words) how the Done entry (on the Mac) and the proof finished entry (on
UNIX) in the Edit menu does its work.

proveconjecturenamehow the Prove button in a conjecture panel does its work.
prune: how the Prune entry in the Edit menu does its work.

QUIT: kill the proof engine, after asking whether the user wants to save any proofs.
redo: how the Redo entry in the Edit menu does its work.

-91 -

Roll your own Jape logic (3.2) Page 92 Appendix C: Commands and environment variables

refreshdisplay: clear the currently-focussed proof window and redraw the proof it contains.

reset: how the Reset entry (on the Mac) and the ?? entry (on UNIX) in the Edit menu do their
work. On the Mac the Reset entry can be greyed-out even though some syntax definitions
have been accepted: in that case typing the reset command to a Text Command window
can be helpful.

reset;reload: (no spaces, all one ‘word’ with a semicolon in the middle!) how the Load New
Theory entry in the File menu does its work.

showproofconjecturenamehow the Show Proof button on a conjecture panel does its work;
opens a window with a proof @bnjecturenamén it, if there is one in the proof store.

saveengindilename saves the current proof engine, with all its settings, in a file. Useful for
creating pre-initialised engines

steps: display the value of the internal variable ‘timestotry’ in an alert dialogue. See steps
below.

stepsn: set the value of the internal variable ‘timestotry’ to the integdris variable will, in
the near future, be part of the default environment (q.v. below). The value of the variable
controls the number of steps that Jape will allow in a single tactic application before failing
with the message “Time ran out”.

tellinterfacevariablename word word ...send the current value of the variabégiablenameto
the interface, prefixed by the commandrd

undo: the way that the Undo entry in the Edit menu and/or the Undo key do their work.

unify formulee Unify the given formulee and all of the user’s text-selections. The way that the
Unify button does its work.

usefilenames open each of the files named, read and execute the Japeish text they contain. The
way that proof files are loaded and a new encodings or a modification to the current
encoding is interpreted

version: display the current version information of the Jape engine in an alert dialogue.

Arcana

cd path: changes the default directory used by the proof engine. Only works in the UNIX
implementations; don't use if you don’t know what it does.

closeproofn: absolutely not to be used.
DRAGQUERY: part of the drag-and-drop interface; don't use it.
DROPCOMMAND: part of the drag-and-drop interface; don't use it.

fonts_reset: command sent by the graphics interface when its fonts are altered. Triggers all sorts
of cache mangling, but otherwise harmless.

HITCOMMAND comm absolutely not to be used.
NOHITCOMMAND comm absolutely not to be used.

profile [on | off | reset | repdfitename]: one of the mechanisms with which we debug the proof
engine. Only works in specially-instrumented proof engines usrdi.

quit: kill the proof engine without asking any questions.
saveproofsvord: absolutely not to be used.
setfocus: absolutely not to be used.

Roll your own Jape logic (3.2) Page 93

showfilefilename possibly obsolete.
emptywordignored.

C.2 Variables and the default environment

Jape has a number of ‘environment variables’ which can be used to modify its behaviour, and can

currently be set by thessIGN tactic, by the assign command andIR§TIALISE, RADIOBUTTON and

CHECKBOX directives in the paragraph language. Some of them are of general use; some are horrid
debugging switches of interest only to the implementors. Variables can be set from menus and panels: see
the various files like ‘autoselect_entry’ which are distributed with Jape and put entries in the Edit menu.

Useful variables

Variables whose default value is marked with an asterisk are parameters: their value can be altered only if

the rule/tactic/conjecture store is empty.
name values
applyconjectures true, false false

autoAdditiveLeft true, false false*
autoAdditiveRight true, false false*
autoselect true, false false

collapsedfmt any string "[%s ...]"
displaystyle box, tree tree
hiddenfmt any string "{%s}"
hidecut true, false true
hidehyp true, false true

default value

effect

when true, allow conjectures (unproved
THEOREMS) to be applied as rules.

when true, any rule whose consequent and
antecedents all havesac on their left-hand
sides is augmented by the addition of a bag
variable (e.gl') to the left-hand side of every
consequent and antecedent which doesn’t
already have one.

as autoAdditiveLeft, except that it applies to
right-hand sides

when true, select the conclusion of the current
problem sequent each time a proof is
displayed.

the string used to control the way that a
justification is displayed for a subtree shown
in ‘collapsed’ form — for example, after using
Hide/Show Subproof on an uncollapsed
subtree.

selects the display mechanism used to show a
proof. Each proof may have an individual
setting of this variable. When a new proof is
started, its displaystyle is taken from the
currently-focussed proof.

the string used to control the way that a
justification is displayed for a subtree
produced by theAYouUT tactical in ‘hidden’
form. This string is over-ridden #tringlis
provided in the.AYOUT tactical.

hide the applicatiorcofr rules in box
display.

hide the applicationoENTITY rules in box
display.

Appendix C: Commands and environment variables

Roll your own Jape logic (3.2) Page 94 Appendix C: Commands and environment variables

true, false false* on instantiating a rule, interpret juxtapositions
as predicate applications; translate them into
substitution forms, add ne@BJECT

parameters and invisible provisos.

when true, draw an outermost box in box
display when proving a conjecture which has
hypothesis formulee.

(misnamed — should be
showhiddenproofsteps) when true, show proof
steps hidden byAYOUT tacticals.

(misnamed — should be showhiddenprovisos)
when true, show hidden provisos, marked as
<proviso>.

apply theorems and antecedent-free rules in
‘resolution’ style if the conclusions of the
consequent match but the hypotheses don't.

string that controls the display of a subtree that
was once collapsed and is now reinflated.

string that controls the display of a subtree
produced by theAYouUT tactical and
displayed in ‘normal’ form. This string is
over-ridden ifstring2is provided in the
LAYOUT tactical.

interpretpredicates

outermostbox true, false true

showallproofsteps true, false true

showallprovisos true, false false

tryresolution true, false true

uncollapsedfmt any string "%s"

unhiddenfmt any string "[%s]"

Adding your own variables

You can invent your own environment variables and assign them values. In particular you can define a
variable in aRADIOBUTTON or CHECKBOX directive, give the range of possible values that it can take,
and allow the user to control that variable. See, for example, the way that the functional programming
encoding controls searching by using variables whose values are the names of tactics.

There are at present few ways in which the value of a variable can be used, once set. But watch this space
for developments, including at least a form of case-expression value analysis in the tactic language.

Debugging variables

Jape has a number of debugging variables. Setting any of them to true makes it print lots of stuff on the
console (which on the Mac is hidden, and needs secret knowledge to find). The variables currently used
are

applydebug, bindingdebug, factsdebug, FINDdebug, FOLDdebug, matchdebug, prooftreedebug,
rewritedebug, substdebug, symboldebug, tactictracing, thingdebug, unifydebug, eqalphadebug,
varbindingsdebug

In this manual we don’t explain or admit what these variables do or don’t do or how best to use them.
Good luck to you if you try to find out.

