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> Consequences can be proven using only equational reasoning, for example: T® 1= T

Theories
> In the “transitive equalities” presentation style the essence of the proof is:
> The subject matter of predicate logic is “all models (over all signatures)” L T®.
o Mathematical logicians consider the soundness and completeness of particular deductive » =Te(~TeT) {Fold~
systems for the logic, and also consider its decidability. 3 =(Te~T)® T { Unfold ®-ass
) ) ] o « =1 T { Unfold Thm Te ~ T =1
> The subject matter of much of (formal) mathematics and computer science is (in one e =T { i-id
sense) more constrained
o We want to make proofs about models that satisfy certain laws (a.k.a. axioms) > This concise presentation hides the details of the application of the transitivity rules:!
o We want to use sound deductive systems to make these proofs 1T ( =Te~TeT Fold ~
* So we start with a sound deductive system (for FOL) ... 2: To~ToT=(Te~T)®T Unfold -ass
+ add a signature (C, F,P) and laws for the models we are interested in ... 3:(Te~T)®T=( ¢ )®T  Unfold Theorem Te~T= 1t
+ and see what happens next! (i.e. what we can prove) 4:(1)eT=T ¢ -id
o The domain of discourse is left implicit ... 5:(To~T)oT=T Derived Rule =frans 3,4
... though we sometimes have a particular domain of discourse in mind! 6: To~ToT=T Derived Rule =srans 2,5
7:Te® 1 =T Derived Rule =trans 1,6

o If we add a law that leads to contradiction then no model will satisfy our theory!

Jape treats ® as right-associative and doesn’t fully bracket Ty ® (7> ® T3) in displays.
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Example: elementary group theory D> It also relies on a stylized concise form of reporting of “folds” and “unfolds”
Unfold Theorem Te~T= ¢ -id
(Te~MeT=(t )T ()eT=T
Constants: ¢
> Unfold ®-ass Derived Rule =trans
> Functions: -®- ~- Te~TeT=(Te~T)eT (Te~TeT=T
Fold ~ Derived Rule =trans
> Axiom Schemes (Laws): Te ( =Te~TeT Te~TeT=T
®-ass Derived Rule =trans
T1®(T2®T3):(T1®T2)®Tg Te (=T
—— -id Theorem Te~T=1
teT=T Te~T=
rewritelLR ¢ -id
~TT=1 (Te~T)eT=(¢)eT (()eT=T
~ ®-ass Derived Rule =frans
~TeT=1 Te~TeT=(Te~T)eT (Te~T)eT=T
> Example models: the integers with ¢ = 0, ® = +; the nonzero rationals or reals with rewriteRL Derived Rule =trans
t=1,® = x; and (for any set .S) the bijective functions in S — S with T =To~TeT Te~ToT=T
L= Idg, ® = -(composition). Derived Rule =trans
To (=T
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Introduction to Formal Proof 5: Theories Example: theory of Natural Numbers

> Inverses are unique

L TieT=1 assumption
2:|Ti
3| =Ti®et Fold Theorem Te ¢ =T
4. = TieTe~T |Fold Theorem To~T=1
5| = (TieT)®e~T|Unfold ®-ass
6:| =(t)®~T |Unfold hyp
70 =~T Unfold ¢ -id
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Example: theory of Natural Numbers

> Constants: 0
> Functions: succ -, - +-,-x -, ...

> Laws:2

P3 (0 is the beginning) P4 (injectivity)

I'Fsuce(T) #0 [+ succ(Ty) =succ(Ty) > Th = Ty

'+ ¢(0) I, é(m) + ¢(succ(m))

['=o(T)

P5 natinduction (m fresh)

> Nat induction is a schema parameterized by ¢(-) — a formula in which - may appear.
> The “intended model” is the natural numbers.

> The even numbers also constitute a model; indeed there are infinitely many models! (why?)

2

These were first listed by Dedekind — but are usually attributed to Peano,
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> Completely formal proofs using associativity can be ... tedious, for example:

1: Te~T

20 = 1 ®Te~T Fold ¢ -id

3 = (~(Te~MeTe~T)eTe~T  Fold ~

4 = ~(To~Te((Te~T)eTe~T) Fold ®-ass
5. = ~(Te~T)e(Te(~TeTe~T)) Fold ©-ass
61 = ~(Teo~Te((Te~T)eTe~T) Unfold ®-ass
70 = ~(To~Te(Te~T)eT)e~T) Unfold ©-ass
8: = ~(Te~TMe(Te(~TeT))e~T) Fold ®-ass
9. = ~(Te~T)e(Te(t ))o~T) Unfold ~

