Animating Operational Semantics with JAPE

Bernard Sufrin*
Richard Bornat!

Revision 1.25%

Abstract

In this note we give a brief introduction to the ideas of operational semantics and show
how to use JAPE to animate the operational semantics of a couple of simple programming
languages. We give the syntax and inference rules for each language in JAPE’s metalan-
guage, then define tactics suitable for automating the choice of rules during the simulated
execution of a program.

We assume that the reader has used JAPE to do formal proofs in a conventional logic, but
we do not expect detailed knowledge or understanding of JAPE’s metalanguage or tactic
language.

1 Introduction

was to help people to learn how to do fully formal proofs in more-or-less standard logics,

an important subsidiary goal was to provide a means of bringing other kinds of formal
system to life. Amongst other applications we had in mind were type-inference, Plotkin-style
Structured Operational Semantics (small-step semantics), and Kahn-style Natural Semantics
(big-step semantics). In this note we show how to use JAPE to animate the operational
semantics of a couple of simple programming languages.

J APE was designed to make it easy to work with inference systems. Although our main aim

The most notable early approaches to specifying the semantics of programming languages
operationally did so by defining abstract machines with instructions which were directly de-
rived from program phrases — for example [Lan64]. Such approaches have the advantage of
being very nearly direct interpreters for the language being defined; on the other hand, the
order in which essential computations take place tends to be overspecified (relative to a more
abstractly given semantics) by such an approach.

*Programming Research Group and Worcester College, Oxford
*Queen Mary and Westfield College, London
£14:55 22nd September 2000

Plotkin’s method of Structured Operational Semantics[Plo81], and Kahn’s refinement, Nat-
ural Semantics|Kah87] are a more abstract approach, in which computations are defined by
inference systems and the ordering of essential computations is specified only implicitly by
the dependency relations between parts of an inference rule.

In the next section we illustrate both Structural and Natural semantic methods by using them
to define computations in a declarative language based on pure lambda calculus.

2 The Lambda Language

2.1 Syntax

LAMBDA is a family of languages based on the A calculus. Its forms of expression are outlined
below (we use names based on uppercase E to denote expressions, names based on lowercase
z,y, z to denote variables, and names based on num to denote numbers).

Az o FE Abstraction
E By Application
let x = F in F5 Block

E, + FEy Sum

x Variable
num Number

The first kind of expression denotes a function abstraction: “that function of z whose value
is E”; the second kind of expression denotes a function application: “apply the function F;
to the operand E»”; the value of a block is the value of Fsy in a context where z is taken to
have the value of F;. As usual, function application is syntactically more binding to the left
than to the right, so that (F; E;) F3 may be written without parenthesis as F; Ey F3. In
order to simplify our presentation we will equip LAMBDA with only one arithmetic operation,
namely integer addition.

2.2 Substitution Semantics of LAMBDA

Computation takes place as a sequence of steps, each of which transforms the whole program
in some way. The relation —, defined inductively in Figures 1 through 3, characterises a single
such step. As always in an operational semantics there are two main categories of rule. The
computation rules (Figure 1) describe what happens when a function is applied — whether
it be an abstraction' or the built-in arithmetic primitive. The structural rules (Figure 2)
describe the way in which computations may take place within program structures as well as
at the top level.

!The notation E[E’/z] stands for the expression E with all free occurences of z replaced by E'.

(s e B) E—E[E /2] D¢t

(num’ is the sum of the numbers nums, nums)

Addition

numy + numg—snum’

Figure 1: Computation rules for LAMBDA

E1—>E{
—————— = Operator
F E2—>E1 Ey

E2—>Eé

Operand

E1 E2—>E1 Eé

E1—>E{

Add
Ey+ EB—E[+ B, O F

Eg—)Eé
B, + Es—FEy + Eé

Addp

Figure 2: Structural rules for LAMBDA

The last remaining rule (Figure 3) is neither structural nor computational in content: it
defines the meaning of a block in terms of an abstraction and an application. It is called a
sugaring rule.

letz = B in E=(we B)(E) 9

Figure 3: Sugaring rule for LAMBDA
A computation rule may be directly applicable to the top-level of a program, in which case
no structural rules need be applied.
Example 2.2.1: A computation step using Addition
Addition

4+ 4—8

Example 2.2.2: A computation step using Beta

Owez+2)(d)—d+a Dota

On the other hand computation rules are not always applicable at the top level of the program,
and structural rules must, in general, be used to locate an expression at which a computation
can take place.

Example 2.2.3: A computation step using Operand and Addition

m Addition

Az ez +1)(2+2)=(Azex+z)(4)

Operand

2.3 Irreducible Expressions and Normal Forms

An expression is said to be reducible if at least one of the above rules apply to it, and irreducible
otherwise. It may be irreducible because the computation from which it arose has finished,
(in which case it is said to be in normal form), or because it is in some sense erroneous (in
which case it is said to be stuck). The normal forms of LAMBDA are defined to be numbers
and abstractions — all other irreducible forms are stuck.

Example 2.3.1: 3 + 3 is not irreducible.

Example 2.3.2: 3 is a normal form.

Example 2.3.3: ~3 (negative 3) is a normal form.

Example 2.3.4: Az e z + z is a normal form.

Example 2.3.5: Az 3+ 3 is a normal form.

The expression to the left of the arrow in the consequent of a rule is called the subject of the
rule. An expression is obviously irreducible if it does not match the subject of any of the
LAMBDA rules, but it may do so and still be irreducible.

Example 2.3.6: 3 3 is stuck, despite matching the subject of both Operator and Operand.

This is because neither its operator nor its operand are reducible, so the antecedents of the
rules whose subjects it matches are unprovable.?

2.4 Computations

A finite computation is a sequence of expressions Ey, ...F, such that 0 < i < n = FE;—FE; 1.
This is true if and only if 0 < i < j < n = E; > Ej, where (=) is the reflexive transitive
closure of the single-step relation. This relation is defined inductively by the rules in figure 4.

2The form of meta-logical reasoning employed here can in general be used to prove many kinds of property
of a language defined by an inference system, but we shall not do so in this note.

BB g
lal—% E&

E, 5 By, Ey,> Es
E, 5 Ej

Transitive

" Identity
E—FE

Figure 4: Transitive Computation Rules

It can be shown that the rules which define LAMBDA are nondeterministic — in the sense that
the sequence of expressions in a computation which starts at a given expression is not strictly
determined. For example, the distinct computations below start at the same expression

(3+4) + (546)—=7+ (5 +6)—7+ 1118
(B3+4)+ (5+6)=(3+4) + 1157+ 1118

as do
Azez+z)3+4)—>(Nzex+1z)(7)=7+T7T—14
Aroez+2)3+4)—=0B+4)+B+4)=>T+(3B+4)=>7+7-14
Arez+2z)3+4)=B+4)+B+4)—B+4)+7T=>T+7-14

On the other hand it can also be shown that if two computations starting with the same
expression both reach a normal form, then the normal forms are the same. In other words the
normal form reached by a terminating computation is determined by the starting expression.
It would be easy to modify the rules to make computations deterministic, and we shall even-
tually show how to do so. But first we will explore the present collection of rules using JAPE
— designing tactics which characterise the two principal systematic methods of mechanis-
ing the inferences by which LAMBDA computations can be conducted, namely normal order
evaluation and applicative order evaluation.

2.5 Structural Semantics of LAMBDA in JAPE

Defining the Notation

When presenting an inference system to JAPE we first describe its syntax. Since we will be
using a nonstandard character coding to write the expressions of our language, we start by
declaring this fact:

FONTS "Konstanz"

We adopt the convention that (identifiers beginning with) lowercase letters stand for variables,
and (identifiers beginning with) uppercase letters for formulz of some kind.? Names beginning
with num will stand for numbers.

CLASS VARIABLE abcdefghijklmnopgqrstuvwxyz
CLASS FORMULA ABCDEFGHIJKLMNOPQRSTUVWIXYZ
CLASS NUMBER num

The phrases of any object language which we study with JAPE are a subset of JAPE’s generic
expression language. This language admits expression-forming operators of various fixities
and arities in addition to the usual atomic forms. An object language is defined by declaring
the fixity, arity and syntactic scopes (binding powers) of its operators. Here we declare the
main composite forms of the LAMBDA notation.

LEFTFIX 20 A e
INFIX 1T — —*
INFIX 100T =
INFIX 200T +
PREFIX 1000 ~
LEFTFIX 10 let in

We also need to declare all the variable binding forms in our object language and indicate the
scope of the variables bound therein.

