
User Interfaces for Generic Proof Assistants
Part I: Interpreting Gestures

Bernard Sufrin Richard Bornat

April 3, 1998

Abstract

JAPE is a generic proof editor which (amongst other things) offers the teacher, user, or logic designer the
opportunity of constructing a direct manipulation interface for proofs.

In part I of this paper we introduce JAPE, illustrate some aspects of proof development by direct manipulation,
and describe some of the infrastructure provided for interpreting the gestures which users make at proofs. In part
II we discuss the problem of displaying proofs at appropriate levels of abstraction, and describe the infrastructure
JAPE provides for eliding proof steps from the display.’

1 Introduction

JAPE is a generic interactive proof editor designed to assist teachers, students, and practitioners of formal reasoning.
It accepts a description of a logic as a system of inference rules, and provides support for the discovery of proofs in
that logic. It is not an automatic theorem prover: on the contrary, our goal has been to support human-directed proof-
discovery – the machine does as much of the donkey-work as is appropriate in a given proof setting, and the human
provides insight at crucial1 moments – if necessary by making a few simple remarks, but preferably by gesturing.
We like to think of Jape as a bit like a pedantic (but uninspired) student beavering away at a proof, with an experienced
teacher providing support. From time to time the teacher points at a formula and says something like “concentrate
on reducing this using the appropriate list theorems”, or “distribute that map through the catenations”, or “reduce the
scope of that quantifier” – enough of the teacher’s insights can be communicated by these means to make progress
possible when the next step to take isn’t completely obvious to the student.
The description of a logic may be accompanied by a description of a direct manipulation interface – a mapping, if
you will, between the user’s gestures and the assistant’s proof actions. In this paper we discuss some of the gesture-
interpreting infrastructure JAPE makes available to the interface designer. Although our discussion is centred on
JAPE, we believe that many of the techniques we’ve used can be used in other settings.
There are few constraints on the kinds of logic with which Jape can cope: our goal was to make it possible for some-
one who isn’t expert in Jape to code a logic more or less directly from its presentation in a textbook or paper. Several
specimen logics accompany the standard distribution of Jape [Bornat and Sufrin, 1996a], and we have selected two
of these logics to provide the setting for most of the discussion below.
An important limitation we imposed on ourselves when implementing JAPE was that although it must embody a
metatheory of formulae, bindings, and deduction, it should not have any special knowledge of any particular kind

This paper is a revised and enlarged version of a paper of the same name presented at the workshop “User Interfaces for Theorem Provers”,
York, U.K., July 1996.

Computing Laboratory and Worcester College, Oxford
Queen Mary and Westfield College, London
1“Crucial” is in the eye of the beholder, of course. For a student taking first steps in learning to discover proofs in a simple predicate logic,

almost every step is crucial, and it’s important that the student participates in each decision. For an experienced functional programmer, the crux
of an inductive proof may come after a good deal of automatically invoked rewriting.

1

P Q P
hyp

P Q Q
P Q P Q
P Q P Q

P assumption
Q assumption
P hyp

Q
P Q

Q P Q

Figure 1: A partial proof in tree and box forms

of object logic or theory – not even a theory of equality. This constraint gave rise to a number of challenges in
the design of the infrastructure to support direct manipulation interfaces, and we tried at every stage to meet these
challenges in a principled, and logically justifiable way.
By this we intend to convey the idea that JAPE should not make any move in a proof, unless that move is justifiable
by rules and theorems of the its currently-loaded object logic. We wanted to avoid “magic” – proof transformations
implemented by JAPE’s internal algorithms which might not be justifiable in some object logics.
In sections 4 and 5 we discuss some of the more important problems, and the extent to which our solutions can
indeed be described as logically justifiable.

2 Proof Display

It is very hard to experiment with proof tactics and strategies without being able to see the location and structural
consequences of decisions taken during the proof, and this suggests that an interactive proof tool should always
display the proof(s) under construction. On the other hand this seems to be impractical for a tool in which high level
proofs are conducted by tactics which invoke several or many low-level inference rules – information overload is as
hard to cope with as an information vacuum!
We conclude that the display of the complete proof – at an appropriate level of abstraction – is essential to support
fluent proof discovery, and we provide a good deal of support for showing appropriately abstracted proofs. This
support is discussed in part II of this paper [Bornat and Sufrin, 1996c].
During a proof, the user is shown a view of the proof tree; this can be literally tree-shaped, or – more usefully –
presented in the boxed style pioneered by Fitch [Fitch, 1952]. For example, Figure 1 shows a partial proof in both
tree and box forms.2 We discuss the relationship between these two views in [Bornat and Sufrin, 1996b].

