
Introduction to Formal Proof

Bernard Sufrin

Trinity Term 2018

3: Predicate Logic Semantics

[03-folsemantics]

Introduction to Formal Proof 3: Predicate Logic Semantics Propositional logic has limits

Propositional logic has limits

▷ Consider these two arguments

S: All software systems are human artefacts

Some software systems are complex

All complex human artefacts are incomprehensible∴ Some software systems are incomprehensible

L: All formalizations of logic are human artefacts

Some formalizations are complex

All complex human artefacts are incomprehensible∴ Some formalizations of logic are incomprehensible

▷ What do they have in common?

▷ Are their conclusions justifiable from their premisses by Natural Deduction?

▷ Do you accept their premisses?

– 1 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Informal predicate language: variables, predicates, quantifiers

Informal predicate language: variables, predicates, quantifiers

▷ Atomic Propositions are insufficient to capture the details of the premisses/conclusions

▷ Propositional logic and language needs enriching

▷ Predicate Logic (sometimes called First Order Logic) is the simplest enrichment that is
generally useful1

▷ It allows the formal expression of statements (sometimes involving “all” and “some”) about
the properties of things, and about individual things.

▷ We express these using variables, predicates (P ,HA,C , I) and quantifiers (∃−⋅−,∀−⋅−)

1: All P things are HA things: ∀x ⋅P(x) → HA(x)
2: Some P things are C things: ∃x ⋅P(x) ∧C (x)
3: All C things that are also HA things are I things: ∀x ⋅C (x) ∧HA(x) → I (x)∴ Some P things are I things: ∴ ∃x ⋅P(x) ∧ I (x)

1 outside of the study of logic itself, that is.

L1 – 2 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Informal predicate language: variables, predicates, quantifiers

▷ A (unary) predicate is used to make statements about individual things.

○ Black(x), Strange(y), Incomprehensible(z)
▷ Binary predicates are used to make statements relating two individuals (they are sometimes

called binary relations)

○ MadeBy(x , y)○ i < j , k loves l , x = y (Binary predicates used with infix notation)

▷ The theory admits predicates/relations of other arities, e.g. CanFool(who,whom,when)
▷ The resulting language is quite expressive, e.g.

∀x ⋅ (Integer(x) → ∃y ⋅ (Integer(y) ∧ x < y)))
∀p ⋅ (Person(p) → ∃t ⋅ (Time(t) ∧ ∀p′ ⋅Person(p′) → CanFool(p,p′, t)))
∀p ⋅ (Person(p) → ∀t ⋅ (Time(t) → ∃p′ ⋅Person(p′) ∧CanFool(p,p′, t)))
L2 – 3 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Informal predicate language: variables, predicates, quantifiers

▷ The variables introduced by quantifiers connect places in the text of a formula

▷ The textual region in which a name symbolizes the same connector is called its scope(Person(∗) → (Time(∗) → Person(∗) ∧CanFool(∗,∗,∗)´¹¹¸¹¹¶∃∗
)

´¹¹¹¸¹¹¹¶∀∗

)
´¹¹¸¹¹¶∀∗▷ The names don’t matter formally(Person(x) → (Time(z) → Person(y) ∧CanFool(x , y , z)´¹¹¹¸¹¹¹¶∃y

)
´¹¹¹¸¹¹¹¶∀z

)
´¹¹¸¹¹¹¶∀x▷ But it’s a good idea to use memorable ones(Person(perp) → (Time(t) → Person(vict) ∧CanFool(perp, vict , t)´¹¹¹¸¹¹¶∃vict

)
´¹¹¸¹¹¶∀t

)
´¹¹¸¹¹¶∀perp

– 4 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Informal predicate language: variables, predicates, quantifiers

▷ When we want to make a predicate calculus argument about a “real-world” situation, we
first:

○ Say what our world is going to be○ Choose names for (some) individual things that in our world○ Choose names (or symbols) for predicates that (partly) describe the real world situation

▷ e.g. humans

○ ♀(x) means “x is genetically female”○ ♂(x) means “x is genetically male”○ Parent(x , y) means “x is a genetic parent of y .”○ Ancestor(x , y) means “x is a genetic ancestor of y .”

– 5 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Informal predicate language: variables, predicates, quantifiers

▷ We can then encode statements about our world as predicate language statements, e.g.

○ Everybody is either genetically male or genetically female, not both:

∀b ⋅ (♂(b) ∨ ♀(b)) ∧ ¬(♂(b) ∧ ♀(b))
○ Somebody is an ancestor of p if they are a parent of p, or the parent of an ancestor of p.

∀b ⋅ ∀p ⋅Ancestor(b,p) ↔ Parent(b,p) ∨ ∃a ⋅Parent(b,a) ∧Ancestor(a,p)
○ Nobody is their own ancestor:

¬∃b ⋅Ancestor(b, b)
○ Everybody has a unique genetic mother:

∀b ⋅ ∃m ⋅ (♀(m) ∧Parent(m, b) ∧∀m ′ ⋅ (♀(m ′) ∧Parent(m ′, b) → m = m ′))
– 6 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Informal predicate language: functions

Informal predicate language: functions

▷ So far we have only used variables (and names of individuals) to denote things

▷ This leads to some unwieldy circumlocutions – esp. about uniqueness

▷ It is more convenient to use function application notation to denote unique things

– 7 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Informal predicate language: functions

▷ Humans revisited

○ ♀(x) means “x is genetically female”○ ♂(x) means “x is genetically male”○ Parent(x , y) means “x is a genetic parent of y”.○ Ancestor(x , y) means “x is a genetic ancestor of y”.○ ma(x) denotes the genetic mother of x .○ pa(x) denotes the genetic father of x .

▷ Facts: (given our present state of knowledge)

○ ∀x ⋅Parent(ma(x), x)○ ∀x ⋅Parent(pa(x), x)○ ∀x ⋅♂(pa(x)) ∧ ♀(ma(x))○ ∀b ⋅ (♂(b) ∨ ♀(b)) ∧ ¬(♂(b) ∧ ♀(b))○ ∀b ⋅ ∀p ⋅Ancestor(b,p) ↔ Parent(b,p) ∨ ∃a ⋅Parent(b,a) ∧Ancestor(a,p)
– 8 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Informal predicate language: functions

▷ We may not have coded enough facts to model the world completely enough to prove from
them something that’s intuitively true, or that’s useful. For example in our world of
humans as currently encoded:

○ Can we prove that everyone has two distinct parents?○ Can we prove that everyone has no more than two parents?

– 9 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Inference systems for predicate logic

Inference systems for predicate logic

▷ The goal of an inference system for predicate logic is that if our coding of statements
about the world is coherent and the encoded statements about the world are true, then any
valid deductions we make from them should also be true in the world.

▷ Recall that the rigorous analysis of the soundness and completeness of propositional logic
inference systems required us to characterise the truth of composite propositions
independently of their provability in the inference system.

In the same way, a rigorous analysis of predicate logic inference systems will require us to
characterise a notion of the truth of composite and quantified statements about a world
independently of their provability in the inference system.

▷ Such independent characterizations are known as the semantics of the logics concerned.