BIND x SCOPE T IN \ x o T
BIND x SCOPE T IN let x=S in T

JAPE’s rules are expressed in the form of sequents. Here we declare the principal form of
sequent we will use. For (trivial) technical reasons JAPE presently requires that sequents be
two-sided, but in this work, the LIST of formulae to the left of the turnstile will always be
empty.

SEQUENT IS LIST + FORMULA

Finally we declare the notation we shall be using to denote substitutions, and its syntactic
binding power — higher than that of any other symbol used in this theory.

SUBSTFIX 500000 [S / s 1]

Coding the Rules

A direct JAPE encoding of the rules outlined above is straightforward to construct. Here we
do so in the scope of a declaration which places buttons which invoke them on a menu called
Lambda Rules.

3Here and subsequently JAPE input will be presented in a typewriter-like face.

MENU "Lambda Rules"
RULE Beta F (AN x ¢ S) T — S[T/x]

RULE Let F let x=T in S — (A x e S)(T)
ENTRY Addition IS Add
SEPARATOR

RULE Rator FROM F+ S—S’ INFER - ST — S’ T
RULE Rand FROM F+ T—T’ INFER F ST —» S T’
RULE AddL FROM F E1—E1’ INFER F E1+E2 — E1’+E2
RULE AddR FROM + E2—E2’ INFER F E1+E2 — E1+E2’

SEPARATOR

RULE Transitive FROM F A—*B AND F B—x*C INFER F A—*C
RULE Step FROM + A—B INFER + A—*B

RULE Identity INFER F A—x*A

END

The only notable thing here is the use of the tactic Add to implement addition. It does so by
invoking the Addition rule, which transforms a goal of the form T1+T2—T3 into one of JAPE'’s
built-in arithmetic goals "ADD" (T1,T2,T3, (*)). Add then solves the latter by invoking the built-
in decision procedure for such goals, namely EVALUATE. The use of the decision procedure is
concealed in the proof by embedding its work in LAYOUT tactics.

TACTIC Add() IS (LAYOUT "Add" () Addition (LAYOUT "" () EVALUATE))
RULE Addition IS FROM F "ADD"(T1, T2, T3, (*)) INFER F T1+T2—T3

Exploring the reduction relation

Before defining systematic computation strategies, we will proceed for a while to explore the
computation relation ad-hoc. The way to do this in JAPE is to build a panel of conjectures of
the form £ 5 _T and attempt to prove them. The “_T” is a “proof unknown” — a (meta-)
variable whose value will be determined during the proof.

CONJECTUREPANEL "Structural Semantics"

THEOREMS AdHoc

ARE + let f = (A x ® x) in f f 1 —x _T

AND F (1+2)+(3+1)—*_T

AND F (142)+("4)—*_T

AND + let x = 142 in x+x —*_T

AND F let c= (XA f o A g o X a e f(ga)) in
let £ = () a ® a) inc f f —x _T

AND F let g = (X £ o £ f) ingg —* _T

AND F let g = (XA £ o f f) in
let k = (X a e A b e a)ink 2 (gg) - _T

END

END

After initializing JAPE with the theory lambda.jt, we can select conjectures from the panel
for proof, then invoke rules from the “Lambda Rules” menu. Below we give an account of
two such proofs.

Example 2.5.1: A normal form for (1+2)+(3+1)

Addition Addition
3+1—4 3447
Addition AddR Step
14+2—3 3+(3+1)—3+4 3+4—*7 =T
AddL Step Transitive
(142)+(34+1)—3+(3+1) 3+(3+1)—*3+4 3+4—% T
Step Transitive
(142)+(34+1)—*3+(3+1) 3+(3+1)—o%T

Transitive

(142)+(3+1)—=*T

Figure 5: Near-complete derivation of a normal form for (1 +2) + (3 + 1)

Addition Addition
3+1—4 3+4—7
Addition AddR Step Identity
1+2—53 3+(3+1)—3+4 3+4—*7 7—*7
AddL Step Transitive
(1+2)+(3+1)—3+(3+1) 3+(3+1)—*3+4 3+4—*7
Step Transitive
(142)+(34+1)—*3+(3+1) 3+(3+1)—*7
Transitive
(14+2)+(3+1)—>*7
Figure 6: Completing the derivation (suml)

(sum0)

In Figure 5 we show a nearly-complete derivation of a normal form for (1+2)+ (3+1). Notice
that we have been systematic in our derivation: each computation step, including the last,
is set up by an application of the Transitive rule followed by an application of the Step rule.
Once the expression has been reduced to normal form this way, the computation is completed
(Figure 6) by an application of the Identity rule.

Example 2.5.2: A normal form for let £ = (A y o y) in f £ 1

Figures 7 through 12 show how a computation of a normal form for a more complicated
expression might proceed under human guidance.

Let
let f=(\yey)in f f I—(\fef f 1)(\yey)
Step
let f=(\yey)in f f 1—>*(\fef f 1)(\yey) (Afof f 1)(Ayey)—* T

Transitive

let f=(\yey)in f f 1>* T

Figure 7: First computation step (lam-adhoc0)

We set up the first computation step, a Let, by applying Transitive then Step (Figure 7).

Let Beta
let f=(\yey)in f f 1—(\fof f 1)(\yey) (Afof f 1)(Ayey)—(Ayey)(ryey)1
Step Step
let f=(\yey)in f f I—*(\fof f 1)(\yey) (N fof £ 1)(Ayey)—*(\yey)(hyey)1l
Transitive

let f=(vyey)in f f 1—=*(\yey)(\yey)1
Figure 8: Mistaken second computation step (lam-adhocl)
We then make a mistake, and erroneously omit the use of Transitive in setting up the second

step (Figure 8), so although this step can itself be completed with Beta, it leaves the result
in reducible form but with no scope for further work.

Beta

(Afof £ 1)O\yey)—(ryey)(hyey)1

Let Step

let f=(xyey)in f f 1—(\fof f 1)(\yey) (Afof £ 1)(\yey)—*(ryey)(Ayey)1 (\yey)ryey)1—* T
Step Transitive

let f=(yey)in f f 1—>*(\fef f 1)(Ayey) (Afof f 1)(Ayey)—*.T

Transitive
let f=(\yey)in f f 1% T

Figure 9: Correct second computation step (lam-adhoc2)

In Figure 9 we correct the earlier mistake — this time setting up the computation properly
with Transitive.

Beta

(\yey)(ryey)—hyey
Rator
Ovyey) hyey)1—(nyey)1
Beta Step
(Afof £ 1)(ryey)—(ryey)(Ayey)l (\yey)(ryey)1—*(ryey)1 (yey) 15T
Let Step Transitive
let f=(ryey)in f f 15 (\fof f 1)(\yey) (\fof £ 1)(\yey)—*(yey)(ysy)1 Oyey)(ryey)1—* T
Step Transitive
let f=(hyey)in f f 1—>*(\fof f 1)(Ayey) (nfof £ 1)(ryey)—* T
Transitive

let f=(\yey)in f f 1—* T

Figure 10: Just one Beta step to termination (lam-adhoc3)

Beta
(vyey) hyey)—yey
Rator Beta
(vyey)rysy)1—(yey)1 (yey)1—1
Beta Step Step
(Afof f 1)(ryey)—(ryey)ryey)l (yey)(yey)1—*(ryey)1 (yey)1—*1
Let Step Transitive
let f=(ryey)in f f 15 (\fof f 1)(yey) (Afof £ 1)(ryey)—*(ryey)(hyey)1 (vyey)(hyey)1—*1
Step Transitive
let f=(\yey)in f f 1—*(\fof f 1)(\yey) (\fof f 1)(Ayey)—*1
Transitive

let f=(\yey)in f f 1-—*1

Figure 11: Non-systematic, but succesful, application of Step,Beta (lam-adhoc4)

Beta Beta

(\yey)rysy)—yey (yey)1—1
Rator Step Identity
(yey)(yey)1—(yey)1 (yey)1—*1 1—*1
Beta Step Transitive
(Afof f 1)(\yey)—(\yey)(yey)l (\yey)(ryey)1—*(yey)1 (yey)1—*1
Let Step Transitive
let f=(xyey)in f f 1—(\fof f 1)(\yey) (Afof £ 1)(\yey)—*(ryey)(Ayey)1 (\yey)(hyey)1—*1
Step Transitive
let f=(hyey)in f f 1—*(fof f 1)(ryey) (hfof £ 1)(hyey)—*1
Transitive

let f=(\yey)in f f 1-—>*1

Figure 12: The systematically completed computation (lam-adhocb)

10

A few more inferences bring us to the situation shown in Figure 10. At this point we notice
that a single Beta step will complete the computation, so do not bother to apply Transitive
before setting it up. This leads to the completed proof in Figure 11.

