
A MATHEMATICALTHEORYOF COMMUNICATINGPROCESSES

by A.W. ROSCOE,

ST. EDMUNDHALL

Thesis submitted for the degree of D.Phil., Trinity 1982

- - -- - - -- - - -

Contents

Introduction. page 3

Acknowledgments. 6

Chapter 1: An introduction to CSP and its
deterministic model 7

Chapter 2: Recursion induction in the
deterministic model 27

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Continuous predicates as a topology. . . 65

A model for non-deterministic processes. 92

Recursion induction and buffers 117

The master/slave operator. 149

Chapter 7: Alternative parallel combinators. 176

Chapter 8: Assigning meanings to models. 194

Conclusion 268

References 273

Introduction

This thesis is an examination of part of the mathematical

theory of communicating processes. These are studied through

the medium of C.A.R.Hoare's language C.S.P. (Communicating

Sequential Processes). Our main theme is the use of mathem-

atical models to produce correctness proofs for processes,

though several mathematical sidelines are also developed.

The first seven chapters are broadly .concerned with the

construction and use of two mathematical models for C.S.P.,

these being the well-known "traces" model and a related

model which is capable of dealing with non-deterministic

processes in an adequate way.

In chapter one we meet the version of C.S.P. which is used

throughout the thesis. We also meet the first of the two

models; this is a model which can adequately cope only

with deterministic processes. It has the advantage however

that its simple structure allows us to develop the tech-

niques which we later apply to the more general model. We

define various operators over the model which represent

ways of constructing and combining processes. These are

used to produce a formal semantics for the language.

Various results are quoted which show how one can to a

large extent ignore the distinction between processes def-

ined by the formal semantics and objects defined purely

by operators on the model.

Chapter two is an investigation of a class of proof rules

which can be applied to the model. These are all derived

from the basic notion of "recursion induction". We find

that there several different pairs of conditions, which if

satisfied by recursive definitions and the predicates we

wish to prove of them, guarantee the validity of the proof

rules we devize.

Chapter three is a digression into topology. We study the

spaces of allowable predicates generated by the previous

chapter and the topologies which these induce on the space

of processes. We are able to explain many of the results

of chapter two and to generalize several of them.

In chapter four we meet the second and more general model

for communicating processes, which is used throughout chap-

ters five, six and seven. This is able to represent non-

--

deterministic processes in a fairly convincing way. This

chapter is not an extensive introduction to this model,

something which can be found elsewhere (),(), but is

rather an examination of two questions which arise from

the mathematical foundations of the model. The second of

these is especially interesting, since we discover that

the well-definedness of our model is a powerful set-theor-

etictool, equivalent to the compactness theorem for arb-

itrary propositional languages.

In chapter five we see how the work of chapter two can be

transferred to the non-deterministic model with only a few

alterations. We 'see that many total correctness problems

translate naturally into the system we have developed. As

an example we take the predicate "is a buffer" and develop

a calculus for proving it true of processes. We begin our

study of operators defined by parallelism and hiding by

discovering the close connections between a "pipe" operator

and the space of buffers. Recursions via the pipe operator

are investigated and we are able to prove several of them

to be correct (buffers).

In chapter six we deal with an operator which models the

behaviour of a process operating in parallel with a second,

"slave" process, all communications between the two being

hidden. We discover by means of examples that this operator

is a very useful recursive tool for describing potentially

infinite trees of processes. We develop a calculus for

proving correct processeswhich are recursively defined '

using it. We discover an unfortunate possible type of

behaviour in infinite networks and discover methods by

which we can prove it absent.

Chapter seven deals with other paralleljhiding combinators

in less detail, and as an example shows how to construct a

rectangular array of processes. It also deals with the

problem of proving a network free from deadlock. We find

that hiding has little to do with deadlock, and can often

be ignored when studying it. Deadlock is analysed in

cases where it is known to be absent from all small portions

of a network. This work is shown to have special signific-

ance in cases where networks are constructed without loops,

--

though we are als~ able to develop various methods for

~pplying it to more general networks.

As a result of the work done in chapters 1-7 we are equipped

with a powerful calculus for proving properties of the

values assigned to programs in our mathematical models.

What the eighth and final chapter seeks to do is to provide

a framework for the application of this calculus to the

systems which we are attempting to model. We therefore

develop .acalculus for relating models to the systems which

they attempt to model. We see how predicates transfer bet-

ween systems, and how operators over a model may be held to

reliably reflect their implementations in the real world.

We construct a plausible though abstract space of "real"

processes by which to judge our models for C.S.P. We find

that there are several different ways in which we might

interpret each of these. We find that in several interp-

retations some of our definitions of operators do not app-

ear to be readily implementable. Finally we see with the

benefit of hindsight what alterations might be made to

our models and operators to make them have as many desir-

able properties as possible.

Much of the mathematics used in this thesis is rather abs-

tract, especially in chapters three and four. The author

hopes however that its use is justified by the results

achieved, and that it does not obscure too much the tech-

niques developed for the proof of programs.

- - - - -- - - - - - - --

Acknowledgements.

The author would like to thank each of the following, who

have all made large or small contributions to this work,

either by suggestions or through their lectures.

C.A.R. Hoare

R. Milner

D.M. R. Park

C.B. Jones

W. Rounds

S.R. Blarney

In addition he would like to thank Miss J. Scheenen for

reading the text and pointing out his many typing mistakes.

Finally he would like to thank the Science Research Council

and st. EdrnundHall, Oxford for their financial support

during the preparation of this thesis.

-- -

S.D. Brookes

D.S. Scott

J.E. Stoy
P.J. Collins

Chapter 1 :-

An Introduction to CSP and its Deterministic Model

This chapter outlines the version of CSP which is used

in this thesis. We also meet the model for deterministic

processes upon which chapters 2 and 3 are based, and use

it to give a semantics for CSP. This chapter is to a

large extent a summary of some of the work of C.A.R.Hoare,

in whose papers (e.g. (1),(2» the reader can find fur-

ther explanation and motivation for CSP as well as many

simple illustrative examples.

A process is to be thought of as .an entity which commun-

icates with its environment (possibly other processes)

in some alphabet l:of atomic communications or 11events 11 .

Communication can take place only with the co-operation

of all participants, and is symmetric in that there is

no 11sender" and no 11recei ver" of an event. At each point

in the history of a process the~e is clearly a sequence

of elements of r which is what it has communicated with

its environment; this is known as a trace of the process.

We will assume that l:contains basic symbols such as 11a" ,

or 11true 11, or 11isempty" and compound or named symbols

such as "a.true", lib.a" , "?a" or 11!a" (we conventionally

drop the infix dot with the names "?" and "!" which will

usually represent input and output re~pectively). In

addi tion 1. contains a special symbol "j" which a process

communicates to indicate successful termination, and for

which a.J = J.

We denote the set of all strings of symbols by l:*. The

empty string (containing no symbols) we denote by "0".

The string containing symbols a,b,...,z (in that order)

we denote by <ab...~ and the concatenatjpn of strings

v & w we denote by vw.

Usually a,b,c,... will represent elements of l:;v,w,s,t,...

elements of I* and x,y,z,... variable elements' of l:.

A,B,C,.. will be processes and S,T,.. subsets of I. I

will denotel:-{IJ. X* denotes the set of finite strings

of elements of X.

Let us suppose th~t A is a process. We will postulate

that at each point in A's history there is a set X of

events in which it is willing to co-operate, and will

do so (picking one at random) if the environment is also

able to execute any of the elements of X. This set will

vary with time dependent on both the visible actions of

A (namely its communications) and any internal progress

which it makes. It is clearly possible that, depending

on internal choices which are invisible to the environment,

A might 'behave in one of several different ways after the

same visible behaviour. Processes which behave in this

way are known as non-deterministic. We will later (in

chapter 4) meet models which are sufficiently expressive

to deal with this type of behaviour, but for the moment

we will only attempt to deal with deterministic processes.

The criterion for A to be deterministic is that there be

some function F from tr(A) (the traces of A, ~ l:*) to p(l:)

such that for every SE tr (A) the following two conditions

hold.

a) Whenever s is the trace of A then X <;F (s) .

b) Whenever s remains the trace indefinitely then for

each aeF(s) & time t there is some t' > t at which a EX.

This means that whenever SE tr(A) then a sufficiently

patient experimenter will be able to achieve it, so long

as his current trace is some prefix of s.

It is possible to define a partial order on r* by v <;,w

if 3s. w = vs r or equivalently if v is a prefix of w.

If w t- v we say v < w.

The model we choose for deterministic processes is sets

of traces (subject to the conditions below), intending to

identify a deterministic process with its set of traces.

For the moment denote by A the representation of A in the

model. Define B~ r* to be an element of P, the space of

deterministic processes, if it satisfies the conditions:

1.1 a)

b)

c)

B is non-empty

B is prefix closed (i.e. wEB & v<w ~ V E B)

w</'v E B 9 v=<)

- - - -

Every "real" pro<;::ess A satis fies these conditions, since:

a) A can at least do nothing (so0 EA) .

b) If v< w and A has performed trace w there must have

been some earlier time when it had performed trace v.

c) A cannot do anything after it has terrodnated.

The strength of this model applied to deterministic pro-

cesses is that, given a deterministic process A such that

sEA, then the environment, by applying any set Y s .t.

Y n la' 'S<a)E A3 of flJ to A (when its trace is s), can be

sure of eventually getting some response (in Y). This

allows us to express many notions of "total correctness"

of a process solely by reference to its value in the

model P. For example define deadlock as the state that

a process is in when it (a) has not terminated success-

fully and (b) will never be able to communicate with
...

its environmentagain. We can express the predicate 15

free from deadlock", meaning that deadlock can never arise

in a process, in terms of the mode 1 :

D-F(A) == (sEA ~ «3t. s=tu'-,)V(3a. s<a)EA»)

From now on we will largely be studying the model P in

itself, rather than its relation to "real" processes.

Thus from now on A,B,C,... will denote elements of P.

1.2 Lemma

a) With the set inclusion order 11~" P is a complete

lattice with minimal element ~{.;~and maximal element

~ w ,w (J> Iw E 0:-) * 3.

b) The finite elements of P (in the lattice-theoretic

sense) are just the processes with finitely many elements.

The proof of a) follows immediately from the fact that if

o 1= X <;P then UX E P and nX E P. The proof of b) follows
from the fact that if A E P and F!;;;A is finite (not nec-

essarily EP) then there is some finite size BE P s.t.

F~Bc;A.

We will now start to introduce the language and its

interpretation (semantics) within P. We first meet a

few basic processes:

1.3 abort = in} the process which can do nothing

1.4 skip = fO,(J'''~theprocess which immediatelyterm-

inates successfully.

1.5 run = ~w, W<../>\WE (r-)*1, the process which has the
ability to do anything at all.

Note that abort correspondsto the minimal element of P,

and run to the maximal one. Recall that our interpretation

of elements of P is that the environment (external or

another process) is at each stage given a choice of what

it would like to do next. This choice, on the first step,

is between the initials of a process,'those elements of

which are possible on the first step. We write this set

as AO = taErka'>EAJ. Note that the strength of a process,

in terms of the partial order, is measured by the amount

of choice it offers.

For any WE A (A E P) we can define the process t'lhich A

becomes immediately after it has executed the trace w.

1.6 A after w = ~ v I wv EA 3
Note that for any process A E P we have A after 0 = A, and

run after w = run for every w E (r) * .
Before giving a formal semantics for the rest of our

language, we will give an informal explanation and motiv-

ation for each of its constructs. "These constructs take

the form of operators which combine one or more processes

together to form more complex ones.

By "a -+ A" we will mean the process which communicates "a"

on its first step and then actSlike A. This construct

will be the most basic building block of our language.

Along the same lines "x:T ~ A" will represent the process

which inputs some value ("b" say) from the set T of un-

named symbols, and substitutes this value for the variable

"x" within A. "a.x:T -+ Aa will be the same except thatwe

wi11 expect its input to be named by "a".

The process "a.A" will be the same as A except that all

events are given the (possibly additional) name "a".

The process "ADB" will give the environment the choice

of all the communicationsoffered by A and B.

The sequential compositionof A and B, in which B takes

over whenever A terminates successfully, is written AiB.

By (AXllyB) we will mean the process which consists of
A working in parallel with B. All communications of A

- - - - ---

- ----

will be in X, all those of B in Y and all communications

which lie in X n Y must be co-operated in (executed simul-

taneously) by both A and B.

By "A/X" we will mean the process formed by hiding all

occurrences of elements of the set X from the environment,

making them into internal actions which happen without

the control of the environment.

Finally we will include recursion, for which we include

variables.representing processes in our syntax, on the

understanding that all occurrences of these will be bound

by some recursion.

We will now define some of these operators formally.

1.7

1.8

a ~ A =f()Juf(a>w I WE AJ

A \1 B = AU B

(for a E 1:-, A E P)

(for A,BEP)

1.9 AiB = (An (1:-)*)u fwvl Wl'/)EA & VEB3
I

1.10 (~lIyB) = f w I (w /'(XUY) = w) & w~ X e A & wt YE BJn f w ,w(-!> I WE(1:-) ~

where A,B E P, X,Y~1: . I

I

the restriction operator rX is defined

or X =<~, <a)WrX = w~X if a f/.X

= ~a) (WIX) if a E X

1.11 A/X = f w ~ (1: - X) , W E A J

1 . 12 a. A = fa.w I w E A ~

where the operator Ita.It is defined on 1:* by

a.<'''7 = 0, a. ({c~w) = (a.~ (a.w)

We will not be able to define the operators involving

variables properly until later. The following is a list

of easily proved identities involving the above.

1.13

a)

b)

c)

d)

e)
f)

g)

h)

i)

Theorem

AOB = BOA

AD (B DC) = (AD B)OC

(AiB)iC = Ai(BiC)

(A 0 B) iC = (AiC) 0 (BiC)

Ai (B a C) = (AiB) 0 (AiC)

(a 7 B)iC = a ~ (BiC)

(~l/yB) = (Byll~)

(AX"yvz(ByllzC» =
A a A = A

(0 is commutative)

(0 is associative)

(i is associative)

(i distributes to the left over 0)

(i distributes to the right over .0)

(11 is commutative)

((~flyB)XUy"zC) (11 is associative)
(0 is idempotent)

- - - - -------- -- - - -----

j)
k)

(A 11 A) = A.X X
(a -+ A)/X =

provided A ~ X*

A/X if a E X

1)

m)

= a ~ A/X if

(A/XyllzB) = (~Uyl/ZB)/X
(AiB)/X = (A/X) i(B/X)

artX

provided X n Z = ~
provid~d ./ ($:X

These identities will be used frequently and informally

throughout the rest of this chapter and in chapters 2 and 3.

1.14 Theorem

Each of the operators defined in 1.7 - 1.12 represents a

monotonic and continuous function of P or PX P. This

function is also reverse continuous except in the case /X

when X is infinite. (Reverse continuous means continuous

on the lattice with reverse order.)

To prove monotonicity it is sufficient to show (for each

operator f) that it is monotonic in each parameter.

To prove continuity it is sufficient to show that each

operator represents a continuous function of each of its

parameters. That is, f (U D) = U f (X) for each nonempty
XED

directed set DC;P. A function is thus reverse continuous

if it satisfies f (n D) = n f(X) for each nonempty reverse
XED

directed set D C;P.

Each of the cases of the theorem is fairly easily checked.

The failure of reverse continuity for infinite hiding is

illustrated by the following example.

1.15 Example

We will suppose a($:N (the natural numbers) and that

£a)uNC; 1: . For nE N define the process An = ~o) <rn), <rna>I rn~n3.

It is easy to see that D = f~, nE N J is a reverse directed
set with n D = abort but that A IN = a -+ abort for eachn
n EN. We thus have n (AIN) = a ~ aboJS"t.:f (nD)IN = abort.

AED

The difficult properties of infinite hiding will appear

again in a much more fundamental way when we consider the

non-deterministic model in chapter 4. The advantages of

having operators which are reverse continuous will be seen

in 2.46 et seq.

The monotonicity and continuity of the operators will be

very important in defining recursion.

It is necessary here to strike a note of caution. We

have happily given definitions in the deterministic model

p to each of t he operators we have described informally.

Inspection of each of the definitions 1.7 - 1.12 will

show that these reflect to the greatest possible extent

the intentions we set out, in that the resulting sets

of traces seem to be the best possible. This still leaves

the question of whether it is reasonable to expect an imp-

lementor to produce deterministic processes as the result

of applying each of the operators to deterministic proc-

esses. There are in fact several cases where this does

not seem reasonable, in that the "natural" result of an

operator is not in general deterministic.

The first and most obvious of these cases is with the

hiding operator "/X". Consider for example the process

written "(a...b ~ skip) 0 (c... d ~ skip)/[a,c3" (= A, say).

(The elements a,b,c,d of 1:.-are assumed to be distinct.)

It is easy to prove the relation A = (b -+ skip) 0 (d ... skip).

This latter process is one which is invariably willing

(given time) to execute either "b" or "d" on its first

step, at the environment's choice. It is thus necessary

in a correct implementation of the syntax of A that we

should take account of its behaviour after both "hidden a"

and "hidden c". This varies from what one might consider

natural, namely that the process would either carry out

hidden "a" or "e" but not both and that the actions of ttle

process would then .be independent of the consequences of

executing the other one. To implement the hiding operator

correctly with respect to definition 1.11 and produce a

deterministic process it would in general be necessary to

carry out an infinite amount of backtracking. The three

examples below help to illustrate other aspects of this

problem.

a) (a -+b

b) (a -+b

c) A 0(b,

~ skip)O(c ~ abort)/fa,c] :=

-+ abort) 0 (b ~ skip) / fa) = b

skip)/£a1= b'" skip

where A = f (>, (a) , (aar, (aaa> , (aaaa) ,

b ~ skip

... skip

1

The following three features of a process A give rise to

implementation problems in A/X.

a) The choice at ,any stage between several elements of X.

(Illustrated in (a) above and also in the example in

the text.)

b) The choice between elements and non-elements of X at

any stage. (Illustrated in (b) above.)

c) The possibility of infinite sequences of elements of X.

(Illustrated in (c) above.)

While we are using the deterministic model we will only

use the hiding operator in writing processes where these

three conditions are avoided, so that our processes are

reasonable to implement deterministically.

Another operator which gives rise to similar problems

is the alternative composition operator "0". This oper-

ator is intended to give the environment the choice of

the first step symbols of the two processes, the combin-

ation then acting like the chosen process. The problem

arises when the two processes have first step choices in

common. The correct operation of the definition 1.8 would

require the operation in parallel of the two processes

until any time when one of the processes cannot continue

with the executed trace. (An alternative is to back-track

when one of the processes is unable to continue.) This

is clearly inefficient, for there is the possibility of

an exponential growth in effort with the number of "O"s

encountered. There is also the problem (which arises from

both the suggested methods of implementation) of detecting

just when a process cannot execute a symbol. This would

almost certainly be tantamount to solving the halting

problem; and in any case it is possible to find processes

which do nothing for any given finite time before finally

becoming able to communicate (e.g. a process with a very

large number of hidden sYmbols to execute at the start).

It would in fact probablybe possible to implement "0"

deterministically by combining the two approaches above,

running the two processes alternately and trying to make

the one (if either) which falls behind catch up. This is

unfortunately even less efficient than was expected for

the implementation above, for there is now the certainty

of exponential growth. Because of these difficulties

we must make it a rule that in writing expressions which

we expect to be i~plementable we should only use "0" when

we can be certain that the initials of the two processes

which we are combining are disjoint. This can be achieved

(for example) by ensuring that the two processes have

distinct guards, so that the combination looks like

(a -t A) 0 (b ~ B) where a i b.

The last problem of determinacy arises from sequential

composition (;). It occurs when it is possible for the

first process either to terminate successfully or to do

something else ("a", say). If the second process has

the ability to communicate "a" on its first step then we

have a problem of a very similar nature to the one which

arose with "C". To implement 1.9 correctly it would be

necessary to run both processes in parallel until it

could be detected that only the first or second process

has the ability to continue with the trace. This problem

of ambiguity gives rise to exactly the same difficulties

as arose with "n" above. The rule which avoids this

problem is to avoid creating processes

essful termination anything other than

at any point in their history at which

whi ch make succ-

the sole option

it is possible.

The following illustrate the possible difficulties with

the implementation of "0" and ";".

a) (a.., A) 0 (a -+ B)

Here it is necessary to determine the result of

executing both the left and right "a"s to correctly

implement this process.

b) (skip 0(a ..,b ~ skip»; (a ~ b ~ a ..,b ..,.skip)

There are two ways in which this process can execute

any of the traces la), (ab>, (aba> , (abab>. If the

second process were prepared to carry out an infinite

sequence of "a"s and "b"s this conflict would never

be resolved.

In 1.19 we will meet a more interesting example of a

process written without regard for these rules. (For

its construction we will need recursion.)

We will find that the model introduced in cnapter 4 giveS

more natural semantics to each of the above operators,

avoiding the necessity of imposing strict conditions upon a

-- -- -- - --

process to ensure.that implementation is possible. Indeed

we will find that the only points at which the semantics

in the two models differ fundamentally are those where the

difficulties described above occur, and also in the case

of ill-definedrecursion (whichwe have yet to meet).

This is true in the sense that (except in these cases) if

we combine the representations in the more advanced model

of one or more deterministic processes the result will be

a deterministic process congruent to the result we would

have obtained in the deterministic model P.

We must now introduce the various operators involving the

use of variables representing processes and elements of L.

Unfortunately the informal approach we have adopted so

far, namely the introduction of our language purely as a

collection of operators on P, seems to become inadequate

here. We will thus recast our previous definitions and

introduce the new ones within the framework of a formal

syntax and semantics for C.S.P.

We first meet the various syntactic domains we will need.

1.16 Syntactic Domains

A ::= skip I abort I a -+ AI x.., AI a.x -+ AI x:T -+ A I a.x:T -+ AI

AD A I AiA I (AXII0) I A/X I a.A r B'I

reci (B1,. . . ,Bk) . (AI' . . . ,Bk) I 11infinite mutual recursionn

(the syntax for infini~e mutual recursion will be

found later, in 1.18)

B'::= BIB
g

(explanation of B will be found in the
g

definition of infinite mutual recursion)

T ..-. .-

X ..-. .-

~ I fa11fxJI U I TlJT" TnT' T-T I....

~'\a~l[xJIut xux I xnx I X-X I a.X L...

A E Exp (the C.S.P. expressions)

a E L- (alphabet)

B E:PV (process variables)

B 'EPV' (process variable calls)

x EAV (alphabet variables)
TElA (expressions for sets of unnamed symbols)
X EGA (expressions for sets of general sYmbols)
U EBA (basic subsets of £)

We will assume that we are initially endowed with the sets

L, PV, AV and BA and that they satisfy the condition that

all the objects created from the above syntax are distinct

if they have distinct parse trees.

We can only expect elements of Exp to represent elements

of P if they do not depend on the value of any variable.

(One would expect such expressions to represent functions

of such variables.) One might expect an expression to

depend on the value of a variable only if there were some

occurrence of it within the expression which was not bound

to some construct which assigned ita value. For example

we would expect .. a .,X + skip" to depend on "x" but not

"x:T ~ x .. skip". It is ep.syto construct formal defin-

itions of the notions of free and bound variables in an

expression. Informally an occurrence of process variable

B will be bound in A E Exp if and only if there is a syn-

tactic subcomponent of A which contains the occurrence and

has the form recj(...B...) .(Al,...,AR) or the equivalent
in infinite mutual recursion. Alphabet variables will be

bound by the constructs"x:T -+ A" and "a.x:T -+ A".

1.17 Definition

a) Alphabet variables

Suppose x E AV. It is easy to construct a formal recursive

definition of the phrase "x occurs in X" (for X E GA) meaning

that the variable "x" occurs in the syntax of "X". The same

can be done for "x occurs in T" (TE IA) and "x occurs in BI"

(B IE PV I) .

Given these definitions one can construct a formal defin-

ition of the terms free and bound variables.

x is neither free nor bound in skip or abort.

x occurs free (bound) in a ~ A if it occurs free (bound) in A.

x occurs free (bound) in a.A if it occurs free (bound) in A.

x occurs free in x ~ A and a.x -+ A.

x occurs free in y -+ A and a.y -+ A (xfy) if it occurs free in A.

x occurs bound in y ~ A and a.y ~ A if it occurs bound in A.

x occurs bound in x:T -+ A and a.x:T .. A.
x occursfreein x:T -+ A and a.x:T .. A if x occurs in T.

x occurs free in y:T ~ A and a.y:T ~ A (y~x) if x occurs

free in A or if x occurs in T.

-- - -- -- - ----

x occurs bound in y:T 4 A and a.y:T ~ A (y#x) if x occurs

bound in A.

x occurs free (bound) in AI] C and AiC if it occurs free

(bound) in either A or C.

x occurs free (bound) in recj(Bl,...,Bk). (Al,...,~) if
it occurs free (bound) in any A. .

l.

(similar clause for infinite mutual recursion)

x occurs free in A/X if x occurs free in A or x occurs in X.

x occurs bound in A/X if it occurs bound in A.

x occurs free in (AxllyC)if x occurs free in A or C or if
x occurs in X or Y.

x occurs bound in (AX"yC) if it occurs bound in A or C.
x does not occur bound in B'.

x occurs free in B' if x occurs in B' .

b) Process variables

The definition of free and bound occurrences of process

variables is very much the same as the above. '!'hecritical

clauses are the following.

B

B
occurs bound in recj (...B. ..).(AI'... ,~)

occurs free in recj(Bl,... ,Bk). (AI'... ,~) if it occurs

free in some of Al,...,~ and B#Bl & ... & B#Bk.
occurs free in B.B

B occurs free in B if B E rge (g) (see 1.18).g
The clause for infinite mutual recursion will be found in 1.18.

We can now define Proc, the space of process expressions,

to be the set of those elements of Exp which contain no

free variables of either kind. We will expect to be able

to construct a semantics for Proc within P.

In order to be able to assign a value to general elements

of Exp we will need a state u which will be a mapping from

variables to their values (u ES = (AV -+ 1:1 X (pv -+ P)).

Our semantic functions will be the following.

1.18 Semantic Functions

t: Exp -+ S -+ P

V : GA et S -+ <r(1:)

{,l: lA -+ S -+ cp (1:)

"$: PV'~ S ..,P

The definitions of U and Y are fairly obvious and are

omitted. The definition of Sis delayed till the section
on infinite mutual recursion.

The definition of ~ is as follows. Where a definition

appears circular it is because we are using the versions

of our operators which were defined (over p~ in 1.3 - 1.12.

a) E[skip] (1 = skip

b) t[abort]a = abort

c) c:U:a ~ Al a = a ... t[A] a

d) t[x A:na = a[xJl -+ ~[[A]}a

e) ~[a.x -+ A]a = a.(aITxD) ~ ~[A)a

f) €[x:T ~ A]a = ufa ...CU:A:na~/~ I a€U[T:na~ u fOJ

(last term required in case tAU:T]ais empty)

g)

h)

't[[a.x:T -+ A]a = U~ a".b ... C[AIIatb/xl f b E U[T]aJ u £(;1

~[[AQ C]a = E"[AJa[J ~[C]a

f: [A iC])a = ~ITA]a it[C1a

~[(AX"yC):n a = (tIA:naX*" y*C[C]a) I where X*=V[X]a & y*=V[Y]a

EU:A/X]O" = a:[A:n(1) / (V[X])<5)

~[a.A:nCT = a. (ttIA]cr)

E'JIB']~ =5[B']a
- n k

t:n:rec. (B l,... IBk)' (Al,...,A.)])0"= (U H <!0J » .

J Uk n=o J
where H:pk...pk is the function defined

i)

j)

k)

1)

m)

n)

In the above 6 [a/xJ represents -the state which is identical

to (5 except that it maps x to a. 6[C/B] is the state ident-

ical to 6 except for mapping B to C.

0) Suppose that A is some set of indices and that we have

an injectivs mapping from Ato PV I written BA (AEA) .

Suppose further that (fl"",rk) is a partition of A.
Then we allow recursive definitions of the form:

B9 I where A E r1 =7 BA ~ Al
.

.

A E fk =} BA~ ~
It is assumed that the constants (E ~-) used in the cons-

truction of the A. may depend on1

the BX have the form B ,for someg
free aiphabet variable(s).

A, and that the calls of

function g'of A and any

We will assume that these functions carry with them a

syntactic check on their ranges, to enable accurate dete:

mination of which process variables are free in an expres-

sion of the form B. Usually the functions associat~d withg
the above recursion will have ranges~A, though sometimes

a call may range over several nested recursions.

We will assume no definite syntax for the space of functions

"g" making calls of process variables, since it clearly is

heavily dependant on the natures of A andL. We will how-

ever assume that there is some procedure for determining

which alphabet variables are free in any B , and also thatg
there is some procedure 7Tfor evaluating any g in any state.

Typical functions will be (i) constant functions; (ii) iden-

ti ty functions on A and (ifL~A) on ~; and (iii) (if A = N) "+1",

"-1" etc. An alphabet variable will occur bound in the

above recursion if it occurs bound in any of the A., and free1.

if it either occurs free in any of the A. or in B. All the1. g

elements of fB~I~€Ajoccur bound together with any other proc-
ess variables occurring bound in any A.. A process variable1.

occurs free if it is not in ~B~I~EI\1and it either lies in the
range of g or occurs free in any A. .1.

We can now define the

calls: S[BDa = a[B:Q

function S which evaluates procedure

5[B]a = a!I7T(g}a]g

Finally we can define t [IB , where :nug

= a[I1l(g)u]J if 7r.(9)aifB~'~€A1;
00

= (n~oHn(f<>jt\»~ if 1l(g)a = B~ (~EA)

where pA is the function space A -+ P (which is a complete

lattice because Pis); and H:pA. pA is defined:

H (f)~ = EITAl]a*, where ~E fi, a* = a[C/B] is the state ident-

ical to a except for mapping B~ to C~ for each ~EA, and Ai
is the expression obtained by substituting "~" for the para-

meter "A" in A. .

1.

Note that to be fully rigorous we should be rather more

careful in our treatment of the parameters A used in this

type of recursion. If we had been more pedantic we could

have introduced a third class of variables representing

these parameters; these would have their free occurrences in

expressions representing elements of L and in B s, and beg
bound by the recursive definitions of the "schema" kind (1.18(0».

- -- - -- - --- -

1.19 Examples

(i) An integer register

Suppose that fiszero, up, downju set.N<;L (N = (0,1,2,..3).

Take.l\. (the set of indices) to be NufuJ (U'fN). An initially

undefined register is represented by

R, where R ~ set.x:N + Ru u x
R <= (is zero ~ R) [J (up ~ RI)o 0

o (set.y:N' ~ R)Y
xE N -~03~ R 4= (down .. R 1) [] (up" Rl+)X x- x

o (set.y:N ~ R)Y

(ii) A stack

Suppose that T is some set of basic symbols, that ?Tu :TSL ,

and T*=J\. An initiallyempty stack of type T is repres-

ented by
where S *'<> ?x:T ... S

<x>

... S)
(X'>w

"") S)v
where w =<Y'v

(ii~) Palindromes

Suppose that ra,b,A~k then the following process is prep-

ared to terminate successfully if and only if its current

string is a palindrome of "a"s and "b"s.

P *= skip a (a ..., skip) n (b ~ skip)

o (a ..,Pi (a ..,skip» D (b ~ Pi (b -t skip»

Note that none of the above examples is completely strict

in its use of recursive syntax, though it is perfectly clear

in each case what the correct syntax is. From here on we

will habitually use abbreviations such as the above, on the

understanding that we could translate into "correct" syntax

if challenged.

Note how the palindromes example breaks two of the convent-

ions designed to make a process implementable in a reason-

able way. The difficulties in this case seem to have more

to do with the nature of the problem than with "bad prog-

ramming" since it is possible for some strings to be init-

ial segments.of palindromes in several essentially different

ways. For example (ababa), in addition to being a palin-

drome itself, is an initial segment of <abababa), <abab ab ab a>

and all the longer ones of which (abab a> is less than half.

- -- --- - -

Many more examples will appear later, especially in chapters

two, five and six.

The notation used in conjunction with the above formal sem-

antics for CSP is rather cumbersome to use in practice. In

future we will habitually identify the syntax of a process

with its value in our model. The following is a sequence

of easily proved results which justify this identification

(in the case of expressions with no free variables of any

type)..

1.20 Lemma

(i) If AE Exp, ae,E- and x is an alphabet variable which

does not occur free in A then E. ITA],," = .fP:A~ta/xl for every
state if.

(ii) If AE Exp, fE pA. and ~ E PVA is a vector none of whose

components occurs free in A then f[[A]O'" = f[A]a-rf/~1 for

every state C' .

1.21 Corollary

If AE Exp has no free variables then E'O:A]cT = tCI:A:D;o for all

states(1' and.!' .

If Al and A2 are elements of Exp let us say thqt Al= A2 if

t:ITAlI/o- = 'E'[A2I/C" for all statesd' .
1.22 Lemma

Clauses a - i of 1.13 remain true if el~ments of Exp are

substituted for elements of P (etc.) and = is substituted

for = throughout. Clauses j - m remain true if the stated

conditions are true for all states (e.g. clause 1 remains

true provided Vn:X]crl1VITZ]eT = ~ for all a') .

Additionally:

1.23 Lemma

If Al ,A2 ,Ce Exp, Al == A2
of C, then the result of
satisfies C'~ C.

and Al is a syntactic subcomponent

substituting A2 for Al in C (C',say)

n) x .. (B i C) - (x B) iC , a.x ... (B i C) - (x .. B) iC

0) x:T(AiC) - (x:T B) iC if x does not occur £ree in C

p) a.x:T ... (AiC) - (a.x:T'" B)iC
..

1.24 Lemma
A A 4

If AE Exp, cs-E S and ~ E PV then the function H:P .. P def-

ined H (~) = f([A]cr[~/~] is monotonic and continuous.

1.25 Corollary

Each recursively defined process satisfies its defining

equation in the following senses:

a) fa:recj (Bl, . . . ,Bk) . (AI' . . . ,~)]o- .= t:([AjDd[Cl/B11 ... [~/BJ

where Cr= CITrecr(Bl,.. ,Bk) .(AI'.. ,~) DO"'.

b) In the recursion

([rl,. ., rJ a partition of some

indexing set A)

. . .

. . .

A E rk ~ BA ~ ~
we have t' [B , where Der = t([A~ JIc1[C/B] if 11"(g)O"" = BKIk IfE rj

9 1 --
where Cp = C[BI-" where Do- and Ai is the element of Exp

obtained by substituting the value "K" into the parameter "A" .

1.26 Lemma

If all free occurrences of Bl,..,Bk have the form of simple
calls of process variables (i.e. "B" rather than "B ") andg

has no bound occurrence of any variable which occursif A.
J

free in any of theA. then1

recj(Bl,..,Bk). (Al,..,Ak) = Ajrci/B~ ...[Ck/BJ

where C~ = recr(Bl,..,Bk) .(Al,..,~) and syntactic substit-
ution for (free occurrences of) simple calls of process

variables is defined in the obvious way.

1.27 Lemma

If in the recursion of 1.25(b) we have

(i) 'for all states 0", n(g)O"EfBplpE ri1 ;
(ii) A. contains no bound occurrence of any variable which1

occurs free in any of AI,..,~ ;

(iii) ~e only occurrences of BI-'(I-'EA) in Aj are free and

of the form Bh for some h s.t. rge (h)~ A ;

then 'B , where ' = A~, where A~ is the expression obt-
9 , 1 1 ,

ained by substituting Bh, where... (usual clauses) for all

calls of process variables s.t. rge (h)s A .

The conditions on the form of recursive calls within proc-

esses could be relaxed somewhat in 1.26 and 1.27, but this

would be at the expense of simplicity and the extra cases

included would very rarely arise in practice.

From here on we will identify elements of Exp with no free

variables with their unique (by 1.21) counterparts in P.

For this type of expression we thus identify "=" (equival-

ence over Exp) with actual equality over P. We are enabled

by 1.22 - 1.27 to manipulate these expressions and their

subcomponents with a great deal of freedom. Subject to

a few conditions on the use of variables we can treat the

components of an expression very much as though they were

elements of P, and recursive definitions very much like

fixed point equations over P and its product spaces. We

can thus practically forget the formal semantic definition

of our language when doing manipulations, confident that.

we could fully justify all of them if challenged.

There is a clear ambivalence in our attitude to constructs

in our language,which is brought about

of elements of Exp and elements of P.

can think of an expression as a formal

can only be given a value by reference

ion and a state. On the other hand we

by the identification

One the one hand we

piece of syntax which

to a semantic funct-

can think of it as

being an operator dependent on its free variables; there

being a class of results (1.20 - 1.27) showing these two

approaches to be congruent. Although from here on it is

the second of these two ideas which will dominate, there

are several important uses for the more formal approach.

The most obvious of these is that it enables us to define

precisely what we mean by any construct, however involved.

A second reason is that there are other, similar languages

which are "almost impossible to define without "states" and

some kind of formal denotational semantics. The language

thich we have adopted is very rich in its potential for

parallelism and recursion, but lacks such features as ass-

ignment to variables (other than by communication with

other processes) and conditional statements. The choice

of language made in this chapter largely results from the

fact that most of the work in the subsequent chapters chap-

ters is chiefly concerned with parallelism, recursion, and

the connection between the two. The introduction of further

constructs such as those mentioned above would have tended

to intr duce extra cases into our arguments (many of which

are complex enough already). It is not difficult, either

in the deterministic model P or the nondeterministic model

we meet in chapter four, to devize semantics for languages

with more conventional constructs (e.g. assignment, "if,

then, else", less rich recursion) by simple adaptation of the

formal semantics we have met in this chapter. Having done

this one can prove congruences between the languages and

thereby apply results obtained about one to the other.

1.28 Example

In the language we use assignment to variables is often

modelled by elaborate subscripting in mutual recursion,

and conditional statements by "0". For examples of the

former see 1.19 (i, ii)i for examples of the latter see

6.9. The following example represents a process which

inputs a succession of symbols from some set T and after

each one outputs the largest one it has received so far.

(We assume that T is endowed with some total order < , and

that the syntax for lA is extended to encompass the usage

below.)

A, where A ~

x€ T '*B ~x

?x:T ... ~x ~ Bx
(?y :f y I y> x1 ~ ~ y ...

o (?y: [yly~x} ~x

B)
Y

~ B)x

Additional combinators

From time to time we will want to use combinators additional

to those which we have already met. These will be defined

over P on the understanding that if the syntax introduced

in 1.16 were extended to include them then the semantic

function C would be extended in the natural way: if op is

a (unary) operator over P and Q2 is the syntactic object

intended to model it then t[Q2(A)]<T = OP(tII;A])cr). A few

operators are introduced in this way below.

(i) If f:~-LUE*J is a function such that f-l(v)s;f/jthen

one can extend f to 1':* by the rule:

f(<'» =0 i f(w(a,» = f(w) if f(a) = *i
f(w<a» = f(w)<f(a» otherwise.

One can now define an operator on P by

f-1(A) = ~w E run , f(w)E A) .

For example if XgL and fX is the function defined
f(a) =a ifaEXi f(a) =* otherwise

then f~l(A) is the process which behaves like A in the set X
and is prepared to do anything outside Xi one can think of
-1. '

I

fx (A) as A ignoring (E - X). Note that (AXlyB) =
(XVY) * n f~l (A) n f;l (B) .

(ii) If f is any function of the above type it can be ext-

ended to an operator over P directly:

f(A) = ff(w) I wE A] .

For example if "a" is any name used for elements of E we

can define a function strip(a) on E as follows:

strip(a) (c) = c if c fja.L:

= d if c = a. d for sorne dE£: .

Regarded as an operator over P strip(a) is the operator

which removes the name "a" from any of its operand ',scomm-

unications which have it. This operator can be combined

with others to construct some useful combinators. For

example if T is some set of unnamed symbols and Tv?Tu~TS~

we can define a "pipe" operator ">'>"which is intended to

take two processes which communicate in ?TU~T, join the

inputs of one to the outputs of the other, and hide the

resulting internal communications:

A) B = (strip~ (A)TU?TUTU~Tstrip? (B» IT

This and similar operators will be studied in some detail

in the later chapters.

-1
The two types of operators described above (f and f) are

known as alphabet transformers. Note that for all allowable
-1

functions f we have f (run). = run and f(abort) = abort.

- - - -

Chapter 2 :- Recursion Induction in the Deterministic Model

Recursion induction is the proof rule:

If in a recursive definition of a process we can prove ~ome

property true of the process by assuming it true of all

recur8ive calls, then we can infer the property true of

the process.

In the model described in chapter 1 the above rule can be form-

alised thus:

2.1 In the (mutual) recursive definition A = F(A), where A- ~

i~ a vector of processes in P~and F:P~ ~ P~, if R is a

--predicate on P~such that VB. R(B) 9 R(F(B» then we can~ - -

infer that R(A) holds (where A = fix(F».~

In this chapter we will examine the validity of this rule, give

examples of its use and show how it can be extended in several

directions. The rule as it stands is not universally valid.

~low are some counter-examples which will motivate conditions

upon F and R to en8ure validity.

2.2 The rule 2.1 is completely without the base case u8ually

found in inductive proofs. It is therefore po~sible to "prove"

the predicate "false" true of any process whatsoever.

2.5 Of the process A = a ~ A we could proye the predicate

"every trace of A can be erlended to include a "b" If.

In 2.2 it is clearly the predicate which is at fault. Any pred-

icate which is not equivalent to "false" is satisfiable in the

sense '3!. R(~J. It is this condition that will represent the

base ca8e of our inductions. In 2.3 it is clearly ~he recursion

\-lhichis at fault, and under the assumption that "=C" i-sa valid

predicate this must also be the case in 2.4. In 2.5 the recur-

sion is very straightforward and well-defined so we must a8sume

that the predicate (with its implicit existential quantifier) is

~f~t.

2.3 Of the process A + A we could prove any predicate.

2.4 Of the process A + A D B (B some fixed process) we could

prove "A = CIf for any process C:2 B.

There are several pQssible pairs of conditions on predicates and

functions which, along with satisfiability, can be shown to make

the rule 2.1 valid.

We firstly examine the most commonly useful of these. Define

the notion of restriction of a deterministic process to strings

of length n or less as follows:

2.6 Atn = tWEA l'w'~n 1

This can be extended to vectors of processes in ~ by pointwise

restriction:

.A.
for A E.P

...

These definitions give rise to some obvious results:

2.8 Lemma

a) A E. P => At'o = abort

b) A ~ pIL =} (At n)t m = At'min(n,m),;a _

c) (a "">A)tn+l = a ~ (Al'n) if a€~, AtE.P

d) ~GP-A.~A\. =U«!tn)')..) if '>-~.A."=0

Suppose F:pA~ p~, define F to be constructive if it satisfies

and non-destructive if it satisfies

Informally these definitions mean that by looking at the result

of applying F to the n-step behaviour of A we can deduce the-

n-step behaviour of F(!) in the case of a non-destructive F and

the n+l step behaviour in the case of a constructive F. From the

point of view of recursion a constructive F would seem to be a

desirable thing, since then one can alw~s guarantee to be able

to deduce the behaviour of fix(F) up to any finite time from only

finitely many iterations.

2.11 Lemma

)

"'- ~ .A- JI... .

a If F:P ~ P and G:P ~P are both non-destruct1ve then so are

FoG and GoF.

b) If a function is constructive then it is non-destructive.

c) If F:P~~ P~ is constructive and G:P~~ pJLisnon-destructive

then FoG and GoF are both constructive.
./- .A.-

d) If F:P ~ P is constructive then it has a unique fixed point.

- - -

proof

a) F(G(!»tn = F(G(!)tn)tn (by nondestructiveness

= F(G(Atn)t n)~n (" ",

= F(G(Atn»tn (" "...

b) F(A)tn =(F(A)tn+l)t'n (by 2.8(b)... ...

=(F(!t'n)tn+l)t n

= F(At n)t n~

c) F(G(A))tn+l = F(G(A)t n)tn+l
,. ..,.

= F(G(Atn)t n)t n+1J'

= F(G(!tn»tn+1

GoF is very similar to this.

of F)

" G)

" F)

d) Suppose F has two distinct fixed points A & B.- -

2.8 (a) & (d) we have Ato = Bto and 3n. Af'n t~

there .is some m such that Atm = Btm but Atm+1
... - ..-

But then Atm+1 =F(A)tm+1 (as A = F(A)), --
= F(!tm)rm+1 (as F is constructive)

= F(Btm)t-m+1 (Btm = Atm)... ...'"

= F(B)tm+1 (as F is constructive)
..

= ~t"m+1

Then by

Btn. Hence
...

., ~m+1.

contradicting assumption

Thus F must only have one fixed point (it has at least one

by Tarski).

Now suppose that R:pA~ ltrue, fa1se1 is a predicate. Define

R to be continuous it it satisfies

or equivalently

2.13 VA. (Vn.3B. (Atn = Btn) & R(B» ~ R(A)- , ,.. """ ...

(Later this will sometimes be termed weak continuity to contrast

with another notion which will be introduced at the end of this

chapter.)

Informally a predicate is continuous if, for every & such that .

R(B) does not hold we can be sure of this after some finite time....

Observe that the predicate of 2.5 does not satisfY this as at

any finite time the "b"s might be "just around the corner".

" "

" "

)

2.14 Theorem

If F:pA~ ~ is a constructive function and if R is a conti-

nuous satisfiable predicate then rule 2.1 is valid.

(i.e. (V!!. R(~) ~R(F(~») ~ R(fix(F»)

proof

Since R is satisfiable there is some B such that R(B) and (by 2.8 (a»-

B~o = Aro (where A = fix(F». Claim that for all n we have... - ...

R(Fn(~» & (Fn(~)tn = ~tn). This is true when n=~ so assume

it true for n.

Then Afn+l = P(Atn+l (as F(A) = A)-

= F(Atn)~n+l (as F is constructive)...

= F(Fn(B)tn)tn+l (by induction)

= F(Fn(~»~n+l (as F is constructive)
... .

= Fn+l(B)tt"l-tl as desired...

also completing induction

Hence .the above holds for all n. Thus by 2.13 (since R is

continuous) we must have R(A), as desired.-

This pair of conditions is useful ~ince they normally hold

of well-defined recursions and predicates we wish to prove

of them and alsa because there are some simple rules for

checking that they hold.

2..15Lemma

The following are all non-destructive functions of their

variables:a ~A , A{JB , AjB , (AX"yE), a.A .

The following are constructive functions of A:

a ~A

BjA when /1- BO

(BXttyA) when Y S X and B°f")Y= ~

The proofs of all these results are elementary and follow

directly from the definitions of the operators.

For example (Bj~t'n = £w \,3 v.w=v/ & WEB & lw\~n1

u tWV \ wJE.B & v~A & v +,') & Iwv/" n3

(in line 2 the case v=<.>is:ihcluded in line 1)

~ iw\l.3 v.w=vJ& w~tn1Ul wv \ wJE Bln & V€Atnl

C. (Btn);(Atn)

~ BjAtn ~ «Btn) j(Ain»tn (2 followsby monotonicity)

We can now combine this lemma with 2.11 a&c to give the

following result:

2.16 Theorem

Suppose that the function F:~~ ~ is such that each compo-

nent of F(!) is a syntactic expression involving only expres~

sions independent of ! (such as skip and abort), "~"s and
the combinators a ~ B, a?x:T , B(x), ?x:T ~ B(x), B;C, BUC,

a.B and (BX\\YC). Then provided that every recursive call

of an A~ is guarded directly (as in a ~~) or indirectly

(as in a ~ (A~B)) the function F is constructive.

The hiding operator A/X is not non-destructive so we must

be careful when we use it in a recursive definition. There

are important cases where the (Alla::B) and (A~)B) operators

are constructive and non-destructive. These will be examined

later on.

2.17 Examples

The following recursions are all constructive:

a) A ~ (a ~ A) Q (b ~ skip)

b) B ~ (?t -+ T)0(?f ~ F)

T <= (?t ~ T) 0 (?f ~ F) 0 (t ~ T)

F ~ (?t -+ T) n (?f ~ F) 0 (f ~ F)

c) A ~ «a -+ (AD (b ~ skip»)X HyA)Ob ~ A

where X = ~ a, b,1J , Y = [b,/~

None of the following is constructive:

d) A ~ (A IJ a ~ skip)

e) A '= a. A a a -+ A

f) A 4= (a ~ A)d (B;A)

B ,=(a ~ skip)D A

We will come back to the case of iterated recursions (i.e

the body of a recursive definition including a recursion)

later.

We now turn our attention to the classification of continuous

predicates. The following is a list of the classes of pred-

icates which can easily be shown to be continuous. Some of

these classes can clearly be derived from others. In the next

chapter we will examine the continuous predicates as a top-

ology of the space P which will yield more insight on them.

2.18 Theorem

The following predicates are all (weakly) continuous:

R(!) = (i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(x)

(xi)

(xii)

(xiii)

A~ = B

A~ = AfJ

A>. C; B

A}..~ B

,~ A,.,
A~ '# B if there is an upper bound on [twllwEB1

A~ is deadlock-free

wEA).~ pew) where p is any predicate on ~ *

wEA)..+p «A).after w)o) if p are.'f)redicateson~«)w w

Rl (F<,~» if 3g:N ~ N s.t. \f~.V'n.F(~)tn = F(~rg(n»rn

(F monotonic p~ l' and Rl predicate on P'")

F(!t~ B for any continuous F:PJ.~pr

1\ R - (A) for any set r
~~-""'ti ...

RI (~)V R2 (~)

where B is any constant process and Rl' R2 & R1 are all cont-

inuous predicates.

example proofs

(i) If (~f B) then either~w. wVi>. & wfB

or-:Jw. W1AA & wEB

In either case if we put n = Jw{ then qtn = ~r n +C)..F B

so C~~ ~ Ctn = A~n ~"(G)..= B)~

(vi) Observe that C~P ~ (C = B ~ Ctn+l = B) where n is the

upper bound upon fJwl{wtBl since either Ctn ; B or C

contains some ~tring of length n+l if C '1= B.

Thus A~= B =,>Vc.t(ctn+l= (A~)in+l) ~ (C = B)}

(x) "1R1(F(~J)~3n. ~tn =F<.~)tn ~ 1R(!!)

~ F(B)t n = F(A)tn +'R(F(B»- - -

but Bt"g(n) = Al"g(n) ~ F(B)t n = F (A)tn~ M ~ ~

so Btg(n) = Af'g(n) ~ 1R(F(B»M ~ _

- - - - - - -

The s~tisfiability of predicates is very often obvious. The

examples (i) - (viii) on the previous page fall into this

category (provided, in case (viii) that p~~ holds, though if

not the predicate is not satisfiable as every process contains

(). Also (xti~ is satisfiable if one of its components is,

and (xii) is if each of its components is and they all refer

to different components of!. A method for getting round

this last requirement (that all the ~ ~hould be independent)

will be indicated later. (xi) will be satisfied by abort~ if

it is satisfiable. The cases (ix) and (x) are more difficult

and it is necessar.y to examine their individual instances.

Often when it is not easy to prove a given predicate of these

forms satisfiable it is possible to break it down into two

or more sections and prove each of these to be true of fix(G)

(where G is the

prove F(fix(G»

F (fix (G))S :s.

function of the recursion). For example to

= :sit suffices to prove F(fix(G»?:S and

It is now po.ssible to give some provably valid applications of

rule 2.1.

2.19 Example (C.A.R. Hoare)

We attempt to model an integer counter in two ways. An integer

counter will be ex~ected to communicate in the alphabet

~up, down, iszer01. It will always be non-negative, so when

it has value zero it will not accept a "down" instruction, and

it will only communicate "iszero" when it has value zero. The

instruction "up" will increase its value by one, the instr-

uction "down" will reduce its value by one and "iszero" will

not affect its value.

Our first attempt is by mutual recursion (withA = N)

COUNT 4= (iszero ~ COUNT) 0(up -+ COUNTl)o 0
COUNT

l~ (down ~ COUNT) 0 (up -, COUNT
2)n+ n n+

Of these processes in isolation it is possible to prove

several properties without too much difficulty, notably that

each COUNT is deadlock-free and that wE COUNT ~ ups(w)+n~downs(w)n n
(where ups and downs have the obvious interpretation). This

second property is just the conjunction of independent cases

of 2.18 (viii), as the first is of cases of (vii).

- - - - - --- - - - - -

For the 8econd attempt we will first construct a process

which terminates successfully after inputting one more "down"

than "up"s.

POS <? (down - skip) a (up ~ POS;POS)

(If POS inputs "down" on its first step it terminates, but

if it input s anJ "up" it must subsequent ly input two more

"down"s than "up"s.)

We can now use this process to define an integer counter

with initial value zero.

ZERO If:(iszero ~ ZERO) n (up ~ POS;ZERO)

(ZERO will accept "iszero" and remain unaltered, or accept

"up" and become ZERO again after inputting one more "down"

than "up"s.)

It is an immediate consequence of 2.16 that all the recursions

defined above (~, POS & ZERO) are constructive. Also if

we define C ::ZERO, C 1 ::POS;ZERO then the predicateo n+
R(A) = Vn. A :: C is continuous and satisfiable (by 2.18 et seq).- n n

Claim that ~ satisfies R. To prove this it is now suff-

icient to prove R(A) ~R(F(A» where F is the function of the

COUNT recursion.

Suppose R(~J

Then F(A) = (iszero ~ A)0 (up ~ Al)- 0 0

= (iszero ~ ZERO) 0 (up POS; ZERO) by assumpt ion

:: ZERO=Co by definition of ZERO

F(A) 1= (down ~ A) IJ(up ~ A 2)n+ n n+
= (down -+ skip; C) II (up .. POS; POS; C) by assumpt ionn n

:: «down ~ skip)D(up ~ POS;POS»;Cn
:: POS;C by definition of POSn
= C 1n+

This completes the proof. Thus in particular we have proved

that ZERO = COUNT , so the two processes we have defined areo
essentially equivalent.

2.20 Example: Buffers

Define a buffer to be a process which accepts input from some

set T and later outputs i~ in the same order. We can express
*

this condition formally as: B is a buffer if B S (?T U! T)

anQ.YE~ ., ins(w)~ outs(w), where ins(w) = strip?(wt?T) and

outs(w) = strip~(wt~T). 'This condition, being of type (viii)

only represents a form of partial correctness (it is satisfied

by abort). If we were in addition to demand that B be free

from deadlock this would eliminate abort but not other path-

ologicalcases like B 4= ?a ...B which can only input "a"s

and can never output at all. One condition which seems to

be satisfactory in all respects is the following:
* .

wEB ~ WE (?TUT) & ins(w)~outs(w) (i)

& ins(w)=outs(w) ~ (B after w)o = ?T (ii)

& ins(w»outs(w) ~ (B after w)o n!T 1 ~ (iii)

The interpretation of line (ii) is that an empty buffer must

be prepared to accept any input, and line (iii) means that a

non-empty buffer must be prepared to output. The fact that

this output is correct is implied by line (i).

That the above predicate is satisfiable is by no means obvious.

However each of the lines individually is ((i) & (iii) by

abort and (ii) by ?x:T ~ abort) so if for any given process

B we can prove all three independently we will have estab-

lished that they are simultaneously satisfiable. The process

we choose to do this job for us is the one-place buffer

B~ ?x:T ~ (!x ~ B)

The function associated with this recursion can be written

Since each of the three predicates is continuous and satis-

fiable and this recursion is constructive, to prove them true

of B it will suffice to show VA. R(A) ~R(F(A» for each R.

Suppose (i) holds of A wEF(A) ~ w= () (+ ins(w) a outs(w))

or w= c?X) for some XE:T

(~ ins(w)> outs(w))

or w =<?x!x>v for some x~T, v~A

(~ ins(w) =(x>ins(v?

~(x,>outs(v)

~ outs(w))

Thus (i) holds of F(A).

Suppose (ii) holds of A. Then w~F(A) & (ins(w)=outs(w»

9 (a) w=c)or (b) w=(?x~x>v where ~T, vf:A
& ins(v)=outs(v)

Suppose (iii) holds of A.

(a) ~

(b) ~

for some xtT, v~A
s.t. ins(v»outs(v)

~x~(F(A) after w)o since <?x!x)€F(A) for all x~T

(F(A) after w)o= (A after v)o

~ (F(A) after w)o(\~T '# s6 as A satisfies (iii)

Then WEF(A) & (ins(w»outs(w»

9 (a) w=(?x~ for some x~T

or (b) w=<.?x!x,>v

This completes the proof that B is a buffer. Therefore when

in future we want to use the predicate "is a buffer" (in the

definition on the previous page) we will be entitled to assume

that it is satisfiable.

Extensions of our rule

Firstly it is possible to weaken the definition of constructive

function to F non-destructive and

2.21

Under this revised condition it is possible to prove the

validity of 2.1 with exactly the same conditions upon the

predicate as before. The proof of this is very similar to

that of 2.14. This result does not get us much further in

dealing with single recursions, but can sometimes be o~ use

in mutual recursions.

e. g . A 4= (a -+A) n (b -+B)U (c .. ski'P)

B ~ AiB

this is not constructive in the sense of 2.9, but

is in the sense of 2.21 with m=2 for all ~,n

A more useful technique is (for mutual recursions) the concept

of constructiveness relative to a partial order onA, the set

of indices of the recursion. Define a partial order to be

well founded if every subset of it contains some minimal

elements (or equivalently if it contains no infinite desc-

ending chains). Suppose < is a well founded partial order.

(a) :9 (F(A) after w)o = ?T

(b) (F(A) after w)o = (A after v)O = ?T

as desired

Thus (ii) holds of F(A).

A function will be.constructive relative to(if it is non-

destructive and at any point is constructive in all variables

except those strictly less than the point in question.

If F:P~~ ~ this condition can be formally expressed:

2.22 V!. Vn.V'A. (F(~J)..)tn+1*

where A I' = A,t n+l

= ~tn

= (F(!*~)f n+l

if ~ <'A

if 'y,~.) .

A function will be non-destructive relative to< if

2.23 VA. Vn.Y> (F(!hJr n+l = (F(~*h-)t n+l

where A; = Jytn+l if / ~ \.

= ~..r n if , <t'~A)

Notice that to be non-destructive a function must not, in

some sense, work against the partial order by pulling inform-

ation from high points to low points.

2.24 SupposeA= [O,~1 with partial order 0(1

Then the function F(A9,AI) = (a~ (AO0AI) , b.AO)

is constructive,

the function F(AO,Al) = «a ~ AI) DAO ' AI)
is non-destructive,

but the function F(Ao,AI) = {AI,AO) is neither.

It is possible to prove a calculus of these definitions in

very much the same manner as for the old kind:

2.25. Theorem

If F,G:~~ pA are functions and < is a well-founded partial

order onA then (relative to <)

a) If F & G are both non-destructive then so is FoG .

b) If F is constructive then it is non-destructive.

c) If F is constructive and G is non-destructive then both

FoG and GoF are constructive.

d) If F is constructive then it has a unique fixed point.

if., ~:!;~)

*
B)' = G(4}~ n+l

= G(!' ~, n+l
if / ~'>--

I
where A'5 = A-crn if ..,('(~f)

~r n+l if CS~~

which completes the proof of part a)

b)
*

This follows by monotonicity since the A of 2.23 is...
greater than that of 2.22.

c) The proofs of both parts of this are almost identical to

that of part a).

d) Suppose F has two distinct fixed points! &~. As in the

proof of 2.11 there must be some n such that ~In = ~rn but

~tn+l # ~In+l. Now ~tn+l ~ ~~n+l implies there must be some

>-.s such that (A»)fn+l :f: (B),Jln+l. Thus there is at least

one ~ whioh is minimal wit'h respect to this property. For

such a '>- we must have:

(A~)fn+l = (F(!)~)~n+l (as A is a fixed point of F)
* * ~

= (F(! !>J~n+l where Ar = Prl n if.., (f~~)
(= B~tn as A~n = B~n)

= A/,~n+l if /<'>--

(= ~tn+l as~ is minimal)
[

* *
The above remarks show that A = B , the'"

corresponding restriction of ~.J
= (F(~*»--)In+l
= (F(~~){n+l (as F is constructive)

= (~)tn+l (as ~ is a fixed point of F)

which contradicts our choice of ~ .
a single fixed point.

Thus F must only have

Note that in the case ofJ\ finite (or any other case where the

partial order has a bound on the lengths of its ascending

chains) this condition is implied by the earlier extension,

for then by recursing a fixed'number of times it is possiblei~

refer only to ~Jn when calculating each Fm(!~1 n+l.

For a general well founded partial order it is necess(~y to

restrict the types of predicates which m~ be used in proofs.

2.26 Example

Let A = N, then the recursion

Aa ~ a -+ skip

A 1 ~ An+ n
is constructive relative to the standar~ order on N, and the

predicate R(A) = 3n. A = abort is continuous under definitionn
2.12 and is clearly satisfiable.

A = abort ~ F (A) 1- abort and R
n - n+

Thus rule 2.1 is not justified in this case.

But R(!) ~ R(F(A» since

does not hold of fix(F).

