Introduction to Formal Proof

Bernard Sufrin

Trinity Term 2018

4: Predicate Logic Proofs

T 1

Predicate Calculus Proofs

▷ Here we introduce an inference system for proofs about conjectures of the form:

 $\phi_1,...,\phi_n \vdash \psi$

(where $\phi_1, ..., \phi_n, \psi$ are formulæ over a signature)

▷ The system is *sound*: we can prove $\phi_1, ..., \phi_n \vdash \psi$ only if ψ is true in *all* situations in which the formulae ϕ_i are true; *i.e.*

lf

 $\phi_1, ..., \phi_n \vdash \psi$

can be proven in the inference system, then

 $\phi_1,...,\phi_n\vDash\psi$

Proof Rules for the logical connectives

We adopt (sequent calculus formulations of) the natural deduction rules:

$$\frac{\Gamma, \phi \vdash \psi}{\Gamma \vdash \phi \rightarrow \psi} \rightarrow -\mathbf{i} \qquad \qquad \frac{\Gamma \vdash \phi \qquad \Gamma \vdash \phi \rightarrow \psi}{\Gamma \vdash \psi} \rightarrow -\mathbf{e}$$

$$\frac{\Gamma \vdash \phi \qquad \Gamma \vdash \psi}{\Gamma \vdash \phi \land \psi} \wedge -\mathbf{i} \qquad \qquad \frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \psi} \wedge -\mathbf{e}_{R}$$

$$\frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \psi} \wedge -\mathbf{e}_{R}$$

$$\frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \psi} \wedge -\mathbf{e}_{R}$$

$$\frac{\Gamma \vdash \phi \lor \psi}{\Gamma \vdash \psi} \wedge -\mathbf{e}_{R} \qquad \qquad \frac{\Gamma \vdash \phi \lor \psi \qquad \Gamma, \phi \vdash \kappa \qquad \Gamma, \psi \vdash \kappa}{\Gamma \vdash \kappa} \lor -\mathbf{e}_{R}$$

 \triangleright Negation rules

T

 \triangleright "Proof by contradiction" is justified by the derived rule

$$\frac{\Gamma,\neg\phi\vdash\bot}{\Gamma\vdash\phi} \text{ Contradiction }$$

Proof Rules for Quantifiers: \forall -elimination

 \triangleright Writing $\phi(x)$ for a *formula* in which the variable x may appear free we can capture informally one natural way of reasoning from universally quantified formulæ as follows:

"In a context in which we accept $\forall x \cdot \phi(x)$ we must accept $\phi(T)$ (for any term T)"

(here $\phi(T)$ means the result of substituting T for all free occurrences of x in $\phi(x)$).

 \triangleright For example: in a context in which we accept

$$\forall x \cdot \forall y \cdot succ \ y + x = succ(y + x)$$

we must accept

$$\forall y \cdot succ \ y + 0 = succ(y + 0)$$

(in this case the $\phi(x)$ is $\forall y \cdot succ \ y + x = succ(y + x)$, and the T is 0)

 \triangleright The formula $\phi(x)$ can be a logical composite. For example, in a context in which we accept

$$\forall x \cdot \left(\begin{array}{c} 0 + x = x & & \land \\ \forall y \cdot succ \ y + x = succ(y + x) \end{array}\right)$$

we must accept

$$\begin{pmatrix} 0 + succ(succ(0)) = succ(succ(0)) \\ \forall y \cdot succ \ y + succ(succ(0)) = succ(y + succ(succ(0))) \end{pmatrix}$$

$$\triangleright \text{ Here } T \text{ is } succ(succ(0)) \text{ and } \phi(x) \text{ is } \begin{pmatrix} 0+x=x & & \\ \forall y \cdot succ \ y+x = succ(y+x) \end{pmatrix}$$

 \triangleright For this to work properly, T must be *free for* x in $\phi(x)$.

▷ For example: suppose we have ∀x ⋅ ∃y ⋅ x < y
then φ(x) is ∃y ⋅ x < y
and φ(y) is ∃y ⋅ y < y
So y is not free for x in φ(x) because it is "captured" by ∃y.

