Programming Research Group

Using J'N’J in JAPE
Natural Deduction using the Jape Proof Editor

Bernard Sufrin
Richard Bornat

PRG-TR-10-98

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD

Abstract

In this note we describe, by means of a number of case studies, the user interface to
the JAPE implementation — “J’N’J” — of the logic described in [7] (“the book”).

The introduction is intended for someone who may not have used JAPE before. It
assumes the reader has a basic grasp of the Unix operating system and the X window
system and has read section 1 of [5] — which is a companion to this note..

1 Getting Started with J'~N’J

EFORE doing anything else at all, you should have a look at the first few chapters
Bof the book, and read section 1 of the companion to this document [5]. The book
explains the logic and the companion paper explains the relationship between the natural-
deduction style of presentation used in the book and the style of presentation which JAPE
normally uses for the logic.

First find out where the JAPE system lives in your filestore — on Solaris machines in the
Computing Lab at Oxford it will be somewhere with a name like /PACK/jape/default.
Next, make sure that your PATH contains the JAPE binary directory: /PACK/jape/default/bin.

Once you’ve done so, and providing you are running X-windows on your machine,! you
will be able to start JAPE with the Unix command

jape /PACK/jape/default/examples/jnj.jt

After a short pause, the terminal emulator to which you gave the command should give
some sort of indication that JAPE is starting up. Expect to see something like this

Jape proof engine 2003/01/11 [/auto/users/sufrin/JAPE6/japeserver]
[OPENING "/users/sufrin/JAPE6/examples/jnj/jnj.jt"]
[CLOSING "/users/sufrin/JAPE6/examples/jnj/jnj.jt"]

Windows, Linux, MacOsX

If you’re working on a Linuz, Windows, or MacOsX machine of your
won, then you can find the latest Jape distribution through the Jape Web
page.

www.jape.org.uk

Follow the installation instructions there.

On Linuz machines you can run JAPE in much the same way as on
Solaris machines.

On the Windows and MacOsX machines you can start JAPE by dou-
bleclicking on its icon. You’ll soon see the JAPE window appear, and
you can use the Open New Theory button on the File menu to start a
theory-selection dialogue.

Unless something is badly wrong, you will soon see two windows come up on your screen.

'If you don’t know what X-Windows is, or how to set your PATH, then consult a system wizard.

The Jape Window

File Window Help

© Richard Bornat and B ernard Sufrin 1991-2002

Freseware under GPL licence: see wwaw jape.org.uk

This is the top-level controlling window for the session. You can use it to load new
theories, to add parts of theories to theories you are already working with, and to switch
proof windows.

The Conjectures Window

The Conjectures window may take a while to arrive

e Al

(pvq) - pang

“(prq) - pvg

PP

p, 7p false

pap + false

P q=p

p=p

peep

(p=q)={"pvq)

(P=q)l=("q="p)

(P=4qpv(q=p)

(Prq=n={p={q=>N)

P=9 F prgqep

P=i{q9=p)

pP=q.q=rprr

P=q F{g=n=(p=r)

P=i(q=n.p>q.pFr

P=9 q=F p=r

P=(q=0 F q=(p=>n
L 1 ¢

New... Prove Show Proof Apply Forward

Apply Backwards Rewrite — | Rewtite +

It consists mainly of a scrolled list of the conjectures which the J'N’J implementation
designer decided would be worthwhile attempting to prove.

There are also several buttons at the foot of the window, all of which but New are greyed-
out: their function will be explained as we proceed.

Proof Session Windows

The most important kind of window is the proof display and control panel — known as
the Proof Session Window. You won’t see a session window until you choose a conjecture
to try to prove.

For example, to start proving the conjecture
- —|p

p

we select the entry —=—p F p from the conjecture list with a 2 and then

on the Prove button. Very soon afterwards the following session window appears:?

File Edit Prepoesitional Rules OQuantifier Rules Window Help

I»]

1.7 P |assumption

2 |p

[4] o]

2Pointing to it with the mouse and pressing the left-hand button once.
3In some earlier versions of JAPE there was only ever one Session window. In the current version there
is one Session window per active proof.

When you are conducting a proof with JAPE it always shows a view of the current
(partial) proof on the session window. The File and Edit menus are permanent fixtures
of all Session windows, and the Propositional Rules and Quantifier Rules menus
are features of the theory we are working in. These are the menus that have the J’'N’J
proof rules on them.

The ellipsis between the line numbered 1 (——p) and the line numbered 2 (p) is JAPE’s
way of telling you that the proof of the conclusion p from the assumption (premiss) ——p
is still incomplete. We will complete it as our first case study.

2 Case Studies

2.1 A Proof by Forward Reasoning

We start with the following partial proof.

1:| =—p| assumption

Because we've done the proof before, we know that it’s a proof by contradiction, so
we decide to apply [false-elim]. To do so we on the Propositional Rules menu
button, which pops up the following menu,

hypothesis
false-elim
A—intro
A—elim—1
h—elim—2
Y—introl
W—intro2
W—elim
= —intro
=—elim
a—intro
a—ealim
true-intro
Se—intro
<—eliml
“s—glim?

We apply the rule by clicking on its name, and the proof changes to

1:| ==p |assumption

2:|| =p || assumption

3:|| false
4 p false—elim 2-3

The next move should be to apply

-p

m [“ —elim]

If we invoke the rule from the menu, then JAPE complains — using a dialogue window

/-ﬂ Select a goal then a non-grey formila before invoking ~-alim
=

.

OK

The J’N’J implementation insists that at least one assumption-like* formula be selected
when an elimination rule is to be applied.> Where more than one assumption is present
which can be simplified by an application of the rule, this makes it clear which one is to
be simplified.