– 10 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Formal predicate language: grammar

Formal predicate language: grammar

▷ There are two sorts of phrase in the language

○ Terms – denote objects / things○ Formulæ – denote declarative statements about things

▷ We build phrases in the language from a given initial vocabulary2 of

○ constant symbols (“names for individual things”) C○ predicate symbols (“names of predicates”) P○ function symbols (“names of functions”) F
▷ Each function and predicate symbol has an arity (unary, binary, ternary, ...) and “fixity”

that is usually indicated informally, e.g :C = {0,1}F = {s(⋅),p(⋅), ⋅ ⊕ ⋅}P = {⋅ = ⋅, ⋅ > ⋅,Even ⋅}
2Sometimes called a signature

– 11 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Formal predicate language: grammar

▷ Terms

○ Any variable is a term3

○ Any constant is a term○ If t1, ...tn are terms and f is an n-ary function symbol, then f (t1, ...tn) is a term4

○ Nothing else is a term5

▷ For example: with C,F ,P as on the previous page, the following are terms:

0 1 s(0) s(s(0)) p(s(1)) s(s(s(0)) ⊕ p(s(1)))
x y0 z ′ s(s(y1)) s(z ′) ⊕ (y1 ⊕ x) s(s(z ′)) ⊕ p(s(1))

but the following are not terms:

a > 0 Even(x)
and these are not well formed phrases of any kind:

x(x(y)) Even

3Here we use sequences of lowercase letters as variables – sometimes decorating them with subscripts and/or dashes.
4x ⍟ y is syntactic sugar for ⍟(x , y) for every binary infix function symbol ⍟. The binding power of such symbols is specified with their fixity.
5 We allow parentheses in written terms.

– 12 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Formal predicate language: grammar

▷ Formulæ

○ If t1, ...tn are terms, and P is an n-ary predicate symbol, then P(t1, ...tn) is a formula6

(these are called atomic formulæ)○ If φ is a formula then so is ¬φ○ If φ,ψ are formulæ then so are φ ∧ ψ,φ ∨ ψ,φ→ ψ,φ↔ ψ

(priority7 of the logical operators is as in propositional logic.○ If α is a variable, and φ is a formula then ∀α ⋅ φ and ∃α ⋅ φ are formulae8

(these are called quantified formulæ)○ Nothing else is a formula9

▷ Choose one of the notations for quantification and stick to it:

○ ∃α⋅ and ∀α⋅ take the largest well-formed formula (wff) that starts at the right of ⋅○ Without the “⋅” ∃ α and ∀ α take the smallest wff that starts at the right of α

6x ≒ y is syntactic sugar for ≒ (x , y) for every binary infix predicate symbol ≒
7Huth and Ryan call it “binding power”
8Huth and Ryan write (∀αφ) and (∃αφ). Others require a ⋅ between variable and formula.
9 We allow parentheses in written formulæ.

L3 – 13 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Free Variables

Free Variables

▷ If t is a term then every variable v appearing in that term is free in t .

▷ If P(t1, ..., tn) is an atomic formula then the variables free in that formula are the variables
free in the terms t1, ..., tn.

▷ If φ is a formula then the variables free in ¬φ are the variables free in φ

▷ If φ,ψ are formulæ then the variables free in φ ∧ ψ,φ ∧ ψ,φ→ ψ,φ↔ ψ, are the variables
free in φ and the variables free in ψ.

▷ If φ is a formula, and α a variable, then the variables free in ∀α ⋅ φ and in ∃α ⋅ φ are the
variables, except α, that are free in φ.

– 14 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Free Variables

▷ Examples:
Term Free
s(s(0))
s(s(z ′)) ⊕ p(s(1)) ⊕ x z ′, x
Formula Free
x > y → y > z → x > z x , y , z∀x ⋅ y = s(s(z ′)) ⊕ p(s(1)) ⊕ x z ′, y∃y ⋅ ∀x ⋅ y = s(s(z ′)) ⊕ p(s(1)) ⊕ x z ′∀z ′ ⋅ ∃y ⋅ ∀x ⋅ y = s(s(z ′)) ⊕ p(s(1)) ⊕ x∃x ⋅ y loves x ∧ (∃y ⋅ x loves y) y

▷ Definition: a term/formula with no free variables is called a closed term/formula.

– 15 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Substitution

Substitution

▷ Definition: if φ is a formula, ti are terms, and αi are variables, the notation
φ[t1, ..., tn/α1, ..., αn] means the formula obtained by simultaneously substituting ti for
every free occurence of αi in φ. The phrase [t1, ..., tn/α1, ..., αn] represents a mapping
from variables to terms and is called a substitution.

▷ Examples:

Formula Substitution Equivalent(x > y → y > z → x > z) [s(x)/x] (s(x) > y → y > z → s(x) > z)(y = s(s(z ′)) ⊕ p(s(1)) ⊕ x) [y , x/x , y] (x = s(s(z ′)) ⊕ p(s(1)) ⊕ y)(y = s(s(z ′)) ⊕ p(s(1)) ⊕ x) [y/x][x/y] (x = s(s(z ′)) ⊕ p(s(1)) ⊕ x)(∃y ⋅ z ′ = s(y) ∧ ∀z ′ ⋅ p(1) ⊕ z ′ = z ′) [p(x)/z ′] (∃y ⋅ p(x) = s(y) ∧ ∀z ′ ⋅ p(1) ⊕ z ′ = z ′)(∃x ⋅ z ′ = s(x) ∧ ∀z ′ ⋅ p(1) ⊕ z ′ = z ′) [p(x)/z ′] (∃x ⋅ p(x) = s(x) ∧ ∀z ′ ⋅ p(1) ⊕ z ′ = z ′)
▷ Notice that in the last example the x being substituted has been “captured” within the

scope of ∃x ⋅ Such “captures” are explicitly prohibited by the formal definition of
substitution.

L4 – 16 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Models and Meanings

Models and Meanings

▷ Knowing only a signature C,F ,P can tell us nothing about the truth or falsehood of its
atomic formulæ.

▷ To establish the truth or falsehood of statements denoted by atomic formulæ we need to
have a model. This tells us:

○ what the domain of discourse10 is (what world the things come from)○ what thing each constant symbol denotes in that world○ what function each function symbol means in that world○ what predicate each predicate symbol means in that world

▷ If M is a model for C,F ,P we will write here

○ Mconstant(c) to mean the thing the symbol c denotes in the model’s domain (c ∈ C)○ Mfunction(f) to mean the function on the domain that the symbol f means (f ∈ F)○ Mpredicate(P) to mean the predicate on the domain that the symbol P means (P ∈ P)
10 Some authors use “Universe of Discourse”, many shorten to “Domain”

L5 – 17 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Models and Meanings

▷ Example: we are given: C = {0} F = {s(⋅),p(⋅), ⋅ ⊕ ⋅} P = {⋅ = ⋅, ⋅ > ⋅,Even}
▷ One obvious model (Int) has as its domain the integers, with:

0 denoting the number 0

s denoting the successor function, and p its inverse⋅ ⊕ ⋅ denoting integer addition⋅ = ⋅, ⋅ > ⋅,Even denoting the predicates they usually denote for integers

▷ Another model (Nat3) has as its domain the natural numbers modulo 3, with:

0 denoting the number 0

s denoting the successor function modulo 3 and p its inverse⋅ ⊕ ⋅ denoting addition modulo 3⋅ = ⋅, ⋅ > ⋅,Even denoting the predicates they usually denote for natural numbers

– 18 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics The 7PM Model

The 7PM Model

▷ Another model has as its domain the last seven Prime ministers of the UK11 with

0 denoting Cameron

s(x) denoting the Prime Minister who took office immediately after x , and p(x)
denoting the Prime Minister who took office immediately before x , and x ⊕ y denoting
the Prime Minister who took office later.

⋅ = ⋅ meaning identity, ⋅ > ⋅ meaning “took office later than”, and Even being true ovv12

Prime Ministers educated in state schools.

▷ We present this to show that there is no particular reason why the symbols used in a
signature should have a mnemonic relationship to the domain, constants, functions and
predicates assigned by a model.

11In reverse order of appointment they are: Camoron, Brown, Bliar, Major, Thatcher, Callaghan, Wilson.
12 “Of and only of” (you read it here first, Virginia!)