3 Interpreting Gestures

The user’s side of the interaction is conducted by making gestures at JAPE: these are made by typing, by mouse-
clicks, or by mouse-drags. The most important form of gesture results in the identification (and eventual invocation)
of a tactic – which might be one of the inference rules, or might be something more complicated. Tactics may be
chosen from menus or panels or by double-clicking on a displayed hypothesis or conclusion. Before identifying the
tactic, the user may have selected a hypothesis and/or a conclusion formula, and may also have text-selected parts of
other formulae visible in the proof.3 The situation at the point the gesture is made is called the gesture context, and
in what follows we shall be describing some of the tactic language constructs which give access to it.

2This example, and the other examples in the first part of the paper are drawn from the intuitionistic predicate calculus – part of whose JAPE
description is in Appendix C.

3By dragging the mouse over them in the usual way.

2

3.1 Menu-based gestures

The simplest form of user interface places the names of the inference rules on menus or panels whence they may be
invoked in the usual way. It’s very easy to set up such an interface; all we need to do is to enclose the declarations of
the inference rules in a MENU declaration:

MENU Rules
RULE hyp(A) A A
RULE " " A
RULE " " FROM A AND B INFER A B
...

END

3.2 Direct manipulation

Of more interest here is the style of interface where the user signals which rule to apply by double-clicking on
an appropriate formula. In JAPE such interfaces can be constructed by making a few additional declarations. For
example

HYPHIT A B C IS " "
CONCHIT B C IS " "

The first of these declarations associates the proof rule " " with a double-click on a hypothesis which is a
conjunction. The second is more interesting – it associates the tactic " " with a double-click on a disjunctive
conclusion. This tactic tries to complete the proof of the disjunction by using the left or-introduction rule followed
by the hypothesis rule, or (if that doesn’t work) by using the right or-introduction rule followed by the hypothesis
rule.4

TACTIC " "
(ALT (PROVE " (L)" hyp)

(PROVE " (R)" hyp)
(FAIL " " does not lead to an immediate conclusion))

If neither of these methods succeeds, then the user has to exercise a little more insight, and decide which of the
branches of the disjunct to aim at: the corresponding or-introduction rule has to be invoked by some other means
(which is why we rarely dispense with the menu interface completely)

3.3 Parameters

An interesting situation arises when we want to invoke a rule whose antecedents cannot be completely determined
by unifying its consequent with a goal sequent. For example

RULE " "(B) FROM P[x B] INFER x.P

The purpose of the formal parameter (B) of the exists-introduction rule, is to enable the extra information to be
supplied as an explicitly-chosen argument when the rule is applied. For example, if the current goal is

y undefined y
4The ALT form takes a list of tactics (which may be rules), and tries them in sequence until one of them succeeds – in which case it succeeds,

or it runs out of rules – in which case it fails.

3

and we run the tactic5 " " foo then a new subgoal

undefined foo

is generated from the antecedent.
If, on the other hand, we run the tactic " " without supplying any additional information, then JAPE will invent
a new proof unknown _B whose name is derived from B, 6 and generate a new goal with conclusion P[x _B] – in
the case of our example this is undefined B. The unknown is generated to permit the user to delay choosing B until
later in the discovery of the proof – when the choice may be easier to make.
But we often know in advance what the B is going to be – and there is frequently a candidate B in a visible formula
already. We want to make it as convenient as possible for the user to invoke the tacticwith the appropriate parameter.
The guarded tactic form

pattern tactic

is designed for use in just these circumstances. It succeeds if a formula has been text-selected, and the selection
unifies with pattern (which may contain proof unknowns), and the tactic (which may contain occurences of proof
unknowns bound by the unification) also succeeds. Thus, for example, the direct-manipulation declaration

CONCHIT x.B IS (LETARGSEL _TERM " "(_TERM))

causes the tactic " "(_TERM) to be invoked, whenever an existential conclusion is double-clicked in the pres-
ence of a text-selected formula. In the situation outlined at the start of this section we could therefore run the tactic
" " foo by text-selecting the formula foo then double-clicking on y undefined y.
The tactic needs a little refinement, however, because the conclusion-hit will fail (because the LETARGSEL fails) if
there’s no text selection.7

CONCHIT x.B IS (WHEN (LETARGSEL _TERM " "(_TERM))
(" "))

Now the exists-introduction rule is invoked when there’s a double-click on an existential conclusion: if a formula
has been text selected it is provided as an argument to the rule; if not, then the rule is invoked without an argument.

3.4 Resolving ambiguity in the application of rules

When working on the hypothesis side of a proof in a single-conclusion calculus we frequently find ourselves in
situations where the rule we invoke does not uniquely determine the hypothesis to which it is to be applied. 8 For
example, in the proof situation shown below the rule " " can be used to eliminate either of the implication
hypotheses.

