
Roll your own Jape logic

Encoding logics for the Jape proof calculator

Richard Bornat and Bernard Sufrin

September 1997 (Jape version 3.2)

Contents

Preface ... v
Improvements since 3.0 .. v
Outstanding problems still awaiting a fix... v
Serious problems which won’t be fixed soon .. vi
Future developments ... vi

Chapter 1
Basic Principles ... 1

1.1 Flexible syntax .. 1
1.2 Backward proof .. 1
1.3 Inference rule matching: instantiation and unification.. 2

Parameters of rules ... 2
1.4 Explicit provisos ... 3
1.5 Conjectures and theorems... 3

Proving a conjecture – substitutions and provisos ... 4
Applying a theorem: the rôle of structural rules... 4

1.6 Substitution forms and unification ... 5
Invisible provisos .. 6
Interpreting predicate notation ... 6

1.7 Binding forms: unification, a-conversion and substitution .. 7
1.8 The tactic language .. 7
1.9 Gestures, menus and panels .. 8
1.10 Proof display: trees, boxes and hiding ... 8
1.11 Using Jape interactively... 9

Chapter 2
Encoding the Sequent Calculus ... 10

2.1 The inference rules of the (multiple-conclusion) Sequent Calculus .. 10
2.2 Preliminaries – fonts and syntax... 11
2.3 Encoding the inference rules ... 12
2.4 Automatic application of rules .. 13
2.5 Automatic selection of rules .. 14
2.6 Menus .. 14

The Rules menu ... 14
2.7 Conjectures ... 15
2.8 The Conjectures panel ... 16
2.9 Global variable settings ... 16
2.10 A very small example ... 17

Chapter 3
Variations on the Sequent Calculus .. 18

3.1 LF-style variables in quantifier rules ... 18
Caveat ... 20

3.2 The intuitionistic multiple-conclusion sequent calculus ... 20
3.3 A multiple-conclusion sequent calculus with multiplicative rules... 21

Resolving context-splits with drag-and-drop .. 22

Roll your own Jape logic (3.2) Page ii Contents

3.4 Modal logic.. 23
3.5 Single-conclusion sequent calculus (the intuitionistic fragment)... 23

Inference rules... 23
LF-style variables ... 24
Syntax .. 24
Menus and panels.. 24
Global variable settings .. 25

3.6 Box display mode and the hyp rule .. 25
Chapter 4
Encoding natural deduction... 27

4.1 Inference rules .. 27
4.2 Syntax .. 29
4.3 Forward reasoning ... 29

Cut and forward reasoning ... 30
4.4 The Conjectures panel ... 35
4.5 An alternative natural deduction encoding ... 35

Chapter 5
Encoding equational reasoning in functional programs ... 36

5.1 Syntax .. 36
5.2 The rewrite rule and user definition of substitutions ... 37
5.3 Hiding parts of proofs: the layout tactical ... 39
5.4 Selecting a subformula: lethypfind, letconcfind, assoceq and flatten 40
5.5 Induction in Jape.. 43
5.6 Controlling collections of rules ... 44
5.7 Searching collections of rules and theorems: the fold and unfold tacticals 46

Chapter 6
Encoding axiomatic set theory... 50

6.1 The natural deduction encoding ... 50
6.2 Syntax of set operations ... 52
6.3 The axiomatic presentation of naive set theory ... 53
6.4 The non-axiomatic rules .. 56

Chapter 7
Encoding the Hindley-Milner type-assignment algorithm ... 58

7.2 Syntax .. 58
7.2 Rules .. 60

Reading the context and specialising a type scheme .. 60
The generalisation step ... 61
Automatic search... 63

7.3 An example ... 64
7.4 Jape’s treatment of type-theoretic logics ... 65

Chapter 8
Encoding Hoare logic ... 66
Chapter 9
Encoding BAN logic.. 67

9.1 Syntax .. 67
9.2 Rules .. 67

Putting rules into menus ... 69
Dealing with tuples ... 69

Roll your own Jape logic (3.2) Page iii Contents

9.3 Conjectures with long assumption lists .. 70
Appendix A
The paragraph and formula languages .. 71

A.1 Directives... 71
A.2 Rules, tactics and conjectures ... 75

The meaning of a rule directive .. 76
Parameters in rule directives .. 77
Instantiating a rule, including interpretation of predicate notation ... 77
The meaning of provisos in rule and theorem directives .. 77
The meaning of conjectures (stated in theorem directives) .. 78
Proof by resolution.. 78
The meaning of structurerule directives ... 78
Substitution matching.. 79
The tactic store.. 80

A.3 Fonts .. 80
A.4 Flexible syntax .. 81

Symbols ... 81
Juxtaposition may need care... 82
Identifier classes ... 82
Syntactic hierarchy ... 82
Bracketed formulæ .. 83
Substitution forms ... 84
Operator syntax... 84
Binding structure... 84
Sequent structure... 85
Future work... 85

Appendix B
The tactic language ... 86

B.1 Tactic verbs... 86
B.2 The ‘current problem sequent’, the ‘goal’ and the ‘target’ ... 89
B.3 Guarded and binding tactics ... 89

Appendix C
The command language, environment variables and the default environment 91

C.1 The command language... 91
Commands you might want to use... 91
Arcana ... 92

C.2 Variables and the default environment.. 93
Useful variables .. 93
Adding your own variables ... 94
Debugging variables ... 94

- iv -

Preface

Jape is a lightweight, uncommitted, transparent proof calculator. It’s designed to present an excellent
graphical interface and a very short and shallow ‘learning curve’ to all its users, whether novices learning
how to make formal proofs or experts – logicians, teachers, sofware engineers, practitioners of any kind –
describing inference systems. This manual is directed at people who have experimented with one or more
of the inference systems distributed with Jape and now want to develop something of their own, or those
who just want to understand what it is that we have done in our own encodings.

The chapters of this manual describe by example how to encode several interesting logics in Jape. They
are intended to be read in sequence, as the earlier chapters give most description of the early stages of the
encoding, and later chapters concentrate on more esoteric features.

A manual which described a task only by example would be inadequate, and we therefore include a
complete description of the various internal ‘languages’ of Jape:

• the term or formula or sequent language, in which problems are stated, and which appears on-screen
when a proof is displayed – described in appendix A;

• the tactic language, which includes the statement of the inference rules of a logic, and which allows
the user to control the course of a proof – described in appendix B;

• the paragraph language, which is the notation used to describe a logic and its associated tactics and
stuff to Jape – described in appendix A;

• the dialogue language, which is the notation in which the graphical interface sends commands to the
main proof engine , and in which you can type as text in a graphical interface window – described in
appendix C.

This manual doesn’t discuss how to use Jape – that’s covered in the various user manuals which we
distribute with the example inference systems that we have already encoded.

This manual describes the state of the system in September 1997 (version v3.2f of the proof engine and
version 3.2e of the logic encodings). The graphical illustrations are taken from the then current MacOS
graphical interface (version 3.2b).

Improvements since 3.0

Since version 3.0 we have implemented proper sequent syntax (�s and Æs and that sort of thing), plus
autoAdditive variables for those who want to be able to state rules and theorems natural-deduction style.
There is an option to allow interpretation of predicate notation, and we now automatically insert essential
but invisible provisos into the statement of some rules and theorems. We’ve included a drag-and-drop
gesture to support multiplicative rules and certain kinds of weakening rules.

Outstanding problems still awaiting a fix

Some of the examples in this manual reveal deficiences with the current Jape system. If we stopped
writing in order to improve the system each time we described one of its warts we would never finish.
But any experimental system will always, at its frontier, have features which you might wish it didn’t.
What we list here are the things that we more or less understand how to fix. By putting the statement of
problems here, we avoid repetitive apologies in the body of the manual.

• Jape doesn’t check the proof store when you redefine a rule or theorem, and re-run all the
proofs that depend on it (though it does now guard against circularities in proofs).

Roll your own Jape logic (3.2) Page v Introduction

• Jape can’t yet handle sequents in which a side is an optional single formula.

• Jape has no treatment of definitional equality (syntactic equivalence), so you have to handle it
with additional rules.

• You can’t prove derived rules with antecedents, despite the fact that a theorem is just a kind
of derived rule in Jape.

Serious problems which won’t be fixed soon

There are things about Jape which are wrong, but which we can’t fix in a reasonable time.

• Jape cannot yet distinguish between classes of formulæ in problem sequents, except for
variables, constants, numbers and strings.

• Jape has a long-standing problem in that it can’t encode ‘families of rules’. We have used
some ingenuity to allow you to encode such families by finite collections of slightly different
rules, but the problem is very unlikely to be fixed without a large research project.

• Jape’s parser generator ought to make it possible to distinguish between lots of user-defined
syntactic categories. It isn’t clear how a parser generator can be both simple enough and
powerful enough. We intend to find out, but once again it would have to be part of a large
research project.

Future developments

The field of logical systems is huge and growing. Jape doesn’t cover it all, and no doubt people can
invent logics faster than we can devise ways of encoding them. Nevertheless, we understand how to make
Jape do much more than it can at present, and we are developing it constantly. At the time of writing,
projects on the immediate horizon include modal logic, linear logic and improved support for equational
reasoning as well as work to improve the graphical interface still further.

We are keen to hear from our users about the things that they want Jape to do, so that we can continue to
develop it in practically useful directions.

- 1 -

Chapter 1

Basic Principles

Jape works by applying inference rules to sequents in proof trees. Its fundamental mechanism is
unification, laced with a pragmatic treatment of explicit substitution forms. Put like that, it may seem
rather complicated, but it’s really very simple. We decided on unification rather than one-way pattern-
matching because it allows us to use Jape as a Prolog-style calculator, solving problems such as

λ λx y x y T. . : _

which would be completely intractable, or pointless, in a one-way-matching engine.

Tactics in Jape organise the application of other tactics. The simplest tactic is an inference rule.

On top of its basic proof mechanism Jape provides you with the opportunity to organise the graphical
user interface by programming its response to the basic gestures of pointing and clicking, and by defining
what is included in the menus and panels shown to the user.

1.1 Flexible syntax

Jape has a built-in collection of syntactic forms, which you can customise and to which you can add the
particular details which are appropriate to your particular logic. It recognises numbers, strings, identifiers,
unknowns, bracketed formulæ, tuples, substitutions, juxtapositions, and formulae made by using user-
defined prefix, postfix and infix operators, with user-defined priorities and associativity. In addition you
can invent various new kinds of brackets and punctuation.

Identifiers – names like A, x or F in conjectures, theorems and rules – rarely stand for themselves. For the
most part they stand for some arbitrary formula, variable or predicate which can appear in an instance of
the conjecture, theorem or rule in which they are used. When you define the syntax of identifiers in your
logic you say which are schematic identifiers and which are constants. At the same time you can define
the syntactic category of the identifiers you use.

The flexible syntax mechanism is illustrated in every chapter, and detailed in appendix A.

1.2 Backward proof

Jape always, always, always works backwards, even when its display mechanism tries to produce the
illusion that it is working forwards. It always works with trees – Gentzen trees – of sequents, even when
its display mechanism is trying to produce the illusion that it is working with Fitch boxes, or something
else1. If you haven’t seen a Gentzen tree, you can learn how Jape handles them if you use one of the
distributed logics that uses tree display mode, or you can switch to tree display mode in one of the
distributed logics that allows it – for example the single-conclusion sequent calculus encoding.

1 Currently we have a box display which approximates Fitch boxes. We have the beginnings of a more attractive treatment of
equational chaining proofs (see, for example, chapter 5) and we dream of a kind of Fitchery for linear logic, and more.

Roll your own Jape logic (3.2) Page 2 Chapter 1: Basic Principles

1.3 Inference rule matching: instantiation and unification

Consider this example rule of the single-conclusion sequent calculus:

Γ Γ
Γ

, ,
,

A C B C

A B C
æ æ

æ
æ

∨
∨

Its rendition in Japeish (see the file SCS_rules.j) is a straightforward linearisation of the original1

RULE "ëæ" FROM �,A æ C AND �,B æ C INFER �,AëB æ C

Our interpretation of the rule is that it describes a node in a proof tree by pattern: the consequent at that
node has a collection of formulæ on its left-hand side, one of which matches A∨ B for some pair of
formulæ A and B and the rest of which are taken as Γ, and a single right-hand side formula which matches
C. The node has two antecedents, each of which contains a sequent with the same right-hand side formula
C. The left-hand antecedent will have a sequent whose left-hand side is Γ together with the formula A; the
right-hand antecedent’s left-hand side which is Γ together with B.

Jape makes proofs by replacing tips of the tree with nodes generated from instances of rules, or
sometimes with subtrees generated by instances of several rules. Given a rule and a tip (leaf node) in a
Gentzen tree, Jape first instantiates the rule, generating a version in which the schematic names – in the
rule above they are Γ, A, B and C – are replaced by fresh unknowns; then it unifies the consequent of the
newly-instantiated rule with the sequent at the tip. Typically a rule might unify in more than one way –
there might be more than one left-hand side formula, for example, which could unify with A∨ B – and in
that case Jape requires the user to decide between the possibilities, either by selecting a preferred
principal formula2 beforehand, or by choosing from a menu of possibilities afterwards.

In the rule above there are various symbols of the logic as well as the schematic identifiers Γ, A, B and C:
there is the connective ∨ and there are the punctuation marks æ and comma. Although ∨ is in a sense an
identifier, it plays a fixed syntactic rôle in the logic and in the rule; it would be wrong to instantiate it
with an unknown. Some other identifiers might be non-schematic: there might be constant identifiers true
and false, for example. As logic describer you have control over the matter, which you exercise by
organising identifiers into syntactic categories. This not only allows you to distinguish between constant
and other identifiers, but it also allows you to distinguish, for example, between names like A which
might be taken to stand for some arbitrary formula, and names like x which you might wish to stand only
for variables.

Parameters of rules

In simple cases the fact that Jape uses unification rather than one-way pattern matching doesn’t have a
visible effect on the course of a proof. But if a rule doesn’t have the subformula property – if there are
names in its antecedents that don’t appear in its consequent, as for example in

Γ
Γ

, A B B

A
I

æ

æ

∧ ¬
¬

¬ −

– then unknowns, generated during the instantiation step, may appear in the proof3.

In these and other circumstances it can be useful to allow the user to provide an argument formula which
modifies the instantiation step. You do that by writing the rule definition with a parameter. The rule
above is written in Japeish as

RULE "Â-I"(B) IS FROM �,A æ B¦ÂB INFER � æ ÂA

1 Earlier versions of Jape required that the segment variable symbol Γ be omitted. Now it may optionally be omitted if every
rule is ‘additive’ in the linear logic sense: for examples see chapter 4.

2 A principal formula (sometimes principal term) in a rule in a sequent calculus is the one which the rule consumes, or
works on. That’s the formula which matches A∨ B in this example.

3 This is a strength of Jape, not a weakness: we don’t require the user to decide prematurely on the identity of those
unknowns.

Roll your own Jape logic (3.2) Page 3 Chapter 1: Basic Principles

Given a problem sequent X Y X Y, → ¬ ¬æ , Jape unifies _Γ with X Y X, → ¬ and _A with Y; then it
generates the antecedent X Y X Y B B, , _ _→ ¬ ∧ ¬æ . If it is given the argument formula X to use instead
of _B, it will generate the antecedent X Y X Y X X, ,→ ¬ ∧ ¬æ . In many cases an argument supplied to the
application of a rule can prevent a startling proliferation of unknowns in a proof.

The parameter of a rule may in some circumstances be decorated with the word OBJECT. That indicates
that in the absence of a user-supplied argument, the instantiation step is to generate a freshly-minted
identifier in its place rather than a fresh unknown. Frequently this is because the rule expresses a
generalisation step in the logic and it is natural for Jape to mint a fresh name. For example, the rule

Γ Γ
Γ

æ æ

æ

∃
∃ ∃ −

x A A x c C

C
c c x A E

. , [\]
(, .)FRESH NOTIN

is written as

RULE "ä-E"(OBJECT c) WHERE FRESH c AND c NOTIN äx.A IS

FROM � æ äx.A AND �,A[x\c] æ C INFER �æC

OBJECT parameters are used in other circumstances – in particular, see the discussion of substitution
unification below.

1.4 Explicit provisos

Jape’s provisos at present are NOTIN and UNIFIESWITH, plus three macro-relatives of NOTIN: FRESH,
HYPFRESH and CONCFRESH.

Provisos are either satisfied or violated, and they constrain the application of rules. If an attempted
application would violate a proviso, whether one contained in the rule itself or one left over from an
earlier stage of the proof, then the attempt fails. If it is impossible to determine the status of a proviso,
because it contains unknowns and/or substitution forms, then it is stored, displayed as part of the proof,
and carried forward in the expectation that its status will become clearer.

The proviso x NOTIN E is satisfied if x doesn’t appear free in E1 and violated if it does. NOTIN provisos
are either included in the statement of a rule or generated from FRESH, HYPFRESH or CONCFRESH

provisos: FRESH x generates a proviso x NOTIN E for every left- and right-hand side formula E of the
sequent matching the rule; HYPFRESH x generates NOTIN provisos only for the left-hand side formulæ and
CONCFRESH for the right-hand side formulæ.

The proviso E1 UNIFIESWITH E2 is internally generated. It allows Jape to defer difficult unifications
where it can’t find a most-general unifier. This can arise because of difficulties in unifying substitution
forms, or when using multiplicative (context-splitting) rules.

1.5 Conjectures and theorems

We allow the user to state a conjecture using the THEOREM directive2. A proved conjecture becomes a
theorem and can then be applied as a kind of derived rule; if the state variable applyconjectures is set to
true then unproved conjectures can be applied as if they were proved.

The THEOREM directive gives the name of a conjecture and its sequent, and it may also include provisos
which will be enforced both during the proof of the conjecture and whenever the theorem is applied. It is
possible to define a theorem without giving a name, in which case the sequent itself is used as the name.
The THEOREMS directive allows you to state a collection of conjectures, and will give each its own
sequent as a name. For example, the SCS.jt file defines a conjecture called contradiction

THEOREM contradiction IS A, ÂA æ B

1 Strictly if it cannot appear free, no matter what future unifications may happen and no matter how the schematic identifiers
of the conjecture being proved are instantiated. The proviso x NOTIN y is not automatically nor trivially satisfied.

2 Conjecture, theorem, which do we mean? There is no split personality here, but there are two Jape authors. One wants to
emphasise that it’s a conjecture till it’s proved; the other wants to emphasise that it is theorems, after all, that you are trying
to prove.

Roll your own Jape logic (3.2) Page 4 Chapter 1: Basic Principles

and the sequent_problems.j file includes a large collection of conjectures named by their sequent, some of
which are as follows:

THEOREMS PropositionalProblems ARE

Pç(QçR) æ (PçQ)ç(PçR)

AND Pç(QçR), Q æ PçR

....

AND WHERE x NOTIN P INFER P ë ÂP, èx.PçQ, èx. ÂPçQ æ èx.Q

AND R ë ÂR, èx.RçS, èx. ÂRçS æ èx.S

....

AND äy.P æ èy.P

END

The conjectures in this illustration are called “Pç(QçR)ÊæÊ(PçQ)ç(PçR)”, “ Pç(QçR),ÊQÊæÊPçR”,
“ P ë Â P , Ê è x . P ç Q , Ê è x . Â P ç Q Ê æ Ê è x . Q ” (the provisos aren’t part of the name),
“ RëÊR,Êèx.RçS,Êèx.ÂRçSÊæÊèx.S” and “ äy.PÊæÊèy.P”.

Proving a conjecture – substitutions and provisos

A proof of a conjecture begins with a tree which consists of the base sequent of the conjecture, together
with any provisos which were included in the statement of the conjecture1. The proof is then developed
by application of rules and tactics.

One important feature of the proof is Jape’s treatment of the identifiers and unknowns that appear in the
base sequent of the conjecture, and its treatment of other identifiers that may be introduced during the
proof process. Jape’s theorems are theorem schemata, not particular theorem formulæ; they may therefore
be instantiated in the same way as a rule, replacing identifiers in the theorem sequent by unknowns or
arbitrary formulæ. Identifiers in the conjecture’s sequent can’t, therefore, be treated as standing for
themselves during the proof.

In practice this means that substitution forms involving those identifiers may not be simplifiable: if, for
example, identifiers A and x appears in the conjectured sequent then A x E[\] can’t be replaced by A unless
it is certain that there will never be an instance of the theorem in which the formula which instantiates A
has a free occurrence of the variable which instantiates x. But if x is a name introduced during the proof –
for example, by application of a rule which has an OBJECT parameter – and if there are no unknowns in
the base sequent of the proof, so that x cannot be smuggled into the statement of the theorem we are
proving, then we reason that whatever argument formula instantiates A, we could choose x within the
proof to be distinct from all the names in A, and therefore A x E[\] can be replaced by A. In other
circumstances the assurance that x can’t occur free in A can come from a NOTIN proviso, or from meta-
theoretical reasoning about the relationships of names in the conjectured sequent.

Provisos that are introduced during proof of a conjecture, by application of rules or other theorems or
conjectures, and which aren’t evidently satisfied or violated are retained as part of the theorem and
checked whenever the theorem is applied.

The effect of our care with substitutions and provisos is that the proof tree which establishes the validity
of a conjecture stands for all the proof trees of all the instances of that conjecture, and Jape is justified in
using such a conjecture as a derived rule.

Applying a theorem: the rôle of structural rules

A theorem is, in principle, a rule with no antecedents. So Jape can instantiate it as a rule and match it to a
problem sequent just as a rule is matched. There are, however, a couple of interesting points.

The first is that in many cases a theorem won’t have enough left-hand or right-hand side formulæ to
completely match a problem sequent. The theorem “Pç(QçR)ÊæÊ(PçQ)ç(PçR)”, for example, matches

1 Jape sometimes adds invisible provisos which it deduces from the binding structure of the formulæ in the conjecture. Those
provisos can be made visible: see ‘invisible provisos’ below, and also appendix C.

Roll your own Jape logic (3.2) Page 5 Chapter 1: Basic Principles

only sequents with exactly one formula on the left of the turnstile and one on the right. Often a logic will
include so-called ‘weakening’ rules which enable you to delete a formula from the left- or the right-hand
side or both. If you include such rules and declare their rôle to Jape, it will allow you to apply a theorem
even though it does not completely match a problem sequent.

The second difficulty is that sometimes a theorem matches on the right-hand side, but not on the left. In
such a case it is often convenient to prove it ‘by resolution’: that is, to generate an antecedent for each of
the left-hand side formulæ and to set about proving them. That step is justified if the logic contains a ‘cut’
rule which enables you to move formulæ from left- to right-hand side. Jape will make a resolution step
for you if you declare the appropriate structural rules in your logic, declare their rôles, and also set the
tryresolution variable (see appendix C) or use one of the APPLYORRESOLVE or RESOLVE tacticals (see
appendix B).

1.6 Substitution forms and unification

Jape uses explicit substitution forms – A x c[\], B x y z E F G[, , \ , ,] – where some logics use predicate
notation – P c(), Q E F G(, ,). Substitutions are more powerful than predicates because they are more
general; for the same reason they are trickier to handle. Jape’s internal mechanisms are based on
substitution forms, but there is now a mechanism which allows you to write rules and theorems in terms
of predicate formulæ. Jape will translate into substitution notation, and construct automatically the
additional parameters and fussy NOTIN provisos that it needs – see ‘interpreting predicates’ below.

Explicit substitution forms are semantically scandalous, a notorious trap for novices, and an expert will
ask “what does a substitution form in a rule or theorem mean?”. It’s difficult to give a simple answer. It is
never necessary to include special rules to treat substitution forms – their treatment is a fundamental
mechanism of Jape, and Jape tries to eliminate substitution forms from the proof whereever and whenever
they appear. Therefore we can say that Jape treats a substitution form as equivalent to the result of
carrying out the subsitution. But in some situations it can be persuaded to treat a substitution form as a
structural pattern and will unify one unreduced substitution form with another, even though such
unifications don’t give the most general answer.

A substitution form is introduced into a proof, and if possible immediately eliminated, whenever the
antecedent of a rule contains one. Consider, for example, the problem sequent x y z z y> ∃ >æ . . If we apply
the rule

Γ ∆
Γ ∆
æ

æ
æ

A x E

x A

[\],
. ,∃

∃

then we generate a single antecedent x y z y z E> >æ()[\ _], which immediately simplifies to

 x y E y> >æ_ provided that we know that z and y are necessarily distinct1.

Much more interesting is what happens when a rule contains an explicit substitution form such as
A x E[\] in its consequent. When the rule is applied Jape must unify that substitution form – or rather, its
instantiated form which in general will be _ [_ \ _]A x E – with some formula B in the problem sequent.
That sort of unification is notoriously difficult, and Jape uses a number of ad-hoc strategies to help.

i It simplifies substitution forms whenever possible, in order to avoid the problem.

ii It defers the unification of an irreducible substitution form for as long as possible, so that the
results of other unifications can be used to simplify it.

iii If the user provides an argument formula F in place of parameter E, the instantiated form will
be _ [_ \]A x F ; when Jape can no longer avoid unifying that form with B it will search for all
instances of F inside B and try to construct a substitution form ′B x F[_ \] which simplifies to
B in presence of the proviso _x NOTIN B; if successful it will unify _A with ′B in a context

1 They might not be if, for example, they both appear in the base sequent of the conjecture being proved. They may be if, for
example, one or the other has been generated during the development of the proof, or if there is an explicit proviso which
makes it clear that they are distinct.

Roll your own Jape logic (3.2) Page 6 Chapter 1: Basic Principles

that records the proviso. The process is far more effective if the parameter x is decorated with
the word OBJECT, so that the instantiated form becomes _ [\]A z F where z is a fresh variable;
the formula ′B z F[\] is easier to construct and to simplify, and the proviso z NOTIN B is
easier to check1.

iv If the user text-selects instances of a sub-formula F of B, then the logic encoding can employ
the WITHSUBSTSEL tactical – see chapter 5 and appendix B – to calculate ′B by replacing just
those instances of F by a fresh unknown _y; ′B y F[_ \] necessarily simplifies to B given the
proviso _y NOTIN B; then Jape will unify _A with ′B , _x with _y and _E with F in a context
which records the proviso. If the parameter x is decorated with the word OBJECT then _x is
replaced by z and the proviso becomes z NOTIN B, which is once again easier to check.

v If all else fails, Jape can generate a proviso _ [_ \ _]A x E UNIFIESWITH B, and await
developments.

If Jape has to unify two substitution forms which have identical variable lists then it unifies the base
formulae and the substituted formulæ. For example, it can unify A x y A1 A2[, \ ,] with B x y B1 B2[, \ ,] by
unifying A with B, A1 with B1, A2 with B2. This happens rarely and sometimes it might not be the best
thing to do, but pragmatically it seems to work rather well almost every time it is used.

If Jape has to unify substitution forms with different variable lists then it extends one or the other: for
example, if it has to unify A x A1[\] with B x y B1 B2[, \ ,] it will try to construct ′A such that ′A y B[\]2
simplifies to A, and then unify ′A x y A1 B2[, \ ,] with B x y B1 B2[, \ ,]. In certain circumstances it will even
do a bit of α-conversion – but enough! this explanation is sufficiently complicated already.

The message is that Jape’s unification of substitution forms is usefully pragmatic. It does not always
generate a most-general unifier but it can, in practice, often generate just the unifier that the user is
looking for, especially when the encoding uses the LETSUBSTSEL/WITHSUBSTSEL mechanism (see chapter
5 and appendix B) to allow the user to describe the unification to Jape. It most often breaks down when it
has to deal with substitutions using variables which also appear in the base sequent of the theorem being
proved. That breakdown is, we think, inevitable, though we continue to search for ways round the
difficulty.

Invisible provisos

Consider the conjectures λ λx y x T1 T2 T1. . : → → and ∀ ∃ =x y P x P y. . () (). Clearly, in each case, any
instance of the conjecture would have to use two distinct variables. Nothing else would give the right
binding structure: λ λz z z. . : int real int→ → isn’t an instance of the first conjecture, nor
∀ ∃ =z z Q z Q z. . () () of the second2. But Jape’s mechanisms of rule and theorem instantiation don’t
automatically ensure this: instead, there has to be a proviso such as x NOTIN y in each case. Such provisos
are fussy, have to do with the internal mechanisms of Jape, and are difficult to explain to Jape’s users.
Therefore Jape generates them automatically, from an analysis of the binding structure of every rule and
conjecture, and then makes them invisible. You can see the invisible provisos in a proof by setting the
showallprovisos variable to true.

Interpreting predicate notation

Some of our users prefer predicate notation to substitution, and in certain ways it concisely conveys more
information. In the formula ∀x P x. () it is implicit that the predicate formula P doesn’t contain any
instances of x; in the corresponding formula ∀ []x P v x. \ no such inference can be drawn, and the
statement of a theorem which contained such a formula would require a proviso x NOTIN P to say as
much as the predicate version. Fussy provisos get substitution notation a bad name, so we have

1 In fact, because z is a fresh variable, the proviso is usually obviously satisfied. But a proviso is necesssary to constrain the
future course of the proof if there are unknowns in B. In those and in some other circumstances Jape may also produce
UNIFIESWITH provisos to cater with the process of abstraction in the nasty bits of B.

2 Strictly speaking, this second might be an instance of the the conjecture, if there are no instances of z in Q. These are deep
waters ...

Roll your own Jape logic (3.2) Page 7 Chapter 1: Basic Principles

implemented a mechanism which interprets predicate notation, translating it into substitution notation.
When you apply a rule which contains ∀x P x. (), for example, Jape translates it into ∀ []x P v x. \ ,
automatically inserting the necessary proviso. When you begin a proof which contains ∀x P x. (), Jape
doesn’t translate it, but it does insert the same proviso, making it invisible.

If you set the variable interpretpredicates to true, Jape treats every juxtaposition as if it were a predicate
application. If interpretpredicates is false (the default), Jape only interprets those juxtapositions in which
the first formula is an ABSTRACTION parameter name. See chapters 4 and 5 for examples.

In one respect Jape’s interpretation of predicate notation is pragmatically helpful rather than careful.
Consider, for example, the sequent ∃ ∀ ∀ ∃x y P x y y x P x y. . (,) . . (,)æ . Jape translates this to

 ∃ ∀ [] ∀ ∃ []x y P u v x y y x P u v x y. . , \ , . . , \ ,æ , and automatically includes provisos x NOTIN P and y NOTIN P, as it
should. Jape also includes x NOTIN y, which isn’t essential in order to preserve the binding structure,
because it is not required that either x or y must appear free in a predicate P x y(,). The effect is that
certain instances of the theorem are excluded. In practice it seems that our users prefer it this way.

1111....7777 Binding forms: unification, αααα-conversion and substitution

Suppose that ∀var formula. has been defined to be a binding form: then Jape will proceed as follows:

• it will unify ∀x A. with ∀x B. by unifying A with B;

• it will unify ∀x A. with ∀_ .y B by unifying x with _y and A with B;

• it will unify ∀x A. with ∀y B. by unifying ∀z A x z. [\] with ∀z B y z. [\], where z is a fresh
variable, together with the provisos z NOTIN A and z NOTIN B.

Jape respects binding forms when carrying out substitutions. Thus, for example, if ∀var formula. has
been defined to be a binding form and x and y are guaranteed distinct then (.)[\]∀x A x E always
simplifies to ∀x A. and, provided that x doesn’t appear free in F, (.)[\]∀x A y F will simplify to
∀x A y F.([\]); in other circumstances it will simplify to by α-conversion to ∀z A x y z F.([, \ ,]) together
with the proviso z NOTIN A, where z is a fresh variable.

1.8 The tactic language

Although Jape’s basic operation is the application of rules to tips of a proof tree, that is by no means the
whole story. You will often find it necessary to organise the application of rules by writing programs in
the tactic language.

The simplest tactics are inference rules. You can apply tactics sequentially (SEQ), or try one after another
(ALT , WHEN), you can call tactics with arguments, you can repeat tactics (DO); there is a notion of the
‘current goal’ sequent in the tree which is used when tactics are applied in sequence. It is possible, under
very severe constraints, to transform formulæ within the goal sequent (FIND, FLATTEN, WITHSUBSTSEL).