 \triangleright In logic in general the *free for* x condition is taken care of by the detailed definition of substitution

• either variable-capturing substitutions are forbidden

• or bound variables are systematically renamed to avoid capture, *e.g.*

 $\phi(y)$ would be $\exists y_1 \cdot y < y_1$

 \triangleright This way of reasoning can be captured by the \forall elimination rule:

$$\frac{\Gamma \vdash \forall x \cdot \phi(x)}{\Gamma \vdash \phi(T)} \forall -\mathbf{e}$$

(T must be free for x in $\phi(x)$)

NB: This is a schematic (general) rule: the x stands for any variable, and the T for any term. All the other quantifier rules below will also be schematic. \triangleright One argument in favour of the soundness of the \forall -e rule starts from the observation that for a (non-empty) finite domain of discourse whose values are $\delta_1, ... \delta_n$

the formula $\forall x \cdot \phi(x)$ means the same as $\phi(\delta_1) \wedge ... \wedge \phi(\delta_n)$

Now the term T must denote one of the values in the domain (say δ_k), and $\phi(\delta_k)$ can be inferred from $\phi(\delta_1) \wedge ... \wedge \phi(\delta_n)$ using an appropriate number of \wedge -e steps.

- ▷ Of course this is **not a logically acceptable justification** of the soundness of the rule in general.
- ▷ Nevertheless, treating the quantifiers as generalized conjunction and disjunction can help us get to grips with what they mean in general.

Proof Rules for Quantifiers: ∃-introduction

 \triangleright Again writing $\phi(x)$ for a *formula* in which the variable x may appear free, it seems natural to say that

"In a context in which we accept $\phi(T)$ (for some term T) we must accept $\exists x \cdot \phi(x)$ "

 \triangleright This is captured by the <code>∃-introduction</code> rule

$$\frac{\Gamma \vdash \phi(T)}{\Gamma \vdash \exists x \cdot \phi(x)} \exists -i$$

(T must be free for x in $\phi(x)$)

Proof Rules for Quantifiers: 3-elimination

"In a context in which we accept $\exists x \cdot \phi(x)$, we can choose a name for an object that satisfies $\phi(x)$ providing that the name does not appear anywhere in the context or the conclusion."

 \triangleright It is captured formally by the \exists -elimination rule

$$\frac{\Gamma, \phi(v) \vdash \kappa}{\Gamma, \exists x \cdot \phi(x) \vdash \kappa} \exists -e \text{ (where } v \text{ is fresh)}$$

 \triangleright Exercise: write this rule in the natural deduction style

▷ An informal argument in support of \exists -e starts from the observation that for a (nonempty) finite domain whose values are $\delta_1, ..., \delta_n$,

the formula $\exists x \cdot \phi(x)$ means the same as $\phi(\delta_1) \lor ... \lor \phi(\delta_n)$

The proof of κ from $\phi(\delta_1) \vee ... \vee \phi(\delta_n)$ using only \vee -e would require us to make the n subproofs $\phi(\delta_i) \vdash \kappa$ (for i = 1, 2, ..., n)

Choosing a new variable v allows us to provide a general form for these proofs.

▷ Of course this is no more a logically acceptable justification of the soundness of the rule in general than was our earlier argument in support of ∀-e.

▷ Here's an example of "name choosing" in an (informal) proof of the sequent

$$\forall x \cdot P(x) \to Q(x), \exists x \cdot P(x) \vdash \exists x \cdot Q(x)$$

- 1. Let v be such that P(v) (using the \exists premiss)
- 2. Now $P(v) \rightarrow Q(v)$ (specialising the \forall premiss)
- 3. So Q(v) (by the implication)

4. So $\exists x \cdot Q(x)$

T

 \triangleright The completely formal proof is at least as convincing.

1:
$$\forall x \cdot P(x) \rightarrow Q(x)$$
 premiss
2: $\exists x \cdot P(x)$ premiss
3: $fresh v$
4: $P(v)$ assumption
4: $P(v) \rightarrow Q(v)$ $\forall -e \ 1$
5: $Q(v)$ $\rightarrow -e \ 3, 4$
6: $\exists x \cdot Q(x)$ $\exists -i \ 5$
7: $\exists x \cdot Q(x)$ $\exists -e(2) \ 3-6$

 \triangleright The scope of the chosen name is the subproof 3-6.