2.21 Theorem

Suppose F is constructive relative to the well founded partial

order < onA and the predicate R on p'\-is satisfiable. Then

rule 2.1 is justified provided R has the form YK.RK.(A) (\<.~K, so..j)

where each ~~ is continuous and is independent of all comp-

onents of ! except for a finite set r;!=A, and all the ~ are

disjoint.

(i.e. each RK is a predicate on finitely many components of !

and no component occurs in more than one R~.)

proof (technical)

As in the proof ot 2.14 set! = fix (F). Since R is satisfiable

there must be some B s.t. Blo = Aro and R(B), and since R is- - ""' -

continuous, if we assume 1R(!) there must be some n s.t.

3 B~ B+r'n = Arn & R(B") and VB. Bfn+l = Afn+l ~ lR(B) ...,... - ~ "'"

If r~Jl is non-empty, denote the set of its least elements

byf (r). Define a map from the ordinal numbers to p(AJ as
follows:

f(O) = si

£(0<+1) =l! (A - f~»U f~)

f(o() = Uf'f) ife< is a limit ordinal
This map is tl;arlY monotonic, and is strictly monotonic

unlessll = f(o() for some~. But a strictly monotonic function

is one-one, so under the assumption that \1'0<.f(o<')FA we have

produced a 1-1 function from On to the set f)0\). This is

impossible by Hartog's theorem (see for example Enderton p195)

so we must haveA = f(o!) for some 0<:

Claim that each f(O<) (o<~~ satisfies \.Ef(O() ty-'<\ ~ lE f(O<).
This true if 0(= o.

Assume true of0(and that >--Ef(O<+l) & j-'<>--

if '\E f(O<) then we must havej-1E f(O<) by assumption

if AYUL - f(O<» then If f(D() would contradict the minimality
of ~ in (/l - f(O<»

hence in either casefE f(o<')C:=f(O<+l), s~ the result is true ofo<+l.

If 0< is 'a limit ordinal then if we assume the result true of all

13,--0< the result for 0< follows immediately since iff'\ then

~€ f(O<) =1"3f3 s.t. \E f¥3) &:13<0<

=tjE fCf) S f(O()
*'

Thus by transfinite induction the result holds of allo(~o(.

Claim next that for each .,.(~o(f..thereis some] € ~satisfYing

~rn = !r n &>--e f(O<) ~ BJ n+l = AJ n+l & R(~)*
This is true foro{=o (put ~ = ~)

Suppose ~ satisfies the above forO<, claim F(~) satisfies it

for 0<+1.

FirstlyF(~)ln= F(~rn)ln = F(!fn)fn =F(~)rn = ~rn
and also R(F(B» holds since R(B) does.

~ ~

Now)...€f(o<+l) ~ (F(~h..)r n+l = (F(g hJf n+l

where 7- = Bl'f n+l if 1'(>"

'7 = 1}1n if -, V--<'>-.)

But BJ't n = AI'~n by assumption

and we establishedabove that~<'\Ef(o(+l)

implies?~f(O(), sO/').. ~ 1}('n+l = ~r n+l.

Thus <}= ~r n+l if;< >--

= AI n if -,<tl.'>-.)
Hence (F(Bh,.)fn+l = {F(Ah,)f n+l as F is constructive- ...

= AJ'n+l'"

Finally suppose 0< is a limit ordinal and that for each f(O{ there

is some Ifsatisfying the above. For each K.EKwe can write the

set r;: as ~'>..l>'>..~""',)..r,\,,\J where A.1- \.E f(O<) and \.~ >--5~f(D()

As there are only finitely D'.any "~j"s

some J3l..O<s.t. f~)()r;:' = f(O<)f1Q. Put
If we do this for ever,y~EK there will

so derived since the ~ are disjoint.

in f(~) there must be

BA' = (BP~.for j= 1 - s.
1 J

be no clashes in the B~s

Formally define ~ as follows:

~ = <BP)>- .if3k.!' >--E~ <f dependent on I()
= A>., otherwise.

Each R~ holds of the ~ so defined since it holds of ~p and is

independent of all tBA1'>-.E.~1.Also ~rn = !\'n since this is true

of each ~p by assumption. Finally if '>.-E.f(o<). then

=9 B)..= (BPh.

~B>..rn+l = (BP>! n+l

= AJ n+l as AEfCp) and BP satisfies

our hypothesis for f3.

~~'

otherwise B~ = A~

~ ~tn+l = AAfn+l

This completes the proof that the above B satisfies the cond-

ition for 0(.

Hence by transfinite induction ono(~O(~theremust be some !!

corresponding to o<!. But then this ~ satisfies R(~) and

~ r n+l = ~r n+l (sinceA = f(o<""»which contradicts the assump-

tion that VB. Bfn+l = Atn+l 9 1R(B).~.. ~

This result admits rather easier proofs in less general cases,

such as predicates of the form ~R>.,(A~) and also when each

\EJL has some limit (dependent on~) in N to the lengths of

chains ascending to it.

Below is a simple example involving a finite partial order.

See 2.3 for a more general example.

2.28 Example (after David Park)

Define four processes by mutual recursion:

Ao4= (a ~ A1) n(b ~ A2.)

A1.~ (a ~ A:,)Q Ao

A~q. Ao ll(b ~ A-s)

A~4= A2.0At

It is easily verified that these equations define a recur-

sion which is constructive relative to the standdard order on

~O,l,2,33. The predicateVi.C.= B, where B is defined~

B ~ (a B) 0 (b ~ B) is clearly satisfiable and of the

correct form, so the rule is justified in this case.

Assume R(g)

Then F(C) =_0
=

(a...,c1)D(b~C2.)

(a...,B)IJ(b~B) by assumptiDn

= B by definitionof B

F(Q)l = (a~ C:3) 0 Co

= (a ~ B)OB by assumption

= (a~ B) [] «(a ~ B)0 (b ... B» by definitionof B

= (a ~ B)n (b ~ B) by properties of 0

= B by definitionof B

(case 2 is almost identical to case 1)

F (g)3 = ClIJ C2.

== BOB

== B

by assumpt ion

Hence R(F(&» holds, so we can infer Vi.A.= B.- 1

The next extension to our rule will allow us, amongst other

things, to deal with "partial predicates" which are independ~nt

of one or more components of the mutual recursion.

2.29 Theorem

Suppose F is a constructive function (possibly relative to

some partial order) and H is non-destructive. (F,H:~~ p4)

Suppose further that H(fix(F» = fix(F), then

(i) HoF & FoH are both constructive

(ii) fix(HoF) = fix(FoH) = fix(F)

(iii) If R is continuous (or satisfies the conditions of 2.21

in the < case) and satisfiable then

(V4. R(~) ~ R(H(F(!»» ~ R(fi~F» and

(V!. R(A) 9 R(F(H(A»» ~ R(fix(F»

proof

(i) is just a restatement of 2.11(c) and 2.25(c)

(ii) We have H(F(fix(F») = F(H(fix(F») = fix(F) by assump..-

tion, so fix(F) is a fixed point of HoF and of FoH. But by

(i) and 2.11(d) or 2.25(d) these functions have unique fixed

points, so the result follows.

(iii) This follows since, by (ii), anything which is true of

fix(HoF) or fix(FoH) is also true of fix(F)

-- ---

This result has the following application to the partial

predicates described on ihe last page:

2.30 Theorem

Suppose F:~~ ~ is a constructive function and that RJ& Rz

are two predicates on P~ which satisfy the following conditions:

a) Ri is continuous and satisfiable and is independent of

some subset r of A .

b) R~ has the form R(!) e «!fr) = H(!») for some non-

destructive function H:~~ P~ which is constructive in its

r -component (in a sense to be made clear below).

c) R.t(fix(F» holds-.

d) V!. (R! (!) & R:t(~J) ~ Ri (F(!»

Then R1(fix(F» holds.

proof
.A

()

kr r
Write every element of P in the form ~,~, where AEP & ~€P .

A function will now be constructive in its r-component if it

satisfies V!.V:§.Vn.H(A,~)rn+1 = H(~,~ln)rn+1 .

~r r r
For any A~P we can now define a function G~P ~ P by G(~) = H(~,~).

This GAis constructive and so has a unique fixed point. We
~ * *

can write H (!,~) = (!, fiX(G~». H is a non-destructive

function, as will be shown in 2.3b and since each GA has a
* ~

unique fixed point we must have H (fix(F» = fix(F) (cond-

ition (c) above implies that fix(F)fr is a fixed point of

Gc where 9. = fix(F)t CA.-r)).
~ *
Now apply 2.29 with F as above, H = H and R = Rt(if the

FoB case is used) or R = R1& ~(if the HoF case is used).*
Note that H does not alter the truth of R1since it is the

identity on all components upon which R1depends.

Informally this result allows us to make certain additional

assumptions about recursive calls which lie outside the domain

of the predicate we are trying to prove, though we must be

able to justify these assumptions independently.

In the example we will see shortly R~ will have the form

»E.f' 9 ~ = fix~F~ (so that H is a constant function).

Other suitable "H"s for use in 2.29 are Fk, H(A) = AD B for

any BS fix(F) and the device below for taking fixpoints one

at a time.

-- -----.

2.31 If F:pA~ ~ is a constructive function defining a mutual

recursion and A = rvA

then we can write every
,.. to

Aep & Bep and there are- -

is a partition of the indexing set

element of ~ in the form (!,~), where

t. ...A'" .1\..0-some construc 1ve G:y ~ P & K:P ~ P

s.t. F(!,~) = (G(~,~),K(A,~». A suitable H to use with 2.29

is H(!,~) = (A,fix~~.K(!,~»). This could be useful if one

wanted to do induction on the variables of a recursion one at

a time. This topic of iterated fixed points willbetreated in

more detail later.

2.32 Example (illustrating 2.27 & 2.30)
*

For some Ts-~ take A =T - fo3

We seek to model "stacks" which terminate successfully as

Boon as they

Define !=:~
<a>

~a> w*=

first become empty.

(! a ~ skip)0 (?b:T ~ ~bcJ

(!a ~ Sw) a (?h:T ~ ~ba>w)

a£T

a~T, w EA

A second version of this:

~a">i;:(~a ~ skip) n (?b:T ., ~ba)

Q,,(a~~; ~
Theorem: wtA ~ sw= ~
In proving this we first show that aET & w~A9 s = s ; s .w<a) w <8>

This is done using 2.30, the partial predicate used being

Ri (A) == C:!ateT.VWffA.A (= S ;!=:) (this is independent of
~ w ~ w <w

A
>'
aET). The secondary predicate we use is<a

R (A) e 0'aeT. A = ~ft.) which arises from the constant~ - <~ ~">

R(A) = S (aET). By construction the S-recursion is const--~~ ?~ -

ructive, Ri is satisfiable and continuous and ~(~) holds.

Thus it only remains to show clause (d) of 2.30.

Assume R1(!) & R2(!)

Then F(A) ~= (Ia ~ A--) n (?c:T .) A b'»<ea)' - -(ca

= (la ~!=:) I] (?c:T ~ S . S)
. "' <.c C£J .:::b:I

=«!a ~ skip)n(?c:T ~ ~ca);~b)

= S ;S~> as desired (by definition of S){a~~ -

afT

a>b~T

by assumption

F(!~W(a}= e b ~ AW(s) Q (?c:T 7 ~Cb)wJ (a,bET , wE-A)

= (~b ~ sw;1~IJ (?c:T -+ ~Cb)w;1aJ by assumption

= (Ub -+ Sw)O (?c:T ~ 1Cb)w»;~a)

= ~b)w;~a) as desired

This establishes R1(F(A», so we can infer R1(~) by 2.30 .

Having established this result, we can now prove Vw.~= Sw

by induction on Q. Observe that the Q-recursion is const-

ructive relative to the partial order induced by the length

of wEA . Let R'be the predicate Vw.A = S . This is clearlyw w
satisfiable and is allowable in terms of 2.21.

I

Suppose R(~), then if F is the function of the g-recursion

F(!{& = (~a 7 skip) n (?b:T ~ lzbJ

= (~a ~ ski p) 0 (?b: T ~ ~b.J

= S by definitionofa
F(A) - A .A

- w <a) w'-(8)

= S .s
w'(8)

= SW(a'>
I I

This establishes R(F(!», so we can infer R(g) as desired.

by assumption

S

by assumption

by earlier result

The following two extensions are also valid, their proofs

are omitted in this model but are given in chapter 5 for

the non-deterministic model.

2.33 Suppose AEP(~), define Atn = f~~n I ~A3
Define a function F:~(~) ~~(~) to be constructive if it

satisfies VA. 'Vn.F(A)rn+l = F(Ar n)f n+l .

Suppose the predicate R on ~ is satisfiable and continuous.

Then (VA.(V~.(BEA'~ R(~») ~ (YB.(~F(A) :}R(~»» a: (A~F(A»

implies (VB.(BEA 9 R(B»).~ ~ -

This result is chiefly of use in proving general theorems

about processes, for example the fundamental buffer theorem

of chapter 5 (which is also true in this deterministic model).

2.34 Suppose Rt... Rftare predicates which are individually

satisfiable and all continuous but which m~ not have been

shown to be simultaneously satisfiable. Suppose F:F'"~ pA
*

is a constructive function which can be written as ~ oD for
I n

.A. -A. I'\. *.A t'I .A.

i"1,l.-.Jl,where ~:p 7 (I-') and Fj :(p) ~ P , D..(!) = (!,!, A).

Then if V(~t...!n). Ri(!!) & ... & Rn(~n) ~ R1(F;(A) &...& Rn(F:(~)*
(where!= (4t, !n)) we can infer Ri(fix(F»&...& Rn(fiX(F».

Informally this rule represents

uctive hypotheses for each recursive call of a process. The
*

method of defining Fj depends on which assumption we wish to

make of each call in pro"it'l~ R1(F(~\).

-=- --+

Iterated recursions

As has been indicated earlier it is possible to use subsiduary

recursions within the body of a recursive definition.

e.g. A = (a ~ skip) D(b ~ rec B.(b ~ AjB))

It is possible to analyse this type of construction in several

ways. The first of these is the well-known result below

which relates mutual recursions to iterat~d fixed points.

2.35 If A = ruA is a partition ofA then as in 2.31 we

can write elements of pA and pA~ ~ as pairs (A,~) and (G,K)

respectively. It can quite easily be shown that

This gives a method for converting mutual recursions into

iterated ones and vice-versa. Thus the example above is equal

to A, where

A. (a ~ ski p) 0 (b ~ B)

B~b~AjB

It is also possible to analyse recursions with free process

variables (such as rec B.(b ~ AiB) above), to decide if they

are constructive, non-destructive etc. The need to do this

has already arisen in 2.30 & 2.31.

2.36 Theorem (in the same notation as 2.35)

Suppose F: ({'X.~) ~ pr is continuous and. is non-destructive

in its r component. Then the function G(~) = fix~!.F(~,~»

is non-destructive if F is non-destructive in its ~ component

and constructive if F is in its 6. component.

proof co

We have the identity fix(H) = U~(..L) for any continUous
..~o

function H on a complete lattice of whichL is the minimal

element.

Thus

We prove first the non-destructive case.

It is sufficient to show for arbitf'ary!! & n that G(~ln)t'n =

Claim that Vm.If1Cb)jn = Lm<:k)fn where L(!) = F(!,~ln)

This is true when m=O (both sides =~) so for induction
assume true of m.

G(B),n......

- --

Then Jt1+l Cl)! n = F (KmCL) ,B)\ n"'" - -
= F(If1(J...)\' n,Btn)f n as F is non-destructiveV" -

= F(Lm(l)tn,Bln)rn . by assumption.,.. ...

= F(Lm(~),Btn)\n as F is non-destructive

= Lm+1Q.)r: as desired

Hence~(1)tn = Lm(L)rn for all m......
aD

Thus . G(~)I n = (U }(B(l)')!' n"'.0
= (U (}(B(l)ln» as rn is continuous"".0 ...-

= (0 (LmU,.)rn»...~
= (0 Lm<J.-) 'f n""."

= G(Brn)~n

The proof of the constructive case is very similar (merely

change some of the "n"s into "n+l"s).

It is now possible to strengthen 2.16 to include the possibility

of iterated recursions.

2.31 Theorem

Suppose that the function F:P ~ pA.is such that each compo-

nent of F(A) is a syntactic expression involving only expres-

sions independent of all process variables, process variables,

the combinators a ~ B, a?x:T ~ B(x), ?x:T ~ B(x), BiC, BD C,

a.B and (Ex 11 yC) and iterated recursions which bind alls
instances of process variables which are not Ai. Then prov-

ided that every (free) recursivecall of an ~ is guarded

directly (e.g. rec B.(a ~ ~iB)) or indirectly (e.g.
a ..,. rec B. (}i B)) the functionF is constructive.

The proof of this is a straightforward structural induction

using2.11, 2.15, 2.36.

using it as a slave. All communications

be in some Tc;~ which does not include j,

the :form "t" (tET), "?t" (te:T) or ,,~t"

o:fthese will represent input and output

Operators involving hiding in their de:finition

The :following twa operators are both very use:ful in de:fining

processes by recursion:

a) The Master/Slave operator (A U a: :B) (A,B E p) is intended

to model process A working in parallel with process Band

with the slave will

and may either take

(t € T). The last two

respectively, The__

inputs o:fthe slave B will be connected to the "a"outputs o:fA

(all communications with the slave by A will be labelled "a")

and the outputs o:fB will be connected to the "a"inputs o:fA.

To avoid confusion we will insist that T, ?T and ! T are all

disjoint (T will be an inplicit parameter o:fthis operator,

as it will be o:fthe next). Finally all communications o:fB

must be with A and all communications with the slave are hidden.

(Alla::B) = «A 11 na.(swap!?(B»/a.r)
.:E.a.,

where r = T u?T u!T and swap is de:fined (on ~, ":t and p):

ce:~ ~ swapab(c) = c i:f ct. (a.T ub.T)

= b.d i:f c = a.d :for some dE T

= a.d i:f c = b.d for some dE T

swapab(w) (we: 0:£) is the natural elementwise extension

of the de:finition on Z.

swapab(A) (A E: p) is the natural elementwise erlension
*

o:f the de:finition on ~ .

b) The pipe operator (A» B) is intended to model the behaviour

o:f process A accepting input :from the environment, processing

it in some way, passing its output to the inputs o:f B down a

hidden channel, and Busing tbis input to produce outputs to

the environment. This is e:f:fected by trans:forming all outputs

o:f A (in !T) to T and all the inputs o:f B (in ?T) to T, thus

identi:fying them. All internal communication is then hidden

by hiding T. Because o:f this device, :for the operator to be

meaning:ful" it is important that A and B cannot themselves use

T :for their communications.

(A» B) = (strip! (A)TU?TUTl1!Tstrip?(B))/T ,

where strip is defined in a similar w~ to swap:

cE.~ ~ stripa(c)"=c .ifcf- a.T, - d i:f c = a.d :for some dE T

etc.

- ---

I

As was mentioned earlier the hiding operator A/X is not non-

destructive. Thus the two derived operators A» B and (A11 a::B)

are not obviously non-destructive either. This is unfortunate

since both are useful tools in defining recursive processes.

e.g. B"~ ?x:T ~ (B~» (!x ~ B» (where B ~ ?x:T ~ ~x ~ B)

represents an infinite capacity buffer

's lo= (xII a: :S)

where X ~ ?x:T -+Yx
y ~ Ox ~ z) 0 (?y:T .. a!x ~ y)x y
Z "= (a?x:T ~ Y) [J(?x:T ~ Y)x x

represents an infinite stack

We deal first with the master/slave operator (All a::B).

It is only possible to treat this as a function of its second

variable, as it is certain (if B:#= abort) to be "destructive"

in A. It is not too difficult to see that it is not always

constructive in B (e.g. A = a!x ~ a!x ~ !x ~ skip) but

sometimes is constructive (e.g. if A never communicates with

its slave (Alla: :B) = A is a constant function of B). It

turns out that the fundamental issue is the respective numbers

of communications A makes with its environment and its slave.

If A must at all times have made at least as many external

as internal communications then (All a::B) is non-destructive

and if A must at all times (except initially) have made more

external than internal communications then (All a::B) is const-

ructive. This is formally expressed in the following result:

2.38 Theorem

For neZ (positive and negative integers) define the predicate

C:(A) =\/w. w<;:A * /wrrl -'1 wla.r(~ min(n,IWlrua.~I)
(rS ~ is assumed to be the alphabet of "atomic" communic_

ations, so that Z =~l5l1rvU~a.rla€N3 where N is the set of

process names and Va. r n a.r = ~ .)

Note that in any process which satisfies Ca every trace mustn
contain at least n+l "r"s before the first "a.r".

a)

b)

c)

a
Cn(A) is a continuous predicate

C:(A) .; Vn.VB. (A 1\ a: :B)ln+k+-t==(A 11a: :Brn)r n+k+1

C:(A) ~ c:(AfI b: :B)

- - --- --~

proof

a) This follows im~ediate1y from 2.18(viii)

'b)Define the notation n(u,v) ~ w in (Alla::B)" to mean

u£A, vE.B, u~~ - a.r = w & swap?! (v) = strip a (ufa.{)

so that WE (Alla::B) ~ 3u.3v. «u,v) (pw in (Alla::B)).

Suppose WE(AII a::B)rn+k+1. If W ={~then certainly we.(AIIa::Brn)

so suppose w = w~'b\ There must 'be some u of minimal length

and corresponding v s.t. (u,v) ~w in (Alla::B).

By construction uhas the form u'<:D'>for some u' and (by C~(A))

we have 'u'rrl- !u'ta.rl~ min(k, \utrrua.rl)

= p'r C~.- a.r')1- lutra.r(~ min(k, lutl)

= \ur<~ - a. r)\ - lUla.rl~ min(k+l, \ul) (add one to 'both sides)

so either lut<k+1 and luf(z - a.r)\ - I ura.rl ~Iu\

~ u r a.r = <:'> & u = w

~ (u,o)~ w in (AI! a::Bl'n) (as certain1yo,=Bfn)

or lul~k+1 and luf(Z.- a.r)! - \ura.rl~k+l

= Iwl - Ivl~ k+l

= Iv!~lw\ - (k+1)

= tvl~ (n+k+1) - (k+1) as Iwl~n+k+1

Thus in either case we.(AIIa::Bin)

Hence (AU a::B)ln+k+lC;(A\I a::Btn)fn+k+l, the reverse inclusion

following by monotonicity.

c) Suppose we.(A\{ b::B) and C~(A) where 'b ~ a (the case b = a

is trivial). Then there are some u,v s.t. (u,v) ~ w in (A 11 'b: :B).

But then wtr = uir, wia.r = ura.r and wirva.r = uff1va.r

so \wtrl -. \wfa.rl = \ut'r\- lur a.f'I~ min(k, Iulf'~a.rD
min(k, IWlf1oa.1'!) as desired

Methods for the determining of these conditions will 'begiven

in chapter 6.

2.39 Examples

It is possi'b1eto model ZERO (= COUNT) (of 2.19) using (All a::B).o

Z ~ (XI I a: :Z)

where X ~ (iszero... X)O (up ~ y)

y *= (up -+ a. up -t Y)

Q(down -+ (a. down 4 Y)

D(a.iszero ~ X))

- - - - - - -

It is an easy induction to show that X satisfies C: and Y

satisfies C~ (use of 2.1 on their joint definition). Thus

the recursion Z ~ (xiia::Z) is constructive.

Claim that COUNTo = (XII a::COUNTo)

and that COUNT 1= (YII a: :COUNT) nENn+ n

This can be proved by induction on the definition of COUNT.

The predicateR on PN defined ----

R(C) '2 C = (xii a::COUNT) & Vn.C 1= (Yl\ a::COUNT)
~ 0 0 n+ n

is clearly satisfiable and continuous.

true of COUNT .-------

Attempt to prove it

Assume R(Q) and that F is the (constructive) function of the

COUNT recursion.

Then .(X/la: :COUNT) = «iszero ~ X) a (up ~ Y) 1\ a: :COUNT)o 0

=iszero + (XIIa::COUNT)o

o up ~ (Y 11a: :COUNT)o
= iszero ~ C

G up ~ C1 0 by assumption

= F(C)
... 0

*
(YI! a: :COUNT) = «up ~ a.up ~ Y) n (down? Y) 1\a: :COUNT)

o _ * 0
(where Y = (a.iszero ~ X) D (a.down ~ Y))

= up -+ (a.up ~ YI! a: :COUNT)

* 0
[)down ~ (Y Il a: :COUNT)o

= up ~ (a.up ~ YII a:: (up ~ COUNT ln iszero -+ COUNT »

* 0
Qdown ~ (Y \\a:: (iszero ~ COUNToJ]up .. COUNTl»

= up ~ (YI!a::COUNTl)

Odown ~ (xII a: :COUNT)o
... up ~ C 2-

Ddown ~ C.o

=F(g)1 as desired

The final proof of (Y\Ia::COUNT 1) = F(C) 2 is very similarn+ - n+
and is ommitted. The manipulations of the (At! a::B) operator

used above are formally justified in chapter 6. We have

thus established R(F(C», so we can infer R(COUNT).-----..

as desired

by assumption

It is now simpleto

" = COUNT " we haveo

show Z = COUNT , for if S is theo
S(U) 9- (xIIa::U)

= (X \I a: :COUNT) ... COUNTo 0
~ SeX\!a:: U)

predicate

and the result follows since the z-recursio~ is constructive.

t

.,

The intuition behind this definition of Z is that on receiving

an "up" or a "down" other than the first up or last down

Z passes it on to its slave, which is a copy of itself. It

knows when its slave has been brought back to zero by the slave's

willingness to communicate "iszero". One might try some

alternative definitions, such as on every "up" or "down"

other than the first sending it twice to the slave. This

is what 'is intended in the example below.

'*' *
Z ~ (X 11 a::Z)

* * *
where X ~ (up ~ Y)D (iszero ~ X)

* *
Y (;::(up -7 a.up ~ a.up ~ Y)

*
D(down ~ (a.iszero 7 X)

O(a.down ~ a.down
*

7 Y))

It is indeed possible to show (as in the previous example)

that COUNT is a fixpoint of this recursion. One would use
o *

the earlier proof as a model for showing (X it a::COUNT) = COUNT
* * 0 0

and Vn.(Y 11 a::COUNT) =COUNT?~ . But this X does not2.n AoU+Z-

satisfy C~ (nor does it satisfy C: for any z~Z) so we are not

justified in thinking that this recursion is constructive.

This is brought out by the fact that it does have several

other fixed points:

~g. Z~4;:(iszero 7 ZJ 0 (up ~ (down ~ Z1) 0 (up ~ MANY))

where MANY ~ (up -+ MANY) 0 (down ~ MANY)

(This Z\can be regarded as only understanding clearly

the ideas "zero" and "one" after which it gets confused.)

Zz{: (iszero ~ zJO(up -t (down ~ Z~)D(up., abort odown ~ abort»
which is the minimal fixed point.

The conditions for the A»B operator to be non-des~uctive in

either of its variables are intuitively very similar to those

for (AI\a::B)~ This operator will be treated at some length

in the non-deterministic model (chapter 5) so we just state

the conditions here.

..

- -

r'

*
For w€ Z. let ins(w) and outs(w) have the same definitions as

in 2.20.

2.40 Theorem

Suppo se that C <; (?T u ~ T) *, t ben

a) If' wEC ~\outs(w)I~\ins(w)\ then (A>)-C) is a non-destructive
f'unction of A.

b) If" w<;:C .. louts(w1 ~rins(w)1 then (C» A) is a non-destructive
f'unction of' A.

The proof' of' this f'or the non-deterministic model will be f'ound

in 5.30.

By this result it can be shown without too much trouble that

if' C is any buf'f'er (in either tbe strong or the weak sense of'

2.20) then so is the process recursively def'ined

A * 1%:T.., (C»(!% ~ A»

as any buf'f'er plainly satisf'ies condition (b) above. There wi

will be several worked examples similar to this in chapter 5.

. ---- - - - ...--

Alternative conditions for the validity of 2.1

As has been indicated earlier, there are other pairs of cond-

itions on functions and predicates which guarantee validity

of 2.1 along with satisfiablity. Firstly we can vary our

interpretation of the restriction operator rn. The only

thing we assume about this operator in the proof of 2.16

is that for all A,BEpAwe have Afo = Blo. Thus if for any
... ...

class of operators frnlnEN3we define continuity of pred-

icates and constructivenessof functions we can prove a theorem

which corresponds to 2.16 provided that the above condition

holds. Exactly how useful this result is will clearly depend

on the resulting classes of continuous predicates and const-

ructive functions, and the difficulty of proving a given recur-

sion to be constructive. Provided that we wish equality to

be continuous we must insist (Vn.~r-n = ~fn)~! = ~ and to give

any "meaning" to constructive functions we must require that

(Atn)fm = Atmin(n,m). Examples of such constructions are_-

given below:

We could turn the old definition upside down and make

Arn~ t w~A I \wK n3u l wv I wEA & Iwl =nJ

or restrict attention to a subset of Z
Atn= £w€.A I (wl"r'/< n 1

or nest allowable symbols

A rn.: ~wE:A I wE J: * 3 where J: = ~, ~ s t:1 and V (' = ~

Lastly we examine a theory which is in several ways more

elegant than that which has gone before. In some ways it

represents a highest common factor (or greatest lower bound)

of the theories which involve a restriction operator and its

study therefore gives us insight into these. It is rarely,

however, that we will wish to apply it directly to a problem

since it usually turns out that the easiest method is through

one of the less abstract theories. Therefore it is stated

here only in terms of single recursion since this makes the

notation rather easier and the proofs easier to understand.

Also (unlike the earli~r conditions) it does not seem to

generalise naturally to the non-deterministic model, because

it relies critically on the existence of a top element.

We firstly observe that any reasonable (under the above cond-

itions) restriction operator will give rise to a definition

of constructiveness which implies unique fixed points (like 2.11).

--- --

In many of the prQofs we have performed using 2.1 it would

'have been sufficient to know that the recursive equations

involved had a unique fixed point (for example in the cases

where we showed that another process satisfied the equation,

so the two must be equal). It is possible to formulate

a condition on predicates which, along with UFP (unique

fixed point) guarantees the validity of 2.1. We have already

shown that a constructive function satisfies UFP, so we would

expect this condition to be at least as strong as the old one.

That the condition needs to be strictly stronger is demon-

strated by the following example

2.41 Of the recursion A ~ (a.A -l1?A) (which:ha.S UFP a-bbrr)

we have (B :t=abort 1\B F~) ~ l F(.S) #~,:t- " F(8) j ~)
so by applying 2.1 we could deduce A F abort

A predicate was weakly continuous if its truth of a sequence

of processes implied the truth of its limit (2.13). We only

looked, however, at a specific sort of convergence of processes.

It is possible to define a more general sort of convergenoe.

Suppose <A./i€N> is a sequence of processes1

Define limsup(A.)1

liminf(A.)1

00 00

= .n (.0. (A .))
1=0 J=1 J

00 00

= u(.n.(A1.))J=O 1=J
and

(these correspond to the usual notions in real analysis)

Say that a sequence (.A> is convergent to limit B
() B

)
1

(

J I t th liM Ai = .

iff limsup(A.) = liminf(A.) = B an.q tl\o.. en1 1

Limsup(A.) is the eetof traces which are contained in infinitely1

many A. and liminf(A.) is the set of traces contained in all but1 1

finitely many A..1

2.43 Lemma

a) If(A~ is a sequence of processes then both limsup(A.) and1 1

liminf(A.) are processes.1

b) limsup(A.)=>liminf(A.)1 1

c) If \/i. Bl i = Af i then the Bi converge to A .

proof

a) follows since the space of processes is closed under both

infinite intersections and infinite unions.

- --- --- -'--

00 00

b) Clearly i(j 9 kVi (Ak) 2 k(1(Ak)
Of":) 00 00 ~ Or?

~ M (Ak) 2 j~i(J]/Ak» ::: j~ ([\(Ak»
op C>Q 00 00

'7 Q (k\;{(Ak»"2 j~ (k~(~» as desired

c) wE: A & k~w 9 WE.Bk (by de:finition o:f Ark)
011

:;> w € I.! (B) for eac.h i~ 1<

9 wE limsup(Bk)

Hence limsup(Bk)SA (*) 00

Also WE liminf(Bk) ~ 3i. wE() (B .)
J:::1.J

9> WE. Bk where k = max(i, Iwl)

~ WE.Bkrk

~ w E.Ar k

~ WE-A

Hence A ~ liminf(Bk} (+)

But now (*) & (+) & (b) give the desired result.

Now de:fine a predicate to be strongly continuous i:f it satis:fies:

2.44 For every convergent sequence <A) , Vi.R(A.) ~ R(lim(A.})
1. 1. 1.

2.45 Theorem

a) I:fa predicate is strongly continuous then it is weakly

continuous.

b) I:f~ is :finite and a predicate is weakly continuous then

it is strongly continuous.

proo:f

a} Suppose R is strongly continuous and that A. is a sequence1.

o:fprocesses satis:fying Vi.R(A.} and Vi.(A.)ri = Bri
1. 1..

Then by 2.43(c} <A) is a convergent sequence with limit B1.

so R(B} :follows by the strong continuity o:fR.

b) Suppose R is weakly continuous and L: is :finite.

Then i:f<A.) is any convergent sequence with limit B s.t.1.

Vi.R(A.} we have:1.

WEB ~ 3j. i~j ~ weA. (as w limin:f(A.) }J J
wtB~ 30. i~j ~wfA. (asw limin:f(A.))J J

Since~ is :finite, :for any :fixed n there is only a :finite
:I(-

number o:f elements o:f~ with length n or less.

- -

For each of these "w"s we can thus find a j", s.t.

i~jw ~ (WEB#wEAi)

Hence if j" = max f j...llwl<n 1 we have

i ~ jn ~ A. r n = Br n
J.

and in particular we thus have (A.)fn = Brn & R(A.)
In J.:

Since we can carry out this procedure for each n these A.sJ..

satisfy the left hand side of 2.13, so we can deduce R(B) by

the weak continuity of R.

2.46 Theorem

The following predicates are all strongly continuous:

where B is any constant process and RI' R2 & R, s are all

strongly continuous, and a function is doubly continuous

if it is both continuous and rev-continuous.

example proofs

(i) If <A.>];

So certainly

Vi.R(A.) then Vi.A.= B.
J. J.is any convergent sequence s.t.

lim(A.) = B.J.

(v) Suppose (A.) is a convergent sequence s.t. Vi.R(A.).J. J.

Set A = lim(A.) and suppose E is any finite process ESA.
J.

For each WEE there is some jw s.t. i~j . weA. (as A =1.

Set j = max t j I wEE 1 , we then have E SA..
E '" Je

But then F(E) ~ F(A.) = B and by continuity of F we have
Je

F(A) = U F(E) £ B as desired.E"'iA
f.:-;~

(vii) The proof of this will be given later.

liminf(A.»J.

(be) suppose(Ai> is any convergent sequence s.t. \/i.Rl(Ai)V R2(Ai).

Then there is either an infinite subsequence satisfying Rl or

one satisfying R2. It is easy to show that if ~Bi) is a subs-

equence of <.A.)then liminf(A.) S liminf(B.) c;limsup(B.) ~ limsup(A.)
]; 1. J. 1. J. .

Thus when <A."'> is convergent so must be <B.'> with the same limit.J. 1.

R(A) ;; (i) A =B

(ii) A £ B

(iii) A;;2B

(iv) p(w)
*

wEA 9 where p is any predicate on

(v) F(A) S B if F is continuous

(vi) F(A) B if F is rev-continuous

(vii) Rl(F(A»
if F is doubly continuous

(viii) 'v'¥>. (A) ('bEf')

(ix) RI (A)V R2(A)

Hence we either have an infinite subsequence (with the same

limit)which satisfies RI (~ Rl(lim(Ai» by continuity of RI)

or the same for R2. We hence have Rl(lim(Ai»V R2(lim(Ai»

as desired.

2.41 Theorem

Suppose F:P ~ P is doubly continuous and has a unique .fixed

point and that R is a satisfiable and strongly continuous

predicate. Then rule 2.1 is valid.

i.e (\fA.R(A) ~ R(F(A») ~ R(fix(F»

proof

Let A be such that R(A) (by satisfiability)o 0

Then J-~ Ao<:: T where 1- = abort and T = run

Claim that for each n we have R(A) and Fn(JJ <;A <; Fn(T) ,n n
whereA = Fn(A.).n 0

This is true for n=o by the above.

Suppose it true for n.

Then R(A l) [q R(F(A »] follows by supposition on R&F.n+ . n .

Also we then have Fn(l)SAS Fn(-r)n
~ Fn+l (.1.)t;;F(A) ~ Fn+l (T) by monotonici tyn

n+l/'
)

n+lf.
)

.

9 F ~ ~A rC-F ,T as deS1.red.n+

Since F is doubly continuous and has a unique fixed point

As monotonic sequences both

and have limit fix(F).

and Fn(T) are convergent

We therefore have fix(F) = limsup(Fn(~» £ limsup(An) (by (*))
and fix(F) = liminf(Fn(lr» ~ liminf(A)n

thus fix(F) S liminf(A) Solimsup(A)S fix(F)n n
so <A) converges to fix(F)n

The result then follows by the strong continuity of R.

We now examine the w~ in which this theory fits in with the

others we have already seen.

2.48 Lemma

Suppose <A '> is a convergent sequence and that the functionn
F:P ~ P is doubly continuous. Then the sequence <F(A » isn

convergent with limit F(lim(An)).

proof

By monotonicity we have for any ~N

c.F(lim(A }} as <A) is convergent- n n
co co

Also liminf(F(Aj}} =~(~(F(Aj}})
00 00

2
ku(F(.(l;.(A.)}} by the above
=0 J=.A. J

00 0)

:::) F(kU ((lk(A.») by continuity of F
=0 J= J

"2 F(lim(A }}
. n

We have thus shown limsup(~(An}}S F(lim(An}}Sliminf(F(An}}

so the desired result follows by 2.43(b}.

One immediate corollary to this result is the delayed proof

of 2.4b(vii}.

2.49 Define a class of restriction operators to be normal if it

each of its members is doubly continuous and:

a} VA.YB. Ato = Blo

b} VA.'Vn. m.(Aln}~m = M-min(m,n}

c} Vw.3n.A.wEA ~ wEAln

Note that each of the examples on page is normal.

2.50 Theorem

If a predicate is strongly continuous then it is continuous

relative to every normal class of restriction operators.

proof

Suppose { rn \ nEN) is

sequence s.t. Vi.AJ i
J.

inuous predicate R.

such a class, A € P and (A.) is a
J.

= Ali & R(A.} for some strongly cont-J.

It will clearly suffice to show that <A')
J.

is a convergent sequence with limit A, for then we have R(A}

by oontinuity of R.

Suppose w € limsup(A.)1
nw s.t. vB. wE Bfm ~0<:> 00

Now wEn (P (A .»
1=0 J=1 J

wEB

then by 2.49 (b)&(c)

if m:> nwC><>

~ wE U(A.)J=n.., J

~ "3 m~ n", wE Am
9- wt.A fmm
~ wE Atm

~ we.A

there is some

(as A f m =m

Hence limsup(Ai) ~ A and in a similar way we can prove that

A? limi~(Ai) which gives us the desired result by 2.43(b).

This result is just a generalization of 2.45(a) (it would

be necessar,y to impose stricter conditions upon the class

of restriction operators to generalise 2.45(b». It does

however give us a ready-made class of predicates (2.46) to

use with any normal class of restriction operators. We can

draw the following diagram of conditions for validity of 2.1

showing their relative strengths.

UFP / / strong continuity

;/ ~ /~
~

~ ~
(con~ructive/cts relative

other normal operators
to

)
constructive//weak continuity

Note that this assumes the double continuity of the function.

- - --- -- -

Postscript: Countable alphabets

It is possible to drop the condition of double continuity

in 2.47 if we restrict our attention to countably infinite

or finite alphabets. This has applications to the hiding

operator, which as we have seen is not always reverse cont-

inuous. The fundamental fact used is that in either of
*

these cases L is countable.

2.52 Theorem

If L is countable then every infinite sequence

has a convergent subsequence <A '> where i (jn.
,

<A) of P1
~ n.<.n..

1 J
proof

Enu.merate L* as lW1, W2.., ,wi,...1 .
Claim that

that ~i <. nj,i+.1 and nii ~ nj.t/

and Vi. A n fw1 , ,wo j=
nj(J-l

for each j we can find a sequence < A) such
njc'

and J"'<J. ~ each n.. is an n.,"
. J' J l

An. nf w1 ," , Wj)
~1

Suppose we have constructed such sequences for each j'<j .

If

If _ _

As. t. each
n.', '
J<

W .,.J
It is

j=o we can simply set nji = i.

j=j'+l then either there is an infinite subsequence of

Put n..
J1

easy to

contains W., or one s.t. each does not containJ

eq~l to_the ith ~~ of this subsequence.

check that the sequence A ~hus formed satisfies
~i

the required conditions.

Thus the required sequence exists for each j.

Now set m. = n... We have m.< m.
1 by construction.1 11 1 1+

We know that limsup(A)';:)liminf(A) by 2.43(b) so suppose
m; mj

WE limsup(A). w = w. for some j, and as w. E limsup(A) we
m; 0 J J m

must have w. E k . 1(A) . Thus there is some k)j s.t.J =J+ m .

W.E A . But by construction each A (k>j) is a A , and
J m... m" nJtli

these have constant intersectionwith iW1, ,w.) so'ifJ
Vk>j.w.E.A .

J mkoo

Thus w. E knl(Alii)J =J+ "
9> w. E liminf(A.)

J mk,

Hence liminf'(A) = limsup(A) and so (A > is the required
m; mj m,

convergent subsequence.

--- --

- - -

Given this result we can now prove the stronger version o£

2.47 £or countable 'alphabets.

2.53 Theorem

I£ I is countable and F:P ~ P is monotonic and i£ R is a

strongly continuous satis£iable predicate then

('VA.(R(A)9R(F(A»» 9R(£ix(F» (~}

i£ F has a unique fixed point.

proo£

We can de£ine ~(~) and Fa(t) £or arbi~ary ordinal a as £ollows

FO(~) = ~ . O(T~=T
..1 ..1 a

Fa (~) = F (Fa » Fa (= F (F (T»

F,u(~)= U (~) F,u(T) = n FU(T) i£,u is a limit ordinal.
u<.p u<,u

There must be some countable ordinal K s.t.

FK(~) = FK(T) = £ix(F)

The £act that K is countable can be derived in a similar way

to 4.13.

We can now prove by trans£inite induction on p ~K that

This is true £or p=o since R is satis£iable.

Suppose true £or p

then FP(~)SAp~FP(T) & R(Ap)

~ F(FP(~» <;F(Ap)S F(FP(T» &

9 ~l(~)SAp'lSy>'.1(T) & R(Ap-oJ
as desired.

Suppose true o£ all~<P and that p is a limit ordinal.

Because p is countable there must be some ascending sequence
...

< ~.IifN) o£ ordinals less than p s.t. U ~/.=P .~ ;=I

Put Bi = A~j This is an in£inite sequence which satis£ies

Vi.R(B.) and by 2.52 has an in£inite convergent subsequence~

< B ') s.t. Vi.n.,?-i. We then have 'Vi.F~"'(~)SB SF~";(T).
nj ~ n,

:9 V'i.Ff3((~) S Bn S F~i (T) as ~i~ ~t\.

~ FP(~) = limsup(F~((~» ~ lim(B) '::limsup(F~(' (T» = FP (T)n.I

R(lim(B » holds by strong continuity o£ R, so we can put Ap = lim(B».~ ~

-- - -- -

This establishes the desired result for all p<:'K.

Hence in particular it .holds for K, and so there is some

A s.t.. R(A) and fix(F) == F"(T)2A2FK('d == fix(F).

Thus A == fix(F), which completes the proof that R(fix(F» holds.

This result is ~ true when r is uncountable, as is demonstrated

by the following example.

If r is uncountab~e there is some (uncountable) initial ordinal

A equir'1umerous with it; suppose {aKIKEAJis any enumeration of I-f/j

by A. .Define F:P ~ P by F(A)=t<~q.,(a,?w'Vv(K.{a.,>€AJ. It is easy

to see that F is monotonic but not continuou.s, and that F has

unique fixed point~. Now consider the predicate R defined

R(A) == "Ao is countable"; R is plainly satisfiable and it is

easy to show that RtA) +-R(F(A» for all AeP. That R is strongly

continuous follows from the fact that a countable union of count-

able sets is countable, so that whenever <A.> is any sequence of1

processes S.t.R{A) for each i we have that (limsup(A.»O is count-1 1

able also. However(R(~) plainly does not hold, demonstrating

that the rule is not valia in this case.

In the appendix to the next chapter we will see that if we strengthen

stil~ further our definition of continuity of predicates 2.51 does

hold for general alphabets. In addition we will see there that

over uncountable alphabets neither strong continuity nor the even

stronger continuity can be represented as continuity relative to

any normal class of restriction operators. Such a class of oper-

ators does exist for countable alphabets, though:

2.52 Theorem

If E is count able then strong continuity is equivalent to

continuity relative to the fol~owing normal class o~ restriction

operators:

Ati = tw.\ j~i & w.E A1J J

where ~wo,wl,...1 is any fixed enumeration of ~* with the

property that w .<w. ~ i < j (such enumerations are easy to
J. J

construct) .

proaf

It is very easy to show that the above is indeed a normal class

of restriction operators. By 2.50 we know that every predicate

which is strongly continuous is continuous relative to any

normal class of restriction operators, so it will be sufficient

--

to show that cont~nuity relative to the above class implies

strong continuity. To this end let us suppose that R is a

continuous relative to our class o£ operators, and

is a sequence o£ processes which converges to A and

predicate

tpat <A>J.
such that R(A.) holds for each jE N.

J

Since limsup(A.) = limin£(A..) = A it is easy to see that £orJ. Jj

all iEN there exists some minimal k(i) with the property that

m~k(i) ~ «w.E:A) # (wi€A». Define rei) = maxfk(j)lj~i~:
J. m

for each s ~r(i) we have A li = Ati by de£inition o£ ri.s

Hence £or each i there exists some B s.t. Bri = Afi and R(B);

thus R(A) £ollows by continuity o£ R relative to this class.

Thus fA IR(A)] is closed under the limits o£ its convergent

sequenoes, so R is strongly oontinuous as olaimed.

-- -

Chapter 3 :- Continuous Predicates as a Topology

It is possible to define a topology on the space of proc-

esses P (or one of the product spaces pA) in which the

closed sets are identified with the continuous predicates..

This can be done for each of the types of continuity we

have met so far. In any particular case we will have:

3.1 XE Q[(theclassof closedsets)
~ R(A) =="AE X" is "a continuous predicate.

That these are the closed sets of a well-defined topology

follows because (a) both "true" and "false" are always

continuous and so both ~ and the whole of P (or pA) are

closed and (b) the class of continuous predicates is closed

under arbitrary conjunctions and finite disjunctions (and

so the closed sets are closed under arbitrary intersections

and finite"_unions). (These results for general restriction

operators follow in much the same ways as 2.l8(xii)&(xiii)

and 2.46 (viii) &(ix) .)

From here on we will consider only topologies of P (which

correspond with predicates of a single variable). This is

simply for the sake of clarity, and it is possible to extend

many of the results obtained to the general space pA.

We will first examine the topology arising from a metric

defined relative to an arbitrary normal class of restriction

operators. We will then show that this is the same topology

which arises from definition 3.1 (for the same class of

operators). Later we will see the implicationsof these

results for the special cases of weak continuity (2.12)

and strong continuity (2.44).

Suppose that frnl nEN1 is a normal class of restriction

operators (2.49). Define a metric on P as follows:

A'IB9

d(A,A) = 0
1

d(A,B) =-n where n is minimal w.r.t.

3.2

Atn :f: Brn .

(That such an n exists when A f B is easily shown from 2.49 .)

This is a well-defined metric, for (i) clearly d(A,B) = d(B,A)

for all A and B, (ii) d(A,B)~O and d(A,B) = 0 ~A=B,

----- --- ---- - - - '

(iii) for all A,B&C if Atn * C~n then clearly either Aln F Bin

or Btn * Ctn so that d(A,C)<max(d(A,B) ,d(B,C».

This strong type of metric (with "max" instead of the usual

triangle inequality d(A,C) <d(A,B) + d(B,C)) has several

interesting properties. Recall the following definitions

(which are valid in an arbitrary metric space (P,d)).

3.3(i),'An open ball is a set of the 'form fBI d(A,B)<a)
a

(denoted by BA) for any a > 0 and A E P.

(ii) An open set is any union of open balls.

(iii) A closed set is any set whose complement is open.

(iv) (P,d) is said to have dimension zero if for every

A E P and ~ > 0 there is some set B which contains A,

is both open and closed (clopen) and has the prop-

erty that CEB ~ d(A,C)<~

3.4 Theorem

Suppose that (P,d) is a metric space which satisfies the

condition d(A,C) < max(d, (A,B) ,d(B,C» for all A,B,C E P.

Then each of the following holds of (P,d).

(i) If B~ and B~ are two open balls such that a < c, then

ei ther they are disjoint or B: <;B~.
(ii) rUe IC is a finite set of open ballsj is a basis for

the metric topology which is closed under finite intersection.

(iii) The open balls are closed sets.

(iv) (P,d) has dimension zero.

proof
. a c a c

(1) Suppose BAn BC :t=f2J,then 3D E BA n BC.

We then have that d(A,D) < a and d(C,D) < c, so d(A,C) < max(a,c) .

c
Hence A E BC.

Now suppose that DE B:, then d(C,D) < max(d(C,A) ,d(A,D»
< max(c,a) = c.

Thus D E B~, and so B: <;B~ as desired.

(ii) This is trivially a basis (as the set of open balls is

one). It is closed under finite intersections since by (i)

the intersection of two open balls is either an open ball

or ~ (which is the union of the empty set of balls) .

(iii) Part (i) shows that all the distinct a-balls (for any
1

fixed a) are disjoint. This together with the fact that

--

C EBa
C

is the

"if = BaA

gives us that for

open set U...l.B~.
a ql)/\

and so BA is the

a
any AE P we have BA () U = 0, where Ua

Clearly also BA U U = P, so we have
complement of an open set as desired.

(iv) By part (iii) it

small open ball about

to be clopen.

is sufficient to take a sufficiently

a point A E P, since these are now known

Recall :the definition of a Cauchy sequence over a metric

space: .

3.5 If (P,d) is a metric space

of points in P then <A. liE N)J.

en ce if V15> o. :3 n EN. Vr , s ~ n .

and (A. , i E N) is a sequenceJ.

is said to be a Cauchy sequ-
d (A , A) < c5 .r s

Note that under the conditions of 3.4 a sequence is a Cauchy

sequence if it satisfies the weaker condition

V 15 > O. :) n. V r ~ n. d (A ,A)< 15 .r n

A metric space is said to be complete if each Cauchy sequ-

ence converges to some limit, that is

3A. \/15>0. 3n. Vr~n.d(A,A)<15.r

3.6 Theorem

The metric space defined relative to any normal class of

restriction operators is complete.

proof

Suppose that <A. liE N) isJ.
such a class-of operators.

I* to N as follows:

r(w) = minimal r s.t. VB. wEB ~ w E B~r

(such an r exists by 2.49)

new) = max~r(v) I v,",w3

j (w) = minimal j s.t. i ~ j ~ c!i (A. ,A.) < ~
()J. J nw

(such a j exists by definition of Cauchy seq.)

a Cauchy sequence relative to

Define functions r,n,j from

Now define A = (w I WE Aj (w?' Claim that A is the limit
of the Cauchy sequence.

A is an element of P for certainly <) E Aj «» and also

v < w EA =9 v E Aj (w) (as Aj (w) E P)

:, V E Aj (w>' r (v)

9 v EAj (v/r (v)
1

(as d(Aj (v) ,Aj (w» < rev)

~Aj(vlr(v) = Aj(w/r(v))

"

-- -

Suppose that <Ai' i E NI did not converge to the given A.

Then there is some {,> 0 s. t. Vm. 3 n. n ~ m & d (A ,A) > (,n

By the definition of the metric, since <A.) is a Cauchy1

sequence,for each nE N there is some m s.t. k ~ m * Ak'n = Amr n.

Thus there are some n&m s. t. k ~ m ~ Am' n = Akt n ~ Atn (choose

n> ~ and m as in the last sentence relative to it) .

There would thus either be some wE1:* which was an element

of Atn ,- ~~n for every k ~ m or some'w E 1:*which was an

element, of A/ n - Atn for every k ~ m.

Suppose first that the first of these two possibilities

could arise.' -Since.tn is a continuous function by assump-

tion we have Afn = U~Bln I B £A & B is finite1. Hence ~'j

there is some finite B <;;;A such that WE Bin.

Suppose that B =~V1,...,Vs~i let r = maxfm,j(v) I VEBJ.

Since each v. E A, we have v. E A (as r ~ j (v.)).1 1 r 1
Hence B CA, which implies that WE A f n, which contradi cts

- r r
the fact that r ~m. Thus the first possibility cannot

arise.

The second possibility can similarly be excluded by rev-

continuityof tn and the fact that Aln = niBfn I B;> A & B ecf1

where an ecf (effectively cofinite) element of P is one which

can be wri tten in the form ~ v 113 u E c. V ~ u 1 for some fini te

subset C of 1:*.

This completes our proof that <A. liE N) does in fact conv-1
erge to A as desired.

A metric space is said to be compact if every infinite sequ-

ence contains a convergent subsequence.

3. 7 Theorem

The metric space defined relative to a normal class of

restriction operators is compact if and only if there are'

only' finitely many possible values for Bt"n for eve.ry nE N.

proof

Suppose that there were infinitely many possible values

for some n. Then we could pick an infinite sequence <A.Ii EN)1
such that i f j ~ A.tn 1 A.rn. It is easy to see that1 J
this sequence can contain no convergent subsequence as any.

such subsequence would be a Cauchy sequence in which no two

points were within 1 of one another.n

- - --

Suppose then that.there are only finitely many values poss-

ible for each restriction operator and that <A. liE N> is1.
an infinite sequence of processes.

Claim that it is possible to find integers n. . (i,j EN)1.,J
satisfying the following conditions:

(i)

(ii)

n. .< n.
J.+11.,J 1.,

A'l'i=A ti
, n.. 1\0

l,j .

'Vj.V'i.Jk.k ~j & n~+l,j = ni,k(iii)

We will construct these by recursion on i.

Set n . = i
0,1.

these satisfy (ii) as to is a one-valued

function (2.49)

Suppose that we have constructed

there are only finitely IDan y
Therefore there is at least one

the n. .. By assumption
1.,J

values taken by the ~. r i+l.
value (B say) which occtirs

infinitely often.

Let n'+l . = jth n. k s.t. A ri+l = B.1. , J 1., ni.k.

It is easily seen that these n' +l . satisfy all that is
1. , J

required of them.

Note that this proof requires the use of the Axiom of Choice

in the choosing of value B.

Having constructed the n. . set m. = n. .. These satisfy
1.,J 1. 1.,1.

m. < m'+l (by (i)&(iii) above) and i,j ~k 9 Ark = A fk
1. 1. m . In..:

(by (ii». 1 J

Thus i,j;>k 9 d(A .,A)< kl so that the (A .liE N) are a~ ~ m1
Cauchy subsequence of ~A. liE N). By 3.6 this subsequence1. .

has a limit and so <A. liE N) has a'convergent subsequence1.
as desired.

Note that this result gives us that (P,d) can only be

compact when L is countable,for every element of P can

in some sense be identified with the sequence of its rest-

rictions (Atn) and the cardinal of these sequences is at

most c (continuum) if each rn has a finite range. (This

also follows more conventionally from the fact that every

compact metric space is separable.)

The following result shows that -all restriction operators

giving rise to compact metric spaces give rise to the

same topology.

- - - -- - ,.-

3.8 Theorem

Over any space of processes all normal classes of restr-

iction operators inducing compact metric spaces induce

the same topology. In the case where L is countable the

restriction operators inducing strong continuity induce

a compact metric space (and hence the only possible such

topology) .

proof
We know that there can be no such metric when L; is un-

countable (by the remarks above) so it is sufficient to

consider only the case of countable L. That the class

of operators described in 2.54 give rise to a compact

metric space is an immediate consequence of 3.7, since

plainly there is only a finite number of possible values

which can be taken by each one.

Suppose that Un I nE N3 and H' n I nE N) are two classes of

restriction operators giving rise to compact metric spaces,

and that their associated metrics are d and e respectively.

To show that the topologies are the same it is sufficient,

by symmetry, to show that every d-closed set is also

e-closed. We will use the fact that a set is closed in

a metric space if and only if it contains all its accum-

ulation points (i.e. the points which are the limits of

convergent sequences contained entirely within the set) .

Suppose that X is a d-closed set. To show that it is

e-closed we must show that every e-convergent sequence

has its limit in X. Suppose that <A. I iEN) is anJ.
e-convergent sequence with limit A. By compactness of

the metric space (P,d) there is a d-convergent subsequ-

ence,' say <A! liE N> , with a limit A', say. Being aJ.
subsequence of <A.I iE N> this must be e-convergent withJ.
limit A. It is sufficient to show that A = A', for A'

is in X since it is the limit of a d-convergent sequence

in X. Suppose w E:E*; since both classes of operators

are normal there exist integers r & s s.t. for all c~ P

wEe # WEe rrand wEe ~ wEe f ' s. Let m =max(r,s);

it is easily shown that wEe ~ wE cfm 1#:1 WEe time

By construction there exists some nE N s.t. dCA' ,A')<!
'I n m

and e (A~ ,A) < m; .This tells us that A~t m = A ,t m and
A't'rn= Ar'm.n

--

Since this holds for all w we thus must have A = AI as

desired.

Observe' that the above proof shows that each d-closed set

is e-closed simply by assuming that (P,d) is compact.

This shows directly that the topology induced by a compact

metric space of the type we are studying is weaker than

that induced by any other (i.e. has less closed sets) .

We will shortly see that this is very much the same result

as 2.50.

The opposite role to the compact topology is played in a

much less interesting way by the' classical discrete topology

in which all subsets axe open and closed. An example of

a normal class of operators giving rise to this topology

is the following.

A f*o = abort

Ar*n = A

(AE P)

(n> 0)

Note that the metric which this class induces is the

usual discrete metric.

We are now in a position to establish the fundamental

connection between the metric spaces described above and

the corresponding topologies of continuous predicates

which were described in 3.1. We show that the metric

topology and the continuous predicate topology are the

same. By doing this we are able to use results obtained

about the topological properties of spaces of,processes

to classify the continuous predicates. We are also

enabled to prove certain results on the satisfiability

of predicates, a topic which is often in practical sit-
uations one of the most difficult to deal with.

We thus have wEAl W E A Ir-m

WE A Irron
WEAl

n
wEAl ("Iron

wE At lro

wEA

3. 9 Theorem

Suppose that Rn I n E NJ is a normal class of restriction

operators. Let d be the metric defined on P relative to

this class (3.2). Then a predicate R is continuous relative

to this class if and only if fB 'R(B)3 is a closed set in

the metric space (P,d). In other words the topology induced

by the metric d is the same as that introduced in 3.1.

proof-

We use the result that a set is closed if and only if it

contains all its accumulation points (i.e. points which

are the limits of convergent sequences contained wholly

within the set).

Suppose first that R is a continuous predicate and that

<A. liE N) is a convergent sequence contained in the s"et1.

lBI R(B)l (with limit A, say). Then for each nEN there

must be some i s.t. d(A,A.)< _nI, so that Atn = A.~n and R(A.).
1. 1. 1.

R(A) then follows by definition of continuity (2.13).

Thus fB I R(B)1 contains all its accumulation points, and

so is a closed set.

Secondly suppose that lB I R(B)3 is a closed set and that

a E P is such that \/n.:fB . (Arn = B ,.. n) & R(B).n n n
These B clearly form a Cauchy sequence converging to An

(as m""n ~ Bntm = Arm). Hence R(A) holds as ~B I R(B») is
closed and so contains its accumulation points.

Thus R is continuous by 2.13.

We can thus now start to apply results of topology to our

predicates. The first two results we obtain concern the

satisfiability of predicates.

3.10 Theorem

If (R I n EN) is a sequence of continuous predicates (rel-.n

ative to some normal class of operators) such that Rn+l 9 Rn
and if (,AIn E N) is a sequence of processes such thatn
A

+.rt n = A t n and R (A) holds for each n, then there isn n -n n
some A E Ps. t.

(i)

(ii)

Atn = A t n for all nn
R (A) holds for each n.n

-- --- -- - --

proof

Denote by l\a the subset ~ufB~ I A E C} le c;p3 of JS .

Note that a ~b ~ l\a 5;i\b, for if EEl\b then

E = U ~B: I A E E3

(The containment of the L.H.S.within the R.H.S. is obvious,

the reverse one following from 3.4(i).~

To show that ~ is closed under fihite intersections and
. J1)a

unions it will thus be sufficient to show that each ~ is.

(This is because in any finite intersection of elements of

~ there will be some minimal "a".)