We acknowledge the complaint by clicking on the 0K button, and then select the assump-
tion ——p by clicking on it, whereupon the proof changes to

1:||=—p| | assumption

2:|| =p || assumption
3:|| false
4: false—elim 2-3

The box around the formula shows it has been selected,® and the p on line 4 turns grey
to show that it is not in the scope of the selected assumption. We can then apply the
rule by clicking on its menu entry, and this yields the complete proof

4An assumption-like formula is either an assumption or a formula which has been derived by means of
an elimination rule from an assumption-like formula.

®The exception to this rule is [false-elim].

1t may show in a different colour on the computer screen.

AW N R

-p

-p

|| false

assumption
assumption
——elim 1,2

false—elim 2-3

At this point we pull down the Edit menu, and select the Done button. This registers the
proof, and permits the theorem to be used in subsequent reasoning as if it were a proof
rule.” The conjectures panel changes to reflect this (notice the tick):

v

PP

S{pvq) +pag
S(prg) Py
pyp

PP false

paTp false
praep

pesp

pesp
(p=q)==("pvq)

(P> q)e>({q=>p)
(P=4q)viq=p)
(Prg=>N=(p=>(q=>1)
P=q I prqesp
p=(q=p)
p=dq.q=r.prr
P=q - (a=>n=>(p=>n
P=(q=n, p=q,p +r
P=9q.q=r p=r
P=(q=N - q=(p=>n

4]

LB

18]

New... ‘I'un|

Show Proof Apply Forward

Apply Backwards

Rewrite — Rewnte «

"Pressing control-D on the keyboard when the cursor is in the session window has the same effect.
This is what’s known as a “keyboard shortcut”.

2.2 Direct Manipulation

T is sometimes tedious to invoke rules from menus: it is particularly irritating to have to

do so if there is only one possible rule worth applying once we have chosen a particular
formula to work on. In fact if we need to work forwards from an assumption-like formula
then we will usually want to apply the elimination rule for the main connective of the
formula. If we want to work backwards from a conclusion, then we will usually want to
apply the introduction rule for the main connective of the formula. The main exception
to this is when we decide to do a proof by contradiction: in this case we will need to
apply [false-elim], and there will be no obvious connection between the conclusion we’re
working towards and that rule.

So we have implemented a direct manipulation interface for J’N’J. This permits rules to
be invoked by a combination of selecting and double-clicking.

To work forward from an assumption or a formula derived forward from an assumption,
one double-clicks on the formula in question — whereupon the appropriate elimination
rule for the formula in question is invoked. If the formula has more than one (unclosed)
conclusion in its scope then one should select the conclusion one wishes to work towards
before doing this — otherwise JAPE will complain. One can determine definitively which
conclusions are in the scope of an assumption-like formula by selecting (single click) the
formula: the conclusions which don’t get greyed-out are the ones in scope.

To work backwards from an (unclosed) conclusion formula we double-click on it — where-
upon the appropriate introduction rule for the formula is invoked. If the introduction
rule for the main connective of the conclusion has antecedents (they usually do), and if
the conclusion is in the scope of more than one assumption-like formulae which matches
an antecedent (it often is), then one should select the particular assumption-like formula
before invoking the rule — otherwise JAPE will either complain, or present one with a (so-
called) choice dialogue: which invites one to choose the appropriate instance of the rule
which is being applied. One can determine definitively which assumptions have scopes
which include a conclusion by selecting (single click) the conclusion: the assumptions
which don’t get greyed-out are the ones in whose scope the conclusion lies.

The last move in the proof we have just completed could just as easily have been done
by selecting —=—p then double-clicking on it; indeed since the first click of the double-click
does the selection anyway, a simple double click is all that’s necessary.

In the next example we will explore the direct manipulation interface a little more.
2.3 Two ways to find the same proof

There is often more than one way of finding the same proof (and, indeed, there is often
more than one proof of a given conjecture). JAPE is designed to be flexible enough to

help us explore many ways of finding proofs. In this section we find a proof of

pP=4q g=r p
T

in more than one way.

The first way

To start the proof we click on the entry p = ¢,q = r,p F r in the conjectures panel,
then click on Prove. The session window displays the partial proof

1| p=q, g=r, p| assumptions

2:r

The three assumptions are shown on the same line to conserve space — which is a precious
commodity during a long proof. The first thing we do is to establish ¢, by double-clicking
on p = ¢ thereby invoking [=-elim], or by selecting it with a single click then invoking the
rule from the propositional rules menu. This leads to

1| p=q, g=r, p| assumptions
2: q ——elim 1.1,1.3

Notice that the line-numbering has changed, and that line 2 is annotated with the name
of the rule by which it was derived and the numbers of the assumptions the rule used.

We can now establish r by invoking the same rule — but this time using the formula
g = r. We do this either by selecting ¢ = r and invoking the rule from the menu, or by
double-clicking on ¢ = r. This leads to

1:| p=>q, g=r, p| assumptions
2: q = —elim 1.1,1.3
3:r ——elim 12,2

and the proof is complete and ready to be registered by clicking on the Done entry on the
Edit menu.

A second way

If you registered the last proof, then select the same conjecture on the conjectures panel,
and press the Prove button again. JAPE will ask you, by means of a dialogue box, whether
you really want to start another proof of something you have already registered: press
the Yes button in the dialogue box. If you didn’t register the last proof, then simply
press the Undo button on the Edit menu a couple of times, or press the Delete key a
couple of times and you will undo the last two proof moves.

In any event the session window shows

1| p=q, g=r, p| assumptions

2:r

Now invoke [=-elim] on the assumption ¢ = r either by selecting that assumption and
invoking the rule from the menu, or by double-clicking on it.

