Introduction to Formal Proof

Bernard Sufrin

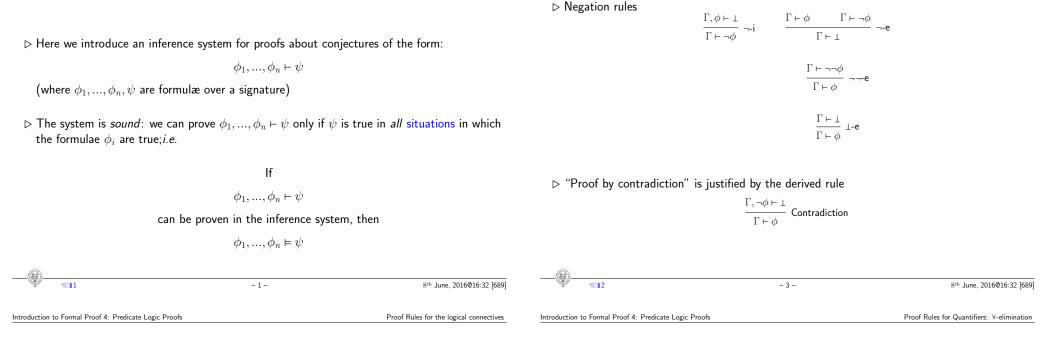
Trinity Term 2018

4: Predicate Logic Proofs

[04-folproof]

Introduction to Formal Proof 4: Predicate Logic Proofs

Proof Rules for the logical connectives



Proof Rules for the logical connectives

Predicate Calculus Proofs

We adopt (sequent calculus formulations of) the natural deduction rules:

$$\frac{\Gamma, \phi \vdash \psi}{\Gamma \vdash \phi \rightarrow \psi} \rightarrow \mathbf{i} \qquad \qquad \frac{\Gamma \vdash \phi \qquad \Gamma \vdash \phi \rightarrow \psi}{\Gamma \vdash \psi} \rightarrow \mathbf{e}$$

$$\frac{\Gamma \vdash \phi \qquad \Gamma \vdash \psi}{\Gamma \vdash \phi \land \psi} \wedge \mathbf{i} \qquad \qquad \frac{\frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \phi} \land \mathbf{e}_{L}}{\frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \psi} \land \mathbf{e}_{R}}$$

$$\frac{\frac{\Gamma \vdash \phi}{\Gamma \vdash \psi} \lor \mathbf{v} \cdot \mathbf{i}_{L}}{\frac{\Gamma \vdash \psi}{\Gamma \vdash \phi} \lor \mathbf{v} \cdot \mathbf{i}_{R}} \qquad \frac{\Gamma \vdash \phi \lor \psi \qquad \Gamma, \phi \vdash \kappa \qquad \Gamma, \psi \vdash \kappa}{\Gamma \vdash \kappa} \lor \mathbf{v} \cdot \mathbf{e}$$

Proof Rules for Quantifiers: \forall -elimination

 \triangleright Writing $\phi(x)$ for a *formula* in which the variable x may appear free we can capture informally one natural way of reasoning from universally quantified formulæ as follows:

"In a context in which we accept $\forall x \cdot \phi(x)$ we must accept $\phi(T)$ (for any term T)"

(here $\phi(T)$ means the result of substituting T for all free occurrences of x in $\phi(x)$).

 \triangleright For example: in a context in which we accept

$$\forall x \cdot \forall y \cdot succ \ y + x = succ(y + x)$$

we must accept

$$\forall y \cdot succ \ y + 0 = succ(y + 0)$$

(in this case the $\phi(x)$ is $\forall y \cdot succ \ y + x = succ(y + x)$, and the T is 0)

- 2 -

- 4 -

we must accept

 \triangleright This way of reasoning can be captured by the \forall elimination rule:

$$\frac{\Gamma \vdash \forall x \cdot \phi(x)}{\Gamma \vdash \phi(T)} \forall -\mathsf{e}$$

(T must be free for x in $\phi(x)$)

NB: This is a schematic (general) rule: the x stands for any variable, and the T for any term. All the other quantifier rules below will also be schematic.

