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Abstract

In this paper, we present Pellet: a complete and capable OWL-DL reasoner with acceptable
to very good performance, extensive middleware, and a number of unique features. Pellet
is written in Java and is open source under a very liberal license. It is used in a number of
projects, from pure research to industrial settings.

Pellet is the first sound and complete OWL-DL reasoner with extensive support for rea-
soning with individuals (including nominal support and conjunctive query), user-defined
datatypes, and debugging support for ontologies. It implements several extensions to OWL-
DL including a combination formalism for OWL-DL ontologies, a non-monotonic operator,
and preliminary support for OWL/Rule hybrid reasoning. It has proven to be a reliable tool
for working with OWL-DL ontologies and experimenting with OWL extensions.

In this paper we describe Pellet’s features, architecture and special capabilities, along
with an empirical comparison of its performance against other leading OWL-DL reasoners.

Key words: Web Ontology Language, Description Logics Reasoning, Tableau-based
Theorem Proving, Semantic Web

1 Introduction

OWL is a World Wide Web Consortium (W3C) Recommendation for representing
ontologies on the Semantic Web. The OWL-DL sublanguage is a syntactic variant
of the Description LogicSHOIN (D), that is, an OWL-DL ontology corresponds
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to aSHOIN (D) knowledge base. When OWL went to “Candidate Recommen-
dation”, there was concern within the working group that implementing a standard
tableau based reasoner for OWL-DL would be too difficult for people not already
experts in Description Logics or theorem proving. We began work on the OWL-DL
reasoner, Pellet, to lay these concerns to rest. In a matter of months, we had a rea-
soner that passed a substantial number of the OWL test cases and even useful for
reasoning with small, relatively simple ontologies. Over the next two years, Pellet
has undergone continuous, if part time, development. Pellet was perhaps, as a very
generous guess-estimate, 1.5 person years of effort by people who had no prior ex-
perience with Description Logics and little prior experience with theorem proving
(especially not with tableau-based methods). This is not an unreasonable amount
of effort for a production quality tool for a Recommendation of this complexity.1

Pellet is now a complete and capable OWL-DL reasoner with acceptable to very
good performance, extensive middleware, and a number of unique features. It is
written in Java and is open source under a very liberal license. It is used in a number
of projects, from pure research to industrial settings. In this paper, we describe Pel-
let’s features, architecture, and special capabilities, along with an empirical com-
parison of its performance against other leading OWL-DL reasoners.

Pellet is the first implementation of the full decision procedure for OWL-DL (in-
cluding instances) and has extensive support for reasoning with individuals (in-
cluding conjunctive query over assertions), user-defined datatypes, and debugging
ontologies. It implements several extensions to OWL-DL including a combination
formalism for OWL-DL ontologies, a non-monotonic operator, and preliminary
support for OWL/Rule hybrid reasoning. It has proven to be a reliable tool for
working with OWL-DL ontologies and experimenting with OWL extensions.

The rest of the paper is organized as follows: In Section 2, we discuss the basic
services that can and should be provided by an OWL-DL reasoning component,
followed, in Section 3, by a description of the architecture of Pellet. Sections 4 and
5 present, respectively, Pellet’s support for ontology analysis and repair (especially,
debugging) and Pellet’s support for key extensions to the OWL-DL language. Sec-
tion 6 covers the new optimizations introduced in Pellet, while Section 7 compares
Pellet’s performance with RacerPro and FaCT++.

2 Pellet as an OWL-DL Reasoner

The OWL Web Ontology Test Cases W3C Recommendation [1] defines two sorts
of OWL “document checkers”: OWL syntax checkers and OWL consistency check-
ers. It also defines four conformance classes of consistency checkers, OWL Lite/DL/Full

1 The system can be downloaded from http://www.mindswap.org/2003/pellet/download.shtml
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consistency checkers, and complete OWL-Lite consistency checkers. To be a con-
sistency checker is to be sound with respect to the specific species’ semantics. To
be complete is to be a decision procedure with respect to that semantics. OWL-Full
is not decidable, so there is no such thing as a complete OWL-Full consistency
checker. It is a bit odd that the Test Cases Recommendation does not explicitly de-
fine a complete OWL-DL consistency checker, though perhaps explainable that, at
the time, there was no known decision procedure for OWL-DL. Pellet is a com-
plete OWL-DL consistency checker and a very incomplete OWL-Full consistency
checker. It is also an OWL syntax checker. To our knowledge, Pellet is the first,
and currently the only, complete OWL-DL consistency checker and has the most
coverage of OWL as a whole of any reasoner (though some reasoners, particular
OWL-Full ones, cover areas of OWL-Full reasoning Pellet just does not try to han-
dle). Our implementation validates the design of the WebOnt working group.

Meeting the conformance criteria of a specification is laudable, but it does not nec-
essarily result in a practical tool. The OWL Test Cases document [1] defines an
OWL consistency checker as follows:

An OWL consistency checkertakes a document as input, and returns one word
being Consistent, Inconsistent, or Unknown.

But, while consistency checking is an important task, it does not, in itself, allow
one todo anything interesting with an ontology. Traditionally, in the ontology and
Description Logic community, there is a suite ofinference servicesheld to be key to
most applications or knowledge engineering efforts. Given that OWL-DL is a syn-
tactic variant of the very expressive Description LogicSHOIN (D), it is impera-
tive that a practical OWL reasoner provide at least the “standard” set of Description
Logic inference services, namely:

• Consistency checking, which ensures that an ontology does not contain any con-
tradictory facts. The OWL Abstract Syntax & Semantics document [2] provides
a formal definition of ontology consistency that Pellet uses. In DL terminology
(see Figure 1), this is the operation to check the consistency of an ABox with
respect to a TBox.2

• Concept satisfiability, which checks if it ispossiblefor a class to have any in-
stances. If class is unsatisfiable, then defining an instance of the class will cause
the whole ontology to be inconsistent.

