Introduction to Formal Proof

Bernard Sufrin

Trinity Term 2018

1: Formal Proofs in Propositional Calculus

[01-intro]

Introduction	Propositional Language: propositions		
	▷ A <i>proposition</i> is a meaningful declarative sentence that may be true or false in a situation.		
ho A calculus by which the <i>validity</i> (correctness) of propositional conjectures is judged	\triangleright Examples:		
	∘ "Socrates is mortal"		
\triangleright A propositional conjecture has some <i>premisses</i> and a <i>conclusion</i>	\circ "The King's Arms is at the junction of Cornmarket with High Street"		
	∘ "I am hungry"		
⊳ Example 1:	 "Tony Blair is a war-criminal" 		
It is raining	 "It is raining and my head is wet" 		
If I wear a hat and it is raining then my head stays dry	\circ "If I wear a hat and it is raining then my head stays dry"		
My head is not dry	\triangleright But not		
I therefore conclude that	◦ "Do you like green eggs and ham?"		
I am not wearing a hat	 "Can you catch it in your hat?" 		
▷ Question: is this conjecture valid?	◦ "Let's go!"		
	 "Don't mention the war." 		
تا 11 – 1 – 13 th April, 2017@13:42 [712]	- 3 - 13 th April, 2017@13:42 [712		
troduction to Formal Proof 1: Formal Proofs in Propositional Calculus Introduction	Introduction to Formal Proof 1: Formal Proofs in Propositional Calculus Propositional Language: atomic propositions		
⊳ Example 2:	Propositional Language: atomic propositions		
It is raining			
If I wear a hat and it is raining then my head stays dry My head is dry	\triangleright An <i>atomic proposition</i> is a proposition with no logical connectives in it.		
I therefore conclude that	⊳ Examples:		
l am wearing a hat	∘ "Socrates is mortal"		
Question: is this conjecture valid?	 "The King's Arms is at the junction of Cornmarket with High Street" 		
	∘ "I am hungry"		
	 "Tony Blair is a war-criminal" 		
⊳ Example 3:			
I conclude (without premisses) that	\triangleright But not		
If today is Tuesday then we are in Paris	 "It is raining and my head is wet" (" and") 		
Question: is this conjecture valid?	 "If I wear a hat and it is raining then my head stays dry" ("if and then") 		
- 2 - 13 th April, 2017@13:42 [712]	- 4 - 13 th April, 2017@13:42 [712]		

13th April, 2017@13:42 [712]

Presenting a conjecture

Symbolic representation

- > Atomic propositions denoted by letters/identifiers
- ▷ Propositional connectives written in symbols

It is raining	R
If I wear a hat and it is raining then my head stays dry	$(H \land R) \rightarrow D$
My head is not dry	$\neg D$
I therefore conclude that	
l am not wearing a hat	$\neg H$

▷ ... therefore ... separates the premisses of a conjecture from its conclusion

It is not a propositional connective

-0-	- 5 -	13th April, 2017@13:42 [712]
Introduction to Formal Proof 1: Formal Proofs in Propositional C	Calculus	Symbolic representation

Composing Propositions with Logical Connectives

⊳ not	$\neg\phi$ `)
$\triangleright \dots$ and \dots	$\phi \wedge \psi$	$\}$ where ϕ and ψ are propositions
▷ or	$\phi \lor \psi$	$\}$ where ϕ and ψ are propositions
\triangleright if then	$\begin{array}{l} \phi \to \psi \\ \phi \leftrightarrow \psi \end{array}$	
$\triangleright \dots$ if and only if \dots	$\phi \leftrightarrow \psi$,	ļ

- \triangleright The connectives are not independent of each other
- \triangleright There are other connectives, but these are the most common
- \triangleright Sometimes other symbols are used for connectives (typically \Rightarrow , \Leftrightarrow for \rightarrow , \leftrightarrow)

Parsing

 \triangleright Priority of connectives is (in descending order) $\neg, \land, \lor, \rightarrow, \leftrightarrow$

- $\circ \rightarrow$ has slightly higher priority on its right than on its left
- \circ Some texts give \wedge the same priority as \vee
- \circ (Jape gives \land and \lor slightly higher priority on their left)
- \triangleright If in doubt, parenthesize!