1:| p=q, g=>r, p| assumptions

2:q
: ——elim 12,2

We have reasoned forwards from an implication whose antecedent is not yet established,
and JAPE— which is flexible enough to support this kind of reasoning — has shown us what
the structure of a proof which will end with an application of this rule must be. The last
detail is filled in by invoking [=-elim] on the assumption p = q.

2.4 Mixing forward and backward reasoning

HE examples so far have all exploited forward reasoning with elimination rules. In
the next example we will employ a mixture of forward and backward reasoning, and
prove de Morgan’s law
~(pVa)
“pA—q

First we select it in the conjectures panel and press the Prove button.

8You can re-do an undone move by pressing Edit/Redo or the Tab key.

10

1:| =(pvq) | assumption

2:| ~pA—q

We decide to split the task of proving the two conjuncts, and invoke [A-intro] by double-
clicking on —p A —g.

1:] =(pvq) | assumption

4:[=pA—q A—intro 2,3

We now have to establish both —p and —¢. A good heuristic (rule of thumb) for doing
proofs is to use introduction rules backwards to simplify conclusions as far as possible
before starting to reason forwards.” We decide to work on the former, and select it with
a click. The proof changes to

1:] =(pvq) | assumption

4: A—intro 2.3

The grey box around —p shows that we’'ve selected it as the conclusion we are going to
simplify. The greying-out of lines 3 and 4 signify that the formulae on those lines will not
be useable in any proof of the selected formula, and the fact that the assumption on line
1 remains black indicates that the conclusion is within the scope of that assumption.

9Because it’s only a rule of thumb, it doesn’t cover every case — and in particular can’t help us when
the proof requires a [false-elim] move.

11

Grey Formulae

The scope of a selected hypothesis can be determined by selecting it. We
can see this in the proof state described above by de-selecting —p (click
anywhere on the proof window outside the area of the proof to do this)
and selecting the assumption on line 1. This yields

-

:{[=(pVa) | assumption

2:| -p

4 A—intro 23

The fact that lines 2 and 8 remain black indicates that both lines are in
the scope of the selected assumption. (This is hardly a surprise, since it
was a premiss of the entire conjecture, but in more complicated situations
it is very useful to be able to discover the scope of a hypothesis which may
have been introduced in one branch of a many-branched proof.)

So we invoke [--intro] by double clicking on —p, yielding

1:| =(pvq) | assumption

2: p assumption

3:|| false

4: —p -—intro 2-3
5: —q

6:| —=pA—q A—intro 45

Observing that we have not yet simplified the assumption, we apply [--elim] by double
clicking on line 1. This yields

12

1:| =(pvq) | assumption
2:lp assumption

3| pva

4 (] false ——elim 13
5: —p -—intro 2—4
6: —q

7:| =pA—q A—intro 5,6

and we can see that all we need to do is to apply [V-introl]. We can do so by selecting
line 3'° and applying the rule from the menu. We can also do so by just double-clicking
on line 3. This is because J'N’J tries both or-introduction rules when we double-click on
a disjunctive conclusion.

1:] =(pvq) | assumption

2:| p assumption

3| pva V—introl 2
4 (] false ——elim 13
5: —p -—intro 2—4
6:[0q

7: =pA—q A—intro 5,6

The —¢ conclusion can be proven with exactly the same moves and this finishes the proof.
We register it by pressing Edit/Done, and the conjectures window changes accordingly.

10We should, more properly, have written “selecting the formula on line 3”, but this ponderous formu-
lation quickly gets irritating when repeated. So when there’s only one formula on a line we’ll refer to the
line as if it were the formula.

13

Grey Formulae

After the first two steps in the proof of q we reach a state where we can
select the conclusion p V q again. If we do so, the proof window greys
out the lines which cannot be used in the proof of this conclusion.

1:[=(pvq) | assumption

2: assumption

3: V—introl 2

4: ——elim 13

5: ——intro 2—4

6:|q assumption

7:|lpva

8: ——elim 1,7

9: ——intro 68
10 : A—intro 5,9

2.5 Using Theorems as Derived Rules

Netx we shall prove the law of the excluded middle
pV-p

We start the proof in the usual way.

1:pV-p

We are going to prove it by contradiction so we invoke [false-elim] from the menu.

1: =(pv-p) assumption

2| false

3:pV-p false—elim 1-2

Next we shall invoke de Morgan’s law — the one we just proved. We do so by selecting it
in the conjectures panel, and pressing the Apply Forward button in that panel.'!

"'We couldn’t have applied it backwards, because its conclusion doesn’t match the goal false which we
are working towards.

14

1:| =(pv—p) | assumption

2: =pA=—p Theorem —(pVvq) F —pA—q 1
3:| false

4: pVv-p false—elim 1-3

We notice that the conjunction on line 2 is a contradiction, and that we will therefore be
able to prove false from it. But there is no direct way of doing so. What we will have to
do is to dismember the conjunction into its components by applying both A-elimination
rules to line 2, then use [--elim]. The first part of this task is as easily accomplished as
the second — simply double-click on line 2, and — because there isn’t an obvious way of
using just one of the elimination rules,'? J’N’J uses them both in sequence, yielding

1:[=(pv—p) | assumption

2: “pA——p Theorem —(pVvq) F —pA—q 1
3 —p A—eliml 2

4: ~—p A—elim2 2

5| false

6:pV-p false—elim 1-5

We leave it as an exercise for the reader to decide which line to double click on to invoke
the appropriate instance of [--elim].

2.6 Proof Unknowns, Backward Elimination

We will need to exploit a few more sophisticated features of JAPE during our next case
study, which is a bit more ambitous.

1:(p=4q)V(a=p)

21f our goal had been —p then there would have been an obvious way of using [A-elim1]; if it had been
—-p then there would have been an obvious way of using [A-elim2].