• Classification, which computes the subclass relations between every named class
to create the complete class hierarchy. The class hierarchy can be used to answer
queries such as getting all or only the direct subclasses of a class.

• Realization, which finds the most specific classes that an individual belongs to; or
in other words, computes the direct types for each of the individuals. Realization
can only be performed after classification since direct types are defined with

2 This corresponds to being an OWL consistency checker.
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Abbr. Stands for Meaning

ABox Assertional Box Component that contains assertions about individuals,
i.e. OWL facts such as type, property-value, equality or
inequality assertions.

TBox Terminological Box Component that contains axioms about classes, i.e. OWL
axioms such as subclass, equivalent class or disjointness
axioms.

KB Knowledge Base A combination of an ABox and a TBox, i.e. a complete
OWL ontology.

Fig. 1. Explanation of some commonly used terms in DL jargon

respect to a class hierarchy. Using the classification hierarchy, it is also possible
to get all the types for that individual.

These services are inter-definable [3], but it is standard to reduce them all to con-
sistency checking, as Pellet does. These basic services can be accessed by querying
the reasoner. Generally, such queries are supported via an API such as the DIG
interface [4]. Pellet supports the standard array of derivative queries and various
reasoner management services both via its own API and by supplying bindings and
support for common toolkits (such as Jena [5], WonderWeb OWL API [6] and DIG
[4], see Section 3 for details).

Pellet also supports some less standard services. For example, while classification
requires a degree of entailment support (i.e., certain subclass relations areentailed
by the ontology and classification is the inferring of those relations), it generally
is quite restricted. Only a very limited set of types of entailment are supported,
though, in principle, arbitrary entailment between OWL documents can be reduced
to the core service of consistency checking. In [7], the general entailment problem
for OWL-DL is reduced to KB consistency problem by means of an appropriate
transformation. Pellet has explicit support for testing arbitrary entailments using
this technique.

Similarly, it is possible to reduce ABox conjunctive query answering to consistency
checking. Queries about instances that are written in languages such as RDQL [8]
or SPARQL [9] fall into this category. Since DLs have generally focused on reason-
ing with classes, queries about instances get much less emphasis in the literature
and in implementations (though that is changing). As a consequence, there is not a
lot of implementation experience or known optimization techniques in this area. In
Pellet, we have implemented a somewhat optimized conjunctive query answering
procedure.

We also have gone beyond both the standard set of inference services (consistency,
satisfiability, classification, and realization) and the ones suggested by W3C rec-
ommendations (consistency, entailment, and conjunctive query answering) to in-
troduce various nonstandard services, which we believe are almost indispensable
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for practical use, with the obvious example being the various services for explain-
ing and debugging ontologies (See section 5 for more details).

An orthogonal dimension to these services is the language they are implemented
for. Pellet covers all of OWL-DL including inverse and transitive properties, cardi-
nality restrictions, datatype reasoning for an extensive set of built-ins as well as user
defined simple XML schema datatypes, enumerated classes (a.k.a, nominals) and
instance assertions. The latter two are particularly key as a lot of the information
published on the Semantic Web is instance heavy, contrary to traditional practice in
the Description Logic community.

Just as Pellet does far more than is strictly required of a complete OWL consistency
checker, it also does more than what is required of an OWL syntax checker. Pellet
will automatically apply heuristics to an OWL-Full document to see if it can be
coerced into an OWL-DL document and then processed in the normal way.

Finally, merely having a comprehensive range of services, without clear and easy
ways to access them, is pointless. From the start, we have tried to make Pellet’s
services easily available to all sorts of users. We have a HTML form based ser-
vice published on our website that casual dabblers can use to test their ontologies
or queries. That service replicates the functionality available from Pellet’s com-
mand line interface. We bundle Pellet inside our OWL ontology editor, Swoop
[10], which, itself, can be run from a Web browser via Java WebStart. We also,
as mentioned above, support the DIG interface and a panoply of Java based APIs
for accessing Pellet’s functionality.

To be a practical OWL-DL reasoner, one must balance functionality and accessi-
bility. Pellet provides both.

3 Pellet Architecture and Design

Pellet, in its core, is a Description Logic reasoner. However, unlike other DL rea-
soners, it has been designed to work with OWL right from the beginning. This
design choice had huge influence on the overall architecture. It affected how the
tableaux reasoner was implemented, e.g. with the ability to reason with instance
data (ABox reasoning) without making the Unique Name Assumption (UNA), and
what kind of supporting modules to have, e.g. having an XML Schema datatype
reasoner and a query engine.

The main design goal of Pellet was to have a small core reasoning engine that is
suitable for extensions. Having a small core engine enabled us to develop inter-
faces for different RDF/OWL toolkits, such as Jena and the WonderWeb OWL API
or to support applications that communicate through DIG interface. Even the core
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Fig. 2. Main components of the Pellet reasoner

engine itself is designed with extensibility in mind allowing us to implement ex-
tensions such as explanation generation for ontology debugging (see Section 4.2),
multi-ontology reasoning usingE-Connections (see Section 5.1), non-monotonic
reasoning with the epistemic operator (see Section 5.3) and integration with rule
formalisms (see Section 5.2).

Figure 2 shows the main components of Pellet. The core of the system is the
tableaux reasoner that checks the consistency of a knowledge base. The reasoner
is coupled with a datatype oracle that can check the consistency of conjunctions
of (built-in or derived) XML Schema simple datatypes. The OWL ontologies are
loaded into the reasoner after species validation and ontology repair. This step
ensures that all the resources have an appropriate type triple (a requirement for
OWL-DL but not OWL-Full) and missing type declarations are added according
to some heuristics (see Section 4.1 for details). During the loading phase, axioms
about classes are put into the TBox component and assertions about individuals are
stored in the ABox component. TBox axioms go through the standard preprocess-
ing of DL reasoners, e.g. normalization, absorption and internalization, before they
are fed to the tableaux reasoner. The system provides a thin layer for programmatic
access through the Service Programming Interface (SPI) that provides convenience
functions to access the reasoning services provided.