Whilst it’s fairly realistic to expect a human to have the insight to recognise a situation
which is one computation step away from a normal form, it is unreasonable to this to be
cheaply automatable. So it is worth exploring the systematic use of Transitive to set up each
computation step, including the last. It turns out that for this computation it takes only
a couple more inferences than the computation shown in Figure 11. The final step of the
derivation is the identity step, which is taken when the expression has reached normal form.
The result of doing so is shown in Figure 12.

This preliminary exploration of the reduction relation shows that computation can be con-
ducted step-by-step by under human guidance in much the same way as proofs can be dis-
covered. But if we are to justify the rules we have given as an operational semantics, then
we shall need to automate the process of computation-by-proof so that it can be conducted
without insight but without mistakes.

A superficial interlude — improving the interface

When JAPE is used this way to animate a program of nontrivial size it can be distracting
to have to look at the details of the application of the structural rules. In most circum-
stances someone who is exploring the semantics or behaviour of a program can understand
the computation steps which have taken place by reading the sequence of expressions in the
(top-level) computation. JAPE provides machinery which lets us automatically conceal parts
of a completed derivation, and in this section we shall show how to deploy that machinery
by building an interaction tactic which will conceal most of the distracting clutter. At the
same time we will will automate the application of Transitive and Step rules when finding a
computation sequence.

The interaction tactic TransitiveStep(rule) arranges for its argument, rule, to be applied. It
applies rule after Transitive and Step if it is used when the current goal is a —*-judgement.
On the other hand, it applies only rule if used “inside” a computation step, i.e. when the
current goal is a —-judgement. It declares, (using LAYOUT) that the details of a computation
step set up in this way can be suppressed once the step is complete (i.e. the proof tree above
Step is closed).

TACTIC TransitiveStep(rule)
(WHEN (LETGOAL (_E —* _T) Transitive (LAYOUT "Js" () Step rule))
(LETGOAL (_E — _T) rule))

The tactic Finished applies the Identity rule — thereby terminating the computation — if the
subject expression is in normal form.

TACTIC Finished()

(WHEN (LETGOAL (_num —* _T) Identity)
(LETGOAL (* _num —* _T) Identity)
(LETGOAL ((A _x e _E) —* _T) Identity))

11

We provide an improved interface to the semantics by adding buttons which invoke rules
under the control of TransitiveStep.

CONJECTUREPANEL "Structural Semantics"

BUTTON Beta IS apply TransitiveStep Beta
BUTTON Let IS apply TransitiveStep Let

BUTTON Rator IS apply TransitiveStep Rator
BUTTON Rand IS apply TransitiveStep Rand
BUTTON AddL IS apply TransitiveStep AddL
BUTTON AddR IS apply TransitiveStep AddR

BUTTON Addition IS apply TransitiveStep Add
BUTTON Finished IS apply Finished
END

Example 2.5.3: Normal form for a simple block

Figures 13 through 16 show, using JAPE’s Fitch-box display style, the derivation of a normal
form for a simple block. Each proof step was made using the buttons on the conjectures menu
to invoke the rules. The first step taken is to desugar the Let, and this leaves the situation
shown in Figure 13. After we decide to simplify the operand of the resulting application and
apply Rand, the situation is as shown in Figure 14. The goal for us to address is on line 2,
and the Step and Rand inferences we took to get to this state are shown explicitly — because
this branch of the proof is not yet closed. We close it by invoking Add, and JAPE reports
the situation as shown in Figure 15. Notice that the details of the proof branch have been
suppressed, and that only the “bottom line” (line 2 of Figure 15) is shown.

1 letx=1+2inx+x> (MAxex+x)(1+2) Let

2 (Axex+x)(1+2) 5T
3 letx=1+4+2inx+x>_T Transitive 1,2

Figure 13: After Let (let-improved0)

1 letx=1+2inx+x> (MAxex+x)(1+2) Let

2 1+2-T

3 (Axex+x)(1+2)=>(Axex+x)_T' Rand 2
4 (Mxex+x)(14+2) 5 Mxex+x).T Step 3

5 (MAxex+x).T'5_T
(Axex+x)(1+2) 5T Transitive 4,5
7 letx=1+2inx+x->_T Transitive 1,6

Figure 14: After Rand (let-improvedl)
If we focus on the top two lines of this figure, we see the essence of the computation so far.

There is a lot of noise and repetition in this presentation, and it would be much easier to
understand if the deduction were shown as follows

12

1 letx=1+2inx+x> (MAxex+x)(1+2) Let

(Axex+x)(1+2) 5 (Axex+x)3 Rand, Add
3 (Axex+x35 T

Axex+x)(1+2) 5T Transitive 2, 3
5 letx=1+2inx+x>_T Transitive 1,4

Figure 15: After Add (let-improved2)

let x=1+2 in x+x
—* (A x o x+x) (1+2)
—*% (A x o x+x) 3

—* _T

As we shall soon see, JAPE can easily be instructed to present proofs involving transitive
relations in this way.

Continuing the derivation by invoking Beta then Add leads, with no surprises, to the situation
in Figure 16, from which the derivation can be formally completed by the Identity rule.

1 letx=1+2inx+x> (MAxex+x)(1+2) Let

2 (Axex+x)(14+2) > (Axex+x)3 Rand, Add

3 (Axex+x)353+3 Beta

4 3+356 Add

5 65T

6 3+35 T Transitive 4,5
7 (MAxex+x)35 T Transitive 3,6
8 (Mxex+x)(1+2) 5T Transitive 2,7
9 letx=14+2inx+x>_T Transitive 1,8

Figure 16: After Beta and Add (let-improved6)

Figure 16 makes it even more apparent that the essence of a computation (the succession
of top-level expressions) can be obscured by the style in which it is being presented. Apart
from the fact that each intermediate program term appears three times, the spine of the
computation appears in two different places and in both directions. This kind of presentation
cannot illuminate very much for us.

Fortunately we can arrange for JAPE to display transitive derivations more conveniently. We
do so by declaring (using the form “TRANSITIVE RULE ...”) the name of each transitive rule
in which we are interested, and setting an internal flag “hidetransitivity” when we require
this form of display. By adding a checkbox bound to it which is controlled from the Edit
menu we can arrange for the user to change the state of the flag at will. It turns out that the
application of the Identity rule can also be usefully suppressed, and an analogous declaration
“REFLEXIVE RULE ...” and variable “hidereflexivity” provide support for this.

13

TRANSITIVE RULE "Transitive"
REFLEXIVE RULE "Identity"

MENU Edit
SEPARATOR
CHECKBOX hidetransitivity "Transitive Rule Display" INITIALLY false
CHECKBOX hidereflexivity "Hide Identity Steps" INITIALLY false
END

The display of the proof from Figure 16 which results from enabling transitive rule display
and hiding identity steps is presented in Figure 17, and an alternative derivation (in which
the Beta rule is used before the arithmetic is performed) is shown in Figure 18.

1:let x=142 in x+x

20 —% (Owxex+x)(1+42) Let

3: —* (xex+x)3 Rand,Add
4: —* 343 Beta

5. =% 6 Addition,

Figure 17: Transitive display of the computation in Figure 16 (let-improved4)

1:let x=1+2 in x+x

20 —% (wxex+x)(1+42) Let

3: —* (14+2)+(1+2) Beta

4: —* 34(142) AddL,Add
5 —* 343 AddR,Add
6: —* 6 Addition,

Figure 18: Transitive display of an alternative computation sequence (let-improved5)

Automating single steps

It is easy to automate the choice of rules to apply in a computation step if we observe that
a non-stuck expression is either normal, or susceptible to the application of a computation
rule, a desugaring rule, or a structural rule. In the case of an application, we need to decide
whether to apply the Rator or the Rand rule, and in the case of a sum, we need to decide
whether to apply the AddL or the AddR rule. We cannot decide arbitrarily, because (for
example), there is no point in applying the AddL rule in a situation where the left operand
of a sum is already a number.

