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Introduction to Formal Proof 5: Theories Theories

Theories

▷ The subject matter of predicate logic is “all models (over all signatures)”

○ Mathematical logicians consider the soundness and completeness of particular deductive
systems for the logic, and also consider its decidability.

▷ The subject matter of much of (formal) mathematics and computer science is (in one
sense) more constrained

○ We want to make proofs about models that satisfy certain laws (a.k.a. axioms)○ We want to use sound deductive systems to make these proofs∗ So we start with a sound deductive system (for FOL) ...∗ add a signature (C,F ,P) and laws for the models we are interested in ...∗ and see what happens next! (i.e. what we can prove)

○ The domain of discourse is left implicit ...

... though we sometimes have a particular domain of discourse in mind!○ If we add a law that leads to contradiction then no model will satisfy our theory!
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Example: elementary group theory

▷ Constants: ι

▷ Functions: ⋅⊗⋅ ∼⋅
▷ Axiom Schemes (Laws):

T1 ⊗ (T2 ⊗T3) = (T1 ⊗T2) ⊗T3

⊗-ass

ι⊗T = T
ι-id

∼ T ⊗T = ι ∼

▷ Example models: the integers with ι = 0,⊗ = +; the nonzero rationals or reals with
ι = 1,⊗ = ×; and (for any set S ) the bijective functions in S → S with
ι = IdS ,⊗ = ⋅(composition).
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▷ Consequences can be proven using only equational reasoning, for example: T ⊗ ι = T

▷ In the “transitive equalities” presentation style the essence of the proof is:

1: T ⊗ ι
2: = T ⊗ (∼ T ⊗T ) { Fold ∼
3: = (T⊗ ∼ T ) ⊗T { Unfold ⊗-ass
4: = ι⊗T { Unfold Thm T⊗ ∼ T = ι
4: = T { ι-id

▷ This concise presentation hides the details of the application of the transitivity rules:1

1 Jape treats ⊗ as right-associative and doesn’t fully bracket T1 ⊗ (T2 ⊗T3) in displays.
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▷ It also relies on a stylized concise form of reporting of “folds” and “unfolds”
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▷ Inverses are unique
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▷ Completely formal proofs using associativity can be ... tedious, for example:

Here lines 3-8 could be summarised as: “by associativity of ⊗”, and interactive proof
assistants should provide some sort of interface that gets on with the details of “flattening,
then rebracketing” under the direction of the user.
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Example: theory of Natural Numbers

▷ Constants: 0

▷ Functions: succ ⋅, ⋅ + ⋅, ⋅ × ⋅, ...
▷ Laws:2

Γ ⊢ succ(T ) /= 0
P3 (0 is the beginning)

Γ ⊢ succ(T1) = succ(T2) → T1 = T2

P4 (injectivity)

Γ ⊢ φ(0) Γ, φ(m) ⊢ φ(succ(m))
Γ ⊢ φ(T ) P5 natinduction (m fresh)

▷ Nat induction is a schema parameterized by φ(⋅) – a formula in which ⋅ may appear.

▷ The “intended model” is the natural numbers.

▷ The even numbers also constitute a model; indeed there are infinitely many models! (why?)

2 These were first listed by Dedekind – but are usually attributed to Peano.
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▷ Axiom schemas with parameters T1,T2 (terms)

0 +T2 = T2

+.0
succ(T1) +T2 = succ(T1 +T2) +.1

0 ×T2 = 0
×.0

succ(T1) ×T2 = T2 + (T1 ×T2) ×.1

▷ These schemas characterize addition and multiplication (almost) uniquely

(but this needs to be proved)

▷ Consequences: commutativity and associativity of +,× distributivity of × through +, etc.,
etc.
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An inductive proof using substitution (equals-elimination) to rewrite equal subterms within successive formulae

The proof consists of successive formulae that are equivalent up to substitution of equal terms
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The same proof: using folds and unfolds, and presented in the transformational style

This is not exactly the same as the substitutivity proof, but all the “essential” steps in it are the same.
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Comparison between the transformational proof and (a compact form) of the substitutive proof

(in the compact form, the uses of ”=-e ←” are left implicit)
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Theories with several types

In which we indicate how to formalize a (rather weak) notion of types
thereby supporting proofs in theories in which several “types” are used

▷ For example suppose we want to build a theory of lists of numbers?