 \triangleright For this to work properly, T must be *free for* x in $\phi(x)$.

```
\triangleright For example: suppose we have \forall x \cdot \exists y \cdot x < y
```

```
then \phi(x) is \exists y \cdot x < y
```

and
$$\phi(y)$$
 is $\exists y \cdot y < y$

- So y is not free for x in $\phi(x)$ because it is "captured" by $\exists y \cdot$
- \triangleright In logic in general the *free for* x condition is taken care of by the detailed definition of substitution

 \triangleright The formula $\phi(x)$ can be a logical composite. For example, in a context in which we accept

 $\forall x \cdot \begin{pmatrix} 0 + x = x & \land \\ \forall y \cdot succ \ y + x = succ(y + x) \end{pmatrix}$

 $\begin{pmatrix} 0 + succ(succ(0)) = succ(succ(0)) & \land \\ \forall y \cdot succ \ y + succ(succ(0)) = succ(y + succ(succ(0))) \end{pmatrix}$

 $\triangleright \text{ Here } T \text{ is } succ(succ(0)) \text{ and } \phi(x) \text{ is } \begin{pmatrix} 0+x=x & \land \\ \forall y \cdot succ \ y+x = succ(y+x) \end{pmatrix}$

- \circ either variable-capturing substitutions are forbidden
- \circ or bound variables are systematically renamed to avoid capture, *e.g.*

$$\phi(y)$$
 would be $\exists y_1 \cdot y < y_1$

 \triangleright One argument in favour of the soundness of the \forall -e rule starts from the observation that for a (non-empty) finite domain of discourse whose values are $\delta_1, ... \delta_n$

the formula $\forall x \cdot \phi(x)$ means the same as $\phi(\delta_1) \wedge ... \wedge \phi(\delta_n)$

Now the term T must denote one of the values in the domain (say δ_k), and $\phi(\delta_k)$ can be inferred from $\phi(\delta_1) \wedge \ldots \wedge \phi(\delta_n)$ using an appropriate number of \wedge -e steps.

- ▷ Of course this is **not a logically acceptable justification** of the soundness of the rule in general.
- \triangleright Nevertheless, treating the quantifiers as generalized conjunction and disjunction can help us get to grips with what they mean in general.

```
- б -
```

1 1 1 1 - 8 -

Proof Rules for Quantifiers: 3-introduction

Introduction to Formal Proof 4: Predicate Logic Proofs

Proof Rules for Quantifiers: 3-elimination

Proof Rules for Quantifiers: ∃-introduction

 \triangleright Again writing $\phi(x)$ for a *formula* in which the variable x may appear free, it seems natural to say that

"In a context in which we accept $\phi(T)$ (for some term T) we must accept $\exists x \cdot \phi(x)$ "

 \triangleright This is captured by the \exists -introduction rule

$$\frac{\Gamma \vdash \phi(T)}{\Gamma \vdash \exists x \cdot \phi(x)} \exists -i$$

(T must be free for x in $\phi(x)$)

 \triangleright An informal argument in support of \exists -e starts from the observation that for a (nonempty) finite domain whose values are $\delta_1, ..., \delta_n$,

the formula $\exists x \cdot \phi(x)$ means the same as $\phi(\delta_1) \lor ... \lor \phi(\delta_n)$

The proof of κ from $\phi(\delta_1) \lor ... \lor \phi(\delta_n)$ using only \lor -e would require us to make the n subproofs $\phi(\delta_i) \vdash \kappa$ (for i = 1, 2, ..., n) Choosing a new variable v allows us to provide a general form for these proofs.

 \triangleright Of course this is no more a logically acceptable justification of the soundness of the rule in general than was our earlier argument in support of \forall -e.

"In a context in which we accept $\exists x \cdot \phi(x)$, we can choose a name for an object that satisfies $\phi(x)$ providing that the name does not appear anywhere in the context or the conclusion."