 \triangleright Getting it wrong

• We want to prove
$$\exists x \cdot P(x) \land Q(x) \vdash \exists x \cdot P(x)$$

• We guess (wrongly) that the proof will look like (for some unknown term ω):

1:
$$\exists x \cdot P(x) \land Q(x)$$
 premiss
n': $P(\omega)$
n: $\exists x \cdot P(x)$ $\exists -i n'$

 \circ At this point the only proof step that can possibly be taken is to use the premiss

▷ But the \exists -e rule must choose a *fresh* variable ν (which therefore cannot appear free in the term ω) and the proof is stuck

1:
$$\exists x \cdot P(x) \land Q(x)$$
premiss2:fresh ν assumption (from n') $n':$ $P(\omega)$ $P(\omega)$ n': $P(\omega)$ \exists -e 1, 2-n"n: $\exists x \cdot P(x)$ \exists -i n'

 \triangleright This suggests that our guess was wrong.

 \triangleright A correct proof will "start with" (*i.e.* be rooted at) \exists -e

 \triangleright this rooting of the proof corresponds to the form of words:

"let ν be such that $P(\nu) \wedge Q(\nu)$ "

Proof Rules for Quantifiers: \forall -introduction

 \triangleright "To prove $\forall x \cdot \phi(x)$ choose a fresh variable v, and prove $\phi(v)$. The scope of the variable v is limited to the proof of $\phi(v)$."

$$\frac{\Gamma \vdash \phi(v)}{\Gamma \vdash \forall x \cdot \phi(x)} \forall -i \text{ (where } v \text{ is fresh)}$$

 \triangleright Exercise: construct an informal argument in support of \forall -i.

 \triangleright As an example of how we might use these rules, we shall complete the proof:

1:
$$\forall x \cdot P(x) \rightarrow Q(x)$$
 premiss
2: $\forall x \cdot P(x)$ premiss
...
n: $\forall x \cdot Q(x)$

▷ The form of the conclusion is such that we can confidently guess that the rule to be used there will be \forall -i. Although we could use x as our "fresh" variable (why?) we choose w and apply the rule, giving

1:
$$\forall x \cdot P(x) \rightarrow Q(x)$$
 premiss
2: $\forall x \cdot P(x)$ premiss
3: $fresh w$
...
n': $Q(w)$
n: $\forall x \cdot Q(x)$ \forall -i 3-n'

 \triangleright We can now use \forall -e on either of the premisses, and then again on the other. In both cases, the term used for the specialisation is w

1:	$\forall x \cdot P(x) \to Q(x)$	premiss
2:	$\forall x \cdot P(x)$	premiss
	fresh w	
3:	P(w)	∀-е 2
4:	$P(w) \to Q(w)$	∀-e 1
n':	Q(w)	
n:	$\overline{\forall x \cdot Q(x)}$	∀-i 3-n'

 \triangleright The gap is now filled by an application of $\rightarrow e$

1:
$$\forall x \cdot P(x) \rightarrow Q(x)$$
 premiss
2: $\forall x \cdot P(x)$ premiss
3: $fresh w$
4: $P(w) \rightarrow Q(w)$ $\forall -e \ 2$
4: $P(w) \rightarrow Q(w)$ $\forall -e \ 1$
5: $Q(w)$ $\Rightarrow -e$
6: $\forall x \cdot Q(x)$ $\forall -i \ 3-5$

 \triangleright Exercise: does this version of the proof satisfy the freshness stipulation of \forall -i?