15

Automatic Goal Selection

Before starting the proof we invited the system to do some of our work for
us by selecting conclusions for us to work towards. We do so by pressing
Edit/Automatic Goal Selection, and thereafter JAPE always selects the
first unsolved conclusion generated after the most recent proof move; or
(if there are no such conclusions) the topmost leftmost open conclusion
in the proof as a whole. The selected conclusion is shown here with a
grey box around it (JAPE may use a different colour). If we don’t like
the conclusion which JAPE selects, then we can select another manually.

We start the proof by observing that it is unlikely that the last line of our proof will
involve an or introduction. We therefore suppose that it’s a good idea to try and prove
a contradiction, so we apply [false-elim] immediately followed by [--elim], yielding

11 ~((p=q)V(a=p)) assumption

2:||(p=q)V(a=p)
3: ——elim 12

4: false—elim 1-3

The latter rule can be applied either by double-clicking or by selecting the hypothesis
=((p = ¢q) V (¢ = p)) and invoking the rule from the menu.

Now we do some case analysis: if —¢ holds, then so does ¢ = p, and if ¢ holds then so
does p = ¢q. We haven’t proven either of these facts yet, but we do know that [v-elim]
is the basis for a proof by case analysis. On the other hand there’s not yet an VvV to
eliminate: so what can we do? If we try to use [V-elim] the system will simply complain
that we haven’t selected an assumption-like formula. So we take a novel step: we press

Edit/Permit backward use of elimination rules

and then apply [V-elim]. This yields

16

1:[=((p=4q)V(a=p)) assumption
2:l_p2v_ql

3: assumption

4

5: assumption

6:

7 V—elim 23-45-6
8: ~—elim 1,7

9: false—elim 1-8

JAPE has introduced two formula unknowns into the proof: they are prefixed with an
underscore (to signify that they are unknowns), and a formula-class name (to signify that
when they become known they will be formula). By introducing these unknowns JAPE
has allowed us to delay taking a decision about the exact instance of the rule which we
want to apply.

Our original analysis suggested two proof branches: one starting with ¢ and the other
starting with —¢, and at the moment branches 3-4 and 5-6 are both consistent with that
analysis, but are not in quite the right form.

There are several things we can do at this point, and we choose to use the theorem pV —p
backwards at line 2, by selecting it in the conjectures panel, then pressing the Apply
Backward button. This yields

1:| ~((;=q)V(a=p)) assumption
2: Theorem pV-p
3:[-p2 assumption

4:(|[(pP=a)V(a=p)

5: assumption

6:

7: V—elim 23-45-6
8: ——elim 1,7

9: false—elim 1-8

which has only one formula unknown in it.

At this point we realize that we don’t, after all, need to do a proof by contradiction, and
that our early decision was just wrong. We therefore go back to the beginning of the

17

proof by repeatedly pressing the Edit/Undo button.!> We now repeat the two moves we
were confident about: [V-elim] and the backward application of the theorem p V —p. This
yields

1: Theorem pV-p

2:(_p2 assumption

3:{{(P=a)V(a=p)

4: assumption

6: V—elim 12-34-5

Now we invoke [V-introl], yielding

1: Theorem pvV-p

2:(_p2 assumption

3:[|p=q

4: V—introl 3

5: assumption

6:

7: V—elim 12-45-6

An interlude — two lemmas

Now we decide it’s time to prove the two lemmas'* which arise naturally from our earlier

discussion, namely
q
p=4q

and

_q

q=1p
The former is an instance of something which is already on the conjectures panel, so we
interrupt the current proof by selecting p - ¢ = p from that panel and pressing Prove.
The session window now shows

13We could have achieved the same effect in X/Jape by pressing the Delete key repeatedly, or by
selecting line 9 and pressing the Edit/Backtrack key.
A lemma is just a theorem which is used in the proof of another theorem.

18

1 p assumption

and, if we click on the Switch Proof menu we see that there are two proofs in progress.
We could switch between them using this menu, or we could abandon the one which is
currently in the session window, but we won’t do so now.

The lemma yields to an invocation of [=-intro]'®

1 p assumption

2: assumption
3: hy pot hesis 1

4: q=p | =—intro 2-3

The hypothesis rule used to generate line 3 is discussed at length in section 2 of [5], and its
automatic application is discussed later in that note. If we register this proof by pressing
Edit/Done then the proof we were working on reappears.

The second lemma doesn’t appear on the conjectures list. We can add it to that list by
pressing (New) on the conjectures panel. We are greeted with a conjecture entry form
which looks something like this.

.)
| W]
Conjecture Entry E
Siate Conjecture | Save Conjecture | Clear | Cancel n
| COMJECTURE [apH]] B
WHERE |
e [: i
Fl-~fel=v|alel |92

We enter the conjecture —¢g - ¢ = p on the line labelled CONJECTURE, using the buttons
at the foot of the form to enter symbols which don’t appear on the keyboard. When
we have done so, we press the State Conjecture button on the form, whereupon the
conjecture we stated is added to the conjectures panel whence it can be selected for proof
in the usual way. Its proof is

5By this time we hope that the reader understands the nature of the interface well enough that we
need no longer be explicit about whether we double-clicked or used the menu.

19

1:] —-p assumption

2:| p assumption

3| —a assumption

4 ||| false ——elim 12

5:] q false—elim 3—-4
6: p—=q ——intro 2-5

We leave its discovery as an adventure for the reader.

Back to the proof

We are now in a position to use the first lemma forward from line 2. We do so by clicking
on line 2 to select it, ensuring that line 3 is selected as our goal conclusion, then selecting
the lemma on the conjectures panel, and pressing Apply Forward. This yields

1: Theorem pV-p

2:| _p2 assumption

3:| _q2=_p2 Theorem p - g=p 2
4:lp=q

5: V—introl 4

6: assumption

7:

8: V—elim 12-56-7

There are still formula unknowns present, but by this time we know what we want them
to be. There are several ways in which we can force them to be what we want, but the
simplest is to select line 3 (which is assumption-like, because it was derived forward from
the assumption on line 2), ensure that line 4 is also selected (it’s a conclusion), then invoke
the [hypothesis] rule from the Propositional Rules menu. This forces (by unification) line
3 and line 4 to be identical, thereby resolving the values of all the remaining unknowns.