In what follows, we describe the main modules of the system in more detail.
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3.1 Parsing and Loading

Pellet provides various different interfaces for loading ontologies. Pellet itself does
not have an RDF/OWL parser but is integrated to different RDF/OWL toolkits that
provide a parser. Ontologies represented in the data structures of such toolkits can
be directly loaded to Pellet. Pellet also implements thereasoner interfacesdefined
in those toolkits to answer queries.

Each toolkit has quite different structures for representing OWL ontologies, e.g.
Jena has a triple-oriented view where WonderWeb OWL API uses a view more
akin to the OWL abstract syntax tree [11]. Therefore, Pellet includes different sub-
modules that can load ontologies from these different representations. Loading on-
tologies from the Jena toolkit is done by examining the triples in the RDF graph and
transforming them into OWL facts and axioms. This process also involves species
validation and repair. The WonderWeb parser, on the other hand, already generates
such structures in its own representation. Thus, loading an ontology simply involves
traversing those structures with an appropriate visitor pattern.

In addition to the RDF/OWL support, Pellet also supports the standards developed
for DL systems. The DIG (DL Implementors Group) interface [4] defines an HTTP-
basedTell/Askmechanism (with an XML syntax) for interacting with DL reason-
ers. Pellet supports the DIG interface and hence ontologies can also be loaded by
communicating through an HTTP connection. Finally, Pellet has a parser to read
the files written in KRSS format [12], a Lisp-like syntax traditionally used by DL
reasoners. Using this parser, ontologies described in KRSS format can be directly
loaded.

3.2 Tableaux Reasoner

The tableaux reasoner has only one functionality: checking the consistency of an
ontology. According to the OWL model-theoretic semantics [2], an ontology is con-
sistent if there is an interpretation that satisfies all the facts and axioms in the ontol-
ogy. Such an interpretation is called amodelof the ontology. The tableaux reasoner
searches for such a model through a process ofcompletion. The tableaux comple-
tion starts by constructing an initial completion graph from the ABox. The nodes
in the completion graph intuitively stand for individuals and literals. Each node is
associated with its corresponding types. Property-value assertions are represented
as directed edges between nodes. The reasoner repeatedly applies the tableaux ex-
pansion rules until a clash (i.e. a contradiction) is detected in the label of a node, or
until a clash-free graph is found to which no more rules are applicable.

All other reasoning tasks can be defined in terms of consistency checking. For
example, checking whether an individual is an instance of a concept or not can be
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Fig. 3. Different completion strategies implemented in Pellet

tested by asserting that the individual is an instance of the complement of that class
and then checking for (in)consistency.

In order to support future extensions, the internals of the tableaux reasoner are built
on an extensible architecture. The completion algorithm inside the tableaux rea-
soner is designed so that different completion strategies can be plugged in. This
approach has two major advantages: Different completion strategies with different
heuristics can be used based on the characteristics of the given KB, e.g. the expres-
sivity; also extensions such asE-Connection support can be implemented without
changing the rest of the system.

Figure 3 shows the different completion strategies currently implemented in Pel-
let. SHOINStrategyis the default completion strategy that supports the full ex-
pressivity of OWL-DL. This strategy is based on the recently developed decision
procedure forSHOIQ 3 [13].

TheSHOINStrategycovers the full expressivity of OWL-DL and exhibits a good
“pay as you go” behavior, e.g. the tableaux rule for nominals is never applied if
there are no nominals in the KB. However, the blocking strategy4 required for
SHOIN (dynamic double blocking strategy) is quite complex and may not pre-
vent the completion graph from getting very large. If it is known that there are
no nominals in the KB then an optimized version of double blocking [16] can be
used. Also, in this case, we do not even need to check if nominal rules is appli-
cable (since it will never be) and save some more time. TheSHINStrategydoes
exactly this, and hence, whenever the expressivity of the KB is detected to fall into

3 SHOIQ is equivalent to OWL-DL extended with qualified cardinality restrictions
which were present in the DAML+OIL language but omitted in OWL
4 Blocking ensures the termination of tableaux algorithm by halting the completion pro-
cess when a “cycle” that can cause infinite expansion is detected [14]. Several blocking
strategies have been developed for different expressivities (see, for example, [15]).
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this category, this strategy will be selected over the defaultSHOINStrategy. Simi-
larly, theSHONStrategyemploys an even more efficient blocking strategy (subset
blocking) and is selected whenever appropriate.

Some completion strategies behave quite different than others. For example, if there
are no instances in the KB (just class and property descriptions) then it is known
that every concept satisfiability check will start with a completion graph that has
just one node. In such cases, more efficient completion strategies, e.g. the trace
method, can be used. Moreover, when there are no inverse properties, we can use
additional optimizations such as caching the satisfiability status of internal nodes.
TheEmptySHNStrategyuses this approach and manages to handle very large KB’s
such as the famous Galen medical ontology.

The dynamic completion strategy selection ensures the soundness and complete-
ness of the reasoner while exploiting the most efficient algorithm for the given KB.

3.3 Datatype Reasoner

The datatype reasoner is responsible for checking if the intersection of (possibly
negated) datatypes is consistent or not. Datatypes in OWL are described using
XML Schema which provides a rich set of simple datatypes including various nu-
meric types (integers and floats), strings, and date/time types. In addition to this,
XML Schema also provides several mechanisms for creating new types out of the
base types, e.g. it is possible to define a type that consists of integer values less
than or equal to 10 and integer values greater than 20. An intersection of datatypes
is inconsistent when they have no data value in common, e.g. the intersection of
xsd:positiveInteger andxsd:negativeInteger is empty.