With these ideas in mind, let us consider the design of two tactics which will make the choices
for us. There are two principal systematic computation strategies:

1. Normal order — in which the leftmost outermost reducible expression in the expression
is reduced at each stage.

2. Applicative order — in which the operand of an application must be in normal form
before the application of a Beta rule takes place.

14

The tactic NormalStep first tries all the computation and sugaring rules. If none of these
succeed then the subject expression is a sum whose subexpressions are not both numeric, or
an application. In the former case an Add rule is applied which directs evaluation towards
the leftmost non-numeric subexpression. In the latter case the Rator rule is applied, on the

grounds that the operator of an application must be reduced to normal form before it can be
applied.

TACTIC NormalStep()
(ALT Beta Add Let
(WHEN (LETGOAL (_numl + _E — _T) AddR)
(LETGOAL (_E1 + _E2 — _T) AddL)
(LETGOAL (_F _A — _T) Rator)))

The tactic ApplicativeStep first tries the addition and sugaring rules. If neither of these
succeeds then the subject expresssion is either a sum whose subexpressions are not both
numeric, or an application whose operator is not in normal form. In the former case an Add
rule is applied which directs evaluation towards the leftmost non-numeric subexpression. In
the latter case, the operator may be in normal form, in which case a Beta move may be
performed providing the operand is also in normal form, otherwise the process of normalizing
the operand must begin with a Rand move. If the operator is not in normal form, then the
process of normalizing it must begin with a Rator move.

TACTIC ApplicativeStep()
(ALT Add Let

(WHEN (LETGOAL ((A _xe_E) _A — _T) (WhenNormal _A Beta Rand))

(LETGOAL (_num _A — _T) FAIL)
(LETGOAL (_numl + _E — _T) AddR)
(LETGOAL (_E1 + _E2 — _T) AddL)
(LETGOAL (_F _A — _T) Rator)))

TACTIC WhenNormal(expr, tactic, othertactic)
(WHEN (LETMATCH (A _x e _S) expr tactic)

(LETMATCH _num expr tactic)
(LETMATCH (~ _num) expr tactic)
(LETMATCH _x expr tactic)
othertactic)

Now we are in a position to automate the computation completely. The tactic RepeatStep(tactic)
sees whether the expression is in normal form, and if so applies the Identity rule; otherwise

it applies its tactic argument, then recursively works on the resulting expression. The tactic
SingleStep(tactic) applies its tactic argument once, unless it is in normal form.

TACTIC RepeatStep(tactic)
(WHEN (LETGOAL (_num —* _T) Identity)
(LETGOAL (~ _num —* _T) Identity)
(LETGOAL ((X _xe _E) —* _T) Identity)
(SEQ (TransitiveStep tactic) (RepeatStep tactic)))

TACTIC SingleStep(tactic)

(WHEN (LETGOAL (_num —* _T) Identity)
(LETGOAL (~ _num —* _T) Identity)
(LETGOAL ((X _xe _E) —* _T) Identity)
(TransitiveStep tactic))

15

All that remains is for us to add the tactics we have just defined to the conjecture panel.
We do so by defining a tactic variable, oneSmallStep, whose value is set by a radio-button
to either NormalStep or ApplicativeStep, and defining buttons which invoke it either once or
repeatedly.

CONJECTUREPANEL "Structural Semantics"

RADIOBUTTON oneSmallStep "Normal Order" IS NormalStep
AND "Applicative Order" IS ApplicativeStep
END

BUTTON Step IS apply SingleStep oneSmallStep
BUTTON "Step*" IS apply RepeatStep oneSmallStep
END

Some simple, but interesting computations are recorded in Figures 19 through 21, below.

Lilet g=(\fof f)ing g

2: —* (\geg g)(\fef) Let
3: —* (N\fef f)(\fef f) Beta
4: —* (\fef f)(\fef f) Beta

5: —* _T
Figure 19: Some expressions have no normal form (order0)

1:let g=(\feof f)in(let k=(\ae(\bea))in k 2(g g))

2: —* (hge(let k=(hae(\bea))in k 2(g g)))(\fef f) Let

3: —* let k=(hae(\bea))in k 2((\fef f)(\fef f)) Beta

4: —* (Wkek 2((\fef f)(\fef f)))(Nae(\bea)) Let

5: —* (hae(\bea))2((\fef f)(\fef f)) Beta

6: —* (Abe2)((\fef f)(\fef f)) Rator,Beta
7: —* (\be2)((\fef f)(\fef f)) Rand,Beta
8 —* T

Figure 20: Applicative-order may not reach a normal form (orderl)

1:let g=(\feof f)in(let k=(\ae(\bea))in k 2(g g))

2 5% (nge(let k—(nas(xbea))in k 2(g g)))(hTef) Let

3: —* let k=(hae(\bea))in k 2((\fef f)(\fef f)) Beta

4: —* (Wkek 2((\fef f)(\fef f)))(Nae(\bea)) Let

5: —* (hae(\bea))2((\fef f)(\fef f)) Beta

6: —* (Abe2)((\fef f)(\fef f)) Rator,Beta
7 —* 2 Beta

Figure 21: Normal order reaches a normal form if there is one (order2)

16

2.6 Normal Order Semantics of LAMBDA

In the previous section we developed two systematic methods of applying inference rules, one
led to normal order and the other to applicative order semantics. In this section we present
an alternative collection of rules which admit only one systematic method of application —
that which corresponds to normal order semantics.

The first Apply rule is identical to the Beta rule, and succeeds only if the operator is an ab-
straction. The second Apply rule succeeds, leaving computation in the operator as a subgoal.

RULES Apply ARE

INFER (A x e E’) E = E’[E/x]
AND

FROM F — F’

INFER FE — F’ E
END

The Arithmetic tactic first applies the Arith rules to a sum. If its operands are already in nu-
meric form, the first rule will succeed, leaving a subgoal of the form "ADD" (num1, num2, K, (7)),
which is suitable for solution by JAPE’s built-in decision procedure EVALUATE. If the first
operand is in normal form, then the second rule will succeed, leaving computation in the
second operand as a subgoal. If neither operand is in numeric form then the last rule will
succeed, leaving computation in the first operand as a subgoal.

RULES Arith ARE
FROM "ADD" (numi, num2, K, (%))
INFER numl + num2 — K
AND
FROM E2 — E2’
INFER num + E2 — num + E2’
AND
FROM E1 — E1’
INFER E1 + E2 — E1’ + E2
END
TACTIC Arithmetic() IS (SEQ Arith (IF (LAYOUT "Arithmetic" () EVALUATE)))

The NormalStep tactic applies either the Let rule, the Apply rule, or the Arithmetic tactic.
Its repeated transitive application will eventually compute the normal form of an expression,
if it has one.

TACTIC NormalStep() IS (ALT Let Apply Arithmetic)

The behaviour of the normal-order semantics can be explored from the menu defined below.

MENU "Normal Order Rules"
BUTTON Apply IS apply TransitiveStep Apply
BUTTON Arith IS apply TransitiveStep Arithmetic

BUTTON Let IS apply TransitiveStep Let

BUTTON Finished IS apply Finished

BUTTON Step IS apply SingleStep NormalStep
END

17

2.7 Natural Semantics of LAMBDA in JAPE

The substitution semantics outlined above is a small-step semantics, in the sense that each of
the rules which characterise — describes only a single step in the evaluation of the program.
We start our description of a big-step (Natural) semantics by noting that the following derived
rules can be proven in the small-step semantics. What is more, the derived rules are still valid
if we add the requirement that S’, 7', and U are normal forms.

* ! ! *
S=8 8 T>U Operator

STSHU
T T €T1_>U0pemnd
ST—U
S[T)z] > U
T/a] " Beta
Az e S)(T)—U
Az e T)(S) S U
GaeT))SU

letz=SinT>U

SHN TSNy, N+No— U
S+TSU

Add

Figure 22: Derived Rules

Below we encode the stronger derived rules for JAPE, interpreting the judgement S = S’ as:
“the expression S has normal form S’ if it doesn’t get stuck.” The NormalForm rules complete
the description of this judgement.