– 19 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Evaluation of formulae without variables

Evaluation of formulae without variables

▷ To discover whether an atomic formula without variables is true:

○ First translate the formula into the model domain by translating:∗ every constant symbol into what it denotes in the model∗ every function symbol into the function it means for the model∗ every predicate symbol into the predicate it means for the model○ Then evaluate the translated atomic formula (in the model domain)

▷ For example, in 7PM:

0 > p (0)
Cameron took office later than the immediate predecessor in office of Cameron
Cameron took office later than Brown

▷ Composite non-quantified formulae without variables (¬φ,φ∨ψ,φ∧ψ, ...) are evaluated by
evaluating their components, and combining the component values as they would be
combined in propositional logic.

– 20 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Evaluation of Quantified Formulae in the 7PM model

Evaluation of Quantified Formulae in the 7PM model

▷ Is the formula ∃x ⋅ x > 0 true?

▷ In order to discover this we associate each thing in the 7PM domain with x , then evaluate
the formula: x > 0. If it is true for any of these formulæ, then the whole formula is true.

▷ Is the formula ∀y ⋅ y /= 0→ ∃x ⋅ x > y true?

▷ In order to discover this we associate each thing in the 7PM domain with y , then evaluate
the formula: y /= 0→ ∃x ⋅ x > y . If it is true for all of these formulæ, then the whole
formula is true..

– 21 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Formalizing “associate with”

Formalizing “associate with”

▷ One way to formalise the idea of “associate ... with x then evaluate ...” is:

○ invent a constant symbol (say DC ,GB ,AB ,JM ,MT ,JC ,HW) for each thing○ Substitute each constant symbol for x in x > 0, then evaluate the resulting
formula-without-variables:

Formula Translation into the model Value
DC > 0 Cameron took office later than Cameron F

GB > 0 Brown took office later than Cameron F

AB > 0 Bliar took office later than Cameron F

JM > 0 Major took office later than Cameron F

MT > 0 Thatcher took office later than Cameron F

JC > 0 Callaghan took office later than Cameron F

HW > 0 Wilson took office later than Cameron F

○ So in 7PM, ∃x ⋅ φ(x) means the same as φ(DC) ∨ φ(GB) ∨ ... ∨ φ(HW)
and ∀x ⋅ φ(x) means the same as φ(DC) ∧ φ(GB) ∧ ... ∧ φ(HW)
L6 L7 – 22 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Formalizing “associate with”

▷ To discover the value of ∀y ⋅ y /= 0→ ∃x ⋅ x > y we need to evaluate a substitution-for-y
instance of the formula y /= 0→ ∃x ⋅ x > y for each of our invented constant symbols.

DC /= 0→ ∃x ⋅ x > DC
GB /= 0→ ∃x ⋅ x > GB

...
HW /= 0→ ∃x ⋅ x > HW

▷ Writing [[...]] for “value”, in the first of these we see

[[DC /= 0→ ∃x ⋅ x > DC]]
; (Evaluation rules for composite non-quantified formulæ)[[DC /= 0]]→[[∃x ⋅ x > DC]]
; (Because Cameron = Cameron)

F→[[∃x ⋅ x > DC]]
; (Definition of →)

T

– 23 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Formalizing “associate with”

▷ As for the second (with subsequent formulæ similar) we have

[[GB /= 0→∃x ⋅ x > GB]]
; [[GB /= 0]]→[[∃x ⋅ x > GB]]
; T→[[∃x ⋅ x > GB]]
; [[∃x ⋅ x > GB]]
; [[(DC > GB) ∨ (GB > GB) ∨ (AB > GB) ∨ ... ∨ (HW > GB)]]
; Cameron took office later than Brown ∨ ...
; T

– 24 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Evaluation rules for formulae in a model M with domain Dom

Evaluation rules for formulae in a model M with domain Dom

▷ Our evaluation rules can be simplified if we assume that there is a distinct constant symbol
corresponding to every distinct thing v in the domain Dom. Here we use the notation ⟨⟨v⟩⟩
for the constant symbol corresponding to v . In other words: Mconstant(⟨⟨v⟩⟩) is v .

▷ Our assumption effectively means that we need not give rules for the evaluation of terms in
which variables appear.

▷ Any metalogical reasoning we do under this assumption can also be done with a slightly
more complex collection of rules that provide for the evaluation of terms with variables in
them.13

13 Note 9 on p37 gives a Haskell implementation of these rules.

– 25 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Evaluation rules for formulae in a model M with domain Dom

▷ Domain values denoted by terms:

○ If c is a constant symbol, then the value denoted by the term c is Mconstant(c)
(so the value denoted by the constant symbol ⟨⟨v⟩⟩ is v)○ If f is a function symbol, and t1, ...tn are terms, then the value denoted by the term
f (t1, ...tn) is the value of the n-ary function Mfunction(f) at the arguments (v1, ...vn)
where v1, ...vn are the domain values denoted by the terms t1, ...tn.

▷ Truth values of formulæ without variables

○ The formula P(t1, ...tn) is true iff the n-ary predicate Mpredicate(P) holds at the n-tuple(v1, ...vn) where v1, ...vn are the domain values denoted by the terms t1, ...tn.

▷ Truth values of quantified formulæ.

○ ∃α ⋅ φ is true iff φ[⟨⟨v⟩⟩/α] is true for some domain value v○ ∀α ⋅ φ is true iff φ[⟨⟨v⟩⟩/α] is true for every domain value v

▷ Truth values of nonquantified composite formulæ are determined by the truth-valued
functions ∧,∨,→, ↔, ¬ at the truth values of their components.

– 26 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Evaluation rules for formulae in a model M with domain Dom

▷ Writing [[t]] for “the domain value denoted by the term t”, and [[φ]] for “the truth value
of the formula φ” we can tabulate the evaluation rules for variable-free terms and formulæ
concisely.

[[c]] Mconstant(c)[[f (t1, ..., tn)]] Mfunction(f)([[t1]], ..., [[tn]])[[P(t1, ..., tn)]] T if and only if Mpredicate(P)([[t1]], ..., [[tn]])[[¬φ]] ¬[[φ]][[φ ∧ ψ]] [[φ]]∧[[ψ]][[φ ∨ ψ]] [[φ]]∨[[ψ]][[φ→ ψ]] [[φ]]→[[ψ]][[φ↔ ψ]] [[φ]]↔[[ψ]][[∀α ⋅ φ]] T if and only if [[φ[⟨⟨v⟩⟩/α]]] is T for every domain value v[[∃α ⋅ φ]] T if and only if [[φ[⟨⟨v⟩⟩/α]]] is T for some domain value v

▷ Note: here we call the constant terms ⟨⟨v⟩⟩ that correspond to domain values v , the
constant terms synthesized from the domain of M .

L8 L9 – 27 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Semantic Entailment

Semantic Entailment

Let φ1, ..., φn, ψ, be formulæ in the predicate language determined by the signature C,F ,P
and let M be a model for that signature.

▷ We define
φ1, ..., φn ⊧M

ψ

to mean that ψS is true in M for every substitution S of synthesized constant terms (from
the domain of M) that makes all of φ1S, ..., φnS true.

▷ We define
φ1, ..., φn ⊧ ψ

to mean that in every such model M φ1, ..., φn ⊧M
ψ

– 28 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Semantic Entailment

▷ It can easily be proven that the only substitutions, S , that are relevant to the truth value
of a formula are those that assign only to its free variables. This permits the mechanical
checking of ⊧M when M has a finite domain.