Datatype reasoning in Pellet is based on the framework presented in [17]. This
approach allows combining expressive DLs with an arbitrary type system. In this
approach, the datatype reasoner is used as an oracle by the tableaux reasoner. For
each literal node in the completion graph, the tableaux reasoner uses the datatype
reasoner to determine if the intersection of all the datatypes associated with that
node is satisfiable or not. Pellet’s datatype reasoner supports all the built-in XSD
types along with any type derived from numeric or date types.

3.4 Knowledge Base Interface

All the reasoning tasks can be reduced to a KB consistency test with an appro-
priate transformation. However, such transformations are not always trivial and
doing a consistency check for every arbitrary query is very expensive. The Sys-
tem Programming Interface (SPI) of Pellet provides generic functions to manage
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such transformations and hide the details from users. ThisKnowledgeBaseinter-
face makes decisions as to when to check the consistency of the ABox (if any
changes have been made after the last time), when to classify all the concepts or
when to realize all the individuals.

The KnowledgeBaseinterface provides functionality to answer arbitrary atomic
queries. These queries can be related to classes (e.g.getSubClasses , getDis-
joints , etc.), to properties (getSubProperties , isFunctional , etc.), or
to individuals (e.g.getTypes , getPropertyValues , etc.). For boolean queries,
the query is transformed to an unsatisfiability problem. For queries where a set of
answers need to be returned, multiple consistency checks are required in theory but
some optimizations are possible. For example, if we want to find all the instances
of a concept,KnowledgeBasefirst computes all the obvious instances (e.g. all indi-
viduals explicitly asserted to be instances) and then uses sophisticated methods (see
Section 6 for details) to find non-instances. For the remaining individuals, methods
like binary instance retrieval [18] is used to test multiple individual with one con-
sistency test. This general strategy is used for all the other queries, e.g. finding all
the property values for a specific individual, because in the end all the other tests
are reduced to similar unsatisfiability problems.

The Knowledge Base interface, as the rest of internal components, is built on the
ATerm library [19]. ATerm (short for Annotated Term) is an abstract data type de-
signed for the exchange of tree-like data structures between distributed applica-
tions. The ATerm library provides maximal subterm sharing and automatic garbage
collection making it very suitable for representing complex OWL class expressions.
The term sharing feature reduces the overall memory consumption spent for storing
concept expressions and makes it is easy to transform the data from Pellet SPI to
external APIs.

3.5 ABox Query Engine

The KnowledgeBase interface is coupled with an ABox Query Engine that an-
swers conjunctive queries. This module supports queries written in the SPARQL
[9] language as well as in the RDQL [8] language. More specifically, any ABox
query expressed in these languages is parsed into an internal query format using
the parser provided by HP Lab’s ARQ module in the Jena toolkit. A query written
in one of these RDF query languages is an ABox query if it satisfies the following
conditions:

• No variable is used in the predicate position.
• Each property used in the predicate position is either a property (object or datatype)

defined in the ontology or one of the following built-in properties:rdf:type ,
owl:sameIndividualAs , owl:differentFrom .
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• If rdf:type is used in the predicate position, a constant URI is used in the
object position.

Queries written in a more logic-oriented language such as KIF naturally fall into
this category as the syntax does not allow violating these conditions.

The query answering for expressive DLs, such as OWL-DL, has some interesting
implications. For example, a query that hasundistinguished variables, i.e. vari-
ables that appear in the query body but not in theSELECTclause, need to be
answered in a different way [20]. This is due to the fact that constructs such as
owl:someValuesFrom cause new individuals to be created that are generally
not to be included in the query result.

The Pellet query engine uses the “rolling-up” technique [20] to answer queries with
undistinguished variables. This technique creates one concept expression from the
query expression and reduces the problem to retrieving the instances of that con-
cept. This step needs to be repeated for each distinguished variable. We have de-
veloped several optimizations to reduce the number of instance retrieval operations
(See Section 6 for more details).

Figure 4 shows the general design of the query engine. There are multiple query
engines that actually answer queries and one main query engine that preprocesses
the query and selects the appropriate query engine. The first step of the main engine
is to analyze the query and determine if it consists of independent sub-queries. If
this is the case, the query is split into multiple queries which are answered sepa-
rately. The results are combined at the end on a tuple by tuple basis. The next step
is to examine the structure of the query and sort the patterns or variables to improve
efficiency. The heuristic used here is to first bind variables with a smaller number of
likely candidates, e.g. variables used with classes that have fewer instances or vari-

Fig. 4. Components of the query engine
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ables used in conjunction with functional properties. This step is generally mixed
with the last step, where one of the actual query engines generates the answer. For
example, if there is no selection statement in the query, i.e. it is a boolean query,
then no reordering is required, since the query can be answered in one rolling-up
step.

4 Ontology Analysis and Repair

In this section we briefly describe the capabilities of Pellet for detectingsyntactic
andsemanticdefects in ontologies.

4.1 Species coercion

OWL has two major dialects, OWL-DL and OWL-Full, with OWL-DL being a
subset of OWL-Full. All OWL knowledge bases are encoded as RDF/XML graphs.
OWL-DL imposes a number of restrictions on RDF graphs, some of which are sub-
stantial (e.g., that the set of class names and individual names be disjoint) and some
less so (that every item have anrdf:type triple). Ensuring that an RDF/XML
document meets all the restrictions is a relatively difficult task for authors, and
many existing OWL documents are nominally OWL-Full, even though their au-
thors intend for them to be OWL-DL. Pellet incorporates a number of heuristics to
detect “DLizable” OWL-Full documents in order to “repair” them.

