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Introduction

▷ A calculus by which the validity (correctness) of propositional conjectures is judged

▷ A propositional conjecture has some premisses and a conclusion

▷ Example 1:

It is raining

If I wear a hat and it is raining then my head stays dry

My head is not dry

I therefore conclude that

I am not wearing a hat

▷ Question: is this conjecture valid?
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▷ Example 2:

It is raining

If I wear a hat and it is raining then my head stays dry

My head is dry

I therefore conclude that

I am wearing a hat

Question: is this conjecture valid?

▷ Example 3:

I conclude (without premisses) that

If today is Tuesday then we are in Paris

Question: is this conjecture valid?
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Propositional Language: propositions

▷ A proposition is a meaningful declarative sentence that may be true or false in a situation.

▷ Examples:

○ “Socrates is mortal”○ “The King’s Arms is at the junction of Cornmarket with High Street”○ “I am hungry”○ “Tony Blair is a war-criminal”○ “It is raining and my head is wet”○ “If I wear a hat and it is raining then my head stays dry”

▷ But not

○ “Do you like green eggs and ham?”○ “Can you catch it in your hat?”○ “Let’s go!”○ “Don’t mention the war.”
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Propositional Language: atomic propositions

▷ An atomic proposition is a proposition with no logical connectives in it.

▷ Examples:

○ “Socrates is mortal”○ “The King’s Arms is at the junction of Cornmarket with High Street”○ “I am hungry”○ “Tony Blair is a war-criminal”

▷ But not

○ “It is raining and my head is wet” (“... and ...”)○ “If I wear a hat and it is raining then my head stays dry” (“if ... and ... then ...”)
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Symbolic representation

▷ Atomic propositions denoted by letters/identifiers

▷ Propositional connectives written in symbols

It is raining

If I wear a hat and it is raining then my head stays dry

My head is not dry

I therefore conclude that

I am not wearing a hat

R(H ∧R)→ D¬D
¬H

▷ ... therefore ... separates the premisses of a conjecture from its conclusion

It is not a propositional connective
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Composing Propositions with Logical Connectives

▷ not ... ¬φ
▷ ... and ... φ ∧ ψ
▷ ... or ... φ ∨ ψ
▷ if ... then ... φ→ ψ

▷ ... if and only if ... φ↔ ψ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where φ and ψ are propositions

▷ The connectives are not independent of each other

▷ There are other connectives, but these are the most common

▷ Sometimes other symbols are used for connectives (typically ⇒,⇔ for →,↔)
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Parsing

▷ Priority of connectives is (in descending order) ¬,∧,∨,→,↔
○ → has slightly higher priority on its right than on its left○ Some texts give ∧ the same priority as ∨○ (Jape gives ∧ and ∨ slightly higher priority on their left)

▷ If in doubt, parenthesize!

▷ Examples:

○ (A ∧B → C ∨D)↔ A→ B → C ∨D

○ ¬¬A→ A

○ A ∨B ∨C ∨D ∧E ∧ F
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Presenting a conjecture

▷ Informal: “if you accept these premisses1 then you should accept this conclusion”

▷ Formal: “from these premisses we may validly infer this conclusion.”

○ In horizontal form: premiss ,premiss ,premiss , ... ⊢ conclusion○ In vertical form:
premiss premiss premiss ...

conclusion

▷ e.g. the conjecture:

R,H ∧R → D ,D ⊢ H
R H ∧R → D D

H

▷ e.g. the conjecture:

R,H ∧R → D ,¬D ⊢ ¬H R H ∧R → D ¬D¬H
1 i.e. their truth
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What is the nature of a valid conjecture?

▷ Propositional calculus is a formal system that we use to judge the validity of conjectures.

▷ The validity of a conjecture is judged solely from its form, not on the
meanings/interpretations of the atomic propositions.

▷ The validity of R,H ∧R → D ,¬D ⊢ ¬H
○ is independent of the interpretation H ,R,D in the real world.○ does not establish the truth of the premisses.○ so should not, on its own, convince you that ¬H

▷ An alternative interpretation

R “there are roses in my garden”

H “there’s a hedgehog in my garden”

D “I am depressed”
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What is the purpose of a proof system?