1:
$$\forall x \cdot P(x) \rightarrow Q(x)$$
 premiss
2: $\forall x \cdot P(x)$ premiss
3: $fresh x?$
4: $P(x) \rightarrow Q(x)$ $\forall -e 2$
4: $P(x) \rightarrow Q(x)$ $\forall -e 1$
5: $Q(x)$ $\rightarrow -e$
6: $\forall x \cdot Q(x)$ $\forall -i 3-5$

Freshness is important

 \triangleright Example: Let \triangleleft be a binary predicate. We will seek a formal proof of

1: $\exists x \cdot \forall y \cdot x \lessdot y$ premiss ... n: $\forall y \cdot \exists x \cdot x \lessdot y$

(Exercise: find an informal proof)

▷ Suppose we start the search by removing the quantifiers from the conclusion, using an (unknown) term μ (to be decided upon later) in \exists -i

1:
$$\exists x \cdot \forall y \cdot x \leq y$$
 premiss
fresh v
...
 $\mu \leq v$
n': $\exists x \cdot x \leq v$ $\exists -i \ n'' \ (\mu \text{ should be a term free for } x \text{ in } x \leq v)$
n: $\forall y \cdot \exists x \cdot x \leq y$ $\forall -i \ n'$

▷ It *appears* that we can use \exists -e at * (with w as the variable) and specialize the assumption on line 2 to $w \lt v$ using \forall -e (with term v)

1:
$$\exists x \cdot \forall y \cdot x < y$$
premissfresh v fresh w assumption2: $\exists y \cdot w < y$ assumption3: $w < v$ $\forall -e 2$ $n^{":}$ $\mu < v$ $\exists -e(1) 2 - n"' + \exists x \cdot x < v$ n: $\exists x \cdot x < v$ $\exists -i n" (\mu should be a term free for $x \text{ in } x < v)$ n: $\forall y \cdot \exists x \cdot x < y$$

and, lastly, decide "retrospectively" that the μ we had in mind all along was w.

\triangleright But the freshness proviso for w means it could not have been free in μ

The problem is that we used \exists -i *too early* in our search!

No variable chosen at * could ever be fresh enough to complete this partial proof!

▷ One way of correcting this is to delay the use of ∃-i in the search for the proof, and to work forward from the premiss – choosing the name w for "an x for which ∀y · x < y".
 This leaves us with a subproof obligation that is easy to meet.

 \triangleright There are two ways to meet the proof obligation. Here is one

Exercises:

- 1. What is the other way to meet the proof obligation?
- 2. Is there a proof that ends with \exists -e?
- 3. Is there a proof that ends with \exists -i?

Summary of the Quantifier Rules

 \triangleright Here we present the rules again, this time using explicit substitution notation.

$$\frac{\Gamma \vdash \phi[v/x]}{\Gamma \vdash \forall x \cdot \phi} \forall \text{-i (} v \text{ fresh)} \qquad \qquad \frac{\Gamma \vdash \forall x \cdot \phi}{\Gamma \vdash \phi[T/x]} \forall \text{-e (} T \text{ free for } x \text{ in } \phi)$$

$$\frac{\Gamma \vdash \phi[T/x]}{\Gamma \vdash \exists x \cdot \phi} \exists -i \ (T \text{ free for } x \text{ in } \phi) \qquad \frac{\Gamma, \phi[v/x] \vdash \kappa}{\Gamma, \exists x \cdot \phi \vdash \kappa} \exists -e \ (v \text{ fresh})$$

Proof Rules for Equality

▷ Introduction: "every term is equal to itself" (sometimes called "reflexivity of equality") $\frac{1}{\Gamma \vdash T = T} = -i$

▷ Elimination: (sometimes called "substitutivity of equality")

$$\frac{\Gamma \vdash T_1 = T_2 \qquad \Gamma \vdash \phi[T_1/\chi]}{\Gamma \vdash \phi[T_2/\chi]} = -\mathbf{e}$$

(where χ is a variable chosen so that T_1, T_2 are free for χ in ϕ)

Derived consequences of substitutivity

▷ Symmetry of equality

1:
$$T_1 = T_2$$
 premiss
2: $T_1 = T_1$ =-i
3: $T_2 = T_1$ =-e 1, 2

$$\begin{array}{c|c} \hline T_1 = T_2 \vdash T_1 = T_2 & \text{hyp} & \hline T_1 = T_2 \vdash T_1 = T_1 \\ \hline T_1 = T_2 \vdash T_2 = T_1 & =-\mathbf{e} \\ \end{array} \end{array} = \mathbf{e}$$

 \triangleright How does the =-e work in this proof?