The heuristics implemented in Pellet attempt to guess the correct type for an un-
typed resource. These are mainly standard operations, e.g. a resource used in the
predicate position is inferred to be a property. Some situations have more than one
solution, e.g. an untyped resource used only in one cardinality restriction can be any
of object or a data property. In these cases, Pellet heuristics choose object proper-
ties and classes over data properties and datatypes by default, but this behavior can
be configured.

Ensuring the vocabulary separation, e.g. disjointness of classes, properties and in-
dividuals, is another hard problem especially in the distributed Web environment
where people might be required to import an OWL-Full ontology that they might
have no control over. In such a case, it is not acceptable for a reasoner to reject
processing the ontology altogether. For this reason, Pellet provides several options
to the users where vocabulary separation is not respected:

• Ignore the statements that cause the problem. If a URI is used both as a class and
as a property, one of these definitions will be ignored and the accepted definition
depends on the order the statements are processed (this order is generally non-
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deterministic and based on which underlying parser is used).
• Accept all the definitions for the URI but treat them differently for query answer-

ing. For example, if the same URI is defined both as a class and as a property,
Pellet will create both a class and a property and associate the axioms with the
corresponding definition. Depending on the queries, asking subclasses vs. asking
sub properties, the appropriate definition will be used.

• Reject processing the ontology completely.

These options give the user more control about how to deal with the different cases
and provide a plausible solution for a certain set of OWL-Full ontologies. On the
other hand, some features of OWL-Full ontologies are completely out of scope
for Pellet. For example, defining cardinality restrictions on transitive properties
causes undecidability. Extending built-in vocabulary, e.g. creating a subproperty
of rdf:type , requires a completely different reasoning procedure. Therefore, for
such OWL-Full features only options provided areIgnoreor Fail.

4.2 Debugging Support

As descriptions in OWL ontologies become more complicated, finding the cause
of semantic errors, i.e., contradictions in ontological definitions, becomes an ex-
tremely hard task even for experts. Typically, reasoners onlydetectunsatisfiable
concepts (or inconsistent ontologies); however, the diagnosis and resolution of the
bug is not supported at all. To overcome this problem, Pellet contains two debug-

Fig. 5. The explanation of unsatisfiability for classOceanCrustLayer includes a de-
scription of the clash created in the tableaux reasoner. Also, the set of axioms responsible
for this clash is extracted by the Pellet axiom tracing service. (Screenshot taken from the
Swoop Ontology editor running Pellet)
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ging services that help explainwhy the inconsistency occurs: the first service –
clash detectionis used to pinpoint the root contradiction or clash in the completion
graph; and the second –axiom tracingis used to extract the relevant source axioms
from the ontology responsible for the clash (see Figure 5 for an example). These
services are used in the OWL Ontology Editor, Swoop [10], as a debugging aid for
ontology users and modelers. [21]

5 Beyond OWL-DL

5.1 Multi-Ontology Reasoning usingE-Connections

E-Connections [22] are a framework for combining several families of decidable
logics, such as Description Logics, Modal Logics, as well as some logics of time
and space. In anE-Connection, the coupling between the combined logics is loose
enough for obtaining general results about transfer of decidability: if reasoning is
decidable in each of the logics in the combination, then it is decidable in the com-
bined formalism as well. Thus,E-Connections are computationally more robust
than other combination methods, such asFusions[23] or Multidimensional Modal
Logics, [24], in which the interaction between the combined formalisms is closer
and general transfer of decidability results cannot be expected.

A knowledge base in the combined language is composed of a set of knowledge
bases, expressed in any of the component logics. The component KBs are inter-
preted overdisjoint logical domains and connected by means oflink relations. The
new operators provided by theE-Connection language are associated to the link
relations and hence are used to describe the relationships between the connected
KBs.

In [25] and [26] we have proposed tableau algorithms for differentE-Connection
languages involving Description Logics. The basic strategy to extend a DL tableau
algorithm withE-Connections support is based on “coloring” the completion graph.
Nodes of different “colors”, or sorts, correspond to different domains (ontolo-
gies). The application of the expansion rules, blocking conditions and clash trig-
gers depend on both the “color” of the node under consideration and the expres-
sivity allowed on the link relations. When implementing tableau algorithms for
E-Connections as an extension of an OWL reasoner, all these issues must be thor-
oughly considered. For a detailed discussion on combined tableau algorithms for
E-Connections we refer the reader to [25] and [26].

Pellet has been extended with tableau-based decision procedures for severalE-
Connection languages. The implementation is still in “beta” stage, but our initial
experimental results show that the performance for theE-Connected KBs is very
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similar to their OWL counterparts.E-Connections do not seem to affect existing op-
timizations or degrade the performance of the reasoner, even in our “naive” imple-
mentation. Currently, we are tuning the reasoner and performing a more extensive
evaluation.

Finally, it is worth emphasizing here that, although Pellet currently can only handle
E-Connections of OWL-DL ontologies, it can be easily extended to other interest-
ing E-Connection languages, such asE-Connection languages including the quali-
tative spatial logicRCC-8 as a component logic, or Distributed Description Logics
[27], which can be seen as sub-formalisms of basicE-Connections [22].

5.2 Integration with Rules formalisms

The Semantic Web Rules Language (SWRL) [28] has recently been proposed as
the basic rules language for the Semantic Web.

SWRL is based on a simple idea, namely, that the coupling between a DL Knowl-
edge BaseK and a Datalog programP is achieved by allowing the use of classes,
object and datatype properties defined and used inK (called DL-atoms) in the Dat-
alog rules inP.

Unfortunately, although SWRL provides useful new expressive power, it is known
to be undecidable.

In the mid and late 90s, many proposals for combining DLs and Datalog were
presented under the name of “Hybrid Systems”. The most prominent ones areAL-
Log [29] and CARIN [30]. Both can be seen asdecidablesubsets of SWRL5 . In
particular, inAL-Log the only DL atoms allowed in the Datalog rules are classes
and these can only be included in the body of the rule.