INFIX 1T =

MENU "Natural Semantic Rules"

RULE
RULE
RULE
RULE
RULE
ENTRY
RULES
ARE
AND
AND
END
END

"Rator=" IS FROM + S=S’ AND - S T = U INFER F ST = U

"Rand=>" IS FROM +~ T=T’> AND - S T> = UINFER F ST =T
"Beta=" IS FROM + S[T/x] = U INFER F (A x eS) T =T
"Let=" IS FROM F (X x eT)(S) = U INFER F let x=S in T = U
"Add=" IS FROM F+ S=N1 AND T=-N2 AND N1+N2—N INFER S+T=N
"Addition" IS Add

NormalForm

FAx e S= XA x e 8§

F num = num

F “num = “num

In essence what is going on here is that the transitivity of computation sequences is being

18

built in to the big-step rules. Judgements are being made about complete computations,
rather than about individual computational steps.

We can again characterise the two main evaluation strategies by defining appropriate single-
step tactics.

TACTIC BigNormalStep() IS
(ALT NormalForm
(WHEN

(LETGOAL ((X _x e _S) _-T = _U) "Beta=")
(LETGOAL (let _x = _S in _T = _U) "Let=")
(LETGOAL (_S _T = _U) "Rator=")
(LETGOAL (_S + _T — _U) Add)
(LETGOAL (_S + _T = _U) "Add=")))

TACTIC BigApplicativeStep() IS
(ALT NormalForm
(WHEN

(LETGOAL ((X _x e _S) _T = _U) (WhenNormal _T "Beta=>" "Rand="))
(LETGOAL (_S _T = _U) (WhenNormal _T "Rator=-" "Rand=-"))
(LETGOAL (let _x = _S in _T = _U) "Let=")
(LETGOAL (_S + _T — _U) Add)
(LETGOAL (_S + _T = _U) "Add=")))

The user interface has a radiobutton to determine which strategy is to be used, and a single
step button which takes a big step, using the appropriate strategy.

CONJECTUREPANEL "Natural Semantics"

RADIOBUTTON oneBigStep "Normal Order" IS BigNormalStep
AND "Applicative Order" IS BigApplicativeStep
END

BUTTON Step IS apply oneBigStep

THEOREMS BigStepThms

ARE F let £ = (A x e x) in f f 1= _T

AND F (1+2)+(3+1)=_T

AND F (142)+("4)=_T

AND F let x = 1+2 in x+x =_T

AND - let c = (AN f ¢ A g e X\ a e f(ga)) in
let £ = (X a o a) incf f = _T

AND F let g = (A f o £ £f) ingg= _T

AND F let g = (X f o f f) in
let k = (A a e Ab e a)ink2 (gg) = _T

END

END

In Figure 23 we show the record of a compuitation in the big-step semantics; the corre-
sponding small-step semantic computation is showm in figures 24 and 25. Not surprisingly,
the difference between the two computations viewed as proofs lies only in the details of the
application of transitivity rules, and the order in which the computation steps occur in the
standardised presentation of the derivation.

19

© 00~ Uk W -

8
9
10
11
12
13

Figure 25: Details of transitivity in the small-step semantics

N OOt s W N

Abe2 = Abe2 NormalForm’0
(Aae(Abea))2=Abe2 Beta = 1
2=2 NormalForm'1
(Ab e 2)((\f e f f)(\f e f f Beta = 3
(Aae(Abea))2((Afef f) f)) Rator = 2,4
(Ak o k 2((Af o f f)(Af o))(Aao()\boa)) =2 Beta = 5
let k = (Xae(Abea))in k 2((Afeff)(Afeff)) = Let= 6
(MAge(let k= (Nae(Abea) ink2(gg)))(Mfef f) Beta = 7
let g = (AMf of f)in(let k = (Aa e (Abea))in k 2(g g)) =2 Let=> 8
Figure 23: A computation in big-step semantics (letg-big)

let g = (M of flin(let k= (A\ae (Abea))ink2(gg) = Let

(Ag e (let k= (Xae (Abea))ink 2(g g)))(\feff) > Beta

let k= (Aae(Abea))ink 2((Mfef f)(Afeff)) 5 Let

Ak ok 2(Mfof f)(Mfof f)))(Nae (Abea)) > Beta

(Aae(Abea))2((Mfeff)(Afeff)) S Rator, Beta

(Abe2)((M ef f)(Xf of f)) 5 Beta

2 Identity

Figure 24: A computation in small-step semantics

(Abe2)((Af of f)(Afef f
(/\a . ()\b 0a))2((Mf off)
(

) =
(M o)) 52

Ak ok 2((Mfof f)(Afoff)))(Nae(Abea)) > 2

)
let k= (Mae(Abea))ink 2((A\fef f)(Afeff)) > 2
(MAge(letk=(Nae(Abea

20

(letg-small)

)ink2(gg))(Meff) > 2
let g = (\f o f flin(let k = (Aa » (Abea))in k 2(g g) > 2

Transitive 6,7
Transitive 5,8
Transitive 4,9
Transitive 3,10
Transitive 2,11
Transitive 1,12

(letg-small-1)

2.8 Deterministic Semantics

Hitherto we have striven to write the inference rules in our semantics in such a way that
both normal and applicative orders of evaluation are permissible. In this section we present
a natural semantics for LAMBDA which forces normal order of evaluation. The inference rule
for applications reflects the fact that the operator of an application must be reduced to an
abstraction before it can be applied. The absence of structural rules for applications reflects
the fact that operand substitution must happen once the operator has been reduced to an
abstraction. The Let rule is similar: substitution must take place as soon as possible. The
rules for addition, and the normal form rules are identical to those in the previously-given
semantics.

MENU "Deterministic Rules"

RULE "AppA" IS FROM H F = (A x eS) AND + S[A/x] = U INFER - FA = U
RULE "Let A" IS FROM + S[A/x] = U INFER F let x=A in S = U

TACTIC "AddA™" IS "Add="

ENTRY Addition IS Add

ENTRY NormalForm

END

The tactic which takes a single step in the evaluation of an expression can also be simplified,
because the form of the expression uniquely defines which rule should be applied to it. All
that is necessary is to try the rules in some order — indeed any order will do.

TACTIC BigDeterministicStep() IS
(ALT NormalForm "AppA" "LetA" Add "AddA™")

CONJECTUREPANEL "Natural Semantics"
BUTTON "AStep" IS apply BigDeterministicStep
END

Having placed a button on the big-step computations panel which invokes this tactic, we can
demonstrate some of the differences between this formulation and the last.

The main observable difference in the derivation, apart from the absence of Rator and Rand
rules, is that during the evaluation of the operator of an application, proof variables appear.*

The outcome of the evaluation is, of course, the same as before.

2.9 Evaluation Semantics

As our final foray into the semantics of LAMBDA we show how to dispense with substitutions
by using an environment to represent the current value of each variable bound in an evaluation
context. An environment is a mapping from identifiers to values which are either numbers or
function closures (written [Az e E, Env]).

*Proof variables are variables whose names begin with an underscore, and which stand for formulae which
have not yet been uniquely identified in the derivation.

21

1 MXae(Abea)= Axle Sl

2 S1[2/x1]= Axe.S

3 (Mae(Abea))2=Axe.S AppA 1,2
1 S[MfeffOfeffx= T

5 (Aae(Abea))2(A\fef f)(Afeff))=_T AppA 3,4
6 letk=(hae(Abea))ink2(Afeff)(\eff)= T LetA 5

7 letg= (Meofflin(letk=(Nae(Xbea))ink2(gg)) = T LetA6b

Figure 26: An incomplete computation in the deterministic semantics (letg-det-1)

1 Xae(Abea)= Aae(Abea) NormalForm’0
2 Abe2=)be?2 NormalForm’0
3 (Mae(Abea))2= Abe2 AppA 1,2

4 2=2 NormalForm'1
5 (Aae(Abea))2((Afeff)(Meff)) =2 AppA 3,4

6 letk=(Nae(Abea))ink2((\feff)(Meff)) =2 LetA 5

7 letg= (Meofflin(letk=(Nae(Abea))ink2(gg)) =2 LetA6

Figure 27: The completed computation in the deterministic semantics (letg-det-2)

Judgements in this system take the form
EnvHE=V

where F is a LAMBDA expression, V is a value, and Env is a finite mapping from identifiers
to values, which is represented as described in Appendix A. They are interpreted as “in

environment Env the expression E has value V.” The auxiliary judgement form
FEnwz=V
is interpreted as “environment Env binds variable z to value V, and the judgement form
FN1+ N2>V

is interpreted (as before) as “V is the sum of the numbers N; and Ny.”