 \triangleright Examples: $\circ (\underline{A \land B} \to \underline{C \lor D}) \leftrightarrow \overline{A \to \overline{B \to \overline{C \lor D}}}$ $\circ \neg \underline{\neg A} \to A$ $\circ \overline{\overline{A \vee B} \vee C} \vee \underline{D} \wedge \underline{E} \wedge F$

Introduction to Formal Proof 1: Formal Proofs in Propositional Calculus

 $R, H \land R \rightarrow$

Presenting a conjecture

- 7 -

- \triangleright Informal: "if you accept these premisses¹ then you should accept this conclusion"
- ▷ Formal: "from *these premisses* we may validly infer *this conclusion*."
 - \circ In horizontal form: *premiss*, *premiss*, *premiss*, ... \vdash *conclusion*
 - In vertical form:

 \triangleright *e.g.* the conjecture:

$$D, D \vdash H$$
 $\frac{R \quad H \land R \to D \quad D}{H}$

 \triangleright *e.g.* the conjecture:

i.e. their truth

$$R, H \land R \to D, \neg D \vdash \neg H \qquad \qquad \frac{R \quad H \land R \to D \quad \neg D}{\neg H}$$

$$\neg H$$

- 6 -

- 8 -

What is the nature of a valid conjecture?

Introduction to Formal Proof 1: Formal Proofs in Propositional Calculus

		-	▷ Example conjecture: co	mmutativity of conjunction: (f	for any propositions ϕ and $\psi)$
▷ The validity of a conj	s is a formal system that we use to j ecture is judged <i>solely from its form</i> ons of the atomic propositions.		$rac{\psi}{\phi}$	$\frac{\psi \wedge \phi}{\wedge \psi}$	$\psi \wedge \phi \vdash \phi \wedge \psi$
 ▷ The validity of R, H ∧ R → D, ¬D ⊢ ¬H ○ is independent of the interpretation H, R, D in the real world. ○ does not establish the truth of the premisses. 		$\circ \ ``from \ \psi \land \phi \ we \ can \ infer \ \phi \land \psi''$ $\circ \ ``if \ we \ have \ established \ \psi \land \phi \ then \ we \ can \ infer \ \phi \land \psi''$		$\wedge \psi$ "	
 o so should not, on a should not an alternative interpreter a should be "there as a should be should be a should be a should be a should be a should be	my garden"		3. Since we have establ	lished (by premiss) $\psi \land \phi$ we c lished (by premiss) $\psi \land \phi$ we c	
Introduction to Formal Proof 1: Formal Pro	– 9 – pofs in Propositional Calculus	13 th April, 2017@13:42 [712] What is the purpose of a proof system?	Introduction to Formal Proof 1: Formal Proofs	– 11 – ; in Propositional Calculus	13 th April, 2017@13:42 [712] What is the purpose of a proof system?
V	What is the purpose of a proof	system?			
• When the premisse	hat a particular conjecture has es are all true then you should accep premisses are untrue then you need	t the conclusion	\triangleright Here we use the words	<i>infer, conclude,</i> and <i>deduce</i> m	ore or less interchangeably.
	hat a conjecture has not (yet) t (yet) accept the conclusion, even i	-	or has been inferred / c		roof of a conjecture if it is a premiss or indirectly) from the premisses of e using.

What is the nature of a valid conjecture?

What is the purpose of a proof system?

What is the purpose of a proof system?

Introduction to Formal Proof 1: Formal Proofs in Propositional Calculus

Proof Rules for conjunction

 \triangleright "and introduction":

 \circ In a proof in which we have established ϕ and established $\psi,$ we can conclude $\phi \wedge \psi$

$$\frac{\phi \quad \psi}{\phi \land \psi} \land \text{-intro}$$

 \triangleright "and elimination"

 \circ In a proof in which we have established $\phi \wedge \psi,$ we can conclude ϕ

$$\frac{\phi \wedge \psi}{\phi} \wedge \text{-elim-L}$$

 \circ In a proof where we have established $\phi \wedge \psi,$ we can conclude ψ

$$\frac{\phi \wedge \psi}{\psi} \wedge \text{-elim-R}$$

- 13 − 13th April, 2017@13:42 [712]

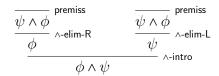
Introduction to Formal Proof 1: Formal Proofs in Propositional Calculus

▷ Formal presentations of the proof

• In linear form

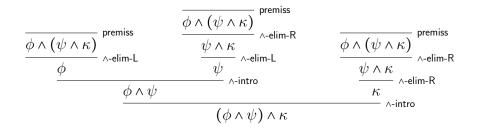
1:
$$\psi \land \phi$$
 premiss
2: ϕ \land -elim-R 1
3: ψ \land -elim-L 1
4: $\phi \land \psi$ \land -intro 2, 3

 \circ As a tree



▷ The proof tree is complete because its root is the conclusion of the conjecture and each leaf is a premiss of the conjecture.