We have implemented a prototype ofAL-Log using Pellet. The implementation
slightly generalizes the originalAL-Log in two ways: first, we useSHOIN (D)
instead ofALC, which was the language originally used in the DL component, and
secondly we allow the use of OWL datatypes, and SWRL built-ins in the antecedent
of Datalog rules.

The reasoner computes answers to queries based on the specification of both com-
ponents and is based on the notion ofconstrained SLD-derivationandconstrained
SLD-refutation, as presented in [29]. The system has been implemented in Prolog,
coupled to Pellet. Potential applications forAL-Log include Web Policies and Web
Services.

5 If only unary and binary predicates are allowed
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5.3 Non-monotonic Reasoning with the Epistemic Operator

Non-monotonic logics have been generally successful in capturing several forms
of common sense and database reasoning. A prominent family of non-monotonic
formalisms are rooted in various forms of theclosed worldassumption. Sometimes,
it is reasonable to assume that the information at hand iscomplete. Under these
circumstances, if a formula cannot be proved true or false in a KB, it is considered
to be false. This constitutes theclosed-world assumption(CWA). Under theopen
world assumption(OWA), on the other hand, it is accepted that the knowledge in
our KB is perhaps incomplete and hence, if a formula cannot be proved true or
false, we do not draw any conclusion.

It would be desirable to be able to “turn on” the closed-world assumption when
needed in OWL in order the reap the benefits of nonmonotonicity, but without giv-
ing up OWL’s open-world semantics in general. The logicALCK allows for this
interaction. Many useful nonmonotonic features such as integrity constraints and
procedural rules (among others− see [31]) are formalizable in this logic.

In [31], the epistemic operatorK is added to the Description LogicALC. The
K operator allows queries that assume the CWA, makingALCK a nonmonotonic
formalism. TheK operator (which is a kind of necessity operator) can be applied
to a concept or role.

In its simplest form,ALCK allows the use ofK operatoronly in queries and assume
that queries that are posed to anALC knowledge baseΣ. Intuitively, the query〈a :
KC〉 (resp.〈aKRb〉 for a role) is read as “Is the individuala known to beC?”

Pellet includes an implementation of theALCK language. In addition to theK
queries outlined above (accessible as an extension to the SPARQL query language),
we also admit a restricted use ofK in the terminology, in the form of anepistemic
rule. An epistemic rule is of the form ofKC v D whereC andD areALC con-
cepts. In order to allow forK and epistemic rules we have extended the KRSS
format (as it is not clear how to integrate such rules with OWL’s RDF/XML syn-
tax).

6 Implementation and Optimizations

Expressive Description Logics, such asSHOIN (D), are known to have very high
worst-case complexity. As a consequence, there exists a significant gap between the
design of a decision procedure and the achievement of a practical implementation.
Naive implementations are doomed to failure.
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In order to achieve acceptable performance, modern DL reasoners implement a
suite of optimization techniques. These optimizations lead to a significant improve-
ment in the performance of the reasoner and have proved effective in wide variety
of realistic applications.

Pellet implements most of the state of the art optimization techniques provided in
the DL literature and have been implemented in other systems such as FaCT++ and
RACER (see [32] for a complete description) including:

• Normalization and SimplificationNormalization is the process of transforming
all the concepts in a form where contradictions involving complex concepts are
detected early during tableaux expansion. Simplification detects obvious clashes
during the normalization process and also gets rid of redundant elements of a
concept expression.

• TBox Absorptionis a technique that tries to eliminate GCIs as possible from a
KB by replacing them with primitive definitions. Absorption can be improved
if general axioms are absorbed into domain or range axioms whenever possible
[33].

• Semantic BranchingWhen a disjunction is being expanded, a single disjunctD
is chosen and two possible search trees are obtained by adding eitherD or ¬D.
Because the two search trees are strictly disjoint, there is no possibility of wasted
search.

• Dependency-directed BackjumpingDependency-directed backjumping eliminates
unproductive backtracking search by finding which branching points are respon-
sible for a clash and jumping back over the intervening branching points without
exploring any alternatives.

• Oldest-first Disjunction SelectionWhen an individual contains many disjunc-
tions in its label, the order in which these disjuncts are expanded has an impor-
tance. To improve the effectiveness of dependency-directed backjumping we first
expand the disjunct that depends on the minimum branch number.

• Caching Intermediate Satisfiability StatusDuring a consistency check there may
be many fresh nodes created in the completion graph. Some of these nodes can
be very similar and caching the satisfiability status of these nodes can save signif-
icant computation time especially if there are no inverse properties or nominals
used in the ontology.

• Optimized BlockingPerformance can be improved drastically by optimizing the
double blocking strategy so that cycles are detected earlier and completion graphs
do not become very deep. Pellet incorporates this blocking strategy for the KBs
with suitable expressivity, e.g.SHI.

• Top-Bottom Search for ClassificationClassification performance is highly im-
proved when an algorithm based on the traversal of concept hierarchy is used
instead of checking the subclass relation between each named class. Using the
asserted subclass relations and exploiting the transitivity of the subclass relation
during traversal proves to be very useful.

• Model MergingThe obvious non-subsumption relation between two concepts
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can be detected by inspecting the cached models for the concepts. If merging the
model forC and¬D does not have any possible clash then we can infer thatC
is not a subclass ofD without doing the expensive consistency test.

The optimizations above have been implemented and proved useful for the Descrip-
tion LogicSHIN (D) (a.k.a OWL-Lite). However, from an implementation point
of view, the recent achievement of a decision procedure forSHOIN (D) poses
new challenges:

• While many optimization techniques are completely independent of the DL sup-
ported by the reasoner, others are valid for certain logics only. In particular, some
optimizations for reasoning with ABoxes, e.g.chain contraction[34], are not
applicable in the presence of nominals. Moreover, in the presence of nominals,
ABox assertions can affect concept satisfiability and TBox classification. In other
words, nominals break the traditional “separation” between TBox and ABox in
Description Logics. As a consequence, ontologies with nominals in the TBox
and large number of instances in the ABox are likely to compromise the perfor-
mance of DL reasoners.

