
Formal Aspects of Computing (1999) 11: 244–271
c© 1999 BCS Formal Aspects

of Computing

A Minimal Graphical User Interface for the Jape
Proof Calculator

Richard Bornat1 and Bernard Sufrin2

1Department of Computer Science, Queen Mary and Westfield College, University of London, UK
2Programming Research Group, University of Oxford, Oxford, UK

Keywords: GUI proof; Proof calculator

Abstract. GUI design isn’t simply a matter of putting a nice front-end on a
capable program. It requires thought about the way in which people might be
expected to use a system, and investigation of the ways that they actually use it.
Jape’s GUI has been designed to be as simple as possible, so that it will not get in
the way of the business of proof. It is designed to be minimal in the information
that it displays and the gestures that it requires from the user. In this paper we
introduce and give a rationale for the design of Jape’s user interface, then note
some of its drawbacks.

1. Introduction

Computers are very good at formal calculations. In fact, they are good for nothing
else. Logic is an utterly formal business, so computers ought to be very good at
doing logic. Indeed they are, but they aren’t, yet, very good at doing logic for us:
solving interesting formal problems on our terms. Some of the problem is in the
formalisms, but there is also a mismatch between the characteristics of machines
and the nature of human reasoning. We haven’t built computing systems that
are very good at communicating formalisms to people or interpreting people’s
intentions about formal calculations. In other words, there aren’t yet formal
reasoning systems with good user interfaces.

Most of the interest in user interfaces at present is in graphical user interfaces
(GUIs). Most users of most computer systems communicate with them through

Correspondence and offprint requests to: Richard Bornat, Department of Computer Science,
Queen Mary and Westfield College, University of London, London E1 4NS, UK. Email:
richard@dcs.qmw.ac.uk; http://www.dcs.qmw.ac.uk/∼richard

A Minimal Graphical User Interface for the Jape Proof Calculator 245

the same kind of GUI. The universal vocabulary of point-and-click and press-and-
drag within the 21

2D virtual desktop is expressive enough to allow the ordinary
person to use a computer to do useful work, and has been the catalyst that has
encouraged computing to spread to almost every corner of life.

Such is the public enthusiasm for GUIs that every program designer is tempted
to join in. But there are at least two distinct GUI design traditions one might
join. One uses graphics to communicate more information about the workings
of a program and uses menus and buttons to give more immediate access to the
operation of the machinery. In that tradition the ideal is a spaceship cockpit,
covered with dials and knobs and switches: everything that can be measured is
displayed; everything that can be altered is controllable. Experts can discover
anything and modify everything, provided only that they know where to look and
what to touch. By contrast the other tradition attempts to use the immediacy of
graphics and the physicality of mouse gesturing to make communication with a
program as effortless as possible. Here the ideal is a wristwatch, a device with few
controls and so simple to use that its users don’t glimpse its internal complexity –
in Norman’s phrase [Nor98] quiet, invisible, unobtrusive; the aim is to make the
machine invisible.

Though the two traditions use the same display technology and the same
gesturing mechanisms, it’s difficult to justify one to the adherents of the other. In
a nutshell, the first tradition is technology-oriented, the second is task-oriented.
Space cadet or watchmaker, Xemacs or SimpleText: the products of one tradition,
even the design aims of its practitioners, will be rejected within the other.

This paper is written from within the second tradition. So it is not about good
ways to deliver functionality or neat mechanisms to fit GUIs to high-powered
machinery. It is not even about a new logical approach which makes design of
a GUI a triviality. It is, rather, about the subtle design choices that have to be
made to produce a program which always does what its users expect it to do,
even when they don’t know quite what to expect.

This paper is not simply about a GUI, but about a program and its GUI
together. Supporting the GUI is the very purpose of the program’s existence.
Jape is a proof calculator: a program which supports the human-led discovery of
proofs and their presentation in readable form. As a calculator for a particular
proof in a particular logic, it does little more than apply the rules of inference of
that logic under its user’s direction, and show the result in an appropriate form.
The logical calculations are performed by the proof engine; the user-interface
interprets users’ gestures and displays proofs, partial proofs or proof attempts.

One particular GUI design principle that we have struggled to live up to is
minimalism: to give our users what they need within as small a visual and gestural
space as possible. There are no multiple views of the proof, no summaries of
internal state, no visible proof history, hardly any dialogue boxes. We believe
that unity of design between engine and interface, and an explicit commitment to
minimalism, makes our work distinctive within the community of those trying to
bring the benefits of graphical user interaction to formal reasoning by computer.

In our tradition the highest praise we can receive from a user is that the
mechanism seems very simple, that there seems to be nothing substantial there.
When people have that reaction to Jape, we are delighted. There is actually quite
a lot there – about twenty thousand lines of SML code in the engine, and another
few thousand in the interface, all beavering away trying to be invisible. So if you
think that this paper goes into minute detail about not very much at all, there is
a sense in which you will be right and we will be satisfied.

246 R. Bornat and B. Sufrin

GUI development is always experimental, and a developer is always focusing
on the next possible improvement. Nobody has managed yet to make a GUI
disappear, and Jape’s is by no means invisible. In this paper, therefore, we have
gone beyond a description of what has been achieved to discuss the ways in
which we have failed to achieve our goals and what lessons we might draw from
those failures. That discussion goes into minute details, but such is the nature of
GUI research.

Since this is a paper about user interfaces, and not about theorem proving, the
examples used in illustrations are just large enough to make each of our points
about display and gesture. As a result they are logically trivial, but that should not
be taken to imply that users of Jape must restrict themselves to trivial problems.
Space limitations have prevent us discussing every aspect of Jape’s GUI here. In
particular we have omitted detailed discussion of the way in which the engine
displays proofs so that they are easy on the eye. All the proof illustrations are
taken from the displays produced by Jape’s GUI under MacOS; similar displays
are produced under UNIX.

2. The Watchmaker’s Creed

In the space cadet tradition a graphical user interface (GUI) is a collection
of buttons, menus and windows designed to command a computing device.
Commands that might once have had to be laboriously constructed at the
keyboard can be communicated with a single click of the mouse. In that tradition
the purpose of a GUI is to reduce the physical effort required to issue a command.
It would seem to follow that the more buttons, menus and windows the fewer the
mouse clicks and the better the user experience.

The watchmaker’s view of a computing system is as an aid to carrying out a
task, and the purpose of the GUI is to facilitate task activity. But the existence of
the GUI itself creates an additional task, the task of understanding and controlling
the interface. That task ought surely to require as little effort as possible. In most
computer-aided work it is the cognitive effort of carrying out the underlying task
that should dominate, and the cognitive distraction of controlling the interface
that must be minimised1.

Interaction with a computing system has something of the quality of a game:
we have to guess what state the system is in, and we must base our actions on
that guess. If our guess is right, we have a chance that the command we choose
will have the effect we desire. If we guess wrongly, then almost anything can
happen. It’s impossible to interact with a black box unless you can concentrate
hard enough to sustain a mental image of what’s inside, and that concentration
distracts you from the task in hand. Every large computer program is something
of a black box and nobody at all can understand, in detail, just what happens
inside it. We all get by with approximations, with partial mental models of a
program’s state. In the best case our approximations are useful abstractions of
reality.

The best interactive computing systems, therefore, are designed so that there
is a model of their working which is both faithful to reality and easy to grasp.