Because the theory of mappings is described in the file mapping.j (which is derived from
the manuscript of Appendix A), we need to incorporate it in the present theory. Moreover,
because the material to the left of the turnstile in our main form of judgement is not a
hypothesis, but a term representing an environment, we need to adjust the way in which
JAPE labels “assumption” lines. The only remaining detail is the declaration of the notation
for closures. We are going to invoke the rules from a menu calledvalue Rules.

USE "mapping.j"
INITIALISE outerassumptionword "Environment"

22

INITIALISE innerassumptionword "Environment"
OUTFIX []

MENU "Value Rules"

Numbers evaluate to themselves. An abstraction evaluates to a closure which embeds both
the abstraction and the environment in which it was abstracted.

RULES Constant

ARE Env F num = num

AND Env F “num = “num

AND Env F XA xeS = [A x e S, Env]
END

As in the big-step semantics, the value of a sum in an environment is the sum of the values
of its summands — which had better be numbers.

RULE Sum

FROM Env F S = N1
AND Env F T = N2
AND F Ni+N2 — V
INFER Env F S+T=V

The value of a variable is the value to which the environment maps it (which might be).

RULE Variable
FROM F Env x =V
INFER Env F x = V

The operator of an application must evaluate to a closure; if it does so, then the value of the
application is the result of evaluating the body of the “enclosed” abstraction in an environment
defined by extending the enclosed environment by associating the bound variable with the
value of the operand. The value of a block is obtained by evaluating its body in an extension
of the current environment.

RULE Application

FROM Env W F= [\ x e E, Env’ |
AND Env H A =V

AND Env’ @ (x==V) + E =

INFER Env F F A=V

RULE Block

FROM Env F A =V

AND Env @ (x==V) +F E = ¥V’

INFER Env F let x=A in E =

The value of an expression at the top level is its value in an empty environment.

RULE TopLevel

FROM | FE=V
INFER FE=V
SEPARATOR

23

As in the deterministic semantics presented earlier, the form of the expression at each stage
uniquely determines which rule should be applied to it. Mechanisation of evaluation is, there-
fore, simply a matter of trying the rules one by one. In the case of the Variable rule, which
generates a judgement in the theory of mappings, we suppress (using a LAYOUT tactic) the
details of the solution of this judgement.

TACTIC EvalStep IS
(ALT Constant
(LAYOUT "Variable" () Variable Lookup)
Sum
Application
Block
Add
TopLevel)

ENTRY Evaluate IS (DO (EvalStep))
END

Figure 28 shows a derivation in the evaluation semantics. Notice that each subderivation is
enclosed in a box, and that the environment in which the subderivation takes place appears
as the top line of the box. This requires no intervention on the part of the theory designer —
it is simply an artefact of the box-style of proof display.

10 Environment

2| Mxex=> xex,[] Constant’2 1

3:| | OB (F==Pxex,0]) Environment

4[| f= [xex,d] Variable 3

5:(| f=[\xex,[0] Variable 3

6:[|| OPx==xex,]) Environment

7| || x=[xex,[0] Variable 6

8:|| f f= Pwex.] Application ~ 3.456-7
9| 1=>1 Constant’0 3
10 :| || OB Kx==1) Environment
11 || x=1 Variable 10
12| ff1=1 Application 3,89,10—-11
13 | let f=(\xex)in f f 151 Block 1,2,3-12
14 : let f=(\xex)in f f 11 Toplevel 1-13

Figure 28: A Derivation in the Evaluation Semantics

24

(letf-val)

3 A Small Imperative Language

3.1 Syntax

IPL is a small expression-based imperative programming language whose forms of expression
are outlined below in Figure 29. We use names based on uppercase F to denote expressions,
names based on lowercase z, y, z to denote variables, and names based on k to denote (natural
number) constants.

z:=F Assignment

Ey; By Sequential composition

E\7F5 : E3 Conditional expression: Fy if Fy # 0 else Ej
E1 & E2 Repeat E2 until E1 =0

Vv Skip (do nothing)

Ei+ Es Sum

E, — Fy Difference

B < E Less than

k Nonnegative number constants

~k Negative number constants

Figure 29: IPL Syntax

Expressions are integer-valued, and the guards of conditional expressions and loops are ex-
pressions which are interpreted as false when zero, and as true otherwise.> The normal forms
of expression are the numeric constants and / — the latter meaning “successful termination.”

A simple example program is the following fragment, which multiplies y by 2" if n > 0.

n®(y:=y+y;n:=n-—1)

3.2 Structural Semantics of IPL in JAPE

Many of the details required to set up the small-step semantics of IPL in JAPE have already
been discussed in Section 2, and we will not repeat them here.

First we introduce the syntax of the language

CLASS CONSTANT k
CONSTANT / .
INFIX 40R ;

>We do not think this is a particularly good language feature, but it reduces the number of semantic rules
we have to explain here.

25

INFIX 50T :=
INFIX 60R 7 : ®
INFIX 100T =
INFIX 150T <
INFIX 200T + -
PREFIX 1000 ~

USE "mapping.j"

The reduction arrow and “syntactic brackets” are introduced next.

INFIX 1T —
LEFTFIX 2 []

The most important judgement in the semantics takes the form
[E]S—[E']S’

(where E, E' are expressions and S, S’ are mappings from names to values). Such judgements
are interpreted as: “A single step in the evaluation transforms expression F in state S to
expression E’ in state S’.” An expression+state pair [E]S is called a configuration.

As usual, we interpret [E]S = [E']S’ as “Zero or more execution steps transform expression
E in state S to the normal form expression E’ in state S’. The normal form configurations
are those whose expressions are either number constants or the “do nothing” command /.
These configurations require no further computation steps to complete, and will therefore not
be the subject of any semantic rules.’

All other configurations make progress towards a normal form (if there is one) by means of a
sequence (possibly empty) of single computation steps. As in the earlier small-step semantics,
we note that the relation between the configurations at the start and end of a (perhaps partial)
computation sequence is the transitive closure —* of the single computation step relation —,
and accordingly we define

INFIX 1T —*
RULE Step FROM F [E]S—[E’]S’ INFER - [E]S—x[E’]S’

RULE Transitive FROM + [E]S—*[E’]S® AND - [E’]S’—*[E’>]S’’ INFER F [E]S—*[E*’]S’
RULE Identity INFER - [E]S—*[E]S

The following declarations let us control the form of display which JAPE uses to show com-
putation sequences.

TRANSITIVE RULE Transitive
REFLEXIVE RULE Identity

MENU Edit
SEPARATOR
CHECKBOX hidetransitivity "Transitive Rule Display" INITIALLY true
CHECKBOX hidereflexivity "Hide Identity Steps" INITIALLY true
END

5When we come to automate the application of rules it will be necessary to know when no further rules are
applicable, and this means that we will have to recognise the normal form configurations.

26

Now we can introduce the rules which characterise single computation steps. The rule for
variables is straightforward.

MENU "Small-Step Rules"
RULE Var
FROM S x =1V
INFER [x] S — [V] S

The rule for simplifying the right-hand-side of an assignment is simple — note that side-effects
are permitted.

RULE ":=0"
FROM [E] S — [E’] S’
INFER [x:=E] S — [x:=E’] S’

The most obvious rule for completing a fully-simplified assignment by updating the store is

[z:=k S—=[V] (S®(z==kF))

The JAPE encoding of this is a bit more complicated:

RULES ":=1"

FROM (S& (x==k)) = S’

INFER [x:=k] S — [V] s’
AND

FROM (S® (x==("k))) = S’
INFER [x:=C"k)] 8§ = [V] &
END

The first complication is the presence of an antecedent. This is intended to make it possible
for the expression (S @ (z == ...)), which denotes the updated store, to be simplified just
after the rule is applied. Although the antecedent is not formally necessary, simplification
turns out to be essential when one wants to animate any but the simplest programs containing
assignment. Without simplification the size of the expression denoting the store is linear in
the number of assignments which have been made, rather than in number of variables assigned
to. Details of the rules which define simplification and the tactic which accomplishes it appear
in Section A.4.

The second complication is the fact that there are two rules. This is because we have to take
account of negative numbers, which have a distinct syntactic representation (l~c) If JAPE’s
formula classification language were flexible enough to let us define the class of constants
syntactically then the second rule wouldn’t be necessary.”

Sequential composition, and iteration are straightforward; conditional expressions are also
complicated a little by the need to account for negative numbers.

"We’re working on it.

