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Predicate Calculus Proofs

> Here we introduce an inference system for proofs about conjectures of the form:

¢17 7¢n = 1/]

(where ¢y, ..., b, 1 are formula over a signature)

> The system is sound: we can prove ¢, ..., ¢, + 1 only if ¢ is true in all situations in which
the formulae ¢; are true;i.e.

If
¢17 '“7¢7Z = 1/]

can be proven in the inference system, then

gblv "'792571 = ¢
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> Negation rules
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> “Proof by contradiction” is justified by the derived rule
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Proof Rules for the logical connectives

We adopt (sequent calculus formulations of) the natural deduction rules:
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Proof Rules for Quantifiers: V-elimination

> Writing ¢(z) for a formula in which the variable x may appear free we can capture
informally one natural way of reasoning from universally quantified formulza as follows:

“In a context in which we accept Vz - ¢(z) we must accept ¢(T') (for any term T)"
(here ¢(T') means the result of substituting T for all free occurences of z in ¢(z)).
> For example: in a context in which we accept
Vo -Vy-succy+x=succ(y+x)
we must accept

Yy - succ y + 0= succ(y +0)

(in this case the ¢(x) is Yy - succ y + x = succ(y + x), and the T is 0)
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> The formula ¢(x) can be a logical composite. For example, in a context in which we accept

O+z =2z A
V-
Yy - suce y+ 1z = succ(y + )

we must accept

( 0+ succ(succ(0)) = succ(succ(0)) A )

Yy - suce y + suce(succ(0)) = suce(y + suce(succ(0)))

> Here T is succ(succ(0)) and ¢(x) is ( O+tz=x A )

Yy - suce y + = suce(y + x)
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> This way of reasoning can be captured by the V elimination rule:

['+-Vz-o(z)
Tro(T) '®

(T must be free for z in ¢(z))

NB: This is a schematic (general) rule: the x stands for any variable, and the T for any term.

All the other quantifier rules below will also be schematic.
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> For this to work properly, T' must be free for z in ¢(z).

> For example: suppose we have Vz -3y -2 <y
then ¢(z) is Jy -z <y
and ¢(y) is Iy -y <y
So y is not free for x in ¢(z) because it is “captured” by Jy-

> In logic in general the free for z condition is taken care of by the detailed definition of
substitution

o either variable-capturing substitutions are forbidden

o or bound variables are systematically renamed to avoid capture, e.g.

@(y) would be Jy, -y <
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> One argument in favour of the soundness of the V-e rule starts from the observation that
for a (non-empty) finite domain of discourse whose values are ¢, ...9,

‘the formula Vz - ¢(z) means the same as ¢(d1) A ... A ¢>(5n)\

Now the term T must denote one of the values in the domain (say d;), and ¢(d;.) can be
inferred from ¢(d1) A ... A ¢(0,,) using an appropriate number of A-e steps.

> Of course this is not a logically acceptable justification of the soundness of the rule
in general.

> Nevertheless, treating the quantifiers as generalized conjunction and disjunction can help us
get to grips with what they mean in general.
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Proof Rules for Quantifiers: 3-introduction

> Again writing ¢(x) for a formula in which the variable z may appear free, it seems natural
to say that

“In a context in which we accept ¢(T') (for some term T') we must accept 3z - ()"

> This is captured by the 3-introduction rule

F'+¢(T)

3o g(x)

(T must be free for z in ¢(z))
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> An informal argument in support of 3-e starts from the observation that for a (nonempty)
finite domain whose values are 41, ..., d,,

‘the formula 3z - ¢(z) means the same as ¢(d1) v ... v ¢(5n)‘

The proof of x from ¢(d1) v ... v ¢(0,) using only v-e would require us to make the n
subproofs ¢(0;) + k (for i =1,2,..,n)

Choosing a new variable v allows us to provide a general form for these proofs.