1 We include perceptual effort as part of cognitive effort, for the purposes of our discussion.

A Minimal Graphical User Interface for the Jape Proof Calculator 247

Promoting a simple user’s mental model [NeL95] of its operation is the most im-
portant technique for reducing the cognitive load imposed by use of a computing
device. The first step in GUI design, therefore, is to invent a user’s mental model
that can be effectively promoted by the behaviour of the GUI. Only later is it
useful to think of ways in which the machine can simulate the operations of the
chosen model. That is a very strong constraint on the design of the behind-the-
scenes mechanism: so strong, indeed, that it’s often useless to graft a GUI to an
existing application, because the application’s mechanisms are rarely a good fit
with the mental model. It is the user’s mental model that’s central to GUI design,
and not the engine behind the scenes. It dominates even the definition of the
user’s task, because sometimes the choice of mental model helps to redefine the
task.

In short, we use computers to save ourselves effort, so they shouldn’t cause us
to do unnecessary mental or physical work. A badly-designed GUI can increase
the physical difficulty of a task, and it’s as easy to get RSI from a mouse as from
a keyboard. At this point watchmakers have some common ground with space
cadets. Minimising physical effort is a good idea when it minimises cognitive
effort. It is physically easier to point to a file on a desktop than to type its
directory-tree filename; it’s physically easier to click a button than type the name
of a command. But reducing the physical effort of using a GUI is only worthwhile
if the cognitive effort is correspondingly low. If not – if in order to make one
mouse click you first have to search with your eyes through tens of icons that litter
your desktop, or hundreds of buttons in a toolbar2 – then minimising physical
effort is a bad idea.

It is often asserted that novices and experts have very different GUI needs.
Certainly, novices have particular requirements: it has to be possible to make
use of the GUI without knowing how to use all of its facilities, and it has to
be possible to explore its facilities without risk. Experts, paradoxically, are less
demanding: they want to get straight to the point, and are prepared to expend
effort to learn about a GUI’s obscure shortcuts, bells and whistles. Few will know
it all, though, and experts too can benefit from risk-free exploration. It seems
obvious to us that, other things being equal, experts benefit if the cognitive load
of carrying out a task is reduced; it is by no means obvious to us that they must
forever be condemned to be space cadets.

None of this discussion is new. The basic principles of GUI design have
been evident for over twenty years, and are well propounded elsewhere [NeS79,
NeL95, Thi90, App90]. It is evident, however, that they are not well understood
everywhere, and we put Jape forward as an example of how they may be applied
in the particular problem area of computer-assisted formal proof.

3. Jape’s Task and User’s Mental Model

Our intention was to support reflective exploration [MeH96], helping our users
to find out about a logic by developing proofs. We haven’t chosen to support the
theorem-proving task, which is in principle to find that there is a proof. Nor have
we aimed to support the proof-checking task, which is to decide whether or not

2 ‘Hundreds’ is not an exaggeration. There are 271 on-screen iconised buttons simultaneously available
in Microsoft Word 97, with uncounted others behind the scenes in pull-down menus and tabbed
dialogues.

248 R. Bornat and B. Sufrin

a given text represents a proof. Had we chosen either we would probably have
constructed quite a different GUI.

A user’s mental model of a computing system is easiest to grasp if it has
already occurred to the user beforehand, and it is easiest to work with if the
system shows a picture of the entire state of the model. Mental models which
appeal to paper-and-pencil analogues are, therefore, very popular. In Jape we
decided at the outset to support the construction of tree and box-and-line proofs
like those illustrated in this paper. In order to support exploration we wanted to
display all the intermediate stages of proof construction: most of the illustrations
below are of partial proofs, proofs in mid-construction, proof attempts. We wanted
to do for pencil-and-paper proofs what word processors do for pencil-and-paper
texts: take over the bookkeeping, keep everything shipshape, but don’t interfere
in the decision-making process. Because it suited the needs of both ends of the
novice/expert spectrum, we designed Jape to be generic in the logics it supports.

In the early stages of the evolution of our design each proof step in Jape
consisted of the application of a single inference rule. That was convenient for
proof novices and for education: our aim was to encourage reflection about the
meanings of inference rules, and each tiny step is in principle worthy of reflection3.
But that is not the only way to use a GUI like Jape’s. A display of a partial
proof allows important decisions to be taken in the light of progress so far. It is
unlikely that users will always perform best when they can only see the bit of a
problem which a theorem prover considers must be worked on next – that is, one
tip of an otherwise invisible tree. On the other hand, it is essential that they don’t
see more than they need to see in order to make an informed choice. Much of
our design effort has been directed to refining the logic encoder’s control4 over
what is seen in the display and how gestures towards the display are interpreted.

4. Internal vs External Representation

Because the only test of a GUI is the satisfaction of its human users, GUI
research and development must be an experimental business. The mechanism of
interaction between user and machine can be designed as carefully as may be, but
only experiment will tell if it is effective. In Jape’s case the form of the display
has been a matter of continual experiment. We have searched for ways to push
the display closer to what the user wants to see – driven all the time by the
requirements of our users – without losing contact with the machine’s internal
mechanisms. Over the years we have gone from initial experiments with the
display of inference trees to development of a treatment of transitive equational
reasoning. The journey has taken us far from the conventional all-introduction
backward-reasoning style of interactive theorem proving.

Internally Jape uses an inference tree of hypothetical judgements and applies
inference rules structurally similar to those of the sequent calculus. Nothing
else seems to be general enough to support a wide range of logics, nor so
straightforward to implement. But the display does not always show a tree: for

3 At the time of writing there is a research project underway to investigate the effectiveness of Jape
in promoting visualisation of proofs. We expept that a by-product of that project will be a detailed
critique of Jape’s shortcomings as an educational tool, which we will use to improve its design.
4 Jape has two classes of users. The end user, the prover, makes proofs in a logic. The logic encoder
transcribes a logic and programs the interaction to suit that logic.

A Minimal Graphical User Interface for the Jape Proof Calculator 249

example, in Fig. 14a below the proof steps look like equational rewrites, not
inference steps. The whole tool – engine plus interface – must internally support
what is supportable, externally display what is palatable, interpret gestures at the
display in terms of the components of the inference tree, and always keep the
two in step.

The user’s mental model which we encourage is that the proof that you see
is what the machine is working on. You make progress by pointing to places or
parts of the proof and indicating what you wish to happen. We encourage, by
using the slogan “point to the thing you want to work on”, the idea that a proof
step transforms proof components, producing as a result other components.

Slogans which explain what a tool can do may aid its usability by altering the
user’s perception of the task, but when the distance between an internal reality
and external presentation becomes too great, something will give way and the
illusion will break down. We think it would be impossibly difficult to build the
kind of GUI described here if the underlying mechanism didn’t have a proof data
structure at its centre; reconstructing the proof at each stage would be far too
difficult. For similar reasons, we have chosen to represent logics without significant
encoding. In one respect this makes Jape an unusual proof tool: it represents
provisos – extra-logical side-conditions on proof steps – literally, rather than
Skolemising or otherwise encoding them. That makes for relative inefficiency,
because the tool must continually interpret the provisos during a proof, but it
also makes it possible to display the proof in terms of the pencil-and-paper logic
and therefore the user’s mental model.

Jape doesn’t always show all of a proof to the user, but if it is to be a
sound logical calculator each visible proof step must be made up from a number
of sound primitive steps. We preserve soundness by ensuring that the internal
representation of a proof is at the level of inference rule applications. To support
a form of display which shows larger visible steps, the logic encoder is given a
good deal of control over the way in which the logical proof tree is projected
onto the display. External brevity can be achieved even though the tool’s internal
record is prolix (for example, Fig. 8 vs Fig. 9).