P Q R P Q P R
P Q R P Q P R
P Q R P Q P R

5Rules are the simplest form of tactic.
6The derivation method is safe: it avoids re-using unknowns which are still present in the proof – albeit at the cost of deriving abominable

names like B , B , The names of Jape proof unknowns are always prefixed with an underscore, and they are the only things which appear
in a proof which are so decorated. We should like to have used some other typographic convention for displaying them, but the austerity of our
implementation infrastructure precludes that at present.

7The WHEN tactic form constructs a composite tactic from a list of simple guarded tactics followed by a default tactic. The effect of a WHEN
is the effect of the first component whose guard is satisifed. If no guard is satisfied then the effect is the effect of the default tactic.

8The dual situation exists when we’re working on the conclusion side of a multi-conclusion calculus, and JAPE provides mechanisms dual to
those being discussed here for coping with it.

4

Use of implication-elimination would be ambiguous here
In such situations it’s useful to be able to select the hypothesis which is to be acted on before applying the rule. 9

The guarded tactic form
pattern tactic

is used to facilitate such selections. It succeeds if the selected hypothesis10 matches the pattern, and the given tactic
succeeds. The tactic form

tactic

runs tactic in such a way that if there is any ambiguity over which hypothesis to use when tactic applies a rule, then
the selected hypothesis is the one that is chosen.
An appropriate direct-manipulation declaration for implication hypotheses is therefore

HYPHIT P Q C IS
(WHEN (LETHYP _FORM (WITHHYP " "))

(" "))

In fact, the WITHHYP form is fairly forgiving – if there’s no hypothesis selected, then the tactic under its control gets
run in the normal way. So the declaration above could be simplified, with no loss of functionality, to

HYPHIT P Q C IS (WITHHYP " ")

3.5 Guarding the application of tactics

It is often useful to restrict the situations in which a particular rule or tactic is invoked. We can do so by guarding the
tactic with a non-trivial pattern in one of the (many) LET forms.
For example, in a gesture context where an equivalence hypothesis has been selected, the tactic HypRewritewhose
body is

(LETHYP (_A _B) (substitutivity _A)(hyp (_A _B)))

invokes the following sequential11 tactic.

(SEQ (substitutivity _A)(hyp (_A _B)))

The substitutivity rule is:12

RULE substitutivity(A, OBJECT x)
FROM A B
AND F[x B]
INFER F[x A]

The intention is that HypRewrite should use the selected hypothesis, if it’s an equivalence, as a left-to-right rewrite
rule – replacing all occurences of its left subformula with its right subformula.
It is worth seeing what happens when we use the HypRewrite tactic in the following (contrived) situation with the
left hypothesis selected

9If that isn’t done then JAPE presents the user with a choice box which shows the candidate hypotheses and the corresponding outcomes – the
sudden switch in the style of interaction which this enforces can be disconcerting.
10At present there can be at most one selected hypothesis and at most one selected conclusion in the gesture context.
11The SEQ is implicit.
12In the general case the unification of a formal substitution such as that in the consequent of the substitutivity rule may have to be deferred.

Provision of a formula A to abstract over (i.e. replace with x) during the unification makes an immediate unification possible.

5

P Q Q R assumptions

P R R P

About to use substitutivity P

After the first tactic in the sequence – substitutivity P – succeeds, the proof looks like this:

P Q Q R assumptions

P B

B R R B
P R R P substitutivity

After using substitutivity P

The _B is a proof unknown, ready to be unified with any term, and line 2 (the leftmost unclosed subgoal of the
previously applied rule) has (automatically) become the current goal. The application of (hyp (_A _B)) to
this goal closes it, leaving us with

P Q Q R assumptions

Q R R Q
P R R P substitutivity

After hyp ...

which is the box-style presentation of the following proof tree. 13

P Q Q R P Q
hyp

P Q Q R Q R R Q
P Q Q R P R R P

substitutivity

As a tree after hyp ...

4 Support for Equational Reasoning

This section of the paper is (loosely) based on the the system for working with functions and symmetric lists which
is distributed with JAPE. This presented the interaction designer with several interesting problems – including those
of controlling search with a light touch – which we shall address here. The problems aren’t confined to the realm of
equational proof, and the solutions we propose here were designed to be used in other realms as well.

4.1 The evolution of an Unfold gesture

Most equational theories lean heavily on the use of a rule which embodies Leibniz’ law of substitutivity of equals. It
can be formulated as follows in JAPE.

RULE rewrite (X, OBJECT v, Y)
FROM X=Y
AND P[v Y]
INFER P[v X]

13The alert reader will wonder where the hyp step vanished to in the box style presentation. The answer is that it was elided – a full explanation
of elision is given in part II of this paper [Bornat and Sufrin, 1996c].

