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Predicate Calculus Proofs

▷ Here we introduce an inference system for proofs about conjectures of the form:

φ1, ..., φn ⊢ ψ
(where φ1, ..., φn, ψ are formulæ over a signature)

▷ The system is sound : we can prove φ1, ..., φn ⊢ ψ only if ψ is true in all situations in which
the formulae φi are true;i.e.

If

φ1, ..., φn ⊢ ψ
can be proven in the inference system, then

φ1, ..., φn ⊧ ψ
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Proof Rules for the logical connectives

We adopt (sequent calculus formulations of) the natural deduction rules:

Γ, φ ⊢ ψ
Γ ⊢ φ→ ψ

→-i
Γ ⊢ φ Γ ⊢ φ→ ψ

Γ ⊢ ψ →-e

Γ ⊢ φ Γ ⊢ ψ
Γ ⊢ φ ∧ ψ ∧-i

Γ ⊢ φ ∧ ψ
Γ ⊢ φ ∧-eL

Γ ⊢ φ ∧ ψ
Γ ⊢ ψ ∧-eR

Γ ⊢ φ
Γ ⊢ φ ∨ ψ ∨-iL

Γ ⊢ ψ
Γ ⊢ φ ∨ ψ ∨-iR

Γ ⊢ φ ∨ ψ Γ, φ ⊢ κ Γ, ψ ⊢ κ
Γ ⊢ κ ∨-e
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▷ Negation rules
Γ, φ ⊢ �
Γ ⊢ ¬φ ¬-i

Γ ⊢ φ Γ ⊢ ¬φ
Γ ⊢ � ¬-e

Γ ⊢ ¬¬φ
Γ ⊢ φ ¬¬-e

Γ ⊢ �
Γ ⊢ φ �-e

▷ “Proof by contradiction” is justified by the derived rule

Γ,¬φ ⊢ �
Γ ⊢ φ Contradiction
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Proof Rules for Quantifiers: ∀-elimination

▷ Writing φ(x) for a formula in which the variable x may appear free we can capture
informally one natural way of reasoning from universally quantified formulæ as follows:

“In a context in which we accept ∀x ⋅ φ(x) we must accept φ(T ) (for any term T )”

(here φ(T ) means the result of substituting T for all free occurences of x in φ(x)).

▷ For example: in a context in which we accept

∀x ⋅ ∀y ⋅ succ y + x = succ(y + x)
we must accept ∀y ⋅ succ y + 0 = succ(y + 0)
(in this case the φ(x) is ∀y ⋅ succ y + x = succ(y + x), and the T is 0)

– 4 – 8th June, 2016@16:32 [689]



Introduction to Formal Proof 4: Predicate Logic Proofs Proof Rules for Quantifiers: ∀-elimination

▷ The formula φ(x) can be a logical composite. For example, in a context in which we accept

∀x ⋅ ( 0 + x = x ∧∀y ⋅ succ y + x = succ(y + x) )
we must accept

( 0 + succ(succ(0)) = succ(succ(0)) ∧∀y ⋅ succ y + succ(succ(0)) = succ(y + succ(succ(0))) )

▷ Here T is succ(succ(0)) and φ(x) is ( 0 + x = x ∧∀y ⋅ succ y + x = succ(y + x) )
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▷ For this to work properly, T must be free for x in φ(x).

▷ For example: suppose we have ∀x ⋅ ∃y ⋅ x < y

then φ(x) is ∃y ⋅ x < y

and φ(y) is ∃y ⋅ y < y

So y is not free for x in φ(x) because it is “captured” by ∃y ⋅
▷ In logic in general the free for x condition is taken care of by the detailed definition of

substitution

○ either variable-capturing substitutions are forbidden○ or bound variables are systematically renamed to avoid capture, e.g.

φ(y) would be ∃y1 ⋅ y < y1
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▷ This way of reasoning can be captured by the ∀ elimination rule:

Γ ⊢ ∀x ⋅ φ(x)
Γ ⊢ φ(T ) ∀-e

(T must be free for x in φ(x))

NB: This is a schematic (general) rule: the x stands for any variable, and the T for any term.