○ We expect to be able to prove things about all numbers○ We expect to be able to prove things about all lists○ We expect to be able to characterize functions recursively on lists and on numbers○ The “untyped” induction and definition rules are no longer quite enough
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Example: typed theory of natural numbers

▷ The main idea: supplement signatures with “typing predicates”

○ Constants: 0○ Functions: succ ⋅, ⋅ + ⋅, ⋅ × ⋅, ...○ Predicates: N(⋅) meaning “⋅ is a natural number”

○ Laws:

N(0) N0
N(T )

N(succ(T )) Nsucc

N(T )
succ(T ) /= 0

P3
N(T1) N(T2)

succ(T1) = succ(T2) → T1 = T2

P4

Γ ⊢ N(T ) Γ ⊢ φ(0) Γ,N(m), φ(m) ⊢ φ(succ(m))
Γ ⊢ φ(T ) (nat induction)(fresh m)

(Here φ(.) is – as usual – a “formula abstraction”)
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▷ Arithmetic expressions are also typed:

N(T1) N(T2)
N(T1 +T2) N+ N(T1) N(T2)

N(T1 ×T2) N×

▷ Arithmetic operator definitions get the expected typing antecedents, for example:

N(T1) N(T2)
0 +T2 = T2

+.0
N(T1) N(T2)

succ(T1) +T2 = succ(T1 +T2) +.1

▷ Theorems now have type premisses, for example

N(T1),N(T2),N(T3) ⊢ T1 + (T2 +T3) = (T1 +T2) +T3

+-assoc

▷ The typing antecedents of rules needed in the proof of a theorem are trivial to prove from
the typing premisses
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Example: typed theory of heterogeneous lists

○ Constants: nil○ Functions: ⋅ ∶ ⋅, ⋅ ++ ⋅...○ Predicates: L(⋅)
○ Laws: (the elements of a heterogeneous list need not have the same type)

L(nil) Lnil
L(TS)

L(T ∶ TS) L:

L(TS)
T ∶ TS /= nil

:-
L(TS) L(TS ′)

T ∶ TS = T ′ ∶ TS ′ → T = T ′ ∧TS = TS ′ :-inj

Γ ⊢ L(T ) Γ ⊢ φ(nil) Γ,L(xs), φ(xs) ⊢ φ(x ∶ xs)
Γ ⊢ φ(T ) (list induction)(fresh x , xs)

(Here φ(.) is – as usual – a “formula abstraction”)
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▷ Catenation and reverse defined in the usual way but with typing information added

L(T )
L(rev(T )) Lrev

rev(nil) = nil
rev.0

L(TS)
rev(T ∶ TS) = rev(T ) ++ (T ∶ nil) rev.1

L(TS) L(TS ′)
L(TS ++ TS ′) L++ L(TS)

nil ++ TS = TS
++ .0 L(TS) L(TS ′)

(T ∶ TS) ++ TS ′ = T ∶ (TS ++ TS ′) ++ .1

▷ “Typed” theories can be mixed: antecedents stop us inferring nonsense, e.g. nil ++ 0 = 0

▷ Theorems (as expected) have typing premisses, for example:

L(T1),L(T2),L(T3) ⊢ T1 ++ (T2 ++ T3) = (T1 ++ T2) +T3

++ -assoc

▷ The formal proofs of these theorems are a lot like those we know and love from FP
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▷ Some additional, but trivial, work is needed to satisfy the typing antecedents: compare
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Formal treatment of generalised induction hypotheses

▷ Notice that we have not used the logical quantifiers in the inductive proof of ++-assoc.

▷ Consider the “catenate-reverse-to” function +<+ defined by

L(T1) L(T2)
L(T1 +<+ T2) L+<+ L(T2)

nil +<+ T2 = T2

+<+.0
L(T1) L(T2)

(T ∶ T1) +<+ T2 = T1 +<+ (T ∶ T2) +<+.1

▷ We want to prove (by induction on T1) that

L(T1),L(T2) ⊢ T1 +<+ T2 = rev(T1) ++ T2
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▷ Using the list induction recipe blindly we start the proof as follows:

▷ But the proof stalls (why?) at the crux – on attempting use the induction hypothesis (8) to bridge 10 and 11

▷ At this point a lecturer or tutor usually uses the mantra: “there is nothing special about T2”

▷ This appears to allow the proof to be completed, but the result is highly informal.
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This problem can (only) be overcome by proving a more general result.
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▷ The technique we use is to arrange to prove a more general result by induction on xs ,
namely:

L(xs) ⊢ ∀ys ⋅L(ys) → xs +<+ ys = rev(xs) ++ ys

which will give us the more general induction hypothesis we were seeking in the stalled
proof.

▷ This is done by setting up a proof of the more general theorem

⊢ ∀xs ⋅L(xs) → ∀ys ⋅L(ys) → xs +<+ ys = rev(xs) ++ ys

▷ The result we originally set out to prove, namely:

L(T1),L(T2) ⊢ T1 +<+ T2 = rev(T1) ++ T2

can now be established (by ∀-e followed by →-e) from this theorem.
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