5. Simplicity, Quietness, Minimalism and Passivity

The ideal, when supporting a user’s mental model of pencil-and-paper activity,
is a tool which seems to do just what pencil and paper do, which is merely to
record the user’s activity. We aim to give our users an experience in which the
display shows them the proof that they are thinking about, the gestures towards
the display don’t need to be explained, and the steps in development seem just
those which would have been made without the tool’s assistance. Our job is the
design of simplicity.

Since we can’t build intelligent machinery, our approach to the design of
simplicity has been to design a quiet interface: one whose activity doesn’t impinge
on the user’s consciousness too often. But quietness is a slogan, not a design
method, and to achieve it we have imposed on ourselves a discipline of minimalism.
We want to present an interface in which it is possible to work with a minimal
vocabulary of gestures, and with no more displayed information than is necessary
to carry out the pencil-and-paper proof task. We’ve constrained ourselves to use
the vernacular of modern GUIs – point-and-click with the mouse, take commands
from menus, a little press-and-drag selection, some drag-and-drop where it fits our

250 R. Bornat and B. Sufrin

Fig. 1. Some rules of a natural deduction logic rendered for Jape.

purpose. We show the user only the proof, and nothing of the internal workings
of the tool.

Quietness is a requirement derived, we believe, from the nature of the task:
logical proof is intrinsically complicated and the interface should not distract
the user’s attention. Minimalism is a route to quietness. Passivity of the minimal
interface [Thi90] is a design decision which supports the user’s mental model that
the tool is a calculator, something that makes useful formal manipulations but
doesn’t offer advice.

The user as encoder has not been neglected: Jape has a programming notation
in which systems of inference rules can be described and through which the
details of the graphical interface may be controlled. We anticipate that many of
our encoders will be novice logicians and will therefore need a quiet interface of
their own. We believe that in the matter of encoding logic rules our interface is
quieter than most: Jape’s encoding of an inference rule is little more than a linear
transcription, as illustrated in Fig. 15.

6. The Display

The main internal data structure of Jape is the inference tree. Inference trees
can easily be directly represented on a computer screen: for example, see Fig. 3.
Inference rule steps, from valid tree to valid tree, are directly implemented
on the internal data structure. This provides a straightforward guarantee of
correspondence to a logic: the tree is one produced by the application of inference
rules of that logic. A natural starting point for a proof tool like Jape, then, is the
direct display of the internal tree.

But why show the whole tree? There are lots of circumstances where some
parts of a proof tree, however necessary for correspondence to the logic, are
irrelevant to the prover. If a sub-proof is carried out automatically, for example,

5 The transcription of natural deduction rules into a sequent notation as in Fig. 1 is fairly standard,
but for those not used to the notation some points are worth noting. First, hypothesis formulae in
a rule or a problem statement are written on the left-hand side of the segment, before the turnstile
symbol # (for example see the → -l rule) while conclusion formulae are written on the right-hand
side. In the rest of our discussion we normally describe formulae as left-side or right-side rather
than hypothesis or conclusion. In the box-and line presentation, left-side formulae are displayed on
hypothesis/premise/assumption lines.

A Minimal Graphical User Interface for the Jape Proof Calculator 251

Fig. 2. A proof attempt in BAN logic.

we may not want to see it at all. We come immediately to an early design decision:
keep the whole tree internally, but show it at the appropriate level of abstraction,
suppressing those bits that the logic encoder has decided don’t matter.

And then, why show it as a tree? The box-and-line display, shown for example
in Figs 2 and 4, is concise, because it doesn’t unnecessarily repeat hypothesis/left-
hand side formulae, and simple to scan with the eye, because dependencies
are one-dimensional. Transformation of a tree into a box-and-line structure is
straightforward.

With a box-and-line display it is possible to use systematic transformations
which avoid unnecessary repetition. Logical steps which express identity of hy-
pothesis and conclusion don’t need to be shown at all. Cut steps introduce
intermediate formulae, results to be worked in either direction, and transitivity
steps in reasoning do the same; it’s worthwhile to use a display which shows the
intermediate formulae only once – see, for example, Figs 4b and 30a.

These days there is no excuse not to approximate the user’s pencil-and-
paper notation in a GUI. We learnt, from the reactions of proof novices, that
it was essential to reproduce faithfully the notations familiar to them from
their textbooks. Those who have little general understanding must first focus on
the particular, and novices are rather easily distracted by detailed inconsistencies
between what they expect to see and what is displayed on the screen. Experts gain
too: mathematical notation is their language: it conveys information concisely, so
they get more proof-per-pixel and far fewer decoding distractions. A GUI which
shows you

\exists($x).\forall($y).$A[v\\$x] \implies B[w\\$y]

is requiring you to pay more attention – hence, causing you far more cognitive
effort – than one which shows you

∃x.∀y.A(x) → B(y)

To control the appearance and interpretation of formulae a logic encoder can
choose a special font and must describe how operators interact and how binding
constructs are built up. This isn’t the whole story, of course – a fuller treatment
of surface appearance, with better typesetting and two-dimensional constructs,
would be a project in itself – but it can make a dramatic difference, as illustrated
in Fig. 2. It would be hard to read or construct a proof in this logic if |≡ had to

252 R. Bornat and B. Sufrin

Fig. 3. A partial tree proof.

be rendered as \believes, # as \oncesaid, and so on. It would be easier still to

work with if Jape was able to represent R
K←→R′ directly, rather than encoding

it as (R, R′) ↔ K .

6.1. Box and Line vs Tree

The advantages of the box-and-line style over the Gentzen tree are that box-
and-line proofs are smaller, and they are vertically arranged. Space is saved
because hypothesis/left-side formulae aren’t unnecessarily repeated. For example,
see Fig. 3, a partial proof in the logic of Fig. 1, and the direct transcription
of the same proof in Fig. 4a6. Vertical arrangement makes it easy to find your
place, to find a new place, or to survey the whole of a proof even if it is too
large for the screen. Surveying a large tree is hard because it’s hard to show
enough distinctive positional context for effective navigation. In proofs with a
large number of hypothesis formulae (Fig. 2 is an example), box-and-line proof
is the only effective display style.

Figure 4a is still wasteful of space and attention. The hyp steps on lines 3,
5 and 7 are visually redundant, no more than redirections. There’s an obvious
transformation – normally applied to this display style in Jape – which takes Fig. 3
to Fig. 4b. This is an example of displaying the proof at an appropriate level
of abstraction, avoiding the display of proof steps which don’t interest the user,
however logically necessary they might be.

With identity steps hidden, proof displays like Fig. 4b look like natural
deduction proofs in a style derived from [Fit52]. In particular, the introduction of
assumptions on lines 3 and 7 and the corresponding discharges on lines 6 and 8
are easy to read. It is very difficult, by contrast, to write down or to describe how
to write down an incomplete natural deduction proof in the tree style in which
it is often first presented [ReC93, WoD96]. The immediacy of the box-and-line
presentation is such that we’ve used it for several years in teaching logically naive
undergraduates.

6 Note the three dots above line 11 of Fig. 4a, corresponding to the open tip of Fig. 3. These three
dots are the points where there is still something left to prove, where a connection hasn’t yet been
made between hypotheses and conclusion in a proof attempt. They are the growing points of a partial
proof.

A Minimal Graphical User Interface for the Jape Proof Calculator 253

(a)

(b)

Fig. 4a. The proof of Fig. 3 in box-and-line style. b. The proof of Fig. 3 in box-and-line style with
hidden identity steps.