▷ For example ⊧Nat3
s(i) ⊕ j = s(i ⊕ j)

Here n = 2 and the free variables are i , j , so the relevant substitutions are:

[⟨⟨0⟩⟩, ⟨⟨0⟩⟩/i , j], [⟨⟨0⟩⟩, ⟨⟨1⟩⟩/i , j], [⟨⟨0⟩⟩, ⟨⟨2⟩⟩/i , j], ...,
[⟨⟨2⟩⟩, ⟨⟨0⟩⟩/i , j], [⟨⟨2⟩⟩, ⟨⟨1⟩⟩/i , j], [⟨⟨2⟩⟩, ⟨⟨2⟩⟩/i , j]

▷ What about

○ i /= 0, j /= 0 ⊧7PM s(i) ⊕ j = s(i ⊕ j)?○ ⊧Int s(i) ⊕ j = s(i ⊕ j)?

▷ ⊧M cannot be comprehensively checked mechanically for models over non-finite domains.

– 29 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics Satisfiability

Satisfiability

▷ Definition: φ is satisfiable if there is some model M for which ⊧M φ

– 30 – 8th May, 2017@14:59 [715]

Introduction to Formal Proof 3: Predicate Logic Semantics ASIDE: Partial Functions

ASIDE: Partial Functions

▷ In the 7PM model the predecessor/successor-in-office functions are partial.

▷ This raises the spectre of terms in the language that do not denote anything in the model

Two examples are:
s(0),p(p(p(p(p(p(p(0)))))))

▷ This affects14 the semantics. For example:

○ what is the truth-value of ∀x ⋅ ¬(x = s(0))?○ what is the truth-value of ∃y ⋅ ∀x ⋅ ¬(x = s(y))?

▷ Discussing the consequences of this in detail is beyond the scope of this course, so we will
stick to models in which function symbols denote total functions.

14 Perhaps we should say infects!

L10 – 31 – 8th May, 2017@14:59 [715]

In
tr

o
du

ct
io

n
to

F
or

m
al

P
ro

of
3:

P
re

di
ca

te
L

og
ic

S
em

an
ti

cs
C

on
te

nt
s

C
o

n
te

n
ts

In
tr

o
du

ct
io

n:
P

re
di

ca
te

L
an

gu
ag

e
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

1
P

ro
p

os
it

io
na

l
lo

gi
c

ha
s

lim
it

s
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.1

In
fo

rm
al

pr
ed

ic
at

e
la

ng
ua

ge
:

va
ri

ab
le

s,
pr

ed
ic

at
es

,
qu

an
ti

fi
er

s
..

..
..

2
In

fo
rm

al
pr

ed
ic

at
e

la
ng

ua
ge

:
fu

nc
ti

on
s

..
..

..
..

..
..

..
..

..
..

..
..

..
..

7
In

fe
re

nc
e

sy
st

em
s

fo
r

pr
ed

ic
at

e
lo

gi
c

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.1
0

P
re

di
ca

te
C

al
cu

lu
s

S
em

an
ti

cs
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.

11
F

or
m

al
pr

ed
ic

at
e

la
ng

ua
ge

:
gr

am
m

ar
..

..
..

..
..

..
..

..
..

..
..

..
..

..
11

F
re

e
V

ar
ia

bl
es

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
14

S
ub

st
it

ut
io

n
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.
16

M
o

de
ls

an
d

M
ea

ni
ng

s
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

17

T
he

7P
M

M
o

de
l

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.1

9
E

va
lu

at
io

n
of

fo
rm

ul
ae

w
it

ho
ut

va
ri

ab
le

s
..

..
..

..
..

..
..

..
..

..
..

..
.2

0
E

va
lu

at
io

n
of

Q
ua

nt
ifi

ed
F

or
m

ul
ae

in
th

e
7P

M
m

o
de

l
..

..
..

..
..

..
21

F
or

m
al

iz
in

g
“a

ss
o

ci
at

e
w

it
h”

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

22
E

va
lu

at
io

n
ru

le
s

fo
r

fo
rm

ul
ae

in
a

m
o

de
l

M
w

it
h

do
m

ai
n

D
om

..
..

25
S

em
an

ti
c

E
nt

ai
lm

en
t

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.2

8
S

at
is

fi
ab

ili
ty

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.

30
A

S
ID

E
:

P
ar

ti
al

F
un

ct
io

ns
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.3
1

–
32

–
8t

h
M

ay
,

20
17

@
14

:5
9

[7
15

]

In
tr

o
du

ct
io

n
to

F
or

m
al

P
ro

of
3:

P
re

di
ca

te
L

og
ic

S
em

an
ti

cs
N

ot
es

N
o

te
1

:
O

n
b

ei
n

g
a

“
th

in
g

”
2
R

In
E

ng
lis

h
na

tu
ra

l
la

ng
ua

ge
ca

lli
ng

an
en

ti
ty

a
“t

hi
ng

”
or

“o
bj

ec
t”

so
m

et
im

es
co

nn
ot

es
m

at
er

ia
lit

y;
i.e

.
th

at
th

e
en

ti
ty

ha
s

m
at

er
ia

l
su

bs
ta

nc
e.

In
th

es
e

no
te

s
us

in
g

th
es

e
w

or
ds

do
es

no
t

ha
ve

su
ch

co
nn

ot
at

io
ns

:
“2

34
”

is
a

m
uc

h
a

“t
hi

ng
”

as
“m

y
fo

ot
”;

an
d

“t
he

se
t

of
lin

gu
is

ti
ca

lly
ad

ep
t

p
en

gu
in

s”
is

as
m

uc
h

a
“t

hi
ng

”
as

th
e

pa
p

er
or

sc
re

en
on

w
hi

ch
yo

u
ar

e
re

ad
in

g
th

es
e

no
te

s,
or

th
e

fi
le

(s
)

in
w

hi
ch

th
e

p
df

re
pr

es
en

ta
ti

on
s

of
th

e
no

te
s

ar
e

st
or

ed
in

th
e

L
ab

’s
fi

le
st

or
e.

1
5

W
ha

t’
s

m
or

e,
w

he
n

w
e

ca
ll

a
th

in
g

a
th

in
g

it
do

es
no

t
m

ea
n

th
at

w
e

b
el

ie
ve

th
at

it
ha

s
no

in
te

rn
al

st
ru

ct
ur

e.

N
o

te
2

:
3
R

S
om

e
th

eo
re

ti
ca

l
st

ud
ie

s
of

pr
ed

ic
at

e
lo

gi
c

om
it

th
e

eq
ua

lit
y/

id
en

ti
ty

re
la

ti
on

at
fi

rs
t

–
co

ns
id

er
in

g
it

s
de

ta
ile

d
st

ud
y

to
b

e
of

in
te

re
st

in
it

s
ow

n
ri

gh
t.

W
e

do
n’

t
ha

ve
su

ffi
ci

en
t

ti
m

e
to

do
th

is
,

so
w

he
n

th
e

ti
m

e
co

m
es

w
e

sh
al

l
si

m
pl

y
w

ri
te

in
tr

o
du

ct
io

n
an

d
el

im
in

at
io

n
ru

le
s

fo
r

“=
”

th
at

ca
pt

ur
e

th
e

co
ns

en
su

s
th

at
is

sh
ar

ed
by

ev
er

yb
o

dy
w

ho
ne

ed
s

to
us

e
lo

gi
c

in
a

pr
ac

ti
ca

l
w

ay
.