20

Theorem pV-p

assumption
Theorem p - g=p 2
V—introl 3

2:

3:

4.

5: 1q
6:|{(P=a)V(a=p)

assumption

V—elim 12-45-6

Working on the remaining branch of the proof, we can now apply the second lemma
forward from the assumption on line 5 (select line 5, then select the lemma at the bottom
of the conjectures panel and press the Apply Forward button). This yields

2:

3:

4.

5: —q

6:[g=>_q2
7:|{(pP=0a)V(a=p)

Theorem pvV-p
assumption

Theorem p F g=p 2
V—introl 3

assumption

Theorem —pkp=q 5

V—elim 12-45-7

There is still an unknown present, because although we know where we are headed when

we apply the lemma forwards, JAPE doesn

’t16

But an application of [Vv-intro2] — either from the menu or by double-clicking on line 7 —
resolves the unknown and completes the proof.

1:qvV—q Theorem pV-p

2:q assumption

3:| p=9q Theorem p - q=p 2
4 (P=q)V(a=p) V—introl 3

5: —q assumption

6:[a=p Theorem —ptp=xq 5
7:| (p=a)V(a=p) V—intro2 6

8: (p=9)V(a=p) V—elim 12-45-7

16The fact that the unknown has a name identical to a previous unknown which appeared in the proof
is entirely coincidental: the two uses of the name are unrelated. Once an unknown’s value is completely

resolved, its name becomes available for re-use.

21

2.7 A Predicate Logic Proof without Provisos

Next we shall prove one of the quantifier duality laws, namely

1:| —(3x:a=q)| assumption

2:| Vx:a=—q

If we double-click on line 2 — to invoke the [v-intro] the proof becomes

1:| —(3x:a-q)| assumption

2:l|y€a assumption

3:|| ~aly/x]
4 - VX:a-—|q V—intro 2-3

Notice that a new variable y has been introduced into the proof.

Next we invoke [—-intro], giving

1:| —=(3x:a-q)| assumption

2:|l|y€ea assumption

3:|| qly/x] assumption

4:||| false

5: —lq[y/x] ——intro 3—4

6:|Vx:a=—q |V—intro 2-5

Now the only resource left for us to use is the assumption on line 1. Eliminating the

negation gives

22

1:| —(3x:a-q)| assumption

2:||y€a assumption
3:|| qly/x]|| | assumption
dx:a-q
false —-—elim 14

—qly/x]| | ~—intro 3-5
| Vx:a=—q |V—intro 2—6

~ o ot A~

We can now see that there is an element in a which satisfies ¢, it’s the y introduced on
line 2 by the universal introduction rule.

We want to use the existential elimination rule

RULE "J-intro" (t)
FROM tea
AND qlx\t]

INFER J x:a e g

with an explicit argument for ¢, so that it avoids inventing a new term unknown. We can
do so by tert-selecting the name y which has the property we want.

Text Selection

A formula or part of a formula can be text-selected by moving the cursor
into the formula. Then press the text-selection mouse-button at the left
end of the subformula that is to be selected, and drag the mouse right-
wards with the button pressed until the the desired subformula has been
selected. One can also start at the right end and drag the mouse leftwards
through the text to be selected. The selected material changes colour as
the mouse moves. A slight overshoot can be rectified by moving the mouse
back towards the start of the selection, and a big mistake (starting at the
wrong place, for example) can be rectified by double-clicking the text-
selection mouse button within the formula from which the selection was
being made.

Clicking the left-hand mouse button on the session window anywhere
outside of the proof cancels both the assumption and conclusion selections
as well as any current text selections.

Now we invoke existential introduction at line 4, and this completes the proof.

23

)| =(3x:a=q)| assumption

y€a assumption

qly/x]|| | assumption
dx:a-q|| | 3—intro 2.3

false ——elim 14

—qly/x]| | ~—intro 3-5
)| Vx:a=mq |V—intro 2—6

~N o OB W DN R

If we hadn’t text-selected the y then JAPE would have invented an unknown, leaving us
a bit more work to do

1:| =(3x:a-q)| assumption

2:||yea assumption

3:|[aly/x] ||| assumption
4:|1| _tea
qlt/x]
Ix:a-q ||| 3—intro 45
false ——elim 1,6

—|q[y/x] ——intro 3—7
| Vx:a=—mq |V—intro 2-8

O© 00 ~N O O

Using the hypothesis rule with lines 3 and 5 selected, or with lines 2 and 4 selected will
also finish the proof.

We can also finish it by text-selecting both the unknown (_t), and y, and pressing the
Edit/Unify Selected Terms button. This invokes a command which is not a formal
proof rule, but which — by attempting to unify the terms which are text-selected, may
resolve one or more unknowns to the point where the automatic application of hypothesis
(which J’N’J does after every command: see Section 4.1 of [5]) can finish the proof.

Now that we have seen how to provide parameters to rules, we will go back and re-do the
proof — this time without inventing the y on the first step. The first thing we do, then,
is to text-select an z and apply [V-intro].