6

In this section we illustrate how the JAPE tactic language facilitates the deployment of this rule – despite the fact that
JAPE has no special knowledge of equality. We’ll do so by giving an account of the evolution of a particularly useful
gesture-interpreting tactic.
To provide a concrete setting for our account we shall work on a proof of the conjecture rev rev id – first by
considering the rules which we would apply if we were going to do everything by hand, and then by developing an
“unfolding” tactic which makes the interaction rather simple.
We start by applying the extensionality rule – giving a proof tree of the form

rev rev x id x
rev rev id ext

Next we decide that we want to rewrite the right hand side, using the id rule, which is id x x. This is done in two
steps. In the first we apply the tactic rewrite (id x), leaving the proof tree in the following state 14

id x Y rev rev x Y
rev rev x id x rewrite

rev rev id ext

Selecting the leftmost unclosed subgoal id x Y we now apply the id rule (id x x). This closes the goal –
unifying Y with x in the process, – and we’re left in the following proof state.

id x x id rev rev x x
rev rev x id x rewrite

rev rev id ext

Next we must rewrite the left hand side of the remaining equation, using the definition of composition. The first step
is to apply rewrite((rev rev) x), and this leaves the proof in the following state. 15

id x x id
rev rev x Y Y x

rev rev x x rewrite

rev rev x id x rewrite

rev rev id ext

The next step is to select the leftmost unclosed goal, and apply the composition rule " ", which is F G x
F G x . This closes the goal in question – this time unifying Y with rev rev x , and leaves the proof in state

id x x id
rev rev x rev rev x rev rev x x

rev rev x x rewrite

rev rev x id x rewrite

rev rev id ext

At this point we’ll call a halt to the developing proof, and observe two things. The first observation is that given that
we’re proceeding by equational reasoning the tree has a lot of redundant information present in it – we explain the
remedies JAPE offers for this in part II of this paper [Bornat and Sufrin, 1996c].
The second observation – which is more important in this context – is that there’s a certain ritualised form to the
steps we’re taking: each user level move involves a decision about a subterm to rewrite, followed by a decision about
a rule to use in the rewriting. But once we have chosen the subterm to rewrite, the rule to use is obvious.
14A detailed explanation of the way in which this works is given in appendix A.
15Notice that the proof unknown Y is re-used – its earlier occurences in the proof tree simply vanished when we applied the id rule.

7

This gives rise to an interesting way of using the LETARGSEL form discussed earlier. The tactic defined below tries
to rewrite the text-selected (sub)-term using one of the rules defined in the Functions theory.

TACTIC RewriteSelection IS
(WHEN (LETARGSEL _TERM (SEQ (rewrite _TERM) Functions))

(FAILWITH "Please text-select a term"))

Its behaviour depends on two important features of JAPE, namely:

1. During the application of a SEQuential tactic form, JAPE always works on the leftmost remaining unclosed
subgoal unless told to do otherwise.

2. A JAPE theory implicitly defines an ALT tactic (whose name is the theory name) containing the names of all
the rules defined in it.

So if there is a text selection, then the rewrite rule is applied first – leaving an unclosed leftmost subgoal of the
form textselection Y as the next to be worked-on. Next the Functions tactic simply applies each of the rules
in the Function theory in turn, until one of them matches the goal (or it runs out of rules). 16

We can make the rule more useful if we make it possible to use the currently selected hypothesis – if it’s an equation
– as a rewrite rule. Another useful refinemenet is to abstract over the tactic used to search for a suitable rewriting
rule. Making both these refinements yields the tactic

TACTIC UnfoldSelection(rulebase) IS
(WHEN (LETHYP (_L = _R) (LETARGSEL _TERM (SEQ (rewrite _TERM) (hyp (_L = _R)))))

(LETARGSEL _TERM (SEQ (rewrite _TERM) rulebase))
(FAILWITH "Please text-select a term"))

Another refinement has the rule do something sensible even if there’s no text-selection.

TACTIC UnfoldSelectionOrSearch(rulebase) IS
(WHEN (LETHYP (_L = _R) (LETARGSEL _TERM (SEQ (rewrite _TERM) (hyp (_L = _R)))))

(LETARGSEL _TERM (SEQ (rewrite _TERM) rulebase))
(UNFOLD rewrite rulebase))

If there’s no selected hypothesis or text selection, then the UNFOLD form, which is the last branch of the WHEN,
searches the current goal, in leftmost outermost order, for a subterm which matches the left hand side of one of the
rules in rulebase. If the search is successful – say because the subterm t matches the left hand side of the rule r, then
the effect is as if the tactic t r had been run.
There is nothing unique about the ability to do a search in this way – what’s interesting from the point of view
of generic interface construction is the way in which the language of gesture interpretation supports its controlled
deployment.
The “folding” counterpart of the tactic is just as straightforwardly programmed, using the FOLD form to replace
UNFOLD, and using the rewritebackwards rule to replace replace.