~e union case is easy: clearly UtB: I AE c3 u UfB: I A E D3

= UtB: I A E (Cu D)1 .

In the intersection case we have

U[B: I A E C1 n UfB: I A E DJ = U~B:n B: I A E C & C E D3
which is an expression of the correct form since each of

the B: n B: is either empty or B: (by 3.4 (i».

JS certainly now contains the basis of 3.4 (ii) for it

contains each ball B: individually and is closed under

finite unions. Each element of ~ is open by construction
(union of open sets). These two facts together tell us

that ~ is a basis. Each element is closed since it is

the complement of the union of those balls os the same

radius which are disjoint from it (an open set). Thus

every element is clopen.

If.the space is compact then there are only finitely many

balls of any given radius (as in 3.7) and so each element

of ~ is a finite union, and so is contained in the orig-

inal basis. Hence in this case the two bases are the

same.

If the space is not compact then by 3.7 there is some n

such that fn takes infinitely many values. Without loss

of generality we can assume that n is minima~ with respect

to this property. There can only be finitely many values

taken by all fm such that m < n, in particular n-l (n> 0

as ~o is one-valued). Pick elements AI' A2,... of P with
distinct images under tn. Since there are only finitely

many values of rn-l we can pick an infinite number of the

Ais which take the same value under tn-l (Ai, A2,... say).

-- - ---

Let C = t A2i liE NJ; by constructionufai I A e: C 3 (= X) is an

element of~. We need to show that X cannot be expressed

as a finite union of balls. Suppose that X = Bl U B2 U .. U Bk
where each B. is a ball. The radius of each of the B. must

1 1

be < 1, since (i) all the A! (and hence everypointof X)n 1
takes the same value under fn-l (ii) thus the "centre" of

such a ball would also have to take this value and so (iii)

each A2i+l is also in the ball (which contradicts the fact

thatAl EtX). Howeverthis impliesthateachA2i is cont-
ained in a different B., since it is easily seen that no

ball of radius < 1 can ~ontain two points whose distance isn
1 (in a metric satisfying the conditions of 3.4). Thisn
clearly makes impossible our supposition that there are

only a finite number of balls in the union.

The next result completely classifies the

sets in the compact case, showing that in

clopen sets correspond exactly to ~ (and

original basis).

space of clopen

this case the

hence to the

3.13 Theorem

In cases where (P,d) is compact a subset X of P is clopen

if and only if it is in ~(and so can be expressed as a
finite union of balls).

proof

Suppose that (P,d) is compact and that X is a clopen set.

Since X is an open set it can be expressed as a countable

union of balls (countable since when (P,d) is compact

there are only countablymany balls). We can assume that

this expression is infinite, for otherwise the result is

immediate. Since there are only a finite number of balls

of any given radius we can assume that the balls are

expressed in order of descending radius: Bl,B2,... .
If X were expressible as a finite union of balls then so

would be X (this being because then X = UtB: \ AEX1, where
a is any number smaller then the smallest zadius occurring

amongst the expression for X, but this union is only finite

because for any a there are only finitely many a-balls).

Since X is open it can also be expressed as a countable

infinite union of balls of descending radius: Bi,Bi,... .

---- --- -- - --

We can assume that all of the balls B. and B! are disjoint.J. J.

Let Zi = (Bl U Bi U B2 u ... U "BiUBi). By construction Zi is

open and so Z. is closed. Also Z. is non-empty (B.+I CZ.)J. J. J.-J.
and Z.

+1 <;Z. for every i. The Z. are thus a non-emptyJ. J. J.

descending sequence of closed sets in a compact metric

space. Hence there is some point in their intersection,

A* , say . This however contradicts the fact that .0 Z. = P
J.=o J.

(= X U X), so we must conclude that t~is case, where X is

not expressible as a finite union of balls, cannot arise.

This completes the proof of our result.

3.14 Corollary

When!: is countable a predicate R and its negation ,R are

both strongly continuous if and only if R can be expressed

fini tely in terms of propositions of the form "we: A" (w E 2*) ,

"I" and "v".

proof

That each predicat e R expressed in these terms has both

R and ,R strongly continuous is easily proved by induction,

because each of the sets £ A \ WE Aj is clopen (wE 2:*) and

the space of ciopen sets is closed under complementation
and finite unions.

That every R with both R and 'R strongly continuous can

be written in this form follows because the set ~A I R (A»)

is clopen, and so can be written as a finite union of

balls in the metric space induced by the restriction oper-

ators given in 2.54. (Every ball can be written finitely

in terms of "," and "1\"and "w EA", which is translatable

into the desired form.)

Note that it is a corollary to 3.8 that all normal classes

of restriction operators which give compact metric spaces

have the same class of continuous predicates, and so the

above theorem is equally valid for each of them.

It is possible to give a general classification of all

clopen sets and hence of all "doubly continuous" predicates

for general classes of restriction operators. Before we

do this we need a normal form result for closed and for

open sets.

--

3.15 Lemma

If d is the metric defined relative to some normal class

of restriction operators then a set X is open in (P,d) if
...

and only if it can be written in the form ,UlC" where
J.. 1= 1

C E 1\" I (as de fined in the proof of 3 .12) , C. ne. = ~ if
n 1 1 J
i~j and for any a >- & AE P we have BAa i . U C.. This exp-n 1=n 1
ression for X in terms of the C. is unique for each open1
set X.

Under the same conditions a set X is closed in (P,d) if

and only if it can be written in the form .filC" where
~ 1 1= 1

~n . a
C. E.1t\ , C +IC C and for all a ~ - & A E.P we have BA n X = ~n n - n n
~ C n X = ~. This expression is unique for each closedn
set X.

This result is a fairly easy consequence of 3.12.

It follows that the following four conditions are equiv-

alent for any set X.

In particular a set X is

some C. and C! such that1 1
sequences satisfying the

3.15. Consider the sets

clopen if and only if there are
-

X = .nlc. and X = .n lC!, both1= 1 1= 1
conditions of the second half of

D. = C. n C!. By construction111
these are closed sets satisfying the conditions D +~D~ n ~ n

and iQlDi =~. This can arise in two essentially diff-
erent ways: either D. = ~ for some i E N or not. In the1
first case we have that C. = C. for all i < J

.

(since C. C C. &
_ - J 1 J- 1

C. U C.= P) which tells us that X = C.. Thus xe7Q. It is
J J 1 ~

also true that if xe ji then D. = ~ for some i (any i s .t.
~ 1 a
i < a, where a is such that X = U~BA I A e CJ). Thus the
first case arises exactly when X lies in the class of clopen

setswhichwe have alreadyidentified,namelyrs . The
other case (which cannot arise when the metric space is

compact) is harder to describe exactly.

The following result gives an exact but not very elegant

list of all the clppen sets (including the first case).

For an example of what one of the second case sets looks

like see 3.17.

(il) X is clopen.

(b) X can be written in each of the forms given above.

(c) X and X can be written in the first (open) form above.

(d) X and X can be written in the second form above.

This characterisation of clopen sets is unfortunately

rather too abstract to yield a very useful tool in ident-

ifying the "doubly continuous" predicates in a given

system. It should be said though that apart from the

"finite" ones which are easily identified (i.e. ones

which correspond to some element of ~) these predicates

are rarely of much practical use. The following is an

example of a doubly continuous predic?te which is not

finite (in the sense defined above), in the system defined

by weak .continuity (2.6 et seq.) with alphabet containing

N, the natural numbers. The derivation of the correspon-

ding set from 3.16 requires one application of rule (ii).

3.17 Example

Let A (for nE N) ben
(n "n"s)., Then the

con tin uous

the process n -+ (n 7 .. (n 7' skip}). .)

predicate R(A) ==:In.A=A is doublyn
but not finitewith respect to weak continuity.

'The basic principle at work here is that one can tell in

a finite time (after one step) exactly how long one has

to wait to know whether or not the predicate holds. It

is generally true that all doubly continuous predicates

result from the c~mpounding of this principle.

Note that neither the above R nor its negation IR is

strongly continuous. This is because we can find conv-

ergent sequences of processes satisfying the predicate

«A InE N) as a sequence has limit abort) and not satis-:-.n
fying it (<A 0'A +11 nE N) which has limit A) whoseono
limits act oppositely. However this does not extend to

a general principle, for if we were to substitute abort

into the definition of An in place of skip the resulting
R would still be doubly we'aklycontinuous but now R would

be strongly continuous (though of course not iR) .

There are several results about continuous predicates

which follow from the zero-dimensionality of our metric

spaces.

3.18 Theorem (Sharpened normality property)

If Rand S are two inconsistent predicates, continuous

relative to some normal class of restriction operators,

then there is a doubly continuous predicate T such that

R '* T and S ::} IT.

-- - - -

3.16 'I'heorem

In the metric space (P,d) defined relative to some normal

class of restriction operators the space j!} of clopen sets

satisfies the following:

(i) 1Jj <;~
(ii) If for any nE N

satisfying X,YEj} ,

Uj} E J!)

J!) is the smallest collection of sets satisfying the above.

we have a family.J}of clopen sets

X~Y, AE X & BEY * Aln~Br-n then

proof

We will first show that J!) satisfies condition (ii) above

(we already know that it satisfies condition (i». Let j}

be a family of clopen sets satisfying the hypotheses in

condition (ii) above for some nE-N. and let X = Uj} .

That Xis open follows from the fact that it is a union

of 9pen sets. X is closed since the tail of any converg-

ent sequence contained in X must be contained in one of

the elements of ~ , and so its limit is contained in

that element.

Secondly we will show that every clopen set can be derived

from (i) & (ii) above. Define ~ 'to be the family of

clopen sets which can be so derived,and suppose that X

is clopen. Observe first that for any n and any such X

at least one element of f X n ~ A I Ar-n = Br-n3!BE pJ is clopen

and not in ~. (Every element of this set is clopen by-

construction, and if each were in c!9 then so would be X

as it is the union of a family of elements of ~ satisfying

(ii) for n.) Set Xo = X, and for any n choose Xn+l to
be one of the X n [A I Arn...1= Brn+l1 which is of the offendingn
form. Each of the X. is nonempty (since ~ E~) so we~
can pick a sequence <A./ iE N) s.t. A. EX.. By construction~ ~ ~
this sequence is Cauchy, and hence convergent to some A* E P.

Certainly A* E X, since each A. E X and X is closed, but also~

for each n we must have X ~ f A'I A'r.n = A r nJ (for this setn n
is in ~). We can thereforepick a second sequence (A" n EN)n
such that A~in = ~r n and such that ArtftXn' This means

that < A~I nE N) also converges to A*, and also that ArtE X

i"(itis easy to see that X = xnfA" A't n = A t n). Hence A* E X,n n
as X is closed, which is a contradiction. We may thus

conclude that our assumptionthat such an X exists is false.

- - - ---

proof

It is sufficient (by the correspondence theorem 3.9) to

show that in the corresponding metric space every two

disjoint closed sets can be separated by a clopen set.

We will show that this is true in any metric space which

satisfies the conditions of 3.4.

Suppose that (P,d) is such a space, and that X and Y are

a pair ~f disjoint closed subsets of P. It is clear that

given any point of X there is some nE N such that the

(clopen)' ball of radius 2-n about it is disjoint from Y,

for otherwise we could find a convergent sequence of points

in Y converging to a point in X.

2-"
For each AE X define B(A) to be the BA of least n such that

it is disjoint from Y. It is not hard to see that by 6.4(i)

B (A) ()B (A I) :f ~ ~ B (A) = B (A') for all A,A' E X (if they

are not disjoint then one is contained in the other, but if

either had strictly smaller radius than the other it would

not have maximal possible radius with respect to being

disjoint from Y) .

Now define Z = A~XB (A) .

trivially disjoint from

A e:B (A) for all A e:X) .

Claim that Z is clopen (it is

Y and contains the whole of X as

Z is open by construction, since it is the union of a set

of open balls.

If Z were not closed then there would be a sequence of

points AI,A2,... which converged to a point A* not in Z.
There are essentially two cases to consider: either infinitely

many of the A. lie in one of the B(A) or not (in which case1. -
there must be an infinite collection of .t1heballs B (A) CAE X)

containing them).

In the first case it is easy to see that (if AE X is such

that infinitely many A. are in B(A» there is an infinite1.
subsequence which lies in B(A) , which tells us that A*e B(A)

as B(A) is closed by 6.4(iii). Thus this case cannot arise.

In the second case either arbitrarily small balls appear

amongst the B(A!), where A!E X is such that A.E B(A!), or
1. 1. 1. 1.

not. If this is not the case and b is the smallest radius

occurrina among the B(A!) then it is clear that the entire
J 1.

sequence AI,A2,.. is contained in the clopen (by 3.12)

subset 0 BAa of Z. But this would imply that A*e Z, so this
la1 i

possibility cannot arise. If arbitrarily small balls do

appear among the B(A~) then without loss of generality wel.

can assume that the radii of the B(A~) are strictly decreasing.l.
(This is because some infinite subsequence of the A. mustl.
then have this property.) For all n we then have that

d(A ,A') <;;2-n. This is easily seen to imply that <A! I i € N)n n l.
converges to A*. This however is impossible since then,

because ,X is closed we must have A* E X ~ Z.

It is interesting to see how the topological notions of

convergence and continuous functions relate to the ideas

we met in the previous two chapters. It is in fact easy

to see that a sequence of processes converges in the

sense of 2.42 if and only if it converges relative to the

corresponding metric (both ideas are equivalent to there

being for everyWE r* a pointin the sequenceafterwhich
w is either always present or always absent).

It is possible for a function to be continuous in the

topological sense (i.e. inverse images of open sets being

open) without being continuous in the lattice sense, as

a function can be topologically continuous without being

monotonic. We can for example divide P into two clopen

sets, pick any two points we wish in P and have the func-

tion , which maps one set to one point and the other to

the other topologically continuous. There are though

some weaker comparisons possible.

3.19 Theorem

Suppose that (P,d) is a metric space induced byaclass of

restriction operators giving a compact space. Then a

function f:P ~ P which is doubly continuous in the lattice

sense is topologically continuous. Furthermore every

function which is topologically continuous and monotone

is also (lattice) doubly continuous.

proof

The first part of this follows from the facts that a func-

tion is continuous in (P,d) if and only if it preserves

the limits of convergent sequences, that the two types of

convergence are the same (see above), and that a doubly

continuous function preserves the limits of convergent

sequences (2.48).

- - -- - ------.-.--

The second part follows since as (P,d) is compact L must

be countable. This means that for any A€ P we can find

sequences <A. I i E: N) and <A~ liE N) which consist respect~1. 1.

ively of increasing finite processes and decreasing ecf

processes, each of which converges to A. By topological

convergence we get that each of <f (A.) liE N> and <f (A!) liE N)1. 1.

is convergent with limit f(A). This combined with mono-

tonici~y easily yields ~he desired result that

f(A) = Utf(B)' B~A & B is finite] = nff(B) I B;?A & B is ecd.

Note that 2.46(vii) extends the first part of this result

to the case of strong continuity over uncountable alpha-

bets, since it tells us that the inverse image of a closed

set under a doubly continuous function is closed (in the

topology defined as in 3.1 by reference to strong contin-

uity) .

The above result can be regarded as an explanation of the

connection which we observed between strong continuity of

predicates and doubly continuous functions.

Other classes of restriction operators relate less well

to lattice continuity. For example in the case of weak

continuity (with its usual metric) there are lattice

continuous functions which are not topologically continuous,

and monotonic topologically continuous functions which

are not lattice continuous.

3.20 Examples

(i) The function f:P ~ P defined by f(A) = abort if AO is

finite, f(A) = skip if AO is infinit~ is both monotone

and topologically continuous but is not lattice continuous

wQ.enever :ris infinite.

(ii) Suppose that N~L and that bEL. The function f:P'" P
" 'b"s

defined f (A) = f(")}uf~m I (bb..b)~A1 is lattice doubly cont-

inuous but not topologically continuous.

The second example works because it maps the convergent
i -b"s

sequence <B.liE N> (where B.=i l> ,<b) ,(bb> , . . . , (bb. .b)j)
1. 1.

to the non-convergent sequence <~(n)1 n~rn1uf{)31m EN).

It is however possible to recast the usual £-8 metric

space continuity criter~on in a more familiar form:

VB EP. "3g:N ~ N s.t. \lA.(Atg(n)=Bfg(n» ~ f(A)ln=f(B)1 n

--

The above fODmula, which holds for a function f if and

only if f is continuous in the topological sense, is

rather like 2.18(x) (though slightly stronger). That

this should be so is of course quite natural, since 2.18 (x)-

plays the same role for weak continuity as 2.46(vii)

does for strong continuity.

The next question to ask is how constructive functions

behave in our metric spaces. It will be seen immediately

that a constructive function has the effect of reducing

the distance between two points, and that a non-destructive

function is one which guarantees not to reduce the distance

between two points. One gets a slightly preferable picture

at this point by altering the metric slightly: let d' be

the metric defined by setting d'(A,A) = 0 and d' (A,B) = ~n

where n is minimal with respect to Atn # Btn (if A ~ B).

This alteration does not affect our earlier work except in

minor computational details, all results still stand in

the metric space (P,d'). The advantage gained is that

a constructive map now becomes a contraction mapping:

for all A,B€P, if f is constructive then d'(f(A) ,f(B»~fd' (A,B).

It is possible to derive all our basic results about existence

of fixed points and recursion induction from this fact alone.

This topic and the wider uses of contraction mappings

deserve more attention, but we will leave it here.

Following Scott () it is possible to

whose continuous functions correspond

lattice continuous functions.

define a topology ~
exactly to the

3.21 Theorem

Let ~ be the topology generatedby the subbasis

~ = flA I Ad B 11 B € P & B finite 1 . Then a function

f:P ~ P is continuous in this topology if and only if it
is continuous in the usual lattice sense.

The proof of this result is omitted, being very similar

to the usual proof over P (N). This topology is very much

weaker than any of the ones associated with restriction

operators. It is To (i.e. given any pair of distinct
points there is an open set containing one and not the

other) but not Tl.

- - -- - - - - - . . - -. - . .

Before we summarise the implications of this chapter we

will see one more result: an alternative characterization

of the topology induced by our compact metric space.

3.22 Theorem

If A,B E P define the interval [A,BJ to be the set £c I A<; C ~ Bl.

The set] of intervals is closed under intersection. Let

~be the weakest topology on P in which all intervals are

closed. W is the same as the topology' induced by strong

continuity when r is countable (and hence is also the same

as the metric topology induced by the operators described

in 2. 5 4) .

proo£

The set~ of closed sets in the topology is the following:

(i) 11 <; 'if

(ii) ~c is closedunder
{iii)~c is closed under

(iv)'Wc is the smallest

taking finite unions.

taking arbitrary intersections.

set satisfying (i)-(iii).

That these are the closed sets of some topology is not

hard to prove, and having done this the resulting topology

must by construction be the weakest one in which all inter-

vals are closed.

Let ({ be the set of closed sets of the topology induced

by strong continuity (3.1). To prove our result it is

sufficientto show that ijJc=({. That mc<; <!I: foJ.lows

inductively from the fact that the predicate induced by

each interval is strongly continuous (2.46{i,ii,viii»

and the fact that <!C is closed under finite unions and

arbitrary intersections.

To prove thatC!I:<;1fit is sufficient to prove that each

element of the known basis for qcis in~ (as the

complementof each basis element is also in ,so we

are showingthateach is alsoopen in ~) . Since there

are only finitely many balls of a given radius and ~c is
closed under finite intersections it is sufficient to show

that all balls B~ are in ~c. It is easily seen that for
every ball there is an expression which has the form

Z nzln... nz , where Z. is either {A I w. E A] or fA I w. f/.A)o n 1 1 -- 1

([Wo,wI' . ..3 the e.numerationof r* in 2.54) and n is
minimal with respect to ~ < a (radius of the ball). Itn

-- - - -

This completes the proof of 3.22.

This result is pleasing, since it s~ows that the topology

induced by all compact metrics and strong continuity is

quite a natural one. It can be used to prove results

of closed sets (and hence of strongly continuous predi-

cates) inductively. If a property holds of all the basic

intervals (Iabort,AJ, IA,runJ) and is preserved by finite

union and arbitrary intersection then it holds of all

closed sets ~n Qt. In the language of predicates this

translates to the following inductive principle: if a

property holds of each predicate of the form R (A) = A? B
or R(A) = A<; B (BE P) and is preserved by finite disjun-

ctions and arbitrary conjunctions then it holds of all

strongly continuous predicates. (Both of these principl~s

hold only when L is countable.) One application of this

is an alternative proof of2.46(vii), which becomes an

immediate consequence of 2.46(v,vi,viii,ix). Several of

our other results have alternative proofs using the same

principle. If desired this principle can be strengthened:

it is in fact only necessary to show that a property holds

of all of the basic predicates above with B finite and ecf

in the respective cases. This is because every other of

the basic predicates can be expressed as a conjunction of

ones of this form.

To conclude this chapter we will take stock of our results,

paying particular attention to ~ow they affect our under-

standing of the two main classes of continuous predicates

we.met in chapter 2~

We have seen that given any normal class of restriction

operators on P we can define a corresponding metric space

in a natural way, and that the closed sets of this metric

space correspond in a natural way to the predicates which

are continuous relative to the class of restriction oper-

ators. This corresponds t~ .the fact that (as we already

....--- --

is sufficient therefore to show that each possible Z. is1
an interval. To' do this we simply observe that

iA I w EA1 = rfv I v,w},runJ (run is maximal in P)

£A I w <tA [abort, Cv) w 4 v3] (if w6)

= [run,abortl (if w=<"» .

knew) continuous predicates are closed under finite dis-

junctions and arbitrary conjunctions. We found that our

metric spaces were of a very discrete kind, and were comp-

lete. Completeness was used to prove a satisfiability

result. We found that the metric space was compact only

when the predicates continuous with respect to a class of

restriction operators were exactly the strongly continuous

ones, and r was countable. We re-established the fact that a

strongly continuous predicate is continuous with respect

to all other normal operator classes, and also discovered

that strong continuity is in several ways better behaved

than other sorts (e.g. 3.11, 3.13, 3.14, 3.19 & 3.21).

In investigating how continuous functions in the metric

space behave we discovered another way of treating const-

ructive functions.

Below is a summary of the results affecting our knowledge

of weakly and strongly continuous predicates.

a) Weakly continuous

(i) 3.10 (which is obvious in this case anyway)

(ii) 3.15 (which can be adapted to give a normal form for

weakly continuous predicates)

(iii) 3.16 (which classif~es the predicates which are

"doubly continuous")

(iv) 3.18 (the application of which is helped by our

classification of doubly continuous predicates)

b) Strongly continuous

Each of the above also holds in this case, except that

3.14 plays the role of 3.15. In addition we have:

(i)

(ii)

3.11

The explanation of the connection with doubly

continuous functions.

(iii) The inductive principles which come from 3.22.

It is possible to prove most of the above without consid-

eration of topology or metric spaces, and indeed it is

possible to do much of the topology (e.g. 3.13 & 3.22)

without using metric considerations. The use of metric

spaces does however often seem to be the most convenient

and elegant way to deal with continuous predicates.

- -- . -

Appendix: A summary of some later results.

The results we have so far met in this chapter do not tell

us a great deal about the case of strong continuity when Z
is uncountable. Most of the following results are extens-

ions of existing results to this case (or demonstrations

that existing results do not then apply). The first

theorem is however an additional classification of strong

continuityover countablealphabets..

3.23 Theorem

The topology induced by strong continuity is homeomorphic

to the usual metric topology of the Cantor set if and only

if E is countably infinite.

This follows quite easily from theorem 30.3 of Willard(),

since if ~ is infinite every point is the limit of a sequ-

ence of poinbdistinct from itself, whereas if Z is finite

the process abort is not.

3.24 Theorem

The topology induced by strong continuity is, when ~ is

uncountable, neither first countable, metrizable nor compact.

That it is not first countable follows from the fact that

there exists an uncountable set ~~('),<a)1'a€~J of nearly
disjoint processes. If the topology were first countable

there would exist a sequence of closed sets C. such thatJ

abort'" Ci, Ci ~ Ci+l, and whenever X is a closed set not
containing abort there exists some j s.t. X <;C. . One canJ
then show that one of the C. must contain infinitely manyJ
of the one pointclosedsets~ft(),(a>JJIaE~1 as subsets; but

this implies that this C. contains a convergent sequenceJ
of points converging to abort, contradicting the fact that

abort f C . .J

That it is not metrizable (and hence not the topology ind-

uced by any normal class of restriction operators) follows

from the fact that every metric space is first countable.

The fact that it is not compact follows from the fact that

we can find (under the continuum hypothesis) an infinite

set of points with no limit point. This is because under

the continuum hypothesis it is clearly sufficient to show

that this can be done for any particular alphabet of

- -

cardinal 2No. Now. let ~ = ff I f:N ... N1, and define

A. = fo/<f>/3k. f(2k)=i1. If the set tA. I iE NJ were to~ ~
contain a limit point it is easy to show that there would

have to exist some 1-1 function f such that the sequence

<Af(i)1 iE N> was convergent; but for any such sequence it

is easy to see that <f>E limsupAf (i) but <f>f: liminfAf (i) .

The next few results show that by generalizing the idea

of convergent sequences we can find a new class of predicates,

the extra continuous ones, which (i) is contained in the

class of strongly continuous predicates, coinciding with it

when ~ is countable; (ii) gives rise to a more pleasant top-

ology; and (iii) generalizes theorem 2.53.

Let us extend the notion of sequence to include functions

from arbitrary non-empty directed sets to P. We will call

such a sequence a generalizedsequence and a sequence from

non-empty directed set D to P a D-sequence. If f is a D-

sequence and D* is a subset of D with the property that

-for each dE D there exists some d* E D* s.t. d*? d we will

say that f~D* is a subsequence of f (it is easy to see that

each such D* must be directed). If f is aD-sequence

define limsup(f) = dQD(e~df(e» and liminf(f) = d~D(eqdf(e».
Say that f converges to A (or f ~ A) if Iimsup(f) = A =
liminf(f). Say that a predicate R is extra-continuous

if it satisfies the condition that whenever f is a conv-

ergent generalized sequence of points satisfying it then

lim(f~ satisfies R also. The following is a compIlation

of some easy results about generalized sequences.

3.24 Theorem

(i) For each generalized sequence f we ~ave liminf(f) ~
limsup(f).

(ii) All finite generalized sequences converge,

(iii) If f* is a subsequence of f then

liminf(f) ~ liminf-(f*) £ limsup(f*) S limsup(f).

(iv) There is a topology, Qf , in which a set X is closed

if and only if there is some extra-continuous pred-

icate R such that X = ~A I R(A)j .

The following are£our important results which have fairly

complicated proofs using the axiom of choice.

--- -

3.25 Theorem
The topology (!t. has [(A I A C;B1 , ~A I A'2 B ~ I BE pj as a sub-

basis for 1ts closed sets. Thus the class of extra cont-

inuous predicates is contained in the class of strongly

continuous ones. This containment is strict if and only

if Z is uncountable.

(An example of a strongly continuous but not extra continuous

predicate: R(A) =rA is countab1e~)

3.26 Theorem

The topology Qf is compact (i.e. if ~ is a

sets such that each finite subset of ~ has

section then n~ is non-empty) .

family of closed

non-empty inter-

3.27 Theorem

The topology Qf is zero-dimensional (i.e. if X

closed set and A 1. X then there exists a c10pen

the property A E Z and X (\Z = ~) .

is any
set Z with

3.28 Theorem

a) The c10pen sets of Qf are precisely those which can
be constructed from sets of the form fA I wE A J and fA I w if: A1

by finite intersections and unions.

b) The predicates R such that both R and ,R are extra

continuous are precisely those which can be defined using

the constructs "W E A" (w E ~*), n1\" and "1".

Note that 3.28 extends 3.13 and 3.14 to general alphabets.

The following result is a justification of the use of these

extra continuous predicates, since it extends theorem 2.53

to the case of uncountable alphabets, and hence provides

an alternative set of conditions justifying the use of

2.1 in an inductive proof. Note that the statement of

3.29 is a translation of the statement of 2.53 into topol-

ogical terms (as well as being a generalization to arbit-

rary alphabets).

3.29 Theorem

Suppose that X is a non-empty closed set of Qf and that
f:P ~ P is a monotonic £unction with a unique fixed point;

then if f(X)SX we must have fix (f) EX.

proof

The proof is not difficult once we have 3.25 and 3.26.

Define fa(~) and fa(T) for arbitrary ordinals a in the

same way as we did in 2.53. By 3.25 each of the sets

Ca = fAI fa (~) <; A S fa(T)3is closed. Easy consequences of

our definition are that {3Ea:9 C{32 Ca and that CA= QAC{3
if A is a limit ordinal. Claim that each of the cfosed

sets X (\~a is non-empty. Proof is by 'trans fini te induction.

When a=o.we have C n X = X, which is non-empty by assumption.o

If X ()Ca is non-empty, then it contains some element A, say.

Then f(A) E X, since f(X) S;X, and f(fa(J..» S;f(A) £ f(fa(T»

since f is monotonic and fa (~) ~ A S fa (T). Thus f (A) E X (\C ,
a+1

so X n Cfi+1 is non -empty.

If A is a limit ordinal and each X ()Ca G:;t€A)is non-empty

then < X ()CdaeA) is a chain of non-empty closed sets. By

compactness this chain has a non-empty intersection. But

n(XI1 Ca) = xn nea = xn CA' so xn CA is non-empty as claimed.au. aEA

This completes our

X n Ca is non-empty

inductive, proof, so we can deduce that

for all ordinals a .

Since f has a unique fixed point there must exist some

ordinal ~ such that f~(~) = f~(T) = fix(f). This tells

us that fix (f) E X, as claimed (C~ = ffix(f}J).

It is usual, in spaces defined by convergent sequences, to

define compactness by the property that all sequences have
convergent subsequences. This result does not translate

verbatim to the space Qf (considerthe sequence A. which1
we defined in 3.24) but there is a corresponding lemma

(which can be used to give an alternative proof of 3.29

very much like the proof of 2.53).

3.30 Lemma

If f is any generalized sequence of

is a point A which is in cl (f), the

containing all the points of f, and

and A ~ limsup (f) .

Since singleton sets are closed in Qf and any ordinary

convergent sequence is also a convergent generalized sequ-

ence the proof (in 3.24) that the topology is not first

countable is still valid .for Qf when2; is uncountable.

points in P then there

smallest closed set

such that liminf (f) ~ A

Chapter 4 :- A Model for Non-deterministic Processes

We can model the behaviour of non-deterministic machines by

observing not only the traces which it is possible for them

to execute, but also the sets of symbols which it is possible

for them to reject at each stage. The model we use therefore

is a subset of <p (1:* X<P (1:»))ie.the relations between traces

and subsets of 1: (interpreted as refusal sets). As a rela-

tion it is possible to regard any process as a function from

traces to sets of refusal sets, the image (as a function) of

any trace being the set of its (relational) images. It is

necessary to impose certain conditions to ensure that a process

is realistic. Formally a non-deterministic machine N is a

relation which satisfies the following conditions:

The domain ot N (dom(N) = tw I :IX. (w,X) EN 3) is non-

empty and prefix closed.

XEN(w) & Y<;X 9.YEN(W)

(where N(w) is the set of images of w under N)

X E N (w) & Y n (N aft er w) 0= 0 :} X u YEN (w)

If D5;N(w) is a directed set then UDEN(w).

Ifafter W = ~(v,X) \ (wv,X) EN 1

NO = ~aEl: \<a1Edom(N)~

A set of sets is said to be directed if X,Y E D ~ 3z E D. Z 2 X u Y.

4.1 a)

b)

c)

d)

The justifications of these conditions are as follows:

a) If a process has executed any trace it must previously

have executed every prefix. It must be possible for a pro-

cess to do at least nothing «».

b) If a process can refuse every element of a set of symbols

then it can refuse every element of a subset.

c) If a process can refuse a set X and it is impossible for

it to accept any element of Y then it must be able to refuse

the whole of X uY.

d) If a process can refuse all approximations to a given set

then it can refuse the set itself.

Condition d) is almost alw~s (except in the case of an unc-

ountably infinite alphabet) equivalent to the ascending chain

condition:
*

4.2 d) If Xlc; Xt.<; ... c;,X..f ... is an ascending chain in N(w)

then OX. E N(w) ,
i=I 1.

which is easier to justify intuitively, but breaks down in

the uncountable I case.

It is possible to consider different versions of these cond-

itions. We could for example re-phrase the definition in

terms of acceptance sets (complements of refusal sets). The

resulting model is then clearly isomorphic in a simple way to

the original.

More fundamentally we could insist that,refusal sets be finite.

This involves dropping condition~) and altering~) slightly.

It is fairly easy to show that the two models are isomorphic

(by closing up under condition~») and that all our defin-

itions of operators are isomorphic except in one case, which

we will meet shortly.

I have included infinite refusal sets in this treatment for

several reasons. Firstly if we allow infinite alphabets it

seems reasonable that we should be able to test a process by

offering it an infinite choice (for example the ability to

output any integer). This type of behaviour seems to be

modelled more naturally by the inclusion of infinite refusal

sets. Secondly they give a more natural model to some recent

proof rules of C.A.R.Hoare. Thirdly they pose the soundness

problem(where the two models may not be isomorphic) explicitly

rather than implicitly. This soundness problem (which we will

meet in 4.10 et seq) also places a bound on the validity of

the above-mentioned proof-rules.

The definitions of the operators are summarized in an appendix

to this chapter. The definitions used are motivated in Hoare,

Brookes & Roscoe (), which also contains much basic material

on the model which omitted here.

4.3 Theorem

a) The space M of non-deterministic machines can be parti-

ally ordered by reverse inclusion A ~ B if A;}B. This

order can be interpreted A c;:B if B is more deterministic

than A. Under this order M is a complete partial order in

which the maximal elements are the deterministic machines

and the minimal element, CHAOS (= I* X~(I)) represents the

process which is absolutely unpredictable.

- --- ---

b) NE M ~ «) ,.0) E N

c) A process is deterministic if

wE dom(N) ~ N(w) = fX\ X() (N after w)o= 0 ~

d) The non-deterministic ~ operator is modelled by union.

All the operators defined in the paper with the exceptionsof

hiding and ~(intersection) are easy to prove well-defined

(map machines to machines) and continuous (preserve directed

limits),.

The rest of this chapter will consist of an examination of

the problems introduced by these operators. The following

chapters will show w~s of proving correctness properties of

individual processes, by adapting and extending the ideas of

chapter 2.
Recall the definition of the hiding operator:

4.4 N/X = 1(wI(1:- X), Y) I (w,Y u X) E N ~

f(wy,x)/fw' Edom(N) I w'r(! - x) = w~ is infinite)

We cannot hope that this definition will give rise to a cont-

inuous operator for infinite X because of the following:

4.5 Example

Let 1:= NUt a1 (a EtN)

An =. stop.2!: (?m:(fk \ k)n5) -) a ~ stoP)

But then

of ('))

(A)/N =n co

and (UA)/N = stop .."~In
C>"> 00

Thus U(An/N) :f (\JAn)/N
"'~I "'=1

~(<'>, X)\ X<;l:")

00

verify thatVn.A ~A +1 and that UA
n n (\=1 n

CHAOS for each n (infinitely many derivations

= stop .Then it is easy to

(stop is the process

abort in this model.)

which corresponds to

If we were to alter the second clause of the hiding definition

to require arbitrarily long derivations of w, which might seem

more natural for infinite X, it would still not make this

example continuous. Also it is necessary in this case to make

a slight amendment to the operator to make it well-defined

with respectto 4.1 (d).

--

By placing stronger conditions upon the types of process

we allow, it is possible to make certain types of infinite

hiding continuous. The basic ideas are to divide the alpha-

bet into finitely many portions, and to insist that if an

infinite part of one of the portions is available then the

whole of it must be. The analysis of this topic is long

and complicated, and the results technical. I therefore

omit this topic for lack of space, and Teturn to the simpler

analysis of finite hiding.

4.6 Theorem

If the set X of hidden symbols is finite, then the hiding

operator Nix is well-defined and continuous.

proof

Say that a trace w is a derivation (with respect to X) of v

if wt(L - X) = v .

We will prove first that Nix is well-defined.

Throughout this proof A will denote the first (normal) clause

of the definition 4.4 of Nix and B will denote the second

(infinite chatter) clause.

a) That the domain of Nix is non-empty follows as either <>

has infinitely many deri vat ions, in which case « > , 0) E B,

or it has a maximal one, S3.'iw. As w is maximal we must

have (N after w)o n X = ° ,which implies (w,X) E N (by clause

(c) of N) and thus (w,XU0)EN ~ (0 ,0)EN/x.

To prove that the domain of Nix is prefix-closed we use a

similar argument. Suppose that v<w Edom(N/X). Then either

some prefix of v has an infinite number of derivations (in

which case (v, 0) E B) or v has at least one derivation (for

then either w has a derivation, or the minimal prefix of w

with infinitely many derivations is greater than v). If v

has a derivationthe argumentis the same as for<>above.

b) Suppose (w,Y) E Nix and Y'£ Y

If (w,0)EB the result is elementary

(w,Y)EA -=> 3v. Vf(L - X) = w & (v,XuY)EN

vI(L - X) = w & (v,XUY')EN

(w,Y')EA

c) Suppose (w,y) E Nix and Z n (N afterw)o=°
If (w,0)EB then (N after w)o= L , so the result is trivial.

He may thus. suppose that (w, 0) 4: B

Hence there is some v E dom(N) such that

vf (1: - X) = w & (v, Y u X) E N

Now (N after v)o n (r - X) £. (Nix after w)o

Thus (r- x)nzn(N afterv)o=0

~ (v,yuxu«r- x)nz» = (v,YUXUZ)EN

9 (w,Y U z) E Nix as desired.

d) In'this section we use the fact that (as will be proved in 4.1~)

in these circumstances (given that we have already proved (b»

directed set closure is equivalent to closure under the limits

of arbitrary (possibly longer than w) chains.

Suppose therefore that C is a chain contained within\N/XXw).

Again if (w, 0) £B the result is trivial, so we may suppose

not, so (w,Ya)£ A for each YQE C (assume the chain is indexed

by Q<~ (some initial'ordinal) and that a<{3 ~ YQ ~ Y{3).

Now as (w, 0)e A -8 there must be finitely many Vi £ dom(N) which

are derivations of w-(v1 ,...,vk' s~).

For each a<~ there must be one of the v, s.t. (Vi 'Ya l:JX) EN.

We can therefore partition ~ into k sets =l'''.'=k with the

property that a E=j 9 (vi' YQ U X) EN. It is easy to show that

there must be at least one =. with the property a<~ ~ 3{3E=-s.a~{3.1

If we now let Y~ = Y{3 , where {3 is minimal in =i w.r.t. {3?a

then we have that C' = (ye:U xl a<~> is a chain contained in

N(v.). Therefore UC' = (UC)UXEN(V.) , so UCE(N/x)(w)1 1
as desired.

To show that Nix is a continuous operator it is necessary to

show that if D is a directed set of machines then (UD)/x =U[Nix t NE D1.

It is easy to show that Nix is a monotonic operator, so we

have: N E D ~ N s; UD

9 (N/x)s (U D)/x

~ u ~ (N/x)1N ED] £;(UD)/x

It therefore only remains to show the reverse inclusion.

Because of the reverse nature of the order used, this means

showing (w,Y) E U~N/x \ N ED1 ~ (w,Y) E (UD)/x.

There are two cases to consider:

a) 'ifNED. (w, '0) EB..., where BII is the second clause in

the definition- of Nix.

b) 3N E D. (w, 0) f/. B~

In the first case it is clearly sufficient to prove that some

prefix of w has infinitely many derivations, for then (w,X)EB

for all x~r (where B is the second clause in the definition

of (LJD)/x). There is some prefix v of w which is minimal

with respect to there being an infinite derivation set for it

in each N E D.

There is therefore some N E D s.t. no proper prefix of v
v *

has an infinite derivation set in N. Let D = ~NEDI N~N3.
* v * v

It is easy to: show that UD = UD and hence that (\jD) Ix = UD) Ix.

It is therefore sufficient to show that some prefix of w
*

(namely v) has an infinite derivation in UD .

As N:JN ~ NCN there must be finitely many derivations- v - v *
of every proper prefix of v for every NE D .

Claim that the number of k-minimal derivations of v is finite
*

for each NE D and kE N (natural numbers), where a k-minimal

derivation of v is one which has precisely k proper prefixes

which are derivations of v.

(Thus if X = ~a) we have

<aab), (aiV,(b) are all o-minimal derivat ions of (b>,

(aba ,(b~ ,<.aaba> are all l-minimal,

<abaa;>,43aa) are 2-minimal, etc.)

Firstly the number of o-minimal derivations is finite. This

is certainly true if v =<> , for then the only one is <). If

v = v~~ the number must be finite since each o-minimal s must

have the form s~~ for some s' which is a derivation of v'.

But v' is known only to have finitely many derivations in N~Nv'

which gives us the desired result.

If we suppose the number of k-minimal derivations is finite,

then since each k+l-minimal derivation has the form s(b>,

where s is k-minimal and bEX (and X is finite) the number

of k+l-minimal derivations must also be finite.

Hence by induction the number of k-minimal derivations is

finite for each k. Also, since v has infinitely many deri-

vations each of which is k-minimal for some k, there must

be k-minimal deri vat ions present for each k in every N E If.

Claim that there is a k-minimal derivation of v present in
*

LJD for each k. Suppose not (for some k) and that sl...s~

are the k-minimal derivations present in N. If (for any i)
* v *

(s., 0) E W for each Nt E D then we would have (s., 0)E UD ,1 1

contradicting our assumption. Thus, for each i, there must be
* *

some N. E D s.t. (s.,0)EN.. But then (as D is directed)
1 * *1 *].

there is some N ED s.t. N 2 N. for each i. Therefore
* 1 *

\fies. ftdom(N) , but as also dom(N)S dom(N) there can be no
1 * v

k-minimal derivations of v in N. This contradicts the remark

on the previous page. Thus the claim that there is some
*

k-minimal derivation of v in lJD is proven.

But now since every n-minimal derivation of v is clearly

distinct from every m-minimal one (if n~m) there must be an

infinity of derivations of v in UD*, which was what we wanted

to prove.

This complates the proof of case (a).

Case (b) is rather easier.

If 3N D. (w, 0)ftBw set D* = ~N IN~N 1
w '" * w

is itself directed and UD = UD. Since
*

must have N E D ~ (w, 0) ft BN.

*
then as before D
*

N E D ~ NS N wew

*
Thus the number of derivations of w in each NED is finite, and

*
clearly the derivations in each NE D are included in those in

N (as N C;N).w w
'*

We must have (w,Y) EA~ for each NE D .* .

For each NE D there is thus a non-empty set S'"of the traces

in dom(N) s.t. sE S,..~ sl(l: - X) - w and (s,Y U X) E N.

By construction each of these SN is finite and included in ~ .* w

Claim that 3sE~. (s,XUY)E UD)."'

If not then for each s E SN we can find* vi
But then as D is directed we can find

*
aNED s.t.sft~.

s * f.
some N ~ N for eve~ s.- s 60J

But then we would have S...n S...,.= 0 , which contradicts the
w *

structure of the S",. Thus 3 sE S<, (s,X U Y) E (UD) as claimed.
*

But this is the desired result, since then (w,Y) E 3.1D)/X.

By similar methods one can prove (for finite X & Y)
- .

4.7 (N/X)/Y 0::N/(X U Y) .

The following commutativity law is an immediate corollary

to 4.7 .

4.8 (N/X)/Y 0::(N/Y)/X

There will be further analysis of the hiding operator in

chapters 5 & 6, where we will examine the pipe operator "»"

and the Master/Slave operator (All a::B) in some depth (both

of which use hiding in their definitions).

We now turn our attention to the intersection operator "~".

This operator is used critically in the definition of the

parallel combinator (AxUya). Recall its definition:

4.9 A~B 0::}(w,X U Y) I (w,X)EA & (w,Y)E B~

The interpretation of this is that A~B will only execute

traces possible for both A & B and at any stage it can refuse

any set which A and B can co-operate in refusing.

It is this last feature (the refusal sets) which cause us

the problems. It is easy to show that the domain of A~B is

non-empty and prefix closed, that A~B(w) satisfies left-

closure (4.1 (b» and condition 4.l(c). It seems, however,

to be far from easy to prove anYthing about 4.l(d).

The root of this difficulty lies in the fact that if

f X U Y I X EIS. & YE K21 is a directed set there is no reason

why IS.or K2 should be directed, so it is difficult to prove
the existence of elements on the two sides which combine to

give the limit of the directed set. The problem can be stated

thus:

4.10 If Fl and F2 are two families of subsets of L which satisfy:
a) left-closure XEF & ycX .. YEF

b) directed closure D£F directed ~ UDEF

does the family tXUY IXEF1A YEF21 satisfy these conditions?

The conditions (a) & (b) here are the same as 4.1 (b) & (d) resp-

ectively.

This problem does not exist for finite alphabets, for then

every directed set contains its limit, so we need to examine

only the various possible cardinalities of infinite alphabets.

We will adopt the following approach in analysing the problem.

Firstly we will see t~~answer to 4.10 is affirmative if I is

countable, which means that in this case~ is both well-defined

and continuous. Secondly we will see an example to show that

if we substitute the countable chain condition 4.2 for directed

closure the answer to 4.10 (for uncountable alphabets) is

negative. Finally we will see how to prove the well-definedness

of~ for arbitrary alphabets and that it is a non-trivial set-

theoretic tool.

4.11 Theorem

If ! is countably infinite then the answer to 4.10 is yes.

proof

This result can be proved using directed sets explicitly,

using a version of Konig's lemma independent of the Axiom of

Choice. We here however prove a version involving chains,

since this ties in better with what is to follow.

4.11.1 lemma

If' L is countable

<x. liEN)J.

for directed

then we can substitute the chain condition
....

a sequence in F s.t. X. <;X. ~ UX. E F
J. J.+1 i=I J.

closure in 4.10 and the effect of the new pair

of conditions is equivalent to that of the old pair.

proof

That the above condition is weaker than directed closure is

obvious since every ascending chain is'~ directed set.

It is therefore sufficient to show that if D is a directed

set in a family F which is left-closed and ascending chain

closed then UD E F.

Suppose X is any finite subset of UD. Then it is easy to

show by techniques akin to some used in the proof of 4.6 that

there is some Y E D s.t. X <;;; Y. Thus X E F (by left-closure),

so every finite subset of UD is in F.

AI3 I is countable we can enumerate the elements

of UD as tal,a2,...,ai,...~ (if UD is finite then UDEF

by the above, SO the result is trivial).

But then if X. = fa. \j <. i3 we have that <..X.> is an ascending
. J. J J. ~

sequencein F (finitesubsetsof UD) and so UX. = UD E F.i=I J.

It is thus sufficient to prove that if

left-closed and ascending chain closed

tXUY\XEFl & YEF2~ .

Suppose that these conditions hold of Fl and F2 and tha~

XlUYl, X2UY2, , Xiu Yi'

is an ascending chain with limit Z, say and where XiEFI, YiEF2.

FI and F2 are two
families then so is

If Z is finite then the sequence X, U y, is ultimatelyJ. J.

constant (and eq~al to Z). In that case the desired result,

namely the existence of some X E FI and YE F2 s.t. X U Y = Z,
is trivial. We may thereforeassume that Z is infinite

and is enumerated as ~al'. .., ai' 1 .

a)

b)

c)

Claim that for each j E N we can find an infinite sequence

of natural numbers <nJ..1 i E N) with the following properties:,(
i < iI ~ n.. < n..,

J,t J.l

<nj.ti.),is a subsequence

I f A; = fak \ k < j1 then
Vi.A. n Y = A. n Y

J n.. J 1)1
J,l .

(Note that this is very similar

in the proof of 2.52.)

of <n~i1i.
\li.A.nX = A.nX ,J n.. J n.

\.1' j,(J.1
and vJ..A.c X U Y .

J- n.. n..
J} 1.l

to the construction used

We can find such a sequence for j=l since Al = ~ so we can
put n.. = i.

J,l

Suppose that we have constructed such a sequence for.j.

By construction (since nJ' ;.1
> nJ'i.) the sequence (X u Y .liE N)

- . ~. ~
is ascending with limit Z. Thus a. E U (X U Y) ; so'there

J tal n~L njj

is some k such that i;>k =9 aj E (XnY Y ..)~
J,l n1~

It is easy to see that either there is an infinite subset

of fi! i >k3 such that a, EX n Y for each i, or there. J n.. n..-"},~ J,L
is an infinite subset such that a

J
. E X - Y for each i

,
or

n.~. --
there is an infinite subset such thatJ.La.EY- X for

J n. n-'
-"1,(J,t

n
J'+1 J.

' to be the ith n, such
, J,s

that s lies in the first of these infinite sets to exist

each i. We now define

(that is, if a.EX ny set exists, choose it, etc.).
J nj,l ni.i

It is now easy to show that the new sequence n'+l ' satisfies
J ,J.

all that is required of it.

Now choose m, = n, .. By conditions Cp) & (b) above we have
J. J.,J.

that mi< mi+l for each i.

Now let W. = x n A. and
1. m; 1.

must hold of these W. an1.

a) W i EFl & Vi E F2
b) W. U V. = A.

1. 1. 1.

c) W. c W.+1 & V. c; V. +1 (as every n. +1 . is an. .)
1.- 1. 1. 1. 1.,J 1.,J

But since Fl and F2 are ascending chain closed they must

Y n A.
mj 1.

The followingV. =
1.

V..
1.

(by left-closure)

aO ..

contain UW. and UV. respectively,and
i=1 1. i=1 1.

(0W.) u (Qv.) = O(W. u V.)

i=1 1. i=1 1. i=1 1. 1.

Hence Z lies in fx u Y I X EFl &

CC>

= UA.
i=1 1.

Y E F2~

= Z

as desired.

4.12 Theorem

The ascending chain condition 4.2 is insufficient to

make ~ well defined if 1: is uncountable.

proof

First observe that for an uncountable alphabet 4.2 is a

strictly weaker condition than directed closure.

An example to show this is the countable subsets of the

real numbers. This family is closed under 4.2 (and is

left closed) but is not directed closed since the family

itself is directed but does not contain its union.

Our aim will be to show there exists an uncountable

alphabet which is somehow isomorphic to the set of

proofs of membership of families which are left closed

and satisfy 4.2.

4.12.1 If (X.) is any sequence of sets define1. .. _
liminf (Xi) = .U (.n (Xi))

J= 1 ,=J

(Note the similarity between this and 2.42.)

Claim that if (X) is any sequence of sets in a chain-1:

closed family (for the rest of this section we will use

the term chain closed to mean left closed and satisfying 4.2)
then liminf(X.) is also contained in the family.1.

...

Let Y. = n (X.) .
1. j=i. J

Clearly each Y. is contained in the family (F say) by1.

left closure (it is greater than X.).1.
Also the Y. are an increasing sequence (being intersec-1.
tions of decreasing sets) .

..

Therefore liminf(X.) = uY. e F as desired.
1. i=1 1.

4 .12 .2 lenuna

If G is any family of sets which is closedunderthe

taking of liminfs thenthe family }X I "3YE G. Y "2 xl is

chain closed.

proof

Let F = fxI3YEG.Y2X~.
That F is left closed is trivial since X E F =1 3Y E G.X <;Y

so X'c x ~ x' c Y. Thus Xl E F as desired.

Suppose that <X:> is any ascending chain contained].

in F. Then for each xiwe.>can choose a Yi E G such
that X. c Y.. But then

].-].
)'>i ~ X.CX.cY.

7'].- 1- J
=> X. ~ n y.

]. j=,)..

~ g,xi S g,(£'.Yj) = liminf(Yj) E G

Hence 0X. E F as desired.
i='].

This result (in a way which will become clear shortly)

helps us to bound the number of elements we must include

in any chainclosedf.amily, given that.wewish it to

contain an arbitrary collection of sets.

4.12.3 Define a finite path w-branching tree tETN as follows:
a) t is .a directed tree with a single base node.

b) Every non-leaf node of t is unlabelled and has

edges labelled 1,2,3,... leading out of it to

sUbtrees tl't2' E TN which are all distinct.

c) Every leaf node of t is labelled by some nE N.

d) t contains no infinite path.

4.12.4 lemma
*

a) The relation tl< t2 if tl is a strict sUbtree of

t2 is a partial order on TN.
b) It is a well-founded partial order, and thus every

subset of TN contains its minimal elements and induction
and recursion are both possible.

proof

a) If tl < t2 and t2 < t3 then trivially tl < t2. If

tl > t2 > t3 > ... >ti>... were an infinite descending

(* - all descendants of some non-base node of t2)

chain in TN then tl would contain an infinite path
(through the successive base nodes of the t.) contra-l.

dieting its membership of TN' Hence there are no such

chains in TN, so in particular for no ~lement of TN can
we have t> t for this would give rise to the descending

chain t >t > t > This completes the proof that

TN is ~artially ordered by < .

b) Suppose S is any non-empty subset of TN which does

not contain any elements which are minimal with respect

to it. Then for every element t .of S there is some s E S

such that s < t. It is then easy to show (given AC) that

there is an infinite descending chain (starting from any

element) contradicting the above.

Hence every subset S of TN contains some element t such
that t E S ~ -, (s < t) .

It is then easy to prove the inductive principle:

(VtE TN' ('Vs< t.R(s» 9 R(t» 9 ("ItETN.R(t»
for any property R.

Also it is easy to show that if H is any function

H: f (t;g), I tE TN & g:~s Is < tl ~ A1 ~ A (for any set A)

then there is a unique total function f:TN ~ A which

satisfies f(t) = H(t,f,fsl s<t~) for all tETN.

Define t E TN to be a singleton if it has only a single

node (we will denote t by (n) , where the single (leaf)

node is labelled "n").

We will sometimes denote infinite elements of TN by the

elements of TN at the ends of their lowest level edges,

thus (t. liE N> is the tree with t. at the end of edge i
l. l.

leading out of the base node.

Define functions f:TrrTN ~ <PeN) and g :TNXTN ~ <P(N) as
follows:

If t & s are both singletons then f(s,t) = g(s,t) =~.
If t is a singleton <ro and s is infinite then f(t,s) = fn1

and get,s) = fm I m labels some leaf of s and n =t= m} .

If s is a singleton <n) and t is infinite then get,s) =~n,

and f(t,s) = lm I m labels some leaf of t and n F mJ .

If both t & s are infinite then each contains a finite

or countable number of non-leaf nodes with infinitely

many leaves attached. (This is easy to prove using

the induction principle outlined on the last page.)

Suppose that these nodes of tare nl ,n2 ' . . . ,nk, . . .
and that these nodes of s are ml,m2,...,~,...

sequence (n.)(j ~o)1.,)
sequence (m. .)1.,)

and that the leaf nodes of n.1.
and that the leaf nodes of m.1.

form the

form the

Define H = L = ~ , and define two cyclical functions:o 0

Let p(r) = r (mod n) if there is a finite number n of njs
= r - (the greatest triangular number ~r)

if there are infinitely many n.s)

Let q(r) = r (mod m) if there are m mjs
= r - (the greatest triangular number ~r)

if there are infinitely many mjs

This is a well-defined recursion since each H and L isr r
finite, and the sets [n. .1 j EN~ and fm. .1 j EN1 are

1.,) 1.,)

infinite for every i in the correct ranges as all the

leaves on the n. and m. are by assumption different.1. 1.

Note that since by construction all the li are distinct

from all lj (i * j) and from all hj the two sets
'1. liE NJ and }h. liE N3 are disjoint.
c 1. 1.

Now set f(t,s)

and g(t,s)

= ~l. I j E N1J
= £h. \ j EN}J

This completes the definition of f & g.

Note that in the last case, since the functions p & q

each take every node index as their value infinitely

many times, there are infinitelymany n. . in f(t,s) for1.,J
each i and infinitely many m. . in g(t,s) for each i.1.,J

By construction also f(t,s) ()g(t,s) = ~ for all t,s E TN.

Now let lr = least element of npl,,),jI j E N3 - (Hr-l U Lr-l)

and h = least element of lrJ.jl j ENl - (Hr-l v Lr_IUflr3)

and Hr = Hr_Iufh &
L = L IU fl . (r 1- I in each case).r r- :r:

Now define X~. = f(t,s) I n Etf(t,s)1

y~ = f(t,s) I n Etg(t,sn

For each n we have X~ u y~ = TNx TN,
implies f(t,s) n get,s) = ~ so either

since (t ,s) E TN X TN
n Etf (t, s) or n Etg (t, s) .

Th us X u Yn n

X = X* u fo, 1, . . . ,n1n n
y = y* u '0 11, . . . ,nJn n ~

= TN X TN u fo, 1,2, . . . ,n:l and so the X u Yn n

Now define

form an ascending chain with limit TN X TN U N (=! I say).

Define functions h,k:TN ~ Pc!) by recursion.
h «11» = Y k «n) = Xn n
h ((t. liE N» = liminf (h (t.))1 1

k ((t. I i ~ N» = liminf (k (t.))1 1

By 4.12.4 this recursion is well-defined.

Consider now the families Fl and F2 defined:

Fl = ~xl 3tETN.X~k(t)1
F2 = fXI 3t E TN .X ~ h (t >1

These families are both chain closed by a similar argument

to 4.12.2 (a little care is required to show that we can

get away with our demand that all the first level subtrees

of any tree are distinct).

Claim that the limit (1:) of the above ascending chain

cannot be expressed as X U Y, where X EFl and Y E F 2.
It is clearly sufficient to show that ! cannot be exp-

ressed as k(t) u h(s) for any (t,s) E TNXTN.

If t & s are both singletons, labelled n & m respectively

then max(n,m)+lEt k(t) u h(s).

Otherwise claim that (t, s) Etk (t) u h (s) .
We will show here that (t,s) Et k(t), the proof that

(t,s) Et h(s) being practically identical.

If t is a singleton labelled n then n E f (t, s), and thus

(t,s) EtX*. Hence (t,s) Et X = k«n», as required.n n

If t is infinite and s is a singleton <n) then work by
induction on the structure of t.

Claim that every infinite t'< t satisfies (t,s) Et k(t').

Assume that all infini te ti in <ti liE N) <;;t satis£y this.

Ei ther <.t.liE N) has infinitely many of the t. infini te1 1
or it does not.

In the first case, by induction, there are infinitely

many i such that (t,s) f/.k(t.). But then (t,s) f/.liminf(k(t.» .1 1

Thus (t,s) f/.k«t. liE N» as desired.1

In the second case there must be infinitely many leaf

nodes amongst the t., onl y one of which (at most) can1 .

be labelled n. For each <m) s.t. m f n we have

m Ef(t,s) (as m{f:n)labels a leaf node of t)

=9 (t , s) f/.k (<.m)) .

Thus again (t,s) f/.k (t.) for infinitely many i, so that1
(t,s) f/.liminf(k(t.» = k«t.1 iEN» as required.1 1

Finally we have the case that both t and s are infinite.

Again we prove by induction on the infinite t'~ t that

(t,s) f/.k(t').

Assume that all in£ini te t. in <t. liE N) ~ t satisfy this.1 1
If there are infinitely many infinite t. then (t,s)f/.k«t.).)1 1L
by the same argument as above. If there are not then

infinitely many of the t. must be leaf nodes. Thus in1
the definition of f(t,s) and g(t,s) the base node of

(t.1 iEN) must be one of the n.. Hence infinitely1 1
many of the labels of the t. are included in f(t,s). Thus,1
as above, there are infinitely many t. s.t. (t,s) f/.k(t.)1 1
and so (t,s) f/.liminf(k(t.» = k«t. I iE Nl) as required.1 1
This completes the induction, and so the property holds

of t itself.

This completes the proof that if t & s are not both single-

tons then (t,s) f/.h (s) u k (t) .

Hence in any case (s ,t) E TN X.TN:9 k (t) u h (s) "::f1:, which
is known to be the limit of an ascending chain in

f XuY I XEFl & y'EF21 , and so this family is not
chain closed.

To complete the proof of 4.12 all we now have to do

is set NI = ~(o,X) I XEFll u t«a),X)I aE1:, x<;;r1

N 2 = ~ (<) , X) I X E F 2 1 u f «~, X) I a E 1:, X <;; 1: J

and observe that both NI and N2 satisfy 4.1 (a)-(c) and 4.2

but NI@N2 does not.

It is possible to extend the notion of ascending chain

(and so also the ascending chain condition 4.2) to include

chains indexed by larger ordinals than the usual w.

If 'Iis any ordinal define a '7-chain to be a function

0: 'I~ P<L) which satisfies ~€7r9 0(0 S; O(71)

We will often use the notation <Cp~pETJ>for the 'I-chain

with p-component cp.

Clearly the only 'I-chains to be of interest from the point

of view of taking uniqns are those indexed by limit ordinals

(as other ones contain their unions as last members) .

We can now extend 4.2 either to insist that a family be

closed under the unions of arbitrary length chains or under

the unions of all chains of length smaller than some A.

The following is a technical result in classifying these

conditions.