24

1:| =(3x:a-q)| assumption

2:|| x€a assumption

3: _lq
4:|Vx:a=—q |V—intro 2-3

Next we use [--intro] and [--elim] in sequence, yielding

1:| —(3x:a-q)| assumption
2:[| xEa assumption
3| q assumption
4:||| dx:a-q

5:1| false —-—elim 14
6:|| 7q ——intro 3-5
7:|Vx:a=—q |V—intro 2-6

Now we text select an z, and invoke [3-intro] on line 4, and this completes the proof

1:| =(3x:a-q)| assumption
2:|| x€a assumption
3| q assumption
4:||| dx:a-q J—intro 2,3
5:1| false —-—elim 14
6:|| 7q ——intro 3-5
7:|Vx:a=—q |V—intro 2-6

2.8 Proofs with Provisos
2.8.1 A proof with invariant provisos

For our next case study we shall prove

25

1:| Ix:a-Vy:a’'-q assumption

2:[Vy:a’-3x:a-q

Providing

NOTIN a
NOTIN a’
NOTIN a
NOTIN a’
NOTIN x

<K <K<K X X

The provisos we start with simply aver that £ and y are distinct, and that neither z nor
y are free in a or a’. They will remain the same during the entire proof.!”

We first construct an argument in support of the conjecture which will help guide us as
we make the proof. Although it’s sometimes possible to dispense with such proof plans
when conducting a fully formal proof, and we’ve done so up to now in this document,
having a plan can help us keep our bearings when the formal proof looks like it’s going
off the rails.

The argument is something like this:
1. There is an z € a such that ¢ holds for every y € a’: let this z be called y;. We
can therefore infer y; € a,Vy : a’ ® g[z\y1]

2. We want to show that Vy : a’ 3z : ae ¢, and we can do this by picking an arbitrary
yo € a', then showing that the 3; we introduced in the first step is indeed an element
of a for which ¢[y\y2] holds.

3. So we show that 3z : a e ¢[y\y2] by showing that ¢[z, y\y1, y2]

This suggests that our first move should be [3-elim] on line 1, and this yields

"When a proof (or partial proof) has provisos, they are shown in a pane that appears in the lower
part of the proof’s session window. The boundary between that pane and the proof itself can be dragged
using the left hand mouse button.

26

1:| Ix:a-Vy:a'-q assumption
2:|| ylea ,Vy:a’-qlyl/x] assumptions
3:[| Vy:a’-Ix:a-q
4 :| Vy:a’-Ix:a-q J—elim 12-3
Providing
x NOTIN a
x NOTIN a’
y NOTIN a
y NOTIN a’
y NOTIN x

Our second move should be [V-intro] on line 3, and this leads to

1:| Ix:a-Vy:a’'-q assumption
2:|| ylea ,Vya'-qlyl/x]| assumptions
3| y2e€a’ assumption
4:|| Ix:aqly2/y]
5:|| Vy:a’-Ix:a-q V—intro 3—4
6:| Vy:a’s3x:a-q J—elim 12-5
Providing
x NOTIN a
x NOTIN a’
y NOTIN a
y NOTIN a’
y NOTIN x

We now eliminate the existential quantifier by text-selecting y; then double clicking on
line 4, yielding

27

)| Ix:avy:a'-q assumption
ylea ,Vy:a-qlyl/x| assumptions
y2e€a’ assumption
qly2y1/yx]

Ix:asqly2/y] J—intro 2.14
Vy:a’-Ix:a-q V—intro 3-5
)| Vy:a’s3x:a-q J—elim 12-6
Providing
x NOTIN a
x NOTIN a’
y NOTIN a
y NOTIN a’
y NOTIN x

Finally we use the second hypothesis on line 2 to show that yo has the property we want.
We do so by text-selecting y», and double-clicking on the second hypothesis on line 2.
This very nearly closes the proof

:| Ix:a-vy:a'sq assumption
ylea ,Vy:a'-qlyl/x] assumptions
y2ea’ assumption

4l aly2/xy] V—elim 223
5:|| ab2yl/yx
6:||| Ix:a-qly2/y] J—intro 2.15
7:|| Vy:a’-Ix:a-q V—intro 3-6
8:| Vy:a’s3x:aq J—elim 12-7

Providing

x NOTIN a

x NOTIN a’

y NOTIN a

y NOTIN a’

y NOTIN x

Here — despite the AUTOMATCH hypothesis declaration — a manual invocation of the
hypothesis rule is needed to recognise that g[z,y\y1,y2] and q[y, z\y2, y1] are really the
same formula.

28

1:| Ix:a-Vy:a'q assumption
2:|| ylea ,Vy:a'-qlyl/x] assumptions
3| y2e€a’ assumption
4| alyLly2/xy] V—elim 223
5:|| Ix:a-qly2/y] J—intro 2.14
6:[| Vy:a’-Ix:a-q V—intro 3-5
7:| Vy:a'sIx:a«q J—elim 12-6
Providing
x NOTIN a
x NOTIN a’
y NOTIN a
y NOTIN a’
y NOTIN x

It’s natural to wonder whether we can dispense with the introduction of the extra names
y1 and yo in this proof, and the answer is that we can, as Figure 1 shows. During the
discovery of that proof we text-selected the bound variable of each quantifier as we used
its elimination or its introduction rule.

Q Are there other ways to discover the same proof?
A There may be — the only way for you to find out is to try it yourself.
Q Are there other proofs?

A Yes: Figure 2.8.1 shows the proof we get if we apply the rules in the order [V-intro],
[3-elim], [3-elim], [V-elim].

Q Can we apply the rules in any old order?
A No.