Jape’s box-and-line display mechanism is flawed in one important way, how-
ever. Since we generate the lines of the proof with a straightforward recursive
transformation of the tree, the tree structure invisibly constrains proof moves:
when a rule with multiple antecedents is used, multiple proof subtrees result, and
it isn’t possible to use part of one subtree in proving another. An example is
shown below in Fig. 24b, in which lines 3 and 4 represent alternative subtrees:
anything developed during a proof of line 3 would be unavailable in the proof
of line 4. This breaks the conventional rule of box-and-line proof and therefore
conflicts with the user’s mental model. It isn’t a trivial matter to resolve the
difficulty, but we have some ideas about how it might be solved while preserving
the tree as our underlying data structure (see the discussion of cut-splicing below).

6.2. Pseudo-forward Reasoning

Since box-and-line proofs are read line by line, from top to bottom, it seems
natural to many of our users to try to construct them in that order. The proof
of Fig. 3, as a tree, was constructed backwards, from conclusion to hypotheses.
Contrast Figs 5a and 5b, which show early steps in a proof of the same conjecture,
but work forward from the hypotheses. The first step is to use ∧-E to extract
Q∨R from the premise, the second to use ∨-E to extract Q and R, the third ∧-E
again to extract P from the premise. These steps of forward reasoning seem more
natural to us (and, it seems, to our users) than the planning that must go on to
produce Fig. 3. The comparison is unfair, of course – nobody would seriously try
to use a logic like Fig. 1, which only manipulates right-side formulae, to produce
a proof like Fig. 3, which must deal with left-side formulae as well (for example,
P ∧ (Q ∨ R) in the first step of Fig. 3). But that is to say no more than that in
some logics forward reasoning from tip to root makes best sense.

Jape supports the kind of forward reasoning illustrated here by making heavy
use of cut steps in the internal representation of the proof, and then applying

254 R. Bornat and B. Sufrin

(a)

(b)

Fig. 5a. A first forward step. b. After the third forward step.

Fig. 6. The tree after the first forward step.

an automatic display translation on the box-and-line display to hide the cuts.
Figure 6 shows the internal tree corresponding to the box-and-line displays of
Fig. 5a and Fig. 7 shows the box-and-line display equivalent to Fig. 5b when cut
steps are not hidden. The visual redundancy in Fig. 7 is obvious: for example,
lines 5 to 8 correspond to lines 4 and 5 of Fig. 5b. Jape’s automatic display
transformation does no more than to conflate the two occurrences of each cut
formula (for example, line 5 and 6), conflate the corresponding occurrences of
the conclusion (for example, lines 7 and 8), and eliminate the visually distracting
box.

6.3. Hiding Subproofs

An obvious transformation between internal and external representations is to
hide part of the proof. Large proofs can become readable if users are able to
collapse subtrees. For example, Fig. 8 shows the beginning of a derivation in the
Hindley-Milner type system7. The boxes on lines 2 to 3 and 4 to 5 are ‘collapsed’
to show no intermediate steps. Figure 9 shows part of the detail of the first of
those boxes – the whole is 27 lines. However important the contents of those boxes
might be whilst they are being constructed, once completed they can reasonably
be set aside.

7 Some of the notation in these figures is non-standard. Monotypes in a context are marked with a
#; the - and . symbols approximate ≺ and 0. The indentation on certain lines is an artefact of the
translation from screen to paper.

A Minimal Graphical User Interface for the Jape Proof Calculator 255

Fig. 7. Box-and-line display with visible cuts.

Fig. 8. A partial proof in the Hindley-Milner type inference algorithm, with completed subtrees (boxes
2-3, 4-5) collapsed.

Fig. 9. Part of the first internal box from Fig. 8.

256 R. Bornat and B. Sufrin

Fig. 10. A partial proof in the Hindley-Milner type inference algorithm, with generalisation step
summarised.

Fig. 11. A rewrite rule.

Fig. 12. Rewrite equations.

The same transformation can be applied automatically, at the choice of the
logic encoder, to particular subtrees. This is especially useful when a subtree is
an automatic derivation. Continuing with the same example, Fig. 10 shows the
display after generalisation steps have constructed type schemes and instantiated
the unknowns of Fig. 8. There is a behind-the-scenes structural induction, pro-
grammed in Jape’s tactic language, which produces the conclusions on lines 6 and
7. The activity is intricate enough whilst the result is being constructed, substitut-
ing type variables for unknowns, but once constructed it is simply impenetrable.
It’s preserved in the internal proof for the sake of soundness (and for replaying
the proof if necessary), but far better to hide it from the user’s eyes.

A more inventive use of hiding is employed in a treatment of equational
reasoning in functional programs, where some antecedents of certain steps are
entirely omitted. Using the rule of Fig. 11 and the equational definitions of
Fig. 128, Fig. 13a shows the beginning of a proof in this particular logic.

Figure 13b shows the same proof, with the left antecedent of each rewrite step
entirely omitted, and the justification of the step appealing to the equation used

8 In this particular treatment the encoder has decided to base definitions on associative concatenation
(++) rather than consing (:). Although function definitions then require particular care, some proofs
are easier to construct and to read. It is a design aim that Jape should support the logic encoder’s
choice, as in this case, and not require notations to fit some prejudged convention.

A Minimal Graphical User Interface for the Jape Proof Calculator 257

(a)

(b)

Fig. 13. (a) A partial proof in functional programming. (b) The same proof, with hidden antecedents.

Fig. 14. (a) A partial proof in transitive style. (b) The same proof with transitivity steps exposed.

to close the left antecedent, following [BiW91]. Following [DaB73] ‘fold’ means
right-to-left rewriting, and ‘unfold’ left-to-right.

By hiding certain subtrees Jape is able to show a proof at an appropriate level
of abstraction. To the user, functional programming definitions have the status of
rules, and substitutivity of equals is taken for granted. In the engine, substitutivity
is a necessary step in using the rules. Hiding substitutivity steps, and labelling
the proof as if just the definitions had been used, brings the display closer to the
user’s mental model. Decisions about where to do this are under the control of
the logic designer.

6.4. Pseudo-transitive Reasoning

Lines 1 to 3 of Fig. 13b are the first steps in a proof by equational transformation
that (rev • rev)x = id x. Reading backwards, as the proof was constructed, at first
(rev • rev)x is transformed into rev(rev x) by unfolding the definition of (•); then
id x is transformed into x, again by unfolding. But because the proof is constructed
backward and read forward, the justifications must both appeal to folding. There
is a discrepancy between what the user commanded and what the tool displays
that has to be explained – that means extra cognitive effort on the user’s part
to understand and then discount the discrepancy, and an over-complicated user’s
mental model.

There is a much more natural way of writing that sort of proof down,
appealing implicitly to transitivity of equality, illustrated in Fig. 14a. An advantage
is that the direction of rewriting, somewhat obscure in Fig. 13b, can be seen
directly in the display. In this kind of display the left-to-right steps (for example
line 1 to line 2) are correctly described as unfoldings. The right-to-left steps (for
example line 4 to line 3) are visibly different, are constructed backwards, and
therefore it isn’t surprising that they are differently justified.

Figure 14b shows the proof with transitivity steps exposed (but with sub-

258 R. Bornat and B. Sufrin

stitutivity hidden, as before). The transitivity-hiding transformation which gives
Fig. 14a is similar to the cut and identity-hiding transformation illustrated dis-
cussed above, exploiting the analogy on the one hand between identity rules (e.g.
hyp, axiom) and the reflexivity axiom A = A of equational reasoning, and on the
other between cut and the transitivity of equality. Reflexivity moves a formula
from left to right of an equation, just as an identity rule moves a formula from
left to right of the sequent. Transitivity introduces an intermediate formula to
be worked on, moving it from the right side of one equation to the left side
of the other, just as cut moves an intermediate formula from one side of the
sequent to another. Even though Fig. 14a uses one more line than Fig. 13b, its
clearer treatment of the fold/unfold nomenclature and the lack of repetition of
intermediate results makes it far easier to read and to understand.