All the other quantifier rules below will also be schematic.
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▷ One argument in favour of the soundness of the ∀-e rule starts from the observation that
for a (non-empty) finite domain of discourse whose values are δ1, ...δn

the formula ∀x ⋅ φ(x) means the same as φ(δ1) ∧ ... ∧ φ(δn)
Now the term T must denote one of the values in the domain (say δk), and φ(δk) can be
inferred from φ(δ1) ∧ ... ∧ φ(δn) using an appropriate number of ∧-e steps.

▷ Of course this is not a logically acceptable justification of the soundness of the rule
in general.

▷ Nevertheless, treating the quantifiers as generalized conjunction and disjunction can help us
get to grips with what they mean in general.
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Proof Rules for Quantifiers: ∃-introduction

▷ Again writing φ(x) for a formula in which the variable x may appear free, it seems natural
to say that

“In a context in which we accept φ(T ) (for some term T ) we must accept ∃x ⋅ φ(x)”

▷ This is captured by the ∃-introduction rule

Γ ⊢ φ(T )
Γ ⊢ ∃x ⋅ φ(x) ∃-i

(T must be free for x in φ(x))
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Proof Rules for Quantifiers: ∃-elimination

“In a context in which we accept ∃x ⋅ φ(x), we can choose a name for an object that satisfies
φ(x) providing that the name does not appear anywhere in the context or the conclusion.”

▷ It is captured formally by the ∃-elimination rule

Γ, φ(v) ⊢ κ
Γ,∃x ⋅ φ(x) ⊢ κ ∃-e (where v is fresh)

▷ Exercise: write this rule in the natural deduction style
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▷ An informal argument in support of ∃-e starts from the observation that for a (nonempty)
finite domain whose values are δ1, ..., δn,

the formula ∃x ⋅ φ(x) means the same as φ(δ1) ∨ ... ∨ φ(δn)
The proof of κ from φ(δ1) ∨ ... ∨ φ(δn) using only ∨-e would require us to make the n
subproofs φ(δi) ⊢ κ (for i = 1, 2, ..,n)

Choosing a new variable v allows us to provide a general form for these proofs.

▷ Of course this is no more a logically acceptable justification of the soundness of the rule in
general than was our earlier argument in support of ∀-e.
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▷ Here’s an example of “name choosing” in an (informal) proof of the sequent

∀x ⋅P(x)→ Q(x),∃x ⋅P(x) ⊢ ∃x ⋅Q(x)
1. Let v be such that P(v) (using the ∃ premiss)

2. Now P(v)→ Q(v) (specialising the ∀ premiss)

3. So Q(v) (by the implication)

4. So ∃x ⋅Q(x)
▷ The completely formal proof is at least as convincing.

1: ∀x ⋅P(x)→ Q(x) premiss
2: ∃x ⋅P(x) premiss

fresh v
3: P(v) assumption
4: P(v)→ Q(v) ∀-e 1
5: Q(v) →-e 3, 4
6: ∃x ⋅Q(x) ∃-i 5

7: ∃x ⋅Q(x) ∃-e(2) 3-6

▷ The scope of the chosen name is the subproof 3 − 6.
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▷ Getting it wrong

○ We want to prove ∃x ⋅P(x) ∧Q(x) ⊢ ∃x ⋅P(x)
○ We guess (wrongly) that the proof will look like (for some unknown term ω):

1: ∃x ⋅P(x) ∧Q(x) premiss
...

n’: P(ω)
n: ∃x ⋅P(x) ∃-i n’

○ At this point the only proof step that can possibly be taken is to use the premiss
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▷ But the ∃-e rule must choose a fresh variable ν (which therefore cannot appear free in the
term ω) and the proof is stuck

1: ∃x ⋅P(x) ∧Q(x) premiss

fresh ν
2: P(ν) ∧Q(ν) assumption (from n ′)