▷ If you know only that a particular conjecture has been proven:

○ When the premisses are all true then you should accept the conclusion○ When some of the premisses are untrue then you need not accept the conclusion

▷ If you know only that a conjecture has not (yet) been proven:

○ Then you need not (yet) accept the conclusion, even if all the premisses are true
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▷ Example conjecture: commutativity of conjunction: (for any propositions φ and ψ)

ψ ∧ φ
φ ∧ ψ ψ ∧ φ ⊢ φ ∧ ψ

○ “from ψ ∧ φ we can infer φ ∧ ψ”○ “if we have established ψ ∧ φ then we can infer φ ∧ ψ”

▷ Intuitive argument

1. Take ψ ∧ φ as a premiss

2. Since we have established (by premiss) ψ ∧ φ we can infer φ

3. Since we have established (by premiss) ψ ∧ φ we can infer ψ

4. Since we established (on the previous two lines) both φ and ψ we can infer φ ∧ ψ
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▷ Here we use the words infer, conclude, and deduce more or less interchangeably.

▷ We say that a proposition has been established in a proof of a conjecture if it is a premiss
or has been inferred / concluded / deduced (directly or indirectly) from the premisses of
the conjecture by means of the proof rules that we are using.
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Proof Rules for conjunction

▷ “and introduction”:

○ In a proof in which we have established φ and established ψ, we can conclude φ ∧ ψ
φ ψ
φ ∧ ψ ∧-intro

▷ “and elimination”

○ In a proof in which we have established φ ∧ ψ, we can conclude φ

φ ∧ ψ
φ

∧-elim-L

○ In a proof where we have established φ ∧ ψ, we can conclude ψ

φ ∧ ψ
ψ

∧-elim-R
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▷ Formal presentations of the proof

○ In linear form

1: ψ ∧ φ premiss
2: φ ∧-elim-R 1
3: ψ ∧-elim-L 1
4: φ ∧ ψ ∧-intro 2, 3

○ As a tree

ψ ∧ φ premiss

φ
∧-elim-R

ψ ∧ φ premiss

ψ
∧-elim-L

φ ∧ ψ ∧-intro

▷ The proof tree is complete because its root is the conclusion of the conjecture and each
leaf is a premiss of the conjecture.
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▷ The proof rules are parameterized by φ and ψ

▷ View them as functions that construct proofs from proofs

▷ Example: proof that φ ∧ (ψ ∧ κ) ⊢ (φ ∧ ψ) ∧ κ

φ ∧ (ψ ∧ κ) premiss

φ
∧-elim-L

φ ∧ (ψ ∧ κ) premiss

ψ ∧ κ ∧-elim-R

ψ
∧-elim-L

φ ∧ ψ ∧-intro

φ ∧ (ψ ∧ κ) premiss

ψ ∧ κ ∧-elim-R

κ
∧-elim-R

(φ ∧ ψ) ∧ κ ∧-intro

▷ The proof tree is complete because its root is the conclusion of the conjecture and each
leaf is a premiss of the conjecture.
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▷ Same proof (linear presentation)

1: φ ∧ (ψ ∧ κ) premiss
2: φ ∧-elim-L 1
3: ψ ∧ κ ∧-elim-R 1
4: ψ ∧-elim-L 3
5: φ ∧ ψ ∧-intro 2 4
6: κ ∧-elim-R 3
7: (φ ∧ ψ) ∧ κ ∧-intro 5, 6

▷ In this proof the pattern for each rule is matched in more than one way
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Proof Rules for disjunction

▷ Introduction rules are straightforward

φ
φ ∨ ψ ∨-intro-L

ψ
φ ∨ ψ ∨-intro-R
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▷ Elimination rule captures the idea of case analysis

(φ ∨ ψ)
φ
...

κ

ψ
...

κ
κ ∨-elim

▷ We can conclude κ in a proof in which we have established φ ∨ ψ and in which we have

(a) established κ by assuming φ, and

(b) established κ by assuming ψ

▷ We have established (φ ∨ψ), i.e. that at least one of φ and ψ hold, but not which of them

▷ Having both proof (a) and proof (b) means it doesn’t matter which

▷
α
...

κ means: this particular instance of α cannot be referenced outside the supbroof of κ
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▷ Case study: proof of E ∨ (F ∧G) ⊢ (E ∨ F ) ∧ (E ∨G)

What makes this proof formal is that it doesn’t depend on the meanings of E , F , or G
or of the premiss or the conclusion, it just depends on the syntactic forms of the premiss
and the conclusion and the propositions (formulæ) that arise in the course of the proof.
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Proof rules as “conjecture transformers”

▷ Q: But how did I go about finding the proof of E ∨ (F ∧G) ⊢ (E ∨ F ) ∧ (E ∨G)?

▷ A: At each stage I used a proof rule to transform a conjecture (the goal) to the set of
conjectures that need to be proved in order for it to hold (the subgoals).

A subgoal that’s an assumption (or premiss) requires no further work.
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▷ The starting goal (the original conjecture) is:

1: E ∨ (F ∧G) premiss
...