N
o

te
3

:
T

er
m

s
a

n
d

F
o

rm
u

la
e

re
p

re
se

n
te

d
in

H
a

sk
el

l
13
R

Ju
st

as
w

e
di

d
fo

r
pr

op
os

it
io

ns
,

w
e

ca
n

de
fi

ne
H

as
ke

ll
ty

p
es

to
re

pr
es

en
t

fo
rm

ul
æ

an
d

te
rm

s.

t
y
p
e
V
a
r

=
S
t
r
i
n
g

t
y
p
e
C
o
n

=
S
t
r
i
n
g

t
y
p
e
P
r
e
d
=
S
t
r
i
n
g

t
y
p
e
F
u
n

=
S
t
r
i
n
g

d
a
t
a
F
o
r
m

=
A
b
s
u
r
d

|
S
a
t
P
r
e
d
[
T
e
r
m
]

|
N
o
t
F
o
r
m

|
F
o
r
m
:
/
\
F
o
r
m

|
F
o
r
m
:
\
/
F
o
r
m

|
F
o
r
m
:
-
>
F
o
r
m

|
F
o
r
m
:
<
-
>
F
o
r
m

|
S
o
m
e
V
a
r
F
o
r
m

|
A
l
l

V
a
r
F
o
r
m

d
e
r
i
v
i
n
g
(
E
q
)

d
a
t
a
T
e
r
m

=
V
a
r
V
a
r

|
C
o
n
C
o
n

|
A
p
p
F
u
n
[
T
e
r
m
]

d
e
r
i
v
i
n
g
(
E
q
)

T
he

co
ns

tr
uc

ti
on

S
a
t
p
[t 1,.

..
t n
]rep

re
se

nt
s

th
e

fo
rm

ul
a
p
(t 1,

..
.t
n
),an

d
A
p
p
f
[t 1,.

..
t n
]rep

re
se

nt
s

th
e

fu
nc

ti
on

ap
pl

ic
at

io
n
f
(t 1,

..
.t
n
).A

b
s
u
r
d

w
ill

b
e

us
ed

to
re

pr
es

en
t

a
fa

ls
e

fo
rm

ul
a.

T
he

in
te

nt
io

n
of

th
e

ot
he

r
co

ns
tr

uc
ti

on
s

sh
ou

ld
b

e
cl

ea
r.

1
5
In

ci
d

en
ta

ll
y,

ca
ll
in

g
th

e
D

ep
ar

tm
en

t
of

C
o
m

p
u

te
r

S
ci

en
ce

“t
h

e
L

ab
”

is
th

ou
g
h
t

b
y

so
m

e
to

b
e

se
n
ti

m
en

ta
l

or
a
rc

h
a
ic

te
rm

in
o
lo

g
y,

b
u

t
th

e
L

a
b

is
it

se
lf

a
“
th

in
g”

d
es

p
it

e
so

m
e

p
eo

p
le

b
ei

n
g

re
lu

ct
an

t
to

u
se

th
at

n
am

e
fo

r
it

,
an

d
o
th

er
p

eo
p

le
n

o
t

k
n

ow
in

g
w

h
at

“t
h

e
L

ab
”

re
fe

rs
to

.

–
33

–
8t

h
M

ay
,

20
17

@
14

:5
9

[7
15

]

In
tr

o
du

ct
io

n
to

F
or

m
al

P
ro

of
3:

P
re

di
ca

te
L

og
ic

S
em

an
ti

cs
N

ot
es

N
ot

ic
e

th
at

th
is

re
pr

es
en

ta
ti

on
ha

s
no

th
in

g
to

sa
y

ab
ou

t
pr

ed
ic

at
e

(f
un

ct
io

n)
sy

m
b

ol
s

b
ei

ng
ap

pl
ie

d
to

th
e

co
rr

ec
t

nu
m

b
er

of
fo

rm
ul

æ
(t

er
m

s)
.

W
he

n
w

e
co

m
e

to
bu

ild
an

ev
al

ua
to

r
in

H
as

ke
ll

w
e

w
ill

si
m

pl
y

as
su

m
e

th
at

th
ey

ar
e.

N
o

te
4

:
F

o
rm

a
l

d
efi

n
it

io
n

o
f

si
n

g
le

-v
ar

ia
b

le
su

b
st

it
u

ti
o

n
16
R

T
he

fo
llo

w
in

g
ta

bl
e

de
fi

ne
s

th
e

su
bs

ti
tu

ti
on

of
t

fo
r
x

(f
or

co
ns

ta
nt

sy
m

b
ol

s
c

,
fu

nc
ti

on
sy

m
b

ol
s
f

,
pr

ed
ic

at
e

sy
m

b
ol

s
P

,
va

ri
ab

le
s
α
,x

,
an

d
te

rm
s
t,
t 1
,.
..
,t

n
)

c
[t/x

];
c

α
[t/x

];
{t,

if
α

is
x

α
,

if
α

is
no

t
x

f
(t 1,

..
.,
t n
)[

t/x]
;

f
(t 1[t

/x],
..
.,
t n
[t/x

])
P
(t 1,

..
.,
t n
)[

t/x]
;

P
(t 1[t

/x],
..
.,
t n
[t/x

])
φ
∧ψ

[t/x
];

φ
[t/x

]∧ψ
[t/x

]
..
. ∀α⋅

φ
[t/x

];
{∀

α
⋅φ,

if
x

is
no

t
fr

ee
in
φ

or
α

is
x

∀α.φ
[t/x

],
if
x

is
fr

ee
in
φ

,
an

d
α

no
t

fr
ee

in
t

∃α⋅
φ

[t/x
];

{∃α
⋅φ,

if
x

is
no

t
fr

ee
in
φ

or
α

is
x

∃α.φ
[t/x

],
if
x

is
fr

ee
in
φ

,
an

d
α

no
t

fr
ee

in
t

T
he

pr
ec

on
di

ti
on

:
α

is
no

t
fr

ee
in

t
fo

rb
id

s
va

ri
ab

le
ca

pt
ur

e
w

he
n

a
su

bs
ti

tu
ti

on
is

ta
ke

n
th

ro
ug

h
a

qu
an

ti
fi

er
.

W
he

n
th

is
co

nd
it

io
n

is
m

et
w

e
(a

ls
o)

sa
y

th
at

“α
is

fr
es

h
in

t”
.

E
vi

de
nt

ly
a

pr
ec

on
di

ti
on

fo
r
φ
[t/x

]to
b

e
w

el
l-

de
fi

ne
d

is
th

at
th

er
e

is
no

qu
an

ti
fi

ed
su

bf
or

m
ul

a
of
φ

th
at

br
ea

ks
th

e
fr

es
hn

es
s

co
nd

it
io

n.
In

th
is

ca
se

lo
gi

ci
an

s
sa

y
th

at
“t

is
fr

ee
(t

o
b

e
su

bs
ti

tu
te

d)
fo

r
x

in
φ

”
–

ne
ar

ly
al

w
ay

s
om

it
ti

ng
th

e
pa

re
nt

he
si

ze
d

ph
ra

se
.

T
hi

s
om

is
si

on
ca

n
st

ar
tl

e
th

e
un

w
ar

y
–

fo
r

th
e

di
ff

er
en

t
se

ns
es

of
th

e
w

or
d

“f
re

e”
ar

e
si

gn
al

le
d

in
on

ly
a

ve
ry

su
b

du
ed

w
ay

in
a

ph
ra

se
lik

e:
“t

is
fr

ee
fo

r
x

in
∀α⋅

φ
if
α

is
no

t
fr

ee
in

t
or

x
is

no
t

fr
ee

in
φ

”.

N
o

te
5

:
17
R

T
he

co
nt

ex
t

fr
eq

ue
nt

ly
m

ak
es

it
cl

ea
r

w
hi

ch
of

M
co
n
st
a
n
t
,M

fu
n
ct
io
n
,M

p
re
d
ic
a
te

w
e

m
ea

n,
an

d
in

th
os

e
ci

rc
um

st
an

ce
s

w
e

w
ill

dr
op

th
e

su
bs

cr
ip

t.

M
an

y
lo

gi
ci

an
s

(e
sp

ec
ia

lly
th

os
e

w
ri

ti
ng

on
ly

fo
r

lo
gi

ci
an

s)
us

e
th

e
no

ta
ti

on
s
c
M ,

f
M ,

P
M

fo
r

th
e

de
no

ta
ti

on
s

of
c
,f
,P

in
th

e
m

o
de

l
M.