 \rhd It is captured formally by the $\exists\text{-elimination rule}$

$$\frac{\Gamma, \phi(v) \vdash \kappa}{\Gamma, \exists x \cdot \phi(x) \vdash \kappa} \exists -e \text{ (where } v \text{ is fresh)}$$

 \triangleright Exercise: write this rule in the natural deduction style

 \triangleright Here's an example of "name choosing" in an (informal) proof of the sequent

$$\forall x \cdot P(x) \to Q(x), \exists x \cdot P(x) \vdash \exists x \cdot Q(x)$$

1. Let v be such that P(v) (using the \exists premiss)

2. Now $P(v) \rightarrow Q(v)$ (specialising the \forall premiss)

3. So Q(v) (by the implication)

4. So $\exists x \cdot Q(x)$

 \triangleright The completely formal proof is at least as convincing.

	8			
1:	$\forall x \cdot P(x) \to Q(x)$) premiss		
2:	$\exists x \cdot P(x)$	premiss		
	fresh v			
3:	P(v)	assumption		
4:	$P(v) \rightarrow Q(v)$	∀-e 1		
5:	Q(v)	→-e 3, 4		
6:	$\exists x \cdot Q(x)$	∃-i 5		
7:	$\exists x \cdot Q(x)$	∃-e(2) 3-6		

 \triangleright The scope of the chosen name is the subproof 3-6.

10

- 12 -

Proof Rules for Quantifiers: 3-elimination

Introduction to Formal Proof 4: Predicate Logic Proofs

Proof Rules for Quantifiers: 3-elimination

▷ Getting it wrong

• We want to prove $\exists x \cdot P(x) \land Q(x) \vdash \exists x \cdot P(x)$

 \circ We guess (wrongly) that the proof will look like (for some unknown term ω):

 $\stackrel{_{1:}}{\longrightarrow} \exists x \cdot P(x) \land Q(x) \quad \text{premiss}$ $\begin{array}{ll} & \cdots & \\ & P(\omega) \\ & \exists x \cdot P(x) & \exists \text{-i n'} \end{array}$

 \triangleright A correct proof will "start with" (*i.e.* be rooted at) \exists -e

1:
$$\exists x \cdot P(x) \land Q(x)$$
 premiss
2: $\begin{bmatrix} \text{fresh } \nu \\ P(\nu) \land Q(\nu) \\ P(\nu) \\ \exists x \cdot P(x) \end{bmatrix}$ assumption (from 5)
4: $\exists x \cdot P(x) \\ \exists x \cdot P(x) \end{bmatrix}$ $\exists \text{-i } 3$
5: $\exists x \cdot P(x)$ $\exists \text{-e } 1,2\text{-4}$

 \triangleright this rooting of the proof corresponds to the form of words:

"let ν be such that $P(\nu) \wedge Q(\nu)$ "

Proof Rules for Quantifiers: ∀-introduction

 \triangleright "To prove $\forall x \cdot \phi(x)$ choose a fresh variable v, and prove $\phi(v)$. The scope of the variable v is limited to the proof of $\phi(v)$."

$$\frac{\Gamma \vdash \phi(v)}{\Gamma \vdash \forall x \cdot \phi(x)} \forall \text{-i (where } v \text{ is fresh)}$$

 \triangleright Exercise: construct an informal argument in support of \forall -i.

• At this point the only proof step that can possibly be taken is to use the premiss

 \triangleright But the \exists -e rule must choose a *fresh* variable ν (which therefore cannot appear free in the term ω) and the proof is stuck

$$\begin{array}{ccc} & \vdots & \exists x \cdot P(x) \land Q(x) & \text{premiss} \\ \\ & & fresh \nu \\ & P(\nu) \land Q(\nu) \\ & \vdots \\ & P(\omega) \\ \\ & n^{\circ} \vdots & P(\omega) \\ & n^{\circ} \vdots & P(\omega) \\ & \exists e 1, 2\text{-}n^{\circ} \\ & \exists x \cdot P(x) \\ \end{array}$$

 \triangleright This suggests that our guess was wrong.