2: (E ∨ F ) ∧ (E ∨G)
○ We guess from the form of the premiss that we can finish the proof with ∨-elim○ Using this rule transforms the starting goal into two subgoals

(alternate guess is that we can finish the proof with ∧-intro)
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▷ Working on the first subgoal: we guess we can finish with ∧-intro

This yields two nested subgoals (2...3) and (2...4) – one for each conjunct
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▷ After two ∨-intro steps we have completed the first subgoal
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▷ Working on the second subgoal (the bottom box)

○ we can see we are going to need both conjuncts so we take two ∧-elim steps
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▷ We see that we can finish this subproof with ∧-intro
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▷ The two resulting subgoals are closed by ∨-intro rules

▷ Notice that assumption 2 is not used outside of 2-5, nor is 6 used outside of 6-11.

Exercise: Could we have started the proof search by using ∧-intro?
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Proof Rules for Implication

▷ Elimination rule (a.k.a modus-ponens) is straightforward

φ φ→ ψ

ψ
→-elim

▷ Concrete example: proof of H ,R,H ∧R → D ⊢ D

H ∧R → D
premiss

H
premiss

R
premiss

H ∧R
∧-intro

D
→-elim
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▷ Introduction rule

φ

...

ψ

φ→ ψ
→-intro

To prove φ→ ψ assume φ and prove ψ from it.

The box means “don’t refer to the assumed occurence of φ outside of the nested subproof”
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▷ Concrete example: “discovering” a proof of E → (F → G) ⊢ (E → F )→ (E → G)
▷ We know that the proof is eventually going to look like this

1: E → (F → G) premiss
...

n: (E → F )→ (E → G)
▷ We cannot do anything immediately with the premiss (→-elim is not applicable)

But we could start a new hypothetical subproof using →-intro

1: E → (F → G) premiss

2: E → F assumption
...

(n-1): E → G

n: (E → F )→ (E → G) →-intro 2 — n-1

In fact we were forced to do this! (Why?)
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▷ Exactly the same consideration holds for the subproof 2 — (n − 1), leaving us with

1: E → (F → G) premiss

2: E → F assumption

3: E assumption
...

n-2: G

n-1: E → G →-intro 3 — n-2

n: (E → F )→ (E → G) →-intro 2 — n-1
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▷ Now we can start to use →-elim

1: E → (F → G) premiss

2: E → F assumption

3: E assumption
4: F →-elim 2,3

...
n-2: G

n-1: E → G →-intro 3 — n-2

n: (E → F )→ (E → G) →-intro 2 — n-1
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▷ and again ...

1: E → (F → G) premiss

2: E → F assumption

3: E assumption
4: F →-elim 2,3
5: F → G →-elim 1,3

...
n-2: G

n-1: E → G →-intro 3 — n-2

n: (E → F )→ (E → G) →-intro 2 — n-1
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▷ and it just takes one more →-elim to close the (gap in the) proof

1: E → (F → G) premiss

2: E → F assumption

3: E assumption
4: F →-elim 2,3
5: F → G →-elim 1,3
6: G →-elim 5,4

7: E → G →-intro 3 — 6

8: (E → F )→ (E → G) →-intro 2 — 7

▷ EXERCISE: Use this sequence to explain why the “boxed assumption” restriction of→-intro is satisfied by this proof.
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▷ Here’s the proof in tree form (with the origins of assumptions labelled):

E → (F → G) premiss

E
hyp3

F → G
→-elim

E → F
hyp2

E
hyp3

F
→-elim

G
→-elim

E → G
→-intro3

(E → F )→ (E → G) →-intro2

▷ EXERCISE: Use this tree to explain why the “boxed assumption” restriction of →-intro is
satisfied by this proof.

▷ ASIDE: it can be quite challenging to keep track of assumptions made during the process
of discovering a proof that you are recording in tree form.

– 34 – 13th April, 2017@13:42 [712]

Introduction to Formal Proof 1: Formal Proofs in Propositional Calculus A Paradox?

A Paradox?

▷ One consequence of accepting the →-intro rule is the theorem F ⊢ E → F

1: F premiss

2: E hyp
3: F copy 1

4: E → F →-intro

○ We have proved that if F holds anyway, then (for any proposition E ) that E → F , the
natural language interpretation of which is: “if E then F”○ But in natural language “if E then F” is sometimes taken to suggest that E is, in some
sense, relevant to, or a causal factor in F .