4.2 Controlling Search

One remaining detail concerns the way in which the user can decide on which rule base to use for the rewriting.
Here JAPE offers an abundance of mechanism. In this section we explain one style of using the mechanism which
has proven useful.
16Theory designers have to be careful to order the presentation of rules so that the more general a rule is the later it appears in the theory –

JAPE should take the responsibility for this itself.

8

First we need to explain the concept of panel – which is a kind of free-floating list of rules and conjectures dec-
orated with one or more buttons. For example, here’s the Definitions panel from JAPE’s functional programming
presentation.

Entries on a panel can be selected (by clicking on them), and buttons on the panel may be pressed in the usual
way. The Unfold button on the panel shown above can be associated with the tactic we developed in the previous
section by making the following declaration in the scope of the declaration of the Definitions panel.

PREFIXBUTTON Unfold IS apply UnfoldSelectionOrSearch

When a PREFIXBUTTON is pressed, JAPE checks that one of the rules in the panel has been selected, and then
supplies that rule as an argument to the tactic associated with the button. For example, clicking on Unfold having
selected " " is equivalent to applying the tactic (UnfoldSelectionOrSearch " "). In a context where
there’s no text selection, this results in a search for a place where the definition of " " can be applied left-to-right,
and if there is a text selection it results in an attempt to rewrite that selection17 using the rule.
It’s frequently the case (particularly in equational proofs) that there’s really only one term worth unfolding 18, or
that the user can indicate an appropriate site for an unfolding by making a text selection. It is tedious to have to
indicate precisely which rule should be used in the unfolding – often a simple search through a collection 19 of rules
will resolve the question. But the collection of rules to use may change during the course of a proof – sometimes
it’s appropriate to include theorems (derived rules) in the search, sometimes it’s not; sometimes it’s appropriate to
include functions defined for lists, sometimes it’s not.
One method of providing choice would be to bind each collection of rules to a panel button for each action, but
this leads to “button bloat” – a multiplicity of highly specialised buttons which overwhelms the user’s powers of
comprehension or the interface designer’s capacity for inventing meaningful labels.
The alternative is to provide a convenientmeans of editing the content of a single collection – the SEARCH collection.
We then place this collection as an entry in the appropriate panel(s): 20

ENTRY "Any rule enabled by Searching’’ IS SEARCH

Pressing Unfold with this entry selected invokesUnfoldSelectionOrSearch SEARCH, and pressing Fold
with it selected invokes FoldSelectionOrSearch SEARCH.
17To be more precise, all instances of the selection – we shall take this question up in section 4.3.
18Or folding – all the remarks we make about unfolding apply equally well to folding.
19Identified by an ALT form.
20The details go a little beyond the scope of this discussion; they are presented in Appendix B.

9

4.3 Directing attention to specific terms

The unfolding tactic which we’ve been developing rewrites all instances of a text-selected term, and although this
is often good enough, there are sometimes situations where we want to direct the attention of the tool to a specific
instance of a term.
For example, suppose we are starting a proof of a conjecture such as

ref ref id

and (for some reason – the example is contrived) wish to unfold the right ref but not the left one.
The present UnfoldSelectionOrSearch ref is too crude. If we text select the right ref then it rewrites
both occurences – yielding

ref rev rev swap ref

rev rev swap rev rev swap id
ref ref id rewrite

If we select nothing, and rely on UNFOLD, then the left ref will be expanded.
What we want to be able to do is to direct attention to the exact occurence which we text-selected. Rather than invent
a special notation for describing occurences, we find it very appealing to exploit the substitution notation, and here’s
how we do it.
If one or more identical subformulas have been text-selected in a host formula within the current goal, then the tactic
form

pattern tactic

matches pattern against the host formula in which they have been selected and invokes tactic if the match succeeds.
So far there’s nothing too remarkable about this. The magic part is that while the host formula is matched, it is
presented in the form of an explicit substitution

abstraction variable selection

which, if simplified would yield the original host.
In the above case this would yield:

ref newvariable id newvariable ref

A pattern of the form _P[_v _X] will unify with this, binding P to ref newvariable id, v to newvariable,
and X to ref .
It’s convenient to think of the host formula being converted into an “stable” substitution, which resists simplification
for just one unification step (the match with LETSUBSTSEL’s pattern). The tactic form

rule

has an analogous effect on the formula in which a selection has been made – turning it into a stable substitution for
just long enough to run the rule. For example, running WITHSUBSTSEL rewrite in the original proof state, with
the right ref text-selected yields

ref Y

ref Y id
ref ref id rewrite

10

What happens is that the pattern _P[_v _X] generated by the consequent of rewritematches the stable substi-
tution generated by WITHSUBSTSEL, then the antecedent of rewrite – which immediately after the unification
is in the form substitution ref newvariable id newvariable Y – gets simplified.
Invoking the rule which defines ref yields the following proof state, which is just what we want.