• Nominals are not supported by state of the art DL reasoners, except for Pellet.
Thus, there is very little experience in developing techniques for dealing with
nominals efficiently in practice. In particular, to the best of our knowledge, no
optimizations specific for nominals, other than ours, have been explored.

We have developed a suite of new optimizations for facing these challenges in the
presence of individuals. We provide a brief description of these optimizations (de-
tails will be provided in our upcoming technical report):

• Nominal AbsorptionPellet uses an improved absorption technique where axioms
involving enumerations (tt oneOf) are absorbed into ABox assertions.

• Partial BackjumpingDuring backjumping it is highly likely that some useful in-
formation generated a the intervening branching points is being thrown away.
Partial backjumping inspects the dependency set information to keep this infor-
mation and avoids repeated application of same tableaux rules.

• Learning-based Disjunct SelectionWhen there are large number of individuals
in the KB with similar characteristics, it is highly likely that selecting the same
disjunct from a disjunction will work on all the individuals. Learning-based dis-
junct selection keeps track of the successful disjunct selections and when a dis-
junction is being expanded it always selects the disjunct that caused less clashes
in previous applications.

• Nominal-based Model MergingNominals always have a fixed interpretation in
the domain. Pellet exploits this property to improve the model merging algorithm
for detecting obvious non-subsumptions.

In addition, Pellet incorporates several optimizations for ABox query answering.
Different techniques are employed depending on the structure of the query. The
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rolling-up technique [20] provides an easy reduction of query answering to KB
consistency, but it is important to use pseudo models as much as possible to avoid
expensive consistency tests. Examining the query atoms without rolling up helps
to achieve this since the pseudo models for named concepts are generally available
(or generating them is profitable considering they are used very frequently). It is
possible to minimize the number of candidates for each variable and reduce the
required consistency tests. With this approach, the queries with only distinguished
variables can be answered without any consistency tests most of the time. Similar to
dynamic completion strategy selection, Pellet uses a combination of different tech-
niques to ensure completeness and best efficiency. The different query strategies
are preferred in the following order:

• No distinguished variables: First check if all ground atoms are trivially entailed
(without performing a consistency test). Then pick one constant from the query,
roll everything else into one concept and return true as the answer if the selected
individual is an instance of the rolled up concept.

• Only distinguished variables: Pick a variable with minimum number of possible
bindings (or start with a constant if there is one), verify that all the types given
in the query actually hold, get the values for the related variables and continue
with that variable.

• One distinguished variable: Using pseudo model checking compute possible
bindings for the variable, roll the query into one concept and apply binary in-
stance retrieval using the candidates.

• More than one distinguished variable: Similar as above to compute candidates;
variables are then sorted based on the number of candidates. Different permuta-
tion of bindings are applied to the query and rolling up is used to verify if the
query is entailed. Bindings for variables are added one by one allowing to prune
a large number of permutations when a certain binding fails.

In practice, it turns out that most queries fall into the second category (“SELECT
* ” queries). Moreover, generally, users desire this kind of query evaluation in order
to query based on something akin to the Closed World Assumption. For this reason,
Pellet provides an option to turn off special treatment of undistinguished variables.

7 System Evaluation

In this section, we evaluate the performance of the reasoner for the tasks of consis-
tency checking, classification, realization, and conjunctive query answering. All the
experiments have been performed on a Pentium Centrino 1.6GHz computer with
1.5GB memory. The maximum memory amount allowed to Java was set to 256MB
for each experiment. All the timings presented in this section are computed as the
average of 10 independent runs.
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Name Expressivity Triples Cla. / Prop. / Ind. Load Cons. Clas. Real. Total

AKT ALCHOIF(D) 1771 169 / 137 / 75 0.21 0.02 0.73 0.11 1.08

Tambis SHIN (D) 4200 392 / 100 / 0 0.12 0.00 1.10 0.01 1.23

SUMO ALH(D) 3688 630 / 238 / 435 0.25 0.00 1.11 0.11 1.48

Food ALCOF 869 64 / 8 / 45 0.27 0.05 0.66 0.58 1.57

OWL-S SHOIF(D) 2463 121 / 187 / 283 0.27 0.02 1.19 0.62 2.09

Financial ALCIF 65723 59 / 16 / 17941 2.38 2.19 0.03 2.73 7.34

SWEET SHOIF(D) 5894 1400 / 137 / 110 0.21 0.01 7.95 0.39 8.56

Wine SHOIF(D) 2708 137 / 17 / 206 0.11 1.30 10.21 1.10 12.71

Galen SHF 30854 2749 / 413 / 0 1.30 0.00 47.16 0.00 48.46

Fig. 6. Pellet performance on commonly used ontologies of varying complexity and ex-
pressivity. All times are shown in seconds. Links to these ontologies can be found at the
web page http://www.mindswap.org/2003/pellet/performance.

Figure 6 lists the loading, consistency checking, classification and realization tim-
ings for some well-known OWL ontologies: the Food/Wine example from the OWL
guide [35], the portal ontology from the AKT project, the Congo example from the
OWL-S coalition, the SWEET set of ontologies from NASA, the SUMO upper
ontology and, finally, the medical ontologies Tambis and Galen.

These results show that Pellet has a reasonable performance for these ontologies of
varying complexity and expressivity. It takes substantial amount of time to classify
the Galen medical ontology which is expected for an ontology of this size. It is
interesting to note that processing the small Wine ontology takes longer than other
larger ontologies. The reason is that the Wine ontology was created to showcase all
the features in OWL with a heavy emphasis on nominals. This caused the axioms
in the ontology to be very complex and the ontology is a challenging case even
for incomplete reasoners. Sound and complete reasoning Pellet provides for this
ontology is still faster compared to the incomplete reasoners.