Introduction to Formal Proof 4: Predicate Logic Proofs

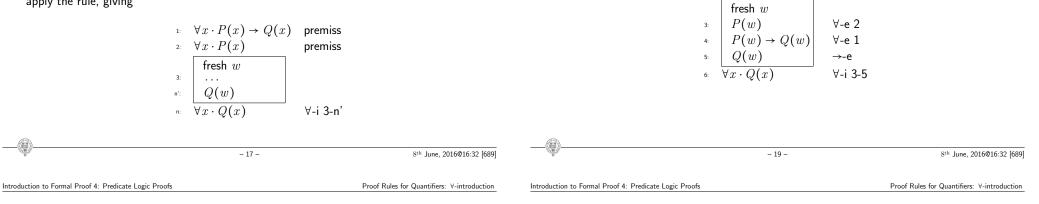
 \triangleright The gap is now filled by an application of $\rightarrow e$

Proof Rules for Quantifiers: ∀-introduction

 \triangleright As an example of how we might use these rules, we shall complete the proof:

1: $\forall x \cdot P(x) \rightarrow Q(x)$ premiss 2: $\forall x \cdot P(x)$ premiss ... n: $\forall x \cdot Q(x)$

 \triangleright The form of the conclusion is such that we can confidently guess that the rule to be used there will be \forall -i. Although we could use x as our "fresh" variable (why?) we choose w and apply the rule, giving



\triangleright We can now use $\forall\text{-e}$ on either of the premisses, and then again on the other.

In both cases, the term used for the specialisation is w

1: $\forall x \cdot P(x) \rightarrow Q(x)$ premiss 2: $\forall x \cdot P(x)$ premiss 3: P(w) $\forall -e 2$ 4: $P(w) \rightarrow Q(w)$ $\forall -e 1$... n': Q(w)1: $\forall x \cdot Q(x)$ $\forall -i 3-n'$ \triangleright Exercise: does this version of the proof satisfy the freshness stipulation of $\forall\mathchar`-i?$

1: $\forall x \cdot P(x) \rightarrow Q(x)$

2: $\forall x \cdot P(x)$

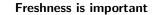
premiss

premiss

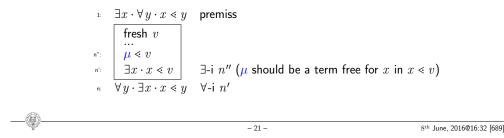
1: 2:	$ \forall x \cdot P(x) \to Q(x) \forall x \cdot P(x) $) premiss premiss
	fresh x ?	
3:	P(x)	∀-е 2
4:	$P(x) \to Q(x)$	∀-e 1
5:	Q(x)	→-e
6:	$\overline{\forall x \cdot Q(x)}$	∀-i 3-5

Freshness is important

Freshness is important



- ▷ Example: Let < be a binary predicate. We will seek a formal proof of
 - 1: $\exists x \cdot \forall y \cdot x < y$ premiss ... n: $\forall y \cdot \exists x \cdot x < y$
 - (Exercise: find an informal proof)
- \triangleright Suppose we start the search by removing the quantifiers from the conclusion, using an (unknown) term μ (to be decided upon later) in \exists -i



Introduction to Formal Proof 4: Predicate Logic Proofs

 $\begin{cases} \text{fresh } w \\ \forall u \cdot w \leq z \end{cases}$

▷ It *appears* that we can use \exists -e at * (with w as the variable) and specialize the assumption on line 2 to $w \leq v$ using \forall -e (with term v)

> 1: $\exists x \cdot \forall y \cdot x \lessdot y$ premiss fresh v fresh w $\forall y \cdot w \lessdot y$ assumption 2: $w \lessdot v$ ∀-е 2 3: n" ': $\mu < v$ ∃-e(1) 2-n"' $\boldsymbol{\mu} \lessdot \boldsymbol{v}$ n": $\exists x \cdot x \lessdot v$ \exists -i n" (μ should be a term free for x in $x \leq v$) n'· $\forall y \cdot \exists x \cdot x \lessdot y$ ∀-in' n:

and, lastly, decide "retrospectively" that the μ we had in mind all along was w.