- \triangleright The proof rules are parameterized by ϕ and ψ
- \triangleright View them as functions that construct proofs from proofs
- \triangleright Example: proof that $\phi \land (\psi \land \kappa) \vdash (\phi \land \psi) \land \kappa$



▷ The proof tree is complete because its root is the conclusion of the conjecture and each leaf is a premiss of the conjecture.

▷ Same proof (linear presentation)

1:	$\phi \land (\psi \land \kappa)$	premiss
2:	ϕ	∧-elim-L 1
3:	$\psi \wedge \kappa$	∧-elim-R 1
4:	ψ	∧-elim-L 3
5:	$\phi \wedge \psi$	∧-intro 2 4
6:	κ	∧-elim-R 3
7:	$(\phi \wedge \psi) \wedge \kappa$	∧-intro 5, 6

 \triangleright In this proof the pattern for each rule is matched in more than one way

Proof Rules for disjunction

Introduction to Formal Proof 1: Formal Proofs in Propositional Calculus

 \triangleright Case study: proof of $E \lor (F \land G) \vdash (E \lor F) \land (E \lor G)$

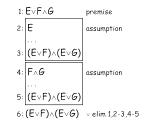
I	Proof Rules for disjunction			1: $E \lor F \land G$ premise	
				2: E assumption	
				3: EVF v intro 2	
				4: E∨G v intro 2	
				5: $(E \lor F) \land (E \lor G)$ \land intro 3,4	
				6: F∧G assumption	
\triangleright Introduction rules are straigh	tforward			7: G \wedge elim 6	
	ϕ			8: F A elim 6	
	$\frac{\tau}{\phi \lor \psi}$ v-intro-L			9: E∨F v intro 8	
				10: $E \lor G$ \lor intro 7	
	$\frac{\phi}{\phi\lor\psi}\lor-intro-L$ $\frac{\psi}{\phi\lor\psi}\lor-intro-R$			11: (E∨F)∧(E∨G) ∧ intro 9,10	
	$\overline{\phi \lor \psi}$ V-Intro-R			12: (E∨F)∧(E∨G) velim 1,2-5,6-1	1
	- 17 -	13 th April, 2017@13:42 [712]		or the conclusion, it just depends on the on and the propositions (formulæ) that ar	
Introduction to Formal Proof 1: Formal Proofs in Propo	ositional Calculus	Proof Rules for disjunction	Introduction to Formal Proof 1: For	rmal Proofs in Propositional Calculus	Proof rules as "conjecture transformers"
▷ Elimination rule captures the	idea of case analysis $\begin{array}{c} \phi \\ (\phi \lor \psi) \\ \kappa \\ \nu \\ \nu - elim \end{array}$			Proof rules as "conjecture transf	ormers"
	f in which we have established $\phi \lor$	$\boldsymbol{\psi}$ and in which we have	\triangleright Q: But how did I	go about finding the proof of $E \lor (F \land$	$G) \vdash (E \lor F) \land (E \lor G)?$
(a) established κ by assuming (b) established κ by assuming					
	, <i>i.e.</i> that at least one of ϕ and ψ		conjectures that	I used a proof rule to transform a conject need to be proved in order for it to hold (
▷ Having <i>both</i> proof (a) and proof $\begin{bmatrix} \alpha \\ \vdots \end{bmatrix}$	roof (b) means it doesn't matter w	nich	A subgoal that's	an assumption (or premiss) requires no fu	rther work.
$\left[\begin{array}{c} \alpha \\ \vdots \end{array} \right]$	roof (b) means it doesn't matter w t		A subgoal that's	an assumption (or premiss) requires no fu	rther work.
$\left[\begin{array}{c} \alpha \\ \vdots \end{array} \right]$			A subgoal that's	an assumption (or premiss) requires no fu	rther work.
$\begin{bmatrix} \alpha \\ \vdots \end{bmatrix}$			A subgoal that's	an assumption (or premiss) requires no fu	rther work. 13 th April, 2017@13:42 [712]

▷ The starting goal (the original conjecture) is:

1:
$$E \lor (F \land G)$$
 premiss
...
2: $(E \lor F) \land (E \lor G)$

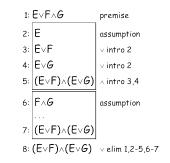
 \circ We guess from the form of the premiss that we can finish the proof with ${\scriptstyle \lor-elim}$

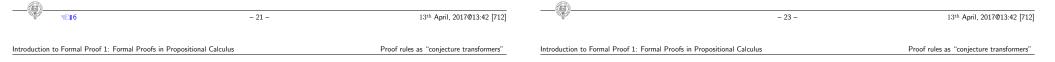
• Using this rule transforms the starting goal into two subgoals



(alternate guess is that we can finish the proof with *^*-intro)

\triangleright After two v-intro steps we have completed the first subgoal





\triangleright Working on the first subgoal: we guess we can finish with \land -intro

1:	E∨F∧G	premise
2:	E	assumption
3:	… E∨F	
4:	 E∨G (E∨F)∧(E∨G)	
5:	(EvF)^(EvG)	∧ intro 3,4
6:	F∧G	assumption
7:	 (E∨F)∧(E∨ <i>G</i>)	
8:	(E∨F)∧(E∨ <i>G</i>)	v elim 1,2-5,6-7

This yields two nested subgoals (2...3) and (2...4) – one for each conjunct

▷ Working on the second subgoal (the bottom box)

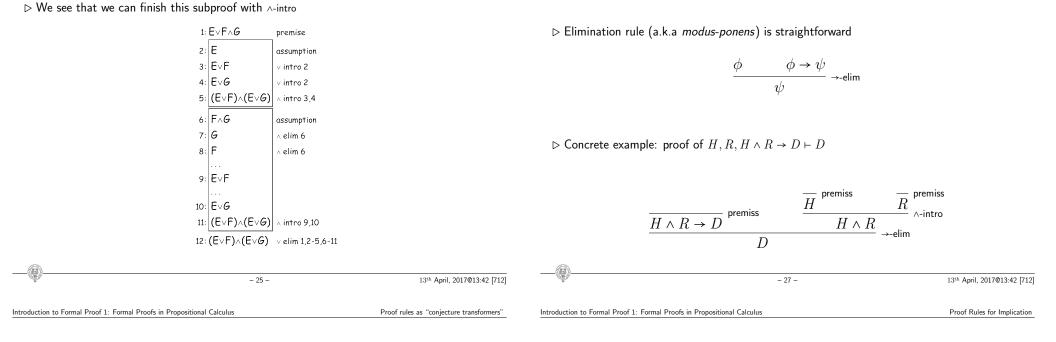
 \circ we can see we are going to need both conjuncts so we take two $\wedge\text{-elim}$ steps

1:	E∨F∧G	premise
2:		assumption
3:	E∨F E∨ <i>G</i>	v intro 2
4:	E∨G	v intro 2
5:	(E∨F)∧(E∨ <i>G</i>)	∧ intro 3,4
6:	F∧ <i>G</i>	assumption
7:	G	∧ elim 6
8:		∧elim 6
9:	(E∨F)∧(E∨ <i>G</i>)	
10:	(E∨F)∧(E∨G)	velim 1,2-5,6-9

Proof rules as "conjecture transformers"

Introduction to Formal Proof 1: Formal Proofs in Propositional Calculus

Proof Rules for Implication



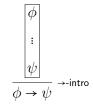
\triangleright The two resulting subgoals are closed by v-intro rules

1:	E∨F∧G	premise
2:	E	assumption
3:	E∨F	v intro 2
4:	E∨G	v intro 2
5:	(E∨F)∧(E∨ <i>G</i>)	∧ intro 3,4
6:	F∧G	assumption
7:	G	∧elim 6
8:	F	∧ elim 6
9:	E∨F	v intro 8
10:	E∨G	v intro 7
11:	(E∨F)∧(E∨ <i>G</i>)	∧ intro 9,10
12:	(E∨F)∧(E∨G)	∨ elim 1,2-5,6-11

 \triangleright Notice that assumption 2 is not used outside of 2-5, nor is 6 used outside of 6-11.

Exercise: Could we have started the proof search by using ^-intro?

▷ Introduction rule



To prove $\phi \rightarrow \psi$ assume ϕ and prove ψ from it.