• the consequent conclusion $T_2 = T_1$ is $(\chi = T_1)[T_2/\chi]$ • the right hand antecedent conclusion is $(\chi = T_1)[T_1/\chi]$ (for any suitable variable χ)

▷ Transitivity of equality

$$\overline{\begin{array}{c} T_1 = T_2, \, T_2 = T_3 \vdash T_2 = T_3 \\ T_1 = T_2, \, T_2 = T_3 \vdash T_2 = T_3 \\ T_1 = T_2, \, T_2 = T_3 \vdash T_1 = T_3 \end{array} }_{\text{premiss}} \begin{array}{c} \text{premiss} \\ \hline T_1 = T_2, \, T_2 = T_3 \vdash T_1 = T_3 \\ = -\mathsf{e} \end{array}$$

 \triangleright How does the =-e work in this proof?

• the consequent conclusion $T_1 = T_3$ is $(T_1 = \chi)[T_3/\chi]$

• the right hand antecedent conclusion is $(T_1 = \chi)[T_2/\chi]$

(for any suitable variable χ)

Contents

Proof Rules for Predicate Calculus	1
Predicate Calculus Proofs	1
Proof Rules for the logical connectives	2
Proof Rules for Quantifiers: ∀-elimination	. 4
Proof Rules for Quantifiers: ∃-introduction	. 9
Proof Rules for Quantifiers: \exists -elimination	10

Proof Rules for Quantifiers: ∀-introduction	. 16
Freshness is important	21
Summary of the Quantifier Rules	25
Proof Rules for Equality	. 26
Derived consequences of substitutivity	27

1 😭

3 🖙

A situation is a particular model, together with a mapping from variables to the values of its domain. Establishing the truth of a formula "in all situations" cannot be done directly and mechanically by program, for such a program would have to enumerate all possible models for the signature, including non-finite models.

Note 2: Proof by contradiction

Note 1: Situations

The law

is justified by the derivation

Note 3:

It is a simple matter to show both that we can derive the "left-side" rule:

 $\frac{\Gamma, \forall x \cdot \phi(x), \phi(T) \vdash \psi}{\Gamma, \forall x \cdot \phi(x) \vdash \psi} \forall \vdash$

from \forall -e; and that \forall -e would be derivable from $\forall \vdash$ if the latter were a rule. We leave these derivations as exercises for the interested reader. Unsurprisingly (in the light of the material relating left-side to elimination rules in chapter 2) the key to both derivations is the cut rule.

Note 4:

Suppose $\phi(x)$ is a formula, and δ an element of a domain. To save "formal clutter" we shall here and henceforth write $\phi(\delta)$ instead of the proper $\phi(\langle\!\langle \delta \rangle\!\rangle)$ when to do so will not cause any confusion.

$\Gamma, \neg \phi \vdash \bot$	
$\Gamma \vdash \neg \neg \phi$	¬ - i
$\Gamma \vdash \phi$	$\neg \neg - e$

8 😭

7 😭

Note 5: Fresh variables

A variable is fresh in a proof context if it doesn't appear free in any hypothesis or in the conclusion.

Note 6:

A sequent-tree presentation of the proof of

$$\forall x \cdot P(x) \to Q(x), \exists x \cdot P(x) \vdash \exists x \cdot Q(x)$$

goes as follows

$$\frac{\overline{Q(v) \vdash Q(v)}}{P(v) \vdash P(v)} \operatorname{hyp} \frac{\overline{Q(v) \vdash Q(v)}}{Q(v) \vdash \exists x \cdot Q(x)} \exists -i$$

$$\frac{\overline{P(v) \rightarrow Q(v), P(v) \vdash \exists x \cdot Q(x)}}{\forall x \cdot P(x) \rightarrow Q(x), P(v) \vdash \exists x \cdot Q(x)} \forall \vdash$$

$$\frac{\forall x \cdot P(x) \rightarrow Q(x), \exists x \cdot P(x) \vdash \exists x \cdot Q(x)}{\forall x \cdot P(x) \rightarrow Q(x), \exists x \cdot P(x) \vdash \exists x \cdot Q(x)} \exists -e$$

For conciseness here, we have silently used the weaken rule in several places, as well as the derived rules $\forall \vdash$ and $\rightarrow \vdash$ (from section 2). Exercise: complete the proof tree by inserting appropriate instances of the weaken rule. 12 🕼