27

RULE ";0"
FROM [E] s— [E°] s
INFER [E;F] S — [E’;F] s°

RULE ";1"
INFER [+/;F] S — [F] S

RULE II®II
INFER [E1®E2] S — [E17(E2; E1®E2):y/] S

RULE "70"

FROM [E1] S —» [E1’] s°
INFER [E17E2:E3] S — [E1’?7E2:E3] §’
RULES "71"

INFER [O?E2:E3] S — [E3] S

AND

INFER [k?E2:E3] S — [E2] S

AND

INFER [“k?E2:E3] S — [E2] S

END

The rules for scheduling the simplification of arithmetic and relational expressions are just as
straightforward.

RULES "+"

FROM [F] S — [F’] s’
INFER [k+F] S — [k+F’] S’
AND

FROM [F] S —» [F’] s’
INFER ["k+F] S —» ["k+F’] S’
AND

FROM [E] S — [E’] s’
INFER [E+F] S — [E’+F] S’
END

RULES "-"

FROM [F] s — [F’] s’
INFER [k-F] S — [k-F’] s’
AND

FROM [F] S — [F] S’
INFER [“k-F] S —» ["k-F’] s’
AND

FROM [E] S — [E’] s’
INFER [E-F] S — [E’-F] s’
END

RULES "<"
FROM [F] s — [F’] s’
INFER [k<F] S — [k<F’] s’
AND

FROM [F] S — [F] S’
INFER ["k<F] S — ["k<F’] s’
AND

FROM [E] S — [E’] s’
INFER [E<F] S — [E’<F] s’

28

END

In order to do arithmetic using JAPE’s built-in facilities we need two special rules. These trans-
form judgements about expressions into a built-in judgement — such as "ADD" (k1, k2, K, (7))
— which is interpreted as “the sum of the integers k1 and £2 is K (if the symbol ~ is interpreted
as the unary negation symbol).”

RULE add
FROM "ADD"(k1, k2, K, (7))
INFER [k1 + k2] S — [K] S

RULE sub
FROM "ADD"(k1, “k2, K, (7))
INFER [k1 - k2] S — [K] S

Computing relational answers is more difficult since, by an oversight which will eventually be
remedied, there are no built-in judgements which correspond to them. But we can improvise,
by doing a subtraction and seeing if the result is negative. The tactic Comparison succeeds,
with the correct answer, by trying the cases of the compare rule in sequence.?

RULES compare

FROM "ADD"(k1, “k2, 0, (7))
INFER [k1 < k2] S — [O] S
AND

FROM "ADD"(k1, “k2, “K, (7))
INFER [k1 < k2] S — [1] S
AND

FROM "ADD"(k1, “k2, K, (7))
INFER [k1 < k2] S — [O0] S
END

TACTIC Comparison

IS (ALT (LAYQOUT "Compare" () compare’0 EVALUATE)
(LAYOUT "Compare" () compare’l EVALUATE)
(LAYQUT "Compare" () compare’2 EVALUATE))

The rules (and menu) are now complete.

END

Automating single steps

Next we turn our attention to automating the choice of evaluation steps.

The tactic SmallStep simply tries all the rules in order — trying the less general rule(s) for
a given subject before trying the more general rule. Invocations of the variable and the
constant assignment rules are followed immediately by invocations of tactics which solve their
antecedents. Both such tactics are defined in section A. The former looks up the value of
the variable in (the expression denoting) the store; the latter systematically simplifies the
expression denoting the store.

8The order is important, since the inbuilt judgement ADD(k, k, 0, ()) will succeed.

29

TACTIC SmallStep IS
(ALT (LAYOUT "Var" () Var Lookup)
(LAYQUT ":=1" () ":=1" Update)
n.=Q"
l|;1ll
ll;oll
ll?lll
ll?oll
l|®l|
(ALT (LAYOUT "Add" () add EVALUATE) "+")
(ALT (LAYOUT "Sub" () sub EVALUATE) "-")
(ALT Comparison "<")
)

The last three branches of the SmallStep tactic need a little more explanation. Since they are
similar, we will just explain the first.

(ALT (LAYOUT "Add" () add EVALUATE) "+")
This is a complete tactic for taking a single step in the evaluation of a sum when the subject

configuration is in the form:
[N1+ N2]S—[K]S

and K is unknown. It works by applying add, then attempting to solve the

"ADD" (N1, N2, K, (7))
judgement thereby generated using the built-in EVALUATE tactic. If EVALUATE succeeds — and
it can only do so if N1 and N2 are (possibly negated) numeric constants, then their sum is
bound to K, and this solves the subject configuration. If EVALUATE fails it is because one of
N1,N2 is not a constant and exactly one of the three + rules will match the configuration —
the "+" alternative applies just the right one, thereby choosing one or the other subexpression
to evaluate further.

The tactic OneStep (), which is defined below, carries out a single step of a computation.

TACTIC OneStep()

(ALT
(WHEN (LETGOAL ([_E]J_S — [_E’]_S’) SmallStep)
(LETGOAL ([_k]_S —* _T) Identity)
(LETGOAL ([~_k]_S —* _T) Identity)
(LETGOAL ([]_S —* _T) Identity)
(LETGOAL ([_E] _S —* [_E’]_S’) Transitive (LAYOUT "}s" () Step SmallStep))))

If the current goal is of the form [E]S—[E']S’, then the appropriate single step rule is applied
by the SmallStep tactic. If the current goal is of the form [E]S = [E']S’ and its subject is in
normal form, the Identity rule is applied — signifying the end of the computation; otherwise
we set up the first step of a sequence by applying Transitive. This leaves us with a derivation
tree of the form
[E]S 5 [E"]S" [E"]S" 5 [E']S
[E]S 5 [E']S'

Transitive

We now need to execute a single small step, and this is done by the tactic

30

(LAYOUT "%s" () Step SmallStep)

which first invokes the Step rule, transforming the derivation tree into
[E]S—[E"]S"
[E]S = [E"]S" [E"]S" 5 [E']S'
[E]S = [E"]S'

Transitive

The SmallStep tactic now finds the appropriate single-step rule to apply, and the LAYOUT. ..
block suppresses (from the proof display) the resulting sub-proof. Figures 30 through 33 show
the successive steps in the application of DneStep to a simple goal. At each stage the current
goal is shown with a box around it — in JAPE’s display the box would be coloured red.

x:=3][0—*B | _B—*LES

Transitive

[x:=3]0—*[E]_S

Figure 30: After Transitive (ipll)

Step
k:=3]0—*B _B*[ELS
Transitive

[x:=3]0—*[E]_S

Figure 31: After Step (ipl2)

=1
x:=3]0—=[V]([ODx==3))
Step
x:=3]0—*[V] (OD (x==3)) OPx==3))—F[E[-S
Transitive

f:=3]0—*LELS

Figure 32: After :=.1 (ipl3)

31

:=1'0,Update0
x:=3]0—*[V] (OD (x==3)) 0P x==3))—>*[_E]_S
Transitive

f:=3]0—*LELS

Figure 33: After (LAYOUT ...) suppresses detail (ipl4)

32

The tactic Steps () carries out a complete computation, repeatedly applying rules until the
subject is a normal configuration.’

TACTIC Steps()
(ALT
(WHEN (LETGOAL ([_k]_S —* _T) Identity)
(LETGOAL ([~_k]_S —* _T) Identity)
(LETGOAL ([+/]_S —* _T) Identity)
(SEQ OneStep Steps)))

Finally we construct a conjecture panel with a few small programs to run.

CONJECTUREPANEL "Small Step Execution"
BUTTON "Step" IS apply OneStep
BUTTON "Steps" IS apply Steps
THEOREMS SmallStepTheorems

ARE [x:=3] | —x [_E] _S
AND [y:=3; x:=y] | —* [_E] _S
AND [y:=x+3; x:=y] (] ®(x==4)) —-* [_E] _s
AND [y:=3; x:=y; z:=x+y] | —* [_E] _S

AND [t:=x; x:=y; y:=t] (] ®(x==k1) D (y==k2)) —* [_E] _S
AND [x:=2; y:=4; x® (x:=x-1; y:=y+y) | | —* [_E] _s
END

END

In Figure 34 we show the complete top-level derivation of a normal configuration for

[y =z +32:=y](]|® (z ==4))]
L y:=x+3x:=y [(ODKx==4))
2. —F [y=4+3x:=y]O0D(x==4) :0,:=0
30 =* [y=Tx:=y]0Px==4) 0,:=0
40 —=* [Vx=y[(ODy==7))DKx==4)) 0.:=1
50 —* =y (OB (y==7))B(x==4) 1
6: —* x=7](ODy==7))DKx==4) =0 Var
7. =* V1O Gy==7)Px==T7)) :=10,Updatel
R,

Figure 34: A complete computation (ipl5)

This presentation could be a little misleading, for it shows only the top-level transitive steps
in the computation. If the justifications of these steps are presented in full, as in Figure 35,
then a lot more detail appears.