The box means "don't refer to the assumed occurrence of ϕ outside of the nested subproof"

Proof Rules for Implication

Introduction to Formal Proof 1: Formal Proofs in Propositional Calculus

$$\triangleright$$
 Concrete example: "discovering" a proof of $E \rightarrow (F \rightarrow G) \vdash (E \rightarrow F) \rightarrow (E \rightarrow G)$

 \triangleright We know that the proof is eventually going to look like this

1:
$$E \to (F \to G)$$
 premiss
... $(E \to F) \to (E \to G)$

 \triangleright We cannot do anything immediately with the premiss (\rightarrow -elim is not applicable)

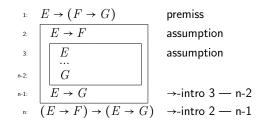
But we *could* start a new hypothetical subproof using \rightarrow -intro

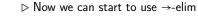
1:
$$E \rightarrow (F \rightarrow G)$$
 premiss
2: $E \rightarrow F$ assumption
(n-1): $E \rightarrow G$
n: $(E \rightarrow F) \rightarrow (E \rightarrow G)$ \rightarrow -intro 2 — n-1

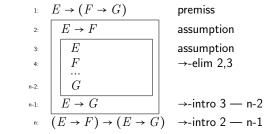
In fact we were *forced* to do this! (Why?)

	- 29 -	13 th April, 2017@13:42 [712]		- 31 -	13 th April, 2017@13:42 [712]
Introduction to Formal Proof 1: Formal Proc	ofs in Propositional Calculus	Proof Rules for Implication	Introduction to Formal Proof 1: For	mal Proofs in Propositional Calculus	Proof Rules for Implication

 \triangleright Exactly the same consideration holds for the subproof 2 — (n-1), leaving us with







1: $E \rightarrow (F \rightarrow G)$ premiss $E \rightarrow F$ assumption 2: Eassumption 3: F \rightarrow -elim 2.3 4: $F \rightarrow G$ \rightarrow -elim 1.3 5: ••• Gn-2: $E \rightarrow G$ \rightarrow -intro 3 — n-2 n-1: $(E \to F) \to (E \to G) \to -intro 2 - n-1$

 \triangleright and it just takes one more \rightarrow -elim to close the (gap in the) proof

Proof Rules for Implication

A Paradox?

 \triangleright One consequence of accepting the \rightarrow -intro rule is the theorem $F \vdash E \rightarrow F$

1:	F	premiss
2:	E	hyp
3:	F	copy 1
4:	$\overline{E} \to \overline{F}$	→-intro

- We have proved that if F holds anyway, then (for any proposition E) that $E \rightarrow F$, the natural language interpretation of which is: "if E then F"
- \circ But in natural language "if E then F" is sometimes taken to suggest that E is, in some sense, *relevant to*, or a *causal factor* in F.
- \circ There is no real paradox here: just take $E \to F$ to mean "F holds in every situation in which E holds."

Rules for iff

 \triangleright If we take $\phi \leftrightarrow \psi$ as an abbreviation for " $\phi \rightarrow \psi$ and $\psi \rightarrow \phi$ " we get the rules:

$$\frac{\phi \to \psi \quad \psi \to \phi}{\phi \leftrightarrow \psi} \text{ abb-} \leftrightarrow \text{-intro} \qquad \frac{\phi \leftrightarrow \psi}{\phi \to \psi} \text{ abb-} \leftrightarrow \text{-elim-r} \qquad \frac{\phi \leftrightarrow \psi}{\psi \to \phi} \text{ abb-} \leftrightarrow \text{-elim-r}$$

which capture the essence of the abbreviation; but mention an additional connective (\rightarrow)

 \triangleright The following rules are of equivalent logical power; and they mention *only* \leftrightarrow

13th April, 2017@13:42 [712]

1: $E \rightarrow (F \rightarrow G)$ premiss $E \rightarrow F$ 2: assumption Eassumption 3: F \rightarrow -elim 2.3 4: $F \rightarrow G$ 5: \rightarrow -elim 1.3 G→-elim 5,4 6: $E \rightarrow G$ \rightarrow -intro 3 — 6 7: * $(E \to F) \to (E \to G) \to -intro 2 - 7$

 \triangleright EXERCISE: Use this sequence to explain why the "boxed assumption" restriction of \rightarrow -intro is satisfied by this proof.