Most of the language has to do with the interpretation of gestures and selection of an appropriate
response.

Appendix B gives a complete list of all the verbs of the tactic language. The chapters of this manual give
examples of their use.

Roll your own Jape logic (3.2) Page 8 Chapter 1: Basic Principles

1.9 Gestures, menus and panels

The user can make certain ‘gestures’ at the Jape graphical interface. The way in which the gestures are
made – which buttons and keys are pressed and how the mouse is moved – varies between the interfaces,
and is not discussed here.

• A user can select a formula in a sequent. If a rule is then applied, Jape requires that the
selected formula is a principal formula in the rule. Thus, for example, if you select the
hypothesis X Y∨ in the sequent U V X Y U X U X∨ ∨ → ∧, , æ and then apply the rule

Γ Γ
Γ

, ,
,

A C B C

A B C
æ æ

æ
æ

∨
∨

you ensure that A B∨ in the rule matches X Y∨ in the sequent, Γ matches U V U X∨ →,
and, of course, C matches U X∧ . If a tactic is applied it can test for formula selection,
discover the formula selected, and modify its behaviour accordingly

• A user can double-click (‘hit’) on a formula, causing the application of a tactic chosen by the
logic description.

• A user can double-click on the ‘reason’ or ‘justification’ of a proof step. If there is hidden
detail behind that step then it will be revealed, or if it has been revealed by an earlier double-
click, it will be hidden again.

• A user can drag a formula. If there is a UNIFIESWITH proviso, generated as a result of context-
splitting in a multiplicative rule, some of the other formulæ mentioned in that proviso –
unknown segment variables like _Γ or _∆1 – will highlight as the formula is dragged across
them.

• A user can text-select part – typically, a sub-formula – of a formula in a sequent. If a rule is
applied, the text selection is provided as an argument to the application. If a tactic is applied,
it can test for text selection, discover the text selected, and modify its behaviour accordingly.

• A user can select an entry in a menu, and Jape will carry out the corresponding command.
Most entries correspond to the command apply T for some tactic T, but a menu can contain
any of the commands listed in appendix C. A good deal of your user-interface design activity
will go into deciding what goes in which menus, fixing on labels for each entry and choosing
just the right commands.

• A user can press a button in a panel, with or without first choosing an entry from the list of
entries in the same panel. Many panels list conjectures, and their buttons allow users to prove
the chosen conjecture, apply it as a theorem and so on. Other panels may be like menus. The
designer controls what is in the entries and what is on the buttons, and whether or not a
particular button sends just a command, or a command modified by the selected entry.

• A user can scroll the proof horizontally and/or vertically.

And that’s it. Jape uses a very impoverished vocabulary of gesture: we have chosen to make it so, in an
attempt to make Jape as straightforward to use as any other application in a modern GUI environments.

1.10 Proof display: trees, boxes and hiding

The Gentzen tree is the basic proof structure on which Jape works. Behind the scenes, whatever is on the
screen, is a Gentzen tree. Tactics can be used to hide selected antecedents of a proof step and alter the
‘reason’ or ‘justification’ displayed with the step; the hidden detail can be revealed to a user who double-
clicks appropriate parts of the proof.

Gentzen trees are notoriously wasteful of space, and Fitch boxes famously less so. Jape can display a
proof in an approximation to Fitch box style. The display is a transcription – not a translation – of the
tree, and it can be applied to any kind of logic, not simply natural deduction:

Roll your own Jape logic (3.2) Page 9 Chapter 1: Basic Principles

• the assumptions – left-hand side formulæ – of the base sequent are written on the first line
and the conclusion(s) – right-hand side formula(e) – on the last line;

• if a line is the conclusion of a proof step then the lines representing the trees of its
antecedents are written out before it, working left to right through the antecedents;

• the justification of a line which is the conclusion of a proof step references the assumption
line(s) to describe any left-hand side principal formulæ, as well as the lines which contain the
conclusions of its antecedents;

• if a line is the conclusion of a tip then a line of dots is written before it;

• if an antecedent introduces any hypotheses then its lines are written in a box, whose first line
is those hypotheses and whose last line is the right-hand side formula(e) of the antecedent.

That makes a fairly compact description, in which hypotheses are written only once but conclusions may
be written more often, especially when a left-hand side rule is used. It is made still more compact by
hiding applications of IDENTITY (axiom, hypothesis) rules, and it is made to support some forms of
forward reasoning (see chapter 4) by hiding, under the right circumstances, applications of a CUT rule.

If you select a conclusion formula in a box display, the effect is just as if you had selected the
corresponding conclusion formula in the underlying Gentzen tree. If you select a hypothesis formula the
effect can’t be so simple, because a hypothesis formula is written only once even though it may occur in
many sequents: Jape finds the set of sequents that you could be pointing to and disambiguates the choice
using any conclusion selection that you might have made.

It doesn’t make sense to use box display with a multiple-conclusion calculus for various reasons, and
Jape’s gesturing mechanisms therefore haven’t been adapted to this use.

Our box display isn’t a proper Fitch box display because you can’t necessarily use the proof which ends
on line j when making a proof step on a subsequent line k, even though the box structure would allow it.
The reason is that line j may be part of the proof of some cousin of k, not part of the proof of k – that is,
parts of the proof which are sequentially related in the box display aren’t necessarily hierarchically
related in the underlying Gentzen tree. We are working on the problem. For the moment we provide some
assistance by making the underlying tree structure more evident when the user selects an assumption or a
conclusion: Jape will ‘grey out’ lines in the box display which are irrelevant because they are not
hierarchically related in the underlying tree.

1.11 Using Jape interactively

Jape normally starts up ‘empty’, with no theory loaded, although it is possible to save a version of Jape
into which a theory has been loaded (using the saveengine command of appendix C: for details of its use
see the technical documentation about your version of Jape).

You can load a new theory into Jape by using a command from the File menu (Load New Theory, or
something like that). At any time you can add additional bits of Japeish to the brew, by using another of
the commands on the File menu (Open Logic file, or something like that). Jape works, like LISP or ML,
by maintaining a store of definitions, and it is always possible to add to those definitions. The effects may
be strange, especially if you try to add a new theory without getting rid of the old one first!

- 10 -

Chapter 2

Encoding the Sequent Calculus

Jape is, at bottom, a backwards-reasoning proof editor working on a tree of sequents. It is therefore no
surprise that it is exceptionally straightforward to encode the sequent calculus in Jape. We describe in this
chapter the encoding of the multiple-conclusion sequent calculus (distributed with Jape in the file MCS.jt
and the files it references).

In the distributed files we have described the syntactic rôle of the ≡ connective and included inference
rules and conjectures which make use of it, inherited from MacLogic. We haven’t included that
connective in this discussion.

2.1 The inference rules of the (multiple-conclusion) Sequent Calculus

We have encoded a fairly standard version of the sequent calculus. By making our left- and right-hand
sides bags (aka multisets) of formulæ we have avoided the need for exchange rules; by allowing the
axiom rule to ignore unnecessary hypotheses and conclusions we have avoided the need to use weakening
rules in almost every case and/or to describe context-splitting rules. See chapter 3 for an alternative
treatment of quantifiers and variables and for Jape’s treatment of context-splitting (multiplicative) rules.

axiom

 Γ ∆, ,A A
axiom

æ

Introduction to the right of the turnstile (æ... rules)

Γ ∆ Γ ∆
Γ ∆

æ æ

æ
æ

A B

A B

, ,
,∧

∧

Γ ∆
Γ ∆

, ,
,

A B

A B

æ

æ
æ

→
→

Γ ∆
Γ ∆

æ

æ
æ

A B

A B

, ,
,∨

∨

Γ ∆
Γ ∆

,
,

A

A

æ

æ
æ

¬
¬

Γ ∆
Γ ∆

æ

æ
æ

A m

x A x
m

()
∀ ()

∀,
. ,

()FRESH

Γ ∆
Γ ∆

æ

æ
æ

A B

x A x
()

∃ ()
∃,

. ,

Introduction to the left of the turnstile (...æ rules)

Γ ∆
Γ ∆

, ,
,

A B

A B

æ

æ
æ

∧
∧

Γ ∆ Γ ∆
Γ ∆

æ æ

æ
æ

A B

A B

, ,
, →

→

Γ ∆ Γ ∆
Γ ∆

, ,
,

A B

A B
æ æ

æ
æ

∨
∨

Γ ∆
Γ ∆

æ

æ
æ

A

A

,
,¬

¬

Γ ∆
Γ ∆

,
, .

A B

x A x
()

∀ ()
∀æ

æ
æ

Γ ∆
Γ ∆

,
, .

()
A m

x A x
m

()
∃ ()

∃æ

æ
æFRESH

Roll your own Jape logic (3.2) Page 11 Chapter 2: Encoding the Sequent Calculus

Structural rules

Γ ∆ Γ ∆
Γ ∆

æ æ

æ

B B
cut

, ,

Γ ∆
Γ ∆

æ

æ
æ

, A
weaken

Γ ∆
Γ ∆

æ

æ
æ

A
weaken

,

Γ ∆
Γ ∆
, ,
,
A A

A
contract

æ

æ
æ

Γ ∆
Γ ∆
æ

æ
æ

A A

A
contract

, ,
,

The æ¦, ç æ, ëæ and cut rules don’t split their left- or right-hand side contexts – they are additive rather
than multiplicative. Context-splitting rules are harder to use in a backwards reasoning tool, because either
the tool must force the user to decide how to split the context before the rule is applied or else it must
provide machinery to allow the decision to be deferred (see chapter 3, however, for a discussion of Jape’s
treatment of context-splitting rules). In practice, the fact that the axiom rule ignores unnecessary
hypothesis and conclusion formulæ makes context-splitting on either side unnecessary.

Because Jape interprets predicate notation as shorthand for substitution, the actual quantifier rules use
substitution. These are the rules which Jape employs, translating those above on input:

Γ ∆
Γ ∆
æ

æ
æ

A x m

x A
m

\ ,

. ,
()

[]
∀

∀FRESH

Γ ∆
Γ ∆
æ

æ
æ

A x B

x A

\ ,

. ,
[]
∃

∃

Γ ∆
Γ ∆
, \

, .

A x B

x A
[]
∀

∀æ

æ
æ

Γ ∆
Γ ∆
, \

, .
()

A x m

x A
m

[]
∃

∃æ

æ
æFRESH

The difference need hardly detain us: there are no additional provisos, and no substitution-matching is
required. In this logic at least, it’s easy to believe that Jape manipulates predicate notation directly.

2.2 Preliminaries – fonts and syntax

Our presentation uses the Konstanz font encoding, due to Roy Dyckhoff. We use names starting with A,
B, C, D, P, Q, R and S in rules and conjectures to stand for any formula; we use names starting with u, v,
w, x, y, z. m or n to stand for any variable. Names starting with Γ or ∆ stand for bags (multisets) of
formulæ1.

FONTS "Konstanz"

CLASS BAG � Æ

CLASS FORMULA A B C D P Q R S

CLASS VARIABLE u v w x y z m n

These directives also cover unknowns: an unknown which starts _A will unify with any formula, but one
which starts _z will only unify with a variable, a name which stands for a variable, or a similar unknown.

The syntax of sequent calculus formulæ is defined as follows:

LEFTFIX 20 è .

LEFTFIX 20 ä .

INFIX 100 L é

INFIX 110 R ç

INFIX 150 L ¦

INFIX 160 L ë

PREFIX 200 Â

JUXTFIX 300

SUBSTFIX 400

1 Note that now there are no commas in these lists of identifier prefixes: in general we have eliminated use of comma as a
separator in the paragraph language.

Roll your own Jape logic (3.2) Page 12 Chapter 2: Encoding the Sequent Calculus

Working from the bottom, this defines substitution forms as the most binding, then juxtaposition. Next
comes ¬ defined as a prefix operator, then the binary connectives (all but ç are defined to be left-
associative, while ç is right-associative). Finally two special bracketed forms are defined, with the lowest
syntactic priority. These definitions allow us to write:

• ¬ prim, where prim is an atomic formula, a substitution or a juxtaposition (see appendix A);

• f1 ∨ f2, f1 ∧ f2 or f1 → f2 with the interpretation that ∨ ‘operators’ have priority over ∧ , and
both have priority over →;

• ∀ f1 . f2 and ∃ f1 . f2.

Note that the leftfix patterns don’t constrain you to write ∀ variable . formula: it is only by defining
binding structures and by using variable identifiers in the right way in rule definitions that you can be
sure to constrain the use of these structures.

Because there is no closing bracket, formulæ constructed with LEFTFIX bracketing are liable to have a
visually ambiguous interpretation, so Jape demands that LEFTFIX-brackets aren’t used like ordinary
brackets: that is, you can’t write things like f1 x f2 f3∧ ∀ ∧. : you have to write instead either
f1 x f2 f3∧ ∀ ∧(). or f1 x f2 f3∧ ∀() ∧. .

The binding structures are given by pattern:

BIND x SCOPE P IN äx . P

BIND x SCOPE P IN èx . P

Any formula which matches one of these patterns is recognised as a binding formula – any variable in
place of x, any formula, including another binding formula, in place of P. Near matches aren’t allowed, so
the constraint to write ∀ variable . formula is enforced.

Note that this defines only single-variable bindings. Jape has no means at present of defining families of
binding structures, except by exhaustively listing them – for example, you might give BIND directives
which describe the structure of ∀ x,y.E, ∀ x,y,z.E and so on as we do in later chapters. But then you would
find that Jape has no means of defining families of inference rules which work across the different kinds
of bindings you can define, and you would have to separately define the rules – one for ∀ x.E, another for
∀ x,y.E, another for ∀ x,y,z.E and so on.

Our sequents have bags of formulæ on either side:

SEQUENT IS BAG æ BAG

2.3 Encoding the inference rules

Jape is designed to make the encoding of inference rules as transparent and straightforward as possible. In
principle all you have to do is to linearise the normal description of a rule, giving its name, its provisos,
its antecedents and its consequent. Writing { ... } for optional inclusion and { ... }* for repeated optional
inclusion, the syntax of a RULE directive is

RULE { name } – rule name
{ (parameter { , parameter }*) } – parameters
{ WHERE proviso { AND proviso}* } – provisos
{ IS }
{ FROM sequent { AND sequent}* } – antecedents
INFER sequent – consequent

Nearly everything is optional, but you have to put in enough reserved words to make it clear where each
section begins and ends. If you leave the name out, the name is taken to be the consequent itself. Where
the name of a rule isn’t an identifier – if it is æ¦, for example – it is necessary to enclose it in quotation
marks. The parameters are each an identifier or the word OBJECT followed by an identifier. Parameters in
a rule definition control the process of instantiation and the treatment of argument formulæ provided via
text-selection and/or tactics.

Roll your own Jape logic (3.2) Page 13 Chapter 2: Encoding the Sequent Calculus

Because we want to write our rules, and prove our conjectures, using predicate notation, we set a global
parameter1

INITIALISE interpretpredicates true

With that setting, the rules can be defined directly:

RULE axiom(A) INFER �,A æ A,Æ

RULE "æ¦" FROM � æ A,Æ AND � æ B,Æ INFER � æ A¦B,Æ

RULE "¦æ" FROM �,A, B æ Æ INFER �,A¦B æ Æ

RULE "æë" FROM � æ A,B,Æ INFER � æ AëB,Æ

RULE "ëæ" FROM �,A æ Æ AND �,B æ Æ INFER �,AëB æ Æ

RULE "æÂ" FROM �,A æ Æ INFER � æ ÂA,Æ

RULE "Âæ" FROM � æ A,Æ INFER �,ÂA æ Æ

RULE "æç" FROM �,A æ B,Æ INFER � æ AçB,Æ

RULE "çæ" FROM � æ A,Æ AND �,B æ Æ INFER �,AçB æ Æ

RULE "æé" FROM � æ AçB,Æ AND � æ BçA,Æ INFER � æ AéB,Æ

RULE "éæ" FROM �, AçB, BçA æ Æ INFER �,AéB æ Æ

RULE "æè"(OBJECT m) WHERE FRESH m

FROM � æ A(m),Æ INFER � æ èx.A(x),Æ

RULE "èæ"(B) FROM �, A(B) æ Æ INFER �,èx.A(x) æ Æ

RULE "æä"(B) FROM � æ A(B),Æ INFER � æ äx.A(x),Æ

RULE "äæ"(OBJECT m) WHERE FRESH m

FROM �,A(m) æ Æ INFER �, äx.A(x) æ Æ

RULE cut(A) FROM � æ A,Æ AND �,A æ Æ INFER � æ Æ

RULE "weakenæ"(A) FROM � æ Æ INFER �,A æ Æ

RULE "æweaken"(A) FROM � æ Æ INFER � æ A,Æ

RULE "contractæ"(A) FROM �, A, A æ Æ INFER �, A æ Æ

RULE "æcontract"(A) FROM � æ A,A,Æ INFER � æ A,Æ

The structural rules are declared to Jape with their proper rôles:

CUT cut

LEFTWEAKEN "weakenæ"

RIGHTWEAKEN "æweaken"

2.4 Automatic application of rules

It is possible to require Jape to try to apply a tactic at the end of each proof step – that is, after producing
the effects demanded by the user. You can make it apply the tactic in one of two ways: the AUTOMATCH

directive requires that the tactic works without introducing or eliminating any unknowns from the proof
tree, and without introducing or eliminating any provisos; the AUTOUNIFY directive doesn’t have any of
those constraints. With either directive, a rule within the tactic is not applied if there is more than one
distinct possible result.

In the sequent calculus it is reasonable to apply axiom whenever possible, but because it would always be
applicable whenever a conclusion or a hypothesis was a single unknown, it’s prudent to restrict ourselves
to applications which succeed by identical match, and we therefore include

AUTOMATCH axiom

1 The syntactic form we use is that of an assignment to a variable. This particular variable can only be altered when the store
of rules and variables is empty, so in practice it behaves as a parameter..

Roll your own Jape logic (3.2) Page 14 Chapter 2: Encoding the Sequent Calculus

2.5 Automatic selection of rules

When the user double-clicks on, or ‘hits’, a formula, the logic designer can provide that a tactic is
automatically applied. The choice of tactic is made by pattern-matching and depends on whether it is a
hypothesis or a conclusion that is hit. If there isn’t an applicable tactic, Jape puts up an error alert.

Description of a ‘hit’ and what to do about it is given by one of the directives

CONCHIT pattern IS tactic
HYPHIT pattern IS tactic

The pattern is matched – by one-way matching, not unification – to the formulæ which have been
selected and hit. It can be as follows:

• hypothesis <entails> conclusion, in which case the user must select (click) one of the two and
hit (double-click) the other;

• hypothesis <entails> – only in HYPHIT – in which case the user must hit a hypothesis without
selecting a conclusion;

• conclusion or <entails> conclusion – only in CONCHIT – in which case the user must hit a
conclusion without selecting a hypothesis.

In the sequent calculus we can automatically invoke a tactic when any formula is hit. First, we can invoke
a right rule when any conclusion is hit, provided that the user hasn’t confused the issue by selecting a
hypothesis as well:

CONCHIT B¦C IS "æ¦"

CONCHIT BëC IS "æë"

CONCHIT BçC IS "æç"

CONCHIT ÂB IS "æÂ"

CONCHIT èx.B IS "æè"

CONCHIT äx.B IS "æä"

We can automatically invoke axiom if the user hits a hypothesis having selected an identical conclusion:

HYPHIT A æ A IS axiom

We can automatically invoke a left rule if the user hits a hypothesis without having selected a conclusion:

HYPHIT AçB æ IS "çæ"

HYPHIT AëB æ IS "ëæ"

HYPHIT A¦B æ IS "¦æ"

HYPHIT ÂA æ IS "Âæ"

HYPHIT èx.A æ IS "èæ"

HYPHIT äx.A æ IS "äæ"

2.6 Menus

Jape automatically provides some system menus, whose content varies between graphical interfaces and
is therefore not described here. All other menus and panels are produced under the control of the encoder.

The Rules menu

To describe a menu you give its title and its contents. Each entry in the menu has a label – which the user
sees – and a Jape tactic – which is transmitted to the Jape engine when the entry is selected. A rule name
is the simplest form of Jape tactic, and in this logic that is all that we need:

MENU Rules IS

ENTRY axiom

SEPARATOR

Roll your own Jape logic (3.2) Page 15 Chapter 2: Encoding the Sequent Calculus

ENTRY "¦æ"

ENTRY "ëæ"

ENTRY "çæ"

ENTRY "Âæ"

ENTRY "èæ"

ENTRY "äæ"

SEPARATOR

ENTRY "æ¦"

ENTRY "æë"

ENTRY "æç"

ENTRY "æÂ"

ENTRY "æè"

ENTRY "æä"

SEPARATOR

ENTRY cut

ENTRY ÒweakenæÓ

ENTRY ÒæweakenÓ

ENTRY ÒcontractæÓ

ENTRY ÒæcontractÓ

END

This produces a menu in which every label is the name of a rule, and every command a tactic of the same
name. Jape allows us to save effort by defining the rules within the menu description. If we had written

MENU Rules IS

RULE axiom INFER A æ A

SEPARATOR

RULE "æ¦" FROM æ A AND æ B INFER æ A¦B

...

END

then it would have produced exactly the same menu.

2.7 Conjectures

The primary object of using Jape is to prove theorems. You can state conjectures in text commands
composed from the keyboard (after pressing the New… button on a conjectures panel), but it is more
normal to state them in a logic encoding file.

A conjecture can be stated in a THEOREM directive which gives its name, its parameter identifiers and
provisos if any, and the sequent which is the theorem itself. The effect is to put a conjecture with that
name into the ‘tactic store’, from which it can be retrieved in order to prove it, to apply it during a proof,
or to review its proof.

In the distributed version of the multiple-conclusion sequent calculus, two conjectures are stated in this
way:

THEOREM modusponens IS A, AçB æ B

THEOREM contradiction IS A, ÂA æ

Note that because this logic includes both a left and a right weakening rule, the contradiction theorem can
be applied, once proved, to any sequent which has a formula and its negation in its hypotheses. It could
even be applied automatically via AUTOMATCH, though we haven’t done that in this encoding.

Interpretation of parameter identifiers and provisos in a THEOREM directive is the same as for inference
rules.

Roll your own Jape logic (3.2) Page 16 Chapter 2: Encoding the Sequent Calculus

The THEOREMS directive allows you to state a collection of conjectures, each of which will be named by
its sequent, in a very economical way. Part of the THEOREMS directive in MCS+SCS_problems.j is:

THEOREMS PropositionalProblems ARE

Pç(QçR) æ (PçQ)ç(PçR)

AND Pç(QçR), Q æ PçR

AND RçS æ (PçR) ç (PçS)

AND Pç(PçQ) æ PçQ

...

AND èx.ÂQ(x), Pç(èx.Q(x)) æ ÂP

AND WHERE x NOTIN P INFER

PëÂP, èx.PçQ(x), èx. ÂPçQ(x) æ èx.Q(x)

AND RëÂR, èx.RçS(x), èx. ÂRçS(x) æ èx.S(x)

AND èx.P(x)çQ(x), èx.Q(x)çR(x) æ èx.P(x)çR(x)

AND èx.P(x)çR(x), èx.Q(x)ç ÂR(x) æ èx.(P(x)çÂQ(x)) ¦ (Q(x)çÂP(x))

AND S(m,n), èx.P(x) ç ÂS(x,n) æ ÂP(m)

...

The first section adds a number of propositional theorems to the tactic store, each under the name of its
sequent. The second section adds theorems which include quantified formulæ, some of which need
individual provisos (we included two versions of some theorems, just to show how the necessary provisos
are generated during the proof if you don’t add them beforehand).

2.8 The Conjectures panel

Panels in Jape have lists of entries and buttons. A CONJECTUREPANEL automatically includes buttons
labelled New…, Prove and Show Proof, and has a default Apply button if the user defines no buttons at
all. In the case of the sequent calculus we can use a straightforward CONJECTUREPANEL with a default
Apply button to hold all the problems which we want to display to the user. The distributed version goes
as follows. In MCS.jt we have:

CONJECTUREPANEL "Conjectures"

 THEOREM modusponens IS A, AçB æ B

 THEOREM contradiction IS A, ÂA æ B

END

and in sequent_problems.j we have

CONJECTUREPANEL "Conjectures"

 THEOREMS PropositionalProblems ARE

 Pç(QçR) æ (PçQ)ç(PçR)

 AND Pç(QçR), Q æ PçR

 AND RçS æ (PçR) ç (PçS)

 ...

 AND äy.P æ èy.P

 END

END

Note that additions to a panel or a menu can be made in several lumps: that is, panels and menus can be
built up in by disjoint declarations.

2.9 Global variable settings

Jape has a number of variables which control parts of its operation – for a complete list see appendix C.
In our encoding of the sequent calculus we have decided not to allow conjectures to be applied as

Roll your own Jape logic (3.2) Page 17 Chapter 2: Encoding the Sequent Calculus

theorems, not to allow theorems to be applied ‘resolution’ style, generating antecedents if all their
hypotheses don’t match, and to display our proofs as Gentzen trees. The initialisations are:

INITIALISE applyconjectures false

INITIALISE tryresolution false

INITIALISE displaystyle tree

2.10 A very small example

Here is the progress of a proof of Pierce’s law in this encoding. As intuitionists, we offer no explanation
of the pheonemon. Those who believe, believe.

((PçQ)çP)çP

P æ ((PçQ)çP)

æç

((PçQ)çP)çP

axiom

P æ PP, (PçQ) æ

çæ

P æ ((PçQ)çP)

æç

((PçQ)çP)çP

axiom

P æ P

axiom

P, Q æ P

æç

P, (PçQ) æ

çæ

P æ ((PçQ)çP)

æç

((PçQ)çP)çP

- 18 -

Chapter 3

Variations on the Sequent Calculus

The sequent calculus of chapter 2 is only one of very many possible variants. In this chapter we discuss
the way in which we can encode an LF-style treatment of variables in the quantifier introduction and
elimination rules, how Jape deals with non-additive rules, and two versions of the intuitionistic sequent
calculus – multiple and single conclusion.

3.1 LF-style variables in quantifier rules

Jape allows redefinition of any rule, theorem or conjecture1. The file MSC_LF.j redefines the quantifier
rules to allow a more careful treatment of variables2. The new rules are

Γ ∆
Γ ∆
,var ,

. ,
()

m A m

x A x
mæ

æ
æ

()
∀ ()

∀FRESH

Γ ∆ Γ
Γ ∆

æ æ

æ
æ

A B B

x A x
()

∃ ()
∃, inscope

. ,

Γ ∆ Γ
Γ ∆

, inscope
, .

A B B

x A x
()

∀ ()
∀æ æ

æ
æ

Γ ∆
Γ ∆
,var ,

, .
()

m A m

x A x
m

()
∃ ()

∃æ

æ
æFRESH

The intention is that a variable c is ‘inscope’ if there is an assumption var c; a formula is inscope if its
free components are inscope. Note that there is nothing in Jape which demands that we use these words
nor this technique: it’s up to the logic decoder.

The file sequent_scoping.j defines two low priority prefix operators:

PREFIX 10 var

POSTFIX 10 inscope

and a structural induction to handle formulæ, automatically applied whenever there is an open tip:

RULES "inscope" ARE

�, var x æ x inscope

AND FROM � æ A inscope AND � æ B inscope INFER � æ AçB inscope

AND FROM � æ A inscope AND � æ B inscope INFER � æ A¦B inscope

AND FROM � æ A inscope AND � æ B inscope INFER � æ AëB inscope

AND FROM � æ A inscope INFER � æ ÂA inscope

AND FROM �, var x æ A inscope INFER � æ èx.A inscope

AND FROM �, var x æ A inscope INFER � æ äx.A inscope

END

AUTOMATCH "inscope"

Encoding of the rules is then straightforward:

1 And it allows it at any time!! It ought to check, whenever a rule or theorem is redefined, every proof that relies upon it. It
doesn’t at the time of writing, but it will do so Real Soon Now.

2 Explanation for non-expert logicians: the effect is to make it much more careful about the treatment of possibly-empty
domains of quantification. It is impossible, for example, to prove èx.P(x) æ äx.P(x), because the proof would require that
there be some m such that P(m).

Roll your own Jape logic (3.2) Page 19 Chapter 3: Variations on the Sequent Calculus

RULE "æè"(OBJECT m) WHERE FRESH m

FROM �, var m æ A(m),Æ INFER � æ èx.A(x),Æ

RULE "èæ"(B) FROM �, A(B) æ Æ AND � æ B inscope INFER �,èx.A(x) æ Æ

RULE "æä"(B) FROM � æ A(B),Æ AND � æ B inscope INFER � æ äx.A(x),Æ

RULE "äæ"(OBJECT m) WHERE FRESH m

FROM �, var m, A(m) æ Æ INFER �, äx.A(x) æ Æ

We would like inscope judgements to behave like side conditions, displayed when they are a problem and
hidden when they are satisfied. But they aren’t provisos, because they relate a particular context and a
particular formula1.

In order to make these judgements side condidtions we use Jape’s LAYOUT tactical: it allows us to run a
tactic and to decide which subtrees of the resulting proof tree should be displayed and what should be
written as the justification of the step. (Subtrees which contain open problem sequents are always
displayed, so that nothing which might accidentally be important is hidden.) In the case of the æè and äæ

rules we would like to display the first antecedent proof (numbered 0) and hide the second (numbered 1);
in either case we want to give the name of the rule as the justification of the step. The tactics are

TACTIC "èæ with side condition hidden" IS LAYOUT "èæ" (0) (WITHSELECTIONS "èæ")

TACTIC "æä with side condition hidden" IS LAYOUT "æä" (0) (WITHSELECTIONS "æä")

which we put into the menu

MENU Rules IS

ENTRY "èæ" IS "èæ with side condition hidden"

ENTRY "æä" IS "æä with side condition hidden"

END

and into the list of double-click actions

HYPHIT èx.A æ IS "èæ with side condition hidden"

CONCHIT æ äx.B IS "æä with side condition hidden"

We get all this machinery simply by loading MCS.jt, to get the multiple-conclusion sequent calculus, and
then adding MCS_LF.j, to get the extra rules and syntax.

Under this encoding, we can show the progress of a proof in which the variable rules are obeyed:

äx.Q(x)¦P(x) æ äx.P(x)¦Q(x)

äx.Q(x)¦P(x) æ P(m)¦Q(m), var m

äæ

äx.Q(x)¦P(x) æ äx.P(x)¦Q(x)

Q(m)¦P(m) æ P(m)¦Q(m), var m

æä

äx.Q(x)¦P(x) æ P(m)¦Q(m), var m

äæ

äx.Q(x)¦P(x) æ äx.P(x)¦Q(x)

1 I guess they could be provisos one day.

Roll your own Jape logic (3.2) Page 20 Chapter 3: Variations on the Sequent Calculus

Note that one antecedent of the final step isn’t shown. We can see the full display by double-clicking on
the justification of that step:

inscope'0

m inscope æ P(m)¦Q(m), var mQ(m)¦P(m) æ P(m)¦Q(m), var m

[æä]

äx.Q(x)¦P(x) æ P(m)¦Q(m), var m

äæ

äx.Q(x)¦P(x) æ äx.P(x)¦Q(x)

Clearly it is an advantage to hide the side-proof whenever possible; it makes sense to hide it when it is
closed, as in this case. The rest of the proof is straightforward.

Next, the progress of an attempt to prove èx.P(x)ÊæÊäx.P(x), which isn’t a theorem in this logic (though
it is one in the logic of chapter 2):

äx.P(x) æ èx.P(x)

_B inscopeäx.P(x) æ P(_B)

èæ

äx.P(x) æ èx.P(x)

_B inscope

_B1 inscope æ P(_B)P(_B1) æ P(_B)

æä

äx.P(x) æ P(_B)

èæ

äx.P(x) æ èx.P(x)

_B inscope

_B inscope æ P(_B)

axiom

P(_B) æ P(_B)

æä

äx.P(x) æ P(_B)

èæ

äx.P(x) æ èx.P(x)

It doesn’t matter what we unify with _B: the side conditions won’t go away, and we don’t have a
theorem.