4.13 Lemma

Suppose that L is an infinite alphabet with cardinal \A\ ,

where A is an initial ordinal. Then if C = (cKIKE1i> is

any chain over this L there is some subchain D = <dJ KE T> of

C such that T~A is a regular initial ordinal and Uc = VD.

The proof is not difficult but is omitted.

It is fairly easy to see how the methods of 4.12 could be

extended to show that no ascending chain condition which

expressed a bound on the length of chain could work for

general alphabets (in the sense of making the definition

of ~ valid). 4.13 also shows that (using AC) for any

fixed alphabet there is maximum length of chain which need

be considered.

The next result shows that the arbitrary ascending chain

condition is in fact equivalent to directed set closure.

4.14 Lemma

Suppose that 1: is an alphabet of cardinali ty lA" where

A is an infinite initi al ordinal. Suppose further that

F is a family of subsets ofL which is left-closed. Then

the following two conditions are equivalent.

(i) F is directed closed.

(ii) F is closed under the limits of 'I-chains for every

regular initial ordinal TJ~ A.

proof

That (i) ~ (ii) is obvious since every q-chain is a dir-

ected set in its own right. In proving the converse note

that by 4.13 the second condition is equivalent to closure

under the unions of arbitrary length chains.

Suppose then that

ected set. Claim

directed) we have

(ii) holds of F and that D ~ F is a dir-

that for each D'~ ~ (D' not necessarily

UD' E: F.

Prove this by transfinite induction on ID'I (actually T.I.

on the initial ordinal equinumerous with D', so we are

using AC here) .

If D' is finite then there must be some element of D which

contains UD' since D is directed.

closure.

Suppose then that D' is infinite and that the result holds

of all sets with smaller'cardinality. Enumerate D' by its

initial ordinal (so that D' = ~XJK€8~). For each a E 8 set

D~ = fxKIKE:O'J. By construction each D~ has strictly smaller

cardinal than D' and so U D~ E F by assumption.

Thus UD'E F by left-

The UD~ are an ascending 8-chain

ding sequence of sets) so by 4.13

(as the D~ are an ascen-

U< UD') = UD'E F.
ae8 a

Hence by induction UD"€ F for every D'~ D, and in partic-

ular UD € F as desired, completing the proof of 4.14.

The methods used in proving can be extended to show, using

the above, that 4.10 holds for certain uncountable alpha-

bets. These methods become quite involved, and seem to

break down at the cardinal Nw (which mayor may not be less

than the cardinal of the real numbers, dependant on the

continuum hypothesis) .

In order to complete the proof of the truth of 4.10 for

general alphabets we appeal to the compactness theorem of

propositional calculus. We will in fact see that not only

is this implied by propositional compactness but that also

compactness is directly provable from 4.10 without recourse

to any other powerful set-theoretic tools such as Zorn's

lemma (the normal result used to prove compactness) .

~

4.15 Theorem

The truth of 4.10 is both implied by and implies the

compactness theorem for propositional calculi with arb-

itrarily large collections of propositional variables.

proof

Recall the compactness theorem:

If L is a propositional language which consists of the

finite formulae formed from a set of'propositional variables

and the standard connectives then any subset of L which

finitely consistent is consistent. A set K ~ L is consistent

if there is some truth assignment which satisfies every

element of K and is finitely consistent if each finite KI~ K

is consistent.

We show first that the truth of 4.10 is implied by the

above. Suppose that 2: is any alphabet and that Fl and F2
are two families of subsets of E which satisfy the cond-

itions of 4.10. Let L be the language which contains dis-

tinct propositional variables Pet'and Ch for each et'ELand

the finite combinations of these by "," ,11v" &"/\".

Suppose that D is a directed subset of f X U Y I X EFl & Y E F21 .

Define sets of formulae ,Kl,K2 & K3 as follows:

K1 = ~ Pet' V qa I et' EUD 3 -
!l..J..1 l.

K 2 = (1 (Pa/\ ~ /\ . .. /\ PT}) I fa, f3,..., 1]) (/. F 1 J
(f.;.til

K3 = f l(qa/\ q~/\... l',q'7) I ~a, ~,...,rJ} ft I'21

Claim that K = Kl V K2 U K3 is finitely consistent.

Suppose that KI~ K is finite. Then KIn Kl is finite and
so is U =i a I Pa V qa e:K 11 . For each aE U there is some

X € D such that aE X and so, as D is directed, there is some

X € D such that U ~ X. This X can be written YU Z for some

Y EFl and Z € F2 (by assumption). Define a truth assignment
s as follows: s (Pa) = true if aE'Y

S(pa) = false otherwise

s (qa) = true if aE Z

s(qa) = false otherwise

By construction s (rp) = true for each rp€K' n Kl.
If rp€K2 then rpcan be written ,(Ap...) for some finite WftF l.

",tOW

Certainly W1- Y (as Y € Fl) so that W-Y ~~. Hence s (rp) = true.

Similarly t/JEK3 ~s(t/J) = true.

Thus s (t/J) = true for each I/J E K' n Kl or KIn K2 or K' n K3

and so the whole of K' is satisfied by s.

This completes the proof that K is finitely consistent.

By the assumption of the compactness theorem, therefore,

there is some truth assignment s* which simultaneously

satisfies the whole of K. Define Y = ~O'EUDI s* (Pa)J and

Z = ~O'fUD " s* (qO')3 .

Clearly UD = Y V Z as O'€UD ~ s* (Pa V qO') = true

~ s* (Pa) = true V s* (qa) = true

~ aE Y V aE Z

YE F1 as the set ~ Y I I Y 1£ Y & Y I finite] is directed

limit Y and is contained in Fl as

(yl~ Y) & yl finite =9s* (tp)= true, where

~ s*(~) = false, where

=* ~ ftK2

~ yl E Fl

Also

with

Similarly Z E F2 which completes the proof of our result.

Secondly we show that the truth of 4.10 can be used to

prove the compactness theorem. Suppose that L is a prop-

ositional language of finite formulae with variables V.

Suppose further that K~ L is finitely consistent. Define

two families Fl and F2 as follows:

Fl = lX~L I XUK is finitely consistent]

F2 = fx ~ L I X is finitely frustratable]
where X~L is finitely frustratable (f.f.) if for every

finite Xl S;X there is a truth assignment which maps each

~E Xl to false.

Each of these families satisfies the conditions of 4.10:

left-closure is trivial and directed set closure follows

from the fact that every finite subset of the union of a

directed set is contained in some element of the set.

Claim that the whole of L can be expressed as Y U Z for

some YE: Fl and Z E F2. By the assumption of the truth of
4.10 it will be sufficient to show that each finite subset

of L can be so expressed (as these finite sets are a dir-

ected set with union L).

Claim that each finite subset of L is a subset of some set of

the form Y U Z, such that YE Fl' Z E F2 and Z t;;~~h~E yj .

Proof is by induction on the size of the subset.

The result is trivial for the empty set ~.

Suppose that it holds of all smaller sets than X = x*u~~~

(t/Jf/: X*). By assumptionthere are y*EFl and Z*E F2
which satisfy our requirements for X*.

Ei ther K U Y* u[t/J] is finitely consistent or K u Y*uf t/Jjis.

This is because if not there would be finite subsets U & V

of K U y* such" that uvft/JJand V u~,t/Jjare both inconsistent.

But then it is easy to see that U VV would be an incons-r

istent finite subset of K U Y*, something which by assump-

tion does not exist.

In the first case,let.Y = Y*uft/JJ and Z = Z*, in the second

case let Y = Y*U~,t/Jj and Z = z*u~CPJ . It is easy to see

that in either case Y and Z satisfy all that is required

of them for X.

Hence the result holds for all fini te X S L. Thus as

stated there must be some YE F 1 and Z E F2 such that Y U Z = L.

For each t/J € L either t/JEY or,t/JE Y. This is because the set

ft/J ,'~ is not f.f. and so is not contained in Z.

Hence in particular this is true of the atomic propos-

itional variables. Define a truth assignment s* by

s* (q) = true if q EY and s* (q) = false if ,q E Y (there

can be no ambiguity as (q ,.,q~ is not consistent).

Claim that every statement in K is satisfied by s*. This

is true as for each t/JEKthe set ft/J, 8q Iq occurs in~ is
consistent, where 8q = q if q€ Y, 8q = ,q otherwise.

Thus K is consistent as desired, completing the proof of

4.15.

This result means that our result is equivalent to several

other results such as the so-called "ultrafilter lemma"

(which can itself be easily proved from the truth of 4.10).

The consistency of this model under the ~ operator (and

hence under the (xl\Y) operator) has the implication
that the parallel operator does not introduce any new non-

determinism into a system in the following sense:

4. 16 Coro llary

If (PXlIyQ) ~
Si

such that P ~

l s' ~ stx) 5'/= sti}

R, where RO= Z , then there exist P* & Q*"
P* and Q ~ Q* and Zn (XUY) = (xn po)U (y(IQO).

The continuity of ~ follows immediately from its well-

definedness in the following manner.

4. 17 Theorem

The fS operator is continuous.

proof

The continuity of ~ in both arguments follows from its

continuity in its two arguments seperately, and that in

one argument follows from that in the other by commutat-

ivity. It will thus suffice to show that if D is a

directed set of processes then for each N M we have

(UD)@N = U(Q~N).
QED

That (U D)~ N ;;rU(Q~N) follows easily from monotonici ty,Q~'D
so it is sufficient to show that (s ,X) € U (Q@N) "7-

o~'D

(s,X) E (UD)@N.
Suppose that (s,X)EU(Q@N). By left-closure

~€D -

(s,X*)E U(Q~N) for each finite X*~X. For each QED
QtD

therefore there is a non-empty set 8(Q) = fY E Q (s) /3Z € N (s) .

Z U Y = x*J. Of necessity 8(Q) is finite as it is a subset

of the finite set.p (X*), and we also have Q'~ Q ~ G(Q')c 8(Q).

As a downwards-directed set of finite non-empty sets the

8(Q) have a non-empty intersection.

There is therefore some YE: nQ(s) such that 3ZE N(s) .YUZ = X*.
Q~t>

But nQ(s) = (UD)(S), which tells us that X*E (UD)@N(s).
01:'1)

Since (UD)~N(s) contains each finite subset of X, and as

(UD)0N is a well-defined process by 4.15 we have the

desired result that XE (U D)@ N (s) .

--- - - -

Appendix to C~~er 4 :- Defi~1tions of Operators

Suppose that A, B, A (x~T) are all elements of M,x
of non-determinis ti c processes, a E L:.-, X, y ~ L, and

set of unnamed elements of L:.-

the space

T is a

(i) CHAOS = f (w,X) I wE L* & X ~ L J
(ii) abort = f(o,x) I Xc;L]

(iii) skip = [«,>,X),«/>, Y) I X ~ ~- &' y <;;;~1

(vi)

a A = f(o,x) 1 a ($.xjuf«a)w,x)J (w,X)E A]

x:T'"A = f(o,X)I XnT= 9I1uf«x/w,X) I (w,X)E A & x€Tlx x

a.x:T .., Ax = f«>,x) I XC\a.T = 911uf«a.x)w,x) I XET & (w,X) AJ

a.T = f(~.w,xua.Y) I (w,Y)e A & Xna.~- = 9IJ

(iv)

(v)

(vi i)

(viii) A or B = AUB

(ix) AD B = [(o,xny) , (<>,X) E A & «>,Y)€ Bj

U f (w ,X) I W=J<>& «w ,X)€ A V (w,X) f B))]

(x) AiB = f(w,X)/W(Z-)* & (w,Xvf/])€Aj

u f(WV,X)/wE(Z-)* & w<..hEdom(A) & (v,X)E B3

(xi) A/X = f (w/X, Y) I (w ,XUY) E A 1

u f(wv,y) / Y~~ &fsfdom(A)1 siX = w1 is infinite3

(xii) (AX"yB) = fx (A)fl)fy (B)@ RUNXUY , where
C@D = ~(w,ZU.V) I (w,Z) E C & (w,V) E D~i

f Z (C) = f (w , V) I (w t Z , V) E C & V £ 2 J

and RUNz = f(w,V) I wE Z* & vnz = 9IJ

(xiii) If fr1,.., rk\ is a partition of some non-empty indexing

set A, and if AI'.. ,Ak are functions Ai :MA X ri -t M

then the recursively defined process

BA' where ~ E rl ~ B~{::AI'

~ E r2 ~ B~4= A2
. . . .

~ E rk =} B~{:: Ak
C>O

has the value ~oGn(CHAOSA)~ ' where G:MA~ MAis the
function defined G(C)J = A. (C,~} (i chosen so that JEr.)....~ 1 ~ 1.

Chapter 5 :- Recursion Induction and Buffers

In this chapter we will see how many of the ideas intro-

duced in chapter 2 extend naturally to the non-determin-

istic model M. We will then make a fairly extensive

analysis of one particular predicate, namely "is a buffer",

and'its relationship with the pipe operator "» ".

The first requirement for this extension is a class of

restriction operators ~tnI nE N3. "It would be possible

to make Al'ndeterministically "die" after n steps (as

was done in 2.6). It is however more in the spirit of

our partial order on M to have A~n dissolve into CHAOS

after n steps. With this behaviour Aln will in some

sense be the minimal process which models A up to stage

n whereas in the definition suggested first Arn would

be one of many maximal such processes. We will thus

normally interpret tn as it is defined below.

5.1 Afn = f(w,X) I (w,X)EA & Iwl<n1u[(wv,x)lwEdom(A) &Iw/= n3

Below is a summary of a few simple results about these

operators.

5.2

a)

b)

c)

d)

e)

Lemma

Alo = CHAOS for all A EM.

(Ar n)\-m := A r min (m,n)

A fn C Ain+l!;:; A
0-

Q (A~n) = A
\j(w,X).3n.VA. (w,X) E A # (w,X) EArn

We extend the definition of rn to vectors of processes in
A
M as follows:

5.3 (br n)>.. = (A).)rn

The definitions of constructive and non-destructive

functions and of continuous predicates are exactly the

same as before.

5.4 a) A function F:Mt~ Mr is said to be constructive

if it satisfies Vn.Vb E M~ F (~)rn+l = F (tln) r n+l .

A. r>

b) A function F:M ~ M is said to be non-destructive

if it satisfies \;fn.'VAEM: F(A)I n = F(Afn)fn .~ ..-

5.5 A predicate on MA is said to be continuous if it

satisfies \fA E M':"(\In .3B.R (B) & (AI n = Bin» ~ R (A)
"""'"' ,.. ""'" -

-_.&.- - -"------

5.6 Lemma (an~logue of 2.11)
.,,1\- r 1"'..10 .

a} If F:M ~ M and G:M 4 M are non-destructlve then so

is GoF.

b} If a function is constructive ~en it is non-destructive.

c} If one of F:r-r~ Mr and G:M ~ r.tis constructive and

the other is non-destructive then GoF is constructive.

d} If F:MA~ M~is constructive then it has a unique fixpoint.

proof

The proof is identical to that of 2.11 since it only depends

on the properties of tn, namely 2.8 (= 5.2),which hold

in both models. The analysis required to show that an

arbitrary monotonic function has a fixed point is more
A

complicated on the completepartial order M than on
. .J\.

the complete lattice P .

5.7 Theorem

If F:Mt~ MA is a constructive function and if R is a

continuous satisfiable predicate then the translation of

rule 2.1 into the non-deterministic model is valid.

(i.e (VB. R(B) 9R(F(B)}} 9 R(fix(F}} }- - ~

Again the proof of this is identical to that of 2.14.

It is possible to develop in this model a similar

calculus to that used in the deterministic model for

proving functions constructive and predicates cont-

inuous and satisfiable.

5.8 Theorem

The following

R(b} = (i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

predicates are all continuous:

AA= B

AA= AK

AAC B

AA::J B

AA;;! A~

AA¥: B if there is an upper bound on flwll(w,~}EBJ
..

"AA is deadlock-free (in this model this is

equi valent to w E (L - flJ) * ~ L ftAA (w) }

(w,X}EAA9 p(w,X) if p is any predicate

on 1:* X.<y(L}

(ix)

(x)

(xi)

(xi i)

(xiii)

(xi v)

w'Edom(At) ~ p «AA after w)o) if pareA w w
predicates on ~(1:)

WE dom (At) :9 p (A 1 (w» if pare predi catesA w ,,\ w
on <1)(~O~»

RI (F(a» if 3g:N ~ N s.t.
VB.Vn .F (B)I n = F (Br g (n)) I n

(F:;(..~ M m~notonic ~d RI a predicate on
. A ~

F (A) S B for any continuous F:M 4 MV"

<> Ry(~) for any set r

RI (~) v R2 (~)

1"
M)

where B is any constant process RI' R2 and Ry are all
con tinuous and A E J\

The proofs of these results are similar to the proofs

of 2.18, for example:

(v) ,(AA~ A~) 9 3(w,X) E AA- A~
If n = Iwl+l then clearly

implies (w,X) E BA- B5, so

Arn = Brn'-" .,.

,(BA ~ B5) .

5 . 9 Theorem
a) Each of the combinators 11 a -+ A", 11 , U

. ...

i , or,la.A"

defines a non-destructive function of its variable(s) .
f' J.. .A

b) If a function F:M xM -+ M is constructive (non-dest-

ructi ve) in its first variable~ then G :1!{ -4 MA defined

G(A) = fix(AB.F(A,B» is constructive (non-destructive).
~ ~ ~ ~

A .A

c) Suppose that the function F:M -+ M is such that each

component of F(b) is a syntactic expression involving

only process variables, expressions independent of all

process variables, the combinators a 4 B, a?x:T -+ B\X),

?x:T -+ B(x), BiC, BDc, a.B and (BXllyC), and iterated
recursions which bind all instances of process variables

which are not AAs . Then provided that every free rec-

ursive call of an AA is guarded directly or indirectly

the function F is constructive.

proof

These are all similar. to the correponding results in

the deterministic model (namely 2.15, 2.36 & 2.37), the

only difference being in the analysis of the individual

combinators. The only one to present a slight diff-

iculty is 11i" because of the way it "hides11 the 11J" .
(~ (JAJ "o"\-JJLSt~VL .~ ;ts Se.w"J va..ria..bl~)

--- - -

Recall the definition of sequential composition:

Ai B = ~ (w ,X) I w/[/3 = w & (w, X [/1) E A 1

f(wv,X) I w/tl3= w & W(/)Edom(A) & (v,X) E BJ

We would like to show that (ArniBtn)ln = (AiB)fn.

It is clearly sufficient to show that

a) (AtniBln) n t(w,X) Ilwl<n3 ~ AiB n [(w,X) llwl(n~

b) dom(ArniBrn)nfw Ilwl=n1 = dom(AiB) n ~wllwt:::;n1

In each case the containment of the R.H.S. within the

L.H.S. follows from monotonicity.

(w,X) E (A\niBln) n f(w,X) IlwI(n~

~ either (w,X) E f(w,X) I w/fl1 = w

9 (w,X) E f(w,X) I W/flJ = w
=7 (w,X) E AiB

or (w,X) = (uv,X) for some u,v s.t.

U(J>Edo~tn)& (v,X) E Brn
now lvl<n so (v,X) E B

and Iu<./)I~n so uti> E dom (A)

thus (uv,X) EAiB

& (w,X fIJ) E Aln ~

& (w,X {/J) E A3 as \wl< n

uifl1 = u

wE dom(ArniBln) n fw I\wt ::n5

=iteither w E tw E dom(A~n) I w/tl1= w~

9 w E ~w E dom(A) I w/r./l= wJ as Iw\= n
or w E £uv \ u/[~= u & ud)Edom(Aln)" & vE dom(B)1

now either ~(~~n &lvl~n, in which case

uvE dom (AiB) as required,

or \u{hl = n+l and v =<> in which case w = u

and wE (first clause of AiF¥.

The proofs of the non-destructive nature of the other

operators require similar tedious analysis.

Other parts of the deterministic theory to be valid in

this model are the extensions for partial predicates and

constructiveness relative to partial orders (and also the

simple 2.21). In each case it will be seen that the

proofs depend only on properties shared by the two models

and the classes of functions and operators defined on

them. These results are not stated as formal theorems

in this model but will be used wherevecnecessary. It is

noteworthy that all the examples of program-proving in

chapter 2 are equally valid over the non-deterministic

model M. With the exception of the buffers example,

where the predicate needs translation to make sense in M,'

all the proofs can equally well be read as proofs in the

non-deterministic model. This is because the various

combinators have much the same properties (commutativity,

distributivity, etc.) in both models (with a few excep-

tions which are not used in any of these proofs).

The analysis needed to justify the constructiveness of

the master/slave operator in 2.39 over M will be found

in the next chapter.

The only part of the theory in chapter 2 which does not

seem to transfer effectively to M is the work on unique

fixed points and strongly continuous predicates. The

main reason for this is that' M has nb "top" element. It

is still possible to define a strongly continuous pred-

icate and show that such predicates are continuous w.r.t~

every normal restriction operator class. This is useful,

since it saves work when we wish to use different operators.

5.10 Define a sequence of processes to

if it satisfies limsup(A.) = liminf(A.)1. 1.

operators act setwise on M, and if.this l~mi~ is in M.
.. .. . -"....

liminf(A.)= U(nA.), limsup(A.)= n(UA.)
1. j=I i=j 1. 1. J= I i=j 1.

(Observe that in general liminf(A.) and limsup (A)1. i
are not necessarily elements of M.)

be con ve rgen t

where these

Define a predicate on

satisfies" (A. liE N)1.

implies R (A) " .

5.11 Define a class fin I nE N1 of restriction operators

M to be strongly continuous if it

convergent with limit A and Vi.R(A.)1.

on M

a)

b)

c)

{This

to be normal if they satisfy:

VA. ~B. A~o = B~o

'VA. Vn.Vm. (Al'n)lm = Almin(m,n)

V(w,x).3n.YA. (w,X)EA 49 wEArn

is just a translation of 2.49. Observe that we have

already shown that the canonical class of restriction

operators is normal (5.2).)

- ----

5.12 Theorem

If a predicate R is strongly continuous thenit is cont-

inuous with respect to every normal class of restriction

operators.

The proof of this is the same as that of 2.50.

5.13 Theorem

The following predicates are all strongly continuous.

any predicate

where B is any constant process and RI' R2 and Ry are

all strongly continuous.

Note that freedom from deadlock is strongly continuous

in this model, whereas it is not in the deterministic

model. The reason for this is that absenceofdeadlock is
. I(

represented ln M by L f$.A(w) for any WE dom (A) s. t. w has

not already terminated succ~ssfully~ Thus, for any such

w, if none of a sequence (A./ iEN) deadlocks after w then1
Therefore (w, L) f$.limsup(A.) so lim(A.)1 1

ei ther.

Vi. (w, L) f$.A..1
cannot deadlock after w

One consequence of this is that the function F(A) = a.A

cannot be constructive relative to any normal class of

re~riction operators (see 2.41). (a.A can be made const-

ructi ve in P, by defining Aln = A n L*' where L containsn n
all those elements of L with less than n "components".)

Henceforth "tn" will always be the canonical operator

(5.1, 5.3) unless specifically stated otherwise.

--- ---

R(A) - (i) A = B

(ii) A 2 B

(iii) A E B

(iv) (w,X) E A p(w,X) where p is

on L- x.P(L)

(v) "A is free of deadlock"

(vi) F (A) !: B if F is continuous

(vii) Ry(A)r'

(vi i i)
RI (A) V R2 (A)

We will now prove the two extensions (stated in 2.33 and

2.34 for P) whose proofs were delayed until this chapter.

5.14 Theorem

If A E 9(r-f'") define Atn = \!?rn \ ~ E A1.

Define a function F: ~(MJ\.) ~ <p(M"-) to be constructive if

it satisfies \fA.Vn;. F (A)In+l = F (A~n)tn+l .

Suppose the predicate R on ~ is satisfiable and cont-

inuous, then we have

(VA.'.(VB. (BEA' *'R(B»» ~ (VB. (BEF(A') 9 R(B»» & (A£ F(A»-" - ""'"- -

implies (V~.~ E A ~ R(~» .

proof

If A is empty then the result is trivial, so we may assume

that it is not. Clearly for all non-empty sets A' we

have A'to = ~cHAosAl so in particular AorO = AIo, where

Ao is the set of processeswhich satisfy R (non-emptyby
satisfiability) .

Suppose that (YJ}.~EA :9R(~» does not hold. Then there

must be some nE N which is maximal with respect to

3A.A ~n = Afn & ('v'B.BEA 9R(B» (by continuit y of R).n n - - --n

Then F(A)~n+1 = F(Aln)fn+l= F(An~n)ln+1= F(~)~n+l
by constructiveness of F.

Let C = F(A). By our assumptions we must haven
('VIa.~ E C 9 R (~» .

Also A <;F (A), so Atn+l <; F (A)! n+l = Crn+l.

Thus \I~ E A. 3~; E C.~ln+l = ~6'ln+l.

Let An+l = £~~ \ -IJ. E A ~. By ~definition An+l n+l = Aln+l

and (V~.:§E ~+l =?R(:§» since ~+l <;C. This contradicts
our choice of n, so (\iB.BEA 9 R(B» does hold as claimed.- -

5.15 Theorem

Suppose that RI, ,Rn are predicates which are all
continuous and satisfiable (but possibly not simult-

aneously satisfiable). Suppose further that F:MA ~ MA

is a function which, for each iE ~1,2,...n~ can be

written in the form F~oD, for ~ome F:(M~)n~ MAwhich is1

cons tructi ve and where D (~) = (~,~,... ,~) for ~ E z..t- .

Then if for each i we can prove for all ~r.. '~n E ~
RI(AI) & & R (A) ~ R. (F~(AI'. . .,A »

~ n ~ 1 1 ~ -n

we can infer Vi.R. (fix(F»1

proof

This is just an application of 5.7. Define G:(~)n~ (MA)n

by G(Al,...A) =(F*l(Al,...,A),...,F n*(A"...,A»-n n -n -n
Define the compoundpredicateR* on (M) by

R*(Al,...A) == RI (AI) & R2 (A2)&...& 'R (A)
~ -n - ~ n ~n

G is constructive since each of the F~ is.1
R* is continuous since each of the R* is.

R* is satisfiable, by (A*l,...,A*) where A~ satisfies R..- -n -1 1
An

~ E (M) '* (R* (~) ~ R* (G(~)) by the assumptions in the

statement of the theorem.

We can therefore infer R*(fix(G» by 5.7.

Claim that fix (G) = (fix (F) ,fi.x(F) ,... ,fi.x(F» (= S, say).

G has a unique fixed point by 5.6 (d), but G(g) = g

since F! (g) = F! (D(fix(F)}) = F(fix(F» = fix(F).
Thus C = fix(G) as claimed, and so we can infer R*(C),- -
which is the result we desired.

As was said in chapter 2 this result will allow us to

prove several results of fix(F) by mutual induction,

even though we may not know them to be consistent. The

proof used must only assume one of the said properties

of each recursive call in the proof of each hypothesis.

It is however permissible to assume different properties

of different calls of the same process, and to assume

different properties of the same call provided that

these assumptions are in the proofs of different hypotheses.

An example of the use of this rule will be found in 6.

and an example of rule 5.14 in 5.27.

We will now turn our attention to the detailed examination

of a specific predicate, namely "is a buffer". This, in

addition to being a useful exercise in demonstrating

the use of our techniques, is also a useful predicate to

have know ledge of. This is because we wish to prove

either this property or a very similar one of such proc-

esses as operating systems, communication channels, etc.

By the predicate Buff = "is a buffer" we would like not

only to be able to prove partial correctness, but also

total correctness as was done in 2.20.

We therefore take as our definition of a buffer the

following reworking of the predicate

5.16 Buff(B) ==

(i) wEdom(B) 9WE(?Tu!T)* &

& (ii) (w E dom(B) & ins (w)=outs (w))

& (iii) (wEdom(B) & ins(w»outs(w»

used in 2.20.

ins (w) ~ outs (w)

~ B (w) = fx I X n ?T' = ~1

=9 !T f=. B(w)

The motivation for these conditions (i),(ii) & (iii) is

the same as that in 2.20.

In almost exactly the same fashion as 2.20 we could prove

that the above three conditions are simultaneously s~tis-

fied by the canonical one-place buffer B ~ ?x:T ~ (!x ~ B) .

That Buff is continuous follows immediately from 5.8. It

is in fact strongly continuous, since (ii) and (iii) above

are easily rewritten in the form 5.13 (iv).

As we will see shortly, the theory of buffers links closely

with the theory of the pipe operator ",»". This can be

modelled more reasonably in this model since the non-det-

erminism of the hiding can now be expressed. Its formal

definition is as follows:

5.17 (A~'l B) = (strip! (A)Tu?TIITu!Tstrip? (B» IT

stripa(A) = f(stripa(w) ,stripa(X

(w ,X) E A &

T) u Y)

Y t; a.'T1.

where

The definition of strip on strings is the same as in

chapter 2 and that on sets the natural extension of that

on L.

Because of the hiding used in its definition, we will

assume that the set T of basic values for communication

is finite whenever "..,...," is used. It is also necessary

to assume that ?T = f?x I x E T1 and !T =£!.x , x E T~ are

both disjoint from T.

This definition is in some sense only reasonable if the

processes A and B only communicate in the alphabet !T U ?T ,

for otherwise the "strip" operator identifies events

which should not be identified. We will therefore ensure

that all processes which we expect to to act sensibly when

combined by "»)" satisfy this.

We will now spend a little time developing a calculus

for "~)" before we start to apply it to buffers.

5.18 Lemma

11'7)" is a well-defined continuous operator in M x M -+M

providing that T is finite. Furthermore we have the

following criterion for membership of (A~B):

(w,W) E (A» B) if and only if

either there is some wl~ w such that

ftl (ti(Tu?T)Estrip!(dom(A») & (tr(!Tv?T)=w~ &

(tr(TU!T) E strip? (dom(B») J is infinite

or there are some (u,U)E A and (v,V)E B such that

(W n (!TU?T» U T = strip! (U - T) U strip? (V - T) and

t~(TU?T) = strip!(u) & tf(Tu!T) = strip? (v) &

t r (?TU! T) = w

(In this last case say that «u,U) ,(v,V» is a derivation

£or (w,W) in (A'»B) or that «u,U),(v,V» # (w,W) in (A»)B).')

proof

The first part of this follows from the same result

of the various operators from which ")'1" is defined.

These results are already known except £or the "strip"

operator, which is easy to verify.

The second part comes straight from the definition o£

the operator, using the following result on the parallel

operator.

(w,W)E (AxllyB)# 3(u,U) E A. 3(v,V) E B s.t.
w:t'(Xuy) = w & wix = u & w~y = v &

W n (XUy) = (U n X) U (V n y)

I£ the either clause in the above definition is satis£ied

by some (w,W) E (A»)B) then we say that (A»)B) contains

in£inite internal chatter.

5.19 Theorem

If dom(A or B or C) £ (!TU ?T)* and both (A» B) and

(B» C) are free of infinite internal chatter then the

associative law holds, viz

«Air B)"»C) = (A):;> (B>'7C)

proof

We use the following lemma, which will be proved in an

appendix to this chapter (5.35).

If A is free of infinite X-chatter and X n Z = ~ then

(A/XyllzB) = (~uyIlZB)/X

"'))11works by identifying the outputs of its first

variable with the inputs of its second and hiding the

resulting internal communication. It is possible to

change the method of identification without changing

the result. Instead of transforming the joint commun-

ications to T we can transform .them to a.T for "a" any

suitable label~ Define a replacement operator repab (for

replacing label 11a" by label lib")as follows for any a,b

such that a;f:band a.Tnb.T:::0 .

For cEl: repab(c)= b.x if c=a.x for any xE T
= c otherwise

For WEl:* and XEG)(l:) repab(w) and repab(X) are the

natural elementwise extensions of the above.

For A E M repab (A) =

f(repab (w) , repab (X b.T) U Y) I (w,X) E A & y S; a. l: 1

With this definition it is quite easy to show that

provided "a" is chosen so that a.T is disjoint from

both ?T and ~T and A,B satisfy dom(A or B) <;(~T U ?T)*

then (A'» B) = (rep~a(A) T ?TII T ' Trep?a(B» la.T .a. u. a. u.

Thus under the conditions of the theorem, if 11a" and "b"

are chosen so that ~T, ?T, a.T and b.T are all disjoint

(if they do not exist then enlarge 1:) then «A')) BP) C) =

(rep ~b ((rep ~ a (A) xllyrep?a (B)) la. T) zllwrep?b (C)) /b. T

where X = ?Tua.T, Y = ~Tua.T, Z = ?Tub.T, W = ~Tub.T

=

«rep~a(A)x1Ivrep~b(rep?a(B»)la.Tzllwrep?b (C))/b.T

where V = a.Tub. T (by various properties of 11rep")

((rep! a (A) xlIvrep ~b (rep (?a (B))) Zua .Tllwrep?b (C))I (a. Tub. T)

(by 4.7 and the lemma at the head of the page)

=

A symmetric expression can be derived for (A)/ (B»)C))

using "a" again for the first channel and "b" for the

second. These two are then equal by the associative

law of 1\ and the commutativity of rep~b and rep?a .

- -

The next result'gives us a useful technique for proving

that processes of the form (A»B) are free of infinite

chatter (a desirable result in its own right as well as in

its use in proving associativity) .

5.20 Theorem

Each of the two predicates:

PI (A) == ,3wt<w7,<w"3< E dom(A). s.t. Vi.wif?T = W1'?T
(A cannot output for ever without inputting)

P2(A) == "3w1<w'1.<w~< E dom(A) s.t. Vi.Wil~'!'= w1r~T
(A cannot input for ever without outputting)

satisfies (iE[1,2) (for dom(A or B) ~(?TU~T)*)

P. (A) & p, (B) 9 (P.(A"»B) & (A~)B) is free of infinite111
internal chatter)

proof

We will prove the result for i=l, the proof for i=2 being

very similar.

Suppose That PI holds of both A & B. We will prove first
that (A~B) is free of infinite chatter.

If not there is some minimal wE dom(A'»B) such that

tt I (tf"(Tu?T)E strip~(dom(A») & (tt(~TUT) E strip?(dom(B»)

& (tr(~TVT) = w») is infinite.

It is easy to show (for the same reasons as 4.6) that the

number of minimal elements of this set is finite. Konig's

lemma then gives us that it contains an infinite ascending

chain t1<t~<t3< (because T is finite).

There must therefore be an infinite sequence (u.\ i E N>1
in dom(A) such that strip~(u.) = t.I(T ?T).1 1

Since dom(A) ~ (~Tu?T) * the u. must be an ascending sequence1
and u,\?T = (strip~ (u1.»f?T = t.t?T = wr?T. Hence the1 1

ui contradict PI (A) . (A» B) is thus free of infinite
internal chatter as claimed.

In proving that PI holds of (A'»B) we may thus assume that
all elements of it arise from the "or" clause in 5.18.

Suppose that w1<~< w3< is an infinite sequence in
dom(A"»B) with W.I?T constant.1

For each wi there must be some (ui,U) E A and (vi'V) E B
such that «u.,V),(v.,V))~ (w.,~) in (A'l>B).1. 1. 1.

These must satisfy the relations:

u.~?T = W.I?T = ~f?T (all the same)1. 1.

strip! (u.~ !T) = strip?(v,f ?T) (= s. , say)1. 1. 1.
v. f ! T = w. f ! T > v. If! T (all di f fe ren t)
1. 1. 1.-

It is easy to see from this that eyther there

many s. or there is some i such that fj Is. =
1. 1.

The first case contradicts PI (A) for then the

u€ dom(A) s.t. uf?T = ul?T is infinite.

Claim this would contradict PI (A) for any U'E?T* (corresp-

onding to U1~?T in the above). Iflu~= 0 then u' =() so

the tree has one minimal element, and is finite branching

as T is finite, and so has an infinite path which contra-

are infinitely

s .~ is infinite.J
tree of

dicts PI (A).

Assume true of all shorter Ull. If the tree has infinitely

many minimal elements for u' (=u'~a), say) then each of

these is of the form u(a>. Thus the tree for u" is infin-

ite, contradicting PI (A) by induction. If the tree has
finitely many minimal elements then by the same argument

as above it contains an infinite path which contradicts

PI (A). This completes the induction, and so in particular

the infinitude of fUE dom(A) I u~?T = uJf ?T1 contradicts

PI (A) as claimed.

The same argument shows that the second case above cont-

radicts PI (B) , for then 3vEdom(B).fjlvt?T = vif?T1 is
infini te .

Hence there can be no such sequence wj< Wz.< w3< , so

PI (A") B) holds as claimed.

Note that under the conditions of the theorem we in

addition have dom (A» B) ~ (!TU ?T)*, this result being a

consequence of the lack of infinite chatter and 5.18.

The two predicates PI and P2 are both discontinuous,
since at no finite time can their negations be decided.

There are however a large class of continuous and strongly

continuous predicates which imply one orocher of them.

For example Buff ~ PI (by line (i) of 5.16).

5.21 Corollary

If for iEfl,21 each of AI' A2, ..., Ak satisfies Pi then

we may bracket AI» A2~ ... »Ak however we please and
get the same answer. Furthermore the result is free of

infinite internal chatter and satisfies P..1

The proof of this is an easy induction on k using 5.19

and 5.20.

Note that if A & B both satisfy P. then most of the1
normal combinators applied to A (& B) produce a process

fI

which satisfies P., for example Ua .. A (a E (?TU~ T)),1
~ 11 I' n

?x:T ~ A, AGB. We will thereforebe quite informal in

the use of 5.20 & 5.21 in proofs, not always justifying

their application to a particular set of processes if

they are known to be justified for similar ones. For

example if A,B,C are buffers then

((A») (b ~ B»)) C) = (A">"7((b ~ B») C»)

(The inclusion of such details would clutter up the proofs,

so they are omitted on the basis that we could insert them

if challenged.)

The following lemma (which will be used freely and inform-

ally in proofs) allows us to do basic "handle turning" in

proofs invol ving "~/".

5.22 Lemma

a) «~Y'" A») (?x:T .. B(x») = (A»B(y) (YET)

b) «?x:T'" A(x»'» B) = ?x:T .. (A(x»)'> B) if BO ~ ?T

c) (A '>'>(~y ~ B») = !y ~ (A..,) B) if AO ~!T & yE T

d) «?x:T ~ A(x»») (!y + B» = ?x:T ~ (A(x») (!y .. B»

O!y ~ «?x:T ~ A(x»» B)

e) «? x: T ~ A (x)) ~) C'» (= y ~ B» =
(?x:T" (A(X»)C)')(=y ~ B))O (=Y" «?x:T~ A(x»}) C»B»

provided that the associative law holds (y E T)

f) (A or B» C ~ D) = (A» C) or (A» D) or (B» C) or (B» D)

g) If A°UCo<;?T ana BOUDO <;: T then let

E = (strip: (B) TU?TIITU:Tstrip? (C» .

If 1:~E (0) then «A 0 B)'i> (CO D» 5 (B») C).

. (A lower' bound can be obtained from (f) by monotonicity.)

provided that the domains of all processes S (?Tv!T) *.

The proofs of 5'.22 are all tedious manipulations using

5.18 and the definitions of the various operators.

We are now in a position to apply our knowledge to the

study of the relationship between pipes and buffers.

5.23 Theorem

If any two of A,B & (A» B) are buffers then so is the

third (for any A,BE M s.t. dom(A or ~) <;(?T U ~T)*).

proof

Observe that in each case there can be no infinite chatter

in (A» B), either becaLtsebuffers satisfy PI or because
no process which contains infinite chatter can be a buffer.

Thus in each case we can restrict attention to the "or"

case of 5.18.

We will examine only theqA & B buffers imply (A~B) is

a buffer~case in detail here. The proofs of the other

two cases are similar in spirit and equally tedious.

Suppose Buff(A) &' Buff(B).

To prove Buff (A'>'>B) we will prove the three conditions

5.16 (i),(ii) & (iii) in turn.

(i) Suppose wE dom(A'» B) .

absence of infinite chatter.

There must be some (u IV) E A

(U IU) I (v I V)) ~ (w d25) in

But then ins(w) = ins(u)

;;;;.outs (u)

w E (!T U ?T) * follows by the

& (v,V) EB

(A» B)

such that

;;;;.ins (v)

~ outs (v)

;;;;.outs (w)

by definition of ins

as A is a buffer

as ins (v) = outs(u)

as B is a buffer

as outs(v) = outs(w)

(For proving this condition in the other two cases we

use the fact that all strings of the process in question

must also be strings of (A»B) as the one which is known

to be a buffer must have all strings in [<?x!x) \ x E T}*
in its domain.)

(ii) Suppose

Since (A'» B)

(A '»B) after

wE dom (A» B) and that ins (w) = outs (w) .

satisfies condition (i) we must have
o

w) ~?T.

Hence X n?T =.~ 9 X E (A» B) (w)

so £X I x n?T = ~3 <; (A» B) (w) .
Suppose then that X E (A» B) (w). By 5.18 there exist

(u,U)EA, (v,V)E B such that ins(w)

= ins (v) > outs (v) = outs (w) (using

and X n (?T U ~T) ={U n ?T) U(V n ~T).

But then ins(u) = outs(u) (since ins(w) = outs(w»

so X n?T = Un?T = ~ (by line (ii) of Buff(A».

(by 4. 1 (c))

(*)

= ins (u) ~ outs (u)

Buff(A) & Buff(B»

Thus {A» B) (w) <; fx t X n?T = ~5
above proves line (ii).

which together with (*)

(iii) Suppose wEdom(A~?B) and ins(w) >outs(w).

We require to show that ~T ft (A» B) (w) .
Suppose to the contrary that (w, ~T) E (A}) B) .
Then there are some (u,U)E A and (v,V)E B such that

ins (w) = ins (u) ~ outs (u) = ins (v) ~ outs (v) = outs (w)

and ~T u T = «T U?T) n (strip~ (U - T»))" U (T LJ ~T) n (strip? (V - T»).
Either ins(v)> outs(v), in which case V n ~T :J=~T by

line (iii) of Buff(B), contradicting above relation.

Or ins (v) = outs(v) , in which case ins(u) > outs(u) .
Then vn?T =~, so strip? (V - T) nT =~.
Also U n ~T =1= !T, so strip! (U - T) n T 1= ~.
But then we have T = (T 1\ strip! (U - T») U (T n strip? (V - T»

by the above, giving a contradiction.

Hence ! T ft (A» B) (w) as required, completing the proof

that (A 7'7B) is a buffer.

One corollary to this is that if Bn = B >'>B» B» ...» B (n "B" s)

where B is the canonical one place buffer of 5.16 then

Bn is a buffer.

The foll'owingtwo resultSon nested buffers can be proved

in much the same way as 5.24.

5.24 Theorem

a) If A» B» C and B are both buffers then so is A» C.

b) If A>')C and B are buffers and A satisfies the "single

inevi table output" condition SIO (A) (see over) Q.! C, sat-

isfies Vw.Vx.(W<?X>Edom(C) ~ Cvy.W(?y>Edom(C»), then
A» B» C is a buffer.

- -- -

SIO(A) = \JW.VX. (w(~X)Edom(A) ~

Nv € dom(A) .v~ w =9 (outs (v) <x>~outs (w) <~»

This condition is interpreted as "if at any stage it is

possible for A to output x, then the next output of A
must be x" .
The need for one of these

in case (b) is created by

being able to selectively

ective input is necessary

(A» C) the insertion of B

additional conditions to hold

the possibility of C (in (A» C))

input from A. When this sel-

for the correct behaviour of

introduces the possibility of

Then (A» C) and B are buffers but A») B) C is not

as B, unlike C, cannot prevent A deadlocking.

5.25 Example

For each n ~l define a canonical n-place buffer B~ by

mutual recursion on M.i\..~where An= fwE T* (lwI< n3 .

Claim that B~ = Bn (as previously defined).

For x E. T define B =x
Observe that (B)'> B)x

~x -+ B (for B the one place buffer) .
= (!x -+ B)>>(?x:T -+ (~x -+ B»)

= (B>'>B) (by 5.22 (i)).x

Define processes enw

en = Bn ,
(~

for each n ~ 1 and Iwl..;;n as follows.

1 ...n+l...n
C = B , C < '- = (C ») B)<a> a w a, w a

Thus Cn is a stringw
ones containing the
3

<;ab'> = B >'> Ba » Bb and

Claim that 'fw. "In. Cnw

claim that B~ = Bn).

of one-place buffers, with the last

elements of w, for example

C':1- = B '>'>Bb
'» B

<a.JJc> a c

= Bn (this clearly implies the abovew
We will prove this by induction on

deadlock.

e.g. Let A*' ?x:T 4 «a x.., A) 0 (b -+ stop»

B ?x:T 4 !x B

C * ?a (?x:T x -+ C)

(for a,b two distinct elements of T)

B') *' ?x:T B

Bn
(?x:T ., Bn <1) 0 (y 4 Bn)

if Iwl< n -1, yETw<y> (x'>w w

Bn * (y Bn) if Iwl =n -1, yETw£y> w

the definitions of the Bn.w

For each n the predicate R (B) =='r/wEA .B = Cn isn - n w w
clearly continuous and satisfiable. Also the recursion

defining the Bn is clearly constructive. It thus
w ,A.' ,

suffi ces to show that VB EM". R (B) '*R (F (B», where F~ n- n n- n
is the function associatedwith the Bn recursion.w

n= ?x:T ..., C
(Xfi-l

= ?x :T ..., (B)7 B)x
n-l= ?x:T .., (B » B)x

(by repeated use of (B.,,,B) = (B ~., B))x x

- (?x:T ~ B »> (Bn-l) (by 5.22)x

if \wl<n-l then F (I{) ',1">= (?x:T ~,.,n () 0 (!y -+ Cn)n .,. w :L' ~X)W YT w
J}-Z n-Z

= (?x :T ..., (B ">">C)~B » 0 (!y ~ (B7" C ")., B))x w y w
(by repeated use of (B"»B) = (B~) B))x x

n-2.= «?x:T"" B») C. »(!y ~ B»x w
(by 5.22 (e))

n-t= B ")., C ")") B
IV Y

I

iflw\= n-l then F (B) (
~

n w y>

(by repeated use o£ (B")"?B) = (B ")"") B)).x x
n-1

= (CW))"{~y -+ B» (it is easily shown

by induction that M=m ~ (Cm) 0 ~ ~T)
= cf1 v

w<y)

, , . 1
If n=l then Rl() 9 F 1 (t

= ?x:T C
<X)

= ?x:T B by definition of Clx x

= B by definition of B
1

= C<)

,
, Cl

F 1 ()O{> = .x (.)

= !x ..., B

= B = Cl
X <X>

The case n=2 is .almost identical with the

only difference being in the middle case,

not now defined. There is o£ course no

n > 2 case, the

cIl
-~

where w is
need for it to

be present in this case (n=2) and we use 5.22 (d) instead

of (e).

This completes the proof that Bn = en for all n & w.w w

We have the following immediate corollaries to this result.

5.25.2

B~ is a buf£er

Bn»Bm = Bn+mw v wv

£or each n ~ 1.5.25.1

(by repeated application of

(B)}B) = (B»B) to Cn»Cm)x x w v

We will henceforth identify the symbols B~ and Bn as we

are justified in doing by the preceding example.

Observe that in the above example we proved that the

"large" process B~ is a buffer by breaking it down into

a lot of small parallel components. We will see this

idea employed often from now on.

The next two results, the second of which is a type of

inductive generalisation of the first, are both very

useful in dealing with practical examples of proofs of

correctness of buffers.

5.26 Theorem

Suppose that (for any set 5) we are given two sets of

processes fA I s € S3 and ~C I sE 51 such that for all sss)
A) C is a buffer. Then for any function g:T ~ 5s s
the process ?x:T ~ (A.

(»
> (~x ~ C (»

) is a buffer.g x g x .

(Note also that the above process is equal to

«?x:T ~ !x ~ Ag(x»» (?x:T ~ ~x ~ Cg(x») .)

We will find that this result is a corollary to the

proof of the next result.

5.27 Theorem

8uppose that for any

processes fA \ sE" 81s
g:8 x T -+ 8 such that

set 8 we are given two sets of

and fc I s E 83 and a functions
for all sE 8

(AS~)BS) = ?x:T ~ (Ag(s,x)~) (~x ~ cg(s,x»)

Then £or all s E 8 As'i7Cs is a buf.fer.

proof

(This is an application of 5.14.)

Define F :}>(M)~ <j)(M) as follows:

AE F(E) #

(i) AO =?T and

& (ii) VtET.3BtEE

A (0) = ~ X I X n?T = ~}

s.t. <?t)w Edom(A) & wE(?T)* 9 wEdom(Bt)

& A «? t> w) ~ [X I ~t f/.X J

at'>w <~s>vE dom(A) & wE (?T)* 9 s=t &

& A(<::?t)w <~s)v) S Bt (wv)

5 . 2 7 . 1 lemma

F is constructive in the sense of 5.14.

5.27.2 lemma

(\1'B E A.Buff (B» :9 (VB f F (A) .Buff (B))

5.27.3 lemma

For any g:8XT -78 and sE 8

(?x:T ~ (Ag(s,x»>I(~x ~ Cg(s,x»»EF([As/)Csl sE'S1)

The proofs of these lemmas are just tedious analysis of

cases and are omitted.

Lemma 3 above gives us that under the hypotheses of the

theorem £A » C I s~ 81 <;; F (f A 'J/C I sE 81) .s s s s

Now since Buff is continuous and satisfiable 5.14 gives

us the desired result that sE 8 9 Buff (A ') C) .s s

Observe that lemmas 2 & 3 'above combine to prove 5.26.

The above result admits much "degeneralisation" by

simplifying the form of g. For example by setting

S to be a one element set we get for any A,BE M:

A'})B = ?x:T ~ (A))(~x ~ B» 9 Buff (A)') B)

5.28 Example

Define A ~ ?x:T 4 ~x ~ ~x ~ A

C ~ ?x:T -7 ~x + ?x ~ C

(by many applications of 5.22)

It is thus an easy induction to show that A»C = B, the

one place buffer.

For x ET define ~ = ~x ~ A and Cx = ?x ~ C.
Thus A» C = ?x:T .., (A » ~x .., C) (by (*) above)x x
and for each yET A)C y

= A»C = ?x:T~ (~»~x 7 C).
Y x x

Thus if we put 8 = Tufa'3 for any a EtT and set A = A & C = Ca a

the f A I s ~ 83 and lC I sE 83 satisfy the conditions ofs s
5.27 {put ting g (s, x) = x for all s E 8).

This serves as an alternative proof that B = A')"/Cis a

buffer (though it is of course circular as we assumed

that Buff was satisfiable, and the most basic instance

of Buff we have seen was B, all others having been proved

£rom it). It also shows that B, as well as all the other

Bn, can be expressed in the form A») C for some A, C E M.

5.29 Example (C.A.R.H./A.W.R.)

This example models a simple method for overcoming a

"gremlin" on a transmission line which occasionally

randomizes information.

Define error generating processes E. as follows (iEto,1,2,3j).1

Eo ~ ?x:T ~ Y\!T(~y~ E3) , Ei+l~ ?x:T ~ !x ~ Ei

The E. randomize every fourth bit, i determining the1
phasing. To counteract a line behaving like E. we send1

every message in triplicate, and take a majority vote at

the receiving end.

X ~ ?x:T ~ !x ~ ~x ~ !x -? X

Y * ?x:T ~ ((?x ~ (?y:T ~ Y»)

o (?y:T-fx~-+ (?x. ~x ~ Y) 0 (?y ~ ~y ~ Y»»

Now A» C = (?x:T x x A)>> (?y:T y .:0,?y -? C)

= ?x:T 4 (x x A)>>(?y:T y T ?y C»

= ?x:T ((x A») (!x ?x C» (*)

= ?x:T x -+ «x "".A»))(?x C»
= ?x:T x (A'» C)

To show that this device is correct we would like to show

that each X» E .» Y is a buffer, so that these processes1 .

both transmit information reliably and are free of dead-

lock (observe that Y can deadlock if it gets no clear

majority in any group of three symbols).

Putting S = £0,1,2,31, A. = X»E. and C. = Y, by 5.27 it) 1 1 1
will clearly be sufficient to show that iE S implies

(X»)Ei»)Y = ?x:T -t «X»)Ei$I»f(~x ~ Y»,
where $ represents addition modulo 4.

e.g. X >"'7E)7 Yo

of these by repeated application of 5.22.

(each process satisfies PI so associative
law is justified)

+ ~x -t~x -tX») (?x:T -+ (V ~y -+ E3»J> Y)
yeT

We can show each

= ?x:T -+ «!x

= ?x:T "t «!x -+ !x ~ X») (XT~y + E3)"» Y)

~ x ... X) » E 3)-'Yy)) (where

., E
2») Y » or (V (! xx - YrX

= ?x:T ... (t(~x ~ X)i~E2» (?y:T ~ ~x ~ Y»

or (y'ix«~x 4 X»)E2>?«?y ~ ~y ~ y)O(?X '" ~X "t Y»»)

= ?x:T+ «X»)El»(~X ~ Y» or (y¥x(X'>?'(!x ~ El»>(***»»

= ?x:T ~ «X»)EI»(!X'" Y» or (.xx(X»EI»(!X "tY»)

- ?x:T ~ (X»El »(!x .,Y» as desired

*** represents the sa.me term as at that place in the

previous line.)

= ?x:T

... (V ~(! x ...

yET

... (((~ x ~ X») (!x

Y = Y after ?y)y

+ X» ~x ., E2»Yy)))

= ?x:T

The other cases are easier than this one.

Many other examples in this

we might design processes to

streams, and others to check

would then wish to show that

vein are possible, for example

insert parity checks in

them and remove them. We

when we combine these proc-

esses the result is a buffer.

We now turn our attention to recursive definitions which

involve ",»". Since its definition involves hiding, this

operator is not in general non-destructive. The next

result identifies two cases where it is.

5.30 Theorem

a) If wE dom(C) ~ Iins(wX ~ louts (w)1 then (Al) C) is a non-

destructive function of A (if dom(C) ~ (?TU ~T)*).

b) If w ~ dom(C) ~ Iins(wX ~ louts (w)! then (Cll A) is a non-

destructive function of A (if dom(C) C (?T U ~T)*).

proof

We will give a proof of

symmetry. Suppose that

(a), result (b) following by

wE dom (C) = lins (w)l~ louts (w)l

This condition clearly implies P2 (of 5.20). For arb-

itrary A we must have (A»C) free of infinite internal

chatter, for the proof of this part of 5.20 only depends

on P2 of the second varl~le (just as the proof that if

A & C satisfy PI then A'» C is chatter-free depends only

on PI (A)) .

Hence for all A the entirety of A'» C comes from the "or"

clause of 5.18.

Suppose AE M. We wish to show that (Allc)fn = (Aln'» C)t n.

We have (A» C) t n:! (AI n») C) I n == (A'»C)In C (AI nll C) \' n by

monotonicity. It is thus sufficient to show that if Iwt<n

and (w,X) E (Atn'»C) then (w,X) E (A'»C) and that iflwl =n

and wE dom(Atn)C) then wE dom(A»)C).

In the first case there must be some (u,U) E Aln and

(v,V)E C such that «u,U), (v,V» # (w,X) in (Atn"»B).

But then 1n\'>lwt= lins (w)1 + louts (w)\ = lins (u)\ + louts (v)1

~ lins (u)! + lins (v)\ = lins (u)/ + louts (u)1 = lul.

Hence (u,U)EAso «u,U),(v,V»# (w,X) in (A»C).

The second case follows by a very similar argument.

This completes the proof of 5.30.

5.31 Example

Consider the process defined C ~ ?x:T ~ (C'» (~x ~ B» .

By the above this recursion is constructive. It is

easy to show that C is a buffer by induction. We know

that Buff is satisfiable and continuous, so suppose

that Buff{D) holds.

both Band Dare.

a buffer.

Then D») B is a buffer by 5.24 as

Therefore ?x:T ~ {D» (!x ..., B» is

Thus Buff (D) '9

the C-recursion.

Buff(F{D», where F is

Thus Buff{C) holds as

the function of

claimed.

Hence C»B is a fixed point of the recursive equation of C,

but this equation has a unique fixed point, namely C, so

C = C» B.

Thus by the same argument as above C» C = C.

Define processesC (w E T*) as follows:w

Co = C Cw<.y)= (cw) (!y ..., B»)

It is easy to show (by CC») B) = C, (B.x» B)= (B» B) and defin-
ition of C & B) that

C,'> = ? x: T 4 CX

C (. ,= {?x:T ~ C -. J J 0 (!y ~ C)
w y, (X,w"--y1 W

It is then an easy induction to show that C = Jj, where If"

is the canonical infinite buffer B~, where

Boo ~ ?x:T -+ Boo
(.. <X>

Boo ~ ,,~ (? x: T .. Reo ~) 0 (! y -+ Boo)
W<-Yr <X> w <.y> W

Note that as corollaries to the above proof that B- is a

buffer, we have the following identities:
oD noon 00 00 00 00 0&' 00 00

B '» B = If", B » B = B , B '» B = B , B »B = Bw v wv w v wv

Now C» B = {?x:T (C'» (!x .. B)})'> B

= ?x:T ({C» (!x ..., B) »'>B)
0

as B ?T

= ?x:T -+ (C)) ({!x B»'> B» (buffers are associative)

= ?x:T -+ (Cl) (B)'> (!x B») (as in 5. 2 5)

= ?x:T ""> ({C»B») (!x B»

Also C)">C = {?x:T {C» (!x B) P>C

= ?x:T ({C» (!x .. B»>'> C)
0

as C £;?T

= ?x:T .. (C» {{!x BP'> {?y:T {C» (!y B»»

= ? x: T (C>'>B» C I'> (! x B»

= ?x:T .. ((C» C») (! x B» by the above.

The only obvious omissions from this list are
n ... rf'O n 00 rf"OB >')B = ~ andB"» B = ~w v wv

These two results are both easily proved from B>~IS= Boo,

which is easily proved by defining B* = B"»Boo (for wE T*)w w
and showing that these B* satisfy the recursive equationsw
of the a-, so the two systems are the same as thesew
equations are certainly constructive.

In cases where a recursion does not satisfy the conditions

of 5.30 the analysis is a little harder. One trick is

to show that any fixed point of an equation must be det-

erministic, for then the equation has a unique fixed

point as otherwise it could not have a minimal one.

We can then prove predicates which are equalities by the

satisfaction of equations with unique fixed points (as

was done in 5.31) but we cannot directly prove predicates

like Buff.

5.32 Example

Define a process C* ~ ?x:T ~ (C*»(:x ~ C*».

This recursion is not constructive in our usual sense so

it has to be treated with some care.

Suppose that D is any fixed point of this equation. It

is quite easy to show, using induction on!wland 5.18,

that all elements of dom(D) satisfy lins (w)!~louts (w)! and

that D is free of infinite chatter. Assuming this result

we are justified in using the assocative law on D and its

derivati ves. Claim that for each n» 0 we have
n 2n-l m (n!-t"t...s)
D = ?x:T ~ (D » (:x 4 D» (where D = D'» D'>' .. . "ii'D)

This is true for n=l as D is a fixed point of the C* equation.

Hence it is true for all n by induction.

Assume true for n.

Then Dn+l = (?x:T (D» (:x ...,D»"» Dn

= ?x:T (D ">/(: x D) '7'7Dn) as (Dn) 0 ?T

= ?x:T -+ (D')")(:x D)">">(?y:T (D2n- (:y D»)

= ?x:T ... (D'>/D")/D2n-l,> (:x D»

= ?x:T (D2n+l"» (:x D» as desired

we also have (~x ~ D)) D = (~x ~ D) » (?x:T ~ (D'>>(~x ~ D)J)

= D» D '>') (! x - D)

Using these two results and 5.22 we have that each process

of the form Dn or Dn» (!x -'I' D)» ...» (! z "" D) can either

be written in the form ?x:T ~ A(x) , where each A(x) is of

the same for~, or in the form(?x:T ~ A(x))D(~y - AI) where

A(x) and A~ all have the same form..

Thus define (for E E'P(M)) F (E.) =

[?x:T ~ A(x), (?x:T ~ A(X))O(~y ~ AI)/ yET, A(x)E E, AlE Ej

This function is easily seen to be constructive in the

sense of 5.14. It also preserves the (satisfiable and

continuous) predicate "is deterministic".

Setting E = ~Dn, Dn(!X ~ D) ... (!z ~ D) I nE NT, x,...,z ET3

the above shows that E ~ F (E). Thus by rule 5.14 we are

entitled to deduce that each element of E (and in part-

icular D) is deterministic.

As T is finite hiding is continuous and thus so is H, the

function of the C*-recursion.

Thus fix(H) (which we now know to be its unique fixpoint)
':J n

is equal to n~(H (CHAOS))

Claim that Vm.Vn.Hn(CHAOS') £C*In. Prove this by induction

on n. It is certainly true for n=O, as CHAOS is the min-

imal element of M.

Suppose true for n.
m 2m-lThen C* = ?x:T T ((C*) » (!x ~, C*)) (as on

;! ?x:T ~ (Hn (CHAOS) '») (!x ~ Hn (CHAOS)))

~ Hn+l(CHAOS) by definitionof H

the last page)

by induction

Hence by induction the result holds for all n & m.~

But then for each m we have (C*)m~ ~l(Hn(CHAOS)) = C*
and we know that C* is maximal in M as it is deterministic,

which gives us the relation (C*)m = C* for all m.