T
hi

s
co

nv
en

ti
on

ha
s

th
e

vi
rt

ue
of

co
nc

is
en

es
s,

bu
t

br
in

gs
lit

tl
e

el
se

to
th

e
pa

rt
y!

N
o

te
6

:
22
R

T
he

ex
pl

an
at

io
ns

of
∀(a

nd
∃)a

s
a

fi
ni

te
co

nj
un

ct
io

n
(a

nd
di

sj
un

ct
io

n)
of

fo
rm

ul
æ

ca
n

on
ly

b
e

us
ed

b
ec

au
se

th
e

7P
M

do
m

ai
n

is
fi

ni
te

.
T

he
pr

ec
is

e
m

ea
ni

ng
of

th
e

el
lip

si
s

(.
..

)
is

ev
id

en
t

to
m

os
t

p
eo

pl
e,

an
d

(b
ec

au
se

th
e

do
m

ai
n

is
sm

al
l

en
ou

gh
)

th
e

el
lip

si
s

co
ul

d
b

e
re

m
ov

ed
by

w
ri

ti
ng

th
e

co
nj

un
ct

io
n

(d
is

ju
nc

ti
on

)
ou

t
in

fu
ll.

T
hi

s
m

o
de

of
ex

pl
an

at
io

n
do

es
n’

t
w

or
k

fo
r

a
no

n-
fi

ni
te

do
m

ai
n,

an
d

w
e

ha
ve

to
us

e
a

m
or

e
el

ab
or

at
e

w
ay

of
“e

lim
in

at
in

g”
va

ri
ab

le
s

fr
om

qu
an

ti
fi

ed
fo

rm
ul

ae
.

–
34

–
8t

h
M

ay
,

20
17

@
14

:5
9

[7
15

]

In
tr

o
du

ct
io

n
to

F
or

m
al

P
ro

of
3:

P
re

di
ca

te
L

og
ic

S
em

an
ti

cs
N

ot
es

N
o

te
7

:
M

o
d

el
s

re
p

re
se

n
te

d
in

H
a

sk
el

l
22
R

Ju
st

as
w

e
w

er
e

ab
le

to
de

fi
ne

as
a

H
as

ke
ll

fu
nc

ti
on

th
e

ev
al

ua
ti

on
of

pr
op

os
it

io
ns

re
pr

es
en

te
d

as
H

as
ke

ll
da

ta
ty

p
es

,
so

w
e

ar
e

ab
le

to
de

fi
ne

th
e

ev
al

ua
ti

on
of

fo
rm

ul
æ

an
d

te
rm

s
as

H
as

ke
ll

fu
nc

ti
on

s.

W
e

fi
rs

t
de

fi
ne

a
ty

p
e

cl
as

s
M
o
d
e
l

th
at

ca
pt

ur
es

th
e

es
se

nc
e

of
a

m
o

de
l.

T
he

ty
p

e
pa

ra
m

et
er

,
do

m
,

w
ill

b
e

in
st

an
ti

at
ed

in
an

y
pa

rt
ic

ul
ar

m
o

de
l

by
th

e
H

as
ke

ll
ty

p
e

th
at

re
pr

es
en

ts
th

in
gs

in
th

e
do

m
ai

n
of

di
sc

ou
rs

e.

c
l
a
s
s
M
o
d
e
l
d
o
m
w
h
e
r
e

c
o
n
s
t
a
n
t
:
:

C
o
n

-
>
d
o
m

f
u
n
c
t
i
o
n
:
:

F
u
n

-
>
[
d
o
m
]
-
>
d
o
m

p
r
e
d
i
c
a
t
e
:
:
P
r
e
d
-
>
[
d
o
m
]
-
>
B
o
o
l

u
n
i
v
e
r
s
e
:
:

[
d
o
m
]

th
e
co
n
st
an

t,
fu
n
ct
io
n
,p
re
di
ca
te

fu
nc

ti
on

s
m

ap
C
on
,F
u
n
,P

re
d

sy
m

b
ol

s
to

va
lu

es
,

fu
nc

ti
on

s
an

d
pr

ed
ic

at
es

.
T

he
un

iv
er

se
is

re
pr

es
en

te
d

by
th

e
lis

t
u
n
iv
er
se

–
a

cl
ue

th
at

ou
r

H
as

ke
ll

im
pl

em
en

ta
ti

on
of

m
o

de
ls

w
ill

on
ly

b
e

ca
pa

bl
e

of
co

m
pu

ti
ng

eff
ec

ti
ve

ly
w

it
h

m
o

de
ls

th
at

ha
ve

fi
ni

te
un

iv
er

se
s.

H
er

e’
s

th
e
N
at

3
m

o
de

l
in

th
is

en
co

di
ng

i
n
s
t
a
n
c
e
M
o
d
e
l
I
n
t
w
h
e
r
e

u
n
i
v
e
r
s
e

=
[
0
,
1
,
2
]

c
o
n
s
t
a
n
t

"
0
"

=
0

f
u
n
c
t
i
o
n

"
s
"

[
n
]

=
(
n
+
1
)
‘
m
o
d
‘
3

f
u
n
c
t
i
o
n

"
p
"

[
n
]

=
(
n
-
1
)
‘
m
o
d
‘
3

f
u
n
c
t
i
o
n

"
⊕"

[
x
,
y
]

=
(
x
+
y
)
‘
m
o
d
‘
3

p
r
e
d
i
c
a
t
e
"
>
"

[
x
,
y
]
=

x
>
y

p
r
e
d
i
c
a
t
e
"
E
v
e
n
"
[
n
]

=
e
v
e
n
n

p
r
e
d
i
c
a
t
e
"
=
"

[
x
,
y
]

=
x
=
=
y

an
d

he
re

’s
th

e
7P

M
m

o
de

l

d
a
t
a
S
e
v
e
n
P
M
=
W
i
l
s
o
n
|
C
a
l
l
a
g
h
a
n
|
T
h
a
t
c
h
e
r
|
M
a
j
o
r
|

B
l
i
a
r

|
B
r
o
w
n

|
C
a
m
e
r
o
n

d
e
r
i
v
i
n
g
(
E
q
,
O
r
d
,
S
h
o
w
,
E
n
u
m
)

i
n
s
t
a
n
c
e
M
o
d
e
l
S
e
v
e
n
P
M
w
h
e
r
e

u
n
i
v
e
r
s
e

=
[
W
i
l
s
o
n
,
C
a
l
l
a
g
h
a
n
,
T
h
a
t
c
h
e
r
,
M
a
j
o
r
,

B
l
i
a
r
,

B
r
o
w
n
,

C
a
m
e
r
o
n

]

c
o
n
s
t
a
n
t

"
0
"
=
C
a
m
e
r
o
n

f
u
n
c
t
i
o
n

"
s
"

[
n
]

=
s
u
c
c
n

f
u
n
c
t
i
o
n

"
p
"

[
n
]

=
p
r
e
d
n

–
35

–
8t

h
M

ay
,

20
17

@
14

:5
9

[7
15

]

In
tr

o
du

ct
io

n
to

F
or

m
al

P
ro

of
3:

P
re

di
ca

te
L

og
ic

S
em

an
ti

cs
N

ot
es

f
u
n
c
t
i
o
n

"
⊕"

[
x
,
y
]

=
i
f
x
>
y
t
h
e
n
x
e
l
s
e
y

p
r
e
d
i
c
a
t
e
"
>
"

[
x
,
y
]
=
x
>
y

p
r
e
d
i
c
a
t
e
"
E
v
e
n
"
[
n
]

=
n
/
=
B
l
i
a
r
|
|
n
/
=
C
a
m
e
r
o
n

p
r
e
d
i
c
a
t
e
"
=
"

[
x
,
y
]

=
x
=
=
y

N
o

te
8

:
F

ro
m

su
b

st
it

u
ti

o
n

to
en

vi
ro

n
m

en
t

se
m

a
n

ti
cs

27
R

A
w

el
l-

kn
ow

n
te

ch
ni

qu
e

in
th

e
im

pl
em

en
ta

ti
on

of
la

ng
ua

ge
s

fo
r

w
hi

ch
su

bs
ti

tu
ti

on
fo

r
va

ri
ab

le
s

pl
ay

s
a

ro
le

in
th

e
se

m
an

ti
cs

is
to

av
oi

d
do

in
g

th
e

w
or

k
of

su
bs

ti
tu

ti
on

.
T

hi
s

w
or

k
m

os
tl

y
co

ns
is

ts
of

co
py

in
g

th
e

pa
rt

s
of

ph
ra

se
s

th
at

ar
e

no
t

th
e

va
ri

ab
le

b
ei

ng
su

bs
ti

tu
te

d
fo

r)
.