> Of course this is no more a logically acceptable justification of the soundness of the rule in
general than was our earlier argument in support of Y -e.
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Proof Rules for Quantifiers: 3-elimination

“In a context in which we accept 3z - ¢(z), we can choose a name for an object that satisfies
o(z) providing that the name does not appear anywhere in the context or the conclusion.”

> It is captured formally by the 3-elimination rule

Lo(v) -k

0.3z 6(z) - r 3-e (where v is fresh)

> Exercise: write this rule in the natural deduction style
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> Here's an example of “name choosing” in an (informal) proof of the sequent
Vz-P(z) > Q(z),3z- P(z)+ 3z - Q(x)
1. Let v be such that P(v) (using the 3 premiss)
2. Now P(v) - Q(v) (specialising the V premiss)
3. So Q(v) (by the implication)
4. So 3z - Q(x)

> The completely formal proof is at least as convincing.
v Vz-P(z)—> Q(z) premiss

> Jz-P(x) premiss
fresh v

s | P(v) assumption

« | P(v)—> Q(v) V-el

5 Q(v) —>-e3,4

o | Jz-Q(z) 3i5

7 Jz-Q(z) 3-¢(2) 3-6

> The scope of the chosen name is the subproof 3 — 6.
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> Getting it wrong
o We want to prove 3z - P(z) A Q(z) + 3z - P(x)

> A correct proof will “start with” (i.e. be rooted at) 3-e

v Jz-P(z) A Q(z) premiss

fresh v
o We guess (wrongly) that the proof will look like (for some unknown term w): 2 | P(v) A Q(v) assumption (from 5)
s | P(v) A-er
« | Jxz-P(z) 3-i3
v 3Jz-P(xz) A Q(x) premiss s dz-P(z) J-e 1,24
o)
n Jz-P(x) J-in’
> this rooting of the proof corresponds to the form of words:
o At this point the only proof step that can possibly be taken is to use the premiss let » be such that P(v) A Q(v)
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Proof Rules for Quantifiers: V-introduction

> But the 3-e rule must choose a fresh variable v (which therefore cannot appear free in the
term w) and the proof is stuck > “To prove Yz - ¢(z) choose a fresh variable v, and prove ¢(v). The scope of the variable
v is limited to the proof of ¢(v)."
v Jz-P(z)A Q(x) premiss
fresh v
x| P(v)AQ(v) assumption (from n')

'+ o(v) . )
. P(w) vz -9(z) v-i (where v is fresh)
v Pw) J-e 1, 2-n"
w Jz- P(x) J-in’

This suggests that our guess was wrong. ) . . .
> g8 & & > Exercise: construct an informal argument in support of V-i.
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Proof Rules for Quantifiers: V-introduction

> As an example of how we might use these rules, we shall complete the proof:
Vz-P(z)— Q(z) premiss

yo Pla)
va- Q(x)

premiss

> The form of the conclusion is such that we can confidently guess that the rule to be used
there will be V-i. Although we could use z as our “fresh” variable (why?) we choose w and

apply the rule, giving

1

2:

n

Vz-P(x)—> Q(z) premiss

Vz-P(z)
fresh w
Q(w)

V- Q(z)

premiss

V-i 3-n’

Introduction to Formal Proof 4: Predicate Logic Proofs

17 -
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Proof Rules for Quantifiers: V-introduction

> The gap is now filled by an application of — ¢

1 Vz-P(z)—> Q(x) premiss
> VYz-P(x) premiss
fresh w

s | P(w) V-e 2

« | Plw)—> Q(w)l V-el

.| Q(w) e

o Yz Q(z) V-i 3-5
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Proof Rules for Quantifiers: V-introduction

> We can now use V-e on either of the premisses, and then again on the other.