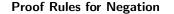


 \triangleright Here's the proof in tree form (with the origins of assumptions labelled):

$$\frac{\overline{E \to (F \to G)}^{\text{premiss}} \overline{E}^{\text{hyp}_3}}{F \to G} \xrightarrow{\overline{E} \text{ hyp}_3}{F \to -\text{elim}} \xrightarrow{\overline{E} \to F} \xrightarrow{\text{hyp}_2} \overline{E}^{\text{hyp}_3} \xrightarrow{\text{-elim}} \xrightarrow{F \to -\text{elim}} \xrightarrow{$$

- \triangleright EXERCISE: Use this tree to explain why the "boxed assumption" restriction of \rightarrow -intro is satisfied by this proof.
- ▷ ASIDE: it can be quite challenging to keep track of assumptions made during the process of discovering a proof that you are recording in tree form.

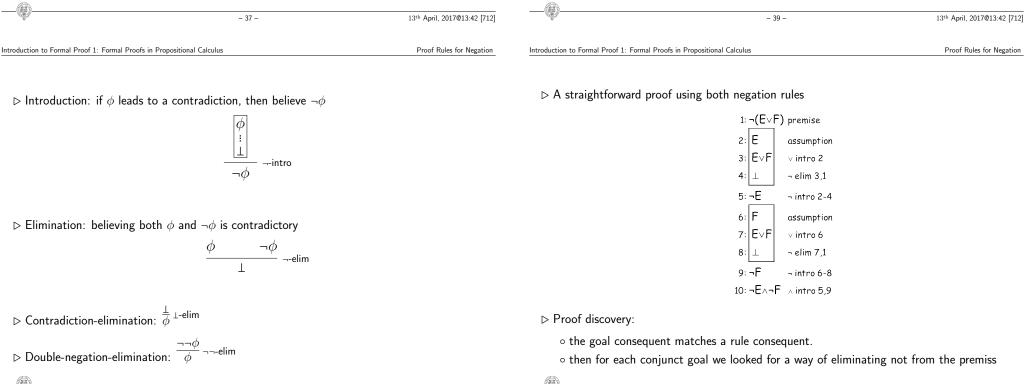
Proof Rules for Negation



 \triangleright An important consequence of these rules – called classical contradiction or *reductio ad absurdam* (RAA) – is: if $\neg \phi$ leads to a contradiction, then believe ϕ

- \triangleright Informal meaning of \neg is captured by
 - \circ "If you believe ϕ then you shouldn't believe $\neg\phi$ "
 - \circ "If you believe $\neg\phi$ then you shouldn't believe ϕ "
- \triangleright The rules for \neg must demonstrate that ϕ and $\neg \phi$ contradict each other.
- \triangleright We use the symbol \perp to mean *contradiction*.

 \triangleright Exercise: "prove" the classical contradiction rule



13th April, 2017@13:42 [712]

- 40 -

Proof Rules for Negation

 \triangleright Denying the Consequent: (a.k.a *Modus Tollens*)

 \triangleright Law of the Excluded Middle: $\vdash \phi \lor \neg \phi$

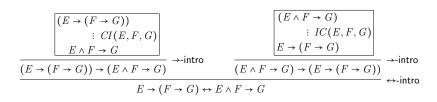
- \triangleright This theorem has no premisses.
 - $\neg(\phi \lor \neg \phi)$ assumption 1 2: $\neg \phi \land \neg \neg \phi$ Theorem $\neg(\phi \lor \psi) \vdash \neg \phi \land \neg \psi$ ∧-elim 2 3: $\neg \neg \phi$ ∧-elim 2 4: $\neg \phi$ ¬elim 4.3 5: \perp contra (classical) 1-5 $(\phi \vee \neg \phi)$
- ▷ Proof discovery:
 - \circ the goal consequent is a disjunction, but
 - \circ using an $\lor\text{-intro}$ rule would require us to choose one of the disjuncts to prove
 - \circ so we structure the proof as a proof by contradiction
- \triangleright Exercise: prove the theorem cited on line 2

	- 41 -	13th April, 2017@13:42 [712]		- 43 -	13 th April, 2017@13:42 [712]
Introduction to Formal Proof 1: Formal Proofs i	in Propositional Calculus	Derived Rules	Introduction to Formal Proof 1	: Formal Proofs in Propositional Calculus	A first glance at soundness and completeness

⊳ Proof

Derived Rules

- \triangleright Exercise: prove $\phi \land \psi \rightarrow \theta \vdash \phi \rightarrow (\psi \rightarrow \theta)$ (call this proof IC(ϕ, ψ, κ))
- \triangleright Exercise: prove $\phi \rightarrow (\psi \rightarrow \theta) \vdash \phi \land \psi \rightarrow \theta$ (call this proof $Cl(\phi, \psi, \kappa)$)
- Q: Can these proofs become part of the proof of $\vdash E \rightarrow (F \rightarrow G) \leftrightarrow E \wedge F \rightarrow G$?
- A: Imagine just substituting the proof trees at the appropriate point



 \triangleright This justifies the notion that (substitution instance of) a proven conjecture (a.k.a theorem) that has been named can be used within another proof *as if it were a proof rule*.