One consequence of this is that C* is a buffer, for

we then have C*')")C* = ?x:T ~ (C*')")(~x ~ C*)) and

(C*>,)C*)).)C* = ?x:T ~ ((C*,;7C*) >'? (~x .., C*)) , which

respectively imply C*>/C* and (C*.,'?C*)/'/C* are buffers

by 2.27. Thus C* is a buffer by 5.23.

If we now define processes Cl (w ET) corresponding to thew
C of 5.31 we can show that C* = B~ in very much the samew
way Let Cl = C* and Cl = Cl » (!y -+ C*) . Then as

. () wzy> w
C* >'>C* = C* and (~x ~ C*)>)>C* = C* >~C* >'>(~ x .,., C*) =

C*» (~x ~ C*) we can easily show that the Cl satisfy thew
recursiveequationsof B:, that is

Cl = ?x'T ...,Cl
(> .. x .

Ct = (?x:T ...,Cl -> 0(~y~ Cl)
w<y} ?x>w <YJ w

and so the two systems must be equal, as in the last

example. Hence everything that is true of Boo is also true

of C*.

All the buffers we have happened to meet so far have been

deterministic (even the "gremlins" example 5 .29, where the

explicit non-determinism of the defini~ion disappears from

the point of view of the external environment). This is

certainly not true in general, however. In fact it is

easy to show from the definition of Buff (5.16) that if

Bl and B2 are buffers then so is Bl or B2, (and there are
certainly more than one buffer). Indeed this result extends

to infinite disjunctions and so, for example, the process00

n~l(Bn) is a buffer. (It is a process because T is finite.)
It is easy to show that "»" is a distributive operator in

""

the limited sense that if (. '\1.1(A.»> B) is free of infinite
1.= 1. DO

:natter then it is equal to the process i~l(Ai»B). (This
comes from _the .nature of th~ "or" clause of 5.18.) There

is of course a corresponding result for the second variable.
~

Let B* = n~l(Bn). Clearly B*» (~x ~ B) is free of infinite
chatter as B* is a buffer, so we are entitled to use the

above law in this case.

Hence ?x:T -+ (B*) (~x -+ B»

OQ

= £(?X:T 4
00

= VI(?x:T ~n=

= V (Bn+l)n=l

(Bn» (~x 7 B»)

Bn+l) (by 5.25)('X)

This proves that B* ~ F (B*) , where F is the recursive equa-

tion of C (= B-). It is easy then to show that F must

have some fixed point above B*. Thus by the unique fixed
co

point property of F we have B-~ n~l(Bn) (the canonical
infinite buffer is stronger than the disjunction of all

the finite ones).

PostscriE!:: the express!y~ power of "» "

To round of our study of buffers and their relationship

with the pipe operator we ask the question "are all buffers

expressible as A» C for some A,C EM?" . All the buffers

we have met so far with the exception of B* have either

been directly expressed in this form or later shown to be

so expressible. In fact B* can be .expressed in this form

by a combination of 5.28 and the distributivity principle
00

of the last page (B* =«A or (n;{l (Bn» A)))"'))C), where A & C

are as in 2. 2 8) .

In fact there are (unfortunately?) certain pathological

buffers which cannot be so expressed.

5.33 Example

Le t A ~ ?x:T ~ (~x ~ B

D?y:T "'+ (?z:T ~ (:x ~ ~y ~ ~z ~ B)

O~x ~ ~y ~ B)

Then A is a buffer not expressible as Ai)~ A2 for Al ,A2EM.
The fact that A is a buffer can be proved easily from the

fact that B is a buffer.

The main reason for A not being expressible as (AI»A2) is
that when it contains two items it will deterministically

accept another, but on outputting its first symbol it

immediately loses the ability to output. The point is

tha t if A = A 1>'>A2 then it mus t be Al doing the inputting

and A2 doing the outputting. The only way that Al can
lose the ability to input is by a signal passing between

Al and A2 after A2 has output. This however leaves the

possibility that Al might accept an input before this

signal has been executed but after A2'S output.
A formal proof that A is not so expressible will follow

easily from the next result.

5 .34 Theorem

If A is a buffer expressible as AI"''''A2 then A satisfies

w(~alEdom(A) 9 f?X \ w<~a?~€tdom(A)1 E A(w)

(A can refuse before it outputs "a" the whole of what it

must refuse after outputting "a".)

proof

Suppose that w(~a>€tdom(A)and that A is so expressible.

A = (Al)A2) must be free of infinite internal chatter
as it is a buffer. Thus only the "or" clause of 5.18

applies. Hence (w,~) must have some derivation

«u,U) ,(v,V» in (AI» A2).

Let X = ~?xl w(~a?x>~dom(A)3

Suppose ?x E X and u <?x>E dom (AI) .

Now v<~a>E.dom(A2) or else «u,U), (v,VUf~a3» would be

a derivation in (Ai>")A2) of (w, [~a1), which would cont-
radict the fact that A is a buffer (lines (i) & (iii) of

5. 16) .

Thus t <~ a?x)Edom (strip ~ (AI) T U ?T"TU~ Tstrip? (A2» where

t corresponds with u & v in the sense of 5.18.

Hence (t<~a?~1 (?TU!T) = w (~a?x')Edom(Ai~/A2), which

contradicts the fact that u<?x)E dom(Al) .

Hence Xn(A1 after u)o =~, so «u,UuX) ,(v,V» is a

derivation for (w,X) in (Al»A2), which gives us the
desired result.

The author conjectures that the condition on the last

page is also sufficient to ensure expressiblity of

buffers,- but at the time of writing has not had time to

prove or disprove this.

This concludes our detailed study

that in the next chapter there is

given of defining B~ (in terms of

operator.

of buffers. Note

a different method

the master/slave)

Appendix: Proof of the I.,iUnaneeded in 5.19

5.35 Lemma

If A is free of infinite X-chatter and X n Z = ~ then

(A/XyllzB') = (AXUyllzB)/X.

proof

Use the notation

that w~X = s, wty
sXl/yt -+ w to mean (for X,y~L and s,t,wE r*)

= t and w E (Xuy) * ~

It is easy to check

(w,W) E (AX"yB) <9

that (for any A,B,X,Y)

::I (s ,S) EA, (t ,'1')E B s. t. sxl/ y t

& wn(xuy) £ (xns) u (ynT)

-?w

(*)

It is also easy to verify that X n Z = ~ implies

SXUY IIzt -+ w ~ (s/X) yllz t -t (wIX)

We will show first that under the stated conditions

(A/Xy IIZB) S (AXUyll zB) /X .

Suppose (w,W) E (A/xyllzB), then by (*) above, and since A
is free of infinite X-chatter, there exist s,t,S,T, such

that (s,SUX)EA, (t,T)E B, (s/X)yllzt~ w
& wn(yuz) S (snY)U(TnZ) . (**)

It is easy to see that since X n Z = ~ and (s/X)yllzt -;. w

there exists some w* such that sXUyllzt -+w* and w*/X = w.
(For example such a w* is ob~ained by placing each maximal

substring of X-symbols occurring in s in w at the leftmost

place at which the number. of y-X symbols is the same as at

the place the substring occurs in s. If X =[x~, Y =[yJ

and Z =tz}, s =(xyxxyy), t =(ZZZ) and w =~yzyzyz>then in

this case w* would be I..xyxxzyzyz> .)

Now we have (s ,SuX) E S, (t ,T) E B and (WuX) n (XuYUZ) £

«sux)n(YUx»u(Tn~). (The set relation is obtained by

taking the union of each side of (**) with X.)

Hence (w* ,WUX) E (AXUyHzB). (By (*»

This implies (w*/X,W) E (AxuyllZB)/X by definition of ../X" .

Since w = w*/X this just says (w,W) E (AXUyllzB)/X, which
is what we wanted to prove.

This completes the proof that (A/XyllzB) S (AXUyll ZB) /X.

To prove that (~XUyIIZB) /X <; (A/Xyll ZB) the first step is to

show that (~UyIlZB) is free of infinite X-chatter because
A js. If this were not so there would be an infinite

elements of dom(AXUyllzB}
But then w. t XuY E domA

1.

sequence w < WI < ... < w. <
o 1.

such that w.tx = w tx for all i.
1. 0

for all i, and (w.t XUy)/ X =
1.

of

(w. /X}t XuY1.

= (w /X) I XuYo
= (w txuY}/Xo

Also it is easily seen that wi+ltXUY>wlXUY, since the

difference between wi and wi+l occurs in X and is so pre-
served by restriction to XUY.

This contradicts the fact that A is free of infinite

X-chatter, so we can conclude that (~UY\\ZB) is indeed
free of infinite X-chatter.

Now suppose that (w,W) E (AXUY\\ZB}/X. By the above there

is some w* such that w*/X = w and (w*,WuX) E (AXUyll ZB) .

Thus there are some (s,S) E A and (t,T) E B such that

SXUyrlzt ~ w* and (WuX) n(xuyuz} \;; «xuy}ns}u(znT).

Since xnz = ~ we see that X <;S (i.e. S u X = S) and also

wn(yuZ} <; (YnS) u (ZnT) . (+)

Now sXUyllzt -+ w* & xnz = ~
~ s/Xyllzt -+ (w*/X) (by our earlier remark) (++)

Putting these facts together we obtain

(s /X ,S) E A/X (as S ux = S)

(t,T) E B

~ (w*/X,W) E (A/XY\\-ZB) (by (+) & (++))

This tells us (w,W) E (A/XyllzB), which completes the

proof that (~UyI\ZB) /X <; (A/XY\\ZB) .

This completes the proof of lemma 5.35.

We will see that this lemma is important in several proofs

of the well-definedness of parallel/hiding combinators.

The reasons why it does not hold in general (i.e. without

the assumption of freedom from infinite chatter) will be

discussedin chapter 8.

Chapter 6 : The MasterLSlave QEerator

This operator, which was introduced in chapter 2, can be

modelled in a similar (though preferable) manner over M.

Because of the use made of hiding in its definition it

will be necessary to restrict its definition to cases

where the set T of communicated values is finite.

6.1 (Al\a::B) = (A~Ua.ra.(swap~?(B.»/(a.l')

where r = T U ?T U ~ T and swap is de fined

swapab (A) = ~(swapab (w),swapab (X» I (w,X)E A 1

(swapab(X) for X~~ is defined to be the natural exten-

sion of the definition for ~ given in chapter 2) .

6.2 Examples

a) If A = AlII A2\{

have to execute a
1\Ak and some of the Ai might

critical section which needs to be

executed in parallel with no other critical section

then if we guard each c.s. with a request to a suitable

(joint) slave this condition can be ensured.

B.i (a~i ~ skip) iCS. i(a?i ~ skip) iC.1 1 1
(where A. = B, iCS. iC,)

1 111

?n:~1,2,..,k1 ~ ~n ~ D

«Ai\\A211 IIAk)1I a::D)

l 113 8 == f\'IoJ S a.r<tl..,.,t.fic..)
b) Five dining philosophers: ,-

If PHIL. ~ a.sit.i ~ i.pickup. ~ i.pickup' ml ~ i.eat ~1 1 1
i.putdown.m l~ i.putdown.~ a.getup.i ~ PHIL.1w 1.]

FORK. {::i .pickup. ~ i .putdown. .. FORK111

Qi81.pickup. ~ i81.putdown. .. FORK1 1

B = B where B ~ sit.j:~O,..4~ ~ Blo 0

iE tl,2,319 Bi~ sit.j:tO, ..41 ~ Bi+l
[1 get up. j : [0, . . 41 ~ B, 11-

B41:i=getup.j: to,. .4)..,BJ
4 4

Then (.IIPHIL,)" a::B) 11 (.11FORK.) is free of deadlock.1=0 1 1=0 1

This last example is reasonably easy to prove using

the techniques that were developed in chapter 5 and those

which we will develop in this chapter and the next.

e.g. A! =
1

D =

A* =

6.3 Lemma

If T is finite then (A1/ a: :B) is a well-defined continuous

function of its parameters. Furthermore we have the

following criterion .formembership of (AI!a::B):

(w,X}E (Alla::B) if and only if

either there is some w'~ w such that

~tcdom(A) I (tta.P € a.swap~?(dom(B)}} & (t/a.r = w') 1

is infinite

or there is some (u,U)(A and (v,V}E B such that

xu a.r = U U (a. swap! ? (Vnr)}

The proof of this is very similar to that of 5.18, the

corresponding result on the (A~B) operator.

I£ the first case holds of any (w,X) then we say that

(Alla::B) contains infinite internal chatter.

In the or clause we say that «u,U) ,(v,V}) is a deriv-

ation for (w,X) in (A 11a::B) or equivalently that

«u,U) ,(v,V}) ~ (w,X) in (Alla: :B).

6.4 Theorem

Suppose that each of (Alla::B) and (AI!b::C) is free of

infinite internal chatter and that a.rn b.r =~.

Then «A q a: :B) 11 b: :C} = (A 11 b: :C) 11 a: :B}.

The proof of this is an immediate corollary to lemma 5.35,

the same result used in proving 5.19.

Theorem 2.38 also carries straight over to this model:

6.5 Theorem

Define C~ (for a€~ and jE Z) as follows:J
C~(A} ~\lwE dom(A}.(\wtrt-lwta.rI}~ min(j,\wt(rU a.r}\)J

a} C~(A} is a (strongly) continuous predicate.J

b} C~ (A) ~ (A11 a: :B) is free of infinite internal chatter.J

c} C~ (A)

d} C~ (A)J

* Yn.VB. (A H a: :B}t n+k+l

~ C~(AII b: :B) .J

= (All a::Bln}ln+k+l .

The proof

The proof

of 5.20.

The proofs of (c) and (d) are similar to 2.38(b)&(c}.

of (a) is the same as 2.38(a}.

of (b) is similar to (though easier than) that

- - 0 . . _0__

We will shortly see that the master/slave operator is a

very useful tool in defining processes by recursion. As

in chapter 2 the above results help us to identify the

cases where it is a constructive or non-destructive func-

tion of its second (slave) argument. The following is

a list of technical lemmas of a computational nature which

will subsequently be used freely and informally in proofs.

6.6 Lemma Rules for (Aft a::B)

(i) If AO" a..E= 91 then (A 11a: :B) (<» = A(<», (Alla: :B)0= AO

and (All a::B)afterx = (Aafterxl! a::B)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(A or B 11a: :C) = (A \I a: :C)or (B 1\a: :C)

(Al\a::(Bor C» = (Alla::B) or (Alla::C)

(a! x -t A 1\ a: : (?x: T -t B » = (A 11 a: :B)x x
= «a!x ~A) o (a?x:T -+ C)11a::(?x:T -tB»x x
= (a!x -+ Alla::«?x:T -+ B) 0 (:y -+ C»)x

(a?x:T ~ A 11a::(!x -+ B» = (A 1\ a::B)x x
= «a?x:T" A) D (!y -tC) 11 a::(~x -+ B»x
= (a?x:T~A l\a::«~x-tB)D(?Y:T~C»)x y

Define a function f: I:-tE as follows:

f(y) = a!x if y = ?x for any x

= a?x if y = ~x for any x

= y otherwise.

If BO~ a.I: and BOnf(Co) = 91 then (AOBI! a::C) = (Al\a::C)

If AOna.I: = 91 & B°<,;a.,E&,3XEB«», YEC(o).Xuf(Y) = a.I;

then (AO B 11 a: :C) = «A 1\a: :C) 0 (B 11 a: :C» or (B 1/ a: :C) .

(The condition here ensures that B and C cannot dead-

lock, thus ensuring that some hidden transition will

eventually take place if nothing else is offered.)

e.g. (?x:T -+ A 0a?x:T -+ B n a::(!y -+ C» =x x
«?x:T -+ (A 1\ a::(!y -+ C») 0 (B 11a::C» or (B I1a::C)

x y - Y
If AOn a.I: = 91 and B°<,;a.L and BOn f(Co) ~ 91

and 3X E B «), Y E C (0) s. t. X U f (Y) = a..!:

then (A(]B!la::C) = (AI\a::C) or (B*lIa::C*)

where D* (w) = fx I X n DO = 91} if w =()

= D(w) otherwise.

(If B & C deadlock on the first step then A must be

allowed to take precedence.)

Rules (i) - (vii) deal essentially with the first step

behaviour of (A n a::B). It is possible however to derive

a few more general ones. «viii) is just a restatement

of 6. 4.)

(viii) If a~ and each of (A 11a: :B) and (Allb: :C) is free

of infinite internal chatter then

«A/la::B)/I b::C) = «Al\b::C)11 a::B).

(ix) If (A 1\a::B) is free of infinite internal chatter

and a.l: ()Y = ~ then «l\x..J\yB) 1\ a: :C) = «A 11 a: :C)x1IyB) .

Each of (i) - (vii) is quite easy to prove

the definitions of the operators involved.

(viii) is a consequence of 5.35.

directly from

(ix) , like

We will concentrate in the next few pages on seeing how

(Alla::B) can be used as a recursive tool, and on how

processes defined recursively with this operator can be

proved correct by our methods.

which is allowed to call itself as a subroutine running in

parallel. In 6.7 and 6.8 exactly this scheme is used,

modelling a stack and a buffer respectively; in 6.9 we

allow the process to call two independent versions of it-

self and model C.A.R. Hoare's Quicksort.

6.7 Example: Stack

Define the process R recursively by

R {= (X 11 a: :R)

R is intended to model an empty stack. Intuitively we

can interpret its actions as follows (bearing in mind that

it has as a slave a copy of itself labelled "a"):

In the following examples the recursive scheme used is

R (X 11 a: :R) (or some slight variant) , where X is a known

process. This says that R is the process which X is when

it calls R as its slave. One can think of R as a process

where X t= ?x:T -+ Y
X

Y t= ?y:T -+ a!x -+ y
X Y

o !x -+ z

z ?x:T Yx
o a?x:T -+ YX

- .. _.

Initially it is empty and

ever input any element of

ence to its slave).

If subsequently it is storing an element of T it can

output it to its environment. It can also input any

element of T from its environment; if it does this it

so cannot output. It can how-

T and storeit (withoutrefer-

outputs the old element it was storing to its slave and

stores the new one itself (the new one becoming the new

top of the stack).

If (at a time other than the start) the control process

finds itself not storing any element of T it does not

know whether or not its slave is empty. It is therefore

prepared either to input the new top of the stack from

its slave or from its environment.

We can define a more obviously correct stack as follows

by infinite mutual recursion over T*:

Here S represents the stack with contentsw; the top ofw
the stack being the leftmost component of w. An empty

stack can only input; a stack with top element y can either

output y (and lose y from the top of the stack) or input

some element which it adds to the stack at the top.

We have not formally defined any correctness criterion

for stacks. If this were done it is likely that S() would
be much easier to prove correct than R. Indeed one very

plausible correcness condition for infinite stacks is con-

gruence with So, a process which it is very easy to prove

(for example) free of deadlock. We will therefore content

ourselveswith a proof of the congruenceR = S<>, leaving

out any further work that needs to be done proving ~> to
be correct.

Define Ro = Rand R... = (Y 11 a: : R) .-(y,w Y w
Claim that (i) Vw.(zll a::R) = Rw w

and (ii) Ro = ?x:T ~ ~X> and Yy ,w.~y)w= ? x : T -+ I}xy> w

o :y -+ Rw

We will prove these two results not by recursion induction

S *" ?x:T ..., 1 (if w = <»
w x)

S {:: ?x:T ..., (if w =<y>v, yE T & VE T*)w x>w
D y S v

but by ordinary mutual inductionon the length of w.

ii) (Z tI a: : R)w = «?x:T -+ Y 0 a?x:Tx
= (? x: T 4 Y 11 a:: R)x
= (X 11 a: : R)

-a, Y) I\ a:: R)
x 0
(by rule (v) as feR)= a~T)

b) w =<.y)v (assuming the results to hold of all shorter w')

(ii) I\..t= (Y 11 a: : R)
Y v

= !y -+ (ZII a::R) v
D?X:T 04 (a!y ~ Y lIa::R)x v

= !y ~ Rv
I] ?x:T ~

(by rule (i»

(inductive hypothesis (i»

(a ~y -+ Y \1 a: : (?y: T ~ R (0 ~z -+ R »)x ,~v u
(by inductive hypothesis (ii) where if

v=<>the bracket is not present otherwise

v =~z>u, say)
- . y -+ R- . v

o ?x:T .., (Y 1\ a::R) (by rule (ii) in either case)x -(y>v
= ~y -+ Rv

n ?x:T -+ lhy> v as desired.

(i) (Z l' a: : R) = « ? x: T -+ Y '0 a? x: T -+ Y)11 a: : (~y -+ R D? x : T -+ R ,,,JW X x V -(x.l'
(by (ii) above)

= «?x:T -t (Y Ila::R \. >0 P) or P)x -{y,v -
where P = (Y H a::R) (by rules (vi), (i) & (ivy v

now P = ~y)V
= ~y -+ R 0 ?x:T -+ R (by (ii) above)v -(xy> v

= (?x:T -+ R
)) 0 my 4 R)O?x:T ~ R »

- (xy v v' -(xY> v
or (!y ~ R \O?x:T -+ R)- v' -(xy/ V

= (?x:T -+ ~xy> JO(~y -+ Rv) (by laws of I] and or)

= l}y) v (by (ii) above)
= R as desired.w

This completes the proof of our two inductive hypotheses,

so the two results are proved for all w.

a) w = <>

i) R = (Xlla::R)w
= ?x :T .., (Y 11 a:: R) (by rule (i»x
= ?x:T -+

(by defn. of %JX>

It is now a simple (recursion) induction on the definition

of S to show that Vw. S = R (the predicate R(X) = Vw.X = R.,. w w w w
is trivially continuous and satisfiable and the S-recursion'"'"'

is clearly constructive).

RQO

~ R(F(X»......
R
<y>w

This completes the proof that R

R = R<>.

S<), since by defini tion

The above illustrates one possible scheme of proof which

is possible for processes defined in the way we are

studying. We never needed the fact that the R-recursion

is constructive, though this fact is quite easy to prove.

To do this one shows that X, Y and Z respectively satisfyx

the conditions C~, C~ and C:l by mutual (recursion) ind-
uction. A tabular method for doing this is decribed in

6.

Intuitively the master/slave operator is well adapted

to the definition of stacks, just as "»" is well adapted

to modelling buffers. It is easy to imagine how a proc-

ess defined recursively by R ~ (Xlla::R) might act as a

stack but harder to imagine how one might act as a buffer.

This is because there must then be some leap-frogging of

information. In the case of a stack information input from

the environment is put first on the queue for re-output;

this naturally ties in with the fact that the output of

an "R ~ (X 11a: :R)" process is in the same place as its

input. This is not the case with a buffer, where an elem-

ent input from the environment must be put last on the

queue for output. The next example shows how this might

be done. In 6.8 the method adopted is to throw any input

down to the bottom of the recursion, so that except when

some input is being processed the process settles down to be

like a queue of information waiting to get out: the further

from the output/input port the longer its wait.

This method requires a slightly less constructive recursion:

we can no longer induct on the amount contained in the buffer.

6.8 Buffer

This example is modelled closely on the previous one.

The proof is rather more involved because of the rather

less construc~ive recursion.

We use the same scheme of recursion:

It is easily shown by induction on their joint definition

that X satisfies Ca1, each Y satisfies Ca and that Z sat-x 0

isfies C:l. Thus the R-recursion above is constructive
by 6.5 (c) .

Theorem R = Boo
"'" 00 ...

Recall that B = ~~, where ~~~ ?x:T ~ ~lX>
B- , ~ (?x:T .,B-

1..
) n (!y + B)

w..y) (X)w Y1 w

The proof of this result depends on two inductions, one

on the definition of B and one on the definition of R.

Firs tly claim that (i) Vw. (Z 11a: :B"') = Bco
. w w

(i i) .B:': = (X 11 a: : B7>)

\iw.\fy. B"', = (Y 11 a: :B"")w...y'ly w
T*

To prove these results define ~E M as follows:

C,..= (X 11a: :B;:) or (Z 1\ a: :B7»
co DO

C
(...;!:(Y \I a::B) or (Z11a::B I)w.z- Y w - w<.y>

We then have (using many applications of

C<)= ?x:T ~ (Yxlla: :B;:)or ?x:T -=?(a~x
= ?x :T ~ « Y \

I
a:: B) 0 r (Z 11 a:: Bx'" »x <')-

= ?x:T ..,Cx

rules 6.6)

~ Z 11 a: : (?x: T ~

Cw<'.P=(~y ~ (Z 11 a: :B:))[1(?X:T ., (a~x

or ((?x:T .,{(a!x ~ Z)IIa:: (?x:T

..,Y 1\ a::(?x:T ~ Roo (0"*»»)y <X'>w

., B-
<.

n ~ y ~ B DO)) 0 P) 0 r P)oowy-S w -
where * (present if w #() has the form (!z + B~) andv
P = (Y 11 a: :1(') = ?x:T ~ (a~x ~ Y 1\ a:: (?x:T -+ Boo (*»y y ~w

o ~ Y ? (Z 11 a: :B-)w
= {?x: T ~ (Y 11 a: :B- ») 0 (~y ~ (Z n a: :B"'))Y <.x'>W W

R (X I \ a: :R)

where X ?x:T .,Yx
Y ?y:T ay Yx x

o !x Z

Z ?x:T a!x Z

Oa?x:T Yx

Hence

C ,,= !y ~ (zll a::B::'.>D ?x:T ~ «Y 11 a::Boo) or (Z\\ a::B zoo ,)
w'-Y'> "" y""Z~ w - X'>w 'Y'}

~ (' y ~ C \IJ(?X:T ~ C)- . w'. "(}C)w'Y>
00

Th us ~ ~ F (f), where F is the function of the ~-recursion.

This implies that F has some fixed point below ~ in the
T*

complete partial order M .
But fix(F) is maximal in MT*, since F is a constructive

function with a unique fixed point which is a vector of

deterministic processes (the fact that this is so is easily

proved by induction on the definition of i>. ",

Hence C = El , and this is easily seen to imply (i) & (ii),-
again because all the B- are maximal in M.w

We thus have that (X 1\ a: :B"") = H , and since the R-recursion

is already known to be constructive it is an easy induction

to show that R = B~.

Notice that we have also shown that BoO= (Zll a::B), whichw w
shows that the recursionQ ~ (Zl\ a::Q) cannot possibly be

constructive,for we could then prove that Q = B for eachw
wE T*. This shows that 6.5(c) is as strong as possible,

for Z satisfies C:I.

6.9 Qu1cksort (After C.A.R.H.)

Suppose that T'is given some total order<, and T = T'Ule,f1.
It is possible to model a version of the "quicksort"

algorithm using the same scheme of recursion used in

the last two examples, except that here the process will

call two independent versions of itself as slaves.

Q F «XII u: :Q) 1\ d: :Q)

where X ~ (?x:T'~ Y) 0 (?e -+ !f ~ X)x
Y 4:= (?y:fyl y)x1 ~ u!y ~ Y) G (?y:fy\ y~x1+ d!y · Y)x x x

fl(?e ~ u!e ~ d!e ~ Z)x
Z ~ (u?y:T' ~ !y + z) 0 (u?f + !x .. Z*)x x
Z* ~ (d?y:T' ~ !y + Z*)D(d?f + !f ~ X)

The intention is that Q should receive a stream of input

symbols terminated by the symbol "e" which is not in T'

and then output them in descending order, ending the output

stream by n f", another special symbol. Q goes about this

-._-

by using the fi'rst symbol in T' that it receives (assuming

that the input stream is not empty) as a pivot. All the

sYmbols subsequently are either sent to an "up" copy of

Q if they are greater than the first, and to a"down" copy

if not. These two copies of Q then sort the symbols by

recursion. When the input stream of Q terminates, Q tells

its slaves and they output their contents, sorted, to Q

which relays this information to the environment. When

the "up" slave (which is activated first) has finished

its outputting,Q interrupts the two slaves by inserting

the pivotal first element.

The way we will prove this implementation correct is to

prove it congruent to a process which is defined in a

simple way (like the Sw of 6.7) which it is easy to prove
things about.

Define processes A , B (wEK) as below, where K is thew w
set of linearlyordered strings of T' (in descendingorder).

A = (?e ~ B) 0 (?x:T' .., A
(»w w u w,x

B,) = !f .. Ao

~y)w = !y .. Bw

where u:KxT' ..K is defined

uk>,y)

U(W(Xl,y)

=(,y)

= wt..xy'Jif x~ Y

= u(w,y) (x-> otherwise

(That u is a well-defined function in K~T' ~ K is easily

proved by induction.)

The main result of this section will be to prove the

theorem Q = A,).

It is an easy induction on the definitions of X,Y ,Z ,Z*x x
to show that they satisfy (in that order)

u u' u u d d d d
(C ,ct,Ct,C;t) and also (CI,C ,C ,Cl).o. - >L 00-

We thus know (by 6.5(b) and 6.4) that for all processes R&S

«X* 11 u: :R) 11 d: :S) = «X* 11 u: :S) 11 u: :R) and that they are

free of internal chatter, where X* is anyone of the four

terms above.

It is also easily shown by 6.5(c) and (d) that the Q-rec-

ursion is constructive:

--- - ---

((X l! u: :R) \I d: :R)I n+l = ((X \\ u: :R) 1\ d:: (Rln»1 n+l

(by C~(x\lU::R) which comes by 6.5(d»
= ((Xlld::(Rtn»1I u::RHn+l (by 6.4)

= ((X \I d: : (Rt n)) \ \ u: : (Rt n)) ~ n + 1

(by Cd (X 1\d: :(Rtn» which comes by 6.5 (d))o
= ((Xiiu::(Rtn»!I d::(Rtn»tn+l

as r~quired

Claim that A<,>= ((X 11u: :A,,» 11 d: :1\»

and w(}C'}vEK ~ A /~ =: ((Y 1\ u::A) 1\ d::A)W"-J>.rV X W v

and w(x)vEK ~ B /~ = ((Z 1\ u::B)11 d::B)W"-ArV X W v
and v (:K =7>B = ((Z* \\ u::At,) 11 d::B)v ' v

This can be proved by several methods, including 5.15, but

we will content ourselves by using the same device as that

used in the last example:

let Cl.')= ((X 1\u::~» \\ d: :A,..)

('>f=wE K* C = ~ ((Y 11 u::A) 1\ d: :At)w s<'OU1 =w X S

() f: w E K~ D = \/ ((Z 11 u::B)11 d::Bt) or ((Z* 11 u: :A, » U d::B)w s:~~=w X S - .. w

D,'>= ((Z * 1\ u:: A,) \I d:: B)

Now

and

Cl.)= ?x:T' ""> ((Yx 11 u: :A('» 11 d: :A,»

O?e .; !f ~ ((X 1\ u: :Ao) d: :~~

- ?x'T' ~ C-. x
Q?e ~ ((Z* 11 u::A) 11 d: :B,»

=(?x:T .., Cx) 11 (?e "t' D,'»)

C = ?y:T' ~ (V ((u!y4 Y I1 u::A) It d::At>' orw 'i(".,t.w x s -
':f)~

\/((d!y ~ Y \1 u::A)\\ d::At))
~<..'),..w x s
~~'"-

O"?e ~ (V ((u!e .; d:e "'> Z It u::A)\\ d: :At»~~w x s
= ?y:T'..,(\L ((Y 1\ u::A (»

11 d: :A
t) or

,>(""oW X us, Y
'3"> "X-

V ((Y fI u::A) 11 d::A (t »\(.,...,t~JX S u, Y
'1"'"

a ? e ., (~~:J (Z x 11 u:: B s) 1\ d:: B t))

Now s (X)t E K and y>x implies u(s(x)t,y) = u(s ,y) (x)t

and also y~x implies u(s(x)t,y) = s(X)u(t,y), these facts

being easy to show by definition of u.

Thus C ::t ?y:T'~ (Vt ((Y 11 u::A) H d: :At))w - 'u.. ~ X S
a.Lw':1)

G?e ~ (\1 ((Z 11u::B)11d::B t»)s<->tcw X S
,

:J (?y:T ~ C (» I] (?e ~)u w,y . w

--

Similarly (and ~ore easily) it can be shown that

D,J"> :::1 ~ y ~ D
(:rW - w

and Do = : f ~ C,>

The manipulations on the last page can be justified

by repeated use of 6.4 and 6.6.

We thus have that F(C,D) c::(C,D) ,,.. """'" - -

of the combined ~,~-recursion.

induction to show that all the

where F is the function

Hence, since it is an easy

we mus t have that A = g,and ~
in the last example).

This gives us that Ao = ((X 1\ u: :1\.,.)\Id: :Ao) , and since

we have already seen that the Q-recursion is constructive

this implies that A,~= Q, by induction.

A and B are deterministic,w w
= D (by the same argument as

By this result it iseasy to prove that Q sorts its input

correctly and is free of deadlock, amongst other things.

It is also possible, using exactly the same recursive

scheme, to model the dual algorithm of quicksort, namely

"shell sorting". Instead of pivoting on one of the

elements of the input stream and recursively s~rting the

elements above and below the pivot,this works by splitting

the input stream into two halves, sorting them and merging

the two output streams. The process S below has this

behaviour. It can be proved correct in very much the

same way as Q (in fact Q = S = Ao) .

S ~ ((Xlla::S)II b::S)

where X (?x:T' (?e x
f .. X) 0 (?y:T'''' ax ...by .. Xl»

D (?e .. f ...X)

XI (?x:T'" ax .. X2) D (?e .. ae - be .. Y)

X2{= (?x:T'.. b:x .. Xl) 0 (?e .. ae -+ be .. Y)
Y *' a?x:T'''' Y

. x
Y+= (b?Y:fYlyxJ'" y ..Y) n (b?y:fYly<xJ-+ x ..Y')x x Y

O(b?f ... x ...Z2)

Y'4= (a?Y:fYlyxl-+ y....Y') [J (a?Y:fy\Y<x)'" x Y)x x y
o (a?f .. x ... Zl)

Zl (b?f .. f ... X) 0 (b?x:T'- x Zl)

Z2 (a?f ..
f ... X) n (a?x:T'"

x .. Z2)

Note that this process still makes a special case of the

first symbol it inputs, even though it does not require it

as a pivot. It is this special treatment of the first

symbol, not sending it to a slave until a second symbol

is input, which makes the recursion constructive. Intuit-

ively this behaviour corresponds to not bothering to sort

a list of one symbol, since any list of one symbol is

already sorted. It is quite easy to show that X satis-

fies the conditions Ca and cb.o 0

Both these recursive algorithms require O(n) time and O(n)

processors to sort a list of n sYmbols. It is obviously

possible to refine the definitions of the processes to

make them slightly more efficient, and if this were done

the following observations would probably remain true.

The Q algorithm has the advantage of requiring rather less

processors and being more economical on data transmission

(both because of the retention of the pivot). The S alg-

orithm has the advantages that both the recursive structure

generated in any run and the work load of any given pro-

cessor are much more predictable (both these being because

of the certain division of the input stream into two nearly

equal halves, which does not always occur in Q because of

the random nature of 'the pivot).

There is of course no reason why more complicated recursive

structures should not be invoked when defining processes

with the (All a::B) operator. For a simple example of a

mutual recursion let X be as it was in defining Q above

and let Y be the "X" used in defining S above. Then each

of the processes T & U defined below is equal to S(.).

T *= «XII u::T)1I d::U)

U ~ «YII a::T)1I b::U)

(This follows quite easily from

namely that the pair (So,S£) is

the recursive function and that

what we already know,

indeed a fixed point of

this function is const-

ructive and so has a unique fixed point.)

There is a clear sense in which each of the recursions

we have seen so far in this chapter using (All a::B) can

be thought of as defining a network of intercommunicating

processes. This network has the form of a directed tree
in which the basenode communicates with the environment

and with its successors (slaves), and all other nodes

communicate with their unique predecessors (masters) and

their successors (slaves). This tree will normally be

infinite and the real world is finite, so it would be unf-

ortunate if in carrying out some finite computation an

infinite portion of the tree were used. Consider the fol-

lowing example.

Let X = ?x ~ a!x ~ abort (x any element of T)

Trivially X satisfies Ca, and so the recursiono
A ~ (X Ita::A) is constructive (with value ?x ~ abort).

However in the network which one expects to correspond with

A (an infinite linear tree of "X"s) the simple act of comm-

unicating "?x" generates an infinite sequence of communications

like an infinite row of toppling dominoes.

It is worrying that the condition Ca which is satisfied byo
the "X" above is exactly the same one which we used to

prove Some of our example processes correct. (We will in

fact find that Ca is the only constructive C~ which allowso J.
this pathological behaviour.) All of our examples do in

fact avoid this sort of behaviour, but there is no way of

telling this from the final values of the processes. For

example, consider the X of example 6.7; let X*= ?on ~ a!on ~ X

and XI= ?x:T ...a!on ...Y (where "on" is for the purposes ofx
this example some symbol not in T but in the alphabet of the

(All a::B) operator). Now let R* ~ (X*IIa::R*) and

RI ~ (XIIIa:;R*) be defined by recursion. Then each of

XI and X* satisfies C~ (because X satisfies C~) and R = RI

but the definition of RI gives rise to very much the same

sort of pathological behaviour as the earlier example.

This sort of pathological behaviour clearly has a lot in

common with "infinite internal chatter": both are caused

by an infinite number of internal actions occurring in

a process after it has only communicated finitely with its

environment. The difference is that in the case we are

now studying, let us call it network chatter, these actions

are spread between an infinite number of distinct hiding

operations and it is possible that no individual hiding

operation (i.e. link between two processes) gives trouble.

Since we cannot qetect the presence or otherwise of net-

work chatter in a complete network of processes from its

final value in our model we must try to find some criterion

for deciding whether or not it is present from the values

of the components of a network. For simplicity, and since

it corresponds best with our experience, we will restrict

our selves to the consideration of networks defined by

recursions of the following type:

BI ~ «... «AI 11al: :BI) 11a2: :B2) ...) 11 an: :Bn)

B2 4= «...«A2'1 al::B2) 11a2::B2) ...)11 an::Bn)

where each of the A. contains no recursive calls of any of1
the B. in its own. definition and all of the names a. are

J 1
distinct. We will make two further simplifying assumptions,

namely that it is impossible for any of the A. to engage in1

infinite internal chatter with any slaves named al,...,an
presented to it in any order, and that the above recursion

has a unique fixed point. The justifications for these

two assumptions are that firstly it is not worth considering

the possibility of network chatter in a network if there

is a possibility of the (worse?) condition infinite ~hatter

between two components, and secondly that we need both of

them to be able unambiguously to regard such a recursive

definition as a network.

The following are a few remarks of a more general nature

on the above recursive scheme. Fistly note that this scheme

does not prevent one process calling two independent versions

of itself or another process (as was done in the two sorting

examples) since this can be achieved by inserting two ident-

ical A.s. Secondly note that the convention introduced above1
that the same slave is always addressed by the same name

throughout the recursion is of little significance, since the

names by which a process addresses its slaves in no way

affects the final value of the combination (so long as a

few simple rules are observed). Finally note that the fact

that we might not want some of the B. to call all of the1
other B. as slaves does not matter either since (A'Ia::C) = A

J
if dom(A) containsno string with any symbols named by "a".

co-

Remember that th~ n-tuple ~ is defined to be i~oFi(CHAOSn),
where F(C).= «...(A.I' al::Cl)...)11a ::C) for CE~. Use- 1 1 n n . -

the notation B.. for the jth approximation (F)(CHAOSn» . to
~) 1

B.. Because of our assumptions about freedom from infinite1
internal chatter we can unambiguously regard each B., as

~)
a finite tree of processes. This tree has a special form,

which we must specify and annotate before we can continue.

Define (for A and X non-empty sets>' an A-tree of depth n

over X as follows. If n=o then it is a tree consisting

solely of a base node, which is labelled by some element

of X. If n=k+l then it is a tree with base node labelled

by some element of X, and from which there is a collection

of edges, one labelled with each element of A,. each edge

leading to the base node of an A-tree of depth k over X.

For example, the following is a fa,b)-tree of depth 2 over

f c, D1.

base node

level 1 edges

level 1 nodes

level 2 edges

leaf nodes

In an A-tree of depth n one can specify a node by its co-

ordinates, which are a string of elements of A with length

n or less: if ~l..c~ is such a string then it specifies
the node which is reached from the base by the path which

consists of edges labelled cl,..,ck' (in that order). If T
is suchatree and ~ such a string use the notation T(~) for
the node with co-ordinates a in T. If n ~l and a E A denote

by T!aJ the tree of depth n-l which is at the end of the

level 1 edge labelled a.

Wi th this notation we can think of B" as a fal ,.., a 1 -tree1) n
of depth j over M. Define T, " the tree corresponding to B, "

1) 1)
as follows: if j=o then T., «» = CHAOS, otherwise T. .(c» = A..

1) 1) 1
If a has length j then T. ,(a) = CHAOS; if a has non-zero- 1) -
length <j with last component ~ then Tij (~) = ~.
Because of the lack of infinite internal chatter it is easy

to compound 6.2 to obtain the following result.

6.10 Lemma

For each 1 ~ i ~ nand WE 1:*we have WE dom (B. .) if and only
, 1)

if there exists a [al,..,aJ -tree of depth j over 1:*with

the following properties:

(i)

(ii)

(iii)

For each co-ordinate a we have t(a)E dom(T. .(a»- - 1) -
t -(<» t (L - (al. r u. .. IJ an . r» = w

If ~ and £ are two co-ordinates such that ~ = Q<a~

then t (a)t (2:- (al. rv... van .r» =
swap?! (strip (ak) (t (~) f ak .r))

(ivl If a is a co-ordinate of leng~h j then either j=O

or t (~)E r*

(In the above r = T v?T U !T, as be fore.)

Say that such a tree is a tree for w in B... Intuitively1)
the tree t represents one possible way in which the proc-

esses which make UP B.. can co-oDerate to execute trace w.
1) .

Say that t is a perfect tree if all its terminal nodes are

labelled "<>",and impeorfectotherwise. A perfect t corr-

esponds to all of the work being done by the "proper",

fully defined components of the network; an imperfect t

corresponds to the situation where some of the work is

left to the improper "CHAOS" components of the tree.

Suppose t is a fal,..,anl-tree of depth r over ~* and s '" r.

Define tts to be the tree of depth s such that:

(i) if a has length <s then tts(~) = t(a), and

(ii) if a has length s then tts(a) = t (~H (L - (al .rv.. . u an.f')) .

The following result is a simple consequence of 6.10.

6 .11 Lemma ° ,

a) If k < j and t is a tree for w in B.. then tfk is a tree1)

for w in Bik.
b) If k > j and t is a perfect tree

a tree for w in B.k , where tfk(a)=1 -
for w in B.. then tt k is

1)
t (~) if I~\ '" j, ttk (~)=<>

otherwise.

tree for some w' in Bkj-l. If t

and at least one of the trak] is

c) If j >0 and t is a tree for w in B.. then trakJ is a
1)

is perfect then so is tIak]
imperfect if t is.

Since dom(B.) = .n dom(B..) we clearl y have by (b) above
1 J=O 1J

that the existence of a perfect tree for w at any level

ensures that wE dom(B.). If w has only imperfect trees1
in B.. we cannot tell whether w dom(B.); but if WE dom(B.)

1) 1 1
we can interpret the existence of imperfect trees for w

in B.. as signifYing that B., while executing the string w,1) 1

might make use of its j+lst level. We can use this inform-

ation to give a precise definition of network chatter in

the B.s. Say that B. admits network chatter on w if for1 1
each m ~ N there exists r ~ m and tree t such that t is an

imperfecttree for w in B.. Say that B. containsnet-1r 1
work chatter if it admits it for any string w. There are

several points worth noting about these definitions:

a) They apply only to the case of a'recursion of the stated

type with a unique fixed point and infinite chatter free

comporients.

b) Because of the finite branching nature of the network

of processes which makes up each B. and the fact that T1
(the set of communicated symbols)- is finite one can apply

Konig's lemma to obtain the result that if B. admits net-1

work chatter on w there exists a sequence tl,t2,... of
trees with the properties that firstly each t. is a tree)
for w in B.. and t. .+l~j = t.. and secondly that infinitely1) ~ 1)
many of the t. are imperfect. There is a clear sense)
in which one can think of such a nested sequence of trees

as representing a single behaviour of B.. In this sense1
a sequence in which infinitely many components are imper-

fect can be seen to represent a behaviour which includes

network chatter (since it involves the use of infinitely

many components of the network) .

c) There is the possibility that there might exist an imp-

erfect tree for some string w in Bij+l when none exists
in B... This seems a little paradoxical as it implies1)
that it is possible for B. to call its j+2th level of rec-1
ursi~ly defined processes without seeming to call its

j+lth level (the level which calls the j+2th level). The

situation this represents is the spontaneous occurrence of

communication between the j+lth and j+2th levels of processes

without prompting by lower levels. This can certainly occur

in the type of network we are considering, and while this

type of behaviour cannot influence the external behaviour

of the system it seems correct to include it in our consid-

eration of network chatter.

The next stage of our work will be to seek sets of condit-

ions which, if satisfied by the processes A., ensure thatJ
the B. are free of network chatter. Our first aim will be

1.
to ensure that (under certain conditions) the "spontaneous

communication" described above cannot occur. This will

mean that all activity in the network is the result of

chains of command originating at the base node. This will

mean that we can to a large extent ~estrict ourselves to

the study of these chains of command. By far the most

convenient and practical condition which ensures our first

end is the following EF (environment first) :

EF (A) # Va€ L: . <a)Edom(A) 9 a E r

6.12 Lemma

If each of the A. in our usual recursion satisfies the1.
condition EF, then whenever t is an imperfect tree for

some string w in Bij+l ttj is an imperfect tree for w in
B. .. This means that "spontaneous communication'~ in the1.J
sense described above, is impossible.

The proof of this is an easy application of 6.11(a).

Intuitively the condition EF demands that the first comm-

unication of a process is with its master/environment and

not with any of its slaves.

Note that if A is a process such that dom(A)~ (ru al.ru... van .r)*'
and Ca(A) holds for each j then EF(A) holds also.o

Lemma 6.12 formalizes the idea that in studying any condition

which is stronger than EF we need only worry about the act-

ivity which is in some sense the direct or indirect result

of some communication with the environment. What we would

like to find is some condition which ensures that all chains

of command through the network are finite. The obvious
~

interpretation of the word "command" here is the strings

of symbols which pass between masters and their slaves.

The obvious method for ensuring that all chains of command

are finite is to verify that at all times and for each

process in the network the commands given out to a process'

slaves are strict reductions in some well-founded partial

order of the command received from its own master. This

idea is formalized in the next result.

6.13 Theorem

Suppose that <' 'is some well-founded partial order on ~*

with unique minimal element(). Suppose that the A. in our1
usual recursive definition of the B. all satisfy the foll-jJ
owing condition:

C) If w t dom (A) and w=j<> then, for all 1 ~ j~ n

w~r ')' swap?~ (strip(a.) (wra..I})J J

then none of the B. contain network chatter.
J

proof

Suppose for contradictionthat the conditionsof the theorem
hold but that network chatter does exist in some of the B. .

1

We may suppose without loss of generality that w is minimal

in the p.o. <' with respect to giving rise to network chatter

in any of the B. and that B is one of the B. which admits1 r 1
network chatter on w.

Observe first that condition C above implies EF since if

(a)E dom(A) we must have aEr, for otherwise (as <' has

unique minimal element(~) the inequality in C would not be

satisfied for any j if this were not so.

By assum~ion there exists some imperfect tree t for w in

B . for some j~ 1. Applying 6.12 j-l times we see thatrJ
there must be an imperfect tree t' for w in Brl. This
t' consists of a base node (labelled VE dom(A), say) andr
n leaf nodes (labelled vl,..,vn' say). Since t' is imperfect

there is some j s.t. v.=jo. This is easily seen to implyJ
that v=j<>,so we can deduce that w (=v~r) f-o (by EF (A)1.r

By definition of network chatter in B there must existr

some infinite sequence of trees tl,t2,.. with the properties
that each t. is an imperfect tree for w in some B .

(

'

)
'

1 rJ 1
and that the resultiHg sequence j(i) is strictly increasing.

By 6.12 and the fact that EF(A.) holds for each j we canJ
assume that each t. is an imperfect tree for w in B ,.1 r1
By 6.11(c) there must be, for each i, some j such that

t.[a.J is imperfect. One j at least must be repeated inf-
1 J

initelYi we can therefore assume (applying 6.12 once again)

that there is some j such that all the t. have t.[a.] imp-1 1 J
erfect. Each one of these is a tree for some w. in B... 1 .

1 J1-

If there were infinitely many possible values w. then1

infinite internal chatter would be possible in the process

«..«A 11al::C)..a. l::C)lIa' +l::C)..a ::C)lla.::C) at
r J- J n J

the highest level, where C is an abbreviation for CHAOS.

This would contradict our assumptions on the nature of

the A.. We may therefore conclude that there is some w*1
with the property that infinitely many of the t.Ia.] are1 J
imperfect trees for w* in B.. 1. This tells us that B.

J1- J
admits network chatter on w*.

However by construction there exists some v€ dom(A)r

(for example any of the base nodes of the t. such that1
t. [a.] is a tree for w*) such that w = V~(L -(al.ru.. a .r»
1) n

w*= swap?! (strip(a.) (vta..r». Since condition C holds ofJ J
A we can infer that w* <' w, but this contradicts our ass-r
umption that w is minimal with respect to giving rise to

network chatter in any of the A.s.1

We may therefore conclude that network chatter is impossible

in the processes B. as claimed.)

The above result can be strengthened slightly: in place of

a partial order onL* one can instead use a partial order

on z*)(£al,..,aJ with joint minimal elements (<>,al~.,..,(0,an)
and require that if process A. sends command w' to its1
a.-slave when it has itself received command w then we must
J ,

have w=o or (w, ai)"/ (w', a .). The proof of this strengthened- J
result is a simple adaptation of the above.

Having established a set of conditions which ensure freedom

from network chatter we should check to see that each of

the examples seen earlier (6.7, 6.8, 6.9) is free from it.

The one obvious difficulty here is that all our definitions

and results apply onlY to the standard form of recursion

which was set out earlier, and that the two sorting processes

do not conform to that pattern since they make multiple calls

of identical slaves. As was stated earlier it is possible

to recast such recursions into our canonical form by defining

two processes by mutual recursion with identical "master"

processes. It is easy to see that the various approximating

trees (T..) would be identical in the two versions of such
1)

a process. It is of

itions and proofs to

penalty of requiring

course possible to extend all our defin-

the case of "multiple calls" with the

more complex notation. When one does

- - _0_________

this is the natural way it is not hard to show that net-

work chatter exists in a process with "multiple calls" if

and only if it exists in the version of the process recast

in our canonical form in the natural way.

As suggested earlier our task is simplest in the cases of

6.7 and 6.8 because the "X"s used satisfy c~. That this
implies the freedom from network chatter of the stack R

and buffer R is a consequence of the following result,

itself a corollary to 6.13.

6.14 Theorem

If L is some set of labels and n some subset of r define

the condition D~ as follows:

Va €L.'VwE" dom(A) . w-:Jl.'>~Iwfnl)Iswap?! (stripa(wta.r))tnl

Suppose that in our usual recursion each of the processes

A1' . . ,An satisfies D~, where L = fa1,. . ,anJ , then each of

the processes B. defined by the usual recursive scheme isJ
free of network chatter.

The partial order used in applying 6.13 to prove this is

the one defined w» v if either Iwtn1> \vrnl or w-:Jo & v=<> (or

both).

It it easy to see that if a process satisfies each of c~,
with "a" ranging over a set of labels L, and if further

the process satisfies dom{A)~ (U~r,a.rl a E L3)'"then it satisfies

D~. It is this fact which tells us that the definitions
of the stack and buffer are free of network chatter.

It remains to show that the two sorting examples are free

from network chatter. One way in which one might seek to show

a recursion to be "well-defined" is to check that no pro-

cess outputs as much to its slaves as it has input from its

environment. Indeed a close examination of each of the "X"s
,

Used in 6.9 will reveal that at no time have they performed

as many "a!x"s (outputs to slaves) as they have performed

"?x"s (inputs from environment). This suggests that ?T

might be a good "n" to use in applying 6.14. This is in

fact so; if we introduce the condition EL as below it is

easy to show that EL= D~T and that a suitable EL is sat-
isfied by each of the "X" processes of 6.9.

EL (A) ~ 'VaEL. Vw E dom (A) . w-:J<>~Iw t?TI>\w ta! Tt (~Va € L .Ea (A), say)

It is easy to see that all conditions of the form D~ are

strongly continu~us. However unlike the C~ they do not1
in themselves imply freedom from infinite internal chatter

with arbitrary proqesses (or even other D~-processes) as
slaves. If this can be done by some other means there is

though a class of restriction operators closely related to

D~ which has an interesting and useful theory in relation

to master/slave recursion via D~-processes. This class
of operators is the one where Atn behaves like A until it

has communicated n elementsofn and then dissolves into

CHAOS. We will not follow up this subject here however.

Let us sum up this section. Having identified a certain

unfortunate type of possible behaviour in recursively def-

ined networks we discovered that its presence did not appear

to influence the external behaviour of a network. We estab-

lished a plausible formal definition of network chatter over

the class of recursive definitions which we could most easily

regard as networks, and in that case derived laws which could

be shown to imply that it was absent (in the formally defined

sense). One might choose to regard the insensitiveness of

our model to this condition as a weakness in the model;

this and other related problems will be discussed in chapter

eight. The crucial fact about the type of recursive tree

discussed in the latter part of this chapter was that it

could be thought of as the limit of a sequence of finite

networks. It should be reasonably easy to extend the ideas

used to other infinite networks with this property, provided

that one could prove that the notions of network chatter

introduced were well-defined in that they were independent

of the convergent sequence of networks used. (This is quite

easy to do for the networks we have already met.) It is

not quite so clear what one should do in cases (common in

chapter five) where recursive calls of processes are made

not only through parallel operators:but also guarded (5.31

for example). Intuitively these recursions define networks

which are of a less clear-cut type, but which somehow appear

to be less prone to this type of behaviour. Again one could

possibly define corresponding trees of processes (of a less

simple nature) relative to which one could define and avoid

infinite chains of recursive calls.

Postscript: Proving C~ and EL of simple processes.1

The conditions C~ and EL admit a fairly simple and me chan-1
ical method of proof which can be applied to processes def-

ined by tail recursion. Say that a process is defined by

tail recursion if it is written in the form:

BA' where {,Efl ~ B~ {= Al
. . .

. . .

and each of the A. is formed from the syntax consisting of1
"skip", "abort", "a ~", "x:U , "a.x:U -t" and "0" together

with recursive calls of the B~Ieach of which has the property

that it can be syntactically deduced exactly which of the r.1

it must inevitably fall in. Note that each of the "X"s used

in examples 6.7 - 6.9 is of this form.

If "a" is a label define the condition E~ as follows:1

E~(A) # Vw € dom(A). Iw~?T\ ~min(Iw~a!TI+i, Iw~(?Tua~T)I)1

This condition is plainly both strongly continuous and of

a very similar form to C~. It is easy to see that EL (A) #1

(\laE L .E~(A») & A0 ~ ?T. This means that any method we dev-a L
elop to prove the E. can be used to prove the E .1

In order to develop our method we will need a list of

technical lemmas, which we will later combine to produce

inductive proofs.

6.15 Lemma

a) Suppose that A & B are processes satisfying

respectively, then

(i) Ck(c ~ A) holds, where k = i+l if CEr

= min (-1 ,i-I) if c ~ a. r

a a
C. and C.
1 J

= i otherwise;

(ii) Ck (A [}B) holds, where k = rnin (i, j) .

b) Suppose that A & B are processes satisfying

respectively, then

(i) Ck (c ..., A) holds, where k = i+l if c E ?T
= min (-1 ,i-I) if c ~ a!T

a a
E. and E .
1 J

= i otherwise;

(ii) Ck (A 0 B) holds, where k = min (i, j) .

c) C~ and E~ always hold of skip and abort (because "j" can1 1
never be in T) .

6.16 Lenuna

a) Suppose

then

that U eT and that for each X" U we have C~ (A) ,- 'C 1 X

a
b) Suppose that us T and that for each x ~ U we have E. (A) ,1 x
then

Now suppose that we have a process which is defined by

tail recursion, and that it is written

. . .

. . .

~ Er =9 BJ~ As ~ s

One will often be able to find upper bounds for the strengths

of conditions satisfied by some of the above clauses from

their lowest recursive level (by application of the "min"

clauses). For example, recalling the definition of Y inx
the buffer example Y ~ (?y:T .. a!x ~ Y) 0 (!x .. Z), itx x

is clear that Yx cannot satisfy either of C~ or E~. Using
knowledgeof this type and one or two iterations of the

recursion one can extend these bounds throughout the recur-

sion. Thus in the buffer example we cannot expect "X" to

satisfy C2a because it is defined X ~ ?x:T .. Y and Y neverx x

satisfied C~.

Suppose now that one has developed a hypothesis of the form

either (~€ri '*C~I(B~)) or (~E r i =*E~)(t3~)). A test of
such a hypothesis will be the action of assuming that it

is true of the vector ~ and seeing if it remains true of

F(B) , where F is the function associated with the B-recur-- -

sion. Such a test can be carried out very easily because

of our assumption that each recursive call must fall within

exactly one of the r., and by Lenunas 6.15 and 6.16.1

(i) C+l(x:u Ax)' C+l(!x:u Ax)' C+l(?x:u Ax)

(ii)
a

if bfa,a?,a!,?,qC. (b. x :U A) ;1 X

(iii) C(a.x:U A), C(a!x:U A), C(a?x:U A) ,
J x J x J x

where j = min(-l,i-l) .

(i)
a

Ei+l (?x:U Ax) ;

(ii) E(a!x:U A), where j = min(-l,i-l)J x

(iii)
a a

if b 1-t?,a!)E. (b.x:U -+A), E. (x:U .. A)
1 X 1 X

It is also extr~mely easy to check that recursions of our

given form are constructive (for example such recursions are

constructive if all recursive calls are guarded). Since

all predicates of the form C~ and E~ are trivially satisf-1 1
iable the following is a trivial application of our inductive

principle.

6.17 Theorem

If in a constructive tail recursion of the form given above

we have a hypothesis either of the form (~€ri ~ c~tA~)
or (JEr. ~ E"a(AJ)) which is testable then we can infer~ 1 (~~
that it holds of the vector B.

~

6.18 Example

To prove E~ and Ef of the "X" used in 6.9 (Quicksort).

step 1

Recall our recursive definition:

X <= (?x: T' ~ Y) 0 (?e ~ !f X)x
Y <= (?y:fyly~x1~ u!y ~ Y) D (?Y:fyly<x~~x x

O(?e ~ u!e ~ d!e ~ Z)x
!y ~ Z) 0 (u?f .. !x ~ Z*)x
!y .. Z*) IJ (d?f ~ !f ~ X)

d!y -+ Y)X

Z *= (u?y:T'~x

Z*~ (d?y:T'.,

It is clear that we cannot expect Y to satisfy any strongerx
EU condition than EU or any stronger Ed condition than Ed.o 0

By substituting this into X we see that E~ and E1 are the
maximum conditions satisfied by X, and also by Z* and Z .x
Let us therefore take as our hypothesis that X satisfies

EU
l and E~, each Y satisfies EU and Ed, each Z satisfies

a x 0 0 x
E~ and El' and that z* satisfies E~ and Ef. We will just
check the EU-hypothesis since the other is very similar.

step 2

Assume that the vector (X',Y',Z' ,Z*I) satisfies our EU
..,.. V'

hypothesis. Then we get

EU(Y') (XE T')

E~(?~:TI~ Y~)

E u (X I)

9 Et (: f ~

~E2(?e 0;-

D (?e -+ !f -+

X')

! f ~ X')

XI» as required.

.

(x € T I)

(X,YET')

=9 E ou(?Y:fYly~xl~ u!y ~ yl). X
U

~ E «?y: fyly~x .., u~y ~o

u
~El(?Y:fYly<xJ~ d~y ~ y~)

y~) IJ (?y:[YI y<x1~ d~y ~ y~»

and EU(Z')1 x

* E~(d~e -+ Z~)* E (u~e ~ d!e ~ z')
8 x

9 El(?e ~ u~e ~ d~e ~ Z~)
u= E «(?Y:fY'y~xJ~o

D(?e ~ u~e ~

u~Y ~ yl) f] (?y:fyly<x]':' d~y ~ y'»x x
die ~ Z'». x

as required.
. -.

-+ Z')x

= E~((U.?y:T'+ ~y ~ Z~) 0 (u?f -+ ~x ..

EU(Z*')

~ E~(~x ~ Z*')
u

* El(u?f -+ ~x ~

(x€ T')

Z* ,)

Z*'» as required
.

EU(Z*')

~E~(~y -+ Z*')

9 E~(d?Y:T'~ ~y -+

~ E~«d?Y:T'-+ ~Y

E u (X ')

~E~(~f -+ Xl)

Z*') I * E~(d?f ~ ~f ~ XI)

... Z*) 0 (d?f ~ ~f -+ X'» as required

The above, together with the fact that the recursion is

constructive, tells that E~(X) holds as desired.