7. Gestures

Given a convenient display of a proof or a proof-in-progress, it is necessary to
allow the user to gesture at it. Within the current GUI vernacular and at the
current stage of hardware development, the gestures are made with a mouse. It
is nearly always possible to design the interaction with a logic so that Jape can
be operated without using a keyboard, except when adding new conjectures to a
panel.

Gestures at Jape’s display are interpreted by interaction tactics written in its
programming notation by a logic encoder. Those tactics aren’t described here, but
their main function is to take note of the gesture context in which a command
is issued and interpret the user’s gestures according to the wishes of the encoder.
Since Jape’s internal representation is an inference tree but the display can be a
summary of the tree or a version of box and line, the main technical difficulty in
implementing on-screen gestures has been in relating gestures made at the display
to the corresponding positions in the internal tree.

7.1. Pointing at a Place for Action

Jape’s development began with a consideration of several varieties of the sequent
calculus. In those calculi each rule operates on a single principal formula, typically
eliminating (reading backwards) or introducing (reading forwards) a logical con-
nective. Given that perspective, we exhorted our users to “point to the formula
you want to work on” and to apply a rule to that formula. This remains Jape’s
basic gesture: first point to a formula, then apply a command from a menu or a
panel of buttons.

Figure 15 shows a rule, and Fig. 16 an example in the single-conclusion
sequent calculus. The user points to an instance of a formula, by clicking the
mouse over it, and Jape highlights the selected instance. Clicking on an alternative
formula instance, in the GUI vernacular, cancels the current selection and selects
the alternative. (Jape maintains up to two formula selections at any time: one
hypothesis/left-side selection and another conclusion/right-side.)

The formula-selection gesture disambiguates action in at least two ways: it
shows the point at which a rule is to be applied (in Fig. 16 there are two potentially
relevant tips, and we have chosen the left one) and it shows the particular formula
instance to which the rule is to be applied (in Fig. 16 the intention is to apply

A Minimal Graphical User Interface for the Jape Proof Calculator 259

Fig. 15. The ∀ # rule of the single-conclusion sequent calculus.

Fig. 16. Pointing to a principal formula within a sequent at a particular point in the tree.

∀ #, and there are two formulae in the left tip which could match the formulae
∀x.A(x) in the rule).

A user who attempts to apply the ∀ # rule to the proof of Fig. 16b without
making any formula selection at all is told, by the interaction tactic invoked from
the menu entry labelled ∀ #, to select a sequent to work on. If the user selects
the conclusion formula in the left tip then only half the disambiguation job – the
selection of left or right tip – has been done. If the ∀ # rule is then applied, there
is a choice of principal formulae. The dialogue box with which Jape asks the user
to disambiguate that choice is a distraction at best, and confusing at worst9. We
encourage our users to think of its appearance as an indication of a mistake and
we reinforce the intended mental model by telling them to point to the formula
they want to work on.

In the tree presentation of a sequent calculus the exhortation “point to the
formula you want to work on”, coupled with a menu of formula-simplification
commands, makes an understandable and memorable user’s mental model. The
same slogan makes perfect sense when working backwards in a natural deduction
logic in the box-and-line display since, even when part of the proof is hidden,
there always is a straightforward mapping from conclusion lines in the display to
nodes of the tree.

We would be less than honest if we pretended that this was the whole truth.
There are problems with gestures directed at the box-and-line display. Even
though natural deduction, in this presentation, is one of Jape’s most popular
and successful logic encodings, it introduces gesturing problems that our users
encounter and protest about, and we discuss some of these below.

7.1.1. Forward Reasoning with Multi-antecedent Elimination Rules

Our exhortation needs reinforcing when making forward steps with natural
deduction rules which have more than one antecedent. For example, given the
rule of Fig. 17, and the problem of figure 18, novice users at first expect to have
to point to lines 2 and line 4 before applying the rule, but Jape’s mechanism only
allows them to point to a single antecedent formula. Our exhortation “point to the
formula you want to work on” appears in this case to explain Jape’s behaviour,

9 We aren’t proud of the low quality of Jape’s error messages. We advise our users to read them as
“Whoops! You shouldn’t do that!” if they don’t understand them. Our principles have temporarily
given way to our lack of resources.

260 R. Bornat and B. Sufrin

Fig. 17. The →-E rule of natural deduction.

Fig. 18. Just before a → -E step.

and seems to change their notion of the task by focusing attention on the logical
connective in the formula – after all, it is an elimination rule that is being applied.
The change is productive, in that they are better at finding proofs once they obey
it, but we would prefer to support the more obvious gesture, using the slogan to
sell a more efficient proof search strategy to experts.

7.1.2. Forward Reasoning with Introduction Rules

Jape doesn’t effectively support forward reasoning with multiple-antecedent rules
in which no antecedent has an operator to focus upon. The rule of Fig. 19 and
the partial proof of Fig. 20 demonstrate the difficulty. Our novice users would
prefer to make the next step by pointing to lines 2 and 4 and invoking the ∧-I rule.
Instead they must work backwards from line 5, first with ∨-I(L) and then with
∧-I . The proof can be made, and without gestural complication, but it doesn’t
follow the user’s mental model.

Although Jape doesn’t at present support multiple formula selection, it
wouldn’t be difficult to make it do so. Then it would be possible to allow
our users, given the problem of Fig. 20, to select first P on line 2, second Q on
line 4, and then apply the rule of Fig. 19, taking the order of selection as an
implicit description of the result intended – P ∧ Q in this case. Selection in the
other order would produce Q ∧ P : it would be as easy to undo that mistake as
any other, and trivial to make the right gestures the second time round.

But we have so far refused to satisfy our user’s demands by implementing
such a gesture. Nothing in Jape’s mechanism stands in our way: the technique
of cut hiding would serve as well to construct this forward step as any other.

Fig. 19. The ∧-I rule of natural deduction.

A Minimal Graphical User Interface for the Jape Proof Calculator 261

Fig. 20. A point at which forward reasoning with the ∧-l rule isn’t supported by Jape.

Fig. 21. A Family of rules.

Our reluctance is to do with the GUI and the visual representation of the user’s
gestures. Although Jape can’t do so at present, we have in mind that it will one
day support families of rules like the one in Fig. 21. Suppose that you wanted
to use this rule to combine five antecedents: you can’t see the order in which
a large number of selections were made by looking at undifferentiated marks
on the screen, yet if we supported multiple-antecedent selection, then the order
would be important. It’s quite hard to make five selections in the right order
without visual feedback, and it’s hard to see how that feedback could be given
effectively. Worse still, it’s difficult to see how a mistaken order of selection could
be corrected without cancelling and starting again.

We haven’t yet thought of a minimalist interaction which solves this problem
so it remains an obstacle to our users’ smooth progress with natural deduction
proofs. We don’t believe that we have been too fussy, or that the best is the enemy
of the good in this case. The need to deal with families of rules in the foreseeable
future seems to rule out the easy ad-hoc solution.

7.1.3. Ambiguity of Hypothesis Selections

The economy of the box-and-line display lies in the fact that it displays left-side
formulae only once. But this means that pointing to a left-side formula may not

262 R. Bornat and B. Sufrin

Fig. 22. A tree with two open tips.