Caveat

A deficiency of Jape at present is that it has only one class of formula, but the contexts which will be built
up in this encoding include logical formulæ and extra-logical remarks like var c. That would permit you,
if you were actively incautious, to try to prove nonsense like var m ∧ var n. We’ll fix the problem as soon
as possible, but don’t hold your breath ...

3.2 The intuitionistic multiple-conclusion sequent calculus

The rules of the intuitionistic multiple-conclusion sequent calculus aren’t simply additive, but they use
little more than specialised weakening. The calculus is just that of chapter 2, with different definitions of
a few rules:

Γ
Γ ∆

,
,

A

A

æ

æ
æ

¬
¬

Γ
Γ ∆

,
,

A B

A B

æ

æ
æ

→
→

Roll your own Jape logic (3.2) Page 21 Chapter 3: Variations on the Sequent Calculus

Γ
Γ ∆

æ

æ
æ

A

A,¬
¬

Γ Γ ∆
Γ ∆
æ æ

æ
æ

A B

A B

,
, →

→

These are defined directly in the file IMCS.j, which you can load after MCS.jt (and before or after
MCS_LF.j, if you wish):

RULE "æÂ" FROM �,A æ INFER � æ ÂA,Æ

RULE "Âæ" FROM � æ A INFER �,ÂA æ Æ

RULE "æç" FROM �,A æ B INFER � æ AçB,Æ

RULE "çæ" FROM � æ A AND �,B æ Æ INFER �,AçB æ Æ

These definitions make it impossible to prove Pierce’s law, for which intuitionists may thank goodness:

((PçQ)çP)çP

P æ ((PçQ)çP)

æç

((PçQ)çP)çP

axiom

P æ P(PçQ)

çæ

P æ ((PçQ)çP)

æç

((PçQ)çP)çP

3.3 A multiple-conclusion sequent calculus with multiplicative rules

The logic is just the normal multiple-conclusion calculus, with all of the branching rules written in
multiplicative style; we have chosen at the same time to use an axiom rule which doesn’t ignore
unmatched conclusions:

 A A
axiom

æ

Γ ∆ Γ ∆
Γ Γ ∆ ∆

æ æ

æ
æ

A B

A B

, ,
, , ,

′ ′
′ ∧ ′

∧

Γ ∆ Γ ∆
Γ Γ ∆ ∆

, ,
, , ,
A B

A B
æ æ

æ
æ

′ ′
′ ∨ ′

∨

Γ ∆ Γ ∆
Γ Γ ∆ ∆

æ æ

æ
æ

A B

A B

, ,
, , ,

′ ′
′ → ′

→

Γ ∆ Γ ∆
Γ Γ ∆ ∆

æ æ

æ

B B
cut

, ,
, ,

′ ′
′ ′

These rules are defined in MMCS.j, ready to be loaded after MCS.jt:

RULE axiom(A) INFER A æ A

RULE "æ¦" FROM � æ A,Æ AND �' æ B,Æ' INFER �,�' æ A¦B,Æ,Æ'

RULE "ëæ" FROM �,A æ Æ AND �',B æ Æ' INFER �,�',AëB æ Æ,Æ'

RULE "çæ" FROM � æ A,Æ AND �',B æ Æ' INFER �,�',AçB æ Æ,Æ'

RULE cut(A) FROM � æ A,Æ AND �',A æ Æ' INFER �,�' æ Æ,Æ'

Since we have redefined cut, we have to redeclare its rôle to Jape:

CUT cut

When we use a multiplicative rule, the left and right contexts split. Jape automatically records this fact in
a UNIFIESWITH proviso:

PçR æ Q, Pç(QçR)

Roll your own Jape logic (3.2) Page 22 Chapter 3: Variations on the Sequent Calculus

R æ P, Q, Pç(QçR)

æç

PçR æ Q, Pç(QçR)

_Æ2 æ (QçR), _�2_Æ1, P æ _�1

çæ

R æ P, Q, Pç(QçR)

æç

PçR æ Q, Pç(QçR)

_�1, _�2 UNIFIESWITH Q, P

R UNIFIESWITH _Æ1, _Æ2

In this simple example we have to decide whether to send P and Q into �1 or �2, R into Æ1 or Æ2. The
axiom rule of this encoding was designed to help: we can select P in the left antecedent and apply axiom:

R æ (QçR), Q

axiom

P æ P

çæ

R æ P, Q, Pç(QçR)

æç

PçR æ Q, Pç(QçR)

All the problems are resolved, for the moment, and the rest of the proof can be completed in the same
way.

Resolving context-splits with drag-and-drop

Consider the following example:

_Æ2 æ R, _�2_Æ1 æ Q, _�1

ëæ

P¦R, P¦Q æ (QëR), P

¦æ

(P¦R), (P¦Q) æ P¦(QëR)

æë

(P¦Q)ë(P¦R) æ P¦(QëR)

_Æ1, _Æ2 UNIFIESWITH P¦Q, P¦R

P UNIFIESWITH _�1, _�2

Roll your own Jape logic (3.2) Page 23 Chapter 3: Variations on the Sequent Calculus

To make progress, we need to send one of the conclusions P∧ Q, P∧ R into _Æ1 and the other into _Æ2.
Jape has a drag-and-drop gesture, designed for this purpose. Dragging P∧ Q in the MacOS
implementation produces this kind of visual feedback, highlighting the dragged formula, the mouse
position and potential destinations:

If the mouse is released at the point illustrated, the proof is redrawn and the provisos simplified to match:

_Æ2 æ R, _�2P¦Q, _Æ3 æ Q, _�1

ëæ

P¦R, P¦Q æ (QëR), P

¦æ

(P¦R), (P¦Q) æ P¦(QëR)

æë

(P¦Q)ë(P¦R) æ P¦(QëR)

P¦R UNIFIESWITH _Æ2, _Æ3

P UNIFIESWITH _�2, _�1

A similar technique can be used with rules that involve explicit weakening.

3.4 Modal logic

It is our intention to enhance Jape so that it can use modal operators, and to further develop this encoding
to cover all of linear logic. Most of the code is written and included in Jape, but is lying dormant, so it
should be quite soon.

3.5 Single-conclusion sequent calculus (the intuitionistic fragment)

The rules of this logic are very similar to those of chapter 2. In our encoding the right-hand side of a
sequent contains exactly one formula – Jape can’t yet handle sequents with at most one formula on the
right-hand side – and we give rules for negation – Jape can’t yet handle definitional equality. The
encoding is in the file SCS.jt .

Inference rules

Apart from the treatment of negation, these are a pretty ordinary selection. As with the multiple-
conclusion calculus, we have chosen to use a hypothesis rule which ignores additional hypotheses, we
have avoided context-splitting rules, and we have made the left-hand side of a sequent a bag of formulæ.

Roll your own Jape logic (3.2) Page 24 Chapter 3: Variations on the Sequent Calculus

Negation is normally described by defining it to be equivalent to implication of absurdity: ¬x is just a
way of writing x → ⊥ . Jape can’t handle definitional equality of formulæ yet, and therefore we give rules
which implement that equality. With that exception, the rules are more or less the rules of the sequent
calculus with the symbol ∆ deleted.

hypothesis

 Γ, A A
hyp

æ

Introduction to the right of the turnstile (æ... rules)

Γ Γ
Γ
æ æ

æ
æ

A B

A B∧
∧

Γ
Γ

, A B

A B

æ

æ
æ

→
→

Γ
Γ

æ

æ
æ

A

A B L∨
∨

Γ
Γ

æ

æ
æ

B

A B R∨
∨

Γ
Γ
æ Ù

æ
æ

A

A

→
¬

¬

Γ
Γ

æ

æ
æ

P m

x P x
m

()
∀ ()

∀
.

()FRESH

Γ
Γ

æ

æ
æ

P B

x P x
()

∃ ()
∃

.

Introduction to the left of the turnstile (...æ rules)

Γ
Γ

, ,
,

A B C

A B C

æ

æ
æ

∧
∧

Γ Γ
Γ
æ æ

æ
æ

A B C

A B C

,
, →

→

Γ Γ
Γ

, ,
,

A C B C

A B C
æ æ

æ
æ

∨
∨

Γ
Γ
,

,
A B

A B

→
¬

¬Ùæ

æ
æ

 Γ,Ùæ
Ùæ

A

Γ
Γ

,
, .

P B C

x P x C
()

∀ ()
∀æ

æ
æ

Γ
Γ

,
, .

()
P m C

x P x C
m

()
∃ ()

∃æ

æ
æFRESH

structural rules

Γ Γ
Γ

æ æ

æ

B B C

C
cut

,

Γ
Γ

æ

æ

C

A C
weaken

,

Γ
Γ
, ,
,
A A C

A C
contract

æ

æ

LF-style variables

We haven’t encoded a multiplicative single-conclusion calculus, but there is an encoding of an LF-style
treatment of variables in the file SCS_LF.j. It’s identical to the treatment of variables in the multiple-
conclusion calculus, with the Æ symbol deleted.

Syntax

Formula syntax, and use of names, is exactly as in the multiple-conclusion sequent calculus.

Jape can’t at present be configured to handle sequents with an optional formula on the right-hand side,
but can easily be configured to handle those with exactly one. We therefore state

SEQUENT IS BAG æ FORMULA

Menus and panels

The Rules menu is almost the same as that in the multiple-conclusion sequent calculus. The Conjectures
panel is identical: the two encodings share the file sequent_problems.j.

Roll your own Jape logic (3.2) Page 25 Chapter 3: Variations on the Sequent Calculus

Global variable settings

Just as in the case of the multiple-conclusion sequent calculus, we don’t want to allow the application of
conjectures as if they were proved theorems and we don’t want to allow the application of theorems if
their hypotheses don’t match1. We therefore include

INITIALISE applyconjectures false

INITIALISE tryresolution false

We do, however, want to allow the user to switch display modes. In place of an INITIALISE directive for
the displaystyle variable, we include menu entries which control it, by inserting a radio button into the
Edit menu – one of the system menus of the Jape graphical interface. A radio button in a graphical
interface is a control which has a number of mutually-exclusive settings. In a menu this appears is a
number of entries, one of which is ticked.

MENU "Edit"

RADIOBUTTON displaystyle IS

"Box display" IS box

AND "Tree display" IS tree

INITIALLY tree

END

END

3.6 Box display mode and the hyp rule

Unlike the multiple-conclusion sequent calculus, the single-conclusion calculus can reasonably be used in
the ‘box display’ mode, simply as a screen-space saving device. Proofs such as

hyp

Q(m) æ Q(m), ÂP, PçQ(m)

hyp

ÂP æ ÂP, PçQ(m)

çæ

Q(m) æ ÂP, ÂPçQ(m), PçQ(m)

hyp

Q(m) æ Q(m), P, ÂPçQ(m)

hyp

P æ P, ÂPçQ(m)

çæ

Q(m) æ P, ÂPçQ(m), PçQ(m)

ëæ

Q(m) æ ÂPçQ(m), PçQ(m), PëÂP

èæ

Q(m) æ PçQ(m), èx.ÂPçQ(x), PëÂP

èæ

Q(m) æ èx.ÂPçQ(x), èx.PçQ(x), PëÂP

æè

èx.Q(x) æ èx.ÂPçQ(x), èx.PçQ(x), PëÂP

x NOTIN P

are over-large because the hypotheses are written out many times, once in each sequent which they occur.

1 These are pragmatic choices, driven by our expected audience of novices learning about logic. There is, of course, nothing
about the logic which forces either choice.

Roll your own Jape logic (3.2) Page 26 Chapter 3: Variations on the Sequent Calculus

 Box display of the same proof is much more economical of screen space:

assumptionsèx.ÂPçQ(x), èx.PçQ(x), PëÂP: 1

assumptionPçQ(m): 2

assumptionÂPçQ(m): 3

assumptionP: 4

assumptionQ(m): 5

 2,4,5çæQ(m): 6

assumptionÂP: 7

assumptionQ(m): 8

 3,7,8çæQ(m): 9

 1.1,4-6,7-9ëæQ(m): 10

 1.3,3-10èæQ(m): 11

 1.2,2-11èæQ(m): 12

 12æèèx.Q(x): 13

x NOTIN P

and the gain is of course more dramatic in the case of larger proofs.

Part of the gain is produced by hiding applications of hyp. A reference to a line proved by hyp can be
replaced by a reference to the hypothesis used in the hyp step – this happens, for example, on lines 4, 5, 9
and 10 of the box display above. All that is necessary is to declare the hyp rule and its structural rôle to
Jape, which we do as follows:

RULE hyp(A) INFER A æ A

STRUCTURERULE IDENTITY hyp

- 27 -

Chapter 4

Encoding natural deduction

The sequent calculus encodings above are each straightforward encodings of a logic, with a few
directives to arrange the elements of the user interface. Natural deduction challenges us to allow forward
reasoning. The challenger isn’t finished yet: we can only imitate some kinds of forward step, and some
features of the background tree are still traceable in the box display.

This encoding has been used in a first-year course at QMW for three years, with increasing user
satisfaction as our encoding has more nearly approached the treatment used by the course lecturer. That
lecturer chose the rules we encoded and, in particular, he chose to use a particular classical treatment of
negation, not at all the one which we would have chosen for ourselves nor even the particular classical
encoding which we would have preferred.

4.1 Inference rules

The rules of natural deduction are not normally stated in terms of sequents, but in a notation which is
silent about the hypotheses. In fact the rules were presented to us in Fitch box form and we immediately,
almost without thought, transcribed them into a sequent presentation. The rules that we were asked to
encode were as follows (plus reiteration, which we don’t list).

Elimination rules

i

j

k E i j

A

A B

B

: ...
...

: ...
...

: ,

→

→−

i

j E L i

A B

A

:

: ()

...
...

∧

∧ −

i

j E R i

A B

B

:

: ()

...
...

∧

∧ −

i

j E i

A

A

:

:

...
...
¬¬

¬ −

i

j

k

l

m

n E i j k l m

A B

A

C

B

C

C

:

:

:

assumption

:

:

assumption

: , .. , ..

...
...

...
...

...

...
...

...

∨

∨ −

i

j E i

x F x

F A

:

:

. () ...
...

()

∀

∀ −

i

j

k

l E i j k

x F x

c F c

A

A

:

:

:

assumption

: , ..

. () ...
...

()
...

...
...

∃

∃−

Roll your own Jape logic (3.2) Page 28 Chapter 4: Encoding natural deduction

Introduction rules

i

j

k I i j

A

B

A B

:

:

assumption

: ..

...

...
...

→ → −

i

j

k I i j

A

B

A B

:

:

: ,

...
...

...
...

∧ ∧ −

i

j

k I i j

A

B B

A

:

:

assumption

: ..

...

...
...

∧ ¬

¬ ¬ −

i

j I L i

A

A B

:

: ()

...
...

∨ ∨ −

i

j I R i

B

A B

:

: ()

...
...

∨ ∨ −

i

j I i

c

F c

x F x

:

:

...

() ...
...

. ()∀ → −∀ −

i

j I i

F A

x F x

:

:

() ...
...

. ()∃ ∃−

Themarginal c in the ä-E and è-I rules indicates a proviso that the name c should not appear free outside
the ‘scope box’ which it labels.

These Fitch-box rules have well-known tree equivalents, where reiteration is replaced by a hypothesis
rule, and the proviso on the ∃ -elimination rule is more extensive than you might at first suppose.

Hypothesis (tree)

A
hyp

Elimination rules (tree)

M M
A A B

B
E

→
→ −

M
A B

A
E L

∧
∧ − ()

M
A B

B
E R

∧
∧ − ()

[] []A B

A B C C

C
E

M M M
∨

∨

M
¬¬

¬ −
A

A
E

M M
∀

∀ −
x F x B

F B
E

. () inscope
()

[var , ()]

. ()
(FRESH , NOTIN . ())

c F c

x F x A

A
c c x F x E

M M
∃

∃ ∃ −

Introduction rules(tree)

[]A

B

A B
I

M

→
→ −

M M
A B

A B
I

∧
∧ −

M
A

A B
I L

∨
∨ − ()

M
B

A B
I R

∨
∨ − ()

[]A

B B

A
I

M
∧ ¬
¬

¬ −

[var]

()
. ()

()

c

F c

x F x
c I

M

∀
∀ −FRESH

M M
F B B

x F x
I

() inscope
. ()∃

∃ −

To implement the scope boxing mechanism of the original presentation we have used pseudo-predicates
var and inscope; the intention is that all the names in the formula B in ä-I and è-E should be mentioned in
var predicates in the hypotheses. This is not quite the same as scope boxing: in effect we say that the
name c may be used within a particular scope, but we don’t say that there may not be other scopes in the
proof where the same name is used. (In practice, because the rules which introduce the var pseudo-
predicate, used normally, always introduce names new to the proof, the distinction won’t be noticed.)

Roll your own Jape logic (3.2) Page 29 Chapter 4: Encoding natural deduction

These rules have obvious sequent-calculus equivalents.

Hypothesis (sequent)

 Γ, A A
hyp

æ

Elimination rules (sequent)

Γ Γ
Γ

æ æ

æ

A A B

B
E

→
→ −

Γ
Γ
æ

æ

A B

A
E L

∧
∧ − ()

Γ
Γ
æ

æ

A B

B
E R

∧
∧ − ()

Γ Γ Γ
Γ

æ æ æ

æ

A B A C B C

C
E

∨
∨

, ,

Γ
Γ
æ

æ

¬¬
¬ −

A

A
E

Γ Γ
Γ

æ æ

æ

∀ ()
()

∀ −
x A x B

A B
E

. inscope

Γ Γ
Γ

æ æ

æ

∃ () ()
∃ ∃ −

x A x c A c B

B
c c x A E

. ,var ,
(, .)FRESH NOTIN

Introduction rules (sequent)

Γ
Γ

, A B

A B
I

æ

æ →
→ −

Γ Γ
Γ
æ æ

æ

A B

A B
I

∧
∧ −

Γ
Γ

æ

æ

A

A B
I L

∨
∨ − ()

Γ
Γ

æ

æ

B

A B
I R

∨
∨ − ()

Γ
Γ

, A B B

A
I

æ

æ

∧ ¬
¬

¬ −

Γ
Γ
,var

.
()

c A c

x A x
c I

æ

æ

()
∀ ()

∀ −FRESH

Γ
Γ

æ

æ

A B B

x A x
I

()
∃ ()

∃ −
inscope

.

Plainly it is a difficulty, in a backwards-reasoning tool, that each of these is a right-hand rule. Yet if we
are to be faithful to our customer’s intention, these are the rules that we must encode. In order to
understand how to do that, it is necessary to understand how they are intended to be used.

4.2 Syntax

The syntax of formulæ in natural deduction is, of course, just like that in the sequent calculus: see chapter
2 for a discussion of the way that syntax is described in ItL_syntax.j. We set two variables (really they are
parameters, because they can only be altered when the rule and theorem store is empty):

INITIALISE autoAdditiveLeft true

INITIALISE interpretpredicates true

The first of these allows us to define rules without mentioning a left context, automatically inserting a
context variable Γ into every sequent in a rule definition (that is, allowing rule definition in the style of
earlier versions of Jape). The second directs Jape to interpret every juxtaposition – everything that looks
like a predicate application – as a predicate application, to translate where necessary into substitution
notation and to include additional rule parameters and invisible provisos to support the translation.

4.3 Forward reasoning

The sort of step that a natural-deduction reasoner might want to make is best illustrated by example.
Consider the problem of proving P ç Q, Q ç R , P æ R (the second problem in the Conjectures panel defined
in the file ItL_problems.j). In box display mode this is shown as

assumptionsP, QçR, PçQ: 1

R

. . .

: 2

Roll your own Jape logic (3.2) Page 30 Chapter 4: Encoding natural deduction

To anyone used to forward reasoning, the first step is clear: on line 1 there is P and there is also P ç Q; use
the ç-E rule to conclude Q. In the ItL.jt encoding of natural deduction that step can be made by first
selecting P ç Q on line 1

assumptionsP, QçR, PçQ: 1

R

. . .

: 2

and then applying ç-E from the Rules menu

assumptionsP, QçR, PçQ: 1

 1.3,1.1ç-EQ: 2

R

. . .

: 3

It looks like a forward step, and it quacks like a forward step: now you can select Q ç R on line 1

assumptionsP, QçR, PçQ: 1

 1.3,1.1ç-EQ: 2

R

. . .

: 3

and apply ç-E again

assumptionsP, QçR, PçQ: 1

 1.3,1.1ç-EQ: 2

 2,1.2ç-ER: 3

The proof is complete, and has apparently used forward reasoning. Yet in fact it was all done with right-
hand side rules and backward reasoning. It is also possible to start by eliminating the arrow in QçR, but
this isn’t the manual for that discussion: see “Using ItL Jape” which you can get from the MacOS Web
site at QMW.

Cut and forward reasoning

There is a well-known and obvious correspondence between a proof which uses forward reasoning in

natural deduction and one which uses cut – between

M

M
B

C

, on the one hand, and

[]B

B C

C

M M

 or

Γ Γ
Γ

æ æ

æ

B B C

C

,
 on the other. The proof above is based on a similar correspondence between

M

M

P P Q

Q

R

E
→

→ −

 and

P Q Q R P P P Q Q R P P Q
P Q Q R P Q P Q Q R P Q R

P Q Q R P R

hyp

E

cut

→ → → → →
→ → → →

→ →

→ −
, , , ,

, , , , ,
, ,

æ æ

æ æ

æ

Roll your own Jape logic (3.2) Page 31 Chapter 4: Encoding natural deduction

In the sequent proof, reading downwards, the hyp step moves P→Q from right to left; the →-E step
generates Q, and the cut step moves Q from right to left, making it available as an hypothesis for use in
the rest of the proof. The sequence “hyp; rule; cut” must be reversed in a backwards reasoning engine like
Jape, but in principle that is all there is to forward reasoning in Jape at present, together with box display
mechanisms which hide both hyp and cut steps.

In order to program this mechanism in Jape’s tactic language, we proceed step by step. We include a hyp
rule, we declare it so that its application is hidden in box display, and we automatically apply it at the end
of every proof step (all this could be done anyway, and has nothing essential to do with the forward
reasoning mechanism):

RULE hyp(A) IS INFER A æ A

STRUCTURERULE IDENTITY hyp

AUTOMATCH hyp

Similarly, we include and declare cut:

RULE cut(B) IS FROM B AND B æ C INFER C

STRUCTURERULE CUT cut

The elimination rules are the ones which are usually used forward. Each rule is defined in the usual way,
just as it would be if it were to be used only as a backwards reasoning rule. For example we encode ç-E

as follows, giving A as an argument because it isn’t a subformula of the consequent pattern:

RULE "ç-E"(A) IS FROM A AND AçB INFER B

When this rule is applied it is necessary to distinguish ‘backward’ from ‘forward’ application. We have
done this by testing if a left-hand side formula has been selected – which we take as a signal for ‘forward’
reasoning – or not – which is a signal for ‘backward’ reasoning. The entry for ç-E in the Rules menu
applies a tactic, giving the name of a tactic and of the rule as arguments:

ENTRY "ç-E" IS ForwardOrBackward ForwardCut 1 "ç-E"

Here ForwardOrBackward is the tactic which detects whether to use a forward or a backward step;
ForwardCut does the necessary work with cut, the rule itself, and hyp. It includes a step which selects the
antecedent to which hyp is to be applied:

TACTIC ForwardCut (n,Rule)

 SEQ cut (WITHARGSEL Rule) (JAPE (SUBGOAL n)) (WITHHYPSEL hyp)

WITHARGSEL applies a tactic taking account of any text-selections which the user might have made – that
is, adding an argument to the rule if the user text-selects an argument; JAPE(SUBGOAL n) selects the nth
antecedent (they are numbered 0, 1, ...) of the last applied rule; WITHHYPSEL applies a tactic taking
account of any left-hand side selection, and since there will always be one when we call this tactic from
ForwardOrBackward , the effect is that the user’s selected formula is used in the hyp step.

ForwardOrBackward tests whether a left-hand-side formula is selected or not, and chooses to call its first
argument or its second accordingly. Stripped to its bones it is simply:

TACTIC ForwardOrBackward (Forward, n, Rule) IS

WHEN (LETHYP _P (Forward n Rule))

(WITHSELECTIONS Rule)

The WHEN tactical takes a number of tactics, each of which except the last must be guarded: it finds and
executes the first guarded tactic whose guard succeeds, or executes its last argument otherwise. LETHYP

is a guarded tactic whose guard succeeds if the user has selected a left-hand side formula which unifies
with its first argument, and fails otherwise. When it succeeds it executes its second argument in the
context produced by the successful unification. In this case, since _P will unify with any formula, the
effect of the whole tactic is to test whether any left-hand side formula is selected and if so, to execute the
tactic corresponding to Forward (in our case ForwardCut) or if not, to execute the tactic corresponding to

Roll your own Jape logic (3.2) Page 32 Chapter 4: Encoding natural deduction

Rule (in our case the rule ç-E), taking account of any user gestures, such as argument selection, that may
have been made.

In conjunction with AUTOMATCH hyp, which automatically closes tips that can be trivially closed, and
hiding of hyp and cut lines, this mechanism has the effect illustrated in the example proof above. To see
how it works, we show what would be seen if the steps of the tactic were carried out one by one, without
any special display aids, in both tree and box form (you can do this for yourself by loading the file
‘displaystyle in Edit menu’ from the ‘useful buttons’ example folder, and then removing the ticks from
the ‘hide cut lines’ and ‘hide identity lines’ entries). Notice how the unknowns introduced in steps 1 and
2 are all resolved by hyp in step 3. That application is on the second antecedent of the ç-E, and is
constrained to use the originally-selected left-hand side formula, which in this case is PçQ.

1. cut assumptionsP, QçR, PçQ: 1

_B

. . .

: 2

assumption_B: 3

R

. . .

: 4

 2,3-4cutR: 5

R æ _B, P, QçR, PçQ_B æ P, QçR, PçQ

cut

R æ P, QçR, PçQ

2. WITHARGSEL “ ç-EÓ assumptionsP, QçR, PçQ: 1

_B

. . .

: 2

assumption_B: 3

R

. . .

: 4

 2,3-4cutR: 5

R æ _B, P, QçR, PçQ

_Aç_B æ P, QçR, PçQ_A æ P, QçR, PçQ

ç-E

_B æ P, QçR, PçQ

cut

R æ P, QçR, PçQ

3. JAPE(SUBGOAL 1),

WITHHYPSEL hyp
assumptionsP, QçR, PçQ: 1

P

. . .

: 2

 1.1hypPçQ: 3

 2,3ç-EQ: 4

assumptionQ: 5

R

. . .

: 6

 4,5-6cutR: 7

R æ Q, P, QçR, PçQ

hyp

PçQ æ P, QçR, PçQP æ P, QçR, PçQ

ç-E

Q æ P, QçR, PçQ

cut

R æ P, QçR, PçQ

4. AUTOMATCH hyp assumptionsP, QçR, PçQ: 1

 1.3hypP: 2

 1.1hypPçQ: 3

 2,3ç-EQ: 4

assumptionQ: 5

R

. . .

: 6

 4,5-6cutR: 7

R æ Q, P, QçR, PçQ

hyp

PçQ æ P, QçR, PçQ
hyp

P æ P, QçR, PçQ

ç-E

Q æ P, QçR, PçQ

cut

R æ P, QçR, PçQ

Because the effect is produced by a tactic the user doesn’t see the intermediate steps of the process, and
because box display has been instructed to hide hyp and cut lines, all the user sees, as the original
example shows, is a picture in which lines 2 and 3 have been deleted, with references to them converted
to references to assumptions 1.3 and 1.1, and in which the cut step has been hidden by overlaying line 5
with line 4 and line 7 with line 6.

The principle, then, is to use cut to implement a kind of forward reasoning. Not every ‘forward’ step
requires a cut, so we have another auxiliary tactic:

TACTIC ForwardUncut (n,Rule) SEQ (WITHARGSEL Rule) (JAPE (SUBGOAL n)) (WITHHYPSEL hyp)

Roll your own Jape logic (3.2) Page 33 Chapter 4: Encoding natural deduction

The complete ForwardOrBackward tactic attempts some error reporting if a rule application fails:

TACTIC ForwardOrBackward (Forward, n, Rule) IS

WHEN (LETHYP _P

(ALT (Forward n Rule)

(WHEN (LETARGSEL _Q

(FAIL (Rule is not applicable to assumption ' _P ' with argument ' _Q '))

)

(FAIL (Rule is not applicable to assumption ' _P '))

)

)

)

(ALT (WITHSELECTIONS Rule)

(WHEN (LETARGSEL _P

(FAIL (Rule is not applicable with argument ' _P '))

)

(FAIL (Rule is not applicable))

)

)

ALT is a tactic that tries its arguments in turn until one of them is completely successful; FAIL x is defined
by

TACTIC FAIL(x) IS JAPE (fail x)

and simply puts up message x as an error alert in the graphical interface.

The rest of the rules of the system can now be stated simply, and it’s straightforward to organise them
into a menu (see ItL_menus.j)

MENU Rules IS

 ENTRY "ç-I"

 ENTRY "¦-I"

 ENTRY "ë-I(L)" IS ForwardOrBackward ForwardCut 0 "ë-I(L)"

 ENTRY "ë-I(R)" IS ForwardOrBackward ForwardCut 0 "ë-I(R)"

 ENTRY "Â-I"

 ENTRY "è-I"

 ENTRY "ä-I" IS "ä-I tac"

 SEPARATOR

 ENTRY "ç-E" IS ForwardOrBackward ForwardCut 1 "ç-E"

 ENTRY "¦-E(L)" IS ForwardOrBackward ForwardCut 0 "¦-E(L)"

 ENTRY "¦-E(R)" IS ForwardOrBackward ForwardCut 0 "¦-E(R)"

 ENTRY "ë-E" IS ForwardOrBackward ForwardUncut 0 "ë-E"

 ENTRY "Â-E" IS ForwardOrBackward ForwardCut 0 "Â-E"

 ENTRY "è-E" IS "è-E tac"

 ENTRY "ä-E" IS ForwardOrBackward ForwardUncut 0 "ä-E"

 SEPARATOR

 ENTRY hyp

END

Two of the entries are given indirectly, because they can be overriden in other files which form part of the
ItL.jt collection:

TACTIC "è-E tac" IS ForwardOrBackward ForwardCut 0 "è-E"

TACTIC "ä-I tac" IS "ä-I"

The rules are given in ItL_rules.j (note that this collection, for historical reasons, doesn’t implement
scope boxing; that’s done in ItL_LF.j and is described below). Because we have set the autoAdditiveLeft

Roll your own Jape logic (3.2) Page 34 Chapter 4: Encoding natural deduction

variable to true, we can define these rules natural-deduction style, mentioning nothing but the principal
formulæ, and Jape will automatically insert a context variable Γ into every sequent:

RULE "ç-E"(A) IS FROM A AND AçB INFER B

RULE "¦-E(L)"(B) IS FROM A ¦ B INFER A

RULE "¦-E(R)"(A) IS FROM A ¦ B INFER B

RULE "ë-E"(A,B) IS FROM A ë B AND A æ C AND B æ C INFER C

RULE "Â-E" IS FROM ÂÂA INFER A

RULE "è-E"(B) IS FROM èx. A(x) INFER A(B)

RULE "ä-E"(OBJECT c) WHERE FRESH c AND c NOTIN äx.A

IS FROM äx.A(x) AND A(c) æ C INFER C

RULE "ç-I" IS FROM A æ B INFER AçB

RULE "¦-I" IS FROM A AND B INFER A ¦ B

RULE "ë-I(L)"(B) IS FROM A INFER A ë B

RULE "ë-I(R)"(A) IS FROM B INFER A ë B

RULE "Â-I"(B) IS FROM A æ B ¦ ÂB INFER ÂA

RULE "è-I"(OBJECT c) WHERE FRESH c IS FROM A(c) INFER èx .A(x)

RULE "ä-I"(B) IS FROM A(B) INFER äx.A(x)

Scope boxing is done by adding the file ItL_LF.j, which includes the syntax of the pseudo-predicates,
plus new versions of the quantifier rules:

PREFIX 10 var

POSTFIX 10 inscope

RULE "è-I"(OBJECT c) WHERE FRESH c IS FROM var c æ A(c) INFER èx .A(x)

RULE "ä-I"(B) IS FROM A(B) AND B inscope INFER äx.A(x)

RULE "è-E"(B) IS FROM èx. A(x) AND B inscope INFER A(B)

RULE "ä-E"(OBJECT c) WHERE FRESH c AND c NOTIN äx.A

IS FROM äx.A(x) AND var c, A(c) æ C INFER C

Just as in chapter 3, we define a collection of rules for the inscope judgement, which Jape automatically
arranges into an ALT tactic called “inscope”, and then we require that the tactic be tried at the end of
every proof step:

RULES "inscope" ARE

INFER var x æ x inscope

AND FROM A inscope AND B inscope INFER AçB inscope

AND FROM A inscope AND B inscope INFER A¦B inscope

AND FROM A inscope AND B inscope INFER AëB inscope

AND FROM A inscope INFER ÂA inscope

AND FROM var x æ A inscope INFER èx.A inscope

AND FROM var x æ A inscope INFER äx.A inscope

END

AUTOMATCH "inscope"

Finally we provide tactics which use the LAYOUT tactical to require that only the first antecedent (labelled
0) should normally be displayed (see chapter 3 for a little more explanation, and/or appendix B); then we
ensure that these tactics are referenced from the menu:

TACTIC "è-E with side condition hidden" IS LAYOUT "è-E" (0) (WITHARGSEL "è-E")

TACTIC "ä-I with side condition hidden" IS LAYOUT "ä-I" (0) (WITHARGSEL "ä-I")

TACTIC "è-E tac" IS ForwardOrBackward ForwardCut 0 "è-E with side condition hidden"

TACTIC "ä-I tac" IS "ä-I with side condition hidden"

Roll your own Jape logic (3.2) Page 35 Chapter 4: Encoding natural deduction

There is also a file ItL_hits.j, which implements double-clicking: we don’t reference this in ItL.jt, because
we don’t want to provide it by default to our novice students.