T
he

te
ch

ni
qu

e
th

at
is

us
ed

is
to

re
pr

es
en

t
ph

ra
se

s
by

th
e

us
ua

l
da

ta
st

ru
ct

ur
es

(i
n

w
hi

ch
va

ri
ab

le
s

ca
n

ap
p

ea
r)

to
ge

th
er

w
it

h
an

au
xi

lia
ry

st
ru

ct
ur

e
(u

su
al

ly
ca

lle
d

an
en

vi
ro

nm
en

t)
w

hi
ch

re
co

rd
s

th
e

su
bs

ti
tu

ti
on

s
th

at
ha

ve
b

ee
n

do
ne

so
fa

r.

S
ub

st
it

ut
io

ns
fo

r
va

ri
ab

le
s

ap
p

ea
r

in
ex

ac
tl

y
tw

o
of

th
e

ev
al

ua
ti

on
ru

le
s

gi
ve

n
in

th
e

m
ai

n
b

o
dy

of
th

e
te

xt
,

na
m

el
y:

▷∃
α
⋅φi

s
tr

ue
iff
φ
[⟨⟨v

⟩⟩/α
]is

tr
ue

fo
r

so
m

e
do

m
ai

n
va

lu
e
v

▷∀
α
⋅φi

s
tr

ue
iff
φ
[⟨⟨v

⟩⟩/α
]is

tr
ue

fo
r

ev
er

y
do

m
ai

n
va

lu
e
v

If
α

o
cc

ur
s

fr
ee

in
φ

,
th

en
th

e
re

cu
rs

iv
e

ev
al

ua
ti

on
of
φ
[⟨⟨v

⟩⟩/α
]wi

ll
ev

en
tu

al
ly

re
su

lt
in

th
e

ap
pl

ic
at

io
n

of
th

e
“q

uo
te

d
va

lu
e”

te
rm

ru
le

:

▷t
he

va
lu

e
de

no
te

d
by

th
e

co
ns

ta
nt

sy
m

b
ol

⟨⟨v⟩⟩
is
v

F
ol

lo
w

in
g

fr
om

th
is

,
ou

r
en

vi
ro

nm
en

ts
m

ap
va

ri
ab

le
s

di
re

ct
ly

to
do

m
ai

n
va

lu
es

.
F

or
if

,
w

hi
le

ap
pl

yi
ng

th
e

ev
al

ua
ti

on
ru

le
s,

th
e

fo
rm

ul
a
φ

is
ev

al
ua

te
d

w
it

h
⟨⟨v⟩⟩

su
bs

ti
tu

te
d

fo
r

th
e

va
ri

ab
le
α

,
th

en
th

at
fo

rm
ul

a
w

ill
ev

en
tu

al
ly

b
e

ev
al

ua
te

d
in

an
en

vi
ro

nm
en

t
in

w
hi

ch
α

is
m

ap
p

ed
to

th
e

do
m

ai
n

va
lu

e
v

.

In
w

ha
t

fo
llo

w
s

en
vi

ro
nm

en
ts
ρ

ar
e

m
ap

pi
ng

s
fr

om
va

ri
ab

le
s

to
do

m
ai

n
va

lu
es

,
an

d
w

e
w

ri
te
ρ
⊕{α

↦v
}(“

ex
te

nd
ρ

by
m

ap
pi

ng
α

to
v

”)
to

m
ea

n
th

e
en

vi
ro

nm
en

t
th

at
is

id
en

ti
ca

l
to
ρ

ex
ce

pt
th

at
it

m
ap

s
th

e
va

ri
ab

le
α

to
th

e
do

m
ai

n
va

lu
e
v

.

W
ri

ti
ng

[[t]]
ρ

fo
r

“t
he

do
m

ai
n

va
lu

e
de

no
te

d
by

th
e

te
rm

t
in

en
vi

ro
nm

en
t
ρ

”,
an

d
[[φ]

] ρfo
r

“t
he

tr
ut

h
va

lu
e

of
th

e
fo

rm
ul

a
φ

in
en

vi
ro

nm
en

t
ρ

”
w

e
ca

n
ta

bu
la

te
th

e
ev

al
ua

ti
on

ru
le

s
fo

r
al

l
te

rm
s

an
d

fo
rm

ul
æ

co
nc

is
el

y.

–
36

–
8t

h
M

ay
,

20
17

@
14

:5
9

[7
15

]

In
tr

o
du

ct
io

n
to

F
or

m
al

P
ro

of
3:

P
re

di
ca

te
L

og
ic

S
em

an
ti

cs
N

ot
es

[[α
]] ρ

ρ
(α)

(f
or

th
e

va
ri

ab
le
α

)
[[c]

] ρ
M

co
n
st
a
n
t
(c)

[[f(
t 1
,.
..
,t

n
)]] ρ

M
fu
n
ct
io
n
(f)(

[[t 1
]] ρ,.

..
,[[t n

]] ρ)
[[P(

t 1
,.
..
,t

n
)]] ρ

T
if

an
d

on
ly

if
M

p
re
d
ic
a
te
(P)

([[t 1
]] ρ,.

..
,[[t n

]] ρ)
[[¬φ

]] ρ
¬[[φ

]] ρ
[[φ∧

ψ
]] ρ

[[φ]
] ρ∧[[

ψ
]] ρ

[[φ∨
ψ

]] ρ
[[φ]

] ρ∨[[
ψ

]] ρ
[[φ→

ψ
]] ρ

[[φ]
] ρ→

[[ψ
]] ρ

[[φ↔
ψ

]] ρ
[[φ]

] ρ↔
[[ψ

]] ρ
[[∀α

⋅φ]]
ρ

T
if

an
d

on
ly

if
[[φ]

] ρ⊕{
α
↦v}

is
T

fo
r

ev
er

y
do

m
ai

n
va

lu
e

v
[[∃α

⋅φ]]
ρ

T
if

an
d

on
ly

if
[[φ]

] ρ⊕{
α
↦v}

is
T

fo
r

so
m

e
do

m
ai

n
va

lu
e

v

N
o

te
9

:
E

va
lu

a
ti

o
n

ru
le

s
in

H
a

sk
el

l
27
R

W
e

ca
n

ea
si

ly
tr

an
sl

at
e

ou
r

en
vi

ro
nm

en
t

se
m

an
ti

cs
in

to
a

pa
rt

ia
l

H
as

ke
ll

im
pl

em
en

ta
ti

on
of

th
e

ev
al

ua
ti

on
ru

le
s

fo
r

pr
ed

ic
at

e
ca

lc
ul

us
fo

rm
ul

æ
an

d
te

rm
s

in
a

m
o

de
l

w
ho

se
do

m
ai

n
ty

p
e

is
d
o
m

.
T

he
im

pl
em

en
ta

ti
on

is
pa

rt
ia

l
b

ec
au

se
it

w
ill

no
t

te
rm

in
at

e
fo

r
fa

ls
e

ex
is

te
nt

ia
l

qu
an

ti
fi

ca
ti

on
s

(o
r

tr
ue

un
iv

er
sa

l
qu

an
ti

fi
ca

ti
on

s)
ov

er
no

n-
fi

ni
te

do
m

ai
ns

.