(a) (b)

Fig. 23a. Selection of hypothesis formula doesn’t indicate unique tip of tree of Fig. 22. b. Hypothesis
selection disambiguated with conclusion selection.

uniquely identify a tip of the tree and thence a point at which to apply a rule. In
the tree of Fig. 22 the hypothesis P ∧ (Q ∨ R) occurs in every sequent and there
are two open tips. Pointing to an occurrence of P∧ (Q∨R) in either tip of the tree
indicates the point at which to apply a rule. In the corresponding box-and-line
display of Fig. 23a that formula only occurs once on line 1, and selecting it10

doesn’t indicate whether it is the tip which corresponds to lines 3–4 or that which
corresponds to lines 5–6 which is to be worked on11.

In Jape’s box-and-line display forward expansion of the proof must be above
one of the growing points indicated by “· · ·”, just as backwards expansion must
be below such a point, and there is one such growing point for each tip in the
tree. To indicate a tip when more than one is available, we require the user to
point to a conclusion formula in order to indicate the rule-application position
in the tree. This is unnatural when working forward, because the user’s mental
model doesn’t encompass the conclusion: a forward step just goes forward. It is
Jape’s mechanism that should give way, but for the moment we have not been
able to make it do so. Our best effort is to try to alter the user’s perception of the
task with the slogan “point to the conclusion you want to work towards”. The
slogan is moderately effective because it is reinforced by the error report which
Jape produces given the single selection of Fig. 23a, but we are aware that it
doesn’t solve the problem.

10 Selection draws a box close round a formula, just as it does in the tree display. There doesn’t
appear to be any confusion in the minds of our users between the small selection box and the much
larger boxes which enclose hypothetical proofs in box-and-line display.
11 Line 7 of Fig. 23a is ‘greyed out’ because it isn’t relevant to the hypothesis on line 1: it corresponds
to a proved conclusion in the tree of Fig. 22. In figure 23b lines 5 and 6 are greyed out as well,
because they correspond to the right-hand open tip of Fig. 22 and aren’t relevant to the conclusion
on line 4, which comes from the left-hand open tip. In general Jape greys out lines whose formulae
can’t be used as part of a proof step which works on selected formulae.

A Minimal Graphical User Interface for the Jape Proof Calculator 263

7.1.4. Cut Splicing

Given the single selection shown in Fig. 23a, and the application of the ∧-E(L)
rule, there is an obvious place to make the proof grow: just below line 1, giving
Fig. 20. That would have the advantage, in a box-and-line proof, that the formula
P which is extracted could be used as a hypothesis throughout the rest of the
proof. The display and the gesture together suggest strongly that Jape ought to
be more capable than it is. It’s not unusual for a user’s mental model to part
company with a GUI’s behaviour for that reason.

We have envisaged a mechanism which would solve this problem in Jape,
but implementation is a daunting prospect – in principle it involves splicing a
new cut step above the node which introduces the selected hypothesis (the root
of the tree, in the case of Fig. 23a) and repeating all the steps above that point
with a new collection of left-hand-side formulae. We don’t know any other proof
tools which attempt this kind of transformation, but it seems natural, it would be
useful, and we therefore can find no excuse not to implement it eventually. This
is an example of the way that a GUI presentation forces the internal mechanisms
to fall into line with the user’s mental model: the display, the gesture and the
mental model together have made natural and inevitable a development which
might otherwise seem baroque.

A further development of the same mechanism might also solve difficulties
associated with the fact that the sequence of lines is derived simplistically from
the internal tree. In a box-and-line proof it should always be possible to use
line j as an antecedent in a proof of line k when j precedes k and the scoping
of hypotheses (indicated by the box structure) doesn’t prohibit it. A possible
mechanism would introduce every conclusion formula as a hypothesis by using
a cut, and close all non-cut antecedents with an identity rule. Implementation is
as yet a speculative possibility, fraught with interesting technical problems. If we
can pull it off it will be yet another example of the way in which the requirements
of the user’s mental model can usefully drive the development of the GUI’s
underpinning in the proof engine.

7.2. Providing an Argument to a Command

Jape uses unification at every step, and it is prepared to defer almost all of its
unification decisions, if necessary, until enough information is available to resolve
them. The purpose is to allow proof search to be underdetermined, to allow the
user to make choices about the identity of problematic proof components as
the proof develops and at an appropriate stage of the proof. In particular this
allows use of Jape as a true calculator (for example, in the Hindley-Milner type
inference system illustrated in Figs 8, 9 and 10), but it is useful in more mundane
circumstances as well. Figures 24a and 24b show an example of backwards proof
search in an encoding of natural deduction where the negation rule involves an
explicit contradiction. The unknown B in Fig. 24b is a place-holder, a sign that
something isn’t decided. Resolution of the uncertainty in the step from Fig. 24b
to 24c clarifies the situation and calms the display considerably.

Useful as it can be during search, the introduction of an unknown can often
be a confusing distraction into a proof which is essentially a verification. Any
rule which doesn’t have the subformula property can illustrate the problem. For
example, Fig. 25 shows a version of the ∃-intro rule which employs a version of

264 R. Bornat and B. Sufrin

(a)

(b)

(c)

Fig. 24.

Fig. 25. A rule which doen’t have the subformula property.

variable scoping and Fig. 26 the corresponding scoping rule. Figure 27a shows
a position at which the ∃-intro rule can be applied and Fig. 27b the effect of an
application of the rule.

Unknowns are an essential mechanism when there is a real search for a gen-
uinely unknown formula; otherwise they are visually and cognitively distracting.
Here we’ve chosen to emphasise the potential distraction by illustrating use of a
rule which includes a normally-hidden antecedent, a side condition that a par-
ticular variable name must be in scope at the point of application of the rule.
In this case the unknown is a meta-logical device, an intrusion of an encoding
mechanism into the world of proof.

In applying a rule like that of Fig. 25, then, our users may want to provide
an argument formula to help define the particular rule instance that will be used.
We prefer to avoid use of the keyboard, and the only alternative is to select from
the text available in the proof. But this selection isn’t indicating a position in
the proof nor a formula to be worked on, so it’s necessary to use a different
gesture. The text-selection vernacular in word processing is press-and-drag, a
‘wipe’ movement across text to be chosen, and we have used exactly the same
gesture. Text selection is highlighted distinctively, as illustrated by the shading on
line 3 of Fig. 28a.

That text selection, followed by application of the rule from Fig. 25, produces
Fig. 28b (here the logic encoder has chosen to apply the rule of Fig. 26 automat-
ically as part of the proof step, and to hide the line generated by that substep).
This is a far quieter display than Fig. 27b – though when the unknown and the

Fig. 26. The scoping rule.

A Minimal Graphical User Interface for the Jape Proof Calculator 265

(a)

(b)

Fig. 27a. Before application of the ∃-l rule. b. After injudicious application of rule.

(a)
(b)

Fig. 28. Sub-formula selection provides argument. b. After application of rule with argument.

strange antecedent do appear there is something to be learnt from their jarring
intrusion into a quiet proof.

In Jape the gesture context – roughly, what has been selected and where - is
the raw material on which interaction tactics feed. If we wish it we can avoid
entirely the particular problem illustrated in Fig. 27b, by designing our menus
and buttons to invoke a tactic which complains if there isn’t a text selection
suitable to be an argument to the rule application, or applies the rule silently if
there is such a selection. This is an example of the way that a logic encoder can
make proof quieter than Jape’s normal operation would make it, hiding details
of the logic from its users.