Figure 7 shows the classification times of different DL reasoners for some ontolo-
gies included in the standard DL benchmark test suite [36]. The systems we have
compared with Pellet (version 1.3) are Racer Pro 1.8.26 , the commercialized ver-
sion of the Racer system, and FaCT++ 0.99.5, a C++ reimplementation of the FaCT
reasoner. The selected ontologies do not contain ABox assertions, nominals or qual-
ified number restrictions7 The results are sorted based on the size of the ontologies.

6 This version was not released as of the writing but the Racer developers provided a
preview version for our experiments since there were significant improvements, especially
for query answering, compared to the latest release
7 Qualified cardinality restrictions are not present in OWL-DL and not supported by Pel-
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Fig. 7. Results for the test cases in DL benchmark suite

The scale is logarithmic to improve the presentation.

The results show that Pellet is not as efficient as RacerPro or FaCT++ for classifica-
tion but still has acceptable performance. The practical difference in performance
seen in these cases is typically not very significant for applications. It is also inter-
esting to note that, even though FaCT++ usually significantly performs better than
Pellet, for the complex Galen medical ontology Pellet is 9 times faster.

Finally, we have evaluated the performance of conjunctive ABox query answering.
Since FaCT++ does not provide reasoning support for instances, we have only com-
pared Pellet with RacerPro. For this experiment, we have used the data and queries
included in the Lehigh University Benchmark (LUBM) [37]. The data generator
in the benchmark creates information about universities, departments, professors,
students and courses. In order to provide a finer grained comparison, we used three
different data sets which contain 1, 3 and 5 universities, respectively. The number
of instances in these data sets are 17174, 55664, and 102368.

In our experiments, we have evaluated three different features: the time it takes the
reasoner to check the consistency of the data, the amount of total preparation time
spent before queries can be answered (excluding parsing and loading time), and
finally the time it takes to answer each query. Figure 8 summarizes the results we
obtained on three data sets. The results show that Pellet significantly outperforms
RacerPro for consistency checking (also note that RacerPro was unable to perform

let. ABox reasoning is not supported by FaCT++ and nominals are not available either in
FaCT++ or RacerPro.
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Fig. 8. Results for conjunctive query answering in LUBM

the consistency test for 15 universities where Pellet spent only 22 seconds). For
this reason, we had to disable consistency checking for RacerPro for query an-
swering. Even without consistency checking RacerPro has a much higher initial
preparation time compared to Pellet (RacerPro builds index structures in order to
perform efficient query answering). Note that preparation time for Pellet is very
close to consistency checking time because there is no other significant operation
that Pellet performs for initialization.

The query answering times for three data sets show that Pellet generally performs
better compared to RacerPro. Query answering times do not change for most of
the queries as the data size increase, with the exception of query 8 and 9. It is also
important to note that RacerPro has two different query answering modes where the
faster mode, the mode we used in these experiments, is not complete with respect to
more expressive ontologies. On the other hand, the techniques Pellet uses for query
answering is based on consistency checking and logically sound and complete for
more expressive ontologies. In the future, we are planning to do a more through
analysis with ontologies of varying expressivity.

These experiments show that Pellet is not as efficient as FaCT++ or RacerPro in
TBox reasoning tasks. However, its performance is still competitive for real-world
applications. We also see that Pellet performs well when reasoning with large num-
ber of instances.
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8 Conclusion and Future Directions

In this paper, we have presented Pellet, an open source OWL-DL reasoner with
a number of unique features. Pellet exhibits a competitive performance and has
already been used in both industry and academia.

In the near future, we are planning to extend the reasoner in six main directions.

(1) More Expressive DLs: Many applications demand a Description Logic beyond
OWL-DL. In particular, qualified number restrictions and extended datatype
representation and reasoning, such as multi-arity datatype predicates [38] and
inverse-functional datatype properties, are especially relevant.

(2) New optimizations, including secondary-storage support for reasoning with
large number of individuals, query answering for ontology management, and
novel optimization techniques based onpartitioning of OWL ontologies [39]
and axiom tracing.

(3) Combination with other logical formalisms. Many Semantic Web applica-
tions, such as multi-media systems, require the ability to reason with space,
time and motion. We are currently working on extending Pellet with various
spatio-temporal representation and reasoning functionalities.

(4) Incremental reasoning: Many applications, such as Ontology Management,
OWL-based multimedia systems or task computing, involve repeated changes
in OWL KBs in a relatively short period of time. For these applications, it is
critical for the reasoner to recompute as little as possible after each update.

(5) Rules: We will continue to evolve our support of rules toward full SWRL
support (focusing on interesting decidable subsets such as DL Safe rules along
the way) and investigate other ways of combining rules with OWL. We intend
this work to follow and support the forthcoming W3C working group on rules.

(6) Non-monotonicity: We plan to extend our support for theK (and relatedA)
operator as well as investigating such extensions as defaults, integrity con-
straints, and various forms of closed world reasoning.

Our initial goal with Pellet was modest and pragmatic: We wanted OWL to become
a W3C Recommendation and we wanted a “real” reasoner we could both use in
our applications and extend at will. OWL is now a Recommendation and Pellet is
a mature, practical,accessibletool. We have found that having (intelligible) source
code goes a long way to demystifying description logic theorem proving. While
there is plenty of room for improving Pellet’s performance both by straightforward
engineering and with new optimizations, it has reached a level that is acceptable for
most use. Indeed, given the utility of Pellet’s unique functionality, it is either the
only choice (e.g., if one uses nominals), or the only choice for everything except
final deployment in a production environment, and even there, it is a good choice.
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