\triangleright But the freshness proviso for w means it could not have been free in μ

The problem is that we used \exists -i too early in our search!

No variable chosen at * could ever be fresh enough to complete this partial proof!

Freshness is important

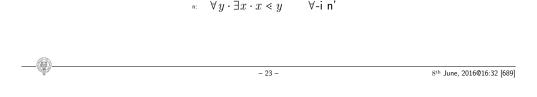
▷ One way of correcting this is to delay the use of \exists -i in the search for the proof, and to work forward from the premiss – choosing the name w for "an x for which $\forall y \cdot x \leq y$ ".

premiss

This leaves us with a subproof obligation that is easy to meet.

 $\exists x \cdot \forall y \cdot x \lessdot y$

fresh v



Introduction to Formal Proof 4: Predicate Logic Proofs

 \triangleright There are two ways to meet the proof obligation. Here is one

1:	$\exists x \cdot \forall y \cdot x \lessdot y$	premiss
	fresh v	
	fresh w	
2:	$\forall y \cdot w \lessdot y$	assumption
3:	$w \lessdot v$	∀-e(2) 3-4
4:	$\exists x \cdot x \lessdot v$	∃-i 3
5:	$\exists x \cdot x \lessdot v$	∃-e(1) 2-4
6:	$\overline{\forally\cdot\exists x\cdot x\lessdot y}$	∀-i 2-5

Exercises:

1. What is the other way to meet the proof obligation?

- 2. Is there a proof that ends with \exists -e?
- 3. Is there a proof that ends with \exists -i?

Freshness is important

Summary of the Quantifier Rules

Introduction to Formal Proof 4: Predicate Logic Proofs

Summary of the Quantifier Rules

 $\frac{\Gamma \vdash \phi[v/x]}{\Gamma \vdash \forall x \cdot \phi} \forall \text{-i } (v \text{ fresh}) \qquad \qquad \frac{\Gamma \vdash \forall x \cdot \phi}{\Gamma \vdash \phi[T/x]} \forall \text{-e } (T \text{ free for } x \text{ in } \phi)$

 $\frac{\Gamma \vdash \phi[T/x]}{\Gamma \vdash \exists x \cdot \phi} \exists \neg i \ (T \text{ free for } x \text{ in } \phi) \qquad \frac{\Gamma, \phi[v/x] \vdash \kappa}{\Gamma, \exists x \cdot \phi \vdash \kappa} \exists \neg e \ (v \text{ fresh})$

 \triangleright Here we present the rules again, this time using explicit substitution notation.

Derived consequences of substitutivity

 \triangleright Symmetry of equality

1:
$$T_1 = T_2$$
 premiss
2: $T_1 = T_1$ =-i
3: $T_2 = T_1$ =-e 1, 2

$$\frac{\overline{T_1 = T_2 \vdash T_1 = T_2}}{T_1 = T_2 \vdash T_2 = T_1} \stackrel{\text{hyp}}{=-e} = T_1$$

 \triangleright How does the =-e work in this proof?

- \circ the consequent conclusion $T_2 = T_1$ is $(\chi = T_1)[T_2/\chi]$
- the right hand antecedent conclusion is $(\chi = T_1)[T_1/\chi]$

(for any suitable variable χ)

- 25 - 8th June, 2016@16:32 [689] Introduction to Formal Proof 4: Predicate Logic Proofs Proof Rules for Equality

Proof Rules for Equality

 \triangleright Introduction: "every term is equal to itself" (sometimes called "reflexivity of equality")

 $\overline{\Gamma \vdash T} = \overline{T}^{=-i}$

 $8^{\rm th}$ June, 2016@16:32 [689]