It is normal in formula-manipulation tools to provide some kind of structural
subformula selection, rather than the simple text selection provided here. We are
concerned to be able to deal with formulae like x + y + z, where y + z is a
visual but not a structural subformula, given a normal left-to-right parse of the
formula (the structural problem would be exacerbated if + were to be treated

266 R. Bornat and B. Sufrin

Fig. 29. A rule which is best applied to a user-defined substitution.

(a)

(b)

Fig. 30.

as an associative operator). The whole issue of simple manipulation of operators
which may be treated syntactically or semantically as associative is one that we
are acutely aware of. We’d be reluctant, because it would hardly be minimalist,
to have two similar gestures, one for textual selection and the other for structural
selection.

7.3. User-defined Substitutions

It isn’t necessary for Jape to interpret a text selection as a rule argument. In the
case of a rule which uses a substitution form, for example that in Fig. 29, we
would expect Jape to interpret a text selection as defining a site for rewriting.

Rules like that in Fig. 29 have to match an explicit substitution formula to a
problem formula. That requires higher-order unification, and to begin with Jape
used a version of that algorithm, with aid from the user to indicate the substituted
formula X. But that gave too little control to the user, was difficult to understand
and so wasn’t quiet or minimalist enough.

The mechanism now used by the proof engine in Jape, under the logic
encoder’s direction, is to interpret a text selection, or a number of simultaneous
text selections in a single proof formula, as a description of a substitution
form. A user-defined substitution needs special treatment because it’s fragile –
that is, it’s guaranteed to collapse immediately, by normal substitution-reduction
mechanisms, back into the formula from which it was made. Jape’s usual treatment
of substitution forms is to simplify them out of existence whenever possible,
so user-defined substitutions are specially marked as fragile, and Jape treats
them gently during unification. Figure 30a shows an example of the preparation
for a use of the rule in Fig. 29: we want to perform induction on both the
occurrences of x, and the text selections implicitly describe the substitution form
(rev(rev v) = v){v\x}. Figure 30b shows the effect of the application of the rule.

Naturally we don’t tell our users that they are constructing substitutions in
order to represent selected subterms. We explain the gesture with the slogan

A Minimal Graphical User Interface for the Jape Proof Calculator 267

Fig. 31. The list induction rule without explicit substitution forms.

Fig. 32. A rewrite rule which uses substitution forms.

“select the subformula(e) you want to work on”, and to date it has fitted well
into every one of the logics we have encoded.

Logic encoders need not even write the rule in terms of substitution but may
use the kind of ‘abstraction’ or ‘predicate’ notation familiar from the mathematical
vernacular. Figure 31 shows how induction would be described in the encoding
of the logic.

User-constructed substitutions indicate positions in formulae in the same way
that formula selections indicate positions in the tree. We have only just begun
to explore their potential and we anticipate that we will be able to use them to
implement a version of proof by pointing [BkT95].

7.4. Interpretation of Substitution Forms

The technique of user-directed substitution makes it easy to use Jape as a rewrite
engine, and extended use has exposed a technical problem. It begins not as a
GUI problem but a meta-logical difficulty with the interpretation of substitution
forms. For example, in a classical logic the equivalence of P → Q and ¬P ∨ Q is
provable, and many users would expect to be able to use that equivalence with a
rewrite rule like that of Fig. 32.

That works well in most circumstances, but there’s a problem when attempting
to rewrite at a position within a binding construct. For example, (∀y(v)){v\(A(y) →
B(y))} doesn’t reduce to ∀y(A(y) → B(y)), and that means we can’t replace
A(y) → B(y) with ¬A(y) ∨ B(y) in that context using the rule of Fig. 32.

The problem is that formal substitution, as it’s normally understood, doesn’t
support the notion of substitutivity of equals sufficiently well. We can see, meta-
logically, that if P → Q is equivalent to ¬P ∨ Q in any context or none, then it
would be safe to rewrite with that equivalence at any subformula position. That
can be expressed [Gri98] by employing a notion of ‘uniform substitution’. If we
interpret A{v\\E} to mean “replace every unbound occurrence of v in A by E and
don’t worry about variable capture”, then a rule like Fig. 33 will be admissible in
most logics, and the example problem will be solved.

This doesn’t quite solve Jape’s problem, though, because not every rewrite
can be based on so absolute an equivalence. Because a proof tool has to adhere
precisely to the principles of substitution simplification and follow the rules of a

Fig. 33. Rewriting with uniform substitution forms.

268 R. Bornat and B. Sufrin

Fig. 34. A multiplicative rule.

Fig. 35. A deferred context split, and use of drag-and-drop to resolve the ambiguity.

logic absolutely literally, it will frequently come across situations where a rewrite
is not always as straightforward as a user might hope. Then it will be necessary
to choose between two equally unpleasant alternatives: either it must deny the
desired step without explanation, or it must explain more about the workings
of substitution forms than the average user will wish to know. Our intention to
produce a tool with minimal interaction and passive adherence to a user’s wishes
seems to have hit a brick wall at this point.

7.5. Drag and Drop

Many logics use context-splitting rules to illustrate how hypothesis formulae
can be treated as resources during the proof of antecedents. This is taken most
seriously in linear logic [Gxx89] where multiplicative rules split both left and right
contexts - see, for example, Fig. 34.

Jape supports this kind of rule, and when one is applied it defers a decision
about the division of formulae between left and right subtrees. The internal
mechanism uses a proviso which says that the proof is acceptable provided that
some way is found to resolve the context split – that is, so that a specified collection
of formula instances unifies with a specified collection of context variables.

Using Jape’s normal proof mechanisms it’s possible to complete many proofs
using identity rules (axiom, hyp) to demand unifications which implicitly resolve
the context-splitting ambiguity. But it’s difficult to make proofs in that way,

A Minimal Graphical User Interface for the Jape Proof Calculator 269

Fig. 36. A rule which uses explicit thinning.

Fig. 37. Explicit thinning involves context variables not shown in the proof.

because until it is completed the proof will contain a lot of unknowns, and a user
is required to devise and carry out an intricate unification and search strategy
to eliminate them. Better to use gestures to resolve the ambiguity if we can, and
Jape employs drag-and-drop for the purpose.

When there’s a context split a UNIFIESWITH proviso appears, as in Fig. 35.
There’s no obligation on the user to resolve the split immediately, but when it be-
comes necessary it is resolved by dragging formula instances to context variables.
If a user drags a formula instance across a context variable which is, according
to the provisos, capable of receiving it – for example, ∆1 or ∆2 in Fig. 35 – that
variable highlights; if the mouse is released at that point then Jape performs the
unifications necessary to include the formula instance in the context variable12.

We feel that in principle the drag-and-drop gesture is just the right one to re-
solve this kind of ambiguity, making context-splitting proof steps determinate. But
in several respects the presentation and gesture are far from ideal. First, the provi-
sos are an internal technical device, and it would be better to show an explanation
of the situation which hid the internal detail and emphasised the fact that dragging
and dropping are required. Second, at the physical level it is a second use of the
press-and-drag gesture, already employed for text-selection13. Third, concentra-
tion on formula instances is essential but is invisible on the screen – for example,
in Fig. 35 one of the instances of P must be dragged to ∆1 and the other to ∆2.

Last and most problematic of all, dragging formulae within the proof doesn’t
allow us to use the gesture for one of its originally-intended purposes, to support
proof steps with explicit thinning. Figure 36 shows an example modal logic rule,
and Fig. 37 a proof step which uses that rule (slightly faked: Jape’s presentation
of the proviso, at the time of writing, isn’t so concise). As with all explicit
thinning rules, the context split required to match the consequent involves a
context variable. (∆ in this case) which appears in the proviso but not in the
proof. In this example the problem is made worse by the fact that the other
context-split destination ! Γ does not appear in the proof either, even though
the variable Γ does.