These proofs can be recast in a tabular form, assigning a

number to each point in the syntax of a process. For example

the second clause of the above proof could be re-written

(The underlined "0" represents the highest syntactic level.)

((? Y: y Iy x J.., u y .., y) n (? y: f yl y <:x 1 d Y Y))

0 -1 0 0 1 0 0

o (?e -+ ue -+ d!e -+ Z'»x
0 1 0 1 1

Chapter 7 :- Alternative Parallel Combinators

In the first half of this chapter we will briefly study the

theories of a few more paralleljhiding combinators. In the

second half we will examine the important problem of how

one can prove networks of processes free from deadlock.

The following is a list of a few possible paralleljhiding

combinators which we might wish to use.

a) A bidirectional "pipe" operator "~" in which processes

are connected very much in the same way as in the old pipe

"»" . A process will now though be expected to be able to

input and/or output down two named channels "1" and "r";

the "left" process will have its right hand ("r") outputs

and inputs connected to the left hand ("l") inputs and

outputs of the other "right" process.

(A~ B) = (swap?! (stripr (A)) x1\ystripl (B))) / (?T U !T) ,
where X = l!Tul?Tu?TV!T

.
y = r!Tur?Tu?Tu!T

b) (AX'-+yB) = (AX\lyB)/(X(\y), the operator in which two

processes running ordinarily in parallel have all their

intercommunication hidden.

c) IA..J , in which an rnxnmatrix of processes operate
J.)m,n

in parallel, each communicating with its four immediate

neighbours.

A
. In

t

. A2n
\

. . . .

-A nm

For a precise definition of this operator see later.

d) \A.~ , in which an rnxnmatrix of processes is arrangedJ.ym,n
in a hexagonally connected array instead of the square above.

All - A12 -A13 - -Aln
\. / \. / , / \
A2l - A22 - A2n

\. /"" /'
.

\ , , , ,
AmI - Am2 - - Arnn

All - A12
1

A2l - A22
I I

.

I

AmI - Am2

To some extent t~e operator 11 ,11 defined in (b) above is

the most basic operator of its type, all the others being

derived from it and alphabet transformers. Observe how

both of our old operators may be defined:

A ».B = (strip!~u?T-TU~Tstrip?B)

(A \Ia: :B) = (A_H a.swap!? (B» .
-"1:" Lr

The conditional associativity of 11))11, and the conditional

commutativityof (Al\a::B) can both be deduced from the

above definitions and the following lemma, which is as one

might expect a consequence of 5.35.

7.1 Lemma

If (AXHyB) and (By~ZC) are both free of infinite internal
chatter (in the obvious sense) and X n Y n Z = S21 then

«~~yB)xvy~ZC) = (AX~yuZ(ByHZC» .

proof

Suppose that the hypotheses of the lemma hold, the.n

«AX+-tyB)XVy ZC) = «~lIyB)/(Xny)XlJyllzC)/((XuY)f'\Z)

= «~lIyB) XUyIlZB) / ((XIlY)u (XnZ) u (Yf'lZ» (5.35)

= (~lIyVZ (ByllZC))/ ((XnY) U (Xf)Z) U (Yn Z))

= (AXIlYVz(ByllzC)/(YI1Z»/(Xf)(YUZ» (5.35)

= (A~YUZ(By~ZC» as desired.

The IImeaningllof this lemma is that in a network so long as

there can be no confusion about the destination of any mess-

age (xnynZ = S21) and there is no infinite chatter, it does

not matter how the network was constructed.

Let us study the structure of the cornbinator IA..] intro-1J mn
duced in (c) above. It is fundamentally different from

our other ones in that the structures it creates are not

normally trees, and therefore itis 1tkely to introduce loops.

So far we have not specified the exact nature of the oper-

ator; we will expect it to achieve the following:

a) Each A. . will have four channels u,d,l,r. The "u" channel
1J

of A'+II . will be connected to the IIdllchannel of A. ., and
1 ~J 1J

the 11r" channel of A. . will be connected to the 11111channel
1J

of A.. 1 (all internal communication being hidden) .

1,J+

b) The row of n accessible 11Ull channels will be addressed

by

by

the names u.i (iEfl,.. ,n), the m accessible 11111channels

the names l.i (i€tl,..,m), etc.

c) The communications down each channel will be in T, the

usual finite set of unnamed symbols. (If desired the oper-

ators we define can easily be adapted to assuming communic-

ation in ?TU:T with inputs being connected to outputs and

vice-versa.)

From our experience with other operators it appears that

there is some ambiguity left in this definition, this res-

ulting from the many possible orders of putting such a net-

work together and hiding the internal communication. We

might also expect this ambigui~y to disappear when the net-

work is free of infinite internal chatter, as we should then

be in a position to apply 7.1.

It is clear that it is possible to construct arbitrarily

large matrices with the following combinators.

7.2 Definitions

(i) Define X(a,b,c,d,r,s,t,u) = iQ;a.i.TUb.i.T) Ui~JC.i.TUd.i.T)
for labels a,b,c,d and integers r,s,t,u.

(ii) IAJ = swapu(u.l) (swapd(d.1) (swapl(l.l) (swapr(r.1) (A»»

This is the combinator which produces a lxl matrix from

a single process with u,d,l,r channels.

(iii) IAIB] = (swaprb(A) Y
~
Zswaplb(inc\u,~(r,n) (B») wheren m s

y = X(1,b,u,d,1,m,1,n), Z = X(b,r,u,d,1,m,n+1,n+s),

"b" is a label distinct from u,d,l and r, and incfe,f}<t,s)(A)

= swap (e.1.)(e.s+l) (swap(f.l) (f.s+1) (. .swap(f.t) (f.t+s) (C» ..) .

(iv)

[~1; = .(swapda (A) yHZswapua (inc n, rJ<s ,m) (B))). , where

y = X(1,r,u,a,1,m,1,n),Z = X(l,r,a,d,m+l,m+s,l,n),
and "a" is a label distinct from b,u,d,l and r.

These combinators join blocks together, joining rnxn and rnxs

blocks to make a rnx(n+s) matrix, and rnxn and sxn blocks to

make a (m+s)xn matrix respectively.

In future we will habitually suppress the dimension para-

meters (n,m,s above) when they are obvious from their context.

One might think that it is possible to drop the "central"

parameter (m in (iii) and n in (iv», but if we were to do

this it would be necessary to hide an infinite alphabet (there

being no bound on the possible integer part of the labels of

communications) .

There are clearly many ways in which one could produce a

definition of [A:.J from these three combinators. For
1J nm

example, the number of different ways of producing a 1xn

or a nx1 matrix is *(2~=~), and the first few terms in the
table of the number of ways of producing a nxm matrix are

where **** = 1816170558336

The generating relations of this table are

t 11 = 1 j_ i

i~l or j~l ~ tij= JS1tik.tij-k
+

j-1
2.: t. ,.t.

k
'

k=l-kJ 1- J

In proving the (conditional) independence of the final

value from the method of construction the following three

lemmas are vital.

7.3 Lemma

If A,B,C represent mxn, rxn and sxn matrices respectively

(i.e. if their alphabets are consistent with this) and each

of {~1 and I~1 is free of infinite internal chatter then

m=~.
7.4Lemma
If A, B, C represent nxm,nxr and nxs matrices respectively

and each of [AIBJ and [B\Cl is free of infinite internal

chatter then [[AIBIICJ = [AI [BIC]J.

7.5 Lemma

If A,B,C,D represent nxrn, nxs, txm and txs matrices resp-
.

[

~ fB
]

[A'BJ

] [

rA

1 \

rB
11ect1ve1y and each of [AIBJ, [CID], er lD ' [ClDJ and le ID

is free of infinite internal chatter, then

J.IAIBJ. = f[~l
\r

~l1
lICI DJ. I c] rill.

shown below.

n 1 2 3 4 5 6m

1 1 1 2 5 14 42
2 1 2 8 45 318 2644

3 2 8 64 770 13008 290544

4 5 45 770 19450 729148 41031312

5 114 318 13008 729148 57378464 7222570064

6 142 2644 290544 41031312 7222570064 ****

proof

The proofs of 7.3 and 7.4 are very similar to the proof

of 5.19 (the associativity of ";;")for obvious reasons,

We will therefore content ourselves with a sketch proof

of 7.5 (a result which is another elaborate corollary to

lemma 7.1).

f[A'BJj . [IClm = (swapdarAIBJyf-+zswapua(1nccl,r)<t,n)[CiD]»

where Y = X(1,r,u,a,i,n,1,m+s),Z = X(1,r,a,d,n+1,n+t,1,m+s)

= «A* 4-"'LB*)- (C* ~ D*» (*)u V- y Z W R '

where A* = swapda(swaprb(A»

B* = swapda (swaplb (inc tu,d3(s,m) (B)))

C* = swapua(inc[l,b}(t,n) (swaprb(C»)

D* = swapua(incfb,rj(t,n) (swapbl(inctu,dJ(s,m) (D»»

u = X(l,b,u,a,l,n,l,m),V = X(b,r,u,a,l,n,m+l,m+s)

W = X(1,b,a,d,n+l,n+t,1,m), R = X(b,r,a,d,n+l,n+t,m+1,m+s) .

Now UUV 2 Y and WUR 2 Z, and so it is easy to see that

(UVV) and (WUR) can be substituted for Y and Z in (*) above

without changing the value.

Also (UVV)nWnR = ~, and since infinite internal chatter is

absent by assumption we get that (*) is equal to

«(A*U~*)UUV~C*)UUVvW~RD*) by 7.1

= « (A* ~_C*) ~-B*) 1-+D*) ""U w uVW V- UUWW R

= «A*~WC*)UUW~UR(C*V~RD*»

This is readily shown to be equal to [[~)\[~],
(The various manipulations required to f1ll out this outline

proof are easy but tedious.)

" "

as desired.

Having established these results we can now prove that

under certain conditions we can disregard the order of

construction of matrices.

7.6 Lemma

Suppose that rA. .11~i~n, l~j~m] is a set of processes such1J
that every construction of a (not necessarily proper) sub-

matrix of A.. using the constructs of 7.2 is free of infinite
. 1J
internal chatter. Then all possible constructions of the

matrix riA..j give rise to the same value1 J nm .

- - - -

This result is npt difficult to prove by induction on the

dimensions of the matrix. One proves that all possible

ways of constructing the matrix are equivalent to some

ca~onical con~truction, for example
I

I

f

I

I

I

I

~
IA3J

IAnll11tAn~ mlfn~ 11 .'. I[~

(This is the construction

first, associating to the

put together, associating

where the columns are put together

top; then the complete columns are

from the left.)

Let us conventionally adopt the definition that rA. .J is1J nm
the above form (in every case, whether or not it is free of

infinite internal chatter). The force of lemma 7.6 is that

the particular canonical form chosen is irrelevant in all

cases where infinite-internal chatter is impossible.

The table which we saw earlier is a demonstration of the

fact that we cannot expect to prove that the conditions of

7.6 are satisfied by examination of cases. We therefore

need to find some general method for proving the absence

of infinite internal chatter from networks. An example of

such a method is provided by the next result, which is similar

in statement, effect and proof to 5.20.

7.7 Lemma

If "a" is any label define the predicate pa on.M as follows:

pa(A) -= ,3w <wl<...<.w.<.. Edom(A). Vi.(w.ta.L:) = (w.ra.~)
o 1 1 0

(i) If A and B are two processes satisfying pa (aEfu,d,l,rJ)

then so do rAJ, [AIBJ and [~ .

(ii) If each of A and B satisfies pa (a€fu,d,l,r3) then

[AI BJ and [~1 are both free of infinite internal chatter.

The above result tells us that if each A.. of some matrix
1J

satisfies the same pa (aE£u,d,l,rJ> then the conditions of

7.6 are satisfied. The critical feature about any predi-

cate with this property is that it satisfies (i) above, as

- - - -

well as implying' freedom from infinite internal chatter,

for then it implies that all the partial constructions of

[A, .J also satisfy it. The four conditions pU, pd, pI1J run
and pr correspond intuitively to ensuring that there is

always some flow of information towards one of the four

faces of a matrix. This motivates the following four cond-

itions, which correspond to the corners of the matrix in
a

much the same way as the P correspond to the faces.

7.8 Lemma

If a and b are two distinct labels define the predicate Q~
as follows:

Qba(A) = .3 w <w l< .. .<-w, .. ~ dom(A) .Vi. w., (a :~_l)b.~) = w [' (a ~vb .~J .
- 0 1 1 . 0

(i) If a({u,dland b~£l,~and A,B are two processes satisfying

Q~ then [AJ, [A I BJ and [~1 all satisfy Q~.

(ii) If a€tu,d}, b€fl,r1 and each of A and B satisfies Q~

then [AIBJ and [~1 are both free of infinite internal chatter.

a a b a .

Note that P 9 Qb and P ~ Qb' so th1S second set of pred-
icates is more general than the first.

Note also that the conditions Q~ and Q; satisfy neither (i)
nor (ii) above. For an example of this consi der the two

processes A * d.a -ItA and B * u.a ~ B, which both satisfy Q~

trivially but for which [~~n does nothing but infinite int-
ernal chatter.

In common with the conditions used in a similar way in 5.20

the predicates pa and Q~ are:'unfortunately not continuous,
but again there are large classes of continuous predicates

which imply them. (For example any predicate which expresses

a bound on the number of "wrong" symbols which can appear

before every "correct" one.)

It is clear that the "hexagonally connected array" can be

defined in a very similar manner to the rectangular matrix

of the above discussion. There are several excellent alg-

orithms making use of arrays of these forms for such

things as matrix multiplication and inversion as well as

the more obvious uses such as the numerical solution of

partial differential equations. For a description of a

number of these see Mead and Conway ().

There are clearly many other possible configurations for

parallel processes which we have not defined. or studied

so far. These include three (and higher) dimensional arrays;

arrays with more complex interconnection; arrays in which

all processes can be individually addressed by the environ-

ment; rings and even spheres of processes. It is not hard

to adapt the techniques we have used so far to produce a

reasonable definition for any of these. It is clear from

the work we have done to date that we can expect each to

have its own characteristic set of theorems, but that many

of these theorems will follow set patterns.

Deadlock in networks

Deadlock is an important subject in the study of networks

of parallel processes. So far when we have studied partic-

ular processes which have been defined as networks (in

chapters 5 and 6) the desirable feature "freedom from dead-

lock" has almost always been proved as a corollary to a

more powerful result. We have either proved that our net-

works were equivalent to other processes which were known to

be free of deadlock (as in 6.8 and 6.9) or proved that the

value of a network satisfied some predicate which implied

freedom from deadlock (as in many of the buffer examples

of chapter 5). These two techniques both have a worthwile

place in our repertoire, but there are certainly going to

be times when neither is applicable. Since freedom from

deadlock is of such fundamental importance it is worthwile

to try to find other methods for establishing it. The

following is not an extensive treatment of such methods,

merely a summary of a few ways in which the techniques we

have developed might be applied to the problem.

The author believes that theorem 5.14 could be applied in

many cases, in much the same way as it was applied in the

proof of 5.27 (the "fundamental buffer theorem"). If one

could identify a finite or infinite set of "states" of a

network, and could prove some simple constructive relation

between these states (very much as in 5.27) it would be

possible to deduce freedom from deadlock (so long as the

constructi ve relation preserves it) .

So long as we can use 7.1 (and other similar results) to

bring all the hi?ing of a definition to the outside (so

that it has the form A/X, wherej~L. and the definition

of A is free from hiding), and if we can show that the def-

inition is free from infinite chatter, then we restrict

ourselves to proving freedom from deadlock in the process

before any hiding is carried out ("A" above). This is bec-

ause, in the absence of infinite internal chatter, the only

way deadlock (the refusal of "~" after some string) can

occur in A/X is when A itself can refuse "L" after some

possibly different string.

For example, in the process A = «BX"yC) /ZXUylJ uuv (DUI\~) /W) /S,

where Zn(UnV) = wn(x~y) = ~, if each of the hiding operators

individually is free of infinite chatter, then to prove A

free from deadlock it is sufficient to prove it in

«BXllyC) XUyllUUV (DU"~)) .
This fact has several uses, not the least of which is the

fact that by effectively eliminating hiding from our cons-

ideration we can generally expect it to be much easier to

find the constructive relations between states required

for the previous method suggested. It can also be used

to reduce some apparently complex problems to forms to

which the next class of methods is applicable.

It is well known that networks which have the form of trees

are generally easier to prove free from deadlock than those

which possess loops. This fact is brought out by the next

few results.

7.9 Theorem

Suppose that AI".,An is a finite collection of processes (n~2)

with associated alphabets XI'..'Xn' and that A* is the res-

ult (.. ((Ai yll..A2) yll~3)yu. ..)yllXA) of combining them in
1 ~ 2 3 ...n

parallel (where Y. = IU...UX.). Suppose further that the
1 1

A. and X. satisfy the following conditions:1 1

(i) each pair (AiXPxfj) (i~j) is free of deadlock;
(ii) if i,j,k are all differentthen x.nx.n~ =~;1 J uk

(iii) for each i and string w (A. after w)o has non-empty1

intersection with at most one of the X. s.t. i~j ,1

then A* can deadlock on string w only if there is a sequence

nl,.. ,nk of distinct elements of il,..,n5with the properties
set out below.

- - --

(i) k (the length of the sequence) is at least three.

LettingW.= wix , Z.= X and B.= A , we have w.Edom(B.)
1 n 1 nj 1 Ilf 1 1

for each iE£l,..,kj.

(iii) There is a sequence wI,...,Wk of subsets of L such
that (for each i) W. is a maximal element of B. (w.)1 1 1

and Zi- Wi is a non-empty subset of Zi+l (or Zl when
i=k).

(ii)

proof

If A* can deadlock after w then L: E A* (w) (by definition of

deadlock). It is an easy consequence of the definition of

the parallel combinator that for any string v and set V we

have (v,V) E A* if and only if v E (XIU.. .UXn)* and there

exist sets Vl'...'Vn such that

a) V. E A. (vrx.) for each i, and111

b) Vr\(XlU...UXn)= (VlnXI)U...U(Vn()Xn)

In the case when V =~ we may clearly assume that each of

the sets V. is maximal in A. (v~X.). Thus if A* can deadlock111

after string w we can deduce that there exist sets VI'..'Vn
such that

a) V. is a maximal element of A(wtX.) for each i, and1 1

b) (XIV...UXn) = (VlnXI)U...U(VnnXn).

Let us suppose that the conditions of the theorem hold,

that A* can deadlock after w, and that vI,...,Vn are as
above. At most one of the v.nx. can equal X., for otherwise1 1 1
there would be some i~j such that the pair (A:ix lI--A.) would

i X;-J
be able to deadlock after w~(X.VX.). From relation (b)

1 J
above it can be seen that for each i (x.-.y.x.)c V.; hence1 Jr1 J - 1
X.- V.~ .y.x. for each i. Since by assumption each V. is
1 1 Jr1 J 1 0

maximal in A. (wtX.) we can infer that X.- V. C (Aiafter (wtX.» .1 1 1 1 I

Putting these facts together, and using the fact that

(A.after v)o has non-empty intersection with at most one1
X. s.t. i~j for all v, we see that for all i, with possiblyJ
one exception, there is some j(i)~i such that X.- V. is1 1

a non-empty subset of Xj(i).

Any k such that j(k) is not defined must have Xk~Vk.

Suppose there were some i wi th j (i) = k where Xk ~ Vk; then

it is easy to see that (vinxi)u(XknVk) = (XiUXk). This

tells us that it is possible that (Aix"0k) deadlock after

string wt{X.uX), which contradicts our assumptions. We1 k
can thus deduce that any k such that j(k) is not defined

is not the image under j of any i. "j" is thus a function

from I into 1, where I is the finite set of indices on

which it is defined. It is easy to see that, for any

element r of I, in the sequence r,j{r), j2{r), j3{r) ,...

there must be sQme repetition. In other words there is

some finite sequence nl,..,nk of distinct elements of I

such that j{ni) = ni+l (i<k) and j(nk) = nl. Since j{i)~i
for all i we can deduce that k~l. Suppose that k=2, then

there are some i,j such that i~j, (X.- V.) ~ X. and (X.- V.) ~ X..
1 1 J J J 1

By relation (b) in the construction of the Vk' and since
x.nx.nx k = ~ for all k distinct from i and j, we get the
1 J

relation X. n X.= (v.uv.)n{x.nx
J')' which in turn implies1 J 1 J 1

that {X.- V.)c: V. and {X. - V.)C;V.. Hence (X.()V.)U{x.nv.) =
1 1- J J 1 1 11 J J

X.uX., contradicting the fact that (Ajv~LA.) cannot deadlock
1 J ~,x~-J

after wt (X.IIX.). We can thus infer that k ~ 3, and it is
1 J

easy to see that by construction the sequence nl,..,nk sat-
isfies all that is required of it~

The above theorem, interpreted informally, means that in

a network of processes satisfying conditions (ii) and (iii)

(which we will interpret shortly), if all pairs of processes

are free of deadlock then whenever deadlock occurs it must

contain a ring of at least three distinct processes each

demanding to communicate with one of its neighbours and

refusing to communicate with its other neighbour (which

wants to communicate with it). Condition (ii) of the

theorem says that every communication is participated in

by at most two processes. Condition (iii) says that each

process can never be willing to communicate with two of its

neighbours (i.e. it can never have the option to communicate

with either one neighbour or the other) .

7.10 Corollary

In any network which both satisfies the conditions of 7.9

and for which the graph formed with nodes A. and edges bet-1

ween A. & A. when x.nx.~ ~ is a tree, there can be no dead-
1 J 1 J

lock.

proof

If nl,..,nk is the sequence which is produced by 7.9 when
there is any deadlock then A ,...,A is a circuit in the

nl ~
graph.

Since any tree of processes automatically satisfies cond-

tion (ii) of 7.9 this result tells us that in any tree

whose elements satisfy condition (iii) it is possible to

eliminate global deadlock by showing that it is impossible

between any pair of its components.

In any graph with only a few circuits (or a lot of circuits

of only a few types) it is often possible to reduce the

proof of freedom from deadlock to the checking of a few

cases. (If there are n circuits in a graph there are 2n

possible sequences nl,..,nk arising from 7.9). Thus in a
ring of processes there are only two possible circuits.

The following example (after E.W. Dijkstra) represents a

ring of processes, any of which might be requested to

obtain some "token" (which is passed round the ring) so

that it can carry out some action, and then release the

token for use by other processes. Suppose n 9 3, we can

define processes X., Y. for i€ fa, I, . . ,n-13 thus1 1

X. ~ i.get ~ i+l.find ~ i.pri - i.cri ~ i.rel ~ Y.1 1

o i.find 4 i+l.find · i.pri ~ i-l.pri ~ X.1

Y. ~ i.get ~ i.cri + i.rel ~ Y.1 1

n i.find ~ l-l.pri + X.1

(all arithmetic is modulo n)

(X. represents a process without the token "pri", which before1
it allows the environment to perform its critical action "cri"

must put in a request to its neighbour to find it and pass it

back. Y. represents a process with the token, which will1
allow the environment to perform "cri" or will pass it to

its neighbour if requested.)

If we set up a ring with one token, which initially is in

the a-process (each process being given as its alphabet the

set of symbols which it can potentially use), then it would

be useful to be able to prove it free of deadlock. It is easy

to see that if R is the process which results from combining

YO'X1,.,. 'XM in parallel, the graph produced in the manner of

7.10 is a ring, ~here being edges between the i-process

and i+l-process for each i (addition modulo n) .

It is not hard to prove that the processes and alphabets

which make up the networks satisfy conditions (ii) and (iii)

of 7.9. Also the proof that they satisfy condition (i)

can be reduced to a fairly easy analysis of cases, proving

by mutual induction that (Xi+!z.I\Z~'), (Yi.1 Z.lIz'! .) and (Yil:lZ.lI z
x.)

1"11. '\11::11 1>111

are free of deadlock, all other cases (non-adjacent processes)

being trivial. (Z. is used to denote the alphabet of the1
i-process.)

We can thus infer that the network R can only deadlock if

each process is waiting for its i+l neighbour or if each

process is waiting for its i-I neighbour. It is quite easy

to prove that at each point in the ring's history there is

exactly one process with the token, in the sense that either

it has never left Y and no other process has been passed ito
(communicated i.pri) or there is exactly one process i which

has not passed the token on (communicated i-l.pri) since it

last received it (communicated i.pri). However a process

can only be waiting for its i+l neighbour if it does not

have the token, and can only be waiting for its i-I neighbour

if it does have the token. We can thus infer that the net-

work is free of deadlock.

The above argument, while it is not an absolutely rigorous

proof, can easily be extended to one.

It is not hard to extend the above to the cases when any

non-zero number of tokens are initially in the network.

If all the processes are without tokens initially (i'.e. are

all equal to X.) then deadlock occurs.1

In the above example, and others where it is applicable,

7.9 seems to formalize the intuitive reasons why one expects

a network to be free of deadlock. This makes it a useful

tool in eliminating deadlock. Condition (iii) of 7.9 is

fairly restricive in its nature (it means that the result

is not applicable to networks such as the "five dining

philosophers" of 6.2). It is possible if we drop condition

(iii) to prove a weaker version of 7.9, which is stated

below and has a similar proof.

- - -

7.11 Theorem

Suppose that Al,.. ,An is a finite collection of prooesses

(n ~ 2) with associ ated alphabets Xl'..' Xn' and that A* is

the result {{.. (A1yllxA.z)y..)yIlXA,,)of combining them in1.1 2. A-'.

parallel (y = Xlv.. v X). Suppose also that whenever i,j ,kr r
are distinct x.nx.nx k=~. Define a ternary relation on1 J
tlP. ,n3 as follows:

R{i,j,k) # i~j & j~k & k~i &
o 0

3w. {{(A.after w) nX.) ~~) & {{(A.after w) nX k) ~ ~)1 J 1

If i and j are distinct elements of rl,..,nJ define clique{i,j)

to be the smallest subset of ~l,..,nJ which both contains i

and j and is closed under R in the sense S,tEX & R{s,t,u) * ueX.

(clique{i,j) places an upper bound on the sets of processes

which might interfere directly with any communication between

A. and A..)
1 J

If X is any non-empty subset of fl,..,n1 define ~ to be

the result of combining in parallel all the processes indexed

by elements of X:

A =X
A =X

A. if X = l.i31

({..{Ai x."-~')x"x") X. X "..A._)if X = [i,j,..,s,k3has
1 Xj-J i J IV. .V ,At K

at least two elements.

If the network A* is free from local deadlock in the sense

that all subsets of cliques are deadlock-free, then deadlock

can only occur in the complete network A* on string w when

there exist Zl'..'Zn£~ which satisfy the following:

(i) Z. is maximal in A. (wtx.) i111

(ii) XlV. .UXn= (zlnxl)u. .V{ZnIlXn);
(iii) for each pair i~j there is some element k of clique{i,j)

with the property that {~-Zk)S Ufxrl rfitc1ique{i,j)ji

(iv) there exists a sequence nl,..,nk, not contained within

anyone clique, such that (~-:- Z)n X ~ ~ for each i
I ni ni,.,

(where k+l is interpreted as 1).

* * * * * * * * * *

The power of this result depends critically on the structure

of the space of cliques in a given network. In general one

can easily show that clique{i,j) = clique{j,i) for each pair

(i,j), and that keclique{i,j) ~ (clique{i,k)f clique{i,j».

When all processes in a network are different (as will usually

be the case in a network without hiding) one can unambiguously

think of cliques.as being sets of processes and being

defined by pairs of processes.

If x.nx.= ~ we must have clique(i,j) =fi,j1, and it is easy1 J
to see that so long as there is at least one pair r&s such

that X nx ~ ~ we can disregard all such cliques. Bearingr s
this in mind the only cliques we need consider in the "five

dining philosophers" example are fPHIL. ,FORK. ,PHIL.813 (which
. 1 1 1

is both clique (PHIL. ,FORK.) and clique (FORK. ,PHIL. Sl» and
1 1 1 1

[PHILl,...,PHILS,B3 (which is clique(B,PHILi) for each i).

Note that under the assumptions of 7.9 we have clique(i,j)

=~i,j3 for all i and j, so that the conclusions of 7.11

more or less imply those of 7.9. We can prove an analogous

result to 7.10, though the proof is harder:

7.12 Theorem

Suppose that A* is the network described in 7.11, and that

in addition to satisfying the hypotheses of 7.11 it is a

tree in the sense of 7.10; then it is free of deadlock.

proof

If there were deadlock possible in A* on string w then there

would exist sets Zl""'Zn and a sequence nl,...,nk sat-
isfying the conditions of 7.11(i-iv). '

Claim that every sequence ml,..,m of elements of tl,..,n1r .

with the properties that (i) (X - Z)n X ~ ~ (i < r) &
m} mi mi.t

(X - Z)nX ~~, (ii) r~2 and (iii) m.~ m'+l (i<r) &
mr m~ m! 1 1

mr~ ml has the property that f ml ' . . ,m~ ~ clique (m;.,m2) .

We will prove this by induction on r. The result is triv-

ially true when r=2, so let us suppose that it holds for

all such sequences with length less than r and that ml,..,mr
is such a sequence. There are two cases to consider:

either ml is repeated later in the sequence or it is not.

In either case it is easy to see that the processes indexed

by the m. form a connected subtree of the netwo~k, and that1
A is joined to A by an edge, as is A to A. In the
mi mi.. rnr rn.
second (or) case we can thus deduce that m2= rn , which- r

means that by our inductive hypothesis fm2. .mr_~ ~ clique (m2,m3)

(we must have r) 3 for otherwise rn2=m2+1). However by
construction «(A after wtx)oOX) ~~) & «(A after wtx)onX)

mt mt rn, ~t mt m1
~~) (since m2=m and (X.- Z.)£ (A.after wtX.)). Thisr 111 1

tells us that m3.e clique (ml ,m2), which as we observed

earlier implies that clique (m2 ,m3) <; clique (ml ,m2). This

completes the proof in this case.

In the "either" case we must have m1 = ms for some s:;lr,s:;ll.

Clearly each of ml,..,ms-l and ms,..,mr is a sequence which
satisfies the hypotheses of this result, so we can deduce

that fml,.. ,ms-13 ~ clique (ml ,m2) and t.hat ~ms' .mJ £ clique (ml ,ms+l)

from our inductive hypothesis. However by construction

« (A after wtx)°nx) '191) & « (A after wtx)en X) 'I 91)

mt ml m~ mt m! mS41
(as before), which implies that m~fclique(ml,m2)' lhus

clique (ml ,ms~S clique (ml,m2), which completes the proof of
the "either" case.

We may therefore conclude that this holds of all such sequ-

ences. This contradicts our assumption of deadlock, for

the sequence nl,...,nk satisfies,the hypotheses but not
the conclusion of the above result (by 7.ll(iv) it is not

contained in any clique) .

The cliques of a tree have a very regular form, as shown

by the next result (the proof of which is similar to parts

of the above).

7.13 Lemma

If the network A* of 7.11 has the form of a tree, then if

A. and A. are not adjacent we have clique(i,j) =fi,j~ If1 J
A. and A. are adjacent then the nodes indexed by clique(i,j)1 J
form a connected subtree with the property that whenever

A and A a£e two other adjacent nodes either clique(i,j)r s
= clique(r,s) or clique(i,j)n clique(r,s) has at most one

element.

7.12 provides us with a very general technique for proving

freedom from deadlock in finite trees. As an example of

this consider the system formed by combining n philosophers

and n+l forks in a line:

FORK 11 PHIL fI FORK
1
11PHIL

l
\I ... \I FORK III PHIL 11\ FORKo 0 n- n- n

(processes defined as in 6.2 but with ordinary rather than

mod 5 arithmetic).

The cliques of this system are just[FORK ,PHIL 1 ,fFORK ,PHIL 1~o 0 n n-
and(FORK.,PHIL.,PHIL. 13 (l~i~ n-l) whose subsets are easy1 1 1-

to prove free frpm deadlock. Having done this we can infer

that the whole system is deadlock-free.

Many of the arguments and results in this section have been

(implicitly or explicitly) graph-theoretic. The basic type

of graph we have been interestedin isthat of "requests" on

deadlock (the directed graph which results from drawing in

an edge leading from each element of a deadlocked system to

the elements of the system from which it would accept comm-

unication). Theorems 7.9 and 7.11 tell us things about

the gross structure of these graphs (essentially that they

contain loops of certain types) . It is often possible to

limi t the possibilities for these graphs if we have some

local knowledge of structure. One might for example be

able to show that if in such a deadlock graph some comp-

onent of the network has an edge leading to it from one of

its neighbours then the edges leading from it have some

particular structure. In particular one might be able

either to completely eliminate the possibility of the loops

implied by 7.9 or 7.11 or cut down the number of possible

loops to manag le proportions.

It is not very hard to apply this type of technique to

prove freedom from deadlock in the "five dining philosophers"

example of6.2. The outline of such a proof is set out
below.

(i)

(ii)

(iii)

Show that in any deadlock graph an edge from PHILi

to FORKi implies that FORKi has a unique edge leading

out of it which leads to PHILi81, and that when PHILi81
has an edge leading bo FORK. there is a unique edge1.
leadincr from FORK. (which leads to PHIL.).

J 1. 1.

Show by consideration of PHIL.11FORK. that whenever1. 1.

FORKi has a unique e~ge from it leading to PHILi then

PHILi has a unique edge leading from it, to FORKiffil.

Correspondingly whenever FORKiffilhas a unique edge
from it, leading to PHIL., then PHIL. has a unique1. 1.

edge from it, to FORK. .1.

By 7.11 there must be some edge leading out of the

clique fB,PHIL1,PHIL2,..,PHIL~ ' which means by (i)
and (iil that there is a ring of edges leading round

the "outside" of the graph, and that these are the

- -~-- -- -- -- - --- -- - - - --

only edges leading out of the FORK.s and PHIL.s.. 1 1

(iv) Show that this is impossible by the structure of B

(by counting "getup"s and "sitdown"s) .

It ought to be possible to develop a better notation for

this type of argument, and to develop a simple theory to

make its application easier.

This concludes our brief discussion of deadlock. We have

seen that it is often possible to reduce the problem of

proving freedom from deadlock in a general network to the

corresponding problem in a network free from hiding. We

conjectured that it might be reasonably easy to attack some

such networks by means of constructive relations between

states, and developed various graph-theoretic methods for

application to such networks. There are other, similar,

predicates which one might wish to prove in lieu of simple

freedom from deadlock. These might include proving that

every component of a network remains alive (in some sense),

or proving that a process is "live" in the sense that at

all times there is some way of getting it back to its ini-

tial state. It should be possible to adapt several of our

methods to such problems (of the two examples quoted here

the first is likely to be easier than the second).

footnote

Note that the identification of deadlock with the appearance

of "E" in the image of strings is critical in this section.

This would not have been the case if we had chosen the finite

refusal sets model in chapter 4 instead of the directed-

closed model. If we had done this it would have been nec-

essary to prove a result equivalent to the difficult cons-

istency theorem 4.15 in order to prove 4.9, 4.11 and their

corollaries.

Ch_apter~_ : - ~~~_!..9nin9__Me~i!!.9:.~_ t~M~~els

So far in this thesis we have studied in some depth the

mathematical structure of two models for computation.

We have derived many interesting results which are in

many cases correctness results for the model processes

which exist within our two models. It is natural to ask

how these models relate to any more

esses and how our correctness proofs

rems of the more concrete processes.

"real" space of proc-

translate into theo-

Before examining our particular models it is interesting

to develop as general a calculus as possible for this type

of relative study. This should give us a better general

understanding of the problem of modelling processes, and

suggest alternative models with chosen properties. Let us

therefore suppose that C is some space of concrete proc-

esses and that M is intended to be a mathematical model

for C. We will for the moment make no assumptions about

the natures of C and M. Since M is a model for C we may

suppose that there is some function $:C ~ M such that for

any c E C $(c) is the representation in M of c.

I

,

t

Our particular interest is in the translation of proofs

in M to results in C (i.e deducing results about real

processes from the model). It is therefore very important

to us to know how predicates translate. Suppose that ~ is

some predicate we want to prove of an element of C (~is

thus a one-place relation on C). It is clearly important

that we should know just how much we need to prove of $(c)

(c E C) in order to know for certain that ~(c) holds.

Define the predicate 0/' on M by ~'(A) == 'v'c.(<1>(c)= A) 9 ~(c).

By construction ~' is the weakest predicate on M which

ensures this (i.e.o/'($(c» 9 ~(c)). Correspondingly if

n is a predicate on M we can define the predicate n* on C

by n*(c) = n($(c». n* is the strongest predicate on C

which is proved by n($(c». These two constructs relate

in the following way.

8. 1 Theorem

If $:C -+ M, ~ is a predicate of C, n is a predicate of M

and the constructs"'" and "*" are as described above then

we have the following.

- -- - -

8.1. 1 lemma

a) If- H and e are two predicates over M such that H is

weaker than e (i.e. e(A) ~ H(A) for all A E M) then H* is

weaker than e* (i. e. e*(c) 9 J-(*(c) for all c E C) .

b) If X and {2are two predicates over C such that {2 is

weaker than X then (21is weaker than XI.

proof

Both these results follow immediately from the definitions

of 'PI and n*.

We can now prove a) - d) above.

a) n(A) * n*(c) for each c s.t. <1>(c)

9 (n*) I (A)

= A (by defn of n*)

(by defn of 'PI)

If <1>is on to then A = <1>(c) for some c E C, so

(n*)I(A) * (n*)I (<1>(c»

=9 n* (d) for each d s. t. <1>(d) =
:9 n* (c)

<1>(c) (by defn of 'PI)

(as <1>(c) = <1>(c))

b) ('PI)* (c) =9 'PI (<1>(c»

=9 \II(d) for each d s.t. <1>(d)=
=9.\II(c)

(by defn of n*)

<1>(c) (defn of 'PI)

(as <1>(c) =<1>(c»

If <1>is one-one then

'l'(c) =9 'P(d) for each d s. t. <1>(c)

=9 'PI (<1>(c))

9 ('PI)*(c)

= <1>(d)(as there is only

one such d (i.e. c))

(by defn of 'PI)

(by defn of n*)

c) (n*) I is weaker than n by (a) above. Thus «n*) 1)* is

weaker than n* by 8.1.1(a). n* is weaker than «n*) 1)*

by (b) above. These two clauses together give us the

desired result.

d) 'Pis weaker than ('PI)*_ by (b) above. This tells us

that 'l'1is weaker than « 'l'1)*) I by 8.1.1 (b). Also « \Ill)*) I

is weaker than 'l'1by (a) above. Again these two clauses

- - --

a) n(A) (n*) I (A) (# if <1>is onto) for each AE M

b) 'P(c) ('PI) * (c) (# if cP is one-one) for each c C

c) n* == ((n *) I) *

d) 'PI - (('PI) *) I

Eroof

The following lemma is useful in proving the above (amoI)gst

other things).

combine to give the desired result.

8.1 (a) and (b) tell us (as we might have expected)

is a bijection then also the predi cate spaces

,,*,,-1as a bijection between them. We will how-

that it is unusual for «1>to be either one-one or

From the nature of the

discriminating the map

reasonable translation

because there are less

mapping 'P-+ 'P" we see that the more

«1>the more likely we are to get a

into M of a predicate 'P. This is

addi tional dE C which need to sat-

isfy 'Pin order to make 'P'(<<1>(c»true for any c. It is

clearly more important that a useful predicate should tran-

slate well than one which we are unlikely to want to prove

of a process. We would like (for as many and as useful 'P

as possible) that there should be predicates n of M s.t.

(i)

(ii)

(iii)

n =9 'P'

n is reasonable to prove (is continuous, perhaps)

n is not ridiculously strong, so that generally

n(<<1>(c» does in fact hold of a process c s.t. 'P(c).

Note that everything we have said so far is equally true

of product spaces and their predicates because of the

extremely general nature of the spaces we have considered.

Though we treat only single predicates in the following,

for simplicit~ almost the whole of the rest of what foll-

ows can be translated to accommodate predicates of several

(or many) variables.

We must now be more specific about the nature of the obj-

ects we are studying. Let us suppose that elements of C

have things called behaviours, which we will think of as

representing possible sequences of actions carried out by

processes (relative to any control exerted by outside

agents). We will suppose that the behaviours of a process

are a powerful language for specifying correctness; we

will restrict ourselves to the study of predicates of the

form J(c)~Vb. b is a behaviourof c 9' X(b) (X any
predicate of behaviours). For c E C we will suppose that

B(c) is the set of possible behaviours of c. Note that

the type of predicate specified above corresponds quite

-- - -- ---

Note that

that if «1>

have "'" =
ever find

onto.

closely to normal ideas of what a correctness predicate,

of a process should be: a process is "correct" if and only

if it must inevitably behave correctly.

We will further suppose that the map $:C ~ M is closely

based on the possible.behaviours of a process. This ass-

umption is prompted by the nature of the models we already

possess, which are both intended to reflect some aspect

of a process' behaviour~ Specifically we will suppose

that <1>(c) = l 8(b) I b E B(c)3 for some function O. (For

example in the "traces" model P of chapters 1-3 we would

expect that O(b) = the sequence of external communic-

ations occurring in b.) This assumption clearly carries

with it the requirement that M should be (at least up to

isomorphism) a subset of some powerset (a requirement

which is met by both our existing models) .

Clearly the more discriminating the function 0, the more

,expressive becomes the model.

For the predicate X and function $ described above we have" -

x' (A) ==" Vc. { $(c) = 10 =9 X(c)- -
== VC'.(~ O(b) I bEB(c)'3= A)9 ('v'bEB(c)".X(b»

~ Vb E 0-1 (A). X(b)

- \1'd EA. ('v'b E 0 -1 (d). x (b))

+
- X , say.

X+ is the predicate (of M) saying that all behaviours

which might occur in a process mapping to A are correct,

the phrase "might occur" being interpreted as element-

wise possibility. (We are thus considering the behaviours

which appear to be possibilities, even though it might be

that we could eliminate them by consideration of the gross

structure of A. For an example of the influence this has

see the later examination of the traces model.)

Since X+ ~ J"' we have X+ ($(c» =>!(c) for any c E C.

We will also reserve the right to make 0 a relation, in

which case $(c) = U fO(b)I bE B (c». Behaviours then have

any number of representatives in the

matters, from here on we will always

function unless we clearly state the

image. To simplify
assume that 0 is a

contrary. Except where

-- --- ----

we indicateotherwiseall results stated or proved for u<1>us

defined using functions are also true for those defined

using relations. We will have to wait until the last two

sections of this chapter for examples of the use of relations

in defining maps to models.

The question of the expressiveness of "<1>USdefined using

relations is less" clear-cut than with functions, though:i t

is still usually true that a 11OU which 'makes more distinctions

will give rise to a more expressive model. It is now poss-

ible, however, for a behaviour which has a large image under

U0""to obscure much detail in the image (it is precisely for

this reason that we will later use relations in some cases).

It is possible to define the II+U operatoron predicatesof

behaviour in much the same way as before. Suppose that "<1>U

is a modelling function defined using a relation "0u. Then

"w~ have

Xl (A) :: Vc. (<1>(c) = A) '* X(c)
......

- Vc. (Ur O(b) I bE B(c) j = A) * (VbE B(c). X(b))

{::Vb. 0 (b) <; A ~ X(b)
- +
- X , say.

Once again X+ is the predicate of M saying that all behav-

iours which might occur in a process mapping to A are corr-

ect. This time we do not consider A element by element,

since the result of doing this, 'id€ A. Vb .((/1(b) = ~ Vd E O(b)) ~ X(b)),

is in ~ractice too strong to be of any use (or at least this

so in the two examples of relations which we meet later) .

The penalty we pay for this is that the predicate X+ defined

relative to a relation may not have such a workable "form.

It is, for example, easy to see that any X+ defined relative

to a function must be strongly continuous when the map <1>is

to either of our existing models, but that this need not

always be so for relations. Also the results 8.2 and 8.3

proved below only hold in general when 0 .isa function.

The most important single result about the predicates X+,

namely 8.4 does hold in general, however.

8.2 Theorem (holds only when 0 is a function)

If X is any predicate of behaviour then there is another one t/1,

+ + +
such that (X)* =!f!. q.nd .X = t/1 .

proof

By our earlier definitions

(X+) * (c) ~ X+(<1>(c))

~ Vd E <1>(c) . (Vb E 0-1 (d). X(b»

~VbEB(c) .(Vb'EO-l(O(b». X(b'»

#!P.(c)/ where t/J(b) ~Vb'EO-l(O(b». X(b')

For this same t/J we have

t/J*(A) # Vd EA. (Vb E O-l(d). t/J(b»'

VdEA.(Vb E O-l(d) .(Vb'EO-l(O(b». X(b'»)

<=* 'v'dEA.('v'b E O-l(d) .(V'b'EO-l(d). X(b'»)

Vd EA. (Vb 'E 0-1 (d). X(b'»

~ X+ (A)

If more restrictive conditions are placed upon the nature

of the space of behaviours and upon M we can prove stronger

results than the above.

8. 3 Theorem

Suppose that for every behaviour b and A E M we have

O(b) E A ~ 3CE C.bE B(c) & <1>(c)S; A. Then for all predicates

X & t/J of behaviours we have C! == !p') ~ "(X+:= (jJ+). Further-

more if J. == (t/J+)* thenX+ = t/J+.

proof

Suppose X and t/J are such that J :=!/!. . By symmetry, to

prove X+ = t/J+ it is enough to show (X+)(A) ~ (t/J+) (A) for
+ -1

all AE M. Suppose (X) (A) holds and that dE A & b E 0 (d).

(X+) (A) 9 VdE A. (Vb E O-l(d). X(b» (*)

By assumption there exists some c E C such that bE B (c)

and <1>(c)~A. If b'EB(c) then by construction O{b')EA,

so that b' E 0-1(d) for some dE A. Thus X(b') holds by (*).

Hence Vb' E B(c) .X(b') (~X(c» holds.

Since by assumption 5,=!/!. we have i(c).

Therefore t/J(b) holds by definition of !I!since bE B (c) .
Thus on the assumptions (X+) (A), d€A and bE O-l(d) we have

proved t/J(b). Hence
(x+) (A) 9 Vd EA. (Vb E 0-1 (d). t/J(b» (# (t/J+) (A»),

which was what we wanted to prove.

This result shows that (under the stated conditions) ~he

operator "+,,can be regarded as an operator on predicates

of C (rather than on predicates of behaviour) without

ambiguity (as long as the predicate has the form~ for

some X) .

TO prove the second half of 8.3 we need merely observe

that if X == (q'+)*"then by 8.2 there is some T such that

:r.== (tp+)* and T+ == I{J+. But then X ==T , so X+ == T+ by the

first part of 8.3. Hence X+ == l as ~esired.

This shows that when the conditionsof 8.3 hold so that

"+,, is a well-defined operator on predicates ori C we have

«Y+)*)+5 y+ for all predicates Y of the form a.

The condition stated in 8.3 is one which will tend to be

met in all examples. It simply states that if a behaviour

appears to be possible for processes mapping to A E M by

elementwise consideration of A then there is some c E C

which has this behaviour and whose behaviour does not

exceed the bounds definedby A. See below for further

clarification of the use of "subset" rather than "equality"

in the condition.

Define a monotonic predicate on M to be one which satisfies

the condition A <; B & il(B) ~ il(A). The following result

is obvious (from the definition of ~+).

8.4 Lemma

For any predicate ~ of behaviours the predicate ~+ is

monotonic, and furthermore if NE M and VA EN. ~+(A) and

BE M is such that Bf UN then also ~+(B).

Note that the simple structure of the predicate ~+

(~+(A) == Vd EA. ~(d)) ensures that it will be pleasant

in other ways. It will for example be strongly continuous

in both our existing models (see 2.44, 5.10).

Suppose we were to restrict ourselves to the use of

monotonic predicates in directly proving things about

elements of C (from their values in M). This would

have several advantages and several disadvantages. The

advantages we will meet shortly. The chief disadvantage of

this approach isthat we lose a certain amount of express-

ive power by our abandonment of a large class of possible

predicates to prove of $(c) , in particular the predicates

of the form JI (not in general monotonic). The natural

predicate to prove of $(c) in order to prove 3(c) is then

x+, which may well not be true of $(c) when .Ifis. In

some cases X+ is very much stronger than Xl, and can even

be "false" when XI is quite reasonable. The question of

whether a particular triple (C,M,$) is suitable for use

with monotonic predicates will vary both with the struc-

ture of the triple and with the things we wish to prove.

As we will see there are some cases where monotonic pre-

dicates are usually adequate and others where they are

often not. We will also see that there are considerable

advantages in the monotonic case in the modelling and

implementation of operato~, inasmuch as there is a large

class of implementations which can be considered correct

relative to the proving of monotonic predicates but not

of general predicates. Say we are treating (M,$) as a

class 1 model for C if we only seek to prove mOQQtonic

predicates and as a class 2 model if we seek to be able

to prove general predicates.

Class I Models

We are likely to want to model in M the operators we wish

to use on the space C. The purpose of this will be to

prove things about the result of applying the operator in

C from the value(s) in M of its operand(s). Modelling of

operators is a two-way process: an operator in M can model

in C or an operator in C can implement an operator in M.

We must seek workable definitions of these terms. Define

an operator "op" over M to be reasonable if it is both

monotonoic (in the sense op (A,*) ~ op (B,*) if A ~ B) and

there is a possible correct implementation of it over C

(in the sense to follow). The reason that a "reasonable"

operator should be implementable is obvious. The reason

that it should be monotonic is that the more possible

behaviours of its operands, the more behaviours might be

expected possible of the result of applying it.

Say that op*:cn ~ C is an operator implementing op:~ ~ M

(or alternatively op models op*) if for all cl'.. ,cn E C

$(op. (cl'... ,cn» ~ op($(cl) ,... ,$(cn»

This means that the result of applying op* has behaviours

contained within the bounds predicted by applying op to

the images in M of its operands.

This implies that if n is any (monotonic) predicate and

op correctly models op* then

so that for any predicate X of behaviour

X+(OP(I1>(cl),..,I1>(cn)))=9 (X+)*(op*(Cl,..,Cn)) 9.JJOP*(cl,..cn))

8.5 Lemma

If each of a set of "basic" operators over M is correctly

implemented then any composition of them is correctly

implemented by the operator over C which results by comp-

osing the implementations of the basic operators in the

natural way.

The proof of this result is an easy induction using the

monotonicity of the basic operators over M.

For example, if f and g are two and one place operators

on M respectively, and they are correctly implemented by

f* and g* respectively, then the compound operator

h(A,B) = f(f(A,B) ,g(B)) is correctly implemented by

h * (c, d) = f~ (f* (c, d) , g*, (d)) .

As we have previously discovered, the simple notion of

operators over M alone is unlikely to be sufficient to

give a semantics to a language. We need to be able to

cope with variables for such things as recursion and input

to/assignment to variables. The obvious way to do this

is to bring some kind of "state" into our calculations.

Let us assume that there is some set B of formal parameters

taking "process" values and a set E of parameters taking

values of other sorts. For the sake of simplicity we will

assume in what follows that the sets of parameters and the

values taken by elements of E are the same in the two

models. One could doubtless extend what follows to the

case where there are "real" and "model" values taken by

non process parameters and "real" parameters become loc-

ati.ons. We will suppose that the constructs of our lang-

uage are given values in the set M' of monotonic functions

in MBxS ~ M, where S is the set containing all possible

values of that component of the state which maps elements

of := to their possible values in T, a set of "tokens".

Constructs in the space C will have the form cBxs ~ C (= C').

We will shortly see examples of what these constructs

might look like when we examine the semantics of our usual

language over various models.

We will assume that the semantics of our language are

built up from a set B of basic monotonic operators on M' .

Say that A E MU, the set of expressible elements of M', if

and only if A is the finite composition of a number of

elements of B (there will always be several elements of B

which are constants (no arguments), so this definition

is not vacuous). Assume also that there is a set B* of

basic operators over C'.trom which all constructible

elements of C' are composed. We do npt assume that there

is any sense in which elements of B* attempt to implement

elements of B.

If e E M' and e* E C' say that e* is a correct implementation

of e if for all gE CB and SE S we have e(CD(g),s):;:>CD(e*(g,s»

where CDis extended in the natural (componentwise) way to

CB. This definition clearly has a similar effect to the

earlier one (op* implementing op) but is different in that

here the objects we are discussing are effectively at a

lower level: we still need to study the implementations

of operators over M' . Suppose that f:M,k.,.M' is mono-

tonic and f*:c,k~ C'. Say that f*imp f if for all

el,.. ,ekE M' & ei,.. ,e'E C' such that ei implements ei

correctly f*(ei,..,e,) is a correct implementation of

f(el,..,ek). It is quite easy to check that this defin-
ition corresponds exactly to the old definition of corr-

ectness of operators in the degenerate cases covered by

that definition.

Say that an element g of B is reasonable if there is some

finite composition f* of elements of B* which satisfiesg
f*imp g. The justification for this definition is that gg
is only a reasonable operator if it is possible to implem-

ent it; if we construct elements of M' using non-reasonable

operators we can have no guarantee that we will be able to

construct real processes to implement them. The following

result is obvious, but is nevertheless important.

8.6 Theorem

If for each g e B there corresponds an f* with the aboveg
properties then every expressible element of M' is corr-

ectly implemented by a constructible element of C', the

construct which results from composing the f*s in the9
natural way modelling the composition of the expressible

element.

For example, if f (O-place), g (I-place)

are all elements of B implemented by f*,

ectively then k*(g*(f*) ,f*) is a correct

of k(g(f) ,f).

and k (2-place)

g* and k* resp-

implementation

From the above work we see that if n is any monotonic

predicate of M we get, for any e*e C' correctly implem-

enting eE M', that if AE Me, ~E'CB and SE S are such that

~(£)~ ~ ,then n(e(b,s» ~n*(e*(g,s».. It is worth noting

the common special case in which e is indepeQdent of ~, s

or both, in that then n*(e*(~,s» is true independently

of one or both components of the state. In the case of

our usual language we would expect an expression with no

free variables of any sort to give rise to an "e" indep-

endent of both A and s.

The technicalities of the above and lack of examples

obscure the advantages gained from the assumption that

our model is class 1. The fundamental advantage is the

possibility of using "!::"in our definitions of correct

implementation, where otherwise we would have had to use

"=". This informallymeans that an implementormerely
has to restrict the behaviours of his resultant processes

to be within the bounds specified by an operator over M,

and need not make sure that in every case of applying

his implementation of the operator there is a possible

behaviour mapping under 0 to every element of the pred-

icted element of M. This corresponds to allowing the imp-

lementor to resolve non-determinism inherent in an operator.

It also helps in that the map ~ may well identify large

classes of structurally different elements of C. When

defining an operator op it may be necessary to allow for

this by including in op(A) (AE M, for simplicity) values

which arise from applying a natural implementation of op

to some c mapping to A but not to others. We will see

examples of both these pointslater.

The most important feature of the above work is that it

provides an exact calculus by which we can prove results

about the value in C of a process by consideration only

of the language used to define the process.

As indicated above, in a class 2 model, where monotonic

predicates are not considered sufficiently axpressiv~ one

can derive a very similar calculus for proving predicates

true of implemented processes. It is necessary to demand

that all implementations are exact: e*e Cl will correctly

implement e E MI only if for each s:E C and SE S we have

<lI(e*(g,s» = e(<lI(g),s).

Compositions of Mappings

Suppose that M is a class I model for a space C and that C

is in turn a model for some space D. It is convenient to

think of D as a space of processes and C as a space of

"idealized" processes. We will suppose that we have the

usual map <lI:C~ M and in addition a map Y:D ~ C. Suppose
that the set of behaviours of elements of C and Dare

denoted by B{c) and BI{d) respectively, which are subsets

of U and V respectively (types of "behaviour"). It is,

as we will later find, useful to know to what extent and

under what conditions the composite map T = <lI.Yis useful

in modelling D by M. Let us assume that there is some

translation function ~:V + U (the identity if U = V) such

that B{Y{d»;;;> l'1{bl)I blE BI (d}J for each dE D. This

condition effectively says that the value Y{d) assigned

to each dE D (as its idealization) must not ignore poss-

ible behaviours of d.

It is clear from the above definitions that for all dE D

we have T(d)2fO{'1(b'))I b' E B' (d)? This allows us to

place a bound on the behaviour of elements of D from a

knowledge of T{d). In the case where U = V and '1is the

identity this bound is the same one as we had before.

In this U = V case the predicates of C which have the form

J (for a predicate X of U) clearly extend in a natural

way to the space D, with the result that X+(T{d» ~ X{d).

In cases where the function 'Iis many-one there is the

possibility that a predicate of V might not translate

reasonably to a predicate of U, but we always have that

for any predicate X of V (X")+ (T{d» =9J{d), where

X" (b) ~ Vb' . ('1(b ') =b) =9 X(b') . Note that the predicate

X" of.U is to X just what 'P'is to 'Pfor a predicate 'P

of Cr with the same result that the more discriminating

the function ~ the more likely X" is to be reasonable.

Note that because of the decisions made above the space

M is not a model for D in the sense introduced earlier

'.

since we do not in general have that T(d) = [0* (b I) I b lE B I (d)]

for any 0*. It is clear that as long as we restrict our-

selves to monotonic predicates this is of little consequ-

ence, if we are reasonably careful.

It is desirable to find a criterion by which to judge the

implementations over D of operators over C which is "trans-

itive" in the sense that a correct implementation op**

(over D) of op* (over C) which in turn is a correct imp-

lementation of op (over M) is a correct implementation

of Ope

Define D' = D0x.S to be the space of constructs over D

(analogous to M' and Cl). Say that e**ED' implements

e*E C' correctly if for all (g,S)E D6xS we have

B (Y(e** (d, s))) .£ B (e* (Y (d) ,s» (Y extended in the natural-

way to the product space). This definition (similar in

form to our earlier ones) is justified by the following

result.

8.7 Lemma

If e**eD I, e* ~ C I and e € M' are such that e** correctly

implements e* and e* correctly implements e then for all

(d,s)E DBxs we have T(e**(d,s» ~ e(T(d) ,s), (whereTis--

extended in the natural way to D) .

proof

T(e** (g,s» = <1>(Y(e** (g,s»)

= ~O(b) I bE B(y(e** (g.,s»)J

~ f 8 (b) I b E B (e* (y (d) , s)) J

£ <1> (e *(Y (g) ,s))

S; e (<1>(Y (d)) , s) = e (T (d) 5)- - .

(+)

(++)

(+) follows by definitionof e** correctly implementing

e*, and (++) follows by definition of e* correctly implem-

enting e.

Suppose op~* is a k-place operator over D' and op* is a

k-place operator over Cl. Say that op**imp'op* if when-

ever ei*,..,ek*E D' and ei,..,ek are such that each ei*

correctly implements ei then op**(ei*,..,ek*) correctly

implements op*(ei,..,ek).

The corresponding result to 8.6 clearly holds for a set

of basic operators B** over D' which can be combined to

implement each basic operator (in B*) over C' .

----- --

This resul~, together with 8.6, 8.7 and the fact that for

any dE D we have T(d)c;iO('1(bl»I bl E BI (d>] allows us to

form a linked system of implementations with respect to

which it is possible to prove predicates of the form X (X-

a predicate of V) by consideration of the value taken by

a program in M.

There is of course no reason why we must restrict ourselves

to three levels of abstraction (D,C,M). We can introduce

as many extra levels between D and C as we like, so long as

the relationship between consecutive spaces has the same

form as that between the old D and C. We would then have

the following:

D=C ~ C ~I . . .

n 11 n-l 11

U:!l'U
1

:!!);1...n n-

~C 1;Mo
~U o

(C = C)o
(U = V, Un 0

= U)

for spaces of processes C. with associated spaces of beh-1
aviours U.. We would demand that they satisfy (for all I ~ i ~ n)1
B.

l(y.(d.»:>fl1.(b)1bEB.(d.)] for each d.E C. (where1- 1 1 - 1 1 1 1 1
B. (d.) represents the set of behaviours associated with d.).1 1 1
Having done this we could prove very much the same sort of

result about this system and its implementations as before.

The work of this section allows us to break down our analysis

of the relationships between systems into easier steps. We

can construct one or more idealized versions of a system of

"real" processes for use as stepping-stone(s) between our

model M and the real world. We are allowed to break up the

problems of proving correctness of implementations into two

or more distinct parts. This work also has the advantage

that once we have established the relationship between M and

C we can use our knowledge of this for many different "D"s

(and vice-versa) .

The application of our theory

The rest of this chapter is devoted to analy.zingour existing

models and seeing how they might be improved. The first

thing we must do is to establish the space C of "real" proc-

esses by whtch we are to jUdge them. We will first form an

informal picture of what we expect a process to look like.

We will then formalize these ideas into postulates on the

behaviour of processes, and as a result produce a fairly

abstract system C which is in a sense a unique model for

them.