Derived consequences of substitutivity

▷ Transitivity of equality

$$\frac{\overline{T_1 = T_2, T_2 = T_3 \vdash T_2 = T_3}_{\text{premiss}} \qquad \overline{T_1 = T_2, T_2 = T_3 \vdash T_1 = T_2}_{\text{remiss}} = e^{\text{premiss}}$$

▷ Elimination: (sometimes called "substitutivity of equality")

$$\frac{\Gamma \vdash T_1 = T_2 \qquad \Gamma \vdash \phi[T_1/\chi]}{\Gamma \vdash \phi[T_2/\chi]} = -\mathbf{e}$$

(where χ is a variable chosen so that T_1, T_2 are free for χ in ϕ)

 \triangleright How does the =-e work in this proof?

- \circ the consequent conclusion T_1 = T_3 is $(T_1 = \chi)[T_3/\chi]$
- \circ the right hand antecedent conclusion is (T_1 = $\chi)[\,T_2/\chi]$

(for any suitable variable χ)

Contents	
Proof Rules for Predicate Calculus Proofs	Proof Rules for Quantifiers: V-introduction
- 29 -	^{8th} June, 2016@16:32 [689]
Introduction to Formal Proof 4: Predicate Logic Proofs	Notes
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Note 2: Proof by contradiction	3 11
The law $\frac{\Gamma,\neg\phi\vdash \bot}{\Gamma\vdash\phi} \ \ {\rm Contra}$	Contradiction
is justified by the derivation $\frac{\Gamma, \neg \phi \vdash \bot}{\Gamma \vdash \neg \neg \phi}$	- i - e
Note 3: It is a simple matter to show both that we can derive the "left-side" rule:	ال€
$\frac{\Gamma, \forall x \cdot \phi(x), \phi(T) \vdash \psi}{\Gamma, \forall x \cdot \phi(x) \vdash \psi} \ \forall \vdash$	$\frac{1}{1-\frac{1}{2}}$ A ^L
from ∀-e; and that ∀-e would be derivable from ∀ ⊢ if the latter were a rule. We leave these derivations as exercises for i (in the light of the material relating left-side to elimination rules in chapter 2) the key to both derivations is the cut rule.	We leave these derivations as exercises for the interested reader. Unsurprisingly) the key to both derivations is the cut rule.
Note 4: Suppose $\phi(x)$ is a formula, and δ an element of a domain. To save "formal clutter" we shall here and henceforth write $\phi(\delta)$ instead of the proper $\phi(\langle\!\langle\delta\rangle\!\rangle)$ when to do so will not cause any confusion.	8 \mathbb{I}^{\cong} we shall here and henceforth write $\phi(\delta)$ instead of the proper $\phi(\langle\!\langle \delta \rangle\!\rangle)$

Logic Proofs
Predicate
Proof 4:
o Formal
Introduction to

Notes

10

12

Note 5: Fresh variables A variable is fresh in a proof context if it doesn't appear free in any hypothesis or in the conclusion.

Note 6: A sequent-tree presentation of the proof of

 $\forall x \cdot P(x) \to Q(x), \exists x \cdot P(x) \vdash \exists x \cdot Q(x)$

goes as follows

$\frac{d(v) \vdash Q(v)}{Q(v) \vdash \exists x \cdot Q(x)} \xrightarrow{\exists -1}_{a}$			$r \cdot P(x) \vdash \exists x \cdot Q(x)$
$\frac{1}{P(v) \vdash P(v)} hyp$	$P(v) \to Q(v), P(v) \vdash \exists x \cdot Q(x)$	$\forall x \cdot P(x) \to Q(x), P(v) \vdash \exists x \cdot Q(x)$	$\forall x \cdot P(x) \to Q(x), \exists x \cdot P(x) \vdash \exists x \cdot Q(x)$

For conciseness here, we have silently used the weaken rule in several places, as well as the derived rules $\forall \vdash$ and $\rightarrow \vdash$ (from section 2). Exercise: complete the proof tree by inserting appropriate instances of the weaken rule. $8^{\rm th}$ June, 2016@16:32 [689]

- 31 -