29

Figure 1: Discovering a proof of 3z : a -Vy :a' - qFVy:ad -3z :0a-¢q

1:| Ix:a-Vy:a'sq assumption
2:|| xea ,Vy:a'sq assumptions
:| Ix:aVy:a'-q assumption 3| yea’ assumption
x€a , Vy:a'-q assumptions
4[] Ix:a-q
Vy:a’»Ix:a-q 5:|| Vy:a’-Ix:a-q V—intro 3-4
:| Vy:a’-3x:a-q J—elim 12-3 6:| Vy:a’sIx:a-q J—elim 12-5
Providing Providing
x NOTIN a x NOTIN a
x NOTIN a’ x NOTIN a’
y NOTIN a y NOTIN a
y NOTIN a’ y NOTIN a’
y NOTIN x y NOTIN x
Step 1 Step 2
:| Ix:aVy:a'q assumption
xCa ,Vya'q assumptions 1:] Ix:aVy:a'q assumption
yea’ assumption 2:[| xea , Vy:a'q assumptions
q V_elim 223 3| yea’ assumption
401 q V—elim 223
Ix:a-q 5:|[] 3x:axq J—intro 2.14
Vy:a’+Ix:a-q V—intro 3-5 6:[| Vy:a's3x:a-q V—intro 3-5
:| Vy:a’-Ix:a-q J—elim 12-6 7:| Vy:a’s3x:a-q J—elim 12-6
Providing Providing
x NOTIN a x NOTIN a
x NOTIN a’ x NOTIN a’
y NOTIN a y NOTIN a
y NOTIN a’ y NOTIN a’
y NOTIN x y NOTIN x
Step 3 Step 4

30

—

:| Hx:avy:a'sq

|| ylea |, Vya'-qlyl/x]

assumption

assumptions

3| y2€a’ assumption
4[] qlyly2/xy] V—elim 223
5:[[| Hx:a-qly2/y] J—intro 2.14
6:[| Vy:a»3x:a-q V—intro 3-5
7:| Vy:as3Ix:a-q J—elim 12-6

Providing

x NOTIN a

x NOTIN a’

y NOTIN a

y NOTIN a’

y NOTIN x

Figure 2: An alternative proof of 3z :a-Vy:a'-qFVy:a'-3z:0a-¢q

2.8.2 A proof with changing provisos

For our final case study we shall see what happens when we try to prove the following

conjecture without provisos.

| Ix:avy:a'x<y

| Vy:a’Ixax<y

assumption

Here we have replaced the abstract proposition letter ¢ with a concrete proposition,
namely z < y, and we have omitted the original provisos.

When we prove a conjecture in JAPE we want all sensible substitution instances of the
theorem to be valid — because we may be going to use the proven conjecture as a derived
proof rule. What the present example proof demonstrate is that whenever JAPE applies
a rule, it deduces the provisos necessary to make the partial proof shown in the window
valid at all substitution instances.

Our proof will follow the same trajectory as the proof in Figure 2.8.1. We first simplify
the universal conjunction — text-selecting y before we double click on line 2. This yields

[y

3:
4:

’

flyea

Ix:ax <y

|| Ix:avy:a'x <y

Vy:a’-Ix:ax<y

Providing

Y

NOTIN a’

y NOTIN Ix:a-Vy:a'x<y

31

assumption

assumption

V—intro 2-3

JAPE has added the two provisos

y NOTIN o/, y NOTIN 3z :aeVy:d ez <y

If we remind ourselves what the universal-introduction rule was, then we can see where

they came from.!8

RULE "V -intro" (OBJECT v) WHERE FRESH v
FROM ves F qlw\v]
INFER V w:s e q

The instance of the rule used in this case (because we text-selected the y) was

WHERE FRESH y
FROM y€a’ F dx:aex<y,
INFER V x:a e dx:aex<y

JAPE derived both provisos from the FRESH v proviso of the rule — designed to ensure the
“arbitrariness” of the element v chosen from s. In the absence of information that z and
y are different, the present JAPE doesn’t probe the structure of 3z : a e Vy : a’ @z < y.

The next step we make is to text-select z, and double-click on line 1, thereby invoking
the existential elimination, and yielding

—_

Ix:aVy:a’x<y |assumption

7

2:||y€a assumption

3:||| x€a, Vy:a’x <y||| assumptions

4:||| Ix:ax<y
5:(| Ix:ax<y J—elim 13-4
6:|Vy:a'sIx:ax<y |V—intro 2-5

Providing

x NOTIN a
x NOTIN a’
x NOTIN y
y NOTIN a
y NOTIN a’

JAPE has, remarkably, transformed the provisos into just those that are necessary to
complete the proof. We can explain how it did so by reminding ourselves of the definition
of the existential elimination rule, then looking at the precise instance of the rule which
JAPE used in this case.

The rule schema is

18For the convenience of our readers we have systematically changed the names of the schematic vari-
ables used in our statement of the rule.

32

RULE " J-elim" (OBJECT y)
WHERE FRESH y

AND y NOTIN 3 x:a e p
AND y NOTIN r

FROM J x:a e p

AND y€a, plx\yl F r
INFER r

The instance we used in the move was

WHERE FRESH x

AND x NOTIN 3 x:a e Vy:a’ex<y
AND x NOTIN 3 x:aex<y

FROM 3 x:a e Vy:a’ex<y

AND x€a, Vy:a’ex<y F I x:aex<y

INFER 3 x:aex<y

Now the two NOTIN clauses in the provisos of this instance can be simplified to
z NOTIN o', z NOTIN a

and the FRESH proviso requires that z not be free in any of the hypotheses in scope at
the point of application of the rule — and this generates a proviso

z NOTIN y

Now JAPE tries to simplify the existing provisos using the newly-generated ones, and this
eliminates the now-redundant y NOTIN 3z :aeVy:a' ez < y.