t
h
i
n
g
V
a
l
u
e
:
:
M
o
d
e
l
d
o
m
=
>
E
n
v
d
o
m
-
>
T
e
r
m
-
>
d
o
m

t
r
u
t
h
V
a
l
u
e
:
:
M
o
d
e
l
d
o
m
=
>
E
n
v
d
o
m
-
>
F
o
r
m
-
>
B
o
o
l

t
h
i
n
g
V
a
l
u
e
ρ
t
e
r
m
=

c
a
s
e
t
e
r
m
o
f

V
a
r

α
-
>
ρ
α

C
o
n

c
-
>
c
o
n
s
t
a
n
t
c

A
p
p
f
t
e
r
m
s
-
>
(
f
u
n
c
t
i
o
n
f
)
(
m
a
p
(
t
h
i
n
g
V
a
l
u
e
ρ
)
t
e
r
m
s
)

t
r
u
t
h
V
a
l
u
e
ρ
f
o
r
m
=

c
a
s
e
f
o
r
m
o
f

S
a
t

p
t
e
r
m
s

-
>
(
p
r
e
d
i
c
a
t
e
p
)
(
m
a
p
(
t
h
i
n
g
V
a
l
u
e
ρ
)
t
e
r
m
s
)

S
o
m
e
α
φ

-
>
o
r

(
m
a
p
(
φ

‘
a
s
F
u
n
O
f
‘
α
)
u
n
i
v
e
r
s
e
)

A
l
l

α
φ

-
>
a
n
d
(
m
a
p
(
φ

‘
a
s
F
u
n
O
f
‘
α
)
u
n
i
v
e
r
s
e
)

N
o
t
φ

-
>
n
o
t
(
t
r
u
t
h
V
a
l
u
e
ρ
φ
)

f
l
:
/
\
f
r

-
>
t
r
u
t
h
V
a
l
u
e
ρ
f
l
&
&
t
r
u
t
h
V
a
l
u
e
ρ
f
r

f
l
:
\
/
f
r

-
>
t
r
u
t
h
V
a
l
u
e
ρ
f
l
|
|
t
r
u
t
h
V
a
l
u
e
ρ
f
r

f
l
:
-
>
f
r

-
>
t
r
u
t
h
V
a
l
u
e
ρ
f
l
→t

r
u
t
h
V
a
l
u
e
ρ
f
r

f
l
:
<
-
>
f
r

-
>
t
r
u
t
h
V
a
l
u
e
ρ
f
l
=
=
t
r
u
t
h
V
a
l
u
e
ρ
f
r

w
h
e
r
e
(
φ

‘
a
s
F
u
n
O
f
‘
α
)
v
a
l
=
t
r
u
t
h
V
a
l
u
e
(
e
x
t
e
n
d
ρ
α

v
a
l
)
φ

–
37

–
8t

h
M

ay
,

20
17

@
14

:5
9

[7
15

]

In
tr

o
du

ct
io

n
to

F
or

m
al

P
ro

of
3:

P
re

di
ca

te
L

og
ic

S
em

an
ti

cs
N

ot
es

p
→q

=
i
f
p
t
h
e
n
q
e
l
s
e
T
r
u
e

A
n

en
vi

ro
nm

en
t

fo
r

a
do

m
ai

n
is

a
m

ap
pi

ng
fr

om
va

ri
ab

le
s

to
do

m
ai

n
va

lu
es

.

t
y
p
e
E
n
v
d
o
m
=
V
a
r
-
>
d
o
m

T
he

em
pt

y
en

vi
ro

nm
en

t
re

pr
es

en
ts

a
si

tu
at

io
n

in
w

hi
ch

no
va

ri
ab

le
s

ha
ve

b
ee

n
b

ou
nd

.

e
m
p
t
y
:
:
E
n
v
d
o
m

e
m
p
t
y
α

=
e
r
r
o
r
(
"
T
r
y
i
n
g
t
o
e
v
a
l
u
a
t
e
a
n
u
n
b
o
u
n
d
v
a
r
i
a
b
l
e
:
"
+
+
α
)

A
n

en
vi

ro
nm

en
t
ρ

is
ex

te
nd

ed
to

fo
rm

a
ne

w
en

vi
ro

nm
en

t
by

as
so

ci
at

in
g

an
ad

di
ti

on
al

va
ri

ab
le

w
it

h
a

do
m

ai
n

va
lu

e.
T

he
ex

te
nd

ed
en

vi
ro

nm
en

t
m

ap
s

al
l

ot
he

r
va

ri
ab

le
s

to
th

e
sa

m
e

va
lu

es
as

th
e

or
ig

in
al

di
d.

e
x
t
e
n
d
:
:
E
n
v
d
o
m
-
>
V
a
r
-
>
d
o
m
-
>
E
n
v
d
o
m

e
x
t
e
n
d
ρ
α

v
α
’
=
i
f
α
’
=
=
α

t
h
e
n
v
e
l
s
e
ρ
α
’

N
o

te
1

0
:

31
R

T
he

re
is

a
st

ra
ig

ht
fo

w
ar

d
m

et
ho

d
of

tr
an

sf
or

m
in

g
a

m
o

de
l
M

in
w

hi
ch

so
m

e
fu

nc
ti

on
s

ar
e

pa
rt

ia
l

in
to

a
m

o
de

l
M̂

in
w

hi
ch

al
l

fu
nc

ti
on

s
ar

e
to

ta
l.

▷A
ug

m
en

t
th

e
do

m
ai

n
of

M
w

it
h

a
va

lu
e:

u
n
de
f

.
C

al
l

th
e

ne
w

do
m

ai
n
D̂
om

▷C
or

re
sp

on
di

ng
to

ea
ch

n
-a

ry
fu

nc
ti

on
f

of
th

e
or

ig
in

al
m

o
de

l,
de

fi
ne

a
“t

ot
al

iz
ed

”
fu

nc
ti

on
f̂

ov
er

D̂
om

n
by

f̂
(v 1,

..
.,
v n

)=f
(v 1,

..
.,
v n

),i
f
f

de
fi

ne
d

at
(v 1,

..
.,
v n

)
f̂
(v 1,

..
.,
v n

)=u
n
de
f
,

ot
he

rw
is

e

▷S
im

ila
rl

y,
co

rr
es

p
on

di
ng

to
ea

ch
n

-a
ry

pr
ed

ic
at

e
P

of
th

e
or

ig
in

al
m

o
de

l,
de

fi
ne

a
pr

ed
ic

at
e
P̂

ov
er

D̂
om

n
by

P̂
(v 1,

..
.,
v n

)=P
(v 1,

..
.,
v n

),i
f
(v 1,

..
.,
v n

)∈D
om

n

P̂
(v 1,

..
.,
v n

)=F
,

ot
he

rw
is

e

T
hi

s
st

ra
ig

ht
fo

w
ar

d
tr

an
sf

or
m

at
io

n
w

ill
no

t,
in

ge
ne

ra
l,

pr
es

er
ve

th
e

tr
ut

h
va

lu
es

of
fo

rm
ul

ae
in

th
e

or
ig

in
al

m
o

de
l.

–
38

–
8t

h
M

ay
,

20
17

@
14

:5
9

[7
15

]