It should of course be noted that the following is only

one possible system by which to judge our models. It does

however have the advantages of its very general nature

and the fact that it corresponds closely to our intuitive

ide~ of what a process should look like.

Let us therefore suppose the following of the processes

which we seek to model:

(i) That at all times a process has an internal state, and

that this state and the process' environment are the only

factors influencing its behaviour. The state can change

only through discrete actions (or transitions). An action

is instantaneous, and can either be internal or external.

Internal actions are uncontrollable by the environment and

indistinguishable to it (if it can observe them at all).

External actions, or communications, can take place only

with the co-operation of the environment. Only finitely

many actions can occur in any given finite interval.

(ii) External actions are named by elements of some alphabet

r; this name is the only feature of an external action

visible to the environment. The only device by which the

environment can influence the behaviour of a process is the

subset of r in which it is willing to co-operate. This

influence is restricted to what 'communications actually

take place, not any other feature of the set.

(iii) There is some finite uniform time for which it is

not possible for an action to be possible for a process

without some (possibly different) action occurring. Apart

from this the behaviour of a process is independent of the

length of time it has been in a state, subject to the

condition that only finitely many actions can occur in a

finite time.

Our next step will be to reinforce the above postulates with

some more formal ones. To do this we will need a notation

for describing behaviour. Denote by (p,X) ~ T the fact that

a process in state p, while the environment offers set X,

might perform some internal action which results in it coming

into state T. Similarly denote by (p,X) ~ T the fact that

under the same conditions a process in state p might per-
form some external action named "a" and come into state T.

Postulates (i), (ii) and (iii) essentially imply that once

we know both the initial state of a process and the possible

transitions in the above form of all states, we know exactly

which sequences of actions are possible for the process

(relative to its environment). This'will be made more pre-

cise below. The following three postulates formalize and

extend another set of ideas introduced in (i), (ii) and (iii).

(PI)

(P2)

(P3)

The first of

carry out an

environment.

these simply says that a process can only

external action with the co-operation of the

The second formalizes the notion that the

environment cannot influence the possibility of an internal

action occurring. The third formalizes the notion that

the only influence which the environment has is through

what actually occurs, not what might have occurred.

Our next step will be to bring in a set of postulates which

specify how a process will behave in any environment, this

behaviour being a function of the possible sta~e transitions.

To this end we will introduce the "behaviours" which we will

use to describe individual execution sequences of a process.

We must be careful in our choice of which type of "behaviour"

to use since the sets of behaviours of processes play a

central role in the first sections of this chapter. One

type of "behaviour" which one might suggest is the observed

response of the process to some type of experiment carried

out by the environment: this would correspond well to our

intuition about the meanings of our existing models, and

such behaviours would lend themselves easily to the const-

ruction of correctness predicates. It is however rather

early to have to decide either the nature of the experiments

to be carried out by the environment or exactly what is obs-

ervable by the environment (e.g. whether or not internal

actions are discernable in any way by the environment).

(a,X) p =* a€ X

(a,X) .; p (a,) .:., p

a
(a, [al) p(a, X u fa) p

To avoid having t~ make these decisions, and so as to make

our space better able to model less abstract ones, we will

choose a type of behaviour whjch attempts to record as much

relevant detail as possible about an execution sequence

without attempting to extract the "observable" aspects;.

The extraction of "observable" aspects of a behaviour is a

task better left to the function "8" which maps behaviours

to their representatives in the image.in the model of a

process. It is necessary however to decide a few general

points about our environments. Let us therefore decide

that an environment has the ability to apply only a finite

number of sets to a process in a finite time, but that there

is no necessity for these sets to be themselves finite.

Both of these decisions are consistent with the thought that

the environment might itself be a process; this idea would

not be so easy to entertain if the sets were always finite.

The obvious choice of what a behaviour is (bearing the

above in mind) is a finite or infinite sequence of pairs

(state and environment) linked by any state transitions

which occur between them. In a more general space of

processes it mjght be desirable to include a third component

representing the time for which the state/environment pair

persists, but because of the idealized nature of our space

and the independence of our models from time there seems

little need to include this extra component here. It is

important however to be able to distinguish finite from inf-

inite behaviours: there is no problem in the case of infinite

sequences, since by our assumptions about the nature of pro-

cesses and environments these can only represent infinite

behaviours. (i.e. behaviours which occupy an infinite amount

of time). There is however the possibility that a finite

sequence might represent an infinite experiment, for a stub-

born environment might encounter a state which was unwilling

either to accept any of the environment's sYmbols or to per-

form any internal action. For obvious reasons this can only

occur at the end of a behaviour.

The most convenient form of the behaviours described above

is finite or

(u, X, h), for

and h ei ther

infinite sequences of triples of the form

u a state, X a set offered by the environment

an element of ~ (representinga communication),

"." (representing.an internal action), "*,, (representing a

finite or infinite fruitless wait which is longer than the

bound on the inactivity of a state which can do something),

or "-" (representing a finite fruitless wait which is shorter

than this bound). The only possible 118" s for the final triple

of a finite sequence are "*,, and "_".

In the following we will typically use ~, Q,... to denote

sequences of triples. If c is a process we assume that it

is endowed with a set B(c) of behaviours, the set of behav-

iours which can actually occur for c. Thus when we define

a system of processes it is necessary to define the possible

transitions of the processes' states and the sets of behav-

iours of the processes. It is natural to expect transitions

and behaviours to be closely related; the following postulates

describe this relation, and also complete the formalization

of the "informal" postulates (i), '(ii) and (iii).

(QI) <>EB (c)

(Q 2) « a ,X ,-.» E B (c) iff a is the initial state of c.

[)
(Q3) ~«a,X,-»EB(C) & (a,X) --p# ~«a,X,8)(p,y,-»EB(c)

(Q4) ~ «a,X,-) (p,Y,8»QEB(c) # a=p & ~ «a,Y,8»Q EB(c)

(Q5) a «a,X,-»b EB(c) & (,:!p,8.8EXU[.3 & (a,X) 4 p)- - .

~ «a,X,*» b EB(c)

(Q6) ~ « a, X , - » Q E B (c) ~. ~ «a , X ,- »E B (c)

(Q7)

If a = «a ,x., 8)... (a. ,X. ,8.) ...'J is an infinite beh-- 000 111

aviour sequence such that infinitely many of the 8. are1

ele.ments of LUl.1 and such that «ao'Xo,8o)... (ai,Xi'-»

is an element of B (C) for all i, then ~ E B (C) .

If a = «a ,X ,8) ...(a. ,X. ,b.) ...> is an infinite beh-- 000 111

aviour sequence such that 8. = "_" for all i"}k and1
such that «a ,X ,8) ...(a. ,X. ,-»EB(t) for all i, then00011
a E B(A) iff «a ,X ,b)... (ak ,Z,*»EB(C), where- ~ ~ 000
Z = ,uk (.n.x.).

J= l=J 1

(Q7)*

(*) On certain occasions it will be necessary to replace Q7

with a less severe postulate.

The first two of these are easy to interpret. Q3 says that

a transition can occur in behaviours exactly when it is

- ---

implied possible by the transition relations. Q4 says both

that a finite application of a set without response by the

environment cannot influence the behaviour of a process and

(together with Q2 and Q3) that it is always possible that

the state may fail to respond to any set only applied for

a short time. (This can be regarded as a convenient fict-

ion which makes the structure of behaviours more tractable,

and therefore makes these postulates-simpler. For more

about this assumption see later.) Q5 says that a fruitless

wait which is longer than our bound on the bound on inactivity

is possible when, and only when, there is no internal or

external transition possible for the state in the environment

which is offered. Q6 says that any initial part of a poss-

ible behaviour is possible. Q7 essentially postulates the

absence of fairness, saying that an infinite sequence of

transitions is possible if each of its finite approximations

is possible. If we are able to assume this it removes much

complexity from our arguments; we will find however that it

is sometimes impossible to define reasonable operators with-

out an element of fairness. Q8 reflects the fact that the

environment can only apply a finite number of sets in a

finite time: thus no transition can be possible during

the whole of a final portion of an infinite sequence of

fruitless waits, as this wou~d contradict our assumption

that no transition can be possible infinitely without some-

thing occurring.

It is possible to simplify the form of some of the Q-post-

ulates if we assume the P-postulates. It is however desir-

able to keep them separate so that we can change the form

of the P-postulates without having to ,alter all the Q-post-

ulates as well.

One useful feature of the system of postulates set out

above (QI - Q8) is that whether or not the system satis-

fies PI - P3 the behaviour set B(c) of a process is always

exactly determined by its initial sta~e and the transitions

:(a,X) ~p and (o-,X)~p which are possible for its states.

Thus we can exactly specify the nature of a system of proc-

esses by defining which transitions are possible for its

states and saying that it satisfies QI - Q8. This is a

freedom which we will often make use of later in our abst-

ract discussion of spaces of processes. If one were to

decide to alter o~e of QI - Q8 (for example Q7) it would

be useful if this "exact determination of behaviour" could

in some sense be preserved.

An immediate consequence of the postulates PI - P3 is that

we can simplify the structure of our transition relations.

If we write (T ~p for (o-,~)~p and rJ~p for (o-,1J.sp

then it is easy to see that the possible old-style trans-

itions are exactly determined by a knowledge of which new-

style ones are possible. Thus for all states (T &P , envir-
onments X and aE2: we have:

(o-,X) ~p

((),X) ~ f

Before we continue with our study of the systems which sat-

isfy these postulates it is perhaps desirable to consider

briefly just how valid and useful the postulates are. The

first thing which we should remark on is the fact that our

postulates do indeed seem to paint a very idealized picture

of what a process is likely to be. It is certainly tempting,

and also justifiable, to relax some of them somewhat. It is

important to note however that exception of our assumption

of the existence of a uniform bound on the "idle time" of

a state (a postulate which is by no means critical), each

of the postulates which might be regarded as controversial

has the effect of assuming maximal unpredictability on the

part of our processes. This is because of our emphasis on

possible, rather than certain, behaviours, which means that

the absence of a behaviour is never checkable by any exper-

imenter. The following paragraphs are brief analyses of

some of the points at which this is true.

a) One might regard our postulate that actions occur inst-

antaneously as suspect, and also perhaps our assumption

that the behaviour of a state is independent of time. One

might prefer to regard actions as events which take a non-

zero time to complete, and to believe that as a state deve-

lops it can acquire more possible actions (reductions can

be modelled by internal actions). In many ways the best

way of dealing with the first of these points is to identify

the start of each action with the action itself, so that

"actions" are again thought of as instantaneous. It is int-

eresting that this identification is also inconsistent with

the postulate tha~ a state's possible transitions remain

constant throughout its life. We are forced to the conc-

lusion that the possible transitions of a state may incr-

ease gradually during the first part of its life (on the

completion of the various actions which may be in progress

by the possibly distributed state) .

To take account of this type of time dependance we would

have to modify our transition relations to include a time

component, so that for example (er,X,t) ':"'pwould mean that

after spending time t in state er a process might, in env-

ironment X, perform some internal action which transforms it

into state p. We would have to modify some of our postulates.

Firstly we would assume that the bound on "idle time" was

increased to take account of the possible "warming up" time

of states. Most of the necessary modifications to the P and

Q postulates are fairly obvious. The only major changes

would be in the form of Q5 and the addition of a P4.

(P4) (cr,x,t) ~p & t<t' =? (<J,x,t') ~p

(Q5') ~«(},X,-»~EB(C) & i(3t,£,p.6EXUt'3
~ ~«O',X,*»~EB(c)

~

& (o-,X,t) -.?}

It should not be too hard to prove that if we took a process

whose states satisfied the modified postulates, and mapped

it to another with the same transitions but independent of

time, then the two would have identical sets of behaviours.

While P4 would probably not be necessary ~or such a proof,

its assumption is crucial in making Q5' reasonable.

b) The "~" halves of P2 and P3 might be regarded as being

slightly suspect. This is because we might like to believe

that a process might prefer one (external) action to another

(internal or external). If this were possible then it might

occur that some transition (p,X) ...; T or (p,X) ~ T be poss-

ible only when some sYmbol b is not an element of the set

X. It would be reasonable to expect that in this case there

is some state v such that (p,XufbJ) ~ t' for all X such that

the original transition (p,X) ~T or (p,X) ~T is possible.

We would need a single extra postulate to replace the "~"

halves of P2 and P3, for example P4' below.

(P4') There is so.mepartial order ")" on the set

Ua,T) I (p,~a1) ~TjU[(. ,T) I (p,~) .:.n]with the following

properties:

a) The partial

(so that all

elements) .

order has no infinite ascending chains

its non-empty subsets have maximal

b) Every pair of the form (.,T) is minimal; there can

be no a,T&v such that (a,T» (a,t:).

c) F~r each set X we have (p,X) 4T if and only if (o,T)

is maximal in f(a,v)la€X & (p,ia]) ~vjlJ£(.,v)1 (p,~) ":'v3

(with respect to the partial order) .

Note that (c) above actually implies (b), and also the "9"

clauses of P2 and P3. The P4' which results from the vacuous

partial order is equivalent to P2 and P3. The necessity

for condition (a) above arises from the ridiculous situations

which would arise if it did not hold: the state having a

sequence of possible actions each of which is made impossible

by the presence of another, so that in fact no action actually

takes place.

One should be able to prove that if we took a system whose

states satisfied the above postulate and PI and QI-Q8 and

mapped it to another which satisfied our original postulates,

each state being mapped to one with exactly the same trans-

itions of the form (p,~) ~ T and (p, ial) ~ T, then the set

of behaviours of each process is contained in the set of

behaviours of its image. The critical feature of a proof

of this will be (for Q5) the fact that for each state p (with

image pi) and set X we have -;i'3T,O.(p,X)~T ~,3T,O.(p',)() §,T.

c) When it is assumed the absence of fairness (Q7) might

be regarded a being a little restrictive. It is easy to

see however that the set of behaviours of a process in a

space not satisfying Q7 is contained in that of the process'

image under the obvious map to the corresponding space which

does satisfy it. If we were to drop the "convenient fiction"

of the "~" half of Q4 and bring in weaker postulates the

same would be true.

Each of the sections (a), (b) & (c) demonstrates that we

--- ----

should be able tq produce maps from "weaker" spaces to our

idealized spaces which increase the sets of behaviours.

There is a strong sense in which a process with more beh-

aviours than another can be regarded as being more non-det-

erministic than it, so that by idealizing a process we are

in fact assuming it to be worse than it really is. It is

important to note that this work shows that spaces which

satisfy our postulates are good candidates for being the

space "c" in the section on "compositions of mappings",

since the correctness condition for the function Y:D ~ C

was that it increased the sets of behaviours of processes.

There is clearly much scope for further work on the above

topic. Firstly there is a need for formal proofs of the

various results which were derived informally above. Sec-

ondly it would be interesting to know how many of the post-

ulates we could weaken simultaneously (e.g. can we weaken

P2 and P3 as well as removing independence of states from

time?). There should be no great difficulty in solving

these problems. The formal analysis of behaviour sets which

is necessary will be made easier by the following result.

8.8 Theorem

In a system satisfying Ql - Qg (whether or not it satisfies

PI, P2 and P3) the behaviour set B(c) of a process is uniquely

determined by a knowledge of its initial state and a know-

ledge of which transitions (p,X) S,T and (p,X) ~T areposs-

ible for all its states.

The proof of this is an easy induction on the length of

finite elements of B(e). The infinite elements fall into

place using Q6, Q7 and Q8.

In systems which satisfy PI, P2 and P3 in addition to Ql-Q8

we can deduce that the behaviour sets of processes are uni-

quely determin.ed by a knowledge of the possible transitions

p-4Tand p~ T. We can use this fact not only to help to

justify the use of such spaces to model weaker ones, but also

to prove the existence of canonical spaces satisfying our

postulates which can be held to model many others. It is

convenient at this stage to identify processes with their

initial states, thereby embedding spaces of processes into

their underlying spaces of states. Without any significant

loss of generality we can clearly identify the spaces of

processes and states.

Suppose that C and Cl are two spaces of processes (states)

satisfying our postulates, and that F:C ~ Cl is a function

from one to the other. Define F to be a morphism if it

satisfies the conditions:

(i) 'Uo.Vp. VoElUl'}

(ii) 'Vo.Vp. \!oEZU[.J

o ~p =9 F(o} ~ F(p}

F(o} §"p 93T€F-l(P}.

Condition (i) essentially says that all transitions possible

for an element of C must also be possib~e for its image, and

that this is also true of the process after all transitions.

Condition (ii) says that all transitions possible for the

image of a process are also possible for the process itself.

8.9 Lemma

If C, Cl and C" are three spaces of processes with morphisms

F:C -+Cl and G:CI ..,C", then.GoF is a morphism from C to C".

proof

(i) If o,p Cl and OEJ:q.) are such that oAp then

F(o} A. F(p} (asF is amorphism)
9 G(F(o}} 4 G(F(p}} (as G is a morphis~.

(ii) Ifoe.C, pEC" andoEf.U['1 are such that G(F(o)} ~p

then there is some TE Cl s .t. F(a} ~ T and G(T} = p.

This in turn implies that there is some vE Cs. t.

o~t; andF(v} =T. We thus have o~v and ve(GoF}-l(p}.

From here on let us use the term P,Q-space for a space of

processes (states) which satisfies Pl-3 and Ql-8. If C and

Cl are two P,Q-spaces and F:C ~ Cl is any function we can

extend F to the spaces of triples used in forming behaviours

(and hence to the spaces of behaviours themselves) by

F(o,X,h} = (F(o) ,X,8}. The following is a result which can be

proved by induction which shows that when F is amorphism

the spaces of behaviours of a process and its image under

F correspond in a useful way.

8.10 Lemma

If C and Cl are two P,Q-spaces and F:C ~ Clisamorphism,then

for all pE C we have B(F(p}} = F(B(p}} .

The proof of this result is omitted, being a fairly lengthy

--- -- - -- -

arglliT1ent by cases.. The author Is proof of the case of infinite

sequences uses the axiom of choice.

The chief significance of this result is that it tells us

that so far as the environment is concerned (assuming that

it cannot "see" the actual internal state of a process) there

is nothing to distinguish a process from its image under a

morphism.

8.11 Example

The following diagram illustrates the concept of morphisms

between spaces of processes. C, Cl and C" are three P,Q-

spaces, their possible actions indicated by unbroken lines.

The two maps F and G (indicated by broken lines) are morph-

isms.

C F C' G C"

a f-_- -_ -_ -_- ~ - - - - - - - - - a. - - - - - - _

b-Jr - - - - - - - - - - - - D
..::-

. .>-'-' ,..,..
_ _ _ _ _ _ _ ~ _ _ _ _ "",,""" Cl

H ," ," ::-: _ _ - - --, a ? - ~
-:::---- - ~ - - ----.

,-~ -- ~~ ;:::<--;
...- - .;:.---.:-- - - " "'"

,/ "".
--

- - - -- ---

The following results will

which are canonical in the

to them from large classes

help us in our search for spaces

sense of having unique morphisms

of P ,Q-spaces .

8.12 Lemma

Suppose that C, Cl and C" are three P,Q-spaces with morphisms

F:C ~ Cl and G:C ~ C". We can define an equivalence relation

on C by U""P #3k,Tl,vl,...,vk.cr=Tl & P= vk & V'i.F(Ti) = F(vi)
& V'i.G(v.) = G(T' +l)'~ ~.

The quotient space C/~ can be made into a P,Q-space by

defining the transitions by (7 ~ P # 3TE a, v lEp. T ~ v

and the behaviours by Ql-8. This is a well-defined P,Q-

space, and the map H(p) = P is amorphism.

The proof of this result is technical and is omitted.

The chief purpos~ of 8.12 is to show that if F and G are

two morphisms of a P,Q-space C then there is a third which

identifies all pairs of processes identified by either F

or G. An immediate corollary to 8.12 is thus the fact that
H ~

the relation on C defined by ~~p ~ ~some morphism F which

identifies ~ &p'is an equivalence relation. This equival-

ence relation is used to prove 8.14 below.

If C is any P,Q-space let us define a non-empty subset D

of C to be a subspace of C if it is closed under " " in the

sense 3uED. 3h . uA p 9 PED. (An element of D has the same

transitions and behaviours which it has as an element of C.)

It is clear that with the spaces of transitions and behav-

iours described D is a P,Q-space.

8.13 Lenuna

a) If C" is a subspace of Cl and Cl is a subspace of C then

C" is a subspace of C.

b) If F:C ~ Cl is a morphism and D is a subspace of C then

F(D) is a subspace of Cl. (Corollary: Im(F) is a subspace

of Cl.)

c) If F:C ~ Cl is a morphism and D is a subspace of Cl then
-1

F (D) is a subspace of C.

d) If D ~s a subspaceof C and F:D ~ DI is a morphism such

that F(u) = F(p) (p,UE:D), then there is a space Cl and a

morphism FI:C ~ Cl such that FI(u) = FI (p).

proof

(a) is obviouSi (b) follows from clause (ii) of our defin-

ition of morphismsi (c) follows from clause (i) of our def-

inition of morphismsi (d) follows by consideration of the

equi valence relation ""," defined t:~'T if arid only if either

V=T and v*tD or T,vED and F(v) = F(T). We can make C/-"

into a P,Q-space by endowing it with the transitions v ~ T

s.t. 3 v'Ev, T'ET. v'~ T'. It is not hard to show that the map

FI (v) = v is the morphism we require.

Having established the technical results 8.11 and 8.12 we

are in a position to prove the following important result.

8.14 Theorem

If C is any P ,Q-space and _I is the equivalence relation

defined on it as above then the quotient space C/ I, when

made into a P,Q-space with transitions a ~ p ~1TEa, VEP. T~V,

has the property 'that the map F*:C ~ C/~' defined by F~a) = a

is a morphism. Call C/~' by the name C*. F* is the only

morphism from C to C*, and if G is any morphism from C to a

P,Q-space D then there is a unique morphism from Im(G) to

C*, and this morphism G* satisfies G*oG = F*.

proof

We will first show that F* is

a~p =9 F*(a) 4 F*(p) for all

We must therefore show that a

a morphism. Trivially

a,pEC (since a€a and pEp) .

~ P =9 3 T E p. a ~ T. Suppose

then that (i.§., p; this means that there exist some a' E a
and p' EP s.t. o'Ap'. By definitiqn of our equivalence

relation there exist morphisms F and G of C s~ch that

F(a) = F(a') and G(p) = G(p'). By 8.12 this implies the

existence of some morphism H:C ~ C' (for some e') such that

H(p) = H(p') and H(a) = H(a'). Since H is a morphism we

must have that H(a) ~ H(p), which in turn implies that there

exists some p" s.t. H(p) = H(p") and a§. p". We have thus

shown the existence of some Hand p" s.t. H(p) = H(p") (so

that P = p") and a.§.,p". This completes the proof that F*

is amorphism.

If C' is any other P,Q-space with amorphism G:C - C' then

Im(G) is a subspace of C' by 8.13. We can define a map

G*:Im(G) ~ C* by G*(G(p» = F*(p). This map is well-defined

since whenever G(v) = G(T) we have T-'V, which implies that

F*(T) = F*(1:). G* is a morphism since G(T) .4 G(v) ~3"/EG-l(1/).

T ~ Vi; we then have F* (T) ~ F* (v'),which implies

G* (G(T» P. G* (G(v» as required (as G(D') = G(v». Secondly

if G* (G(p» §.T then T'eF*-1 (T). P~ T' (as F* is amorphism);

since G is a morphism we then get G(p) ~ G(T') , which is what

we require since G(T)E G*-l(T) by construction. Thus G* is

indeed a morphism as claimed, and it is obvious from its

definition that G*oG = F*.

It remains to examine the question of uniqueness. If F'

were a second morphism F':C ~ C* then by the above there

exists amorphism F":Im(F') ~ C* such that F*= F"oF'. We

must show that F" is the identity morphism. Claim first

that F" is one-one. If it were not then we could (by 8.13(d»

find a space C" and a morphism F+:C*~ C" which was not one-

one. However F+oF* is a morphism of C, so by the above

there exists a m<;)rphismF** :C" ...C* such that F** of+o F* = F*.

This means that F** = (F+)-l, contradicting the fact that

F+ is not injective. Hence F" is injective as claimed.

Since F" is injective and surj~ctive we can define an equi-
I k k

valence relation v-.*on C* by V"'*T # 3k .F" (T) = v or F" (v) = T .

If we (as usual) consider C*/~* as a P,Q-space with trans-

itions v~1, T ~ 3v'eu, T'ET'". V'1,T' the map G:C*"'" C*/v-* defined

G(a) = a can be shown to be a morphism. Now GoF* is a

morphism from C to C*/~*, so by our earlier work there

exists a morphism G*:C*/~* .., C* such that G*oGoF* = F*.

Hence G is injective, so all the equivalence classes of

v* have only one element. This is easily seen to imply

that F" is the identit¥ map from C* to C*.

We have thus shown that F* = IoF' (I the identity map on

C*), which implies that F* is indeed the only morphism

from C to C*. The uniqueness of the maps G*:Im(G) ~ C*

follows immediately from the uniqueness of F*.

This result has a neat statement in category theory: C* is

a terminal object in the category of onto morphic images

of C (with morphisms as arrows).

The next result, which has the same type of proof, is an

extension to the above.

8.15 Theorem

Suppose that C and Dare P,Q-spaces and that F:C ~ D is a

morphism, then if D* is the abstraction of D produced by

8.14 and F*:D ~ D* is the (unique) morphism between them,

we have that there is a unique morphism from D to C*, and

its image is isomorphic to C* (the abstraction of C prod-

uced by 8.14). Thus the compound map F*oF is independent
of our choice of F.

Our next step will be to attempt to build up a "universal"

P,Q-space into which all others can be mapped by a unique

morphism. One can attempt to do this in two essentially

mifferent ways. The most obvious approach is to try to

construct such a space from scratch. ~his would have the

advantage that we would know exactly how it was constructed,

making it easier to calculate with.

The other approac~ is non-constructive. Suppose we are

given a set S of P,Q-spaces (for example a representative

of each of the isomorphism classes of P,Q-spaces with

less than or equal to any given cardinality),then let

us form a "separated union" ~ of these spaces by attaching

to each of its elements the name of the set from which it

originally came. (~= f(O"',C)ICE S & <fECJ) If the space

is given the transitions inherited from the elements of S
6 I ~ '

((o-,C) ~ (p,D) iff C = D & 0' ~j> in C), then ~ can be thought

of as a P,Q-space containing a copy of each element of S as

a subspace. The space ~* can be regarded as a canonical

space for S, since each C € S trivially has a morphism into

~, and so by 8.15 there is a unique morphism from each ele-

ment of S to S*.

If as suggested we take S to be a set of representatives

of isomorphism classes of spaces with less than a given

cardinality, then it is clear that there is a unique morphism

from every P,Q-space with less than this cardinality to ~*.

If it were possible to find a bound on the cardinalities

of the spaces ~* (though we will shortly be able to deduce

that it is not possible) then it would be easy to extend

the above work to a production of a completely universal

space. The above gives a sufficient taste of the type of

methods whxch might be adopted to produce universal spaces

in non-constructive ways. With a little more sophistication

in category theory one might extend it further, but without

further ado we will switch over to the ~ore constructive

approach.

Our idea of what a morphism is is of a map which preserves

the exact shape of the possible behaviours of a process.

Instead of analysing spaces directly through their morphisms

as we have done hitherto it does not seem unreasonable to

try to analyse them directly through their shapes of trans-

ition spaces. We can define a space (for any alphabet L)

which attempts to record all the possible shapes of trans-

itions up to depth n (for any nE N).

TO = H~~ (there is only one possible shape of depth 0)

T 1= P({2:U ~'))XT) (a possible shape of depth n+l can
n+ benregardedas a relation between the poss-

ible transitions and the shapes o£ depth n) .

- -- - --- - - - ---

It is easy to see that for all n T ST +1 . Because of this
. n n

we can regard T asa P ,Q-space in the obvious way, with then

transitions erl.f # (0 'f)E (J"". It is possible to show that
every morphism of T is injective, which tells us that Tn n
is isomorphic as a P,Q-space to T*.n

8.16 Lemma

Every morphism of T is injective.n

proof

We prove this by induction on n; the result is trivially

true when n=O, since T has only one element.o

Suppose true for Tn' and that F:Tn+l~ C is a morphism for

some space C. Tn is a subspace of Tn+l,-so by-induction
F is injective on this subspace.

Suppose that if and p are two distinct elements of Tn+l.

There must be some beLUf8) and TET such that (~,T) isn
contained in ~-p (without loss of generality). We must

show that F (0-) rj F <p). Since F is a morphism we have

F (~) ~~ F (T); if F (a') = F (p) then there would be some y-ETn+l
s. t. P ~v- and F (V') = F (T). However p ~y ~v ETn' and F is
injective on T , which implies that V= T , contradictingn

the fact that (~,T)~p. Thus F is injective, completing

our inductive proof.

The next step is to define functions which, given a process,

produce the representation of its depth n behaviour.

Given a P,Q-space we can expect to find a function HC:C ~ Tn n
for each n € N.

HC(6) = ~o

H~+l (c1)= t(b,H~(p»1 o-~f 3

8.17 Lemma

a) If D is a subspace of C and O'ED, then the values HD(cr)
C n

produced relative to D are the same as those Hn(<r)pr-oducecl
relative to C.

b) If F:C ~ D is a morphism then HC(~) = HD(F(O-» for alln n
eY"'€C.

c) If F:C ..D is a morphism and HC(6) ~ HC(f) then we cann n

be certain that F (0-) ~ F <P) .

The proofs of (a).and (b) are straightforward deductions from

our definitions. Part~) is a corollaryto part (b) .

One of the effects of ~.17 is that it allows us to ignore

the superscript "c" in the notation HC(o') without beingn
likely to introduce errors. Henceforth we will omit it on

the understanding that it could be inserted if desired.

8.18 Lemma

If we regard the spaces T as P,Q-spaces in the mannern

described earlier then the following.are true:
a) Ifo'E T and m ~ n then H (0') = ().n m
b) For any space C and ef'EC we have H (H (er» = Hk (0-) forn m
all n,m,k s.t. k=min(n,m).

The proofs of these results are just easy inductions.

One might hope that since we have established (8.l7(c» that

two processes mapped to different elements of any T mustn
be kept separate by any morphism, there might be some reverse

implication: if two processes are mapped to the same element

of T for each n then they can be identified by some morphism.n
With this hope in mind we can define a space of behaviour

spaces Tw, which is the set of sequences of elements from

L~e T. which match up under the functions H. .~ ~

Tw= f(C1", 0-1,...,0".,...)1 Vi.()'.eT. & H' +l «)'+l) = 0'.3o ~ ~ ~ ~ ~ ~

(Tw is just the inverse limit of the spaces T. with projec-~
tion functions H..)~

We can easily define a function Hw:C ~ Tw for any P,Q-space

C by Hw(ef')= (HO(6) ,Hl(6) ,..,Hi(~) ,..). The space T~ is

naturally made into a P,Q-space by the transitions ~~ R ~

Vi.~+ll Pi (where ~i representsthe ith component of the
sequence ~).

8.19 Lemma

If we regard Tw as a P,Q-space as above, then:

a) H (0-)= a-i Hw(cr) = G' for all g ETw.n - n - -
b) Every morphism of Tw is injective.

The proof of (a) is an induction on ni part (b) follows by

part (a) and 8.17(c).

I

Note that (a) implies that for any space C and r5E C we have

Hn (Hw (01) = Hn (0-) for all n, and Hw (0-) = Hc.,(HI.>(0-)) .

One might hope that the map Hw is a morphismi unfortunately

however this is not so. This is because even though two

processes have the same shapes of behaviour for all finite

depths it does not mean that they are sufficiently similar

to be identified by a morphism. As an example consider

the two processes represented by the following diagram:

p

i~\\
I~ \ \
I \ , \

I , , \
\ '

\

\ \
!. \

, ,
, ..

\ .

,
,

"er"has the potential to perform an infinite sequence of

internal actions whereas "pu does not. There can be no

morphism F which identifies CJ' and,P, for otherwise there

would be some."v" such thatp~v and F(V) = F(J). It is

easy to prove inductively that this cannot be so. It is

also not hard to verify that H (0-) = H (0) for all nE N ,n nF
which implies that Hw(O") = Ht.)<P) .

It is an easy consequence of our results that the higher

the index of the function ~, the more distinctions it makes.

It is not unnatural to define such functions for higher

ordinals than w, therefore. For countable ordinals this

can be done in a very similar way to the above. We define

spaces T~ and projection functions H« by mutual recursion.

T
o

H (er)o
9J has no transitionsi

To<+l = r((L:U ~.J}x Toe.)

Hoc+l(<r) = f(cS,HY'»}o' ~pj

To<+lhas transitions (j ~ Hc(+l Cp) if (O,p)Erf

T = f () J a is a).-sequence of elements of UTa s.t.
A - - /3<'>.,.

13< A9' (eJ"'.e E T~ & « 'g<f3) 9 H¥ (0",8) = ~)) J
=.£2., where po(= HO((en for 0«)...

transition !I~.12 <09 (b"f'6)£'~+1 for all 1<)...

- -

For countable ~ it is possible to prove several results

about T~ and Ek which are extensions of our earlier ones.

Note that (b) below is necessary for the well-definedness

of HA (~limit ordinal) in that H~(~) is only an element

of T>- if Hp (H<o((0-» = Hp (0-) for all (3<.<o«\.

8.20 Theorem

If we regard each of the spaces .T~ as.a P,Q-space with the

transitions described above then each of the following holds.

a) I f erE To< then Ho((0-) = (5.

b) If C is a P,Q-space and ifEC then p~~ 7 Hp(H~(6» = Hp(~).

c) If A is a limit ordinal and fEET~ then 0«>--=9He>((~) =0;.
d) Every morphism of ~is injective.

e) If crEC and F:C ~ D is a morphism, then H~ «) = H~ (F(O""».

These results can all be proved by technical manipulations,

some of which (in the author's proof) depend on the fact

that every countable limit ordinal >-- has an w-sequence of
""

ordinals <o<.!
i E N) such that Vi .o(l'<'~and .U o<J' = >--.

1 1=0

Note that we need only look to the function HW+I to separate

the two processes described ea~lier (which were identified

by Hw but not by any rnorphism). We can however deduce from

8.20(d) and the fact that none of the T~ has a largest card-

inality (among the T~), that none of the functions Ho(can be

a rnorphism on every P,Q-space C (it is not one on To(+l).

Note also that even for the countable ordinals which we

have used so far, the spaces ~ get very large indeed by

normal standards.

The author's proof of 8.20(c) (which is vital to his proof

of (a), (b) and (d» breaks down at limit ordinals with

cofinality greater than w. At the time of writing he does

not know whether it holds or not. Because of this it is

not possible even to define the pairs (~,H~) for any ordinal

greater than or equal to w1+w(w1the first uncountable ordinal)
using our existing definition. It is however possible to

adjust our definition (in such a way that if 8.20 does in

fact hold for spaces defined in the old way for arbitrary~

the two correspond) and obtain workable spaces for all ord-

inals.

---- - -- ----

We adopt the sam~ definition as before except that when ~
is a limit ordinal with cofinality greater than w we take:

T' = l (]'I CJ is a).,-sequence of elements of " ~ such that
>-. - - ~)..

0«'>-. =9 (o-o(€ To(& «f3<<><) =9 H,a(6.,..)= op))J
H),.(O-)= E.' where po(= He(lo1 for 0<'<)...

In T~ Q: has transitions Q:"~ J2 if (~,py,) E 0;+1 for all 'b<'>...

Now let TA= ~H'>-.(c» I!!"E T~J, and redefine the transitions

to be those of T~ with both states in the restricted space T~.

(i.e. q.l,ft.in TA if ?:'E~T and q1;...e in T~.)

8.21 Theorem

With the definition given above each of the clauses of 8.20

holds for spaces T~ and functions Ho(defined for arbitrary

ordinals~. In addition H~ is a well-defined function from

every P,Q-space to To(for every~(this is not quite obvious

in the case of non-~-cofinal limit ordinals).

This result has a long and technical proof whi.ch is just

an expansion of the one for 8.20.

Because clause (d) of 8.20 carries over to the general case

we must give up all hope of finding a completely universal

P,Q-space, as we can now find spaces with arbitrarily large

cardinality whose only morphisms are injective. One can

however prove that given any P,Q-space C then for sufficiently

large ordinals 0< the maps Ho(: C ~ To(are morphisms. Given

a P,Q-space C we can define a cardinal I(C) which is the

index of non-determinism of C by

I(C) = smallest infinite regular cardinal strictly greater

than that of ~pECI er ~p1 for everYO'EC and ~Ez.u5.}.

Thus I(C) = No if and only if there is no 0-<::C and .&E2lJf.1s.t.

~pEC 10-~p1 is infinite.

8.22 Theorem

If C is a P ,Q-space and 0(is an ordinal such that 10</ ~I (C)

then H~:C + T~ is amorphism.

The proof of this result is not very difficult.

Corollaries to 8.22 are the

in the sense I (C) = N.o the.n

and if I(C) =N.1then Hw,:C'"
uncountable ordinal) .

facts that if C is finite-branching

the map H~:C ~ Tw is amorphism,

T~ is a morphism (~I the smallestI

8.21 tells us th~t for every alphabet ~ and cardinal N. we

can construct a space U into which there is amorphism

from every space with this alphabet whose index of non-det-

erminism does not exceed~. The fact that these morphisms

.into U are unique is implied by the fact that all morphisms

of U are injective, which means that U is isomorphic to U*,

so we can apply 8.15. Thus U can be regarded as a universal

space (in the sense described earlier) for a restricted class

of spaces.

In most cases this universal space is much bigger than is

necessary. As an example of this consider the result of

constructing the universal space for finite branching

processes over a countably infinite alphabet L. The succ-

essive approximations T. to this space have cardinal ~.,
N 1 .J 1

where Jo= 1; .:21=2 D, and n ~ 1 ~ .In+l= 2 ". The cardinal
of the space Tw is at least as large as the least upper

bound of these cardinals. It is possible to cut this down

very considerably by considering only those elements of Tn
which can be the image under H of a finitelybranchingn

process. Let us define subspaces T~ and T~ of Tn and TI4J
respectively by the following:

T* = [~1o

T~+l= ~XS (L:'v[.JXT~)1V6. ~o-I (~,cr)E: XJ is finite]

T~. = £ aE T I V n. (5 € T* ':2.- n n,)

It is clear that T~ is indeed a subspace of Tw, and that

the image under Hw of any C such that I(C) = ~ois contained

in T~. We can therefore regard T~ as a universal space

for finitely branckng processes. The cardinals of the spaces

T* are successively l,2~,t.,2~,... , and the cardinal of T~n
is 2"'"".

In fact T~, though it has minimal possible cardinal with

respect to being a universal space for finitely branching

processes, still contains elements which cannot be the

image under Hw of any element of a finite branching space.

This can be seen by consideration of the processes quoted

earlier as examples of processes identified by Hw but not

by any morphism. It is easy to see that their joint image

under Hw is an element of T~, but that this element of T~

is one which cannot be the image of an element of a finite

branching space (there are infinitely many elements of T*. "'"

to which it can be transformed by a single internal action) .

If we let U be the union of all the images in T~ of finite

branching spaces it is not hard to see that U is a (proper)

subspace of T~. Furthermore U is itself a finite branching

space, and so has a unique morphism into T~ (which must be

the identity morphism). Thus U is a universal space for

all finite branching spaces, and there can be no smaller

one. It is possible to construct U explicitly as follows:

Let = T*w

Un+l = ~Q E T~ I <'IJ.:lnEN. Vm.l~ I (Lp) E ermJ1< n)]

(\ ~ Q: E T~I y~. Vft. ~.4 ft ~..e € un3
00

U = n u"n=o

There is no reason why "Tw" should not be used in place of

"T:'''in either of the above constructions of U, since we

would have got the same answer. The only advantage gained

from using T~ is that it gives us a much better bound on

the cardinal of the space U. It is also possjble to use

either of the above tricks to obtain a universal space U

for P,Q-spaces with any bound on their index of non-deter-

minism, and any size of alphabet 2, such that U falls into

the class of spaces which it models.

So far we have only proved the non-existence of completely

universal spaces as'a corollary-to the" difficult conBtruction

we devized for partially" universal spaces. It does in fact

have quite an easy proof by contradiction.

8.23 Theorem

For no alphabet ~ can there be a P,Q-space U to which there

is a morphism from every P,Q-space with this alphabet.

proof

Suppose to the contrary that such a U does exist for some

alphabet L: . As we have seen U* would have a unique morphism

to it from every P,Q-space with the given alphabet, and also

every morphism of U* is injective. Consider the P,Q-space

V = ([a3xu*)U(£b3')(~(U*»)(a~), which has transitions

(a,o-) ~ (a,p) iff C5" ~P in U*i
(b,X) ~ (a,cr) iff (J'EXi

and no others.

- -- - - - - - -- - - - - --

Since V is a P,Q~space with alphabet L there must be some

(unique) morphism F:V ~ U*. The cardinal of r(u*) is

strictly greater than that of U*, so there must be two

distinct subsets X and Y of U* such that F(b,X) = F(b,Y).

We may without loss of generality assume that there is

some ~EX - Y. It is easy to prove from the definition of

morphisms that there must be some f' E Y such that F (a,p) =
F(a,o-). Thus F is not injective on "the subspace faJxU*

of V. However this contradicts the fact that this subspace

is isomorphic to U*, since all morphisms of U* are injective.

We may thus conclude that, as claimed, no such U can exist.

We have already demonstrated that we can, amongst all the

P,Q-spaces with any given bound on their index of non-det-

erminism, find one which is universal. Sometimes we will

wish to make additional assumptions about the type of P,Q-

space we are using, and when we do this it will be useful

to be able to construct a universal space for spaces with

this property (where possible). The following result

shows one way in which this can be done.

8.24 Theorem

Suppose that "X" is a property of P,Q-spaces which satis-

fies the following laws:

(i) If C is a space with

morphism, then Im(F)

property X and F:C ~ D is a

has property X.

(ii) If C is a space with subspaces [CalaEAJ such that

C = U Ca and each Cahas property X, then C also hasa€A
propertar X.

then we may conclude that for each cardinal N there exists

a P ,Q-space ~ such that ~ has property X, I (~)~ ~ , and

such that whenever C is a space with property X such that

I(C)~N there exists a unique morphism F:C ~ ~.
proof

Let U be a universal space fior spaces such that I(C)~~ (for

example T« ' where ~ is the initial ordinal with cardinal~+).

Define UX to be the union of all the images in U of spaces

C s.t. I(C)~ ~ and C has property X. It is easily seen that

UX, when so defined, satisfies all that is required of it.

- --

In the last few pages we have developed a calculus which

allows us to relate P,Q-spaces by means of maps called

"morphisms", which are in some sense behaviour preserving

maps between them. We have succeeded in producing universal

spaces which can be held to model large classes of spaces

in unique ways. The spaces we have been studying are in

essence simple relational structures, which in various guises

are used throughout"mathematics. There is therefore much

similarity between the above work and that of other authors

which the author is aware of, and probably more with other

work with which he is not familiar. For example the concept

of "operational equivalence", as introduced in Hennessy and

Milner () and other works, is extremely similar to the

equivalence induced by the operator HW9 The chief differ-

ence is in the treatment o~ internal actions. Different

types of "morphisms", similarly defined, can be used to

analyze other, rather more complicated, types of process-

spaces. For example this can be done (with almost exactly

the same effect) for spaces where the relations represent

finite sequences of visible actions, when given a suitable

axiomatization.

Having built up enough machinery for our own purpose we

are in a position to return to the main theme of this chap-

ter, and to find out how the spaces we have constructed

relate to the models we used in earlier chapters. We are

essentially seeking functions "8" such that, given processes

"c" in a P,Q-space "e", the "c"s are mapped in a useful and

realistic way to one of our models by the map ~(c) =
~O(~) I ~ E 8(c) 3 . Our intuition about the models is that

they represent some aspect of the observable behaviour of

processes. Given a behaviour, which is an abstraction of

one possible sequence of interactions between process and

state, we must ask just which parts of it are observable

by an experimenter who manipulates the environment. The

two things which are certain to be. observable are the env-

ironment component "X" of the triples making up behaviours,

and any external actions which occur. We can also assume

that the experimenter is aware of the postulates (general

properties of processes) which processes satisfy, so that

for example if he can be sure that no action has occurred

- -

for sufficiently .long (while one set, X, was offered) he can

deduce that no action will ever occur (if he persists in

offering X). We will assume that the internal state "c:r"

of a process is invisible to the experimenter. The only

question to be decided is whether or not the experimenter

can observe the presence or absence of internal actions.

One might imagine that there is a light on the side of a

machine which lights up when there is internal activity.

We cannot expect the experimenter to be able to discern

anything more about internal activity than its presence,

in the loosest sense (if he can detect it at a~l): for exam-

ple it does not seem reasonable to expect him to be able to

count the number of internal actions which occur. We will

find that there are two distinct maps from P,Q-spaces to

the non-deterministic model, the choice between them being

largely dependent on whether or not we believe internal

activity to be observable.

The principle that the internal state of a process is inv-

isible is important in justifying the use of morphisms and

universal spaces. This is because of 8.10 which tells us

that apart from the state components of behaviour, the beh-

aviours of a process and its image under a morphism are

identical. By this principle it seems reasonable to expect

that the function "0" which maps behaviours to their repr-

esentations will be independent of the "state" components of

behaviours. We will therefore expect it to be induced in

the natural way by some function of (~(L)X(~U[' ,-,*~). (= H,

say). In future when "0" is a function of H we will regard
"

"0" as being i1;-snatural extension to behaviours. This

is formed by defining a projection function h to be the

natural extension to sequences of the function h(~,X,6)
'"

= (X,tS). "0" then becomes Ooh. If C and 0 are two P,Q-

spaces then whenever F is a morphism from C to D and (Jis

a function of H we have f O(~) I ~ € B (c)3 = f8(~) I ~ E B (F (c))J

for all CE: C.

An extension of this principle is to decree that not only

will our modelling functions be independent of states, but

also the correctness conditions "X" of behaviours which we

wish to prove will be independent of states. This can be

interpreted as saying that we shall judge our processes

only by what they do (or fail to do) either internally or

externally, and not by how they are actually constructed.

We will thus generally expect our predicates of behaviour

to be induced in the natural way by predicates of H. If

"X" is a predicate of H we will write "X" for the predi-

cate which it induces on whatever space of behaviours we
~ - .

are currently using, (X(~) == X(h (~»). It is easy to see

that if C and Dare P,Q-spaces and X is a predicate of H

then ~¥(c)<:}_¥(F(c» for all CEC, whenever F:C ..., D is a- -

morphism.

We may thus conclude that, so long as our functions and

predicates are "forgetful" of internal states, both a pro-

cess' image in a model and the truth of predicates about

them are invariant through morphisms. Thus in these circum-

stances, to prove a predicate of a process "c" from any space

C it is sufficient to prove the corresponding predicate of

the process' image in any suitable universal space.

When we are using functions and predicates of this "forget-

ful" type, the set of the projections into H of the behav-

iours of a process is very important. If we define B*(c),

the "reduced behaviour set", of c E C to be ~h (~) I ~ E B (c)},

it is easy to see that for any function 0 of H we have

t8 (~) I ~ E B(c) j = ~o(a} , a E B* (c>J. Similarly when X is a
....

predicate of H we get X(c).# Va E B* (c).X(a). Note that-- - -
B* (c) S; B* (d) & !(d) =;.l(c). Both the image of a proces s

in a model and the truth of predicates "R" about it are det-

ermined completely by its reduced behaviour set.

Before we get involved in maps to the non-deterministic

model it is perhaps wise to see how we might use the machi-

nery we have set up to construct and analyse maps from

P,Q-spaces to the deterministic model P. There is really

only one map worth considering, namely that induced by the

following function "0" of H:

O«» = ()i if a is finite then

O(<<X,d»)= O() if 6€.' -,* and = ()O() if 6E L. ;

O(a) ={) if a is infinite.

To establish the finality of "j" we would have to make

.some additional postulate of our spaces such as

_(DI) (u,X) if 9'((p,Y) ~ T).

It is easy to see that DI, when regarded as a property of

P,Q-spaces, satisfies the hypothesis of 8.24. There is

thus no difficulty in constructing universal spaces for

P,Q-spaces which additionally satisfy DI. Let us call a

P,Q-space which satisfies DI a Dl-space. It is easy to

show that when C is a Dl-space we have

(iii) w</>vE <l>(c) =7> v={} for all c EC.

Thus <Z>is a well-defined map from every Dl-space to the

deterministic model P.

P can itself be. regarded as a Dl-space. Transitions are

defined: A ~ B iff B = A after (a> ; no internal transitions.

It is a simple matter to prove <l>(A)= A for all A E P. One

easy consequence of this fact is that <Z>is a surjective

function from the universal finite branching Dl-space to P.

For the time being let us adopt this universal space as the

"c" which we are trying to model by P.

The first thing which we must investigate, when studying the

relationship between a "real" system and a model, is the way

in which predicates which we wish to prove of the real system

transfer to the model. Intuitively one might suspect that

the map <Z>is adequate for expressing many partial correctness

conditions (those which demand that anything which a process

actually does is correct), but is poor when it comes to total

correctness conditions (which demand that a process must act-

ually be willing to do things) .

_ ~ansitions. It is easy to

see that <Z>(c)= <Z>(d)(because they have the same possible

-- -- -- - - - - - - - -

It is easy to show from our postulates that the "<z>"induced
.... .

by 6 satisfies the following, when regarded as a function

from a P,Q-space C to (L*) .

(i) <l>(c) is non-empty for all c € C

(ii) <l>(c) is prefix closed for all c "C.

Because of the universal nature of the space C it is not

hard to show that given any CEC there exists some (unique)

element d of C whose only transitions are d 4 C and d e,

where e is a process with no tJ

sequences of ext~rnal actions). However it is also easy

to see that B*(d)2B*(f), where f is the element of C with

a unique transition f ~ e. Suppose now that X is any pred-
~

icate of H such that (or)I (the weakest predicate n of P s.t.

"IcEC.n(<I>(c)J~ g(c) is satisfiable. Suppose A is chosen so

that (X)' (A) holds, and that c E C is such that <I>(c) = A

(such a "c" exists since <I>is surjecti ve). Now construct

"d" as above. Since <I>(c)= <I>(d)holds we have (.~)'(<I>(d»;
....

this implies J(d), which in turn implies J(f) (because

B* (d) '2 B* (f)) .

We are thus forced to conclude that whenever "g" is a pred-

icate of C sufficiently weak to allow it to be deduced of

any process from the process' image in P, it must itself be

satisfied by the process "f" which can only perform one

(internall action before deadlocking. This confirms the

suspicion which we developed in chapter one, that the model

P is not adequate for telling us anything reliable about

potentially non-deterministic processes. Some indications

were given in chapter one about the type of process which

we felt was adequately described by P. Without going into

any more detail on the modelling of the above system C let

us now try to restrict our object space to processes which

we can model accurately over P.

We wish to axiomatize "deterministic" behaviour. We might

expect the chief sources of non-determinism to be firstly

internal actions (which can "resolve" non-determinism) and

secondly cases where one

action with a particular

sses the proscription of

following:

(D2) .,«aIX) ~ p) & «(a,X) ~ p) & «a,X) ~ T) :;>P=T)

state has more than one external

name. The postulate which expre-

these types of behaviour is the

This is another property which satisfies the hypotheses of

8.24; thus so is the joint condition Dl & D2. We may thus

deduce the existence of a universal D-space, where aD-space

is defined to be a P,Q-space which satisfies Dl and D2.

(The existence of a completely universal space follows from

the fact that any space which satisfies D2 is automatically

finiEe-branching). It is possible to weaken condition D2

slightly to allow a little internal behaviour. We can reas-

onably allow a deterministic process to have internal actions

if they are all single (for each a there is at most one p

such that a4 p) and inevitable (if a':'p is possible then

a ~ T is not). A modified D2 which expresses this is

(D2') (((a, X) A p} & « a,X) ~ T} ~ P =T}

& ., (((a, X) ~ p} & « a, X) ~ T}) .

D2' is also a condition which satisfies the hypotheses of

8.24, so in a similar manner to the above we may deduce the

existence of a universal D'-space (a P,Q-space whi.ch satis-

fies DI and D2'). Note that every D-space is a D'-space.

Clearly P, when made into a Dl-space as before, is aD-space.

We can deduce from this that $ is a surjective function to

to P from each of the universal D-space and the universal

D'-space.

It is left as an exercise for the interested reader to ver-

ify.that in either of the above types of space the set of

predicates we can reasonably expect to prove by reference

to the model is much larger and more useful than in the

earlier case. It is worthwhile to make two remarks however.

Firstly it is not hard to show that the universal D-space

is isomorphic to P (when? is regarded as a D-space in the

usual way), and that $ is a morphism from any D-space to P.

Thus (recalling 8.1) it is not surprizing that predicates

should transfer well between the two systems. Secondly,

in the D'-space case, it is interesting to note that the

function $ identifies the processes "e", which has no act-

ions, and "d", which has a single action d ~ d. ($ also

identifies any pair of processes whose structure is the

same except for the substitution of "e" for "d" at some

points, or vice-versa.) It thus identifies "divergence"

or "infinite internal chatter" with "computed termination".

Thus the absence of divergence is not expressible as a pred-

icate of P which does not also imply freedom from deadlock.

This issue (the difference between divergence and computed

deadlock) will be more important later, when we come to

consider the non-deterministic model.

Another interesting point which arises from the study of

the relationship between these "real" systems and the model

P, is that P is v~ry much a class 2 model for these systems.

The most obvious way of seeing this is to note that if P

were thought of as a class 1 model, this would mean that

we only allowed ourselves monotonic predicates. We would

then find ourselves in very much the same boat which we

were in with the Dl-space, for every satisfiable predicate

which we allowed ourselves would be satisfied by abort.

The processes "e" and "d" (as defined.in the last paragraph)

would (as constant functions) be correct implementations of

every operator.

The basic reasons for this .arise from the structure of the

function "<1>"in the following way. The function "<I>"is
'"

based on a function "0" of behaviours which is essentially

one-sided in that it only reflects one of the two aspects

of behaviour which are essential to most total correctness

predicates. It. is based purely on the "posi tiveil aspects

of behaviour (triples of the form (a,X,a) for a EL), and

not the equally important "negative" aspects (triples of

the form (a,X,*) and infinite sequences of internal actions).

The restrictive conditions which we have placed on D- and

D'-spaces enable us to discover enough about the negative

aspects of behaviour which are possible by studying the pos-

itive aspects. To do this we have to exploit the relation-

ship which states that (in D- and D'-spaces) the more posi-

tive behaviours there are possible, the more "negative" beh-

aviours can be deduced impossible. Thus, if we wish to

check that an undesirable "negative behaviour" is impossible

in a process by studying its image in P, it will often be

necessary to check that some "positive" behaviour is possible.

For example to ensure that a process c cannot deadlock on .its

first step it is necessary to check that <l>(c)o#~. It is

because of this "upside-down exclusion" of negative behav-

iours that we cannot expect monotonic predicates to be suff-

iciently expressive, since by removing elements from an

element of P we are adding possibly incorrect negative beh-

aviours to its pre-image.

Having decided that our model is to be regarded as class 2

it is necessary that our implementations of the various

operators and constructs of our language be exact. So far

- - -- --- - ---

we have been too involved with the construction and interp-

retation of our "real" systems to consider the problem of

how we might seek to implement our language in them. What

we would like is an operational semantics for our language.

We have not got space here to go into this subject in very

much detail; we will therefore quickly survey the various

options open to us, draw a few general conclusions, and

pass on to the study of the non-deterministic model.

There are several ways in which one might seek to give an

operational semantics to our language; some of these are

more abstract than others. One approach would be to define

exactly what was meant by the "state" of a process: how it

stores and recalls the values of its various variables, and

how it decides which actions to take (with what influence on

itself). If one did this it would be necessary to check

that the space of states which resulted satisfied whatever

postulates were required of them. Without going into tech-

nical detail it is only possible to make a few general rem-

arks about this approach.

(i) We cannot expect an operator to be able to see any more

about its operands than an environment could. It is not

reasonable to expect an operator to be able to predict what

its operands will do after actions which have not yet been

completed (nor to anticipate divergence). One useful way

to think. of an operator is as a "black box" which is placed

around its operands and which has certain powers over them4

for example:

(a) An operator can "switch on" or "switch off" its operands.

On switching an operand on for the first time the operator

must initialize all its variables. Only "on" operands may

perform any action. The act of switching will itself be an

internal action of the total state.

(b) Any internal action performed by an operand is an inter-

nal action of the total state, and uncontrollable by the

operand.

(c) The operator can act as environment to its operands and

communicate with them without telling its own environment.

Any such communications are internal actions of the total

state.

--------- - ---

(d) An operator can communicate with its environment with-

out reference to its operands.

(e) An operator can regulate communication between the

environment and its operand(s). For example it might trans-

form the alphabet in some way, synchronize several of its

operands, or become completely transparent.

(If we tried to implement our existing operators as "black

boxes", we might expect the above features to appear in the

following in important ways:

The above approach, while it might be considered to leave

something to be desired, is a valuable aid to the intuition

when considering the "reasonableness" of operators defined

over universal spaces in abstract ways.

(ii) We would expect the values stored in process variables

to be processes "switched off" (unevaluated code?) with the

property that, when activated, they ignore any values ass-

igned to their variables (except recursion parameters ".A")

and adopt values stored with them in some way. There should

be no problem in showing recursion to be well-defined, for

all operators are in some sense "non-destructive" of actions

because of principle (b) above, etc., and the act of making

a recursive call is constructive because it involves "switch-

ing-on", which is an internal action.

In general each of the principles seems largely consistent

with the idea that an operator (k-place) is a function from

Clk to Cl (where CI= CBXS ~ C), as in the first part of

this chapter.

Alternatively we might choose to define a semantics in a

more abstract way. This could be done by direct reference

to the structure of universal spaces (8.16 - 8.24). This

should be done bearing the above principles carefully in

mind with a view to later implementation by the more prac-

tical methods above. This is the most obvious approach to

(a) lL a -, x:T,recursion

(c) IX, ;

(d) a -, x:T -+

(e) a.,II .)

adopt when we are. using P,Q-spaces as idealized models of

other spaces. Because of the nature of universal spaces it

is possible to"define elements uniquely by their transitions.

Examples of the ways one might wish to do this are the state

"a -ta", which is defined to have a single transi tion, namely

"a" after which it becomes a, and "aip" which has its trans-

itions recursivelydefined a.AT ~ (aipJ§, (Tip) (~~ /)

a .4 v ~ la ip) ~ P

The first type of operator is easy to define: if (as is com-

mon) the universal space in use is the subspace V of some TA

(A a limit ordinal) defined through 8.24 by some property X,

then we can define "a -+a" as follows. We take it to be the

element P of TA such that Pp.J=f(a,ap)3 for allpeA (the other

components can be deduced from these). If V is a proper

subspace of T,\ then we are obliged to show that the P so

defined is an element of V. This can be done in this case

by checking that the space VI, which is V with an extra ele-

ment "p" adjoinedwith the single transitionp~ a , has the

defining property X. If this is the case then there is a

morphism from UI to U, and the image of piis P .

The second type of operator requires a little more work.

To define "aip" explicitly we have to appeal to transfinite

recursion. Let us once again suppose that U is a subspace

of TA' We define (aiP)o = ~
(aip) p+l= ~(~,{T iP)p >I a~T & ~ ~ /j

uf< . ,pp) I a 4 v j

((a ip) A/)P = (a ip)p (pE X)

Once again to show that "i" is a well-defined operator on

U (if it is) we take a space UI which includes a copy of

U and a disjoint copy of UXU. The transitions of the ele-

ments of the copy of U are those inherited from U. A pair

(a,p) has transitions (a,p) A (T,p) if ~~ I and a4T in U

(a,p) -=.p if u.4v in U.

One must show that UI has the defining properties of U, so

that there is a morphism from UI to U. If this is so the

pair (p,T) can be shown to map under this morphism to PiT,

the element of TA defined above.

Note that provided that the space V is closed under each of

the above operators it is easy to prove the relations

a ~ (piT) = (a ~ PiT) and «aiP)jT) = (Ui(PiT».

- - -

Other operators can be defined in very much the same way.

This should always be done in a way which does not violate

the principles derived from our "black box" dis cussion.

The first of these is thatatevery stage the transitions of

the result of applying an operator should depend only on

the available transitions of the operands (in the states in

which they currently find themselves)., and past history;

if a transition is executed which depends on the existence

of some transition in one of the operands then the operand

must execute that transition. The second principle is that

every transition executed by an operand must be represented

by a correspondingtransition in the 11finished product 11 .

These principles are guaranteed by stipulating that every

operator must have some defining equation of the form below.

A zero-place operator is a constant.

A one-place operator

op (0") ~ oPa (er)

op (0"") ~ op ~ (p)

"Op" must have exactly the transitions

(~,a) e D

eT~ P & (8 ,8',a) E D'

(The first line corresponds to the operator carrying out

some action without reference to its operand, the second

line corresponds to the operator transforming some action

of its operand. In each case the operator may transform

itself (non-deterministically) into another, dependent on

the action which occurs ..) One might wish to strengthen

the above to ensure that internal actions of operands can

neither become external actions of the finished product

nor influence the composition of the operator. This can

easily be done by editing the second line above.