4.4 The Conjectures panel

Since we can apply rules either forward or backward, it would be irksome if we could only apply
theorems backward. We define a tactic which can do the job. If a hypothesis has been selected it cuts and
applies the theorem, requiring that the selected hypothesis be one of the principal formulæ which match
the theorem sequent. If no hypothesis is selected it tries in order to apply the theorem to the present
problem sequent, to apply it ‘by resolution’ (matching only the right-hand side of the theorem sequent
and the problem sequent and generating antecedents for each left-hand side theorem formula: see chapter
1), and finally tries to apply it forwards, one way or the other. All of the steps are made
‘WITHSELECTIONS’ – that is, using any argument selection which the user may have made:

TACTIC TheoremForwardOrBackward(thm) IS

WHEN (LETHYP _P cut (WITHSELECTIONS thm))

(ALT (WITHSELECTIONS thm)

(RESOLVE (WITHSELECTIONS thm))

(SEQ cut (ALT (WITHSELECTIONS thm) (RESOLVE (WITHSELECTIONS thm))))

)

The overall effect is to allow a prover to introduce a theorem into the proof whenever it is helpful to do
so.

The Conjectures panel activates this tactic from its Apply button. The panel is defined in the following
manner (for a full listing see the file ItL_problems.j):

CONJECTUREPANEL Conjectures

THEOREMS NaturalDeductionConjectures ARE

P, P ç Q æ Q

AND P ç Q, Q ç R , P æ R

...

END

THEOREM "G(c) æ èx.F(x) ç G(x) NOT" IS G(c) æ èx.F(x) ç G(x)

THEOREM "(èx.F(x)) ç (èx.G(x)) æ èx.F(x) ç G(x) NOT" IS (èx.F(x)) ç (èx.G(x)) æ èx.F(x) ç G(x)

THEOREM "(äx.F(x)) ¦ (äx.G(x)) æ äx.F(x) ¦ G(x) NOT" IS (äx.F(x)) ¦ (äx.G(x)) æ äx.F(x) ¦ G(x)

PREFIXBUTTON Apply IS apply TheoremForwardOrBackward

END

The last three conjectures are specially named because they are intended to fail.

When the Apply button is pressed with a conjecture C selected, the effect is to send the command “apply
TheoremForwardOrBackward C” to theproof engine and then the tactic takes over.

See appendix C for a complete listing of commands that can be attached to panel buttons.

4.5 An alternative natural deduction encoding

There is an alternative natural deduction encoding, distributed as jnj.jt1, and described in “Using J’n’J in
Jape”, available from the Oxford Jape web site. It will be described in a future edition of this manual.

1 It doesn’t work under MacOS yet, because of problems with font encoding.
- 36 -

Chapter 5

Encoding equational reasoning in functional
programs

Previous chapters have dealt with the encoding of logics which are, more or less, variations on the
sequent calculus. This chapter describes our treatment of a very different logic. The problem here is to
control a large number of equations used to reason about functional-programming formulæ, and to
present an interface which makes it look as if equational reasoning is taking place, despite the Gentzen
tree in the background. The treatment is distributed in the files referenced by the file functions.jt.

5.1 Syntax

Jape provides juxtaposition as a primitive syntactic construction, and so it is convenient to represent
function application as juxtaposition. In the same way we take the syntax of tupling directly from Jape.

FONTS "Konstanz"

INITIALISE autoAdditiveLeft true

SEQUENT IS BAG æ FORMULA

USE "equality_rules.j"

USE "equality_menus.j"

USE "functions_rules.j"

USE "functions_menus.j"

AUTOMATCH "= reflexive"

Note that we don’t automatically translate predicate notation in this encoding: we use juxtaposition
mostly to represent function application. We use the ABSTRACTION keyword to label those few
parameters of rules which are to be treated as predicates: see below for examples.

The file equality_rules.j covers more than simple equality, since it is intended to be shared between
different encodings. Apart from that, it is pretty straightforward. The syntactic description is:

CLASS VARIABLE x y

CLASS FORMULA A B C F G X Y Z

CONSTANT Ù

SUBSTFIX 2000 { x \ A }

JUXTFIX 1000

INFIX 200L = ³ ² ­ < >

INFIX 250L + -

INFIX 260L * /

INFIX 270L ^

Reading from the bottom, we define some binary operators, all left-associative, then we define the
priority of juxtaposition and substitution. The syntax of substitution is slightly variable in Jape: you can
specify the bracketing symbols and the separating symbol as well as defining whether the variables come

Roll your own Jape logic (3.2) Page 37 Chapter 5: Equational reasoning in functional programs

before the names or vice-versa. The spaces between symbols and names are essential to delimit the
various components of the syntactic form. We have chosen to make formula { variables \ formulæ } the
syntax of a substitution form, because that liberates square brackets for use in their conventional rôle in
functional programming as list brackets1.

Then there are some simple definitions, intended to make what follows easier to read:

TACTIC FAIL(x) IS JAPE(fail x)

TACTIC FAILREASON(x) IS JAPE (failgivingreason x)

and a perfectly normal definition of an identity rule:

RULE hyp IS A æ A

IDENTITY hyp

There follow the basic rules of equality. Because Jape doesn’t yet have any treatment of families of rules,
we can only give a tuple-equality rule for a fixed finite number of tuple sizes, and here we restrict
ourselves to pairs2:

 Γæ X X=
= reflexive

Γ Γ
Γ

æ æ

æ

X Y Y Z

X Z

= =
=

= transitive

Γ
Γ

æ

æ

X Y

Y X

=
=

= symmetric

Γ Γ
Γ
æ æ

æ

X0 X1 Y0 Y1

X0, X1 Y0,Y1

= =
=

=
() ()

(,)

Although most of these rules can be derived from ‘= reflexive’ plus the rewrite rules given below, it is
convenient to have them available directly. In any case, Jape doesn’t yet have facilities to prove derived
rules with antecedents. In Japeish the rules are:

RULE "= reflexive" IS INFER X = X

RULE "= transitive"(Y) IS FROM X = Y AND Y = Z INFER X = Z

RULE "= symmetric" IS FROM X = Y INFER Y = X

RULE "(,)=" IS FROM X0=X1 AND Y0=Y1 INFER (X0, Y0) = (X1, Y1)

Extensionality rules are straightforward but because each implicitly incorporates a step of generalisation,
we are careful to include FRESH provisos:

Γ
Γ

æ

æ

F x G x

F G
x

() = ()
=

() extFRESH

Γ
Γ

æ

æ

F x y G x y

F G
x y

(,) (,)
(,) ext

=
=

FRESH 2

In the Japeish version we use OBJECT parameters so that the rules, normally used backwards, introduce
new identifiers rather than unknowns:

RULE ext (OBJECT x) WHERE FRESH x IS FROM F x = G x INFER F = G

RULE ext2(OBJECT x, OBJECT y) WHERE FRESH x, y

IS FROM F (x, y) = G (x,y) INFER F = G

That, so far as this encoding is concerned, is where the simple bit ends.

5.2 The rewrite rule and user definition of substitutions

We base our treatment of equational reasoning on rewrite rules. We can replace occurrences of a sub-
formula X within a formula A by an alternative sub-formula Y, provided only that we can prove X Y= .
Because an equality can be used to rewrite in either direction we include two rules, whose names are
arbitrarily chosen:

Γ Γ
Γ

æ æ

æ

X Y A x Y

A x X

= { }
{ }

\

\
rewrite

Γ Γ
Γ

æ æ

æ

X Y A x X

A x Y

= { }
{ }

\

\
rewritebackwards

1 We would have reversed the order of formulæ and variables had the author of the encoding not already hijacked the ‘/’
operator.

2 But see our treatment of BAN logic in a later chapter: we are beginning to be able to handle some simple families of rules.

Roll your own Jape logic (3.2) Page 38 Chapter 5: Equational reasoning in functional programs

In Japeish, as by now you must expect, we give the first rule a parameter X and the second a parameter Y.
Just for fun we write the rules in predicate notation, which Jape immediately translates into the rules
written above.

RULE rewrite (X,ABSTRACTION AA) IS FROM X=Y AND AA(Y) INFER AA(X)

RULE rewritebackwards (Y,ABSTRACTION AA) IS FROM X=Y AND AA(X) INFER AA(Y)

The problem formula which matches AA(X) or AA(Y) will itself be an equation in all the conjectures
which we shall consider, but we don’t need to take account of that in the rewrite rules themselves1.

In principle, and in practice, it is possible to use the rewrite rule by providing just the argument
corresponding to X in the rewrite rule or Y in the rewritebackwards rule: Jape will search for instances of
that argument on the right-hand side of the problem sequent and, in effect, construct a substitution which
it unifies with _ _A x X{ } or _ _A x Y{ }. That process finds every instance of the argument formula in the
right-hand side of the problem sequent, and sometimes that is just what is required.

When we want finer control, which we do when working under direct user control rather than via a search
controlled by a tactic, we use the LETSUBSTSEL and WITHSUBSTSEL tacticals. The basis of the technique
which we use in encoding equational reasoning with functional programs is exemplified by the following
fragment

WHEN (LETSUBSTSEL _A (WITHSUBSTSEL rewrite))

LETSUBSTSEL pattern tactic … is a guarded tactic whose guard succeeds if:

• the user has made at least one text-selection;

• all text-selections are of identical subformulæ E within the same formula F in the current goal
sequent;

• it is possible to construct a substitution form ′{ }F v E\ , where v is a fresh variable, such that
′{ }F v E\ reduces to F in the presence of the proviso v NOTIN F;

• pattern unifies with ′{ }F v E\ , without simplifying the substitution unless it is unified with a
non-substitution form.

If all four conditions are satisfied, the sequence tactic … is executed within the context created by the
unification of pattern with ′{ }F v E\ . The substitution form ′{ }F v E\ is specially marked so that it is not
simplified during the unification process unless it is matched with a non-substitution form: the effect is
that it will be unified by structure-matching with a substitution form in pattern, if one is provided.

′{ }F v E\ is equivalent to the original formula F, and if it isn’t used immediately in a unification it is
simplified out of existence: that’s the reason that we have to have both LETSUBSTSEL, to check if we can
make the substitution form at all, and then WITHSUBSTSEL, to make it again and to use it immediately in a
rule application.

WITHSUBSTSEL tactic …is a tactic which requires that the first three of the LETSUBSTSEL conditions are
satisfied and, if they are, it applies the sequence tactic …to a copy of the problem sequent in which
formula F has been replaced by ′{ }F v E_ \ . this time using a fresh unknown _v to facilitate unification
with the consequent of a rule which uses a corresponding OBJECT parameter. As before, the substitution
form ′{ }F v E_ \ is specially marked so that it can be unified component-by-component with a
corresponding substitution form in the consequent of a rule, and it’s eliminated very easily by
simplification, so the first rule of tactic … is usually the only one that gets a bite at it.

The effect of all this machinery is that it is possible for a user to specify, simply by text-selecting them,
the instances of a subformula X which are to be replaced by Y, working backwards with the rewrite rule –
or Y with X, working backwards with rewritebackwards. Based on that bit of magic, a great deal becomes
possible.

1 We are beginning to realise how to display linear equational proofs using transitivity in much the same way that forward
reasoning steps use cut. Once we have perfected the technique our rewrite rules will have to take a different form.

Roll your own Jape logic (3.2) Page 39 Chapter 5: Equational reasoning in functional programs

5.3 Hiding parts of proofs: the LAYOUT tactical

When we use the rewrite rule in this logic-encoding, for the most part we employ straightforward
function definitions for the left-hand antecedent X Y= . These definitions – ‘facts’ like map f [] = [] – are
supposed to be well-known to the user, and are therefore best kept as marginal notes in the proof. Our
eventual goal is to be able to show a linear equational proof like those in Bird and Wadler, in which every
step transforms a formula by equality-substitution:

rev(rev []) = rev [] by rev [] = []
= [] by rev [] = []
= id [] by id x = x

In this style the definitions used in each step are noted in the justification of an equality, not included as
antecedents of an inference step. The facilities of Jape don’t quite stretch to linear equational proofs yet,
but we’re close.

What we can do is to hide some of the antecedent proof trees of a proof step, and to alter the displayed
justification of that step to record some of the information which is hidden. Ths is done with the LAYOUT

tactical, which is given the justification of the step, a description of the antecedents that should remain
visible, and a tactic which generates the proof tree itself. One of the tactics we use in our encoding, for
example, reads as follows:

TACTIC UnfoldOneSel(x) IS

WHEN (LETSUBSTSEL _A (LAYOUT "Fold %s" (1) (WITHSUBSTSEL rewrite)) x)

(LETARGSEL _A (FAIL (The formula you selected (_A) is not a proper subformula)))

(FAIL (Please text-select an expression))

LETSUBSTSEL checks that the user has selected some instance or instances of a sub-formula which
describe a substitution, and if so WITHSUBSTSEL applies rewrite to the user’s selection; finally the
argument tactic x is applied to the first antecedent of the rewrite (the X Y= antecedent). The LAYOUT

tactical says in its second argument that only antecedent 1 of the rewrite step – that is, the right-hand
antecedent – should be shown (antecedents are numbered 0, 1, ...); the first argument says that it should
be shown with a text which starts with Fold1 and continues with a summary of the hidden subtree. The
rest of the code tries to explain what has gone wrong if the user mis-applies the tactic2.

Here is an example proof using our encoding, after two steps:

rev(rev x)=x

. . .

: 1

 1Fold idrev(rev x)=id x: 2

 2Fold ¥(rev¥rev)x=id x: 3

 3extrev¥rev=id: 4

Lines 1, 2 and 3 can be read as a partly-completed linear equational proof, up the left-hand side and down
the right:

1 A backwards step of unfolding is a folding step when read forwards. Proofs in this encoding are made backwards but read
forwards: we have labelled our buttons and named our tactics in the backward sense, but the labels on the proofs, which are
inserted by LAYOUT and the Fold/Unfold with hypothesis rules, are written in the forward sense.

2 The attempt to analyse errors in the application of this tactic, using LETSUBSTSEL and LETARGSEL to pick out different
cases, doesn’t really work. To do a proper job, the tactic would to distinguish between at least these possibilities:
• the subformulæ you select aren’t identical;
• they don’t all come from the same formula;
• one or more of them isn’t a proper subformula;
• you didn’t select anything at all.
In practice the tactic’s error message is often inappropriate, but we show it as it is in order to illustrate the difficulty.

Roll your own Jape logic (3.2) Page 40 Chapter 5: Equational reasoning in functional programs

(rev • rev) x = rev(rev x) by (f • g) x = f(g x)
= x by ...
= id x by id x = x

LAYOUT only hides antecedents, it doesn’t destroy them: by double-clicking on the justification of line 2
or line 3 the hidden detail can be revealed. Here is what you see if you double-click on line 3:

 ¥(rev¥rev)x=rev(rev x): 1

rev(rev x)=x

. . .

: 2

 2Fold idrev(rev x)=id x: 3

 1,3[rewrite](rev¥rev)x=id x: 4

 4extrev¥rev=id: 5

5.4 Selecting a subformula: LETHYPFIND , LETCONCFIND , ASSOCEQ and FLATTEN

LETSUBSTSEL and WITHSUBSTSEL don’t solve all the problems of rewriting, because Jape has a very
simple-minded treatment of subformula selection. It provides only character-sequence selection, and the
user can select any sub-sequence of the characters which make up a formula. It is possible to select a
section of text which isn’t a formula at all – a b+) , for example, in x a b+ +() . Worse, it is possible to
select text which is a formula but not a proper subformula – x y+ , for example, in f x y+ . There are
well-known user-interface solutions to this problem, exploiting the syntactic structure of a formula to
guide selection, but we haven’t implemented any of them. The reason is partly lack of effort, but we have
our eyes on a higher prize: we want eventually to include a proper treatment of subformula selection in
logics which include associative operators: those which, like + and × in school algebra, don’t need to be
bracketed when they occur in sequence.

The problem begins when a formula is input. In Jape’s treatment of syntax, just as in any ordinary
programming-language compiler, binary operators have relative priorities (or precedences) and an
formula such as A B C× + , where × has higher priority than +, is treated internally just like ()A B C× +
but displayed in its unbracketed form1. Since we treat all operators as either binary or unary, Jape has to
be told, faced with the formula A B C+ + , whether to read it left-associatively as ()A B C+ + or right-
associatively as A B C+ +(). Whichever you tell it, it will display the result unbracketed as A B C+ + ,
and then inevitably some textual segment – B C+ in the left-associative case, A B+ in the right-
associative – can be read as a formula even though it is not a structural subformula of the whole.

We might hope to tell Jape that the operator + is neither left- nor right-associative but associative in the
mathematical sense, so that A B C+ + should be read at will as either ()A B C+ + or A B C+ +() as
circumstances dictate – and then you can imagine that it ought to be possible to tell it that + is
commutative as well, so that A B C+ + can be read as ()A C B+ + if that is what you wish. We intend
that a future version of Jape will incorporate a more seamless syntactic treatment of associative and
commutative operators that will allow some of these alternative readings, based on the mechanisms which
already underly our treatment of BAGs and LISTs in sequents. For the time being we provide support for
the explicit manipulation of associative operators in the tactic language.

Our treatment is based on the principle that a formula whose operator is associative can be rewritten in a
canonical form, and we provide means to access an internal mechanism of Jape which converts formulæ
to their canonical form via the built-in judgement ASSOCEQ(formula1, formula2) and the tactic FLATTEN

formula.

1 Jape tries to keep the user’s bracketing structure. If the input is bracketed, so will be the display.

Roll your own Jape logic (3.2) Page 41 Chapter 5: Equational reasoning in functional programs

The first problem is to convert a formula so that the selected text is a proper sub-formula. For example,
consider the following proof-in-progress of one of the conjectures from functions.jt:

assumptionsH¥F=H¥G, J¥H=id: 1

J¥H¥F=G

. . .

: 2

 1.1,2Unfold with hypothesisid¥F=G: 3

 3Fold using Theorem F=id¥FF=G: 4

Next we want to use the second assumed equality, to replace H F• with H G• . But the • operator in this
encoding is left-associative, and to make the step we must first change the structure of the conclusion
formula on line 2, changing its structure from the left-associative form (•) •J H F G= into
J H F G• (•) = . The step won’t work unless there is a proof that • is associative – i.e. unless a conjecture
with the form (•) • • (•)F G H F G H= or one with the form F G H F G H• (•) (•) •= exists and is either
proved or can be assumed proved because ‘apply conjectures and theorems’ is ticked in the Edit menu.

We text-select H F• and apply Find from the Rules menu1to alter the structure of the formula:

assumptionsH¥F=H¥G, J¥H=id: 1

J¥(H¥F)=G

. . .

: 2

 2AssociativityJ¥H¥F=G: 3

 1.1,3Unfold with hypothesisid¥F=G: 4

 4Fold using Theorem F=id¥FF=G: 5

Now the H F H G• •= equality can be used:

assumptionsH¥F=H¥G, J¥H=id: 1

J¥(H¥G)=G

. . .

: 2

 1.2,2Fold with hypothesisJ¥(H¥F)=G: 3

 3AssociativityJ¥H¥F=G: 4

 1.1,4Unfold with hypothesisid¥F=G: 5

 5Fold using Theorem F=id¥FF=G: 6

Now we would like to apply the first assumption again, but J H• isn’t a textual subformula as the
formula is written, so we have first to modify the conclusion. Flatten from the Rules menu does the trick:

assumptionsH¥F=H¥G, J¥H=id: 1

J¥H¥G=G

. . .

: 2

 2AssociativityJ¥(H¥G)=G: 3

 1.2,3Fold with hypothesisJ¥(H¥F)=G: 4

 4AssociativityJ¥H¥F=G: 5

 1.1,5Unfold with hypothesisid¥F=G: 6

 6Fold using Theorem F=id¥FF=G: 7

1 Or from either of the panels – one of us doesn’t think that this is good GUI / HCI practice, but the other one made the
encoding.

Roll your own Jape logic (3.2) Page 42 Chapter 5: Equational reasoning in functional programs

The rest of the proof is straightforward. It remains to explain how all this is done.

The LETHYPFIND and LETCONCFIND tacticals allow the user to rebracket a formula. LETHYPFIND

(old,new) tactic ... tactic succeeds if

• the user has made a single text-selection in a hypothesis formula, dividing it in effect into
before, middle and after texts;

• the hypothesis formula unifies with the pattern old;

• middle is a valid formula1;

• the text before (middle) after is a valid formula and unifies with new;

• the sequence tactic ... tactic succeeds in the context produced by those unifications.

(LETCONCFIND is similar, but demands a selection in a conclusion formula.) The tactical succeeds
silently, without running tactic ... tactic, if before (middle) after turns out to be structurally equal to the
original unmodified formula – a test which does not call upon information about associativity. So
LETHYPFIND and LETCONCFIND match, and run their argument tactics, if your text selection reorganises
the structure of the formula.

In functions_menus.j an entry is put in the Rules menu, and an associated tactic is defined:

MENU Rules IS

ENTRY "Find" IS FindSelection

...

TACTIC FindSelection IS

WHEN (LETHYPFIND (_XOLD=_YOLD, _XNEW=_YNEW)

(ALT (LAYOUT "Associativity" (2)

(rewriteHypotheticalEquation _XOLD _XNEW _YOLD _YNEW)

EVALUATE EVALUATE

)

(LETARGSEL _XSEL (FAIL ("%s isn't a subterm", _XSEL)))

)

)

(LETCONCFIND (_XOLD=_YOLD, _XNEW=_YNEW)

(ALT (LAYOUT "Associativity" (2)

(rewriteEquation _XOLD _XNEW _YOLD _YNEW)

EVALUATE EVALUATE

)

(LETARGSEL _XSEL (FAIL ("%s isn't a subterm", _XSEL)))

)

)

The FindSelection tactic calls either rewriteHypotheticalEquation or rewriteEquation: those rules are2

RULE rewriteEquation(X, X', Y, Y', OBJECT x) IS

FROM ASSOCEQ (X, X') AND ASSOCEQ (Y, Y') AND X'=Y' INFER X=Y

RULE rewriteHypotheticalEquation(X, X', Y, Y', OBJECT x) IS

FROM ASSOCEQ (X, X') AND ASSOCEQ (Y, Y') AND X'=Y'æ P INFER X=Y æ P

The built-in ASSOCEQ judgement flattens its arguments, using any relevant theorems / rules about
associativity. Each of these rules therefore replaces an equation with a provably equivalent equation. The

1 Maybe we don’t need this condition, but it would be very odd not to impose it.
2 The fact that FindSelection splits the selected formula into two, and the rules pick up that split, is an artefact of the way that

ASSOCEQ is currently implemented; we will fix the problem Real Soon Now. The existence of two rewrite rules, rather
than a single one plus a tactic that can use cut, is because the encoder doesn’t want the kind of ugly trees that result from
that kind of simulated forward reasoning.

Roll your own Jape logic (3.2) Page 43 Chapter 5: Equational reasoning in functional programs

EVALUATE tactic interprets the judgement; the use of LAYOUT in FindSelection hides this internal
working and gives Associativity as the justification for the step.

The reverse operation is provided by the FLATTEN tactic. The menu entry indexes the Flatten tactic (see
equality_menus.j)

TACTIC Flatten IS

LAYOUT "Associativity" (0)

(WHEN (LETARGSEL _A (FLATTEN _A))

(LETGOAL (_X = _Y) (IF(FLATTEN(_X))) (IF(FLATTEN(_Y))))

(LETGOAL _X (FAIL (Cannot Flatten _X)))

)

This tactic gives the same justification as FindSelection; via FLATTEN it accesses the same machinery.
The argument to FLATTEN is used to determine the principal operator of the formula to be flattened;
subformulæ of which that is the operator alone are flattened1.

The effect of all this machinery is to enable the user to manipulate formulæ which use associative
operators without too many uses of associative rewrite laws.

5.5 Induction in Jape

Jape makes no special treatment of induction. It is handled in the same way as any other logical
generalisation rule, using the FRESH proviso. We encode a form of list induction which uses
concatenation rather than cons2:

Γ Γ Γ
Γ

æ æ

æ

æA A x A xs A ys A xs ys

A B
x xs ys

[] [] , ,
(, ,)

() () ++()
()

FRESH

We have collapsed into one step that which usually takes two (by an induction principle prove ∀ x.A(x);
then infer A(B) by specialisation). There is no need to introduce quantification into equational reasoning,
and our one-step rule is perfectly convenient. We encode it directly:

RULE listinduction (B, OBJECT x, OBJECT xs, OBJECT ys, ABSTRACTION A)

WHERE FRESH x, xs, ys IS

FROM A[] AND A[x] AND A xs, A ys æ A(xs++ys) INFER A(B)

Sometimes you will want to make a proof by induction of a proposition which is expressed in terms of
some variable or other, and then you would want induction to apply to every instance of that variable.
Other times you may want to be more precise in specifying just what instances of what sub-formula are to
be the basis of induction, and so we require the user to specify those instances. We could allow both
mechanisms, activated by different entries in a menu, but we have instead required our users always to
select the particular instances of a subformula which they wish to be the subject of induction. The entry in
the menu which gives the user access to the list induction principle connects to a tactic which uses the
LETSUBSTSEL/WITHSUBSTSEL mechanism:

TACTIC "list induction tactic" IS

WHEN (LETSUBSTSEL _A (WITHSUBSTSEL listinduction))

(FAIL(Please select a sub-formula on which to perform induction))

1 This is the reason that, at present, the FindSelection mechanism splits the formula to which it is matched. It’s a bug in our
existing mechanism, which will be fixed.

2 Definining lists with concatentation rather than cons has advantages, in particular the fact that it doesn’t favour either end
of a list when making a reduction. It has difficulties, but it is valid. The sceptics (Richard is ashamed to admit that he was
once one of them!) should note that you can derive this rule from the more familiar cons version. As for evaluation
strategies, or function definition by concatenation, that’s a different story!

Roll your own Jape logic (3.2) Page 44 Chapter 5: Equational reasoning in functional programs

5.6 Controlling collections of rules

One of the problems of reasoning in functional programming, as we have set it up in this encoding, is that
each function definition corresponds to a number of individual statements of equality. The definition of
map, for example, gives three:

map f

map f x f x

map f xs ys map f xs map f ys

[] []

[]

()

=
=
++ = ++

It would be tedious to be required to give a name to each individual equality, and in any case we expect
our users to be happy to refer to them as a collection – ‘use one of the map equalities’, rather than ‘use the
map equality which applies to singletons’.

The RULES directive allows us to make and name collections of rules. If we turn all the function
definitions into collections of rules we can use them, with some instantiation of their variables, to close
the left-hand antecedent of a rewrite rule application or to close a tip of a proof tree in the normal way.
The definition of map, for example, goes as follows:

RULES map

ARE map F [] = []

AND map F [X] = [F X]

AND map F (Xs++Ys) = map F Xs ++ map F Ys

END

This generates three rules, called map'0, map'1 and map'2, plus a tactic map:

TACTIC map IS ALT mapÕ0 mapÕ1 mapÕ2

In addition, for control of searching of our collections of rules, we group them into collections called
‘theories’. Part of the List theory, for example, as it is given in functions_rules.j is

THEORY List IS

RULES length

...

RULE none IS none X = []

RULE one IS one X = [X]

RULE cat IS cat = fold (++) []

RULES rev

...

RULES ++

...

RULES map

...

RULE filter IS filter P = cat ¥ map (if P (one, none))

RULES zip

...

RULES fold

...

RULE rev2 IS rev2 = fold rcat [] ¥ map one

RULE rcat IS rcat Xs Ys = Ys ++ Xs

RULE ":" IS X:Xs = [X] ++ Xs

END

The effect of THEORY is to define all the rules and tactics described by its components, plus a tactic
which allows search of those components. In this case the tactic is

TACTIC List IS ALT length none rev (++) map filter zip fold rev2 rcat (:)

Roll your own Jape logic (3.2) Page 45 Chapter 5: Equational reasoning in functional programs

We put the rule-collections – but not the theory-collections – into a panel of definitions. The panel is
described in functions_menus.j as

TACTICNANEL "Definitions"

TACTIC "Use any rule enabled by Searching" IS SearchTactic

ENTRY ":"

ENTRY "¥"

ENTRY "ô"

ENTRY "»"

...

BUTTON "Unfold *" IS apply RepeatedlyUnfold

PREFIXBUTTON "Unfold" IS apply UnfoldObvious

PREFIXBUTTON "Fold" IS apply FoldObvious

PREFIXBUTTON "Apply" IS apply

BUTTON "Flatten" IS apply Flatten

BUTTON "Find" IS apply FindSelection

END

The effect, on the Macintosh, is a panel which looks like this:

We discuss the effect of the tactics bound to the buttons and entries below.

Roll your own Jape logic (3.2) Page 46 Chapter 5: Equational reasoning in functional programs

5.7 Searching collections of rules and theorems: the FOLD and UNFOLD tacticals

It’s quite possible, using the Unfold and Fold buttons on the Definitions panel, plus the Unfold with
hypothesis and Fold with hypothesis entries in the Rules menu, to construct proofs entirely by hand –
selecting the subformula to be replaced, the definition or hypothesis to be used, pressing the appropriate
button or choosing the appropriate menu entry. But it’s also quite easy to program Jape to do a sort of
evaluation step. This involves identifying helpful equations (in the form of rules or theorems) which can
be used to rewrite part of the conclusion of the problem sequent.

Jape has a number of built-in mechanisms which help with the process. The ALT tactical allows an
undirected search amongst a number of possibly-applicable tactics, and we have illustrated above how the
RULES and THEORY directives automatically construct ALT s which may be useful in searching for a proof.
But in equational reasoning the problem is somewhat different: we are looking for a subformula which is
replaceable and a definition or hypothesis which matches it; ALT is not sufficient to do the job.

In the future Jape will support such searching by a mechanism based on mapping tactics over a list of
subformulæ of a formula. For the moment our support is more ad-hoc: although based on the same
principles, it is closely adapted to the particular problem of equational rewriting.

Jape’s support for search in equational reasoning is at present the FOLD, UNFOLD, FOLDHYP and
UNFOLDHYP tacticals. The FOLD and UNFOLD tacticals take a rewrite rule and an ALT tactic, which is
treated as a collection of rules. They filter the rules to consider only those whose consequents have a
conclusion of the form L op R for some formulæ L and R and a binary operator op1; they search for
subformulæ of the conclusion of the problem sequent which match the R (FOLD) or L (UNFOLD) of one of
the rules, and when they find a coincidence try to apply the rewrite rule followed by the matching filtered
rule. FOLDHYP and UNFOLDHYP are similar, except that they take a pattern which allows the user to
define op, and they search the list of hypotheses rather than a collection of rules.