10: = ~(Te~Te(Te(t @~T)) Fold ®-ass
1I: = ~Te~T)e(Te(~T)) Unfold ¢ -id
122 =y Unfold ~

Here lines 3-8 could be summarised as: "by associativity of ®", and interactive proof
assistants should provide some sort of interface that gets on with the details of “flattening,
then rebracketing” under the direction of the user.
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> Axiom schemas with parameters T, T (terms)

+.1

10
0+Ty="T, succ(Ty) + To = succ( Ty + Tb)

x.1

— X
0x To=0 succ(Th) x To = To+ (T1 x T»)

> These schemas characterize addition and multiplication (almost) uniquely
(but this needs to be proved)

> Consequences: commutativity and associativity of +, x distributivity of x through +, etc.,
etc.
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Example: theory of Natural Numbers

An inductive proof using substitution (equals-elimination) to rewrite equal subterms within successive formulae

1.
2
3
4
5.
6
7
8
9

0+(T2+T3)=T2+T3

L 0+T2:T2
T2+T32(T2)+T3
S T2+T3=(0+T2)T3

0+(T2+T3)=(0+T2)+T3

L me(T2+T3)=(m+T2)+T3

L suce(m)+(T2+T3)=succ(m+T2+T3)
i suce(m)+ T2=suce(m+T2)

| (suce{m+T2))+ T3=suce((m+T2)+T3)
| m+T2+4T3=2(m+ T2)+ T3

| suce((m+T2)+T3)=succ((m+T2)+T3)
i suce(m+ T2+ T3)=succ((+T2)+T3)
i succ(m+ T2+ T3)=(succ(m+T2))+T3

L suce(m+ T2+ T3)=(succ(m)+T2)+ T3

L suce(m)+(T2+T3)=(succ(m)+T2)+T3

S T1+(T2+T3)=(T1+T2)+ T3

+'0

+'0

=

Derived Rule =-e < 2,3
Derived Rule =-e < 1,4
assumption

+'1

+'1

+'1

hyp 6

=

Derived Rule =-e < 10,11
Derived Rule =-e < 9,12
Derived Rule =-e < 8,13
Derived Rule =-e < 7,14

natinduction 5,6-15

The proof consists of successive formulae that are equivalent up to substitution of equal terms

Comparison between the transformational proof and (a compact form) of the substitutive proof

Introduction to Formal Proof 5: Theories
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Example: theory of Natural Numbers

1: 0+(T2+T3) 1. T2+T3=(T2)+T3 =i

2: =T2+T3 Unfold +'0 2: T2+T3=(0+T2)+T3 +01

31 = (0+T2)T3 Fold +'0 3: 0+(T2+T3)=(0+T2)+T3 +'02

4: | m+(T2+T3)=(m+T2)}+T3| assumption 4: | m+(T2+T3)=(m+T2)+T3 assumption

5: |succ{m)+(T2+T3) 5: |succ{{m+ T2+ T3)=succ((m+T2)+T3)| =-i

6:] = succ(m+T2+T3) Unfold +'1 6:|succ{m+T2+T3)=succ((m+T2)+T3) | hyp5

7:| = succ{(m+T2)+T3) Unfold hyp 7| succ(m+ T2+ T3)=(succ(m+T2)+T3 | +'16

8:| = (succ(m+T2))}+T3 Fold +'1 8:|succ{m+T2+T3)=(succ(m)+T2}+T3 | +'17

9:| = (suce(m)y+T2)+T3 Fold +'1 9: | suce{m)+(T2+T3)=(suce(m)+T2)+T3| +'18
10: T1+(T2+T3)=(T1+T2)+T3 natinduction 1-3,4-9 10: T1+(T2+T3)=(T1+T2)+ T3 natinduction 3,4-9

(in the compact form, the uses of "=-e <" are left implicit)
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The same proof: using folds and unfolds, and presented in the transformational style

—
o

1: 0+(T2+T3)

2. =T2+T3 Unfold +'0
31 = (0+T2)+T3 Fold +'0

4 m+(T2+T3)=(Mm+T2)+T3| assumption
5 succ{m)+(T2+T3)

6:| =succ(m+T2+T3) Unfold +'1

7:| = succ({m+T2)+T3) Unfold hyp
8:| = (succ(m+T2))+T3 Fold +'1

9:| = (succ(m)+T2)+T3 Fold +'1

s T1+(T2+T3)=(T1+T2)+ T3 natinduction 1-3,4-9

This is not exactly the same as the substitutivity proof, but all the “essential” steps in it are the same.