(The four lines here correspond to the operator carrying

out some action without reference to its operands, trans-

fOrming some action of its first operand, transforming some

action of its second operand, and transforming and co-ord-

inating a pair of act~ons respectively.) Once again one

- --

A two-place operator 11Op" 'must have exactly the transitions

op (0'", P) .§. 0Pa (0",p) (8,a)ED
8

,

op (CT , P) -.. op (T , p) ()"'T & (8,8',0') e D'

op (()"' , P) 8 11 () PT & (8,8',0') e D"-- oPa a, T

Op(T,V) CTT
"

(8 , 8', 8", a) e D* .op(a,p) & pv &

might choose to ~ighten up on the last three lines to ensure

that internal actions of operands cannot have undue influence.

Three and higher place operators can be constructed by

combining two-place operators.

(Note of clarification: in the above definitions it is the

relations D, D' etc. which define the operators, together

with the operators oPa' etc. which are assumed to be defined

in the same way. "oPa" can vary with a, which is assumed

to range over some indexing set.)

As an example a hiding operator might be defined by the

scheme

(o""lX)

(0-IX)

.=. (p IX)
a
- (pIX)

if is ~p or C57 for some a E Xi

if iS~p and a ~ X.

This and both our earlier schemes can easily translate to

the form described formally above.

Note that we cannot expect the above hiding operator to be

well-defined on any universal space U which does not reliably

model all branching smaller than the smallest infinite card-

inal greater than IIxlI.

The theory of operators defined in this way is quite inter-

esting, but we do not have space to go into it in any depth.

We merely quote the next result, which helps to formally

justify our assertion that "properly defined" operators

are in some sense non-destructive.

8.25 Lemma

Suppose that op is a k-place operator on a space U which

is a subspace of some TA' and that op' and all the other

operato~s on which it depends in its definition are defined

by the methods set out above, then if ~i & ~~ are two sets
of elements of U such that ViE:"I,..,k1.(cr.)v= (a~)" (y£'A)(-], -], ,

we :have op (Q'l,... '2;k)P = op(~~, p.. '£~)y .

We need to be able to extend operators defined, as above,

on a space U, to the space U'= uBxs ~ U. This can be done

in very much the same way as before. Suppose that elements

of U' are denoted e*, f*,.. and that elements of UBXS (states)

are denoted n,o ,... . If we have a k-place operator'op over

- - - --- -- - --

-- ---
~

U then op can be .re-definedas an operator QE over U' by

QE(el,... ,ek) (7£) = op(ei (7£),... ,ek (7f».

We also need operators defined over U' which are not simply

extensions of operators over U. There are basically two

categories of these: recursions and "others". Non-recursive

operators should be defined by transition schemes similar

to those used above. These should observe the general prin-

ciple that nothing is observable of the contents of the Ue

componentof a "state"1£ without switching on any processes

we wish to observe and treating them as "normal" operands.

For most practical purposes one can get away with using zero

and one-place operators of this type. We will therefore

stipulate that any non-recursion operator not of the above

form must be of one of the two forms set out below.

We will write an element 1£ of UexS as (1£1,1£2)'1£1being the

uS-component and 1£2being the S-component.

A zero-place operator e* (constant element of ut) must be

defined:

~* (1£1'1£2) = p, where f' has exactly the transitions

I' 2. f~ (7T1 ' 7T2) (6, 1£2 ,1£2 ' a) E D

p ~ 1£1(8) (O,1£2)ED'

(!~ is assumed to be another zero-place operator, similarly

defined.)

A one-place operator QE must be defined:

op(e*) (1£1,1£2)= p, where p has exactly the transitions

p ~ QEa(e*) (7Tl,1£2) (6,1£2,1£2,a)€ D

(QEa is assumed to be another one-place operator defined

in the same way or as an extension of a U-operator.)

As examples of these we can define the one-place operator

"x:T .." and the zero-place operator "B" (call of the proc-

ess variable B) .

'(x:T ..,e*) (7T) =.f, where p has exactly the transitions
a

p - e*(1tra/x1) aET(7f2).

(We assume that the set T may be a function of one or more

non-process variables. The "~o<" used is the extension to

U' of the identity function on U.)

--- -- --

B (1T) = P I where f' has the single transi tion

f' -; 7f(B).

Existence proofs for all operators defined by any of our

"transition scheme" methods can be carried out by extending

the methods used for "i" and "a .."earlier. This will

involve the setting up of a P,Q-space of syntactic/state

objects, possibly including a copy of.the space U as a sub-

space, then showing that the space one has set up satisfies

enough for there to exist a (unique) morphism into U. If

a definition of such an operator is required in the form

given for "a ~" and "i" (exact definition of the components

of the result of an operator regarded as an element of TA)

this can be done recursively.

If U ~ T~ then there is an obvious way in which one can

definethe projection7fyof a "state"1T into the space (T~»(S.
The pay-off of all our careful definitions above is that,

so long as e* is an element of U' defined only by operators

of the types we allow, it can be proved that whenever n and

7f' are two "states" such that 7f),= tty we have e* (7f)}' +1= e* (7t')P+1
for all yeA. This is easily shown to imply that each recur-

sive fixed-point equation has at most one solution. The

existence of solutions to these equations can be proved

wi thout too much difficulty so long as the space U we are

using satisfies some simple and natural closure conditions.

As an example of a r~cursion one might use, to define

"recB.e*" (e* defined using only permitted operators) we

would say (recB .e*) (n) = ps. t. P = e*(7t~/BJ). The value

of recB.e*(7t) is defined as follows. We define a function f

from A+l to U as follows:

f(o) is chosen from U at random

f (y+l) = e* (7t[f(p)/BJ)

f(X) is chosen (by closure conditions) to be such that

f('{)p= f(p)y for all pEA.

The value of recB.e*(7f) is f(A).

Other, more complex, recursive operators can be defined

similarly.

The use of nested recursions (i.e. recursions within rec-

ursions) can also be justified without too much difficulty.

-- --

Conclusions for the deterministic model

We do not have space here to launch into any attempts to

formally implement our operators over P (nor will we when

we later examine the non-deterministic model). What we can

do is to get a good impression of what is, and what it not,

possible.

It is clear that unlesswe relax substantiallyour conditions

upon operators there is little prospect of our being able

to implement all our operators over D-spaces (where internal

actions are banned). Operators which appear to be impossible

becauseof theirdependenceon internal actions are IJ;", "IX",

calls of recursive variables and meaningful recursion. Diff-

iculty arises in a less expectedway with the operator "0",

when applied to processes whose initials are not disjoint.

The obvious implementation scheme

permissible within the rules which we set out earlier (ess-

entially they would require the environment to be able to

detect more about its operands than we have thought correct

hitherto). If these offending terms were withdrawn then

the operator would not preserve the postulate D2, for it

would introduce multiple branching.

One might hope that D'-spaces, with their weaker postulates,

might give us an easier ride. This is in some senses true,

since it is now possible to correctly implemen.t each of ";",

"IX", process variables and recursion so long as syntactic

rules similar to those set out in chapter one are observed.

Problems still arise with the "0" operator, however, and of

a more serious nature than before. This results from the

fact that the map "<D" identifies deadlock \vith divergence.

Consider for a moment the situation which will arise when

we try.to compose a simply diverging process with a process

which can perform some action, "a" say. Since the operator

is unable to detect that its operand is divergi.ng (it cannot

know that it will not decide to perform some visible action

or halt at some future point) it must allow it to perform

- - -"-- - - - - -

a if a
(& .,3\I. P 9:"'()0" TIp - T cr-T

O-Df' r if p r (& ,3v. er V)

(JOp TO" if (J L
a

& p-t'V

suffers from the drawback that the bracketed terms are not

its successive internal actions. These will be reflected

in internal actions of the resultant process, so it must

itself be able to diverge. It is easily seen that this is

impossible in any element of a D'-space which can execute

the transition "a". We must conclude that some strong syn-

tactic condition is required to ensure that "Cl" is implem-

entable. Such a condition is the requirement that."Q" only

be used in the context" (a ~ *) a (b -t *)" where a i b. The

(verv desirable) use of more general guards on the two sides

of "[]", such as "x" (alphabet variable) or "x:T" (input)

would create problems because of the requirement that guards

should be distinct.

It is possible to invent a third type of "deterministic"

P,Q-space where many problems disappear. Unfortunately it

is not quite so natural as the other two. One postulates

that branching is finite, that divergence is absent, and

that while multiple branching and internal actions may occur

they may not influence the-external actions.

(D2") 'c/(j.\J~.VX. fpl (cr,X) ~?3 is finite

& V~.V(j.Vx.Vp,T.(C1,X) ~p & (o-,X) ~r ~ (Mp) = <1>(T)

& \la.Vf .Vx. (cr,X) ~p ~ $(0") = <D(p)

& ,30- ,CJ"I"" . jX. Vi. (0', ,X) ~ 0-, Io 1 1+

D2" is a postulate which satisfies the conditions of 8.24,

so as before we can deduce the existence of a universal

D"-space (P,Q-space which satisfies DI and D2"). Over this

space U it is possible to implement each of our operators

correctly with the limitations described below:

(i) Non-constructi.verecursions are simply not defined when

they give rise to divergence. This is the main weakness

of this type of space.

(ii) Hiding is not defined where it would give rise to non-

determinism.

(iii)The operators "i" and "!J",while they can be fully

defined, are very inefficient unless the rules set

out in chapter one are followed, because backtracking

is required if this is not done.

All one does when one tries to implement the deterministic

prejudices we developed in chapter

examine the non-deterministic-model.
I

mode I is to confirm the

one. It is now time to

1

The non-deterministic model: first attempt

Recall that we interpret the value N(c) in the non-determ-

inistic model M of a process l~c" as being the set of sequ-

ences of external actions possible for "c" paired with the

sets of symbols which "c" can refuse after accepting them.

WJ;1atis basically at issue here is the notion of "refusal";

this is closely linked with the observability of internal

actions.

Let us first examine the implications of an assumption that

an experimenter cannot observe what is going on inside any

process. What must his criterion for deducing refusal be?

Such an experimenter cannot tell the difference between a

process which is deadlocked and one which is engaged in

internal communication (whether or not this internal activity

will eventually cease). There is no period after which he

can deduce that any non-empty set he is offering is refused

(i.e. no element of it has been or will be accepted). This

is because there may, at any finite time, still be activity

going on internally which will later result in acceptancep

If we let c be a process which can (and must) perform nn
internal actions before becoming able to perform the exter-

nal action "a", then any finite deduction of refusal by our

experimenter would be incorrect (if-he were offering the

set raj to one of the processes c) for sufficientlylargen
n. Thus an experimenter can only deduce refusal when it

is too late: when a set has been offered for an infinite

time without response.

Bearing in mind that we wish to construct a map to the non-

deterministic model based on the observed behaviour of

processes, our next step must be to see how we can e~tract

the observable parts of behaviour from the "full" behaviours

of a process. From the point of view of an experimenter

who cannot observe any internal behaviour any experiment

will consist of finite applications of sets, either with or

without observable response from the process, and possibly

a (final) infinite application of a set without visible res-

ponse. A very plausible procedure for the translation of

our existing behaviours to "observations" is the following:

1

(i) Delete all the state components of the triples (i.e.

project into H) .

(ii) Replace all 11.IIS and non-final "*IIS by 11_11.

(iii) Replace any final infinite sequence of the form

«XI,-) (X2,-)..) by (Z,*), where Z = iQI(jOiXj)'

(iv) Delete any term of the form (X,-) which- is followed

by one of the form (X,-) or (X,a) (same X) .

To illustrate this procedure let us apply it to the behaviour

«o-o'Xo'.) (crl'Xo'*) (O'l,xl,a) (C>2'X2") (CJ3,X3,-) ...)

where all subsequent terms (infinitely many of them) have

one of the forms (U3,Xi,-) and (0'3'Xi'-).

The first and second steps translate this to

{(Xo'-)(Xo'-) (xl,a) (X2,-) (X3,-)...), all subsequent terms
having the form (X.,-). These steps relect the facts that1.

the experimenter cannot see the structure of the state, and

that he cannot detect internal actions or long intervals

wi thout them.

translates this to «X ,-) (X ,-) (Xl'a) (Z,*»o 0
liminf of all the X.S occurring in the final1.

sequence. This step says that if the experimenter applies

an infinite sequence of sets without response he can infer

the refusal of all symbols applied continuously for an inf-

The third step

where Z is the

ini te period.

The fourth and final step reduces this

This step has the effect of collapsing

of the same set into one application.

to «Xo'-) (Xl' a) (Z,*).

contiguous applications

One point in the above procedure which seems a little sus-

pect is the retention of final "*"S, since we interpret

these (usually) as being infinite or sufficiently long finite

waits without response. We canpot be sure that "*" repres-

ents an infinite wait (though we can be sure that it does

not if it is not final). This complaint is rather academic

however, since postulate Q8 ensures that final sets of "obs-

ervations" of processes are the same whether or not we trans-

late such "*"S as "_".

I

1

Let us define (for an element c of P,Q-space C) the set Obs(c)

which results fron the translation of each of the elements of

B(c). There are several results which 0ne can prove of Obs(c)

from our postulates. In the following we denote the sequences

of pairs which constituteobservationsby ~, !,

8.26

If C

a)

b)

Lemma

is a P ,Q-space and c E C then we have:

oEObs (c)

~.! * ~1~(~,*»EObs(c) & ~"«X,-»E Obs(c)

c)

where s' is s stripped of any final "(Y, *)" or 11(Y ,-) "s- -
and ~" is ~ stripped of any final (X,-)

~ «X,a)}! E Obs (c) # a EX & s« £a:3,a»! E Obs (c)

provided s has neither of the forms s"«fa~ ,-1; and s"«X -)- - - I
s«X,b»tEObs(c) & X~Y & (-,:!r.s = r«Y,-»)& ~~ *- - - - -

~ ~ «Y ,-) (X,~»! E Obs (c)

s «X,-) (X,~»tEObs(c); s «X,-) (y,*»EObs(c)- -, - I

~ «X, *» ! E Obs (c) 9' t = <>

~ z(X,*»)EObs(c) & Y~X :;.~ «y,*]>EObs(c)

~«X,*» Obs(c) & (VaEY. ~«ta~,a) (~,*»~Obs(c»

9 ~«X u Y ,* J>E Ob s (c)

d)

e)

f)

g)

h)

The above tells us that we can effectively deduce nothing

from the components of observations which have the form (X,-),

so we might as well ignore them. In fact it tells us that

the set of finite observations (i.e. observations with only

finitely many components) can be deduced from a knowledge

of which observations of the form « t aJ 'a) . . . ([d1 ,d) (X,*»

are in the set Obs(c) (i.e. finite sequences of single sym-

bols offered and accepted, followed by a set infinitely

r~fused). This clearly is closely related to the non-deter-

ministic model. D~fine a map "~" from observations to

(L:* X ~(L» by ~(~) = (<>,~) if ~ does not have the above

"canonical" form; ~(~) = «a...d),X) if ~ =«[aJ,a)..([dJ,d) (X,*».

Let us call the function from H to observations represented

by steps (ii) - (iv) of the earlier translation procedure by

the name "1]". Define ()= ~o1]. Define a map "'P" from C (a

P,Q-space) to ~(L*X?(Z::» by 'P(c) =[e(~)\~EB(C)J. From

the above discussion we can deduce several things about

'this function.

Firstly ~(c) is almost an element of the non-deterministic

model M. 'P(c)is non-empty, has a prefix-closed domain, and

satisfies the two conditions (s,X) E If'(c)& Y~X =9 (s,Y) E If'(c)

and (s,X)EIf'(c) & (VaEY.(S(a,>,y;1)f{.If'(c»:; (S,XUY)EIf'(c).

Secondly we can deduce from If'(c)exactly what the finite

elements of Obs(c) are. Furthermore, if c and d are two

processes such that If'(c)~ If'(d),then every finite element

of Obs(c) is also an element of Obs(d). This means that

every predicate of C which depends only on the observed

response of a process to finite sequences of sets can be

exactly determined from the process' image under If'. Any

predicate of the form "each finite observation is correct"

can be translated to a"predicate "X" of H for which 1('P(C)) #."
X~) If we restrict ourselves to predicates of this form--. .

(of v:hich more later) we can regard the image of If'as a

class I model for C.

There is no necessity that 'l'(c)should satisfy the directed

closure condition which we imposed on the non-deterministic

model. To see this we simply have to consider the following

"case, where it is assumed that N~r (natural numbers).

Define a P,Q-space C to contain the elements ~ (which has

no transitions), Pn (for each nEN) which has exactly the

transi tions Pn ~ (J' (m~ n), and finally T which has exactly

the transitions -r':'Pn (nEN). A little thought reveals

that (<>,X) E If'(T)for each finite XC N, but that (o,N) i IJf(T).

There are essentially two ways of putting this right: either

one closes up under the rule (i.e. modifying the function If'

to include all pairs (s,X) implied by directed closure) or

one restricts consideration to spaces C which satisfy it

naturally. The simpler of these two options is the second,

and it is this one which we shall follow here. There are

two alternative conditions we can adopt to ensure directed

closure: either r must be finite or the P,Q-space we study

must be finite branching. In the first case directed

closure is trivial; in the second case it follows from

Konig's lemma.

Let us consider now the expressive power of the type of pre-

dicates described above. A predicate of the form "every

finite observation is correct" is clearly the same as one

which says that "every incorrect finite observation is imp-

ossible". Thus any predicate of behaviour with the property

--

that all infringements of it are both observable and detect-

able after finitely many external actions, is of the correct

form for reliable and monotonic determination from ~(c) .

As an example consider the implications of the predicate

Buff (first introduced in chapter five) when true of ~(c) .

(Note that Buff is a 'monotonic 'predicate.)

Buff(~(c» implies several facts about Obs(c), which can

inform~lly be written as follows.

(i) "c" is a partially correct buffer, in that its output

is at all times a prefix of its input.

(ii) When "c"s output is the same as its input (is "empty")

it will not infinitely resist communicating with any

experimenter who persists in offering it some set of

input sYmbols.

(iii)When "c" has output less than it has input it will

not infinitely resist communicating with an experimenter

who persists in offering it (at least) the sYmbol which

it next ought to output.

Note one fact which is illustrated by this example, namely

that our insistence that certain infinite (in time) observ-

ations be absent implies the presence of certain finite (in

time) observations (with certainty, rather than possibility,

of occurrence). It is because of this influence on the

'setof'observations which we',can reliably expect to occur

in finite time that we need to consider the possible infinite

refusals. The other type of infinite observation, namely

cases where infinite sequences of external actions occur,

has no such influence.

We have established that the non-deterministic model M is

reasonably thought of as a class I model for U, the univer-

sal finite branChing-PiQ-space (relative to.the function ~

and whichever alphabet we care to use). The first differ-

ence which one notes between this case and our study of the

deterministic model is the fact that M, when regarded as a

P,Q-space in the natural way, is not finite branching and

so is not naturally "modelled by itself". We would eXpect

to think of M as a P,Q-space by the l~w NI ~ N2 if

N2SNlafter<a>. Even if 1: is finite this gives rise to
infinite branching. IfZ is infinite the situation is

- - - --

irredeemable since there are elements of M which cannot be

the image under ~ of any element of U. An example of such

a process is given by f(o,X) I Vi. [2i,2i+l]nX =Iro]v[(d),X)/iEN]

(on.ce again we assume Ne;2::). If L is finite it is possible

to make M into a finite branching P,Q-space on which the map

~ is the identity. 'Oneway of doing this is with the transitions

a E N * N ~ (N after (a>)

(o,X)EN & (I-X)<FN09 N';(f(o,Y)!YfxJuf«a>S,Y)EN/a1x!).

We can thus conclude t.."I1atthe map ~: U -+ M is onto if and.

only if Z is finite.

It is now time to consider the question of implementation.

We have a class I model so our requirements are not on the

face of it so stringent as in the case of the deterministic,

class 2, model. We know from long experience that each of

our operators over the model M is Jonotonic, which is all

that is required of them for the c~ass I model theory to

work. Recall our definitions: e* Elu' is a correct implem-

entation of eE M' if for all "statels"7fEVGXS we have (adop-

ting the same notation as in our s udy of the deterministic

model) e(~(7fI),7f2);?'f'(e*(7T».If :M,k ~ M' is a k-place
operator over M then 2£*:V,k ~ VI said.to implement op

(2E*imp 2£) if for all el,... ,ekE and ei,.. ,ek€ UI such
that e~ implements e. correctly fo all i, we have that1 1

2E*(ei,...,ek) is a correct implem of QE(el,...,ek).
In the case of operators 2E and 2E just the

natural extensions to M' and VI of operators over M and U

(op and op*, say) it is easy to se that it is enough to

prove that op('f'(cl),...,'f'(~»~ 'f'(p*(cl,...,~» for all

cl,..,ckEU. (Thisremains true i a simple way even when
~* is the composition.ofmore tha one "extended" operators,

since the extension of a compositi the same as the

compositionof extensions.) Thus

i

in attempting to implem-

ent the majority of our operators ver M' which are exten-

sions of operators over M it is su ficient to consider the

implementation of the M-operators V-operators.

Notice the fact that infinite hidi

f

g is impossible to define

properly over the model M, and als impossible to implement

properly over V in any obvious way (because of the creation

of infinite branching). This emphasizes the link between

'J.51

these two systems, and goes at least part of the way towards

explaining the difficulties which arise with infinite hiding

over the non-deterministic model.

Some of the operators, notably a ~, i, /X (finite X) are

easy to define correctly. Indeed it is not too hard to

show that the versions of these three operators introduced

earlier (in the section on operators over universal spaces)

are all well-defined over U and correct implementations of

the corresponding operators over M. Also the operators over

U' we defined to represent "x:T -t"and recursion are not

hard to justify. An interesting example'is the case of

recursion. Firstly the existence of fixed points of "const-

ructive" functions of U is easy to prove because of the

comparatively simple structure of the space U. Suppose

that e* is an element of U' defined using operators of the

types described earlier which correctly implements some

element e of M'. If B is any process variable (element of

e) then for each "state" 7f the equation a = e*(7T[o-/B])has a

unique solution which we will call lJ. . To show that the

recursion operator over U' correctly implements that over

M' it is sufficient to show that qt(o-) ~ 0 Fn (CHAOS) , where
. n=o

F:M ~ M is defined F(A) = e(n'[A/B1) (7T' = qt(n». To do this

it is sufficient to show that qt(o-)~Fn(CHAOS)for.each ni

we will do this by induction.

qt(cr)S FO(CHAOS) = CHAOS trivially.

n
Suppose 'P(cr)SF (CHAOS),

then e(n'[qt(cr)/BJ)£e(n'[Fn(CHAOS) /BJ) -= ~+l (CHAOS)

as e is monotonic; also 7T'['P(6)/B1 = '1'(n (criB] so

e(7T'['P(6)/Bl}.;>'P(e~[o/Bl) as e* correctly implements e.

Putting these facts together we get ~+l (CHAOS)"2 qt(e*Vr[o-/B]» ,

which is what we wanted to show since 0- = e~7f[cr/B1).

The analysis of mutual recursions is no more difficult.

Problems arise however when one tries to implement the two

important operators "[1" and "11". In each case the problem

occurs because of the necessity of being able to cope with

one diverging and one non-diverging operand. It is not

hard to see from the non-destructive nature of our operators

and the finite-branching nature of U, that each of these

operators, when faced with an initially diverging operand,

must itself have the possibility of diverging before perf-

orming any external actions. This is because they must be

able to cope with processes which execute n internal actions

before doing any external action for each nE N, and so can

perform arbitrarily long initiaL sequences of internal act-

ions; we can then deduce the existence of an infinite sequ-

ence by Konig's lemma.

With '~d" this problem is avoided if we restrict the use of

"0" to the case where each side is guarded in some way

(whether or not the guards are disjoint) .

However with "11"the problems are more serious. There seems

to be no way of implementing"11" correctlywithout appealing

to some kind of "fairness". One would require that neither

operand could perform infinitely many actions while there

was some action continuously possible for the other. While

this certainly does not seem an unreasonable assumption it

is not possible to make such a stipulation in systems satis-

fying the postulate Q7. An example of the problem we face

is given below.

Let {f be the element of U with the single transition u~u

and let p be the element of U with the single transition

p ~ T, where T has no transitions (aEL). The values ass-

igned by 0/to u and pare respectively abort and a ~ abort.

Thus (o/(u1b1It~\f'(p» = a -t abort. Thus whenever op*. is a

correct. implementation of 'nJ\~' the process op* (a,p) cannot

initially diverge (as 0/(1)coatai.ns «>,2:)whenever v can

initially diverge).

The introduction of fairness would require the alteration

of Q7. This would rather complicate matters. Firstly

our work concerning morphisms and universal spaces would

no longer be valid because 8.10 would no longer hold.

Secondly allowing fairness would mean that the image o/(a)

of a finite-branching process was not necessarily directed-

closed (because Konig's lemma would no longer be.applicable).

While it is likely that these problems could be overcome

to some extent and some sort of consistent theory produced

we have not got space here to investigate this topic further.

In any case it is perhaps better not to assume fairness

unless we have to, and we will see shortly that we can do

without it. It might also be remembered that the map ~

identifies divergence with deadlock, something which does

not seem consistent with the philosophy expressed in the

introductorybooklet (~). This fact is brought out further

by the observation t~at, with respect to the map 0/,the hid-

ing operator "/X" which we earlier defined over U is a corr-

ect implementation of the (non-continuous) alternative hiding

operator "'\x"defined over M by

A"X =:= t(s/X, Y) I (s, XUY) E A3

u t(s/X,Y) tfs' I s'/X = s/x1 is infinite 1 .

All this seems to imply that the map "'P" is not quite the one

we want. We will thus give up this attempt and try again.

The non-deterministic model: second attempt

In the last section we made the assumption that our modelling

function was based on the observations of an experimenter

who cannot detect anything about what goes on inside proc-

esses. We have previously mooted the possibility that an

experimenter might be able to detect the presence of inter-

nal activity by means of a light on the side of the machine

or suchlike. The chief consequence of assuming this would

be the finite detectability of deadlock by the experimenter.

If a set of symbols is offered to a process while it is in-

active (the light is out) for a sufficiently long time the

experimenter may (correctly) deduce that no further action

(internal or external) can occur while he persists in offer-

ing the same set (or a subset of it) .

There is thus often no need to wait infinitely to detect

refusal of a set. Indeed the need to wait infinitely would

be rather unfortunate, implying both an infinite consumption

of energy by the process and infinite patience on the part

of the experimenter. It is important to discriminate bet-

ween the notions of finite refusal (brought about by the

process coming into some "stable" state) and infinite refusal

(brought about by divergence, an infinite sequence of inter-

nal actions). Because our experimenter now has the ability

to detect refusal finitely, and because divergence is inher-

ently undesirable,we must expect that he will desire that

-- -=--~

all refusals will be finite (i.e. that processes are free

from divergence) .

Let us assume that our experimenter is chiefly interested

in the behaviour of processes over finite intervals. We

will thus examine the behaviours which can result from the

application of a finite sequence of sets to .aprocess.

There are several things which the experimenter might see

when he applies a set:

finite inconclusive wait (denoted by

finitely observed refusal (

communication of some ae!: (

divergence (infinite wait without response) (

)

*)

a)

?)

We will assume that the experimenter is not confident enough_

to record any other details about internal activity than

that which is implied in the above.

We will assume that he bases all correctness conditions upon

a process 'observed reactions to such experiments. Note

that any observation of this type which does not include

divergence is completed in a finite time, and that diverg-

ence can only occur at the end of an observation. This is

of course a very good reason for defining divergent observ-

ations to be incorrect.

The following is a translation procedure designed to extract

from the behaviour set of_a process those behaviours which

can result from the application of a finite sequence of sets,

and then extract the observable features of these (from the

point of view of the experimenterdescribedabove).

(i) Delete the state components of a behaviour (i.e. project

into H) .

(ii) If the resulting sequence has one of the following

11inadmissible" types replace it by ().

a) Sequence with infinitely many external actions,-

"_"s and "*"s.

b) Any sequence with an infinite tail of (X,.)s in which

the "X" s are not eventually constan t.

(iii) Replace all ".11S by 11_11

(iv) Replace any infinite tail of 11(X,-) "s (with constant X)

by (X,?).

- ~- - -

(v) Delete all" (X,-) "s which are followed by some (X,cS)

(same X).

The explanation of these steps is as follows:

(i) The internal state is not observable.

(ii) These types ofsequences cannot result from behaviours

which occur when ~e experimenter applies a finite sequence

of sets. Sequences of type (a) are impossible because the

end of.each pair ofany of the forms (X,-), (X,a) or (X,*)

represents the end of an application of a set. This is

not so for pairs ofthe form (X,.) because individual int-

ernal actions are not observable. The only infinite sequ-

ences which are leftafter (a) are those with an infinite

tail of the form ((Xl'.)(X2'.)...); clause (b) eliminates
all of these which cannot occur when a finite sequence of

sets is applied.

(iii) Individual internal actions are not observable.

(iv) Any infinite tail of the form <CX,-) (X,-) ...> must

have resulted from an infinite sequence of internal actions.

(v) Any (X,-) whichis followed by another application of

the same set can beignored.

Define ~ to be thefunction of behaviours implied by steps

(ii) - (v) of the ~ove procedure; define Obs' (c) to be

l%(~) I ~ E B (c)3 forany process c. Obs' (c) is the set of

observations which Our experimenter can make of c. The

following are all easyconsequences of our postulates.

8.27 Lenuna

If C is a P ,Q-space and c € C then

a) {)E Obs' (c)

b) s.tEObs' (c) ~(s' (~,*) E Obs' (c)v s' (~,?) E Obs' (c»

& s 11(X, -) E Obs' (c)

where. ~' ..&~" Jesult .from sttipping ~ of any final (~,-) and

(X,-) respective~ after removing any £inal (Y,?)

c) §.«X,a»~EObs'(c) ~ aEX & s«[aJ,a».tEObs'(c)

if ~ has neitherof the forms ~'«X,-» and s'«(a3,-»

d) ~«X,d»~EOb51(C) & X~Y & 13r.£= r«Y,-»

. #- ~ c((Y ,-I(x,~ » t E Obs' (c)

e) ~ «X,?» ~ E Obs'(c) =} t = <> (f) ~«X,*) (y,?»~Obs' (c)

g) ~ <(x ,*) (Y, a» ! E Obs ' (c) ~ a ~X

h) s «X, *)> t E Obs' (c) & Y~ X =7'~'« Y, *» ! E Obs ' (c)

where s' = ~ unless ~ = ~1I«y,-» in which case s' = S 11

i) s«X,*»tEObs'(c) & (VaEY.s«X,*)(fa~,a)(~,-»¥,Obs'(c»

~ s'«XUy,*»tEObs.'(c;)

where s' = sunless s = s"«XUY,-» in which case s = s"--

j) ~«X,*})!EObs'(c) =9~'.,!:EObs'(c)

where s' = s unless there are some s ", t', Y and ~ such that

~ = s"{(Y,-» and t = «Y,d».,!:' in which case s'= s"

k) s <(X, ?» E Obs' (c) '* ~' (Y, ?) E Obs' (c)

where s'= sunless §. = ~II«Y,_» in which case s,= s"

1) s «X,-» Obs' (c) ~ §.{(X,*»EObs' (c) V ~ «X,?»EObs' (c)

3a EX. s «X, a) (~,-)lE Obs I (c)

m) ~ « X, *) (Y , *» ! E Obs' (c) ~ ~ «X UY, *}) t E Obs' (c)

provided s has neither of the forms ~'(X,-) or~' (xvY,-)

Once again, by d, we can deduce nothing from the components

of observations with the form (X,-) so we might as well

ignore them (from the above the only purpose they seem to

serve is to complicate matters). Once again it is possible

to deduce the exact form of Obs' (c) from a knowledge of

which of a class of "canonical" elements it contains. These

are the ones which are of the form t(£a~,a), (X,*), (~,?) I aEZ,X£L3*

with (~,?) only occuring at the end of sequences and compon-

ents of the form (X, *) being separated by at least one of

the form (fa1,a).

Thus every p~edica.teof -proeesses of the form lIeach obser-
vation of behaviour is correct11 can be re-written in the

form 11each canonical observation is correct".

Because of the various rules of 8.27, notably (b), (f), (g),

(j), (k) and (m) a very expressive subset of the canonical

observations are those of the two forms

«raJ ,a) ... ({d3 ,d) (X,*})

« la) ,a)... (id3 ,d) (~,?»)

(+)

(++) .
From a knowledge of which observations of these two types

are present in Obs' (c) one cannot deduce the whole shape of

Obs' (c) (see below) but one can answer such questions as

_ ~ -:z..._ __

Ii,III
-I
I
iI
i
,

-I

"

11

"Can c perform the string <'a...d) and then finitely refuse

the set X?"

"Can c perform the string <a...d) and then diverge when

offered X?"

accurately. (For example, if « fa3 , a).. . ([dLd) (X,*» E Obs' (c)

then there is no element of Obs' (c) in which the symbols a..d

are accepted from any sets followed by the finite refusal of

X, whether or not there are .any "(y ,-)Itsand/or" (Y,*)"s

between these events.)

There do exist processes with identical sets of observations

of the forms (+) and (++) but different sets Obs'. As an

example of this consider the two processes illustrated below.

c c'

(~= fa ,b3)

a b

The processes c and c' have the same observationsof the

forms (+) and (++), but «ta1, *) ([b1 ,b) (y1,*» is. an element. .

of Obs' (c') without being one of Obs' (c).

The minor differences between processes with identical sets

of (+) and (++) observations are usually unimportant from a

correctness point of view, however. The use of observations

of this simplified form has the advantages of simplicity and

the production of a natural map into the non-deterministic

model M.

Let us suppose that our experimenter, aware of the expressive

power of observations of types (+) and (++), contents himself

with checking to see which if them are possible. It is suff-

icient for him to check those of type (+), since any possible

observation of type (++) will become apparent as he does this.

To check the observation «fa3 ,a)...(rd~,dl(X,*~ (which we

abbreviate as «a.. d),X) he will apply the sets fa1,..,fd~,

X and y1in turn, with each set except the last waiting until

he gets some definite response. There are essentially three

possible outcomes to such an experiment.

(i) It may succeed: i.e. the process may accept a,..,d

in turn and then refuse X finitely.

--- cJt....-_

(ii) It may fail finitely: i.e. it may fjnitely refuse

one of the sets fa1,.., fd3 or it may accept some

element of X.

(iii) It may diverge: i.e. the process may not give any

definite response at some stage where one is required.

Define the three sets E~, E~ and E~ to be the sets of possible
passes, failures and divergences amongst the experiments he

might carry out on the process c. (We will assume that the

elements of these sets are written in the abbreviated form,
c c c ()

so that El' E2 and E3 are all subsets of E*Y..(f(L:).}We canc c c
deduce El' E2 and E3 from Obs' (c) as follows:

E~ =£«a..d),X) I«fa~ ,a} ...«(dj,d} (X,*})EObs' (c}J

E~ =f«a..d>,X) t«[a!,*})EObs'(c}V ...V«fa3,a}..(£dj,*»EObs'(cJ
V 3b. « fa1 ,a}... {fdJ,d} (X,b) (e),-})E Obs' (c}3

E~ = [(<a. .d> ,X) I <.(~a1 ,?}) E Obs I (c) V ... V« £a1,a} .. ([dj, ?»EObs I (c)

V«~aJ ,a) ...(fdJ,d} (X,?}>EObs' (c}3

(We might note at this point that the three sets each depend

monotonicallyon the set Obs' (c).)

These sets satisfy some simple laws, which are easily provable

from 8.27 and thei"r de fini tions .

8.28 Lemma

(i) (S,X}.EE~ 9 (st,Y) E E~

(ii) (s,X) EE~ & Y~X = (s,Y) €E~

(iii) (s ,X) E E~ & (Va E Y. (s (a> ,e)}if E~UE~} =9 (s ,XuY) E::E~

. c c c c
(1.v) (st,X) E EIUE3 =9 (s ,e)} E EIUE3

c c c 0
(v) EIUE2UE3 = L*X~(~}

(vi) (o,e)}E E~VE~

The set E~UE~ represents the set of experiments which need
not necessarily fail finitely, and as such is very important.

If we desire that every observation of type (+) which occurs

is correct in some sense then this can be checked by trying

out all incorrect ones and expecting them to fail finitely.

By the above this must occur if each element of E~E~ is
correct. Because of (i) above there is also a simple way

to exclude undesirable divergence (observations of type (++))

_ _ r-ri - --

from consideration of the set E~UE~. In particular the

set Obs'(c) is completely free from divergence if E~UE~
satisfies the condition
u cc -::r ~c C
vs.VX. (s,X) EElUE3 ~ :Jt,Y. (st,Y) 't- ElUE3

since this implies that E~ =~. When E~ is empty every

finite experiment (whether or not of the form used to det-

ermine'E~, E~ and E~) must terminate finitely. When E~ is

empty it is not hard to see that E~ depends monotonically

on E~ '(i.e.the more experiments there are which can pass,
the more there are which can fail).

Thus E~U E~ is a very useful set. It also satisfies all
the laws of the non-deterministic model except directed

closure. When the P,Q-space in question is finite-branching

we once again have directed closure. We will therefore once

again assume that the space we are seeking to model is U,

the universal finite branching P,Q-space.

We are, in E~UE~, provided with a natural and expressive map
from U to the non-deterministic model M. We have not how-

ever defined it in the usual fashion (a function 8 of beh-

aviours). It can in fact be written in a correct form, but

we need to invoke our right to use a relation rather than a
'"

function. We alreadyhave the function ~ for producing

Obs' (c) from B(c). Define a relation ~ on the sequences

making up Obs' (c) as follows.

~(~) = ~ if ~ has neither of the forms (+) and (++)

= f«a..d),X)~ if ~ = <O:a~,a)..([dJ,d)(X,*»

= f«a. .d>t,X) J te'L* & x~~1 if

~ = «fa~,a).. ([d~,d) (~,?»

If we now let P=fJofit is clear that E~L1E~ =Ufp(.§:) I a € B (c)3 .

Let us define X(c) = E~UE~. Because of the expressive power

of the set E~UE~ it is fair to regard M as a class I model
for U relative to the map X.,

This map seems far more satisfactory than 0/from an aesthetic

point of view: the discrimination between d~vergence and

deadlock appears to correspond far better to our earlier

expectations. Despite this the problems of implementing

our standard operators are worse rather than better.

--- --- . ", - - -

"a ~" , ~" , lIa.x:T -t", 11X .." , 11a.x ~II and "or" present no"x:T

difficulty, and neither do hiding and recursion. (Note

that hiding and recursionare the two operatorsmost closely

assoc~ated with divergence.) All the other operators seem

to give rise to unsurmountable problems. This is because

of the ways in which'they deal with the representations of

diverging processes. The value given by X to any process

which can diverge without communicating externally is CHAOS.

If any of the operators "a.", "Q" and "11" is presented with

such a' process in any argument or if "i" is presented with

one in its first argument then, by the same arguments which

we used in the last section for "11", the result must also

be able to diverge without communicating externally (and

so have value CHAOS assigned to it by X). This is incons-

istent with the following observations:

a.CHAOS ~ CHAOS

CHAOSiabort ~ CHAOS

CHAOS [](a .., skip) ~ CHAOS

(CHAOSXllyabort) ~ CHAOS unless X =~ and Y = ~.

(This time there is no hope of mending "fI" by an assumption

of fairness.)

The basic problem here is that, though in the initial cons-

truction of our model we were careful to identify the "bad"

processes we created with CHAOS (witness the correctness of

hiding and recursion), we did not follow through our argu-

ments to see how these "bad" processes would behave when

operated upon. In short it seems to be the operators which

we defined over M which are at fault here rather than the

modelling function: they do not appear to be reasonable (in

the sense defined earlier). All these failings can be rem-

edied by adjusting the definitions of the operators: making

them "strict" in some sense. The following are definitions

of more acceptableoperators"0''', "i''', "a.'" and "/I'''.

A 0'B = A n B if A ~ CHAOS and B ~ CHAOS

= CHAOS otherwise

AilB = AiBuf(s,x) I A after s = CHAOSJ

a.'B = a.B u[((a.s) t,X) I B after s = CHAOSJ

(~l1yB) = (AXllyB)u[<st,X) I se(Xuy)* & stXEdom(A) &

sfY E dom(B). &.cHAqSEtA'af~~r sf X, B after sfyjJ

II
I

I
I

I
i
iI

II
I
i
I

:
iII

-I
.1
i
!

I

Each of these operators seems to be implementable with res-

pect to X. There is however a price to pay. Some of the

theory which we developed for the old operators no longer

holds. A notable example of this is that the operator 11'

is not associative:suppose X,Y is a non-trivial partition

of L (i.e. X ~ ~ & Y ~ ~) .

Let A = Hs,S) I s E X*j

'B = f(s , S) I s E y* J

Obs~rve that «~lIyB)t"r' abort) = CHAOS

(AXII~ (By11;abort» = abort

It is ironic that lemma 5.35 now holds in general (i.e. we

no longer.need to assume the absence of infinite internal

chatter). These two lemmas (5.35 and associativity of 11)

were both critical in proving the associativity of "»", the

non-universality of which was one of the more paradoxical

properties of our old operators. 5.35 holds in our new sys-

tem generally because the parallel operator is no longer

allowed to "hide" divergence from the environment.

Most of the troubles with the new operators seem to arise

from the special way in which CHAOS is treated, the ident-

ification of a diverging process with one which can do any-

thing but always terminates finitely. In the next section

we will see how this problem can be removed through an adj-

ustment to the model.

The main part of our earlier theory which is hit by the new

operators is recursion through the parallel operator. For

a discussion of how this is affected see the next section.

An improved model

This section is an extension of the last, so we will use

the same notation.

The obvious way round the problems which arise from the

confusionover CHAOS is..to.separate the notions of diver-

ging and-passing experiments more. One way of doing this

would be to adopt the pair (E~,E~) as our representation
of a process. This would have the advantage of being much

more expressive; it has the disadvantage that the underlying

model is not nearly so elegant or mathematically versatile

as the old model M.

We can arrive at a satisfactory compromise in the following

manner. Firstly we re-state our view that divergence of

an experiment is worse than anything else. This time we

will therefore keep a separate record of all experiments

which may diverge. However we note again that when an exp-

eriment diverges there is no way in which an experimenter

can finitely detect that it will not pass. We therefore

adopt as our new representation of a process

Q(~) = E~UE~U£(S,?) I (sdo) E E~1.

We take as 'our new model the subset Q of ~(L* x.(~(D uf?J » ,

defined to be those elements N which satisfy the following

conditions. (We use the .samenotation as before, except

that a will now conventionally represent an element of

~(2:) u £?1 .)

(i) dom(N) is non-empty and prefix closed

(v) tX I (s,X) E'N3 is directed closed

Qis easily seen to be a well-defined map from U to Qr and

can easily be shown to be generated by a relation on beh-

aviours in a very similar way to X.

The new model Q seems to possess all of the useful properties

of M and a few more besides. There is a natural order on Q

in exactly the same way as on M (A~ B if B f A) and Q is a

complete semilattice with respect to 11~n. Q has minimum

element z..*x (9(2:)u[?1) which we will callCHAOSto distin-
guish it from CHAOS (= 1:'*x.I(l:» which is not minimal in Q,

though it is the minimal element free from divergence. Q
has the same maximum elements asM. We should note that

if c is an element of U free from divergence then Q(c) =
X(c) = ~(c). The map Q makes more distinctions than either

of the others, guaranteeing that if c is a process free

from divergence and Cl is one which can diverge then Q(c)

"f Q(Cl) .

The operators we define over this model should correspond

to ouy-eriginal operators over M for processes free from

divergence and take heed of our observations in the last
-- -- - --- - -- -----

(ii) (s,?)EN '* (st,X) EN & (st,?) E N for all t,X

(iii) (s,X) E N & Y £ X (s,Y) € N

(iv) (s,X) EN & (\iaeY.(s(a) ,) N) :9 (s,XUY) EN

section when their arguments can diverge. The following

is a l~st of.the operators we adopt over Q, together with

a few remarks on how one might expect them to be implemented.

a ~ A = f«),X) I a~ x3uf«a)s,a) I (s,a) E A~

(We use the same scheme as before, switching nA" 'on after "a".)

AjB = [(s,X) I SE(L-)* & J~ X & (s,X) E A~

U' f (s t , a-) I sE (l:-) * & (s (/~ ,~) E A & (t, ~) E B J

uf(s,a) I (s,?) EA)

(We use the scheme defined in the section on operators. A is

switched on initially,and when A conununicatesa hidden "In

it is switched off and B is switched on.)

A Q B = f({~,X()Y) I (o,X) E A &

U £(S, a-) I (s, a-) E AuB &

ufC5,a) I (o,?)€ ALJB~

(Initially both are switched on and are allowed to perform

any action. As soon as one performs an internal action the

other is switched off.)

A or B = A U B

(This is trivial to implement.)

(~lIyB) = t(s,(xnv)u(Yf\W)UT) \ s€(XuY)* & (sIX,V)€A&

(siY,W) € B & Tf'I(Xuy) = ~3

U {(st,a)I s€(XuY)* & (srX,~)EA& (srY,~)cB &

(stx,?) € A V (sty,?) E B) j

(Both processes are always switched on and their external

conununicationsco-ordinated in the obvious way.)

a .A = f (a . s , a . X U Y) I (s, X) E A & Y ()a .L = ~ ~

ul«a.s)t,a-) I (s,?)EAJ

A/X = f(s/x,y) I (s,XUY) E A~ u f «s/X) t,a-) I (s,?) E A3

uf«s/X)t,a') I[s'€dom(A) I s'/X = s/X~ is infinite~

(These operators are implementeq by operating on the

external conununicationsof nA" in the obvious ways.)

The various operators over Q' which we need (x:T ~, recursion

etc.) are defined in the obvious ways. Each of the above

is a monotonic and continuous function of its operands.

In the above we thus seem to have definitions of our oper-

ators over Q which a~e implementable and which do not suffer

from the artificial strictness we needed with X. Because-

we do not need this strictness we recover all the pleasant

properties of old operators with the addition of the univer-

sal truth of (h) below (Lemma 5.35) .

8.29 Theorem

The operators we have defined over Q satisfy the following.

a) A n A = A

b) A [}B = BOA

c) (A n B) n C = A 0 (B a C)

d) (AiB) iC = Ai (BiC)

e) (a'" A) iB = a -- (AiB)

f) (AOB)iC = (AiC)O(BiC) if./ffAoUBo

g) ((AXllyB) XUyllzC) = (~lIyUZ (ByllzC))

h) (A/XyllzC) = (~uyr/zC)/X if xnz = ~
i) each of "a ", "i", "0", "11", "a." and "IX" distributes

over "or"

etc., etc.

Because we have both (g) and (h) we now have that ")" -(if

defined in the obvious way with a suitably defined "strip"

operator) is in general associative on processes whose

domains are con~ained in (?TU~T)*.

Most of the theory of chapter five appears to go through

practically unaltered. Operators remain non-destructive

(in the obviously defined sense) in the same circumstances

as before, and "a "
, "x:T ..,,,etc. are constructive. The

parallel operator is never constructive over Q except in

trivial circumstancesi we do not use any constructive prop-

erties of "»" in chapter 5 and its non-destructiveness

remains over Q in the circumstances of 5.30.

Circumstances are different in chapter six, however. Here

we extensively use constructiveness properties of (Alia::B) ,

an operator which is defined using "11". If this operator

were -de-firiedin the same way over Q then it could never be

constructive in its second argument when.-Awas not CHAOS.

This would be a very serious problem. It can be avoided

by defining the operator seperately (i.e. without using

-- -- ---

the parallel operator we defined over Q). To do this we

must look at what this operator represents. It is funda-

mentally different from the ordinary parallel operator in

that it that it implies the dominance of one operand over

the other. Let us imagine that the dominant operand is

in effect the "black box" of our earlier discussion with

the power to switch the other one on or off. The "master"

might'only switch on the "slave" when it had any need of it

(i.e. when it had the ability to communicate with it).

There is thus reason to believe that the operator

(Alla::B) = [(s/a.r,X)/3Y,Z.(s,Y)€A & (Yua.(swap?!(Z» =, Xua.r

& (swap?! (stripa(st a.r» ,Z) E B 5

u t ((s/a . r) t, a') I (s ,?) t A & (swap? ! (str ip a (st a . r)) , ~) E B ~

Ut< ("s/a.f) t,a) I (s,~) e: A & (swap?! (stripa(sra.r» ,~)EB

& 3s'~ s .3bEa.r ~s ~b)E dom(A) J

ut«s/a.r)t,a) !ts'Edom(A) I s/a.r = s/a.r

& swap?! (stripa(sta.r> E dom(B)3 is infinite]

is implementable (it seems likely that an implementation

might resolve some of the non~determinism inherent in the

above) . This operator can be shown to satisfy the rela-

tion a~ ~ «A 1/ a: :B) " b: :C) = HA 11 b: :C) 11 a: :B) (the

failure of this over M was a consequence of the untruth of

5.35 when infinite internal chatter was present) .

One pleasing aspect of the above definition is that it

resolves the problems we had in chapter six with "network

chatter" because the function F (B) = (A11 a: :B) is no longer

necessarily constructiveif A satisfies the condition Cao

(though it is with C~). To see this consider the first
example we quoted there, namely the process defined

A ~ (X" a: :A)

X ~ ?x.~ a!x ~ abort

The value assigned to this process in Q is far more satis-

factory.

,-, / /

The progress of the two sequences of approximations (over

M and Q) is as follows.

over M over Q

FO(l.) CHAOS CHAOS

Fl (1.) ?x ... abort ?x CHAOS

F2 r 1.) ?x ...,. abort ?x ..,CHAOS

The buffer and stack examples of chapter six should go

through virtually unaltered (because their recursions are

both C~). The sort examples will need more care. We will

need to apply the analysis previous~yused to prove them

free of network chatter to prove them well-defined and

correct (there seems little doubt that this could be done

with a little care).

It is -tobe expected that all of the theory of chapter seven

will apply equally to the new model, with the rider that we

should no longe:rhave to make assumptions on freedom from

infinite internal chatter for "~,, to be associative,etc.

The v~rious conditions we develop here and in earlier chap-

ters for the avoidance of infinite chatter are of course

still of considerable use, as they will now imply freedom

from divergence (when divergence-free processes are combined).

Thus the revised model Q seems to have considerable advant-

ages over the old one, as it appears to remove several of

the less satisfactory features of that model. There is of

course much further work to be done in formally transferring

the results of M to Q, and a final verdict must await that

together with more rigorous analysis of implementation. All

we can say at this point is that there is co-nsiderable circum-

stan ial evidence pointing towards Q on both counts.

Conclusion

This has been a very long chapter, "andyet it has left a

lot of loose ends to be tidied up. There is more work to

be done at several points. We have however developed at

least the skeleton of a theory for comparing "real" systems

withabstrac:t systems and operational semantics with abst-

ract semantics.

Conclusion

It is now time to look back over the work in this thesis, in

order both to identify the points where further work is des-

irable and to make a few comparisons with similar work else-

where. We will first go through the topics covered roughly

in the order in which they have been presented, and later

make a few general remarks.

Chapte"rone was of an introductory nature. The language it

introduces is of a rather abstract type, though as stated

there is no reason why more conventional languages should

not be given semantics in the model introduced (or in the

other models used later). It is possible to de.finecongruent

semantics for the same language over different domains.

Indeed the present author has done this in two ways over

Scott domains, both without continuations (presented in (j»

and with continuations. The first of these two was implem-

ented by S.D. Brookes using Mosses' S.I.S. system, confirming

amongst other things the awfulness of the "palindromes"

example (1.19(iii» . The fomal semantic techniques used

in this chapter are useful but by no means essential for

the abstract language used in this thesis, but are almost

indispensable when dealing with more conventional languages

with more advanced use of variables and perhaps jumps. We

will return to the subject of such languages shortly.

The proof rules introduced in chapter two, amplified in

chapters three and five, and used throughout this thesis

seem to have certain advantages over the more common, and

very similar type which requires us to prove a (possibly vac-

uous) predicate R of fix(F) and the relation "R.(A) ~ R'+l (F(A»"011 I

to be able to deduce Vi.R. (fix(F». In the cases of our1

simpler rules, when used with respect to restriction operators,

most of the advantages are aesthetic: proofs tend to be more

elegant and there is no need to break up a predicate R"into

infinitely many R.. The more advanced forms, for example1
those described in 2.21, 2.29, 2.33 and 2.34, seem to arise

more naturally from the type of rule adopted here. The more

abstract cases (where strong and extra continuity are used)

do not appear to translate at all into the other type.

2b3
-- --

A further advantage of this type of rule is the form of the

conditions required of predicates for them to be amenable to

proof. The considerable sharpening of our insight gained in

chapter three is a direct consequence of this. As in the case

of chapter two this chapter and its appendix seem to be a

fairly comprehensive treatment of its subj~ct. The questions
, ,

raised,at the end of the appendix, while interesting from a

mathematical point of view, can have little bearing on any

practical work. The topology generated by extra-continuity
/

(which coincides with strong continuity over countable alpha-

bets) is of a type which has found several other uses in

computer science; it is for example practically the same as

the "Cantor topology"of Plotkin (i>.

Chapter four is a summary of some of the author's contributions

to the foundations of the non-deterministic model. Because

this was a joint project much material desirable for a proper

understanding of this model is missing. The set-theoretic

principle proposed in 4.10 and proved in 4.15 is clearly the

main result of this chapter. In addition to the proof of

propositional compactness which forms part of 4.15 there are

several other cases where 4.10 can be substituted for (the

strictly stronger) Zorn's lemma in proofs of standard results

in a natural way. Examples of this are the ultrafilter lemma

and the classic paradoxical dissection of the unit sphere.

(Of course the fact that we have the double implication in

4.15 places it exactly in the known hierarchy, but it is

nevertheless pleasing that our result proves other results

in natural ways.) The results of this chapter will apply

equally to the revised model suggested at the end of chapter

eight.

The proof rules introduced in chapter five are of course

the same as those of chapter two, so the same comments apply.

The main thing which is missing is a topological study of

the non-deterministic model in the spirit of chapter three.

If this were done it seems likely that the results obtained

would be very similar to those of chapter three, with' the

exception that in a domain without a "topU it is impossible

to obtain any of the proof rules derived from strong and

extra continuity. It is clear from chapter eight that mono-

tonic predicates play a special (though by no means exclusive)
- - -

role over both the model of chapter four and the similar

model of the last section of chapter eight. The study of

these will certainly generate further (weaker) topologies

over our spaces and may well allow us to develop further

proof rules. (The topology of continuous monotonic predicates

will be very similar to that of 3.21.)

The discussion of buffers in chapter five is more or less

self contained. The techniques developed for the study of

buffers are likely to have much wider applications, however.

It should not require more than a few adjustments to transfer

most of the work of chapter five to the revised model Q sugg-

ested in chapter eight. As suggested earlier the transferof

the work in chapter six will require a little more care bec-

ause of the reduced constructivenessof (All a::B) in its

second argument. It would be interesting to compare the

work done in chapter six on the elimination of network chatter

over M with conditions required to prove the absence of div-

ergence over Q. Hopefully it can be proved that the two are

more or less equivalent: the implication of absence of diver-

gence by the absence of network chatter would be a justific-

ation of our definition of network chatter. There is also

the point that if divergence is excluded by conditions such

as E~ then any fixpoint is greater than (divergence-free)

CHAOS; the coincidence of the two systems of operators over

the region [A IA 2 CHAOsj could then be used to justify the

old analysis of such processes as Quicksort (6.9) over the

new mode I .

The work in the first half of chapter seven requires few

comments. Translation to the revised model should bring a

few improvements. Since the "matrix" operator is not obv-

iously suited to recursive use it is likely that its theory

and the proof techniquesfor processes defined using it will

be more akin to those used with "»" thal'1those of "(A I1a: :B) " .

The advantage of our non-deterministic models M and Q when

deadlock is studie§ is the extremely simple way in which it

manifests itself (i.e. LE A(s)}. There is clearly room for

much work in extending the results and techniques developed

in this section. It is also possible to study other, similar

predicates such as IIliveness", the predicate demanding that

it is always possible for a process to return to its initial

state. (The author has developed several methods for proving

this predicate, which is rather less easy to prove than the

absence of deadlock.)

Chapter eight is a summary of some of the author's most recent

work, linked by the common theme of the study of the relation-

ships between "real" systems and their models. It is of a

less cpmplete nature than the other chapters, several of its

sections requiring further work. Despite this the author

feels the conclusions reached are too important to leave out.

Further formal analysis is required especially in the sections

on the connection between weak-postulate spaces and P,Q-spaces,

operators over universal spaces and the analysis of particular

models. It is of course still necessary to formally analyze

the revised model Q in the contexts of the earlier chapters.

It would also be interesting to compare our relational "uni-

versal spaces" with other objects such as powerdomains (Plotkin

(i), Smyth (1» used to model non-determinism. Several compar-

ative studies might be possible, such as an examination of the

operational semantics of Cousot (b), and with CCS. It will be

especially interesting to compare the treatments of diverging

processes. (The author believes that Brookes (a) will contain

some analysis of the connections between the model M and CCS.)

There must also be comparisons between our study of processeS
c c c

through the tests they pass (El' E2 and E3) and the work of

Kennaway (~).

In addition to the specific points mentioned in the above

paragraphs where further work is required, there are several

wider fields where further work is desirable. The first of

these is the application of our various methods to more "real-

isticllversions of C.S.P., with assignment to variables, lIif..11

statements, less rich recursion (and perhaps jumps?). These

could probably be tackled best by a denotational semantics

over the model Q in the style of chapter one.

Secondly it might be desirable to attempt to formalize some

of the rather ad hoc proof techniques into more systematic

methods. A good example of such methods is the technique

developed in 6.16 - 6.18 for proving E~ and C~. Sorne inte.r-
esting formal rules.ove-rthedet~rministic models. have been

produced by Zhou (n).

Thirdly it would be interesting and probably instructive

to attempt to apply our methods to some larger examples

than those which we have used as illustrative examples.

These might include the specification and justification

of communications protocols, and the proof of correctness

of a model operating system.

\

- - --- -

References

(a) S.D. Brookes: D.Phil thesis, to appear.

(b) P. Cousot and R. Cousot: Semantic analysis of communic-

ating sequential processes; ICALP 80 proceedings

Springer-Verlag.

(c) C.A.R. Hoare: Communicating sequential processes;

Comm. ACM 21, 8(1978).

(d) C.~.R. Hoare: Communicating sequential processes,

in "Construction of programs" Ed. McKeag & MacNaughton,

C . U . P. 19 80 .

(e) C.A.R.Hoare, S.D. Brookes and A.W. Roscoe: A theory of

communicating sequential processes; Technical monograph

PRG 16, May 1981 (Also to appear in an extended form in

J.A.C.M.).

(f) M. Hennessy and R. Milner: On observing nondeterminism

and concurrency; ICALP 80 proceedings, Springer-Verlag.

(g) J.R..Kennaway and C.A.R. Hoare: A theory of nondeterminism,

ICALP 80.proceedings, Springer-Verlag.

(h) C. Mead and L. Conway: Introduction to VLSI systems,

Addison-Wesley 1980.

(i) G.D. Plotkin: A powerdomain construction, SIAM Journal

on computing 5, Vol.3, pp.452-487, 1976.

(j) A.W. Roscoe: D.Phil. qualifying dissertation, 1979.

(k) D.S. Scott: Data types as lattices, SIAM Journal on

computing 5 1976, pp.522-587.

(1) M.B. Smyth: Power domains; J. Comp. Syst. Sci. 16, (1978).

(m) S. Willard: General topology, Addison-Wesley 1968.

(n) Zhou Chou Chen and C.A.R. Hoare: Partial correctness of

communicating sequential processes, Proc. Int. Conf. on

distributed computing, April 1981.

In addition to the above works, which' were specifically referred

~n the text, there are several others which have had a significant

influence. Amongst these are the following.

(1) J.H. Conway: Regular algebra and finite machines, Chapman

and Hall, 1971.

(2) E.W. Dijkstra: A discipline of programming, Prentice-Hall

1976.

(3) H.B. Enderton: Elements of set theory, Academic Press, 1977.

(4) K. Kuratowski: Introduction to set theory and topology,

Permagon Press. (Especially chapter XIX, but beware the

false theorem 2.4.)

(5) R. Milner: A calculus of communication systems, Springer

Verlag 1980.

(6) D.S. Scott: Mathematical theory of computation, Oxford

University lecture notes, Michaelmas term 1980.

(7) J.E. stoy: Denotational Semantics, M.I.T. press 1977.

There are two further categories of works which should be ment-

ioned. The first of these are numerous locally circulated

documents, particularly those of C.A.R. Hoare and S.D. Brookes.

The second category comprises the sources from which the author

has borrowed the ideas for many of his worked examples.