The next two moves are universal elimination and existential introduction (in either order)
and they lead to

1:| Ix:aVy:a’x<y |assumption
2:||yea’ assumption
3:||| x€a, Vy:a’x <y||| assumptions
4 x<Ly V—elim 3.2.2
5:(|| Ixrax<y J—intro 3.14
6:|| Ix:ax<y J—elim 1,3-5
7:|Vy:a’sIx:ax<y |V—intro 2-6
Providing

x NOTIN a

x NOTIN a’

y NOTIN a

y NOTIN a’

y NOTIN x

33

A simpler proof, which would also have discovered the same provisos is one which uses
the theorem we proved earlier

1: Ix:a-Vy:a’x <y| assumption
2:|Vy:a’»Ix:ax<y| Theorem 3x:a-Vy:a'q F Vy:aa'-Ix:a-q 1

Providing
x NOTIN a
x NOTIN a’
x NOTIN y
y NOTIN a
y NOTIN a’

2.8.3 Proof by Rewriting

A rewrite move can be made by selecting the required equivalence theorem in the con-
jectures window, tand pressing one of the Rewrite buttons in that window. If a text
selection has been made, then that selection will be the subject of the rewrite (if possi-
ble), otherwise JAPE will search the current goal for a subterm at which the appropriate
rule can be applied as a rewrite.

Such moves can often dramatically shorten a proof. For example, compare the following
two proofs — the first of which is a proof by rewriting, and the second a conventional
proof using the logical inference rules.

1:qV-p&qV-p Theorem p&p
2: 2pVgeqVap rewrite Theorem (pVq)&(qVp) 1
3: 2pVg&SqVap rewrite Theorem ——p&p 2
4 : ~pVq&(~g=-p) rewrite Theorem (p=>q)&(—pVq) 3
5: (p=q)&(~q=-p) rewrite Theorem (p=>q)&(—pVq) 4
1:| p=q assumption
2:(| q assumption
3 p assumption
4:[] q —=—elim 13
5 false -—elim 24
6:[| —p ——intro 3-5
7: \q=-p =-—intro 2-6
8: (p=q)=-9=-p =—intro 1-7
9:| ~g=-p assumption
10| p assumption
11 ||| —q assumption
12 -p ——elim 9,11
13 ||| false ——elim 12,10
14| q false—elim 11-13
15 1| p=q =—intro 1014
16 : (nq=-p)=p=q =-—intro 9-15

17 : (p=q)& (~q=-p) &—intro 8,16

34

3 Do you want to know more?

HE following resources are available for those who wish to find out more about JAPE.
JAPE is a work-in-progress, so there may be slight inconsistencies between different
accounts of it.

Richard Bornat’s note describing a JAPE implementation of a slightly different
natural-deduction-style logic is available on the net [1]. This is recommended for
those who want to learn more about using JAPE to do natural deduction proofs,
and who wish to see more detailed explanations of the way in which some of the
rules can be used from JAPE.

Our note [2] describing how to make your own JAPE logic by taking the reader
through several of the example theories we issue with JAPE.

e The directory /PACK/jape/default/examples/ at your installation contains ex-
ample theories which you may wish to play with.

There are JAPE Web sites at Oxford [3] and QMW from which most of the JAPE
documentation is accessible, and on which news about JAPE is published from time
to time.

The Unix Jape Companion explains the Unix Jape interface as well as the sup-
porting software you will need if you intend to print or publish proofs made with
Jape.

http://www.comlab.ox.ac.uk/oucl/users/bernard.sufrin/JAPE/unixjape .gz

You might be interested to read the description of Unix/X JAPE given in one of the
following World-Wide Web documents

http://wuw.comlab.ox.ac.uk/oucl/users/bernard.sufrin/UNIXJAPEDOCHTML/gist.html
http://www.comlab.ox.ac.uk/oucl/users/bernard.sufrin/UNIXJAPEDOCHTML/unixjape.html

Both are very slightly out of date, but they give a flavour of what it’s like to
use JAPE, and give reasonably clear descriptions of the purpose of the various
windows and panels and buttons which comprise the JAPE user interface. The
former describes how to use JAPE to conduct proofs in a variant of predicate logic
which differs from J’N’J in some important details. The latter describes how to
conduct proofs in a little theory of functional programming.

35

References

[1] Richard Bornat. Using ItL JAPE
http://www.comlab.ox.ac.uk/oucl/users/bernard.sufrin/JAPE/itljape.ps.gz

[2] Richard Bornat & Bernard Sufrin. Roll Your Own JAPE Logic

http://www.comlab.ox.ac.uk/oucl/users/bernard.sufrin/JAPE/rollyourownjapelogic.ps.gz

[3] Richard Bornat & Bernard Sufrin. The Ozford JAPE Web Site

http://www.comlab.ox.ac.uk/oucl/users/bernard.sufrin/jape.html
[4] Fitch, F.B.. Symbolic Logic. Ronald Press, New York

[5] Bernard Sufrin & Richard Bornat. J'N’J in Jape

http://www.comlab.ox.ac.uk/oucl/users/bernard.sufrin/JAPE/jnj.ps.gz

[6] Bernard Sufrin & Richard Bornat. Using J’N’J in Uniz/X JAPE
http://www.comlab.ox.ac.uk/oucl/users/bernard.sufrin/JAPE /usingjnj.ps.gz

[7] Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and Proof.
Prentice-Hall International

Manuscript Revision: 1.13
Date: 2003/01/20 15:36:02
Latexed: January 20, 2003 at 15:47

36

Contents

1 Getting Started with J'N’J

2 Case Studies

2.1 A Proof by Forward Reasoning

2.2 Direct Manipulation . . .

2.3 Two ways to find the same

proofo

2.4 Mixing forward and backward reasoning

2.5 Using Theorems as Derived Rules

2.6 Proof Unknowns, Backward Elimination

2.7 A Predicate Logic Proof without Provisos

2.8 Proofs with Provisos . . .

2.8.1 A proof with invariant provisos,

2.8.2 A proof with changing provisos

2.8.3 Proof by Rewriting

3 Do you want to know more?

10

14

15

22

25

25

31

34

35