- 44 -

13th April, 2017@13:42 [712]

A first glance at soundness and completeness

 $\frac{\phi \to \psi \qquad \neg \psi}{\neg \phi} \text{ MT}$

premiss

premiss assumption

→-elim 1, 3

¬-elim 4, 2

¬-intro 3-5

 $\phi \rightarrow \psi$

 ϕ

 $\psi \ \perp$

4:

5:

 $\neg \psi$

 \triangleright If I find a proof of $R, H \land R \rightarrow D, \neg D \vdash \neg H$

... then what should I do if I am wearing a hat and it is raining and my head is wet?

 \triangleright If I find a proof of $R, H \land R \to D, D \vdash H$

... then what should I do if it is raining and my head is dry and I am not wearing a hat?

 \triangleright What if we cannot find a proof of " $R, H \land R \rightarrow D, D \vdash H$ "?

- is it because the conjecture is invalid?
- is it because we are insufficiently clever?
- \circ is it because the proof rules we have given so far are inadequate or wrong?
- ▷ More generally, we can ask questions *about the proof rules*:
 - Completeness: is there a proof of every valid conjecture of the form " $P_1, P_2, ..., P_n \vdash Q$ "?

- 45 -

- Soundness: if we can find a proof for " $P_1, P_2, ..., P_n \vdash Q$ " then is it valid?
- \triangleright But to answer these questions we need
 - \circ an independent characterization of the notion of validity.
 - a way of conducting rigorous proofs *about proofs*!

13th April, 2017@13:42 [712]

Contents

Propositional Calculus
Introduction1
Propositional Language: propositions
Propositional Language: atomic propositions4
Symbolic representation5
Composing Propositions with Logical Connectives6
Parsing7
Natural Deduction in the Propositional Calculus
Presenting a conjecture8
What is the nature of a valid conjecture?
What is the purpose of a proof system?10

	- 46 -
	I
(III	~

13th April, 2017@13:42 [712]

Note 1: "Calculus" used in this logical context signifies a systematic (<i>i.e.</i> rule-based rather than intuitive) method of reasoning by calculation.	
	1
Note 2: We use "rules of inference", "inference rules", and "proof rules" interchangeably in this course.	13 17
Note 3: Linear Proofs represent DAGs We emphasise that the tree and linear presentations are <i>presentations of the same underlying proof structure</i> . They are not different proofs.	16 🕼
The correspondence between the linear presentation 1: $\phi \land (\psi \land \kappa)$ premiss 2: ϕ $\land -\text{elim-L 1}$ 3: $\psi \land \kappa$ $\land -\text{elim-R 1}$ 4: ψ $\land -\text{elim-R 3}$ 5: $\phi \land \psi$ $\land -\text{intro 2 4}$ 6: κ $\land -\text{elim-R 3}$ 7: $(\phi \land \psi) \land \kappa$ $\land -\text{intro 5, 6}$	
and the tree presentation $\frac{\phi \wedge (\psi \wedge \kappa)}{\phi}$ 1. premiss $3. \wedge -\text{elim-R}$ 3. $-\sqrt{-\text{elim-R}}$ 5. $--\text{$	
Note 4:	18

For a simple concrete example suppose we want to show that 2n is always even, we can go about it in this way: L

	-	V-elim
(u) ppo	even(2n)	
even(n):	even(2n)	ven(2n)
	$(even(n) \lor odd(n))$	ever