However ad-hoc, these techniques are fast and they work well. In this encoding our rules are such that
automatic FOLDing is little use: too many equalities have right-hand sides which are similar, and
searching with ALT for a match rarely finds a useful one. But automatic UNFOLDing can often be fruitful:
if there is a subformula which matches map F (Xs++Ys), for example, then unfolding with the rule map F
(Xs++Ys) = map F Xs++ map F Ys is probably worthwhile.

Our search mechanism, then, is based on the tactic

TACTIC Unfold(x) IS LAYOUT "Fold %s" (1) (UNFOLD rewrite x)

which is given an ALT tactic x and which searches for (backwards) unfold actions which it can carry out
by rewriting with the rules within x.

The magic by no means stops with the UNFOLD tactical, because we also use the collections of theories to
control the search. The idea is that you should be able to ‘turn on and off’ the definitions and theorems in
particular theories when searching. Because the variable-processing facilities of Japeish are still in their
infancy, we have done this in the most naive way possible, using RADIOBUTTONs in a special Searching
menu2.

We have grouped the equality rules into three theories: List (illustrated above), Functions and Reflect. We
have grouped conjectures into collections, some of which we are prepared to search. Here, for example, is
the Listthms collection:

THEOREMS ListThms

ARE rev ¥ rev = id

AND rev2 = rev

AND map F ¥ map G = map (F ¥ G)

1 The rules – actually rules and theorems – are doubly filtered because we eliminate all unproved conjectures unless the
applyconjectures variable is set to true.

2 These controls would have been easier to use if they had been simple checkboxes, but at present Jape can’t make much use
of the values of variables during tactics. This will be remedied soon.

Roll your own Jape logic (3.2) Page 47 Chapter 5: Equational reasoning in functional programs

AND map F ¥ cat = cat ¥ (map (map F))

AND none ¥ F = none

AND map F ¥ none = none

AND map F ¥ one = one ¥ F

AND map F ¥ rev = rev ¥ map F

AND map id = id

AND length¥map F = length

AND zip ¥ (map F » map G) = map (F»G)

AND map F ¥ if P (G,G') = if P (map F ¥ G, map F ¥ G')

AND filter P = map fst ¥ filter snd ¥ zip ¥ (id » map P)

END

These, once proved, can be searched when automatically unfolding equalities; they can even be searched
before they are proved, if applyconjectures is set to true.

Our basic technique at present1 is to use variables each of which is set to the name of a theory if we want
to search that theory, or to the name of a tactic which is certain to fail, if we don’t want to search it. The
JUSTFAIL tactic is

TACTIC JUSTFAIL IS (ALT)

and the Searching menu is

MENU "Searching" IS

RADIOBUTTON dohyp IS

"Search hypotheses" IS DoHyp

AND "Ignore hypotheses" IS JUSTFAIL

INITIALLY DoHyp

END

RADIOBUTTON list IS

"List rules enabled" IS List

AND "List rules disabled" IS JUSTFAIL

INITIALLY List

END

END

1 This paragraph reflects a temporary hack to get around the fact that Jape doesn’t yet have any analogue of the ML case
expression, which we can use to direct the activity of a tactic according to the value of a variable. It probably took longer to
type this footnote than to implement the mechanism – but the manual must come first!

Roll your own Jape logic (3.2) Page 48 Chapter 5: Equational reasoning in functional programs

On the Macintosh this produces a menu

The AUTO tactic is set up either to unfold or to fold – though for the reasons given above, we never
actually use it for folding – and is defined as

TACTIC Auto(foldunfold, foldunfoldhyp) IS

ALT (dohyp foldunfoldhyp)

(foldunfold list)

(foldunfold listthms)

(foldunfold function)

(foldunfold functionthms)

(foldunfold reflect)

(foldunfold reflectthms)

(FAIL (Cannot find anything to foldunfold))

It’s called from the Unfold * button with the tactic

SEQ (Auto Unfold UnfoldWithAnyHyp)

(DO (Auto Unfold UnfoldWithAnyHyp))

– since DO always silently succeeds, we wanted to make the button fail noisily if there was nothing at all
that it could do; hence the double invocation of the tactic.

We use the same tactic – but only singly, without repetition – if you double-click on a conclusion:

CONCHIT C IS Auto Unfold UnfoldWIthAnyHyp

The remaining parts of this jigsaw are the UnfoldWithAnyHyp tactic

TACTIC UnfoldWithAnyHyp IS UNFOLDHYP "Fold with hypothesis" (_A=_B)

and the Fold/Unfold with hypothesis pair of rules:

Roll your own Jape logic (3.2) Page 49 Chapter 5: Equational reasoning in functional programs

RULE "Fold with hypothesis" (X, OBJECT x) IS FROM X=Y æ AA[x\Y] INFER X=Y æ AA[x\X]

RULE "Unfold with hypothesis" (Y,OBJECT x) IS FROM X=Y æ AA[x\X] INFER X=Y æ AA[x\Y]

These rules are named for forward reading, so the menu entries which enable them to be used by hand
have to be contrariwise.

All of the other techniques that we have used are discussed in earlier chapters.

- 50 -

Chapter 6

Encoding axiomatic set theory

The treatment of equational reasoning in the previous chapter introduced the ways in which Jape can hide
parts of a proof and use substitution to achieve replacement of subformulæ with rewrite rules. This
chapter shows how the same techniques can be used to support the encoding of a very naive version of
axiomatic set theory, which uses rewriting to support equality-style reasoning in both forward and
backward steps. Our treatment was inspired by that of David Schmidt (“Natural Deduction Theorem
Proving in Set Theory”, CSR-142-83, Edinburgh).

The encoding presents four distinct things to the user: an encoding of natural deduction, as a menu of
commands; an menu of rewrite actions; a menu of set-theoretic inference rules; and a panel of axioms
expressed as definitions formula ÷ formula, equipped with buttons which allow those definitions to be
used as left-to-right or right-to-left rewrite rules. In addition there’s a menu of conjectures equipped with
buttons which allow the user to exploit proved theorems as rewrite rules.

This is the most ambitious use of Japeish so far to produce a slick on-screen encoding with a lot of
different – but easy to use – facilities. We may have gone too far with some of the user interface tricks we
have used, and the encoding can hardly be described as ‘transparent’. The tactic programming is, indeed,
at times rather subtle. We expect, as we learn from this and other examples under development, to be able
to generalise and therefore simplify it.

6.1 The natural deduction encoding

This is contained in the files BnE-Fprime.jt and the files that it invokes; it is derived from the logic ′F in
“The Language of First-Order Logic” by Barwise and Etchemendy. It is very similar to the encoding
described in chapter 4 above, with the addition of rules for a bi-implication operator, a falsity constant,
equality, and a unique-existence operator:

Γ Γ
Γ

, ,A B B A

A B
I

æ æ

æ ↔
↔ −

Γ Γ
Γ

æ æ

æ

B A B

A
E L

↔
↔ − ()

Γ Γ
Γ

æ æ

æ

A A B

B
E R

↔
↔ − ()

Γ Γ
Γ

æ æ

æ

P P
I

¬
⊥

⊥ −

Γ
Γ

æ

æ

⊥ ⊥ −
P

E
 Γæ A A

A A
=

=

Γ Γ
Γ

æ æ

æ

A x B A x c B c

x A
c c B E

[\] , [\]
! .

(,) !
=

∃
∃ −FRESH NOTIN

Γ
Γ

æ

æ

∃
∃

∃ −
! .

.
!

x A

x A
E

plus a pair of rewrite rules for each of the bi-implication and equality operators:

Γ Γ
Γ

æ æ

æ

A B P v B

P v A
rewrite

↔
↔

[\]
[\]

«

Γ Γ
Γ

æ æ

æ

A B P v A

P v B
rewrite

↔
↔

[\]
[\]

»

Γ Γ
Γ

æ æ

æ

A B P v B

P v A
rewrite

=
=

[\]
[\]

«

Γ Γ
Γ

æ æ

æ

A B P v A

P v B
rewrite

=
=

[\]
[\]

»

These are encoded, completely straightforwardly, in the file BnE-Fprime_rules.j.

Roll your own Jape logic (3.2) Page 51 Chapter 6: Axiomatic set theory

The rules are inserted into the menu as

MENU "System F«" IS

ENTRY "ç-I"

ENTRY "ê-I"

ENTRY "¦-I"

ENTRY "ë-I(L)" IS FOB ForwardCut "ë-I(L)"

ENTRY "ë-I(R)" IS FOB ForwardCut "ë-I(R)"

ENTRY "Â-I"

ENTRY "Ù-I"

ENTRY "è-I"

ENTRY "ä-I"

SEPARATOR

ENTRY "ç-E" IS FOB "ç-E forward" "ç-E"

ENTRY "ê-E(L)" IS FOB "ê-E(L) forward" "ê-E(L)"

ENTRY "ê-E(R)" IS FOB "ê-E(R) forward" "ê-E(R)"

ENTRY "¦-E(L)" IS FOB ForwardCut "¦-E(L)"

ENTRY "¦-E(R)" IS FOB ForwardCut "¦-E(R)"

ENTRY "ë-E" IS FOB ForwardUncut "ë-E"

ENTRY "Â-E" IS FOB ForwardCut "Â-E"

ENTRY "Ù-E" IS FOB ForwardCut "Ù-E"

ENTRY "è-E" IS FOBSS ForwardCut "è-E"

ENTRY "ä-E" IS FOB ForwardUncut "ä-E"

SEPARATOR

ENTRY "A=A"

ENTRY hyp

END

Here FOB is essentially the tactic ForwardOrBackward of chapter 4, ForwardCut and ForwardUncut are
also as described in chapter 4, and the entries for bi-implication use the tactics

TACTIC "ê-E(L) forward"(Z) IS "ê-E forward" "ê-E(L)"

TACTIC "ê-E(R) forward"(Z) IS "ê-E forward" "ê-E(R)"

TACTIC "ê-E forward"(rule) IS

WHEN (LETHYP (_Aê_B) (ForwardCut2 rule))

(LETHYP _A (ForwardCut rule))

(JAPE(fail(what's this in rule forward?)))

Using the rewrite rules is, as we have seen in chapter 5, a little more complicated. The Substitution menu
is

MENU "Substitution"

ENTRY "AêÉ" IS ForwardSubst "rewrite ê Ç" "rewrite ê È" (ê)

ENTRY "ÉêB" IS ForwardSubst "rewrite ê È" "rewrite ê Ç" (ê)

ENTRY "A=É" IS ForwardSubst "rewrite = Ç" "rewrite = È" (=)

ENTRY "É=B" IS ForwardSubst "rewrite = È" "rewrite = Ç" (=)

END

The ForwardSubst tactic extends the techniques of chapter 5 to allow rewriting in forward as well as
backward reasoning style. We require that the user must text-select some subformula and also may select
a hypothesis which is to be used as A=B or A↔B in the rule. The tactic is rather subtle1: it’s given a left-

1 Perhaps, at this point, you might begin to wonder whether the complexity of our tactic programming doesn’t undermine the
claim that Jape is simple and easy to program. Our answer is twofold: first, this is work in progress, it is much simpler than

Roll your own Jape logic (3.2) Page 52 Chapter 6: Axiomatic set theory

to-right rewrite rule ruleLR, a right-to-left rewrite rule ruleRL, and a pattern pat which it uses in error
alerts. Note how the menu entries alternate the use of the rewrite rules to get the correct rewriting effect
when working either forward or backwards.

TACTIC ForwardSubst (ruleLR, ruleRL,pat) IS

WHEN (LETHYPSUBSTSEL _P

cut

ruleRL

(WHEN (LETHYP _Q

(ALT (WITHHYPSEL hyp)

(FAIL (the hypothesis you formula-selected wasn't a pat formula))))

(JAPE (SUBGOAL 1)))

(WITHSUBSTSEL hyp))

(LETCONCSUBSTSEL _P

(WITHSUBSTSEL ruleLR)

(WHEN (LETHYP_Q

(ALT (WITHHYPSEL hyp)

(FAIL(the hypothesis you formula-selected wasn't a pat formula))))

SKIP))

(JAPE (fail(please text-select one or more instances of a sub-formula to replace)))

LETHYPSUBSTSEL pattern tactic ... succeeds when the user’s text-selections describe a substitution in a
hypothesis (left-hand side) formula; LETCONCSUBSTSEL succeeds when they describe a substitution in a
conclusion (right-hand side) formula.

Working backwards with LETCONCSUBSTSEL the tactic is fairly straightforward: it applies ruleLR (one of
the argument rewrite rules) on the substution formula that the user has defined, and then, if the user has
selected a hypothesis, tries to unify it with the conclusion of the first antecedent of the rewrite.

Working forwards it does a cut and then applies ruleRL (the other rewrite rule, which will do its work in
the opposite direction to ruleLR) and then either applies the user’s selected hypothesis (ALT ...) or skips
the first antecedent (JAPE(SUBGOAL 1)) and then does WITHSUBSTSEL hyp, which uses the user’s original
text-selection to construct a substitution in the current problem sequent, and also does an automatic
WITHHYPSEL on it, so that the hyp is bound to make use of that hypothesis1. The automatic WITHHYPSEL

enables us, as in this example, to distinguish between two selected hypotheses: the one selected for
application as an equality, and the one text-selected for rewriting.

6.2 Syntax of set operations

Apart from the various operators, which have been encoded in the obvious way, the only important
syntactic feature of this encoding is the treatment of set abstractions. Jape’s parser-generator isn’t very
sophisticated at present, so we have made some drastic simplifications.

The form of a set abstraction, in this encoding, is { variable | formula }, and the occurrence of the
variable to the left of the bar is a binding occurrence; we also allow { <variable,variable> | formula }.
We include, therefore, in set_syntax.j

CLASS VARIABLE u v w

CONSTANT ¯ Ù U EQ

PREFIX 1000 Pow

PREFIX 800 ïï ßß

it used to be, and that we are still working on it. But second, we now realise that while encoding the rules of a logic in Jape
and arranging them in menus is straightforward and transparent, the work required to hide parts of proofs or to achieve
concise effects by hiding gestures is programming, and programming is always potentially intricate.

1 It seems reasonable that WITHSUBSTSEL should include an automatic WITHHYP/WITHCONCSEL, because if the newly-
constructed hypothesis isn’t to be used, why was it constructed?

Roll your own Jape logic (3.2) Page 53 Chapter 6: Axiomatic set theory

POSTFIX 800 ø

INFIX 700L ï ß -

INFIX 720L ¥

INFIX 740L ô

INFIX 600L §

INFIX 500L Ú ÂÚ

OUTFIX < >

OUTFIX { | }

BIND y SCOPE P IN { y | P }

BIND x y SCOPE P IN { <x,y> | P }

The priority numbers chosen are higher than the priority of any operator in BnE-Fprime_syntax.j, and
otherwise have no particular significance. We misuse the linear logic ø symbol as our representation of
set negation, but we do use it as a postfix operator1 .

Given the OUTFIX and BIND directives above, together with the standard interpretation of comma as a
zero-priority associative operator, we allow the following as formulæ:

{} which we interpret as the empty set;
{ formula } which we interpret as a singleton set;
{ formula, ... , formula } which we interpret as a literal description of a set;
{ variable | formula } which we interpret as a set abstraction;
{ <variable, variable> | formula } which we interpret as a set abstraction, a set of pairs.

Allowing set brackets with and without the vertical bar is a trick of which we are slightly ashamed. In
future we hope that these shapes of formulæ, and more, will be recognised by a more principled parser.

6.3 The axiomatic presentation of naive set theory

We first observe, just to get it out of the way, that this encoding of set theory does not attempt to avoid
Russell’s paradox. Schmidt’s treatment was based on Gödel-Bernays set theory and had a judgement
“Set A”, which we have not carried forward into our treatment, principally because our client didn’t want
us to.

The axioms of comprehension and extension in this naive treatment are

comprehension: ∀ ∃ ∈ ↔P A x A P x. . ()

extension: ∀ = ↔ ∀ ∈ ↔ ∈A B A B x x A x B, . (.)

Of course the axiom of comprehension, stated as above, isn’t first order, but that doesn’t bother Jape. We
haven’t yet found a way to incorporate comprehension as a single rule, just because of the existence
operator, and so we have followed Schmidt and incorporated it as two rules for each of our set-abstraction
forms:

Γ
Γ

æ

æ

P A

A y P y
()

∈ (){ }|

Γ
Γ

æ

æ

A y P y

P A

∈ (){ }
()
|

Γ
Γ

æ

æ

P A B

A B y z P y z

,
, , | ,

()
∈ (){ }

Γ
Γ

æ

æ

A B y z P y z

P A B

, , | ,

,

∈ (){ }
()

The rules are encoded as a couple of ALTs

RULES "abstraction-I"(A, OBJECT y,OBJECT z) ARE

FROM P(A) INFER AÚ{ y | P(y) }

AND FROM P(A,B) INFER <A,B>Ú{ <y,z> | P(y,z) }

END

1 Putting a smiley face here, in Windings font, adds about 300k bytes to the PostScript version of this file. Consider yourself
smiled at.

Roll your own Jape logic (3.2) Page 54 Chapter 6: Axiomatic set theory

RULES "abstraction-E"(A, OBJECT y, OBJECT z) ARE

FROM AÚ{ y | P(y) } INFER P(A)

AND FROM <A,B>Ú{ <y,z> | P(y,z) } INFER P(A,B)

END

and are incorporated into the SetOps menu in the usual way

ENTRY "abstraction-I" IS FSSOB ForwardCutwithSubstSel "abstraction-I"

ENTRY "abstraction-E" IS FOBSS ForwardCut "abstraction-E"

The FOBSS and FSSOB tactics are each a variation of the FOB tactic, requiring that the user makes a text
selection when reasoning backward (FOBSS) or forward (FSSOB):

TACTIC FOBSS (Forward, Rule) IS

WHEN (LETHYP _P

(ALT (Forward Rule)

(WHEN (LETARGSEL _Q

(JAPE(failgivingreason(Rule is not applicable to assumption ' _P '

with argument ' _Q '))))

(JAPE(failgivingreason(Rule is not applicable to assumption ' _P '))))))

(LETCONCSUBSTSEL _P

(ALT (WITHSUBSTSEL (WITHHYPSELRule))

(LETGOAL _Q

(JAPE(failgivingreason(Rule is not applicable to conclusion ' _Q '

with substitution ' _P '))))))

(ALT (WITHSELECTIONS Rule)

(JAPE(failgivingreason(Rule is not applicable to that conclusion))))

TACTIC FSSOB (Forward, Rule) IS

WHEN (LETHYPSUBSTSEL _P (Forward Rule))

(ALT (WITHSELECTIONS Rule)

(WHEN (LETARGSEL _P

(JAPE(failgivingreason(Rule is not applicable with argument ' _P '))))

(JAPE(failgivingreason(Rule is not applicable)))))

TACTIC ForwardCutwithSubstSel(Rule) IS

SEQ cut

(WHEN (LETSUBSTSEL _A Rule (WITHSUBSTSEL hyp))

(JAPE (fail(please text-select one or more instances of a sub-formula))))

We can incorporate extension, however, as an axiomatic definition. We don’t include the outer
quantification, as our rules are schemata. The rule is

 A B y y A y B= ∀ ∈ ↔ ∈÷ .

encoded as1

RULE (OBJECT y) IS INFER A=B ÷ (èy.yÚAêyÚB)

When we use this rule we will normally do so with a rewrite: replace some subformula which matches
one side or other of the definition, closing the first antecedent of the rewrite with an instance of the
axiomatic definition above. But we don’t want to see the particular instance of the axiom as part of the
proof: just as in the functional programming example, it is best referred to in the justification of the
rewrite step, and otherwise hidden from view.

1 It’s obvious from this example that Jape needs a simple way of expressing rules whose name is just the consequent of the
rule. It will have it, one day.

Roll your own Jape logic (3.2) Page 55 Chapter 6: Axiomatic set theory

We include the rule as part of a Definitions panel, then, and have two buttons on the panel which allow
left-to-right and right-to-left rewriting. As with the Substitution menu, switching the rewrite rules around
in the tactics associated with each button allows forward or backward rewriting:

PREFIXBUTTON "A÷É" IS apply ForwardSubstHiding "rewrite ÷ Ç" "rewrite ÷ È"

PREFIXBUTTON "É÷B" IS apply ForwardSubstHiding "rewrite ÷ È" "rewrite ÷ Ç"

The tactic ForwardSubstHiding is rather subtle, because it allows the user to rewrite

• either a hypothesis or a conclusion;

• after text-selecting a number of instances of a subformula, just those instances;

• without text-selecting, the whole hypothesis or conclusion.

In fact it is only forward rewriting without text selection that is more subtle than what we have already
seen.

TACTIC ForwardSubstHiding (ruleLR, ruleRL, thm) IS

WHEN (LETHYPSUBSTSEL _P cut (LAYOUT () (1) ruleRL thm (WITHSUBSTSEL hyp)))

(LETCONCSUBSTSEL _P (LAYOUT () (1) (WITHSUBSTSEL ruleLR) thm))

(LETHYP _P cut (LAYOUT () (1) ruleRL thm

(LETGOAL (_P'[_v_Q]) (WITHHYPSEL(hyp _Q)))))

(LETGOAL _P (LAYOUT () (1) (ruleLR _P) thm))

The first alternative in the WHEN is activated when the user has text-selected in a hypothesis: it cuts, uses
one of the rewrite rules, closes the first antecedent with the theorem, and the second using the text-
selection that the user made. The second alternative is activated when there is a text-selection in a
conclusion: it uses the other rewrite rule followed by the theorem. The last alternative is activated when
there is no recognisable text-selection1 and no hypothesis selection: it activates the same rewrite rule as
the second alternative, but gives it the whole conclusion formula instead of the user’s text selection: that
is a particularly easy ‘abstraction’ for the substitution-unifier to resolve, and the effect is to unify the
whole consequent with the left- or the right-hand side of the theorem, depending on the particular rewrite
rule that is used.

The third alternative is the tricky one. It calls the same rewrite rule as the first alternative, but gives it
nothing to work on, so that rule will necessarily succeed by deferred unification of the consequent of the
rewrite with the conclusion. Then it closes the first antecedent of the rewrite with the theorem: that alters
the consequent of the rewrite, but won’t introduce enough constant material to enable the deferred
unification to be resolved. Somehow we have to unify the selected hypothesis with one side or other of
the theorem, just as in the fourth alternative. The trick is to realise that after the theorem is applied, the
second antecedent of the rewrite step will be a substitution: we take the substituting formula from that
substitution and, using hyp, unify that with the whole substitution and the originally-selected hypothesis.
The effect is like magic: the whole of the selected hypothesis is unified with one side or the other of the
theorem, just as in the fourth alternative2.

Each of the entries in the Definitions panel is intended to be used as a two-way rewrite rule, using the
buttons above. One entry in the Definitions panel is given in BnE-Fprime_menus.j (where also the
buttons are defined):

RULE IS A­B ÷ Â(A=B)

1 Actually, and unfortunately, when there is no valid text selection.
2 It’s quite a clever bit of tactic programming, and that’s the problem. In the future we hope to be able to allow either of the

formulæ – A or B – in the rewrite rule to be provided as argument.

Roll your own Jape logic (3.2) Page 56 Chapter 6: Axiomatic set theory

This definition makes it unnecessary to have rules for ≠1. The others are in set_menus.j:

RULE IS AÂÚB ÷ Â(AÚB)

RULE IS ¯ ÷ {}

RULE (OBJECT x) IS EQ ÷ {x|x=x}

RULE (OBJECT x) IS {A} ÷ {x|x=A}

RULE (OBJECT x) IS {A,B} ÷ {x|x=Aëx=B}

RULE (OBJECT x) IS {A,B,C} ÷ {x|x=Aëx=Bëx=C}

RULE (OBJECT x) IS {A,B,C,D} ÷ {x|x=Aëx=Bëx=Cëx=D}

RULE (OBJECT y) IS A§B ÷ (èy.yÚAçyÚB)

RULE (OBJECT y) IS A=B ÷ (èy.yÚAêyÚB)

RULE (OBJECT y) IS AïB ÷ { y | yÚAëyÚB }

RULE (OBJECT y) IS AßB ÷ { y | yÚA¦yÚB }

RULE (OBJECT y) IS A-B ÷ { y | yÚA¦yÂÚB }

RULE (OBJECT y) IS Aø ÷ {y | yÂÚA}

RULE (OBJECT x, OBJECT y) IS ïï(C) ÷ { x | äy. xÚy¦yÚC }

RULE (OBJECT x, OBJECT y) IS ßß(C) ÷ { x | èy. yÚCçxÚy }

RULE (OBJECT x) IS Pow(A) ÷ { x | x§A }

RULE (OBJECT x, OBJECT y) IS AôB ÷ { <x,y> | xÚA¦yÚB }

RULE (OBJECT x, OBJECT y, OBJECT z) IS A¥B ÷ { <x,z> | äy.<x,y>ÚA¦<y,z>ÚB }

6.4 The non-axiomatic rules

A proof using the axioms will typically introduce and then eliminate logical connectives. Here is the
beginning of such an axiomatic proof:

assumptionA=B: 1

 1A=B÷(èy.yÚAêyÚB)èy.yÚAêyÚB: 2

assumptioncÚA: 3

 2è-E'0cÚAêcÚB: 4

 3,4ê-E(R)cÚB: 5

 3-5ç-IcÚAçcÚB: 6

 6è-I'0èy1.y1ÚAçy1ÚB: 7

 7A§B÷(èy.yÚAçyÚB)A§B: 8

B§A

. . .

: 9

 8,9¦-IA§B¦B§A: 10

assumptionA§B¦B§A: 11

A=B

. . .

: 12

 1-10,11-12ê-IA=BêA§B¦B§A: 13

1 In the future we hope to be able to handle this sort of definition by ‘definitional equality’, where you write A≠B and Jape
interprets it as ¬(A=B) but displays it as A≠B; compare the treatment of ¬A as equivalent to A→Ù in many treatments of
the intuitionistic sequent calculus, which we also can’t handle at the moment as transparently as we would wish.

Roll your own Jape logic (3.2) Page 57 Chapter 6: Axiomatic set theory

It is clear that there will be lots of repetitive applications of ∀ -E, ∀ -I, →-E, →-I, and similar logical rules
during this proof. It is clear that there could be introduction and elimination rules for each of the set
operators. These are the ones relevant to the proof above:

Γ
Γ

,
(FRESH)

c A c B

A B
c I

∈ ∈
⊆

⊆ −
æ

æ

Γ Γ
Γ

æ æ

æ

C A A B

C B
E

∈ ⊆
⊆

⊆ −

Γ Γ
Γ

æ æ

æ

A B B A

A B
I

⊆ ⊆
=

= −

Γ
Γ

æ

æ

A B

A B
E L

=
⊆

= − ()

Γ
Γ

æ

æ

A B

B A
E R

=
⊆

= − ()

and here is the proof completed using these rules, rather than the axiomatic definitions:

assumptionA=B: 1

 1=-E(L)A§B: 2

 1=-E(R)B§A: 3

 2,3¦-IA§B¦B§A: 4

assumptionA§B¦B§A: 5

 5¦-E(L)A§B: 6

 5¦-E(R)B§A: 7

 6,7=-IA=B: 8

 1-4,5-8ê-IA=BêA§B¦B§A: 9

Somewhat simpler! The rules are encoded in the obvious way1 and likewise organised into a menu.

Naturally we regret that Jape cannot yet deal with proofs of derived rules such as these.

1 Jape is currently unequipped to allow the user to prove derived rules from the axioms. We intend that in the near future it
should permit it – the mechanism we have for proving theorem schemata is almost all that we need.

- 58 -

Chapter 7

Encoding the Hindley-Milner type-assignment
algorithm

We consider a version of the algorithm for the lambda calculus with tuples and let/letrec bindings.

C x T E T

C x E T T
I

, : :
. :

æ

æ

′
→ ′

−
λ

λ

C F T T C G T

C F G T
application I

æ æ

æ

: :
:

→ ′
′

−

C E1 T1 C E2 T2

C E1 E2 T1 T2
tuple I

æ æ

æ

: :
(,) : ()×

−

C E T1 C T1 S C x S F T

C x E F T
I

æ æ æ

æ

: , : :
let in end :

let
p

=
−

C x T1 E T1 C T1 S C x S F T

C x E F T
I

, : : , : :
letrec in end :

letrec
æ æ æ

æ

p

=
−

C x S S T

C x T
identifier type

()
:

a f

æ

In each of these rules the context C is a sequence of bindings of program variables to type schemes which
can be read, right to left, as a mapping from variables to type schemes. The judgement C x() a …
interprets the context in just that way. The judgement C T Sæ p is the generalisation step, in which ‘type
variables’ free in the type T but not free in the context C are used to transform type T into type scheme S.
The judgement S Tf is the corresponding specialisation step, when the schematic variables of S are
replaced by type formulæ.

The difficulties of encoding the Hindley-Milner algorithm are just those of representing the schematic
‘type variables’, representing and interpreting the type context and implementing the generalisation and
specialisation steps.

7.2 Syntax

We represent λ formulæ as a LEFTFIX formula, and we give that formula a lower priority than the colon
operator, so that we don’t unnecessarily have to bracket λ formulæ. The type-tupling operator × is treated
as an associative operator, rather like comma. We need an == operator (blechh!) because = is used in the
let / letrec syntax. We use « for generalisation and » for specialisation. We use a double-arrow operator
rather than a colon in the contexts, for no particularly good reason that we can remember. We have
included additional operators ¥ and � which are used in the generalisation-step induction.

We have represented type schemes which include schematic variables– so-called polytypes – as ∀t T. or
∀t1 t2 T, . and so on, with up to four schematic variables. Those which have no schematic variables – so-
called monotypes – as #T, where T is a type formula. This is faithful to Milner’s treatment in the ML
description, where he describes the scheme T as a shorthand for ∀(). Τ.

We have included constants hd, tl and nil which are useful in describing list-processing, true and false
which are useful in handling booleans; we have included constant type-names bool, string and num.

Roll your own Jape logic(3.2) Page 59 Chapter 7: Hindley-Milner type assignment

First the program names:

CLASS VARIABLE x y z e f g map

CLASS FORMULA E F G

CLASS CONSTANT c

CONSTANT hd tl nil

CLASS NUMBER n

CLASS STRING s

CONSTANT true false

and then the type names:

CLASS VARIABLE t

CLASS FORMULA S T /* we use T for types, S for type schemes in the rules which follow */

CONSTANT bool string num

Next operators for programs:

SUBSTFIX 500 { E / x }

JUXTFIX 400

INFIXC 140L + -

INFIXC 120R Ü

INFIXC 100L == /* we need this because we also have let f = ... */

LEFTFIX 75 û .

INFIX 50L =

OUTFIX []

OUTFIX letrec in end

OUTFIX let in end

OUTFIX if then else fi

and operators for types:

INFIX 150T ô

INFIX 100R ç

LEFTFIX 75 è .

PREFIX 75 #

INFIX 55L ¥ �

INFIX 50L : Û Ç È

Now bindings:

BIND x SCOPE E IN û x . E

BIND t SCOPE T IN è t . T

BIND t1 t2 SCOPE T IN è t1, t2 . T

BIND t1 t2 t3 SCOPE T IN è t1, t2, t3 . T

BIND t1 t2 t3 t4 SCOPE T IN è t1, t2, t3, t4 . T

BIND x SCOPE F IN let x = E in F end

BIND x1 x2 SCOPE F IN let x1=E1 , x2=E2 in F end

BIND x1 x2 x3 SCOPE F IN let x1=E1 , x2=E2 , x3=E3 in F end

BIND x1 x2 x3 x4 SCOPE F IN let x1=E1 , x2=E2 , x3=E3 , x4=E4 in F end

BIND x SCOPE E F IN letrec x = E in F end

BIND x1 x2 SCOPE E1 E2 F IN letrec x1=E1 , x2=E2 in F end

BIND x1 x2 x3 SCOPE E1 E2 E3 F IN letrec x1=E1 , x2=E2 , x3=E3 in F end

BIND x1 x2 x3 x4 SCOPE E1 E2 E3 E4 F IN letrec x1=E1 , x2=E2 , x3=E3 , x4=E4 in F end

Finally, the definition of a judgement:

Roll your own Jape logic(3.2) Page 60 Chapter 7: Hindley-Milner type assignment

CLASS LIST C

SEQUENT IS LIST æ FORMULA

7.2 Rules

The structural rules are very straightforwardly encoded, following the algorithm directly. Note the use of
a type scheme #T1 in the rule which deals with λ formulæ.