ref rev rev swap ref

ref rev rev swap id
ref ref id rewrite

The more discriminating behaviour of the SUBSTSEL tactic forms makes them more appropriate than LETARGSEL
to use in the tactics described in section 4.1. The unfolding tactic now becomes:

TACTIC UnfoldSelectionOrSearch(rulebase) IS
(WHEN

(LETHYP (_L = _R) (LETSUBSTSEL _TERM (SEQ (WITHSUBSTSEL rewrite) (hyp (_L = _R)))))
(LETSUBSTSEL _TERM (SEQ (WITHSUBSTSEL rewrite) rulebase))
(UNFOLD rewrite rulebase))

5 Dealing with Associativity

JAPE has no special internal representation for associative terms.21 Nor, as we noted at the beginning of this paper,
does it have any built-in assumptions about any particular object theory – even equality. All JAPE proofs are, at
bottom, purely logical proofs conducted using the currently-installed axioms and rules.
One the face of things it would seem that exploiting algebraic properties such as commutativity and associativity
might be rather difficult under these circumstances. But things aren’t as bad as they seem, and in this section we
explain how JAPE facilitates the exploitation of associative rules.
The tactic forms we describe are not logically necessary. The built-in tactic forms which support flattening 22, and
finding,23 are built-in for the sake of efficiency and generality, and to spare the user from the distractions of carrying
out tedious activity at too low a level of abstraction.

5.1 The FLATTEN Tactic Form

Consider the proof state

filter P map fst cat map if snd one none zip id map P
filter P map fst filter snd zip id map P Fold using filter
filter P map fst filter snd zip id map P Associativity

We’d like to use the theoremmap F cat cat map mapF to rewrite the leftmostmap fst cat – but at present there
are parentheses in the way, so it isn’t a proper subterm of the current right hand side, and can neither be text-selected,
nor matched by an unfolding tactic.
But composition () is associative, and this means we can eliminate the (semantically) redundant parentheses. One
way of doing so would be to proceed by hand, selecting subterms and either folding or unfolding with composition’s
associativity rule until JAPE no longer needs to use parenthesis to indicate structure. This would be tedious and
error-prone, so we provide a means of automating the job.
21Terms formed with associative connectives.
22i.e. reduction of terms to associative normal form.
23i.e. the transformation of a term to a form in which a particular term is a proper subterm.

11

The tactic form term transforms the term – which should be a subterm of the current goal – into assocative
normal form: a form in which no parenthesis is necessary to indicate structure. It justifies the transformation by using
the associative laws of the topmost operator of the term, if there are any. FLATTENwill only conduct logically sound
associative transformations: if there is no associative law for the topmost operator, or if there is a law but it hasn’t
yet been proven then FLATTEN fails.
In this case FLATTEN – which records its use as “Associativity” – gets us to the proof state

filter P map fst cat map if snd one none zip id map P
filter P map fst cat map if snd one none zip id map P Associativity
filter P map fst filter snd zip id map P Fold using filter
filter P map fst filter snd zip id map P Associativity

In this state map fst cat is a proper subterm, and can be text-selected, or discovered by one of the other branches of
UnfoldSelectionOrSearch – giving a proof which starts as follows

filter P cat map map fst map if snd one none zip id map P
filter P map fst cat map if snd one none zip id map P Fold map F cat
filter P map fst cat map if snd one none zip id map P Associativity
filter P map fst filter snd zip id map P Fold using filter
filter P map fst filter snd zip id map P Associativity

Insight tells us that for our next move we’d like to use the theorem map F map G map F G to rewrite the
leftmost outermost composition of maps. If JAPE were equipped with associative unification then we could use our
existing unfold tactic – having selected the theorem in the appropriate panel. But JAPE doesn’t have that facility, and
the composition we have our eye on isn’t a proper subterm (of the current representation) of the goal.
It seems that we are going to have to use the associative law of composition to transform the proof into one in which
map map fst map if is a proper subterm of the goal, namely

filter P cat map map fst map if snd one none zip id map P
filter P cat map map fst map if snd one none zip id map P Associativity
filter P map fst cat map if snd one none zip id map P Fold map F cat
filter P map fst cat map if snd one none zip id map P Associativity
filter P map fst filter snd zip id map P Fold using filter
filter P map fst filter snd zip id map P Associativity

We are reluctant to insist that such transformations be performed by hand, so we must provide a means of automating
the job. One way of doing so is the subject of the next section.

5.2 The FindSelectionInConclusion Tactic

If there is a text selection in the current conclusion, and the current conclusion is an equation which can be trans-
formed by the application of associative laws to one in which the text selection is a proper subterm, then the following
tactic performs that transformation.