...
n”: P(ω)
n’: P(ω) ∃-e 1, 2-n”
n: ∃x ⋅P(x) ∃-i n’

▷ This suggests that our guess was wrong.
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▷ A correct proof will “start with” (i.e. be rooted at) ∃-e

1: ∃x ⋅P(x) ∧Q(x) premiss

fresh ν
2: P(ν) ∧Q(ν) assumption (from 5)
3: P(ν) ∧-eL
4: ∃x ⋅P(x) ∃-i 3

5: ∃x ⋅P(x) ∃-e 1,2-4

▷ this rooting of the proof corresponds to the form of words:

“let ν be such that P(ν) ∧Q(ν)”
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Proof Rules for Quantifiers: ∀-introduction

▷ “To prove ∀x ⋅ φ(x) choose a fresh variable v , and prove φ(v). The scope of the variable
v is limited to the proof of φ(v).”

Γ ⊢ φ(v)
Γ ⊢ ∀x ⋅ φ(x) ∀-i (where v is fresh)

▷ Exercise: construct an informal argument in support of ∀-i.
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▷ As an example of how we might use these rules, we shall complete the proof:

1: ∀x ⋅P(x)→ Q(x) premiss
2: ∀x ⋅P(x) premiss

...
n: ∀x ⋅Q(x)

▷ The form of the conclusion is such that we can confidently guess that the rule to be used
there will be ∀-i. Although we could use x as our “fresh” variable (why?) we choose w and
apply the rule, giving

1: ∀x ⋅P(x)→ Q(x) premiss
2: ∀x ⋅P(x) premiss

fresh w
3: . . .
n’: Q(w)
n: ∀x ⋅Q(x) ∀-i 3-n’
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▷ We can now use ∀-e on either of the premisses, and then again on the other.

In both cases, the term used for the specialisation is w

1: ∀x ⋅P(x)→ Q(x) premiss
2: ∀x ⋅P(x) premiss

fresh w
3: P(w) ∀-e 2
4: P(w)→ Q(w) ∀-e 1

...
n’: Q(w)
n: ∀x ⋅Q(x) ∀-i 3-n’
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▷ The gap is now filled by an application of → e

1: ∀x ⋅P(x)→ Q(x) premiss
2: ∀x ⋅P(x) premiss

fresh w
3: P(w) ∀-e 2
4: P(w)→ Q(w) ∀-e 1
5: Q(w) →-e

6: ∀x ⋅Q(x) ∀-i 3-5
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▷ Exercise: does this version of the proof satisfy the freshness stipulation of ∀-i?

1: ∀x ⋅P(x)→ Q(x) premiss
2: ∀x ⋅P(x) premiss

fresh x?
3: P(x) ∀-e 2
4: P(x)→ Q(x) ∀-e 1
5: Q(x) →-e

6: ∀x ⋅Q(x) ∀-i 3-5
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Freshness is important

▷ Example: Let ⋖ be a binary predicate. We will seek a formal proof of

1: ∃x ⋅ ∀y ⋅ x ⋖ y premiss
...

n: ∀y ⋅ ∃x ⋅ x ⋖ y

(Exercise: find an informal proof)

▷ Suppose we start the search by removing the quantifiers from the conclusion, using an
(unknown) term µ (to be decided upon later) in ∃-i

1: ∃x ⋅ ∀y ⋅ x ⋖ y premiss

fresh v
...

n”: µ ⋖ v
n’: ∃x ⋅ x ⋖ v ∃-i n ′′ (µ should be a term free for x in x ⋖ v)

n: ∀y ⋅ ∃x ⋅ x ⋖ y ∀-i n ′
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▷ It appears that we can use ∃-e at ∗ (with w as the variable) and specialize the assumption
on line 2 to w ⋖ v using ∀-e (with term v)

1: ∃x ⋅ ∀y ⋅ x ⋖ y premiss

fresh v

fresh w
2: ∀y ⋅w ⋖ y assumption
3: w ⋖ v ∀-e 2

...
n”’: µ ⋖ v

n”: µ ⋖ v ∃-e(1) 2-n”’ ∗
n’: ∃x ⋅ x ⋖ v ∃-i n” (µ should be a term free for x in x ⋖ v)

n: ∀y ⋅ ∃x ⋅ x ⋖ y ∀-i n’

and, lastly, decide “retrospectively” that the µ we had in mind all along was w .