In fact while the justification of a top-level step is being constructed a step at a time, the
appropriate subcomputations will be present in the display. For example, in Figure 36 we
show the situation after 3 uses of Step in the above computation.

9Or JAPE runs out of patience — the number of steps to which JAPE limits itself when performing a com-
putation automatically may be set by the user using the Set Proof Step Count button on the File menu.

33

1 [x|DBx==4)— 4] 0D (x==4) Var

2 [x+3]0B (x==4)— [4+3]O0D (x==4) +2 1

3: [y=x+3]0P (x==4)— [y =4+3] 0D (x==4) =0 2

41 =3y (0D K==4)) = [y =4+3x:=y|0DKx==4) 03

5: [443]0B (x==4)— [7]OD (x==4) Add

6: [y:=4+3]0PB x==4)—[y:=7] B (x==4) =0 5

7: [y=4+3x=y]OB x==4)—> [y =Tx=y| OB (x==4) 0 6

8: [y=TI0DK==4)—= [V (ODy==7)DKx==4)) =1

9: [y=Txi=y]0Sx==4) = [/ x =y (OB ==7))B(x==4)) 08
10 : [/ x=y[(@ED==")Dx==4)) > =y [([OD==7))DKx==4) !
11: I OBy==7)Dk==4=[OB(y==7))Bx==4) Var
12 : =yl OB (==7))BK==4)— Kk=7] OD(==7))BKx==4) =0 11
13 =T ODy==")DKx==4)> [/ ODy==T)Dx==7)) =1
14 [y=x+3x=y[(OB (x==4))
15 —* [y=4+3x=y]O0Bx==4) [Step] 4
16: —* [y=Tx=y]0Bx==4) [Step] 7
17: =% V=l O6y==7))8K==4)) [Step] 9
B: —* k] ODH==7)OK==4) (Step] 10
19: —* k=7]0ODy==7))DKx==4) [Step] 12
20: = [OBY==1Bk==T) fStepl 13

Providing
y NOTIN x

Figure 35: A complete computation, with justifications (ipl6)

- KIODx==4)—[_E'3]_5'1

1

2: [x+3]0Px==4)—[-E'3+3]_5'1 +2 1
3: [y:=x+3]0B (x==4)—[y:=_E'3+3]_S"1 =0 2
4 [y=x+3x:=y] (OB (x==4))— [y:=E3+3x:=y] 5’1 03
5: [y=x+3x:=y](OPx==4))

6: —* [y=FE3+3x:=y] 51 4

7. % LELS

Figure 36: Three Steps into the computation (ipl7)

34

A Environments and Stores

In this section we outline the JAPE theory we use to describe the finite mappings used to
model environments and stores. The theory itself is quite straightforward, and the tactics
used to evaluate expressions in the theory may be of some interest — as examples of tactically
controlled logic programming.

A.1 Syntax

In addition to the conventions established earlier, we declare here that

CLASS FORMULA map

A finite mapping is either empty, denoted [, a singleton mapping from a variable z to a value

V, denoted z == V, or the join of mappings map and map’, denoted map ® map’. When

applied to a variable outside its domain, a mapping yields the value undefined, denoted L.
CONSTANT | L

INFIX 5L ==
INFIX 3L &

A.2 Rules

The empty mapping maps all variables to L, the singleton mapping # == V maps the variable
z to V, and maps all variables distinct from z to L.

RULES Map WHERE y NOTIN x
ARE F] x=1
AND Foo(x==V) x =
AND F (x==V) y
END

v
1

The combination map @ map’ maps z to the value which map’ does, providing that value is
not 1, otherwise it maps z to the value which map does. We define this form of mapping
combination by means of a subsidiary selection function, which is also denoted @. The rules
Select define @ as selecting its right-hand argument, providing that it is not L.

RULES Select WHERE W NOTIN |

ARE INFERF V @ L1 =V

AND INFERF V @& W = W
END

The rule @ expresses preference for the result of searching the right component of a composite
environment, providing it is non-_L.

RULE "@"
FROM + map’ x =1V
AND F map x =W

AND F we Vv =X
INFER + (map®map’) x = X

35

A.3 Decision Procedure

The tactic Lookup, defined below, is a decision procedure for goals of the form map z = V.
If map is simple, then the problem will be solved immediately by one of the Map rules. If, on
the other hand, map is composite, then it will be solved by first applying the & rule, then
recursively applying Lookup (twice) to discover the values of z in each of the components,
and finally applying Select to choose between these values.

TACTIC Lookup IS
(ALT Map (SEQ "&®" Lookup Lookup Select))

Figure 37 and Figure 38 show the proof trees resulting from environment searches. Although

Map’1 Map’2 Select’1 Map’2 Map’2 Select’0
& (b—o4)b=4 £ (a—o3)b=1 E LPpa=4 E (x—od)b=_1 E (y—o3)b=1 ELl@Ll=1
(&) P Select’1
E (a—o3b—od)b=4 E (y—o3x—o4)b=_L E 1pa=4
@

= ((y—o3Px—4)PB(a—3Fb—4))b=4

Figure 37: An environment lookup (mapping0)

Map’2 Map'2 Select’0 Map’2 Map’1 Select’0
E (b—od)y=1 E (a—o3)y=1 EldLl=L E (x—od)y=1 E (y—3)y=3 E3d@Ll=3
() (&) Select’0
E (a—3b—od)y=1 E (y—3Px—4)y=3 E3PLl=3
@

E ((y—o3x—4)D(a—3Db—o4))y=3

Figure 38: An environment lookup (mappingl)

it is beyond the scope of this note to discuss such matters in detail, it is worth noting here
that the number of inferences made by this procedure is in all cases the same linear function
of the number of @-nodes in the subject mapping. Performance can be improved in many
cases, but only at the cost of making the mapping rules and decision procedure harder to
understand!

A.4 Updating Mappings

When a theory uses a mapping to represent a store, it is convenient to represent the store in
minimal form — in other words, with at most one occurence of a form z == V for each z in the
store. The updating of a variable z in a store is usually modelled by extending the mapping
which represents the store: in other words by transforming map to map & (z == V'). The
following rules inductively characterise the equivalences between extended stores, and serve
as a basis for the tactic Update, which transforms an extended store into its normal form.

36

RULE Update0 F (] & (x==V)) = (] & x==V))
RULE Updatel F (map® (x==W)® (x==V)) = (map® (x==V))
RULE Update2

FROM F (map® (x==V)) = map’
INFER F (map® (y==W) @ (x==V)) = (map’® (y==W))

TACTIC Update IS (ALT UpdateO Updatel (SEQ Update2 (PROVE Update)))

37

Contents

1 Introduction

2 The Lambda Language

2.1 Syntax e e e
2.2 Substitution Semantics of LAMBDAo oo
2.3 Irreducible Expressions and Normal Forms
2.4 Computations L e e e
2.5 Structural Semantics of LAMBDA in JAPE L.
2.6 Normal Order Semantics of LAMBDA
2.7 Natural Semantics of LAMBDA In JAPE,
2.8 Deterministic Semantics L Lo
2.9 Evaluation Semantics. L L L

3 A Small Imperative Language
3.1 Syntax e

3.2 Structural Semantics of IPL in JAPE o

A Environments and Stores
Al Syntax
A2 Rules.
A3 Decision Procedure L

A4 Updating Mappings e e

38

17

18

21

21

25

25

25

35

References

[Kah87] Gilles Kahn. Natural Semantics. In Lecture Notes in Computer Science, volume 247,
pages 22—39. Springer, 1987.

[Lan64] Peter Landin. The mechanical evaluation of expressions. Computer Journal, 6:308—
320, 1964.

[Plo81] Gordon D. Plotkin. A structural approach to operational semantics. Report DAIMI
FN-19, Aarhus University, September 1981.

opsem.tex 1.25 14:55 22nd September 2000
lambda.tex 1.26 23:38 29th October 1998
ipl.tex 1.9 14:55 22nd September 2000
mapping.tex 1.15 18:42 19th June 1998

39