TACTIC FindSelectionInConclusion IS
(WHEN
(LETCONCFIND (_XOLD=_YOLD, _XNEW=_YNEW)

(ALT
(SEQ (rewriteEquation _XOLD _XNEW _YOLD _YNEW) EVALUATE EVALUATE)
(FAIL "the term you selected isn’t a subterm of the conclusion"))))

12

This time the tactic is a little more complicated – requiring the use of a built-in tactic form, a specialised form of
judgement, and a built-in proof procedure for that judgement. In order to explain how it works in the situation
outlined above we need to explain its parts in some detail.

5.2.1 The LETCONCFIND tactic form

The tactic form
patternold patternnew tactic

succeeds if

there is a text selection, and

the current conclusion unifies with patternold, and

the result of putting brackets around the selected text and reparsing the whole conclusion unifies with pattern new,
and

the form’s body (tactic) then succeeds.

5.2.2 The rewriteEquation rule

The proof rule rewriteEquation captures the idea that the formula X Y is equivalent to the formula X Y
providing that both X X and Y Y are associatively equivalent.

RULE rewriteEquation(X, X’, Y, Y’, OBJECT x) IS
FROM ASSOCEQ (X, X’)
AND ASSOCEQ (Y, Y’)
AND X’=Y’
INFER X=Y

5.2.3 The ASSOCEQ judgement

The judgement ASSOCEQ X X is intended to hold if the terms X and X have the same associative normal form.
A decision procedure for such a tactic is programmable in JAPE’s tactic language, but experience has shown it to be
rather slow. So we have extended the scope of the built-in tactic form EVALUATE – which is the hook on which
decision procedures for specialised forms of judgement are hung – to include ASSOCEQ judgements.
The operation of EVALUATE is quite simple. If presented with a judgement of a form for which a decision proce-
dure has been declared, then it applies the appropriate decision procedure. In this case the decision procedure for
ASSOCEQ judgements is built-in – its method is to apply the flattening transform to both its arguments and check
the identity of the resulting terms.

5.2.4 FindSelectionInConclusion in operation

The transformation with which we began the discussion of FindSelectionInConclusion, namely from the
goal

filter P cat map map fst map if snd one none zip id map P

into the goal

filter P cat map map fst map if snd one none zip id map P

13

is accomplished by text-selecting the term map map fst map if snd one none then invoking the selection-
finding tactic.
The first thing that happens, during the unification phase of LETCONCFIND is that the following bindings take place:

filter P
cat map map fst map if snd one none zip id map P
filter P
cat map map fst map if snd one none zip id map P

The rule rewriteEquation is invoked next, and this gives rise to the three subgoals:

ASSOCEQ filter P
filter P

ASSOCEQ cat map map fst map if snd one none zip id map P
cat map map fst map if snd one none zip id map P

filter P cat map map fst map if snd one none zip id map P

The first two of these are solved immediately by the following two applications of EVALUATE, leaving the last
subgoal for the user’s attention.
The full detail of the proof tree generated by running the tactic as described above is usually uninteresting, so in
the production variant of the tactic the two ASSOCEQ subtrees are suppressed from the display, using the display
transformation machinery described in the second part of this paper.

6 Envoy

The design of the language forms which support direct manipulation is clearly not yet finished. The small number of
tactic forms described above, buttressed by analogous forms which deal with hypotheses, seem to make it possible
for an interaction designer to program sensible interpretations of users’ gestures rather easily, but no doubt these
forms will undergo some refinement (and pruning) as our experience with them grows.
In the realm of proof discovery we have shown that it’s possible in practice to dispense with non-logical descriptions
of term occurences in the design of gesture-interpreting tactics. The full scope of the technique of stable substitutions
has yet to be explored, but it is already clear to us that some control over the extent of their stability is going to be
needed.
The soundness of the FLATTEN tactic and tactics like FindSelectionInConclusion ultimately depends on
the soundness of the transformation into associative normal form which JAPE performs. We have not formally
verified the algorithm concerned – the only reassurance we can offer is the fact that it’s a very simple algorithm, and
is “obviously” right. But we can offer no more reassurance than that for any other component of JAPE, at present
and that is a weakness we must acknowledge. On the other hand, the fact that the superficially “magic” behaviour
of FLATTEN and ASSOCEQ+EVALUATE cannot be evoked when there is no assocative rule (or theorem) to justify
the transformations performed should increase the user’s confidence in the soundness of any results which depend
on them.
In closing, it’s worth remarking that at this stage it wouldn’t be appropriate to try to answer the sensible question
posed to us by readers of an earlier draft of this paper: “for what class of user is a direct manipulation interface a
good thing?” We believe that it’s just beginning to be possible to make empirical studies of such questions using
JAPE. Further improvements in Jape’s expressive power and in the quality and range of its display machinery should
make such studies easier, and we look forward to collaborating with those who want to try.