▷ But the freshness proviso for w means it could not have been free in µ

The problem is that we used ∃-i too early in our search!

No variable chosen at ∗ could ever be fresh enough to complete this partial proof!
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▷ One way of correcting this is to delay the use of ∃-i in the search for the proof, and to work
forward from the premiss – choosing the name w for “an x for which ∀y ⋅ x ⋖ y”.

This leaves us with a subproof obligation that is easy to meet.

1: ∃x ⋅ ∀y ⋅ x ⋖ y premiss

fresh v

fresh w
2: ∀y ⋅w ⋖ y assumption

...
n”: ∃x ⋅ x ⋖ v

n’: ∃x ⋅ x ⋖ v ∃-e(1) 2-n”

n: ∀y ⋅ ∃x ⋅ x ⋖ y ∀-i n’

– 23 – 8th June, 2016@16:32 [689]

Introduction to Formal Proof 4: Predicate Logic Proofs Freshness is important

▷ There are two ways to meet the proof obligation. Here is one

1: ∃x ⋅ ∀y ⋅ x ⋖ y premiss

fresh v

fresh w
2: ∀y ⋅w ⋖ y assumption
3: w ⋖ v ∀-e(2) 3-4
4: ∃x ⋅ x ⋖ v ∃-i 3

5: ∃x ⋅ x ⋖ v ∃-e(1) 2-4

6: ∀y ⋅ ∃x ⋅ x ⋖ y ∀-i 2-5

Exercises:

1. What is the other way to meet the proof obligation?

2. Is there a proof that ends with ∃-e?

3. Is there a proof that ends with ∃-i?
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Summary of the Quantifier Rules

▷ Here we present the rules again, this time using explicit substitution notation.

Γ ⊢ φ[v/x ]
Γ ⊢ ∀x ⋅ φ ∀-i (v fresh)

Γ ⊢ ∀x ⋅ φ
Γ ⊢ φ[T /x ] ∀-e (T free for x in φ)

Γ ⊢ φ[T /x ]
Γ ⊢ ∃x ⋅ φ ∃-i (T free for x in φ)

Γ, φ[v/x ] ⊢ κ
Γ,∃x ⋅ φ ⊢ κ ∃-e (v fresh)
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Proof Rules for Equality

▷ Introduction: “every term is equal to itself” (sometimes called “reflexivity of equality”)

Γ ⊢ T = T
=-i

▷ Elimination: (sometimes called “substitutivity of equality”)

Γ ⊢ T1 = T2 Γ ⊢ φ[T1/χ]
Γ ⊢ φ[T2/χ] =-e

(where χ is a variable chosen so that T1,T2 are free for χ in φ)
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Derived consequences of substitutivity

▷ Symmetry of equality
1: T1 = T2 premiss
2: T1 = T1 =-i
3: T2 = T1 =-e 1, 2

T1 = T2 ⊢ T1 = T2
hyp

T1 = T2 ⊢ T1 = T1
=-i

T1 = T2 ⊢ T2 = T1
=-e

▷ How does the =-e work in this proof?

○ the consequent conclusion T2 = T1 is (χ = T1)[T2/χ]○ the right hand antecedent conclusion is (χ = T1)[T1/χ]
(for any suitable variable χ)
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▷ Transitivity of equality

T1 = T2,T2 = T3 ⊢ T2 = T3
premiss

T1 = T2,T2 = T3 ⊢ T1 = T2
premiss

T1 = T2,T2 = T3 ⊢ T1 = T3
=-e

▷ How does the =-e work in this proof?

○ the consequent conclusion T1 = T3 is (T1 = χ)[T3/χ]○ the right hand antecedent conclusion is (T1 = χ)[T2/χ]
(for any suitable variable χ)
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