RULE "F G : T" FROM C æ F: T1çT2 AND C æ G : T1 INFER C æ F G : T2

RULE "ûx.E : T1çT2" FROM C,xÛ#T1 æ E:T2 INFER C æ ûx.E : T1çT2

RULE "(E,F) : T1ôT2" FROM C æ E: T1 AND C æ F: T2 INFER C æ (E,F) : T1ôT2

RULE "if E then ET else EF fi : T"

FROM C æ E : bool AND C æ ET : T AND C æ EF : T INFER C æ if E then ET else EF fi : T

There are some simple rules which deal with constants:

RULE "n:num" INFER C æ n:num

RULE "s:string" INFER C æ s:string

RULE "true:bool" INFER C æ true:bool

RULE "false:bool" INFER C æ false:bool

which we apply whenever possible – in this case AUTOUNIFY seems to be the best mechanism:

AUTOUNIFY "n:num" "s:string" "true:bool" "false:bool"

Dealing with the various forms of let and letrec formulæ is a matter of tedious listing. Here are the letrec
rules:

RULES letrecrules ARE

FROM C,xÛ#T1 æ E:T1 AND C æ T1ÇS1 AND C,xÛS1 æ F:T

INFER C æ letrec x=E in F end : T

AND FROM C,x1Û#T1,x2Û#T2 æ E1 : T1 AND C,x1Û#T1,x2Û#T2 æ E2 : T2

AND C æ T1ÇS1 AND C æ T2ÇS2 AND C,x1ÛS1,x2ÛS2 æ F:T

INFER C æ letrec x1=E1 , x2=E2 in F end : T

AND FROM C,x1Û#T1,x2Û#T2,x3Û#T3 æ E1 : T1 AND C,x1Û#T1,x2Û#T2,x3Û#T3 æ E2 : T2

AND C,x1Û#T1,x2Û#T2,x3Û#T3 æ E3 : T3 AND C æ T1ÇS1 AND C æ T2ÇS2

AND C æ T3ÇS3 AND C,x1ÛS1,x2ÛS2,x3ÛS3 æ F:T

INFER C æ letrec x1=E1 , x2=E2 , x3=E3 in F end : T

AND FROM C,x1Û#T1,x2Û#T2,x3Û#T3,x4Û#T4 æ E1 : T1

AND C,x1Û#T1,x2Û#T2,x3Û#T3,x4Û#T4 æ E2 : T2

AND C,x1Û#T1,x2Û#T2,x3Û#T3,x4Û#T4 æ E3 : T3

AND C,x1Û#T1,x2Û#T2,x3Û#T3,x4Û#T4 æ E4 : T4

AND C æ T1ÇS1 AND C æ T2ÇS2 AND C æ T3ÇS3 AND C æ T4ÇS4

AND C,x1ÛS1,x2ÛS2,x3ÛS3,x4ÛS4 æ F:T

INFER C æ letrec x1=E1 , x2=E2 , x3=E3 , x4=E4 in F end : T

END

Reading the context and specialising a type scheme

Things get more interesting when we consider how to handle the context-evaluation step C x S() a : C
maps x to scheme S. The context is just a list of name→scheme bindings, and it should be read right-to-
left, so that the most recent bindings take precedence. Because program names can’t appear in types in
this logic, we can use a NOTIN proviso to help us to read the context in this way. Because variables and
constants are different syntactic classes, we need two rules:

RULE "C æ xÛS" WHERE x NOTIN C' IS INFER C,xÛS,C' æ xÛS

RULE "C æ cÛS" WHERE c NOTIN C' IS INFER C,cÛS,C' æ cÛS

Roll your own Jape logic(3.2) Page 61 Chapter 7: Hindley-Milner type assignment

We declare these two as IDENTITY rules so that their application is hidden in a box-and-line display of a
proof:

IDENTITY "C æ xÛS"

IDENTITY "C æ cÛS"

We have rules for the types of the constant function identifiers which we have used:

RULES constants ARE

C æ hdÛètt.[tt]çtt

AND C æ tlÛètt.[tt]ç[tt]

AND C æ (Ü)Ûètt.ttç[tt]ç[tt]

AND C æ nilÛètt.[tt]

AND C æ (+)Û#numçnumçnum

AND C æ (-)Û#numçnumçnum

AND C æ (==)Ûètt.ttçttçbool

END

Typing a variable or a constant is a matter of finding the type scheme and then specialising to some type.
Specialisation is just a matter of substituting types for schematic variables:

RULES "SÈT" ARE

INFER #T È T

AND INFER ètt.TT È TT{T1/tt}

AND INFER ètt1,tt2.TT È TT{T1,T2/tt1,tt2}

AND INFER ètt1,tt2,tt3.TT È TT{T1,T2,T3/tt1,tt2,tt3}

AND INFER ètt1,tt2,tt3,tt4.TT È TT{T1,T2,T3,T4/tt1,tt2,tt3,tt4}

END

Then two rules put these together in just the way that the algorithm does:

RULE "C æ x:T" IS FROM CæxÛS AND SÈT INFER Cæx:T

RULE "C æ c:T" IS FROM CæcÛS AND SÈT INFER Cæc:T

In the menu we use a tactic which looks in three places for a type scheme and then specialises, showing
none of its working when it succeeds, but trying to give some error messages when it fails:

TACTIC "x:T" IS

SEQ (ALT (LAYOUT "C(x)ÛS; SÈT" () "C æ x:T" "C æ xÛS")

(LAYOUT "C(c)ÛS; SÈT" () "C æ c:T" "C æ cÛS")

(LAYOUT "constant" () "C æ c:T" constants)

(WHEN (LETGOAL (_E:_T)

(JAPE(fail(x:T can only be applied to either variables or

constants: _E is neither)))

)

(LETGOAL _E (JAPE(fail(conclusion _E is not a ' name:type ' judgement))))

)

)

"SÈT"

The generalisation step

The technique used here is to perform a structural induction on the type T in order to calculate its
schematic variables. These will be unknowns, because of course we don’t judiciously introduce type
variables when running the algorithm (though we might): we simply introduce unknowns as necessary, as
we go.

Roll your own Jape logic(3.2) Page 62 Chapter 7: Hindley-Milner type assignment

The generalisation step is run by a tactic, and all the working is normally hidden from the user. It works
with a formula type ¥ schemein � schemeout, in which the operators ¥ and � are no more than punctuation.
The starting rule is

RULE "TÇS" IS FROM C æ T ¥ #T � S INFER C æ T Ç S

The induction works with rules which take a type apart, and two rules which are the base case. The
structural rules are

RULE "T1çT2¥..." FROM C æ T1¥ Sin � Smid AND C æ T2 ¥ Smid � Sout

INFER C æ T1çT2 ¥ Sin � Sout

RULE "T1ôT2¥..." FROM C æ T1¥ Sin � Smid AND C æ T2 ¥ Smid � Sout

INFER C æ T1ôT2 ¥ Sin � Sout

RULE "[T]¥..." FROM C æ T ¥ Sin � Sout

INFER C æ [T] ¥ Sin � Sout

The tactic applies these rules, we shall see, ‘by matching’: they aren’t allowed to make any substantial
unifications which alter the problem sequent to which they are applied. So if the problem sequent is
unknown ¥ schemein � schemeout, none of these rules will be used.

The rules which deal with an unknown do so by unifying it with a freshly-minted variable name and
making sure that it doesn’t appear in the context or the original type:

RULES "new t¥..." (OBJECT t1) WHERE t1 NOTIN C ARE

Cæ t1 ¥ #T� èt1.T

AND Cæ t1 ¥ ètt1.T � ètt1,t1.T

AND Cæ t1 ¥ ètt1,tt2.T � ètt1,tt2,t1.T

AND Cæ t1 ¥ ètt1,tt2,tt3.T � ètt1,tt2,tt3,t1.T

END

The only formula which can possibly unify with a freshly-minted type variable is a type unknown, and
these rules have a proviso that the result shouldn’t be free in the context C. The effect is to replace an
unknown type by a type variable, and to include it in the context.

If none of these rules applies, then we must have an unknown which does appear in the context: that
unknown must be left alone:

RULE "same T¥..." INFER C æ T ¥ S � S

The whole is stitched together with a tactic which tries first the structural rules by matching, then the
variable rule and finally the leave-alone rule; that tactic is used by another which starts the process, calls
the induction and hides all its working:

TACTIC geninduct IS

ALT (SEQ (MATCH (ALT "T1çT2¥..." "T1ôT2¥...")) geninduct geninduct)

(SEQ (MATCH "[T]¥...") geninduct)

"new t¥..."

"same T¥..."

TACTIC generalise IS LAYOUT "generalise" () "TÇS" geninduct

We also provide a ‘single-step’ tactic which carries out the same tasks, so that users can view the process
as it evolves:

TACTIC genstep IS

ALT "TÇS"

(MATCH "T1çT2¥...")

(MATCH "T1ôT2¥...")

(MATCH "[T]¥...")

"new t¥..."

"same T¥..."

Roll your own Jape logic(3.2) Page 63 Chapter 7: Hindley-Milner type assignment

Automatic search

In this chapter we are dealing with an encoding of an algorithm, not simply a logic. It’s possible to get
strange answers by running the steps in the wrong order. On the other hand, it’s easy to write a tactic
which automatically runs the algorithm. That tactic is long-winded because it has to deal, case-by-case,
with the various sizes of binding structures. If only Jape could handle families of rules ...

TACTIC Auto IS

WHEN (LETGOAL (_x:_T) "x:T")

(LETGOAL (_c:_T)

(ALT "x:T" "n:num" "s:string" "true:bool" "false:bool"

(JAPE (fail (_c isn't a constant from the context,

or one of the fixed constants)))

)

)

(LETGOAL (_F _G:_T) "F G : T" Auto Auto)

(LETGOAL ((_E,_F):_T) "(E,F) : T1ôT2" Auto Auto)

(LETGOAL ((û_x._E):_T) "ûx.E : T1çT2" Auto)

(LETGOAL (if _E then _ET else _EF fi:_T) "if E then ET else EF fi : T" Auto Auto Auto)

(LETGOAL (let _x=_E in _F end:_T)

letrules Auto generalise Auto)

(LETGOAL (let _x1=_E1 , _x2=_E2 in _F end:_T)

letrules Auto Auto generalise generalise Auto)

... etc ...

(LETGOAL (letrec _x=_E in _F end:_T)

letrecrules Auto generalise Auto)

(LETGOAL (letrec _x1=_E1 , _x2=_E2 in _F end:_T)

letrecrules Auto Auto generalise generalise Auto)

... etc ...

(LETGOAL (_E:_T) (JAPE (fail (_E is not a recognisable program formula (Auto)))))

(LETGOAL _E (JAPE (fail (_E is not a recognisable judgement (Auto)))))

There’s a similar AutoStep tactic which lets the user make just one step of the algorithm.

Roll your own Jape logic(3.2) Page 64 Chapter 7: Hindley-Milner type assignment

7.3 An example

The algorithm will calculate, for example, the type of map and use it correctly in an application:

assumptionC: 1

assumptionsfÛ#numçnum, mapÛ#(t1çt2)ç[t1]ç[t2]: 2

assumptionfÛ#t1çt2: 3

assumptionxsÛ#[t1]: 4

 constant(==):[t1]ç[t1]çbool: 5

 C(x)ÛS; SÈTxs:[t1]: 6

 5,6F G : T(==)xs:[t1]çbool: 7

 constantnil:[t1]: 8

 7,8F G : Txs==nil:bool: 9

 constantnil:[t2]: 10

 constant(Ü):t2ç[t2]ç[t2]: 11

 C(x)ÛS; SÈTf:t1çt2: 12

 constanthd:[t1]çt1: 13

 C(x)ÛS; SÈTxs:[t1]: 14

 13,14F G : T(hd xs):t1: 15

 12,15F G : Tf(hd xs):t2: 16

 11,16F G : T(Ü)(f(hd xs)):[t2]ç[t2]: 17

 C(x)ÛS; SÈTmap:(t1çt2)ç[t1]ç[t2]: 18

 C(x)ÛS; SÈTf:t1çt2: 19

 18,19F G : Tmap f:[t1]ç[t2]: 20

 constanttl:[t1]ç[t1]: 21

 C(x)ÛS; SÈTxs:[t1]: 22

 21,22F G : T(tl xs):[t1]: 23

 20,23F G : Tmap f(tl xs):[t2]: 24

 17,24F G : Tf(hd xs)Ümap f(tl xs):[t2]: 25

 9,10,25if E then ET else EF fi : Tif xs==nil then nil else f(hd xs)Ümap f(tl xs)fi:[t2]: 26

 4-26ûx.E : T1çT2ûxs.if xs==nil then nil else f(hd xs)Ümap f(tl xs)fi:[t1]ç[t2]: 27

 3-27ûx.E : T1çT2ûf.ûxs.if xs==nil then nil else f(hd xs)Ümap f(tl xs)fi:(t1çt2)ç[t1]ç[t2]: 28

assumptionsfÛ#numçnum, mapÛ#(t1çt2)ç[t1]ç[t2]: 29

assumptionxÛ#num: 30

 constant(+):numçnumçnum: 31

 C(x)ÛS; SÈTx:num: 32

 31,32F G : T(+)x:numçnum: 33

 C(x)ÛS; SÈTx:num: 34

 33,34F G : Tx+x:num: 35

 30-35ûx.E : T1çT2ûx.x+x:numçnum: 36

 generalise(t1çt2)ç[t1]ç[t2]Çèt1,t2.(t1çt2)ç[t1]ç[t2]: 37

 generalisenumçnumÇ#numçnum: 38

assumptionsfÛ#numçnum, mapÛèt1,t2.(t1çt2)ç[t1]ç[t2]: 39

 C(x)ÛS; SÈTmap:(numçnum)ç[num]ç[num]: 40

 C(x)ÛS; SÈTf:numçnum: 41

 40,41F G : Tmap f:[num]ç[num]: 42

 constant(Ü):numç[num]ç[num]: 43

 n:num0:num: 44

 43,44F G : T(Ü)0:[num]ç[num]: 45

 constant(Ü):numç[num]ç[num]: 46

 n:num1:num: 47

 46,47F G : T(Ü)1:[num]ç[num]: 48

 constant(Ü):numç[num]ç[num]: 49

 n:num2:num: 50

 49,50F G : T(Ü)2:[num]ç[num]: 51

 constantnil:[num]: 52

 51,52F G : T2Ünil:[num]: 53

 48,53F G : T1Ü2Ünil:[num]: 54

 45,54F G : T(0Ü1Ü2Ünil):[num]: 55

 42,55F G : Tmap f(0Ü1Ü2Ünil):[num]: 56

 2-28,29-36,37,38,39-56letrecrules'1letrec map=ûf.ûxs.if xs==nil then nil else f(hd xs)Ümap f(tl xs)fi,f=ûx.x+x in map f(0Ü1Ü2Ünil)end:[num]: 57

Roll your own Jape logic(3.2) Page 65 Chapter 7: Hindley-Milner type assignment

This example shows that it is necessary for Jape to learn how to fold long formulæ when displaying a
proof (it can fold long lists of formulæ – see, for example, the BAN logic encoding).

7.4 Jape’s treatment of type-theoretic logics

In simple, ‘pure’ logics, we can reasonably claim that Jape can transparently encode the inference rules,
and all the magic is hidden in its treatment of substitutions, bindings and unification. In the case of the
Hindley-Milner logic and, we surmise, other type-theoretic logics, that isn’t so. We’ve made some
creative choices and had to program an encoding of the treatment of contexts. If the treatment in this
chapter is to serve as a model of how Jape can encode type-theoretic logics, there are a number of
questions which have to be answered.

First, and trivially, we ought to able to deal with the monotype / polytype distinction without the ugly
syntactic mechanism we have used here. That’s a matter of improving our parser generator, we believe,
and is simply a question of development.

More seriously, our treatment has no judgement equivalent to ‘C is a context’, and we have pushed the
question into the context-interpretation rule, treating the context as a mapping and making sure with a
proviso that we aren’t overlooking a later binding. Meta-theoretically it is clear that the context might
easily be formed by ensuring that every name it contains is distinct; the necessary α-conversion, however,
makes it hard for a human prover to keep track of what is going on. It seems to us, therefore, that we are
pragmatically correct to treat the context as a mapping. Also, our rules are context-validity preserving.
But it is still possible to state a conjecture with a nonsense context and yet prove it in our system:

 GARBAGE x x T Tæλ . : → will be a theorem. It would be absurdly inefficient to check the validity of the
context at every rule application; nevertheless, we must find ways in which we can check its validity at
crucial points in a proof.

We intend, in future work on type-theoretic logics, to continue to develop the approach used here. We
expect to invent proviso mechanisms which allow us to state that the names in some type judgement are
not rebound by the context to their right, or something similar. We dream, even, of user-defined provisos
which will allow close control of the meaning of such provisos. We hope to find the right place to put ‘C
is a context’ judgements.

- 66 -

Chapter 8

Encoding Hoare logic

This chapter has very little to say. The encoding defined in the file hoare.jt and the files that it invokes is
chiefly interesting for what it doesn’t do. Jape is perfectly capable of encoding the program syntax and
the rules of inference about predicates, but it falls down when it tries to handle arithmetic. You could, in
principle, prove that x<x+1 by induction (really!) but induction is absolutely no help when it comes to
deciding that 3<4. Experience with this encoding shows that Jape needs an ‘arithmetic oracle’, and one is
under construction.

The problem of arithmetic is tricky, and we realise that provision of an arithmetic oracle won’t make it go
away. Jape lacks a ‘the user is an oracle’ mechanism, as for example is provided in the Imperial College
proof editor Pandora. Such a mechanism would make it possible to certify certain steps in a proof and for
the steps to be accepted without further ado. That makes difficult arithmetic the responsibility of the user:
certainly not sound, but far more convenient than Jape’s current incapacity.

- 67 -

Chapter 9

Encoding BAN logic

Burroughs-Abadi-Needham (BAN) logic is a logic of authentication-protocols. It’s of interest to us
chiefly because it is a logic in which the rules don’t fit into a tidy introduction / elimination structure, so
that we have to use some ingenuity to design menus and double-clicking mechanisms to suit. Also,
conjectures seem naturally to require long lists of assumptions, which makes it possible to demonstrate
Jape’s mechanism for folding long association lists. And its use of tuples allows us to demonstrate some
new ways in which Jape can deal with families of rules.

9.1 Syntax

The syntax of the logic is very simple, although it includes a number of novel operators which we
managed to add to our Konstanz font. We’ve had to transform some of the notation to linearise it: for
example, we have made A B↔K (A and B share private key K) into A B K,() ↔ and we’ve made X K{ }
into X K{ } . We’ve used K ⊥ rather than K −1 . Otherwise, we believe, we have faithfully described the
syntax, even if we have had to guess at the syntactic hierarchy of operators.

CLASS VARIABLE x k

CLASS FORMULA W X Y Z

CLASS CONSTANT P Q R K N T

CONSTANT A B S

SUBSTFIX 700

JUXTFIX 600

PREFIX 500 #

POSTFIX 500 ø

INFIX 300L � Ø ê

INFIX 200R �

INFIX 150R �

LEFTFIX 110 è .

INFIX 100R �

INFIX 50L �

OUTFIX { }

OUTFIX < >

BIND x SCOPE P IN èx . P

SEQUENT IS BAG æ FORMULA

INITIALISE autoAdditiveLeft true

9.2 Rules

The rules of the logic are depicted in [“A Logic of Authentication”, Burrows Abadi, Needham] which is
available on the Web from Martín Abadi’s home page, or in paper form as (Proceedings of the Royal
Society, Series A, 426, 1871 (December 1989), 233-271). Two of the rules have a ‘from R’ side-condition

Roll your own Jape logic (3.2) Page 68 Chapter 9: Encoding BAN logic

which we haven’t reproduced (and which is discussed in the paper though not depicted there). The rules
are given natural-deduction style, without mentioning a context of hypotheses:

P Q P P X

P Q X

K

K� �

� �

↔ { }

P Q P X

P Q X

K

K� Ø �

� �

{ } −1

P Q P P X

P Q X

Y

Y� � �

� �

P X P Q X

P Q X

� � �

� �

#

P Q X P Q X

P X

� � � �

�

P X P Y

P X Y

� �

� ,()

P X Y

P X

�

�

,()

P Q X Y

P Q X

� �

� �

,()

P Q X Y

P Q X

� �

� �

,()

P X Y

P X

�

�

,()

P X

P X
Y�

�

P Q P P X

P X

K

K� �

�

↔ { }

P P P X

P X

K

K� Ø �

�

{ }

P Q P X

P X

K

K� Ø �

�

{ } −1

P X

P X Y

�

�

#
,()

P R R

P R R

K

K

�

�

↔ ′

′↔

P Q R R

P Q R R

K

K

� �

� �

↔ ′

′↔

P R R

P R R

X

X

� �

� �

′

′

P Q R R

P Q R R

X

X

� � �

� � �

′

′

P v v Q X

P Q X v v Y Y
n

n n

� �

� �

∀ ()
[]

1

1 1

... .

... \ ...

The rules which don’t deal with tuples are very straightforwardly encoded:

RULE "P�(Q,P)êK, P�{X}K Û P�Q�X" IS FROM P�(Q,P)êK AND P�{X}K INFER P�Q�X

RULE "P�QØK, P�{X}Kø Û P�Q�X" IS FROM P�QØK AND P�{X}Kø INFER P�Q�X

RULE "P�(P,Q)�Y, P�<X>Y Û P�Q�X" IS FROM P�(P,Q)�Y AND P�<X>Y INFER P�Q�X

RULE "P�#X, P�Q�X Û P�Q�X" IS FROM P�#X AND P�Q�X INFER P�Q�X

RULE "P�Q�X, P�Q�X Û P�X" IS FROM P�Q�X AND P�Q�X INFER P�X

RULE "P�<X>Y Û P�X" IS FROM P�<X>Y INFER P�X

RULE "P�(P,Q)êK, P�{X}K Û P�X" IS FROM P�(P,Q)êK AND P�{X}K INFER P�X

RULE "P�PØK, P�{X}K Û P�X" IS FROM P�PØK AND P�{X}K INFER P�X

RULE "P�QØ K, P�{X}Kø Û P�X" IS FROM P�QØ K AND P�{X}Kø INFER P�X

RULE "P�(R,R')êK Û P�(R',R)êK" IS FROM P�(R,R')êK INFER P�(R',R)êK

RULE "P�Q�(R,R')êK Û P�Q�(R,R')êK" IS FROM P�Q�(R,R')êK INFER P�Q�(R',R)êK

RULE "P�(R,R')�K Û P�(R',R)�K" IS FROM P�(R,R')�K INFER P�(R',R)�K

RULE "P�Q�(R,R')�K Û P�Q�(R',R)�K" IS FROM P�Q�(R,R')�K INFER P�Q�(R',R)�K

RULE "P�èx.X(x) Û P�X(Y)"(Y,ABSTRACTION X) IS FROM P�èx.X(x) INFER P�X(Y)

We’ve had to include hyp so that we can use assumptions. Cut allows us to mimic forward proof. Left-
weakening means that we can use theorems which don’t match all the hypotheses:

RULE hyp IS INFER X æ X

RULE cut(X) IS FROM X AND X æ Y INFER Y

RULE weaken(X) IS FROM Y INFER X æ Y

IDENTITY hyp

CUT cut

WEAKEN weaken

Roll your own Jape logic (3.2) Page 69 Chapter 9: Encoding BAN logic

Putting rules into menus

Organising these into menus is quite a problem. We’ve included a menu for each operator and put each
rule into all the menus which seem relevant to it: for example, "P�(Q,P)êK, P�{X}K Û P�Q�X" is in the
menus for ê, � and �. Only hyp and the rule dealing with ∀ are in a menu labelled ‘Logic’.

We have implemented forward reasoning in the style of chapter 4; then, for example when "P�(Q,P)êK,

P�{X}K Û P�Q�X" is included in the ê menu we have

ENTRY "P�(Q,P)êK, [P�{X}K] Û P�Q�X"

IS ForwardOrBackward ForwardCut 0 "P�(Q,P)êK, P�{X}K Û P�Q�X"

in the � menu we have

ENTRY "P�{X}K, [P�(Q,P)êK] Û P�Q�X" IS

ForwardOrBackward ForwardCut 1 "P�(Q,P)êK, P�{X}K Û P�Q�X"

The square-bracketted antecedent in the menu entry is the one that isn’t focussed upon in that step. The
whole gory details are in the file BAN_menus.j. We may not have included the rules in enough menus or
enough times (for example, we probably ought to have "P�(Q,P)êK, P�{X}K Û P�Q�X" in the � menu
twice, focussing once on each antecedent). We haven’t had enough users to know if we have got this bit
of user interaction right.

Dealing with tuples

We’ve generalised some of the BAN rules: for example, we have implemented

P X P X

P X X
n

n

� �

�
1

1

...
,...,()

P X

P X

�

�

..., ,...()

for 2-, 3- and 4-tuples. We’ve done it, as you ought to expect, by listing each version of the rule and
combining them with the RULES directive:

RULES "... P�X ... Û P�(...,X,...)" ARE

FROM P�X AND P�Y INFER P�(X,Y)

 AND FROM P�X AND P�Y AND P�Z INFER P�(X,Y,Z)

 AND FROM P�W AND P�X AND P�Y AND P�Z INFER P�(W,X,Y,Z)

END

RULES "P�(...,X,...) Û P�X"(X) ARE

FROM P�(X,Y) INFER P�X

 AND FROM P�(Y,X) INFER P�X

 AND FROM P�(X,Y,Z) INFER P�X

 AND FROM P�(Z,X,Y) INFER P�X

 AND FROM P�(Y,Z,X) INFER P�X

 AND FROM P�(X,Y,Z,W) INFER P�X

 AND FROM P�(W,X,Y,Z) INFER P�X

 AND FROM P�(Z,W,X,Y) INFER P�X

 AND FROM P�(Y,Z,W,X) INFER P�X

END

The second group gives us an interesting forward proof problem. We would like to be able to select an
item of a tuple and pick it out using one of these rules. To do so we need to be able to search the
collection. Since our forward proof steps are all sequences “cut; rule; select subgoal; hyp” we have to
make sure on the second step that we select the right rule. We don’t have a very good mechanism for that
in our tactic language at present. The best we have come up with is a sort of automatic backtracking using
WITHCONTINUATION.

WITHCONTINUATION tactic0 tactic1 ... tacticn sets the sequence tactic1 ... tacticn as a continuation, and
runs tactic0. If tactic0 is an ALT , or ends with an ALT , it will add that continuation to each of its

Roll your own Jape logic (3.2) Page 70 Chapter 9: Encoding BAN logic

alternatives. The effect is that an alternative won’t succeed unless the continuation tactic1 ... tacticn
succeeds as well. If tactic0 doesn’t end with an ALT, then the effect is the same as SEQ tactic0 tactic1 ...
tacticn. We make our forward step tactics use WITHCONTINUATION:

TACTIC ForwardCut (n,Rule)

SEQ cut (WITHCONTINUATION (WITHARGSEL Rule) (JAPE (SUBGOAL n)) (WITHHYPSEL hyp))

TACTIC ForwardUncut (n,Rule)

WITHCONTINUATION (WITHARGSEL Rule) (JAPE (SUBGOAL n)) (WITHHYPSEL hyp)

Then we include in the � menu

ENTRY "P�Q�(...,X,...) Û P�Q�X"

IS ForwardOrBackward ForwardCut 0 "P�Q�(...,X,...) Û P�Q�X"

and Bob’s your uncle.

9.3 Conjectures with long assumption lists

On educational grounds we thought it best to include lots of assumptions in each conjecture, simply
because the problem for novices is to decide which assumptions are relevant and how. This makes very
long conjectures. For example, one of the conjectures about the Needham-Schroeder protocol is

THEOREM "Needham-Schroeder: A�{Na,(A,B)êKab,#((A,B)êKab),{(A,B)êKab}Kbs}Kas æ A�(A,B)êKab" IS

 A�(A,S)êKas, S�(A,S)êKas, B�(B,S)êKbs, S�(B,S)êKbs, S�(A,B)êKab,

A�(èk.S�(A,B)êk), B�(èk.S�(A,B)êk), A�(èk.S�#((A,B)êk)),

A�#Na, B�#Nb, S�#((A,B)êKab), B�(èk.#((A,B)êk)),

A�{Na,(A,B)êKab,#((A,B)êKab),{(A,B)êKab}Kbs}Kas

æ A�(A,B)êKab

Jape automatically folds long assumption lists in a box display to fit the proof window. The proof of this
conjecture, in a moderately-sized window, is

assumptionsB�(B,S)êKbs, S�(A,S)êKas, A�(A,S)êKas: 1

assumptionsA�(èk.S�(A,B)êk), S�(A,B)êKab, S�(B,S)êKbs: 2

assumptionsA�#Na, A�(èk.S�#((A,B)êk)), B�(èk.S�(A,B)êk): 3

assumptionsB�(èk.#((A,B)êk)), S�#((A,B)êKab), B�#Nb: 4

assumptionA�{Na,(A,B)êKab,#((A,B)êKab),{(A,B)êKab}Kbs}Kas: 5

 1.1P�(R,R')êK Û P�(R',R)êKA�(S,A)êKas: 6

 6,5P�(Q,P)êK, P�{X}K Û P�Q�XA�S�(Na,(A,B)êKab,#((A,B)êKab),{(A,B)êKab}Kbs): 7

 3.3P�#X Û P�#(...,X,...)'5A�#(Na,(A,B)êKab,#((A,B)êKab),{(A,B)êKab}Kbs): 8

 8,7P�#X, P�Q�X Û P�Q�XA�S�(Na,(A,B)êKab,#((A,B)êKab),{(A,B)êKab}Kbs): 9

 9P�Q�(...,X,...) Û P�Q�X'6A�S�(A,B)êKab: 10

 2.3P�èx.X(x) Û P�X(Y)A�S�(A,B)êKab: 11

 11,10P�Q�X, P�Q�X Û P�XA�(A,B)êKab: 12

- 71 -

Appendix A

The paragraph and formula languages

The paragraph language is the one in which logics, their syntax, their rules, the tactics you intend to use
and the menus of commands you intend to display are all defined. It uses a lot of reserved words: we add
to the list as the need arises but all are multi-letter upper-case words, so it is a good idea to avoid use of
that kind of word in your encodings.

At the time of writing the complete list of reserved words is

ABSTRACTION, AND, ARE, AUTOMATCH, AUTOUNIFY, BAG, BIND, BUTTON, CHECKBOX, CLASS,
CONCFRESH, CONCHIT, CONJECTUREPANEL, CONSTANT, CURRENTPROOF, CUT, END, ENTRY,
FONTS, FORMULA, FRESH, FROM, HYPFRESH, HYPHIT, IDENTITY , IN, INFER, INFIX, INFIXC,
INITIALLY , INITIALISE , I S, JUDGEMENT, JUXTFIX, LEFTFIX, LEFTWEAKEN, LIST, MENU,
MENUKEY, NOTIN, NUMBER, OBJECT, OUTFIX, POSTFIX, PREFIX, PREFIXBUTTON, PROOF,
RADIOBUTTON, RIGHTWEAKEN, R U L E, RULES, SCOPE, SEPARATOR, SEQUENT, STRING,
STRUCTURERULE, SUBSTFIX, TACTIC, TACTICPANEL, THEOREM, THEOREMS, THEORY,
UNIFIESWITH, USE, VARIABLE , VIEW, WEAKEN, WHERE

A.1 Directives

In this description I use [... | ...] to describe alternatives, { ... } to describe optional components and
ellipsis to denote optional repetition.