Note 5: Natural Deduction		20
\triangleright The rules we have presented so far arguably formalize "natural" way, advance about the relationship between these two connectives	▷ The rules we have presented so far arguably formalize "natural" ways of reasoning about propositions formed with ∧ and ∨ without taking a position in advance about the relationship between these two connectives	sition in
▷ The natural deduction style of presenting a logical system or a calculus characterizes each construct by	lus characterizes each construct by	
 an introduction rule (or rules) (channed how to octablish composite availants from simpler and 		
 an elimination rule (or rules) an elimination rule (or rules) (showing how to use parts of composite predicates) 		
Natural Deduction is one of many systems used in the formalization of logic. It arose out of dissatisfaction with as Hilbert's. The Wikipedia article on Natural Deduction is a good place to follow the story if you are interested. If you enjoyed functional programming then you may also be interested in the work I did with James J. Leifer int Systems and Natural Deduction systems.	one of many systems used in the formalization of logic. It arose out of dissatisfaction with more austere forms of formalizing logic, such ipedia article on Natural Deduction is a good place to follow the story if you are interested. nal programming then you may also be interested in the work I did with James J. Leifer intended to build a bridge between Hilbert Deduction systems.	ic, such art
I nese two papers are available on the web. 1. Deduction for functional programmers by James J. Leifer and Bernar	ese two papers are available on the web. 1. Deduction for functional programmers by James J. Leifer and Bernard Sufrin. Journal of Functional Programming. volume 6. number 2. 1996.	
2. Formal logic via functional programming by James J. Leifer (June 19 JFP paper.	functional programming by James J. Leifer (June 1995). Was James Leifer's final year dissertation: a greatly expanded version of the	of the
Note 6: Here's an outline of the proof of $E \lor (F \land G) \vdash (E \lor F) \land (E \lor G)$ that we would have ended up with if we had decided to use \land -intro as our first goal-transforming step.		21 🕼
	– 48 – 13th April, 2017@13:42 [712]	3:42 [712]
Introduction to Formal Proof 1: Formal Proofs in Propositional Calculus		Notes
$1: \frac{E \vee F \land G}{G}$	premise	
2:	assumption	
3: E <f< td=""><td></td><td></td></f<>		
4: F>6	assumption	
5: EVF		
ي ق ق	v elim 1,2-3,4-5	
7: E	assumption	
8: Ev6		
9: F>6	assumption	
10: EVG		
11: EVG 12: (FVF) ₂ (FVG)	∨ elim 1,7-8,9-10 ∑v(5) ∧ intro 6 11	
In this case the v-elim rule is used twice: once to establish the conjunct on line 6, and once to establish the conju uses of a jattor in our original arrore in each of the colored submonds required by the feindrab use of violim	rule is used twice: once to establish the conjunct on line 6, and once to establish the conjunct on line 11. Compare this with the two virginal proof once in each of the coloreral subvoords required by the (sindle) use of (value).	ie two
Note 7: Equivalent logical power When we say that two (collections) of rules are of equivalent logical power of rules can also be constructed using the other collection. This does not r	constructed using only one of the c using one collection will be identica	36 11 ollections to those
using the other collection. To convince ourselves that two collections are of equivalent power (in the collection from the second (and the otherwise-fixed set of rules), and vice-	using the other collection. To convince ourselves that two collections are of equivalent power (in the context of an otherwise-fixed set of rules), we need only prove the rules of the first collection from the second (and the otherwise-fixed set of rules), and vice-versa.	he first

Notes

Introduction to Formal Proof 1: Formal Proofs in Propositional Calculus

Calculus	
in Propositional	
.⊑	
roofs	
Formal P	
÷	
Proof	
Formal Proo	
to F	
Introduction to	

Notes

41 🕼

Note 8: Typographical conventions

- ▷ Many texts follow very strict typographical conventions when discussing logic and, in particular, proving general theorems. We are much less meticulous in this part of the course, though we have a mild tendency to use Greek capitals to stand for arbitrary propositions in proof rules and very general theorems, while using Roman capitals to stand for specific atomic propositions.
- But because our arguments are strictly formal, and do not depend on the interpretations of atomic propositions, a proof done in our notes using Roman letters is as valid as one that would appear typographically more general if we were enforcing a typographical convention. \triangle
- ▷ For example: earlier we showed part of a proof that ∨ distributes through ∧ using Roman capitals to stand for the propositions involved; and here is a proof of the law of the excluded middle that uses a Roman letter for the proposition.

assumption	Theorem ¬(E · F) \vdash ¬E ^ F 1	> elim 2	> elim 2	- elim 4,3
1: -(Ev-E) assumption	ב: שרר∧שר	3:E	4: JE	T
÷	.∷	ŝ	4	ä

contra (classical) 1-5

6: Ev-E

 $13^{\rm th}$ April, 2017@13:42 [712]

- 50 -