○ There is no real paradox here: just take E → F to mean “F holds in every situation in
which E holds.”
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Rules for iff

▷ If we take φ↔ ψ as an abbreviation for “φ→ ψ and ψ → φ” we get the rules:

φ→ ψ ψ → φ
φ↔ ψ

abb-↔-intro
φ↔ ψ
φ→ ψ

abb-↔-elim-r
φ↔ ψ
ψ → φ

abb-↔-elim-l

which capture the essence of the abbreviation; but mention an additional connective (→)

▷ The following rules are of equivalent logical power; and they mention only ↔
ψ...
φ

φ...
ψ

φ↔ ψ
↔-intro

φ φ↔ ψ
ψ

↔-elim-r
ψ φ↔ ψ

φ
↔-elim-l
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Proof Rules for Negation

▷ Informal meaning of ¬ is captured by

○ “If you believe φ then you shouldn’t believe ¬φ”○ “If you believe ¬φ then you shouldn’t believe φ”

▷ The rules for ¬ must demonstrate that φ and ¬φ contradict each other.

▷ We use the symbol � to mean contradiction.
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▷ Introduction: if φ leads to a contradiction, then believe ¬φ
φ
...�¬φ ¬-intro

▷ Elimination: believing both φ and ¬φ is contradictory

φ ¬φ� ¬-elim

▷ Contradiction-elimination:
�
φ
�-elim

▷ Double-negation-elimination:
¬¬φ
φ

¬¬-elim
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▷ An important consequence of these rules – called classical contradiction or reductio ad
absurdam (RAA) – is: if ¬φ leads to a contradiction, then believe φ

¬φ
...�
φ

contradiction(classical)

▷ Exercise: “prove” the classical contradiction rule
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▷ A straightforward proof using both negation rules

▷ Proof discovery:

○ the goal consequent matches a rule consequent.○ then for each conjunct goal we looked for a way of eliminating not from the premiss
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▷ Law of the Excluded Middle: ⊢ φ ∨ ¬φ
▷ This theorem has no premisses.

1: ¬(φ ∨ ¬φ) assumption
2: ¬φ ∧ ¬¬φ Theorem ¬(φ∨ψ) ⊢ ¬φ ∧ ¬ψ
3: ¬¬φ ∧-elim 2
4: ¬φ ∧-elim 2
5: � ¬elim 4,3

6: (φ ∨ ¬φ) contra (classical) 1—5

▷ Proof discovery:

○ the goal consequent is a disjunction, but○ using an ∨-intro rule would require us to choose one of the disjuncts to prove○ so we structure the proof as a proof by contradiction

▷ Exercise: prove the theorem cited on line 2
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Derived Rules

▷ Exercise: prove φ ∧ ψ → θ ⊢ φ→ (ψ → θ) (call this proof IC(φ, ψ, κ))

▷ Exercise: prove φ→ (ψ → θ) ⊢ φ ∧ ψ → θ (call this proof CI(φ, ψ, κ))

Q: Can these proofs become part of the proof of ⊢ E → (F → G)↔ E ∧ F → G?

A: Imagine just substituting the proof trees at the appropriate point

(E → (F → G))
... CI (E ,F ,G)

E ∧ F → G

(E → (F → G))→ (E ∧ F → G) →-intro

(E ∧ F → G)
... IC (E ,F ,G)

E → (F → G)
(E ∧ F → G)→ (E → (F → G)) →-intro

E → (F → G)↔ E ∧ F → G
↔-intro

▷ This justifies the notion that (substitution instance of) a proven conjecture (a.k.a theorem)
that has been named can be used within another proof as if it were a proof rule.
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▷ Denying the Conseqent: (a.k.a Modus Tollens)

φ→ ψ ¬ψ¬φ MT

▷ Proof
1: φ→ ψ premiss
2: ¬ψ premiss

3: φ assumption
4: ψ →-elim 1, 3
5: � ¬-elim 4, 2

6: ¬φ ¬-intro 3-5
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A first glance at soundness and completeness

▷ If I find a proof of R,H ∧R → D ,¬D ⊢ ¬H
... then what should I do if I am wearing a hat and it is raining and my head is wet?

▷ If I find a proof of R,H ∧R → D ,D ⊢ H

... then what should I do if it is raining and my head is dry and I am not wearing a hat?
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▷ What if we cannot find a proof of “R,H ∧R → D ,D ⊢ H ”?

○ is it because the conjecture is invalid?○ is it because we are insufficiently clever?○ is it because the proof rules we have given so far are inadequate or wrong?

▷ More generally, we can ask questions about the proof rules:

○ Completeness: is there a proof of every valid conjecture of the form “P1,P2, ...Pn ⊢ Q”?○ Soundness: if we can find a proof for “P1,P2, ...Pn ⊢ Q” then is it valid?

▷ But to answer these questions we need

○ an independent characterization of the notion of validity.○ a way of conducting rigorous proofs about proofs!
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