14

A Unification of Formal Substitutions

When rules (such as rewrite) with formal substitutions in the consequent are used, they are frequently given an
explicit formal parameter (the X, in the case of rewrite) so that the unification of the consequent with a goal can
proceed smoothly when an actual parameter is given. 24

In one of the examples in the body of the paper we saw that the goal rev rev x id x was transformed by the rule
(rewrite (id x)) into the subgoals id x Y and rev rev x Y. What happens during the application of
the rule is as follows:

1. A new object v and proof unknown Y are invented (because neither was supplied as an actual parameter).

2. The consequent P v id x is matched to the goal by abstracting every occurence of id x from the goal and
replacing it with v – in other words the consequent is rev rev x v v i x .

3. The antecedents id x Y and rev rev x v v Y are now generated, and the latter is immediately
simplified to rev rev x Y.

B Editing the “Search” collection

The simplest way of arranging for a named collection of rules to be dynamically configurable is to define the collec-
tion as an alternation of named tactics which can themselves be configured to fail (which permits the search defined
by the alternation to continue), or to apply a rule (which may itself be an alternation). 25

TACTIC SEARCH IS (ALT fun list ...)

JAPE’s radio-button interface elements provide a way of defining a named tactic dynamically. For example, the
element defined below defines a menu button with three distinct labels. It allows the user to choose the definition
of fun to be either the tactic Functions (an implicitly-defined ALT tactic which searches the rules defined in the
Functions theory), or an explicitly defined ALT tactic which searches the rules and the theorems of that theory,
or the tactic JUSTFAIL – which does what its name suggests.

RADIOBUTTON fun IS
"Search Function rules" IS Functions

AND "Search Function rules and Theorems" IS (ALT Functions FunctionsThm)
AND "Ignore Function rules" IS JUSTFAIL
END

24In fact JAPE defers the unification if the actual parameter isn’t supplied.
25For those who like hearing about such things in algebraic terms, ALT is associative, and has unit JUSTFAIL.

15

C An extract from the Intuitionistic Sequent Calculus

RULE hyp(A) A A
RULE " " A

RULE " " FROM A AND B INFER A B
RULE " " FROM A, B C INFER A B C

RULE " (L)" FROM A INFER A B
RULE " (R)" FROM B INFER A B
RULE " " FROM A C AND B C INFER A B C

RULE " " FROM A B AND B A INFER A B
RULE " " FROM A B, B A C INFER A B C

RULE " "(OBJECT m) WHERE FRESH m
FROM P[x m]
INFER x . P

RULE " "(B) FROM x.P, P[x B] C INFER x.P C

RULE " "(B) FROM P[x B] INFER x.P

RULE " "(OBJECT m) WHERE FRESH m
FROM P[x m] C
INFER x.P C

References

[Bornat and Sufrin, 1996a] Richard Bornat and Bernard Sufrin 1996a. The Jape Web Sites.
http://www.comlab.ox.ac.uk/oucl/users/bernard.sufrin/jape.html
ftp://ftp.dcs.qmw.ac.uk/programming/jape/index.html

[Bornat and Sufrin, 1996b] Richard Bornat and Bernard Sufrin 1996b. Jape’s Quiet Interface. Proceedings of this
Workshop

[Bornat and Sufrin, 1998b] Richard Bornat and Bernard Sufrin 1998b.User Interfaces for Generic Proof Assistants
– Part II: Displaying Proofs. (Revised Version: Available at the Jape Web sites)

[Fitch, 1952] Fitch, F.B. 1952.Symbolic Logic. Ronald Press, New York

[Stevens, 1996] Andrew Stevens 1996. Towards Mechanised Revision of Proofs and Theories Proceedings of this
Workshop

16

Contents

1 Introduction 1

2 Proof Display 2

3 Interpreting Gestures 2
3.1 Menu-based gestures . 3
3.2 Direct manipulation . 3
3.3 Parameters . 3
3.4 Resolving ambiguity in the application of rules . 4
3.5 Guarding the application of tactics . 5

4 Support for Equational Reasoning 6
4.1 The evolution of an Unfold gesture . 6
4.2 Controlling Search . 8
4.3 Directing attention to specific terms . 10

5 Dealing with Associativity 11
5.1 The FLATTEN Tactic Form . 11
5.2 The FindSelectionInConclusion Tactic . 12

5.2.1 The LETCONCFIND tactic form . 13
5.2.2 The rewriteEquation rule . 13
5.2.3 The ASSOCEQ judgement . 13
5.2.4 FindSelectionInConclusion in operation . 13

6 Envoy 14

A Unification of Formal Substitutions 15

B Editing the “Search” collection 15

C An extract from the Intuitionistic Sequent Calculus 16

17