All of these difficulties might be resolved if a digested version of the proviso
were shown in a separate pane of the proof window and if drag-and-drop gestures
to resolve context splits were restricted to that pane. That display would emphasise
the fact that drag and drop is required, that its job is to resolve context splits.

12 The gesture isn’t symmetric. We’ve taken the MacOS notion of dropping into a container as our
metaphor, so it’s impossible to drag context variables to instances.
13 This is a consequence of our decision to stay within the GUI vernacular. Other tools, such as
wordprocessors, share this ambiguity of gesture.

270 R. Bornat and B. Sufrin

In particular it would resolve the physical ambiguity: press-and-drag could mean
one thing in the proof pane, another in the context-split pane. We’re not entirely
convinced that this would be the best solution, though: it feels like a bit of space
cadet machinery, and we’d prefer to do everything on the simple display of the
proof. Experiment is required, but the example of Fig. 37 will probably decide
the issue, since without a special display mechanism it’s hard to see how a user
could resolve that kind of split at all.

8. Related Work

Our original inspiration in devising Jape came from [Dcy87, Daw90, JJL91]. The
Tarski’s world program [BaE93] is a more recent influence. The CMU proof tutor
[ScS93] is an educational tool which has a graphical user influence but is by no
means so quiet as Jape.

Our attempts to design and implement passive tools goes back to the late
1970s [BoT89]. Our interest in educational uses of formal calculators originated
in the Calculator project at QMW [FuO96].

Most of the work in user interfaces for proof tools considers the problem of
attaching a user interface to a powerful pre-existing theorem prover, an approach
which we have explicitly rejected. The work associated with the Coq theorem
prover has been a rich source of competitive challenges for us, especially [TBK92]
and [BkT95].

9. Conclusions

GUI design, taken seriously, is a subtle business. A minimalist GUI for a useful
proof tool looks, after six years experimental development of Jape, more and more
possible. There is still much work to do, concentrating on the fine details of the
display and the interpretation of gestures, and each advance in the capabilities of
the tool will introduce new problems. The most obvious challenge to minimalism
is to support derivations in logics (such as program derivation logics, and calculi
of refinement) in which formulae can become huge (because they are programs);
we are beginning work on such problems. (Jape can already deal with the logical
content of such calculi: the problem is in the display and navigation of long
derivations involving very large formulae, where another layer of display abstrac-
tion seems to be necessary, and another layer of gesturing seems unavoidable.)

So far as the display is concerned, our principle has been to make it as quiet
as possible: that is, to look as much as possible like the proof that might be in a
user’s head, and to describe as little as possible of the internal workings of the
tool. Quietness isn’t a design method, however, it’s a design principle: since we
can’t make our tools actively helpful, then let us make them passively and quietly
responsive, and see if that will do.

Quietness is largely achieved by hiding details and mechanism, thus making
the tool seem much simpler than it really is, but quietness is not simply a ‘less
is more’ slogan. We have quietened our interface by leaving a great deal out, to
be sure: for example, by restricting the kinds of gesture which we are prepared
to recognise. But when the display shows what the user expects to see – as, for
example, in the case of transitive proof – then it is quieter as a result, because it
does not require a mental translation from what is displayed to what is intended.

A Minimal Graphical User Interface for the Jape Proof Calculator 271

In this case the tool has become quieter by becoming more capable, though its
implementation has become more complex.

Gesture interpretation is the most active area of development. It’s necessary
to resolve the ambiguity inherent in rule application with a variety of gestures
rich enough to convey those intentions concisely, but which still use no more than
the parsimonious vernacular of point-and-click, press-and-drag which is all that
users, operating systems and programming-language libraries can deal with at
present. Jape’s formula-selection, substitution-selection, subformula-selection and
context-variable-dragging are a first step towards the goal of a user interface that
can truly communicate with a theorem prover.

References

Jape web sites: http://www.dcs.qmw.ac.uk/∼richard/jape and
http://www.comlab.ox.ac.uk/oucl/users/bernard.sufrin/jape.html

[App90] Apple Computer Inc.: Macintosh Human Interface Guidelines, Addison-Wesley, 1990.
[BaE93] Barwise, J. and Etchemendy, J.: The language of first-order logic, CSLI, 1993.
[BkT95] Bertot, Y., Kahn, G. and Théry, L.: Proof by Pointing. LNCS 789, 141–160, 1995.
[BiW91] Bird, R. S. and Wadler, P.: An Introduction to Functional Programming Prentice-Hall

International, 1991.
[BoT89] Bornat, R. and Thimbleby, H.: “The life and times of ded, text display editor”, in

Cognitive Ergonomics and Human-Computer Interaction, Long and Whitefield (eds) CUP,
1989.

[DaB73] Darlington, J. and Burstall, R. M.: “A System which Automatically Improves Programs”,
Proceedings of the 3rd IJCAI, Stanford, 1973.

[Daw90] Dawson, W. M. G.: A Generic Logic Environment, PhD thesis, Imperial College,
University of London, 1990.

[Dcy87] Dyckhoff, R.: Implementing a simple proof assistant, in Workshop on Programming for
Logic Teaching, Leeds, July 1987 (program available from Machine Assisted Logic
Teaching Project, Computational Science Division, University of St Andrews), 1987.

[Fit52] Fitch, F. B.: Symbolic Logic, Ronald Press, New York, 1952.
[FuO96] Fung, P. and O’Shea, T. M. M.: “Computer tools to teach Formal Reasoning”, Computers

and Education, 27(1), 1996.
[Gxx89] Girard, J.-Y. et al.: Proofs and Types. Cambridge Tracts in Theoretical Computer Science

7, Cambridge University Press, 1989.
[Gri98] Gries, D.: “Uniform substitution” (private communication), 1998.
[JJL91] Jones, C. B., Jones, K. D., Lindsay, P. A., Moore, R.: mural: A Formal Development

Support System. Springer-Verlag, 1991.
[MeH96] Merriam, N. A. and Harrison, M. D.: Evaluation and Comparison of Three Theorem

Proving Assistants, Eurographics Workshop on Design, Specification and Verification of
Interactive Systems, Springer-Verlag, 1996.

[Nor98] Norman, Donald A.: The Invisible Computer: Why Good Products Can Fail, the Personal
Computer Is So Complex, and Information Appliances Are the Solution, MIT Press, 1998.

[NeL95] Newman, William and Lamming, Mik: Interactive System Design Addison-Wesley, 1995.
[NeS79] Newman, William and Sproull, R. F.: Principles of Computer Graphics, McGraw-Hill,

1979.
[ReC93] Reeves, S. and Clarke, M.: Logic for Computer Science. Addison-Wesley, 1990.
[ScS93] Scheines, R. and Sieg, W.: The Carnegie Mellon Proof Tutor. In Judith V. Boettcher

(Ed.), 101 Success Stories of Information Technology in Higher Education: The Joe Wyatt
Challenge. McGraw-Hill, 1993.

[TBK92] Théry, L., Bertot, Y. and Kahn, G.: Real Theorem Provers Deserve Real User-Interfaces.
Fifth ACM Symposium on Software Development Environments, 1992.

[Thi90] Thimbleby, Harold: User Interface Design, ACM Press, 1990.
[WoD96] Woodcock, J. and Davies, J.: Using Z: Specification, Refinement and Proof. Prentice-Hall

International, 1996.

Received November 1998

Accepted in revised form June 1999