—-10 -
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Theories with several types

In which we indicate how to formalize a (rather weak) notion of types
thereby supporting proofs in theories in which several “types” are used

> For example suppose we want to build a theory of lists of numbers?

o We expect to be able to prove things about all numbers
o We expect to be able to prove things about all lists
o We expect to be able to characterize functions recursively on lists and on numbers

o The “untyped” induction and definition rules are no longer quite enough
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Example: typed theory of natural numbers

> The main idea: supplement signatures with “typing predicates”

o Constants: 0
o Functions: succ -, +-,-x -, ...

o Predicates: N(-) meaning “ is a natural number”

o Laws:

N(T)
—— NO ——— Nsucc
N(0) N(suce(T))
N(T) N(T1) N(7z)

P4

——p3
succ(T) #0 succ(Ty) =succ(T) » Ty = T»

I'-N(T) I, N(m), p(m) + ¢(succ(m))

I'=o(T)

'+ ¢(0)

(Here ¢(.) is — as usual — a “formula abstraction”)
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(nat induction)(fresh m)

Example: typed theory of heterogeneous lists

o Constants: nil
o Functions: -: -, - + -...
o Predicates: L(-)

o Laws: (the elements of a heterogeneous list need not have the same type)

L(TS)
Lnil e —
L(nil) L(T:TS)
L(Ts) L(TS) L(TS") B
T:TS #nil T TS=T:TS>T=TATS=T5
CrL(T) [+ ¢(nal) [, L(zs),p(zs) F ¢(z : xs)
e o) (list induction)(fresh z, zs)
o

(Here ¢(.) is — as usual — a “formula abstraction”)
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> Arithmetic expressions are also typed:

N(Ty) N(T3) N(T1) N(Ty)

> Arithmetic operator definitions get the expected typing antecedents, for example:
N(T1) N(Ty) N(Ty) N(T») .
T +.
0+To="T succ(Ty) + Ty = succ( Ty + Ty)

> Theorems now have type premisses, for example

—+-assoc

N(T),N(T2),N(T3) = T+ (To+ T3) = (T1 + To) + T3

> The typing antecedents of rules needed in the proof of a theorem are trivial to prove from
the typing premisses
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> Catenation and reverse defined in the usual way but with typing information added

L(T) L(TS)
———— Lrev ——— rev.0 rev.1
L(rev(T)) rev(nil) = nil rev(T: TS) =rev(T) + (T : nil)
L(TS) L(TS") L(TS) L(TS) L(TS")
—— + .0 + .1
L(TS + TS") il + TS =TS (T:TS)+ TS = T: (TS + TS")

> “Typed" theories can be mixed: antecedents stop us inferring nonsense, e.g. nil + 0 =0

> Theorems (as expected) have typing premisses, for example:

+ -assoc
L(T)),L(T),L(T5) - Ty + (To+ Ts) = (Ty + To) + Ty

> The formal proofs of these theorems are a lot like those we know and love from FP
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> Some additional, but trivial, work is needed to satisfy the typing antecedents: compare > Using the list induction recipe blindly we start the proof as follows:

1| L(TD) assumption 1LY assumption
2 L2 ss i 2:|L(T2) assumption
L assump {on 3:[nil++T2
3:|L(T3) assumption 4 -T2 Unfold +<+'0 hyp
4 | L{T2++T3) L++ 23 5: = nil++T2 Fold ++'0,hyp
B | nil++T2=T2 ++'02 6:| = revnil++T2 Fold rev'0
6! | nil++(T2++T3) 7:||Lixs) assumption
7: = T2++T3 +'04 1 |L(TD) assumption 8: || xs+«+T2=zrev xs++T2 assumption
8| = (nil+T2)++T3 rewriteRL 5 2:[L(T2) assumption 9i| xixsresT2
. . 10:|| = x5f<*(x:T21 Unfold +¢+'1
9: || L(xs) assumption 3 |LT3) assumption B
10: || xs++(T24+ T3)=(xs++ T2)s+ T3 assumption 4 | nile+(T24+T3) 11| = rev xsee(x:(T2))
1: || L(T2++T3) Les 23 Bi| = T2++T3 Unfold ++'0 12:]| = rev xs++(x:(nil++T2))|| Fold ++'0 hyp
12: || L(xs++T2) L++ 92 61| = (nilk+T2p+T3 Fold ++'0,hyp 13:{| = rev xse+(x:nil++T2) || Fold ++'1,Lnil hyp
13: || (x:(xs++ T2+ T32x:(xs++ T2+ T3)|| ++'1 12,3 7: || Lixs) assumption 14:|| = (rev xs++(x:nil))++T2||Unfold Theorem L{T1), L{T2), L(T3) I Tle+(T2++T3)=(T1++T2)++T3 Lrev hyp,L: Lnil hyp
. N 15:|| = rev(x:xs)++T2 Fold rev'lhyp
14: || x:xs++T2=x:{xs++T2) ++'19.2 8: || xs++{T2++T3)=(xs++T2)++ T3 || assumption
16:|L(T1 1
15: || xixs++(T2++T3) 9 || x:xs++(T2++T3) o\ L(TY h.yp‘ .
17:| T1++T2=rev T1++T2 listinduction 3-6,7-15,16
16: = Xi(xs++T2++T3) ++'1911 10: = Xi(Xs++T2++T3) Unfold ++'1
17: = Xi((xs++T2)}+T3) rewritelLR 10 11 = X:((xs++T2)++T3) Unfold 8 . . . . .
18:]| = (x:(xs++T2)+T3 rewriteRL 13 12:|] = ((xs++T2)w+T3 Fold ++'1L++ hyp,hyphyp > But the proof stalls (why?) at the crux — on attempting use the induction hypothesis (8) to bridge 10 and 11
19:)] = (xixseT2)eeT3 rewriteRL 14 13:]] = (xseeT2)eT3 Fold ++'Lhyphyp > At this point a lecturer or tutor usually uses the mantra: “there is nothing special about 75"
20: | Tle+(T24+ T3)=(T1+T2)r+ T3 listinduction 6-8,9-19,1 14: | T1e+(T2++T3)=(TL++T2)++ T3 | listinduction 4-6,7-13,1 . o )
> This appears to allow the proof to be completed, but the result is highly informal.
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This problem can (only) be overcome by proving a more general result.
Formal treatment of generalised induction hypotheses

1 Lixs) assumption
2 |L{ys) assumption
30 [nilcrys
4| =ys Unfold +<+'0
5| = nileeys Fold ++' 0.ayp
. . . . . . 6 | = revnieys Fold rev'0
> Notice that we have not used the logical quantifiers in the inductive proof of +-assoc. 7+ Lye)oribeeyomrey nieys 2
8 wysLiys) >nibeceyssrey niberys v 7
9 |Lixs1) assumption
10 |vysLiys) xslecsyszrey xslesys assumption
A . " i . 1 || Liys) assumption
> Consider the “catenate-reverse-to” function +<+ defined by 12 || Loe g sstrer ye)rev w9 | assumption
13 || Loeys) L
]L( T]) ]L( TQ) ]L( TQ) IL( T ) ]L( Tz) 14 || [xstocrxitys)erey xsleexiys) assumption
———————— L+« - +<.0 +<t.1 15: || xsleer(xiys)ray xelos(xi(ys)) > 1213,14-14
L(T) +< Ty) nil +<+ Ty =Ty (T:T)) +<+ To=Ty+< (T : T») o || exetoenys
17: || = xstecs(iye) Unfold +¢+'1
18; = rev xsle+{x:(ys)) ¥ 10,12-15
190 || = rev xste(x:(rileeys)) Fold ++'0 ayp
20: || = rev xstes(xcnilesys) Fold ++'1 Lnil hyp
21 || = (rev xstee(xini)eeys Unfold Theorem L(T1), L(T2), L(T3) 1 Tlee(T2++ T3)=(Ttr+T2)+ T3 Lrev hyp L: Lnil hyp
> We want to prove (by induction on Tl) that 22: || = revixxsipys Fold rev' Lhyp,rev' Lhyp.rev' Lhyprev' Lhyp
23; | L(ys)—xixslecryszrev{x:xsi)+ys 122
. 24 |wysLiys) xixslecoyszravicxsi)rys v 23
]L( Tl)’ ]L( TQ) FT+s Ty = 7“}( Tl) ++ Ty 25 rysLiys)oxsreryssrev xs++ys listinduction 8,9-24.1

26: Lixs)—(vysLys) xssctyszrev xserys) > 125

N
]

wxsL{xs)(vys Liys)oxsrcrysarev xsrys) | v 26
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Formal treatment of generalised induction hypotheses

> The technique we use is to arrange to prove a more general result by induction on zs,
namely:

L(zs) + Vys-L(ys) —» as +< ys = rev(as) + ys

which will give us the more general induction hypothesis we were seeking in the stalled
proof.

> This is done by setting up a proof of the more general theorem

FVas-L{zs) - Vys - L(ys) - zs +<+ ys = rev(zs) + ys

> The result we originally set out to prove, namely:
L(Ty),L(Ty) + Ty +<+ Ty = rev(Ty) + Ty

can now be established (by V-e followed by —-€) from this theorem.
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