ABSTRACTION: decorates a parameter in a RULE or THEOREM directive. When the rule is instantiated,
applications of this parameter to arguments are translated into substitutions, with a
substitution variable which is made an OBJECT parameter of the rule. The effect is to simulate
predicate notation with that parameter.

AND: separator

ARE: separator

AUTOMATCH tacticname, ... , tacticname: at the end of each proof step, run the tactics (usually they are
rules) specified over each open tip of the tree, but only allow them to work by ‘matching’ –
that is, don’t allow any unknowns in the tree to change as a result of running the tactic (see
also MATCH in the tactic language).

AUTOUNIFY tacticname, ... , tacticname: same as AUTOMATCH but without the restriction on working
by ‘matching’. This directive is less used than AUTOMATCH, chiefly because it is easy to
make automatic steps which make large and/or unexpected and/or unhelpful changes to a
proof. But sometimes it is the right thing: see for example the way that the Hindley-Milner
algorithm encodings use AUTOUNIFY to determine the type of constants.

BAG { <kind> } names: see the discussion of flexible syntax below.

BIND variable ... variable SCOPE name ... name IN formula: see the discussion of flexible syntax
below.

BUTTON: this allows you to attach a command to a label in a menu or a button on a panel. See
appendix C for information on the command language.

Roll your own Jape logic (3.2) Page 72 Appendix A: Paragraph and Formula languages

CHECKBOX variable label { INITIALLY [true | false] }: a checkbox is created associated with the
named variable. If the variable doesn’t exist in Jape’s default environment this directive
declares it, and its range of values will be true and false; if it exists, those must already be its
range. The initial value, if included, is immediately assigned to the variable.

In a menu, label appears ticked or unticked according to whether or not the value of variable
is true or false; in a panel you see a proper user-interface checkbox with that label.

CLASS <kind> names: see the discussion of flexible syntax below.

CONCFRESH variable: proviso that variable doesn’t occur free in any right-hand-side formula of the
consequent of a proof step. See FRESH.

CONCHIT { { formula1 } <entails> } formula2 IS tactic: if the user double-clicks on a right-hand-side
formula matching formula2 then run tactic. If formula1 also appears, then either the sequent
must have a single left-hand-side formula matching it, or the user must also have selected a
left-hand-side formula matching it. See also HYPHIT below.

CONJECTUREPANEL name { IS } [entry | button]* END: build a panel of conjectures. Each entry is one
of ENTRY, THEOREM, THEOREMS, PROOF, CURRENTPROOF; each button is one of BUTTON,
PREFIXBUTTON, RADIOBUTTON, CHECKBOX. ENTRY, THEOREM and THEOREMS add entries
to the list of conjectures which forms part of the panel; PROOF and CURRENTPROOF are used
in the proof save and reload mechanism.

In addition to the buttons explicitly described, every conjecture panel always has “New…”,
“Prove” and “Show Proof” buttons, and if there isn’t a description of an “Apply” button then
one is added as if you had written “PREFIXBUTTON Apply IS apply”. Like MENU (q.v.), a
panel description can be divided into sections, and the complete description is just the
concatenation of the various parts.

CONSTANT name ... name: the names are defined to have the syntactic class CONSTANT. See the
discussion of flexible syntax below.

CURRENTPROOF name sequent { WHERE proviso AND ... AND proviso } IS tactic: same as PROOF (q.v.
below), except that the proof of sequent built by tactic need not be complete, is not recorded
in the proof store, and is displayed on the screen.

CUT rulename: synonym for STRUCTURERULE CUT; declares that the rule called rulename is a ‘cut’
rule, provided that it meets certain conditions (see below). Applications of the rule will
normally be hidden in the box display mode of Jape. This directive is required before Jape
will properly interpret the ‘tryresolution’ variable (see appendix C).

END: closer in lots of directives.

ENTRY name { { IS } tactic } { MENUKEY letter }: used to describe an entry in a menu or in the list of a
panel. May only appear as part of a MENU or PANEL directive; MENUKEY is permitted only
when part of a MENU directive. The label is name; if the tactic component is omitted then the
tactic expression name is used; if the MENUKEY component is included then letter is used as
the ‘command key’ of that label. When the label is selected in a menu, the command “apply
tactic” is transmitted to the proof engine; when the label is selected in a panel, there is no
effect until a PREFIXBUTTON (q.v.) is pressed.

FONTS name: the font-encoding name name is transmitted to the graphical interface. At the time of
writing our interfaces only recognise “Konstanz”, but watch this space ...

FORMULA name ... name: the names are declared to be in the syntactic class FORMULA. See discussion
of flexible syntax below.

FRESH variable: proviso in a rule or theorem. Variable mustn’t appear free in any hypothesis or
conclusion of the sequent to which the rule or theorem is applied; is translated into NOTIN

provisos for each of the formulæ of that sequent.

FROM: separator in RULE directive.

Roll your own Jape logic (3.2) Page 73 Appendix A: Paragraph and Formula languages

HYPFRESH variable: variable doesn’t occur free in any hypothesis of the problem sequent. See FRESH.

HYPHIT formula1 <entails> { formula2 } IS tactic: if the user double-clicks on a left-hand-side
formula1 then run tactic. If formula2 appears then either the sequent must have a single right-
hand side which matches formula2, or the user must also select a right-hand-side formula
matching formula2 in order for the directive to fire.

IDENTITY rulename: synonym for STRUCTURERULE IDENTITY ; the rule named rulename is declared to
be a ‘identity’ rule. Instances of the application of this rule are normally hidden in box display
mode.

IN: connective in binding directive.

INFER: connective in RULE directive.

INFIX precedence [L | R | T] operatorname ... operatorname: the names are declared to be infix
binary operators with the given precedence; L means left-associative, R right-associative, T
tupling. Instances of formulæ such as A op B are then treated internally as if they were
‘uncurried’ function applications – that is, as if you had written (op)(A,B). See discussion of
flexible syntax below.

INFIXC precedence [L | R | T] operatorname ... operatorname: very similar to INFIX (q.v. above), but
parsed ‘curried’ so that A op B is then treated internally as if you had written (op) A B.

INITIALLY : part of the RADIOBUTTON and CHECKBOX directives.

INITIALISE variablename value: the variable named is assigned the value given. See the discussion of
variables in appendix C.

IS: connective, often omitted.

JUDGEMENT IS [BAG | LIST | FORMULA] turnstile [BAG | LIST | FORMULA]: same as SEQUENT

directive (see below), except that in box display a JUDGEMENT form is always displayed
complete, on a conclusion line. That is, the left-hand side is not treated as a collection of
hypotheses in box display.

JUXTFIX precedence: defines syntactic precedence of juxtaposition: see discussion of flexible syntax
below.

LEFTFIX precedence leftbra punct1 ... punctN: defines syntactic precedence and form of bracketed
form which misses a closing bracket. See discussion of flexible syntax below.

LEFTWEAKEN rulename: synonym for STRUCTURERULE LEFTWEAKEN; declares that the rule called
rulename is a ‘left weakening’ rule. Essential if Jape is to be able to apply theorems which
don’t have enough hypotheses to match the whole of the problem sequent.

LIST <kind> names: see the discussion of flexible syntax below.

MENU name IS entry entry END: the effect of the entries (which can be RULE, RULES, TACTIC,
THEOREM, THEOREMS, THEORY, PROOF, CURRENTPROOF, ENTRY, BUTTON, RADIOBUTTON,
CHECKBOX or SEPARATOR) are added to the menu named name. MENU directives for the
same menu are accumulated in sequence, and need not be given all in one place.

MENUKEY letter: part of the ENTRY directive when used inside a MENU description.

name NOTIN formula: a proviso that name must not occur free in formula. Often generated as the result
of a FRESH, HYPFRESH or CONCFRESH proviso; sometimes included in its own right.

NUMBER name ... name: the names are declared to be in the syntactic class NUMBER. See the
discussion of flexible syntax below.

OBJECT name: decorates a parameter in a RULE or THEOREM directive. When the rule is instantiated,
the parameter is replaced by a newly-minted object variable rather than an unknown, unless
this default assignment is overridden by provision of an argument formula.

OUTFIX leftbra punct1 ... punctN rightbra: see the discussion of flexible syntax below.

Roll your own Jape logic (3.2) Page 74 Appendix A: Paragraph and Formula languages

POSTFIX precedence operator ... operator: see discussion of synctactic directives below

PREFIX precedence operator ... operator: see discussion of synctactic directives below.

PREFIXBUTTON label { IS } command: in a panel, a button with label label is added. When the button is
pressed and an entry which indexes text is selected, then the string “command text” is passed
to the proof engine.

PROOF name sequent { WHERE proviso AND ... A N D proviso } IS tactic: both PROOF and
CURRENTPROOF are generated when you save proofs. You will probably never want to write
one yourself, but this is what PROOF means: sequent is a statement of the conjecture named
name, and tactic, when run, will produce a proof of that conjecture with the given provisos. If
it all works out: if sequent unifies with the statement of conjecture name, if tactic produces a
completed proof without introducing any additional unifications or inventing more or less
provisos, then the resulting proof is stored under name in the proof store.

RADIOBUTTON variablename { IS } label { IS } value { AND label { IS } value }* { INITIALLY value }
END: a radio button with the list of labels given is associated with the named variable. If that
variable doesn’t exist it is declared by this directive, and its range of possible values is those
given here; if it does exist the values given here must be in its range. If an initial value is
given, the variable is assigned that value immediately.

In a menu a radio button is shown as a sequence of labels, one of which is ticked according to
the value of the variable; in a panel it is a proper Macintosh-style radio button.

RIGHTWEAKEN: same as STRUCTURERULE RIGHTWEAKEN. Similar to LEFTWEAKEN above, and plays
a similar rôle in theorem application.

RULE rule: definition of a rule. Puts a rule with name name into the tactic store; if it appears inside a
MENU definition then the effect is also of ENTRY name I S name. See ‘rules, tactics and
conjectures’ below for more explanation.

RULES name { (params) } { WHERE provisos } ARE rule1 AND ... AND ruleN END: definition of a
number of rules, organised automatically into an ALT tactic.

Each rule is an unnamed rule definition (see ‘rules, tactics and conjectures below); each is
considered to be qualified by params and provisos from the head of the directive, filtered
according to the names that occur in each rule (that is, if a particular parameter doesn’t occur in
a rule, you don’t get that parameter declaration with that rule, and you don’t get any provisos
that mention it). The rules are entered into the tactic store under the names name´1 ... name´N;
at the same time a tactic ALT name´1 ... name´N is entered under name.

If it occurs in a menu or a panel, RULES name ... has the effect also of ENTRY name: that is,
only one entry appears in the menu.

SCOPE: part of the BIND directive.

SEPARATOR: used in the definition of a MENU, gives a division between entries. On a panel, probably
has no effect.

SEQUENT IS BAG | LIST | FORMULA] <entails> BAG | LIST | FORMULA]: see discussion of flexible
syntax below.

STRING name, ... , name: see the discussion of flexible syntax below.

STRUCTURERULE kind IS name: kind must be CUT, IDENTITY , LEFTWEAKEN, RIGHTWEAKEN or
WEAKEN; name must be the name of a rule in the tactic store. See ‘structural rules’ below,
and see the discussion of each of the kinds in this list.

SUBSTFIX precedence { bra fst sep snd ket }: defines the syntactic precedence of substitution forms
and, optionally, their appearance as well. See the discussion of flexible syntax below.

Roll your own Jape logic (3.2) Page 75 Appendix A: Paragraph and Formula languages

TACTIC name { (name1, ... , nameN) } { IS } tactic: puts a tactic with name name and parameters
name1, ... , nameN into the tactic store. If it appears inside a MENU or PANEL definition then
the effect is also of ENTRY name; in a TACTICPANEL it has the effect of ENTRY name IS apply
name. See ‘rules, tactics and conjectures’ below for more explanation.

TACTICPANEL name { IS } [entry | button]* END: very like CONJECTUREPANEL above, except that
there are no extra buttons and no default buttons and each entry labels a command rather than
a conjecture. Tactics, rules and conjectures included in a TACTICPANEL description are
associated with the command “apply name” where name is the name of the tactic, rule or
conjecture.

THEOREM conjecture: puts a conjecture into the tactic store. Jape’s conjectures are always ‘theorem
schemata’, in the sense that they stand for any substitution-instance of sequent. See ‘rules,
tactics and conjectures’ below for more explanation.

THEOREMS name { params } { WHERE provisos } ARE theorem1 AND ... AND theoremN END: define a
collection of conjectures which are organised into an ALT tactic.

Each theorem is an unnamed conjecture (see ‘rules, tactics and conjectures’ below); each
theorem is added to the tactic store prefixed by params and provisos in the same way as in the
RULES directive (q.v. above); at the same time a tactic ALT theorem1 ... theoremN is added to
the tactic store under name. If included in a menu or panel description, an ENTRY is created
for each conjecture. The effect is to define a number of conjectures with evocative names, and
to allow searching of the collection if desired. See also THEOREM above.

THEORY name { IS } directive ... directive END: the directives may be RULE, RULES, TACTIC,
THEOREM, THEOREMS or THEORY; an ALT tactic is made of the various directives and added
to the tactic store under name. If THEORY occurs in a menu or panel description, the effect is
as if the directives occurred separately (that is, Jape does not add an entry corresponding to
the overall ALT tactic).

formula UNIFIESWITH formula: a proviso which requires that the two formulæ should unify. Used to
delay unification when difficult substitutions get in the way.

collection UNIFIESWITH collection: a proviso which helps when contexts are split. See chapter 3.

USE “ filename”: same effect as C’s #include “filename”.

VARIABLE name ... name: see the discussion of identifier classes below.

WEAKEN: synonym for LEFTWEAKEN (q.v. above).

WHERE: prefixes a list of proviso declarations.

A.2 Rules, tactics and conjectures

The syntax of rules and conjectures can take various forms. The syntax is:

{ name } { (param , ... , param) } { WHERE proviso AND ... AND proviso } { IS } body

Note that almost every part is optional, apart from the body of the rule or conjecture. Note also that, for
obvious reasons, if parameters or provisos are included then either the IS word must be included, or else
body must start with FROM or INFER.

In a conjecture, body is

{ INFER } sequent

In a rule, body is

{ FROM antecedent AND ... AND antecedent } { INFER } consequent

If the conjecture is un-named, its name is taken to be sequent; if a rule is un-named, its name is taken to
be consequent

Roll your own Jape logic (3.2) Page 76 Appendix A: Paragraph and Formula languages

Each param is either a name, OBJECT followed by a name or ABSTRACTION followed by a name: in every
case the name must have been declared in a CLASS directive. Each proviso is either

CONCFRESH name, ... , name
HYPFRESH name, ... , name
FRESH name, ... , name
name NOTIN formula
formula UNIFIESWITH formula

where the names used must be parameters of the rule or conjecture.

The meaning of a RULE directive

Ignoring parameters for the moment, the rule

ante1 anteM

conse
prov1 provN rule

...
(,...,)

with name rule, antecedent sequents ante1 ... anteM, consequent conse and provisos) prov1... provN is
stated as the rule directive

RULE rule WHERE prov1 AND ... AND provN IS FROM ante1 AND AND anteM INFER conse

A rule is schematic in all names appearing in the antecedents, consequents or provisos which are declared
in a CLASS directive. When the rule is applied to a problem sequent, a version of the rule is produced in
which all the schematic names have been replaced by new unknowns, and then the consequent of that
version is unified with the problem sequent.

Rule matching is linear – formulæ that are matched in the consequent are used up, and aren’t copied to
the antecedent unless you write them there. For example the sequent calculus ‘→ on the left’ rule

Γ ∆ Γ ∆
Γ ∆

æ æ

æ
æ

A B

A B

, ,
, →

→

is stated as

RULE “ →æ” IS FROM Γ æ A, ∆ AND Γ, B æ ∆ INFER Γ, A→B æ ∆
and the ‘multiplicative’ or ‘context-splitting’ version of that rule

Γ ∆ Γ ∆
Γ Γ ∆ ∆

1 1 2 2
1 2 1 2

æ æ

æ
æ

A B

A B

, ,
, , ,→

→

as

RULE “ →æ” IS FROM Γ1 æ A, ∆2 AND Γ2, B æ ∆2 INFER Γ1, Γ2, A→B æ ∆1, ∆2

If you want a version in which the implication formula is not used up

Γ ∆ Γ ∆
Γ ∆

, , ,
,

A B A B

A B

→
→

→æ æ

æ
æ

then you can have it:

RULE “ →æ” IS FROM Γ, A→B æ A, ∆ AND Γ, B æ ∆ INFER Γ, A→B æ ∆
If either of the autoAdditive variables is set to true (see appendix C) then some of these rules can be
defined as rules often are in natural deduction presentation, without mentioning unmatched hypotheses
and/or conclusions. For example, if autoAdditiveLeft is true, the rule

Γ Γ
Γ
æ æ

æ
æ

A B C

A B C

,
, →

→

Roll your own Jape logic (3.2) Page 77 Appendix A: Paragraph and Formula languages

can be stated as

RULE “ →æ” IS FROM A AND B æ C INFER A→B æ C

Parameters in RULE directives

Rule parameters are used for a number of reasons:

• On instantiation the first parameter is replaced by the user’s text selection, rather than an
unknown. This is useful when that parameter doesn’t appear in the consequent or is the replacing
formula in a substitution form in the consequent (see the discussions of substitution matching
below and in various chapters above);

• A parameter which is decorated with OBJECT is replaced with a freshly-minted name, rather than
a new unknown.

• a parameter which is decorated with ABSTRACTION is treated as a predicate, and juxtapositions
involving that parameter are translated into substitution forms – see below.

• parameters are used to drive the ‘proof reload’ mechanism.

Instantiating a rule, including interpretation of predicate notation

When a rule is instantiated, each of its schematic names is replaced by a freshly-minted unknown, whose
name is based on the schematic name itself. This instantiation is modified in case the name is a parameter
(see above), if an autoAdditive parameter is set to true, or if interpretpredicates is true.

When an autoAdditive parameter is true, a rule is automatically extended so that all the hypotheses
(autoAdditiveLeft) and/or the conclusions (autoAdditiveRight) are extended with a freshly-minted
segment variable, and all the antecedents likewise; then the augmented rule is instantiated normally.

When interpretpredicates is true, juxtapositions in the rule are interpreted as predicate formulæ and
replaced by substitution forms; at the same time the parameter list is extended with OBJECT parameters as
appropriate and the rule is augmented with invisible provisos. For example, a juxtaposition P(x,y) will be
replaced by P u v x y, \ ,[]; the parameter list will be extended with OBJECT u, OBJECT v, and an invisible
proviso x,y NOTIN P will be added to the rule; every other ‘predicate’ application of P in the rule then has
to have exactly two ‘arguments’ and the same variables u and v will be used in those cases as well. Jape
avoids substitution forms wherever possible by noting the context: for example, it will translate
∀ ∀ ()x y P x y. . , as ∀ ∀x y P. . and then would translate P E F,() as P x y E F, \ ,[] and in such an example there

is no need for extra OBJECT parameters. For example, it will translate
P E

x P x
()

∃ ().
 into

P x E

x P

\

.
[]
∃

.

The latter form of rule is well-suited to backwards reasoning. The effect is to allow a kind of predicate
notation while preserving Jape’s existing unification mechanisms.

The meaning of provisos in RULE and THEOREM directives

Provisos are side conditions. At present we have a small number of built-in provisos, listed above. All the
forms of FRESH provisos are automatically translated into a collection of NOTIN provisos – one for each
unmatched hypothesis and/or conclusion as appropriate.

Each time a rule is applied, its provisos are added to the set which is displayed in the bottom pane of the
proof window. At the end of each proof step, that set of provisos is checked, and if any proviso is
violated, the proof step is cancelled (memo to implementers: change the proof engine so that this is more
obviously the way that things happen ...). At the same time provisos which are satisfied are deleted from
the set. The ones that are left are those whose status can’t be decided, because of the presence of
unknowns, substitution forms or names over which the conjecture being proved is quantified.

Roll your own Jape logic (3.2) Page 78 Appendix A: Paragraph and Formula languages

The meaning of conjectures (stated in THEOREM directives)

A conjecture is stated as a rule without antecedents. Normally the first thing you do with a conjecture is
to try to prove it. If that proof is successful, you can store it in the proof store and it will appear in the
conjecture panel as a proved theorem. The provisos of a proved theorem are those given in the statement
of the conjecture, plus any which arise and aren’t satisfied during the proof.

Jape will normally refuse to apply a conjecture until it is proved, but you can tell it not to be so cautious if
you wish by setting the variable applyconjectures (see appendix C).

If the consequent of a theorem matches a problem sequent, but in so doing it doesn’t use up all the
hypotheses and conclusion formulæ of the problem, then Jape is cautious. If the logic you are using has a
declared LEFTWEAKEN rule and there are too many hypotheses, then you could have first eliminated the
extra hypotheses by applications of that rule, and then the theorem would have exactly used up all the
remaining ones; similarly if it has a declared RIGHTWEAKEN rule and there are too many conclusions. But
unless all that applies, the theorem will be said to be inapplicable.

Proof by resolution

There is a facility to use a sort of resolution step when applying a theorem. If a theorem’s conclusion(s)
match but its hypotheses don’t, and if there is a declared CUT rule, then it would be possible to use a
sequence of cuts to introduce the necessary extra hypotheses. In those circumstances Jape can introduce
an antecedent for each of the hypotheses, and label the step with the name of the theorem. This feature is
turned on and off by assigning to the tryresolution variable (see appendix C). The effect is that if you
have both right-weakening and cut, we treat a theorem H H Cn1,..., æ as equivalent to the rule

Γ Γ
Γ

æ æ

æ

H H

C
n1 ...
 provided that Γ, ,...,H H Cn1 æ is a theorem; if you have cut but not right-weakening,

we treat it as equivalent to

Γ Γ Γ
Γ

æ æ æ

æ

H H H H H H

C
n n1 1 2 1 1, ... , ,..., − with the same proviso.

The meaning of STRUCTURERULE directives

It is necessary for the application of conjectures as rules (see above), and for the proper operation of the
box display mechanism, for Jape to be informed of the presence of certain kinds of structural rules in the
logic. The rules we cater for are the various kinds of identity (hypothesis, axiom), cut and weakening
rules.

At present Jape will recognise a rule as of the right form if it is in one of the following patterns (Γ is a bag
of formulæ, ∆ a list of formulæ, B and C are formulæ).

CUT (B) FROM Γ æ B AND Γ, B æ C INFER Γ æ C
(B) FROM Γ æ B,Γ' AND Γ, B æ Γ' INFER Γ æ Γ'
(B) FROM Γ æ B,Γ' AND Γ'', B æ Γ ''' INFER Γ,Γ '' æ Γ',Γ'''

WEAKEN, LEFTWEAKEN

(B) FROM Γ æ C INFER Γ,B æ C
(B) FROM Γ æ Γ' INFER Γ,B æ Γ'

RIGHTWEAKEN

(B) FROM Γ æ Γ' INFER Γ æ B,Γ'

IDENTITY

Γ,B æ B
Γ,B æ B,Γ'
∆,B,∆' æ B

Roll your own Jape logic (3.2) Page 79 Appendix A: Paragraph and Formula languages

Substitution matching

Substitution forms are used in Jape to describe the operation of rules. They aren’t intended to be
interpreted as themselves – that is, they are not a special sort of formula with associated introduction and
elimination rules. There are instead mechanisms inside the proof engine designed to eliminate
substitution forms whenever they arise by carrying out the substitutions they describe, and the intention is
that substitution forms should normally be read as naming the formula to which they simplify. For
example, consider Dijkstra’s weakest precondition calculus assignment rule wp(: ,)x e R Rx

e= = , expressed
in the notation of Hoare logic:

R x e Rx
e{ } =

=
: { }

:

This can be expressed in Japeish as follows (see the file hoare_rules.j):

RULE Ò:=Ó IS INFER <{R[x\E]} x:=E {R}>

Now suppose that we apply this rule to the problem sequent <{_Q} x:=1 {x=1}>. If we apply the asignment
rule then a version will be generated expressed in terms of new unknowns, which will be <{_R[_x1_E]}

_x1:=_E {_R}>. However the unification proceeds, it will eventually have unified (x=1)[x\1] with _Q.
Before that formula is displayed to the user it will be simplified to 1=1, and the rule will have done its job.

If the problem sequent had been <{1=1} x:=1 {x=1}>, then the unification process might first come across
the problem of unifying _R[_x1_e] with 1=1. Since that involves a substitution which won’t simplify, it
is deferred until later on. Unification of x:=1 with _x1:=_e and of x=1 with _R mean that when the deferred
problem must finally be considered, it has been transformed into that of unifying (x=1)[x\1] with 1=1: the
substitution form simplifies to 1=1 and the unification is trivial.

But not every use of substitution forms in rules gives so little difficulty. When you define a rule with a
substitution form in the consequent, and there aren’t other occurrences of the components of the
substitution form which will help to simplify it, matching becomes a problem. For example, consider the
natural deduction ∀ elimination rule:

Γ
Γ

æ

æ

∀ ∀x P

P x E

.
[\]

elim

If the problem sequent is, say, a b b c a b c a b c= = + + = + +, () ()æ , then there are fourteen significantly
different ways in which the consequent of the rule can match the problem:

1. P : (a+b)+c=a+(b+c); x : x; E : E
2. P : (x+b)+c=a+(b+c); x : x; E : a
3. P : (a+b)+c=x+(b+c); x : x; E : a
4. P : (x+b)+c=x+(b+c); x : x; E : a
5. P : (a+x)+c=a+(b+c); x : x; E : b
6. P : (a+b)+c=a+(x+c); x : x; E : b
7. P : (a+x)+c=a+(x+c); x : x; E : b
8. P : (a+b)+x=a+(b+c); x : x; E : c
9. P : (a+b)+c=a+(b+x); x : x; E : c
10. P : (a+b)+x=a+(b+x); x : x; E : c
11. P : x+c=a+(b+c); x : x; E : a+b
12. P : x=a+(b+c); x : x; E : (a+b)+c
13. P : (a+b)+c=a+x; x : x; E : b+c
14. P : (a+b)+c=x; x : x; E : a+(b+c)

It’s clearly necessary to say in just which way the formula should match. Jape has two mechanisms which
help. A statement of the rule which can make use of either mechanism is

RULE “ ∀ elim”(E, OBJECT x) IS FROM Γ æ ∀ x.P INFER Γ æ P[x\E]

Roll your own Jape logic (3.2) Page 80 Appendix A: Paragraph and Formula languages

The first mechanism, called ‘abstraction’, finds matches in which every instance of a particular
subformula is replaced by the substitution variable: for example, numbers 4, 7, 10, 11, 12, 13 and 14 in
the lists of matches above. The abstraction mechanism is a kind of higher-order unification.

The first parameter of the rule, E, can be replaced by an argument which is provided by text-selection (if
you provide no argument then an unknown will silently be used): if you text-select a, for example, then E
must be replaced by a in the version of the rule that is generated. The second parameter, x, is declared to
be an OBJECT. This means that instead of generating an unknown, a freshly-minted identifier will be used
in place of x in the version of the rule that is generated. The parameter declarations say nothing about the
name P: it will always be replaced by an unknown.

Suppose, now, that you text-select a and apply the rule. The generated consequent will be Γ æ_P[x\a], and
the problem sequent a b b c a b c a b c= = + + = + +, () ()æ . Jape will try to unify _P[x\a] with
(a+b)+c=a+(b+c) and, by default, will try to turn the problem formula into a substitution by finding every
occurrence of a (the replacement formula in the substitution form) in the problem formula and replacing
each of them by x (the replacement variable in the substitution form). It succeeds, producing the formula
(x+b)+c=x+(b+c), which it unifies with _P. That is, of course, does not generate a most general unifier of
the original pair of formulæ, but pragmatically it is often the one which you want.

If Jape can’t find every instance of the replacement formula in the problem formula – for example, if
there are unknowns in either or both of them, or if either or both of them contain names over which the
theorem being proved is quantified – then it will generate a ‘deferred unification’ proviso. That’s a
proviso formula UNIFIESWITH formula. When those appear it is often because you have done something
silly: either you are going through the proof in an unhelpful order, or there is some additional information
which could help to clarify the situation and avoid the deferred unifications.

The second mechanism is called user-defined substitution matching. The mechanism works together with
the WITHSUBSTSEL tactic (see appendix B and chapter 5). The user must text-select all the subformulas in
the problem sequent which they want to be considered – both the as, for example, or one of the bs. Then
the tactic WITHSUBSTSEL(“ ∀ elim”) firsts constructs a ‘stable substitution form’ based on those
selections: if both the as it would build ((_v+b)+c=_v+(b+c))[_v\a]; if the first b it would build
((a+_v)+c=a+(b+c))[_v\b]. Then it applies the rule “∀ elim”, which causes it to unify the new substitution
form with _P[x_E] from the rule: the unification process recognises the stable substitution form as
something special, and pattern-matches the two, unifying _P with its body, x with v and _E with its
replacement formula (a in the first example, b in the second). Jape hasn’t constructed the most general
unifier this time either, but it has justification, because it constructs the one which you asked for.

The tactic store

Theorems are a kind of rule; rules are a kind of tactic. Tactics are programs whose primitive proof steps
are the application of rules and/or theorems to problem sequents. The tactic store therefore contains all
three in a single soup, indexed by name.

A.3 Fonts

Presentations of logics in textbooks and technical papers make use of special logical symbols, sometimes
invented specially for the purposes of that particular logic, which can’t easily be represented in the ASCII

character set. In polished presentations of logics in Jape we use special fonts – but it is perfectly possible
to use, and in the first instance you may want to use, combinations of ASCII characters to approximate the
special characters. Whatever font you use, it will need at least to include the normal ASCII characters for
identifiers, numbers, round and square brackets, quotation marks, backslash and comma as well as the
special characters you need for your logical connectives and operators.

A description of a logic will therefore often begin by describing the font in which the logic is intended to
be viewed. This will necessarily also be the font in which the logic description itself is written, and

Roll your own Jape logic (3.2) Page 81 Appendix A: Paragraph and Formula languages

therefore you will need an 8-bit ASCII text editor to create and modify the logic description1. In practice
the graphical interface part of Jape may use more than one font and more than one character size to
handle proof display, menus and buttons. You therefore use the name of a ‘font encoding’ to describe the
whole scheme to Jape. The graphical examples in this manual are taken from the current implementation
of Jape on MacOS, and they use Roy Dyckhoff’s Konstanz and Detroit fonts in various sizes2. The name
of the encoding is Konstanz, and there is a similar encoding in X Jape. The directive used in this and the
other encodings in this manual is therefore

FONTS "Konstanz"

Other encodings are in preparation.

A.4 Flexible syntax

There are various ways in which you control what formulæ can be written down and how they will be
interpreted by Jape.

Symbols

The rules of a logic are written in terms of various symbols – logical operators and connectives as well as
identifiers like A, B or x. Jape reserves a few special characters – they are double-quote, underscore,
opening or closing parenthesis (round bracket), space, newline or tab – which can’t be used in symbols.

Jape recognises four distinct kinds of symbol:

• identifiers, which are rather like programming language identifiers or mathematical variable
names: sequences of characters which start with an alphabetic character and optionally
continue with any sequence of alphabetic and/or numeric characters and/or primes (ASCII

single quotes). Actually Jape’s identifiers can start with any defined sequence of characters,
given in a CLASS directive, though some choices – like using commas or arithmetic operator
characters – may be more confusing than useful.

• unknowns, which are are written as an underscore followed by an identifier.

• numbers, which are sequences of numeric characters.

• strings, which start with an ASCII double-quote, continue with any sequence of characters not
including newline or double-quote, and end with an ASCII double-quote.

• special symbols, which are user-defined sequences of characters containing anything other
than Jape’s reserved characters. Everything else goes, though some choices – like using
primes or commas inside a special symbol – may be more confusing than useful. Special
symbols are defined in INFIX , PREFIX, POSTFIX, LEFTFIX and OUTFIX directives.

Special symbols are always used as constants, and usually as operators or some kind of brackets, and they
are defined implicitly by including them in various kinds of syntactic definitions. Identifiers can also be
used as operators or brackets, by using them in just the same kind of syntactic definition.

Numbers, strings and special symbols are always constants of a logic – they stand for themselves and not
for anything else. Identifiers can be constants or they can stand for classes of things, like formulæ,
variables, or whatever3.