In both cases, the term used for the specialisation is w

n

Vo P(z) > Q(x)
Vz-P(x)

fresh w
P(w)
P(w) > Q(w)

Q(w)

Vo Q(a)

premiss
premiss

V-e 2
V-el

V-i 3-n’

18—
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> Exercise: does this version of the proof satisfy the freshness stipulation of V-i?

v Vz-P(z)—> Q(x) premiss
> VYz-P(x) premiss
fresh 27

s | P(z) V-e 2

4 P(:c) - Q(l) V-el

s | Q(x) —>-e

¢ Vo Q(z) ¥-i 35
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Freshness is important

> Example: Let < be a binary predicate. We will seek a formal proof of
v dz-Vy-x <y premiss
w Yy-dzoz <y

(Exercise: find an informal proof)

> Suppose we start the search by removing the quantifiers from the conclusion, using an
(unknown) term 1 (to be decided upon later) in 3-i

v dz-Vy-x <y premiss

fresh v
v | p<w
" dz-z<vw 3-i n” (p should be a term free for z in z < v)

v Vy-dz-xz <y V-in/
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> One way of correcting this is to delay the use of 3-i in the search for the proof, and to work
forward from the premiss — choosing the name w for “an z for which Vy -z < 3".

This leaves us with a subproof obligation that is easy to meet.

v dr-Vy-z<y premiss
fresh v
fresh w
2 Vy-w<y assumption
" drx-z<w
v | Jzez<w F-¢(1) 2-n"

v Vy-dz-x <y V-in'
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> It appears that we can use 3-e at * (with w as the variable) and specialize the assumption
on line 2 to w < v using V-e (with term v)

v dr-Vy-x<y premiss
fresh v
fresh w
z Vy-w<y assumption
5 W< V-e 2
<V
| < J-e(1) 2-n"" *
v | Jzez<w 3-in" (p should be a term free for z in z < v)

m Vy-Jz-z<y V-in'

and, lastly, decide “retrospectively” that the i we had in mind all along was w.
> But the freshness proviso for w means it could not have been free in ;.
The problem is that we used 3-i too early in our search!

No variable chosen at * could ever be fresh enough to complete this partial proof!
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> There are two ways to meet the proof obligation. Here is one

v Jz-Vy-z<y premiss
fresh v
fresh w

2 Yy -w <y assumption
3 w<v V-e(2) 3-4
2 dz-z<v 3-i3

s | dzez<w J-e(1) 2-4
s Vy-dz-x<y V-i 2-5

Exercises:

1. What is the other way to meet the proof obligation?
2. s there a proof that ends with 3-e?
3. Is there a proof that ends with 3-i?
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Summary of the Quantifier Rules

> Here we present the rules again, this time using explicit substitution notation.

'+ ¢lv/z]

. '~V ¢
mv—l (’U fresh)

Tr o[ T/z] v-e (T free for z in ¢)

L[ T]x]

Tr3z -6 3i (T free for z in @) M

T 3z-6r K 3-e (v fresh)
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Derived consequences of substitutivity

> Symmetry of equality

v Ty =T, premiss
2 Tl = T1 _—i
3 TQ = T1 =-e 1, 2

yp

h =
T1=T2I—T1=T2 T1=T2I—T1=T17
T1=T2|—T2=T1 -

> How does the =-e work in this proof?
o the consequent conclusion Ty = Ty is (x = T1)[ T2/x]
o the right hand antecedent conclusion is (x = T1)[ T1/x]
(for any suitable variable x)
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Proof Rules for Equality

> Introduction: “every term is equal to itself” (sometimes called “reflexivity of equality”)

T-T=T

> Elimination: (sometimes called “substitutivity of equality”)
PeTi=T1y '+ o[T1/x]
[ o[ To/x]

(where x is a variable chosen so that T3, T, are free for x in ¢)
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Derived consequences of substitutivity

> Transitivity of equality

premiss

premiss

T1=T2,T2=T3|—T2=T3 T1=T2,T2=T3I—T1=T27
T1=T2,TQ=T3I—T1=T3 -

-€

> How does the =-e work in this proof?

o the consequent conclusion T} = Ty is (T1 = x)[ T5/x]
o the right hand antecedent conclusion is (77 = x)[ T5/x]
(for any suitable variable x)
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