1 Under MacOS, we’ve found BBEdit Lite (freeware) very useful in preparing Jape logic descriptions, and thank its authors
for their skill and philanthropy. Under X, Bernard has produced an 8-bit editor of his own called jed; it’s part of the
standard UNIX distribution of Jape.

2 Konstanz and Detroit fonts were produced by Roy Dyckhoff as part of the MALT project at the University of St Andrews.
We are grateful to Roy for permission to use them and to distribute them with MacOS Jape.

3 We haven’t done the ‘whatever’ bit, or not very much of it. But we know what we want to do, and we know how to do it ...

Roll your own Jape logic (3.2) Page 82 Appendix A: Paragraph and Formula languages

Juxtaposition may need care

Jape’s syntax allows juxtaposition of formulæ. You may have to use white space (blanks , spaces,
newlines) to separate juxtaposed identifiers in some way – xy, without spacing, is usually a single
identifier, whereas x y is usually two juxtaposed identifiers and is equivalent to x(y), (x)y or (x)(y).
Similarly, x1 is usually a single identifier, whereas x 1 is an identifier followed by a number. The
syntactic priority of juxtaposition is user-defined.

Usually you can juxtapose special symbols without separation. If you define ¬ to be a special symbol, for
example, and you don’t also define ¬¬, then ¬¬x is read as two ¬ symbols followed by an identifier.

Identifier classes

Typically, you start the definition of a logic by saying what the various identifiers you are going to use
‘stand for’ or ‘range over’. You can say that an identifier ranges over formulæ, variables, numbers,
strings, or constants; you can say that any identifier which starts with a particular prefix ranges over one
of those categories. The directives are

<kind> names
CLASS <kind> names

where <kind> is FORMULA, VARIABLE , CONSTANT, STRING, NUMBER, BAG <kind> or LIST <kind> and
names is a comma-separated list of identifiers or identifier prefixes.

The unprefixed directives – such as, for example, CONSTANT map, fold, filter – define particular
identifiers which are of a particular class. They are ‘object language’ names and when they appear in
rules or theorems, they won’t be instantiated with anything. But they will unify with unknowns of the
same kind.

The prefixed directives – such as, for example, CLASS VARIABLE x, y, z – define identifier prefixes which
are of a particular kind. Every identifier or unknown which starts with one of those prefixes is of the
specified kind and they are all ‘general’ or ‘schematic’ or ‘meta-language’ names: when they appear in
rules they are always instantiated with an unknown or an argument of the same kind.

Unknowns follow the same rules as identifiers: given the directives above, _map would be an unknown
that would only unify with constants, _x33 would be one that unified only with variables.

There isn’t, at present, any way of defining a name that is of a kind which is a mixture of primitive kinds
(VARIABLE and CONSTANT, for example), but FORMULA includes all the other kinds.

Syntactic hierarchy

Jape has a built-in notion of certain syntactic forms:

• identifiers – like A, ABC, A1, x, y, y37f, ...

• strings – “anything at all”

• numbers – 1, 2, 46

• fully-bracketed formulae – (formula)

• substitutions – by default formula [variable list \ formula list], but the order of variable list
and formula list can be reversed if you wish, and you can choose different symbols in place
of ‘[‘, ‘\’ and ‘];

• juxtaposition (like function application in functional languages) – formula formula;

• prefix operators – op formula;

• postfix operators – formula op;

• infix operators – formula op formula;

• LEFTFIX bracketing – bra f sep f sep sep fn n1 1 2 2 1... −

Roll your own Jape logic (3.2) Page 83 Appendix A: Paragraph and Formula languages

• OUTFIX bracketing – bra f sep f sep sep f ketn n1 1 2 2 1... −

In addition, comma (‘,’) is always a zero-precedence tupling operator, so that tuples – formula , formula ,
... , formula – are automatically available, with or without brackets.

Both substitution and juxtaposition associate to the left1; you define the associativity of infix operators as
well as their precedence. Prefix operators, postfix operators, substitution forms, juxtaposition and
LEFTFIX bracketed forms all have user-defined precedence.

There are well-known pitfalls in the definition of flexible precedence grammars (but probably no deeper
than the holes beneath other forms of grammar). If your definition falls into a hole, Jape may not give
much assistance, nor even provide readable parsing diagnostics.

Bracketed formulæ

Jape recognises bracketed formulæ which use round brackets (parentheses). You can define other kinds of
brackets for yourself in LEFTFIX and OUTFIX directives.

OUTFIX directives allow you to define new kinds of opening and closing brackets together with internal
punctuation as well. You list the opening bracket, the internal separators and the closing bracket. For
example you might write

OUTFIX if then else fi

and then Jape will recognise

if formula then formula else formula fi

At present the parser allows you to bring in the closing bracket early, before the list of internal
punctuation symbols is exhausted, so that given the OUTFIX directive above any of the following will be
recognised as a formula:

if fi
if formula fi
if formula then formula fi
if formula then formula else formula fi

This is a temporary hack, pending a more flexible parser-generator.

LEFTFIX directives allow you to define opening brackets which have no corresponding closing bracket:
you list the syntactic precedence, the opening bracket and the separating symbols. For example you might
write

LEFTFIX 100 letrec be in

and then Jape will recognise formulæ of the form

letrec formula be formula in formula

LEFTFIX formulæ are notoriously ambiguous – experts will recognise this as the ‘dangling else’ problem.
In effect the final separator has the priority given in the declaration, and Jape will not allow the opening
bracket to be preceded by an operator which is of higher priority than that given in the declaration. For
example, if you have

INFIX 120 ¦
LEFTFIX 100 è .

then you could write ∀ x.A ¦B , but not C¦∀ x.A ¦B . That restriction, we hope, eliminates visual ambiguity
in the use of bracketed forms without a closing bracket. If you want to write a formula which breaks these
rules, you can always use brackets, as for example in C¦(∀ x.A¦B).

1 Substitution has to associate to the left, but we can imagine right-associative juxtaposition. Another enhancement for the
fugure (sigh).

Roll your own Jape logic (3.2) Page 84 Appendix A: Paragraph and Formula languages

Substitution forms

You can define the relative priority of substitution and juxtaposition as well as that of operators.
Normally substitution is the highest priority form, and juxtaposition is either the next or follows some
prefix/postfix operators, but the choice is yours. You write

JUXTFIX precedence
SUBSTFIX precedence
SUBSTFIX precedence bra id1 sep id2 ket

The second form of SUBSTFIX allows you to define the syntax of a substitution form, choosing opening
bracket (by default ‘[’), separator (by default ‘/’) and closing bracket (by default ‘]’). At the same time
you choose whether the variable list or the formula list comes first, by putting a variable identifier and a
formula identifier in place of id1 and id2. Because Jape uses this directive as a definition of some of the
symbols, there must always be white space between its various components.

Operator syntax

You define connectives and other such symbols in your logic by defining (unary) PREFIX, (unary)
POSTFIX operators and (binary) INFIX operators together with their syntactic precedence; in addition infix
operators need an associativity. You write

PREFIX precedence op op ...
POSTFIX precedence op op ...
INFIX precedence <associativity> op op ...
INFIXC precedence <associativity> op op ...

The ops are special symbols, but they may be made up of any characters that you wish – they don’t have
to be made up of non-alphanumeric characters. <Associativity> is a single character: L means left-
associative, so that A op B op C means (A op B) op C; R means right-associative, so that A op B op C
means A op (B op C); T means tupling or non-associative, so that A op B op C means A op B op C.
Mixing operators of the same precedence and different associativity may cause confusion, but Jape
doesn’t prohibit it. The difference between INFIX and INFIXC is to do with the way that formulæ are
parsed.

As in many modern programming languages, we permit a bracketed operator as a formula, so you can
write formulæ like (+), (∧), (++) once those symbols have been defined as operators. Operation formulæ
are parsed as juxtapositions, so that prefixop formula is parsed as the juxtaposition (prefixop) formula,
formula postfixop is parsed as (postfixop) formula, f1 infixop f2 is parsed as (infixop) (f1,f2) and f1
infixCop f2 is parsed as (infixCop) f1 f2; the reverse transcription is made when the formulæ are printed
out.

Binding structure

Binding structure is defined by pattern: you give some variable names and some formula names and then
give a pattern using those names. Any formula or subformula which matches the pattern is automatically
a binding formula. Because substitution or unification mustn’t be allowed to change the structure of a
formula, Jape checks for ‘near miss’ patterns and complains if it finds them.

The sort of thing you write is

BIND x SCOPE P IN äx . P

BIND y SCOPE P IN { y | P }

BIND x, y SCOPE P IN èx,y . P

It’s normal to use LEFTFIX or OUTFIX patterns, as in these examples, but it isn’t obligatory.

The last of the three examples above defines a parallel binding: one that at the same time binds two
variable names. At present Jape has no means of defining families of parallel binding formula structures
except by exhaustively listing each alternative. And it has no way of defining serial bindings at all.

Roll your own Jape logic (3.2) Page 85 Appendix A: Paragraph and Formula languages

Sequent structure

At present sequents are always double-sided, and each side is one of

• an optionally-empty comma-separated bag/multiset of formulae – say BAG or BAG FORMULA;

• an optionally-empty comma-separated list/sequence of formulæ – say LIST or LIST FORMULA;

• a single formula – say FORMULA

The SEQUENT directive gives you the opportunity to say what can appear on either side, and what the
entailment symbol is. You write

SEQUENT lhs entailment rhs { AND lhs entailment rhs ... }

You can have as many different kinds of sequent as you wish, provided that their entailment symbols are
unique.

In version 3.2 we have introduced a JUDGEMENT directive. This works in just the same way as SEQUENT,
except that in box display a JUDGEMENT is always written on a single line – that is, its lhs is not
interpreted as a collection of hypotheses and its rhs a conclusion. We are fairly sure we have chosen the
wrong word for this directive (and indeed for SEQUENT). Watch this space or send us a suggestion.

Future work

In the future we intend to provide a more powerful form of syntax definition for Jape’s users, providing in
particular a more efficient means of defining binding forms and ways of making finer distinctions
between syntactic categories. More structure in sequent forms would be a step still further, and we don’t
yet envisage it.

- 86 -

Appendix B

The tactic language

There are no reserved words in the tactic language. It is written in a very restricted sub-dialect of the
formula language, without the restriction that the class of every identifier must be pre-declared. When it
comes to the application of a rule – the simplest kind of tactic – then the arguments must be stated in the
formula language.

Although there aren’t any reserved words, there are a lot of tactic language verbs. As in the paragraph
language, these are all in upper case. You don’t have to avoid these names in the statement of rules and
theorems, but if you start using them as tactic parameter names you might confuse things.

Since version 3.0, tactic applications are written in ‘curried’ style: verb arg1 ... argN, where each
argument is bracketed if necessary1. If a tactic starts with a verb which isn’t one of those listed below, it
is treated as an application of a named tactic, rule or conjecture. The verb and arguments of a tactic
application are evaluated in the current environment – that means that any names they contain which are
parameters of the current tactic, or parameters of the current LET... tactical, are replaced by the
corresponding formulæ.

When a named tactic is applied to arguments, a new environment is created by zipping together tactic
parameters and supplied arguments. If there are too few arguments, the remaining parameters are ignored.
When a name is evaluated which doesn’t have a value in the current environment, the name itself is taken
as the result.

B.1 Tactic verbs

ALT tactic ... tactic: try each of the tactics in turn, until one is found that succeeds. If none succeeds,
ALT fails.

APPLYORRESOLVE tactic: rules applied by tactic will be tried first normally, where both hypotheses
and conclusions must match, and then ‘by resolution’ where only conclusions need match
and extra antecedents are inserted to prove each of the hypotheses. The ‘resolution’ step
requires that the logic have a CUT structure rule.

ASSIGN variable value: the named variable, which must be part of the global enviroment (see
appendix C) is assigned the given value. Some variables can’t be altered once anything has
been loaded into the tactic/rule/conjecture store2.

DO tactic: apply tactic repeatedly until it fails, then DO succeeds.

EVALUATE formula : evaluate one of a fixed number of built-in judgements. Where used, this tactic
is explained in one of the distributed encodings; at the time of writing it is used only in the
functional programming encoding to evaluate ASSOCEQ(f1, f 2), a judgement that two
formulæ are identical when rewritten with maximal use of associativity laws. EVALUATE is
intended to be the basis, one day, for a mechanism of communication with oracle programs.

1 The older ‘uncurried’ style, with arguments provided as a bracketed tuple, is now withdrawn. That means we have curried
applications and uncurried definitions. One day ...

2 Those variables are properly parameters and for clarity we ought to have a syntax for handling them. Patience, patience.

Roll your own Jape logic (3.2) Page 87 Appendix B: Tactic language

EXPLICIT name, ... , name: succeeds if every name is a parameter for which an argument has been
supplied. I think. Opposite of IMPLICIT below. I think.

FLATTEN formula: ‘flattens out’ all subformulae of formula in the conclusion of the current problem
sequent by rewriting according to the rules of associativity. It’s based on the same machinery
as ASSOCEQ; see EVALUATE above and chapter 5.

FOLD rulename tactic: Automatically ‘folds’ collections of rules. See chapter 5 above.

FOLDHYP pattern tactic: Automatically ‘folds’ hypotheses. See chapter 5 above.

IF tactic: run tactic, but succeed even if it fails.

IMPLICIT name... nameN: succeeds if none of of name1 ... nameN is a parameter for which an
argument has been supplied. I think. Opposite of EXPLICIT above. I think.

JAPE stuff : probably deserves a section on its own. Was originally called the ‘AdHoc’ tactic, and it
shows. Usually stuff is nothing more than “fail message”, but can also be “showalert
message” and “write message” and lots more which it would be tedious and embarrassing to
list. Likely to change soon and without notice.

LAYOUT pattern numbers tactic ... tactic: the way in which a tactic can hide part of a proof. Pattern
is either () or string1 or (string1, string2); numbers is a tuple of integers. Run tactic ... tactic
as a sequence and if that succeeds, mark the subtree it produces so that it is displayed in a
special way determined by pattern and numbers. The tree is displayed either in ‘hidden’ or
‘full’ form: by double-clicking on the justfication at the root of the tree the user can force
Jape to switch between forms. In ‘hidden’ form only the antecedents selected by numbers are
shown, and all others are hidden: antecedents are numbered from left to right, starting with 0,
so that if numbers is (1,3), for example, only the second and fourth antecedents will be
shown. In ‘full’ form all antecedents are shown. In ‘hidden’ form the justification shown at
the root of the subtree is controlled by string1, if included, or by the variable ‘hiddenfmt’
otherwise; in ‘full’ form that justificaiton is controlled by string2, if included, or by the
variable ‘unhiddenfmt’ otherwise. In either form the controlling string is used as a format
string rather as in a very simple kind of C printf, and occurrences of %s in that string are
replaced by a summary of the justifications on hidden parts of the subtree; in ‘full’ format
occurrences of %s in the controlling string are replaced by the justification of the node at the
root of the subtree.

LETARGSEL pattern tactic ... tactic: One of the ‘guarded tactics’ for use in WHEN; also a ‘binding
tactic’ (see below). If the user has made a single text selection, parse that text and unify it
with pattern; then proceed as normal for a binding tactic.

LETCONC pattern tactic ... tactic: One of the ‘guarded tactics’ for use in WHEN; also a ‘binding tactic’
(see below). If the user has formula-selected a conclusion, unify it with pattern; then proceed
as normal for a binding tactic.

LETCONCFIND pattern tactic ... tactic: One of the ‘guarded tactics’ for use in WHEN; also a ‘binding
tactic’ (see below). If the user has made a single text selection fs in a conclusion formula C
so that C consists of f1 followed by fs followed by f2, if the text f1 (fs) f2 is a parseable
formula, and if the formula (C, f1 (fs) f2) unifies with pattern, then: if C is not structurally
the same formula as f1 (fs) f2 proceed as normal for a binding tactic; if they are the same
formula, succeed silently, without running the sequence tactic ... tactic.

LETCONCSUBSTSEL pattern tactic ... tactic: like LETSUBSTSEL (q.v. below) except that the text-
selection must be made in a conclusion (right-hand side) formula.

LETGOAL pattern tactic ... tactic: One of the ‘guarded tactics’ for use in WHEN; also a ‘binding tactic’
(see below). If the current problem sequent has a single conclusion formula, unify it with
pattern; then proceed as normal for a binding tactic.

Roll your own Jape logic (3.2) Page 88 Appendix B: Tactic language

LETHYP pattern tactic ... tactic: One of the ‘guarded tactics’ for use in WHEN; also a ‘binding tactic’
(see below). If the user has formula-selected a hypothesis formula, unify it with pattern; then
proceed as normal for a binding tactic.

LETHYPFIND pattern tactic ... tactic: just like LETCONCFIND (q.v. above), except that the single text-
selection must be made in a hypothesis formula

LETHYPSUBSTSEL pattern tactic ... tactic: like LETSUBSTSEL (q.v. below) except that the text-
selection must be made in a hypothesis formula of the current problem sequent.

LETMATCH pat1 pat2 tactic ... tactic: One of the ‘guarded tactics’ for use in WHEN; also a ‘binding
tactic’ (see below). If pat1 unifies with pat2, proceed as normal for a binding tactic.

LETMULTISEL pattern tactic ... tactic: One of the ‘guarded tactics’ for use in WHEN; also a ‘binding
tactic’ (see below). Unify all the user’s text-selections, expressed as a tuple of formulæ, with
pattern; then proceed as normal for a binding tactic.

LETSUBSTSEL pattern tactic ... tactic: One of the ‘guarded tactics’ for use in WHEN; also a ‘binding
tactic’ (see below). If the user has made a number of text selections within a single formula,
each an instance of an identical sub-formula, convert that to a substitution (see chapter 1) and
unify it with pattern; then proceed as normal for a binding tactic.

MAPTERMS tactic: if the current problem sequent has a conclusion which is a single formula, try to
apply tactic (which is probably some sort of rewrite rule) to each of the structural
subformulæ of that conclusion formula.

MATCH tactic: runs tactic so that any rules which it applies are required to succeed without visibly
changing the unification context – that is, without changing the interpretation of any
unknowns in the problem sequent.

PROVE tactic: detaches the current goal from the proof tree; tries to prove it; and then plugs in the
proof if it's complete, otherwise fails. A way of ensuring that a tactic builds a subtree with no
open tips.

REPLAY tactic: run tactic but use term equality (up to α-conversion and elimination of substitutions)
instead of unification. Used in proof loading, because it seems to be a bit faster than the
normal mechanism.

RESOLVE tactic: rules and theorems applied by tactic will all be applied ‘by resolution’ in which only
the conclusions need match and extra antecedents are inserted for each hypothesis. See
SIMPLEAPPLY below and APPLYORRESOLVE above.

SAMEPROVISOS tactic: rules applied by tactic mustn’t add or delete any provisos from the current
unification context. Used to be used in proof reloading; may now be obsolete.

SEQ tactic ... tacticN: run the tactics in sequence. Fail if any of them fails.

SIMPLEAPPLY tactic: each of the rules applied by tactic will be applied in ‘normal’ style, without
using the ‘by resolution’ mechanism.

SKIP: succeed.

THEORYALT : generated internally, and used when a particular mechanism, used only in the
functional programming encoding, is searching for and caching rules. It’s all rather horrid
and extremely ad hoc, and no further details will ever be released.

UNFOLD rulename tactic: see FOLD above.

UNFOLDHYP formula tactic: see FOLDHYP above.

UNIQUE tactic: run tactic so that any rules it applies are required to succeed in only one way (i.e.
prevents application of those rules from offering the user a choice of alternative matches).
Used in proof reloading.

Roll your own Jape logic (3.2) Page 89 Appendix B: Tactic language

WHEN guardedtactic guardedtactic tactic: try each of the guarded tactics in turn until one is found
whose guard unifies, then run the tactics it guards; if none of the guards succeeds, run the
final alternative tactic. The guarded tactics must each be one of the LET... variety: see
‘guarded and binding tactics’ below.

WITHARGSEL tactic: run tactic, giving it as argument the current text-selection, provided that there is
only a single text selection and it parses properly as a formula. Fails if there is a single text
selection but it can’t be parsed.

WITHCONCSEL tactic: if the user has formula-selected a conclusion formula, rules applied by tactic
must consume it (that is, explicitly match it).

WITHCONTINUATION tactic1 tactic tactic ...: tactic1 is run so that its continuation is the sequence
tactic tactic Has no effect unless tactic1 ends with an ALT/THEORYALT; then it will
ensure that no alternative of that ALT succeeds unless the sequence tactic tactic ... succeeds
afterwards. Makes alternative choice a little more lazy.

WITHFORMSEL tactic: a combination of WITHCONCSEL above and WITHHYPSEL below.

WITHHYPSEL tactic: if the user has formula-selected a hypothesis formula, rules applied by tactic
must consume it (that is, explicitly match it).

WITHSELECTIONS tactic: a combination of WITHARGSEL, WITHCONCSEL and WITHHYPSEL.

WITHSUBSTSEL tactic: normally used inside a LETSUBSTSEL tactical. The user’s text selections have
to be entirely within one of the hypotheses or conclusions of the current problem sequent:
rewrite that hypothesis or conclusion as a substitution form, based on the text selections
given, and then run tactic. Fails noisily if the text selections don’t describe a substitution in
just the right way; fails normally if the substitution is described, but tactic fails. Rules
applied by tactic must consume (i.e. explicitly match) the reconstructed formula.

In addition to all those there are two that can occur inside a formula inside a tactic:

ANTIQUOTE (formula): everything inside formula is liable to ‘evaluation’ in the current tactic
environment, unless it is QUOTEd. Arguments in applications of tactics are treated as if they
were ANTIQUOTEd.

QUOTE (formula): nothing inside formula is liable to ‘evaluation’ unless it is ANTIQUOTEd.

B.2 The ‘current problem sequent’, the ‘goal’ and the ‘target’

When you start a proof there is only one problem sequent. When you apply a rule with two antecedents,
there are two to choose from. When you are well into a proof, there may be many.

Each time Jape makes a proof step (by application of a rule or in a small number of other ways, mostly to
do with the more exotic of the tactics like FIND or FLATTEN, and sometimes caused by the dialogue
language) it selects a new problem sequent if the current one is closed, or replaced by a subtree. It always
finds the ‘next rightmost unclosed tip’ and makes that the current problem sequent. The ‘next rightmost
unclosed tip’ is the first one in the fringe of the tree to the right of the current one, or the first one in the
fringe if there isn’t one to the right of the current one.

The current problem sequent is called the ‘goal’; the problem sequent from which we moved to the
current one because application of a rule succeeded is called the ‘target’ (not a very good name, ‘target’,
but that’s the way it is).

B.3 Guarded and binding tactics

Jape’s tactic language is ‘eager’ – whether it should be so continues to be a matter of debate – with
backtracking on failure. If a tactic fails, then the enclosing tactic either fails, or if it is an ALT, tries
another alternative starting from the state in which it first applied the sub-tactic that failed. That sort of
backtracking search is fine sometimes, but not always. It can be modified – slightly – by
WITHCONTINUATION.

Roll your own Jape logic (3.2) Page 90 Appendix B: Tactic language

The WHEN tactical takes ‘guarded tactics’ and applies them carefully, accepting the result of the first one
of them whose guard matches. Note that the whole guarded tactic may fail after its guard has matched,
and in that case WHEN won’t backtrack, it will simply fail.

Each of the guarded tacticals – they are all called LET... – takes a pattern and a tactic sequence. The
pattern is matched against something by unification: if the unification succeeds then the environment is
updated to reflect that unification. Roughly speaking you can assume that unknowns in pattern will be
added to the environment as parameters corresponding to the stuff they unified with, and if they are used
again in the tactic sequence, they will be replaced by that same stuff. You don’t have to worry that the
unknowns you use might already appear in the unification context: Jape invents new ones, based on the
ones you use, so that the effects of a successful binding tactic never leak into the unification context used
in proof steps.

- 91 -

Appendix C

The command language, environment variables
and the default environment

C.1 The command language

Jape communicates with its graphical interface in a language of ‘words’, space separated unless they are
enquoted "...". You may want to attach commands to buttons, you may want to include commands as
entries in TACTICPANELs, and you can type commands into the system – on the Mac into the Text
Command box, on X into the command window – so here goes with a description. I’ve divided it into
two: the ones you might want to use, and the arcana.

Note that the language described here is ad hoc and subject to change without notice or any sign of
visible regret on the part of the implementors. Be warned.

Commands you might want to use

addnewconjecture panelname conjecture: this command is sent by the New… button in a
conjecture panel, after the user has typed the conjecture into a dialogue box.

apply tacticexpression: this command is used a lot: it is the way that menus and panels apply
tactics. Don’t forget that a rule name is a tactic expression.

assign name value: the way that Jape’s environment variables (q.v. below) are given values.

backtrack: command sent by the Backtrack button in the Edit menu.

closedbugfile: close the top dbug file on the stack of such files (see createdbugfile below);
redirect diagnostic output to the file below, or to the console if the stack is empty.

collapse: the way that the Hide/Show detail entry in the Edit menu does its work.

createdbugfile: create a file, using the normal file selection dialogue, and redirect diagnostic input
into it. There’s a stack of these dbug files.

layout: has the same effect as double-clicking on the justification of the selected sequent.

lemma panelname conjecture: synonym for addnewconjecture above.

print filename: generates a listing of the currently-focussed proof in filename, in a form suitable
for LaTeX processing.

proof finished: (two words) how the Done entry (on the Mac) and the proof finished entry (on
UNIX) in the Edit menu does its work.

prove conjecturename: how the Prove button in a conjecture panel does its work.

prune: how the Prune entry in the Edit menu does its work.

QUIT: kill the proof engine, after asking whether the user wants to save any proofs.

redo: how the Redo entry in the Edit menu does its work.

Roll your own Jape logic (3.2) Page 92 Appendix C: Commands and environment variables

refreshdisplay: clear the currently-focussed proof window and redraw the proof it contains.

reset: how the Reset entry (on the Mac) and the ?? entry (on UNIX) in the Edit menu do their
work. On the Mac the Reset entry can be greyed-out even though some syntax definitions
have been accepted: in that case typing the reset command to a Text Command window
can be helpful.

reset;reload: (no spaces, all one ‘word’ with a semicolon in the middle!) how the Load New
Theory entry in the File menu does its work.

showproof conjecturename: how the Show Proof button on a conjecture panel does its work;
opens a window with a proof of conjecturename in it, if there is one in the proof store.

saveengine filename: saves the current proof engine, with all its settings, in a file. Useful for
creating pre-initialised engines

steps: display the value of the internal variable ‘timestotry’ in an alert dialogue. See steps n
below.

steps n: set the value of the internal variable ‘timestotry’ to the integer n. This variable will, in
the near future, be part of the default environment (q.v. below). The value of the variable
controls the number of steps that Jape will allow in a single tactic application before failing
with the message “Time ran out”.

tellinterface variablename word word: send the current value of the variable variablename to
the interface, prefixed by the command word

undo: the way that the Undo entry in the Edit menu and/or the Undo key do their work.

unify formulæ: Unify the given formulæ and all of the user’s text-selections. The way that the
Unify button does its work.

use filenames: open each of the files named, read and execute the Japeish text they contain. The
way that proof files are loaded and a new encodings or a modification to the current
encoding is interpreted

version: display the current version information of the Jape engine in an alert dialogue.

Arcana

cd path: changes the default directory used by the proof engine. Only works in the UNIX
implementations; don’t use if you don’t know what it does.

closeproof n: absolutely not to be used.

DRAGQUERY: part of the drag-and-drop interface; don’t use it.

DROPCOMMAND: part of the drag-and-drop interface; don’t use it.

fonts_reset: command sent by the graphics interface when its fonts are altered. Triggers all sorts
of cache mangling, but otherwise harmless.

HITCOMMAND comm: absolutely not to be used.

NOHITCOMMAND comm: absolutely not to be used.

profile [on | off | reset | report filename]: one of the mechanisms with which we debug the proof
engine. Only works in specially-instrumented proof engines under UNIX.

quit: kill the proof engine without asking any questions.

saveproofs word: absolutely not to be used.

setfocus n: absolutely not to be used.

Roll your own Jape logic (3.2) Page 93 Appendix C: Commands and environment variables

showfile filename: possibly obsolete.

emptyword: ignored.

C.2 Variables and the default environment

Jape has a number of ‘environment variables’ which can be used to modify its behaviour, and can
currently be set by the ASSIGN tactic, by the assign command and by INITIALISE , RADIOBUTTON and
CHECKBOX directives in the paragraph language. Some of them are of general use; some are horrid
debugging switches of interest only to the implementors. Variables can be set from menus and panels: see
the various files like ‘autoselect_entry’ which are distributed with Jape and put entries in the Edit menu.

Useful variables

Variables whose default value is marked with an asterisk are parameters: their value can be altered only if
the rule/tactic/conjecture store is empty.

name values default value effect

applyconjectures true, false false when true, allow conjectures (unproved
THEOREMs) to be applied as rules.

autoAdditiveLeft true, false false* when true, any rule whose consequent and
antecedents all have a BAG on their left-hand
sides is augmented by the addition of a bag
variable (e.g. Γ) to the left-hand side of every
consequent and antecedent which doesn’t
already have one.

autoAdditiveRight true, false false* as autoAdditiveLeft, except that it applies to
right-hand sides

autoselect true, false false when true, select the conclusion of the current
problem sequent each time a proof is
displayed.

collapsedfmt any string "[%s ...]" the string used to control the way that a
justification is displayed for a subtree shown
in ‘collapsed’ form – for example, after using
Hide/Show Subproof on an uncollapsed
subtree.

displaystyle box, tree tree selects the display mechanism used to show a
proof. Each proof may have an individual
setting of this variable. When a new proof is
started, its displaystyle is taken from the
currently-focussed proof.

hiddenfmt any string "{%s}" the string used to control the way that a
justification is displayed for a subtree
produced by the LAYOUT tactical in ‘hidden’
form. This string is over-ridden if string1 is
provided in the LAYOUT tactical.

hidecut true, false true hide the application of CUT rules in box
display.

hidehyp true, false true hide the application of IDENTITY rules in box
display.

Roll your own Jape logic (3.2) Page 94 Appendix C: Commands and environment variables

interpretpredicates true, false false* on instantiating a rule, interpret juxtapositions
as predicate applications; translate them into
substitution forms, add new OBJECT

parameters and invisible provisos.

outermostbox true, false true when true, draw an outermost box in box
display when proving a conjecture which has
hypothesis formulæ.

showallproofsteps true, false true (misnamed – should be
showhiddenproofsteps) when true, show proof
steps hidden by LAYOUT tacticals.

showallprovisos true, false false (misnamed – should be showhiddenprovisos)
when true, show hidden provisos, marked as
<proviso>.

tryresolution true, false true apply theorems and antecedent-free rules in
‘resolution’ style if the conclusions of the
consequent match but the hypotheses don’t.

uncollapsedfmt any string "%s" string that controls the display of a subtree that
was once collapsed and is now reinflated.

unhiddenfmt any string "[%s]" string that controls the display of a subtree
produced by the LAYOUT tactical and
displayed in ‘normal’ form. This string is
over-ridden if string2 is provided in the
LAYOUT tactical.

Adding your own variables

You can invent your own environment variables and assign them values. In particular you can define a
variable in a RADIOBUTTON or CHECKBOX directive, give the range of possible values that it can take,
and allow the user to control that variable. See, for example, the way that the functional programming
encoding controls searching by using variables whose values are the names of tactics.

There are at present few ways in which the value of a variable can be used, once set. But watch this space
for developments, including at least a form of case-expression value analysis in the tactic language.

Debugging variables

Jape has a number of debugging variables. Setting any of them to true makes it print lots of stuff on the
console (which on the Mac is hidden, and needs secret knowledge to find). The variables currently used
are

applydebug, bindingdebug, factsdebug, FINDdebug, FOLDdebug, matchdebug, prooftreedebug,
rewritedebug, substdebug, symboldebug, tactictracing, thingdebug, unifydebug, eqalphadebug,
varbindingsdebug

In this manual we don’t explain or admit what these variables do or don’t do or how best to use them.
Good luck to you if you try to find out.

