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ABSTRACT. We extend the failures/divergences model for CSP to include a 
component of infinite traces. This allows us to give a denotational semantics 
for a version of CSP including general nondeterministic choice and infinite 
hiding. Unfortunately the model is an incomplete partial order, so it is by no 
means obvious that the necessary fixed points exist. We have two proofs of this 
result, one via a congruence theorem with operational semantics and one via 
a careful analysis of operators' behaviour on a subset of the model. 

0. I n t r o d u c t i o n  

As is well known to the theoretical community, it is generally far easier to model finite 
nondetermJnism (where a process can only choose between finitely many options at 
any one time) than unbounded nondeterminism (where no such restriction applies). 
The difficulties encountered with unbounded nondeterminism have hitherto forced 
us to restrict the language and semantics of CSP to avoid it: the most obvious 
restrictions being our inability to define the hiding operator P \ B  when B is infinite 
and the absence of an infinite nondeterminism operator ['] S for arbitrary nonempty 
sets S of processes. 

In an earlier paper [R2] one of us showed how many of the restrictions on un- 
bounded nondeterminism could be lifted by separating the nondeterminism order 
from the order used for finding fixed points. Unfortunately the structure of the 
model used there (failures and divergences using only finite traces) means that the 
semantics given by that model to unboundedly nondeterministic operators is not suf- 
ficiently discriminating. That model can successfully model a process which will, on 
its first step, nondeterministically choose any integer, but cannot tell between a pro- 
cess which can communicate any finite number of a's and one which may also choose 
to communicate an infinite number. The main purpose of this paper is to develop a 
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more refined model which can make this sort of distinction. This is done by adding 
a component of infinite traces so that any CSP process is represented by (F, D, I) 
where F is its set of failures (still with finite traces), D is its set of (finite) divergence 
traces and I is the set of infinite traces it can communicate. 

Unfortunately the obvious orders on this new model fail to be complete, though 
they do have greatest lower bounds for arbitrary nonempty sets, which means that 
the standard iterative technique will produce the least fixed point of monotone f 
provided there is any x with f (x)  _< x. The first reaction to this failure was to 
look for a new order coarser than the obvious one which was complete (for this was 
precisely what h~d been done in the paper mentioned above for the IF, D) model 
without the finite subsets axiom). However one can prove that no order which gives 
the right semantics can be complete. Spedfically we find an w-sequence of CSP- 
definable processes whose semantic values are provably ordered in any sensible order 
but which can have no least upper bound. 

If recursions are well defined we must therefore find some spedal property of 
CSP-definable functions which leads them to have fixed points. We have found two 
methods for proving the existence of these fixed points. The first was to define an 
operational semantics for the language and to prove simultaneously that the fixed 
points exist and that the denotational semantics is congruent to the operational one 
via the natural abstraction map. Barrett's contribution to this paper was to find a 
much shorter proof 3 which is also more satisfactory in some ways because it rests 
entirely within the model itself, rather than going outside to operational semantics. 

The rest of the paper is structured as follows. In the next section we develop the 
new model, discover its partial order properties, and show how to define the CSP 
operators over it. The second section gives Barrett's proof that all CSP definable 
functions have fixed points. Because the semantics contains a number of features 
which are difficult or unusual, it is even more important than usual to have evidence 
that they are 'right'. For example many of the operators definable turn out to be 
non-continuous (though monotone) and require iteration past w to reach their fixed 
points - and on first inspection it is not obvious whether the meaning of a recursion 
I~P.F(P) should be the wth iterate I I{F"(±) ] n E N} or the least fixed point (the 
latter is the right answer). Therefore in the final section we outline the proof of the 
congruence theorem which was formerly used to prove the existence of fixed points, 
but now stands in its own right. 

The way this congruence theorem can be used to establish the existence of fixed 
points is explained in an earlier presentation of the new model JR3], which also gives 
the proofs of various results on operational semantics that have been omitted from 
this article due to lack of space. 

3The new proof was discovered in May 1989, shortly after the Tulane workshop. 
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1.  A d d i n g  i n f i n i t e  t r a c e s  t o  t h e  f a i l u r e s  m o d e l  

The failures/divergences model, developed in [R1,B,BHR,BR], has become the stan- 
dam abstract model for CSP. CSP is based on atomic, handshaken communications 
drawn from an alphabet E, which may be finite or infinite. The model describes every 
process as a pair (F, D}, where F C E* × P(E)  is the (nonempty) set of a process' 
failures ((s, X) E F is failure of the process if it can perform the trace s and then 
refuse to accept any communication from the set X)  and D C C_ E* is the set of its 
divergences (traces on which the process can loop - perform an infinite sequence of 
internal actions). The usual version of this model - often called H - is defined by a 
number of axioms, (1)-(5) below plus an axiom of bounded nondeterminism 

vY _c ~ X.(s, Y) ~ F ~ (s, X) ~ e .  

This axiom is necessary to make the nondeterminism partial order 

{F,D) ~_ (F',D') vv F D_ F' A D D_ D' 

complete. However, in [R2], a stronger order (in that it orders less things) was devel- 
oped, which gives exactly the same fixed point theory but which no longer requires 
this axiom for completeness. This new 'definedness' order is defined 

P -< Q ¢~ ~[[QI c 9~P] A 
s ¢ :D[P~ ~ Tt~P]s = 7t~Q]s h 
#(V[P])  C_ traces(Q) 

where #T denotes the minimal elements of a set T of finite traces and 7~[P~s denotes 
{X I (s, X) e J : M i .  P <- Q means that Q has less divergences than P,  but that 
all of P's non-divergent behaviour is copied exactly in Q. This extended model was 
termed j~r~. 

Our new model will have the same structure as AP except that it will have an extra 
component representing infinite traces. Thus a process P will be a triple (F, D, I), 
where F C_ E* × 7~(E), D C E* and I C E~. F should be nonempty and the eight 
axioms must be satisfied. The first seven are tabulated below. 

(1) (st, O) E F =~ (s,O) E F 

(2) (t, x )  e F ^ Y c x ~ (t, Y) e F 
(3) ( t ,X)  E F A V a E Y . ( t ( a ) , 0 ) ¢ F  ~ (t, X U Y )  E F  

(4) s E D  ~ s t E D  

(5) s e D =V (st, X)  e F 

(6) s ~ I  ~ ( s , 0 ) e F  
(7) s E D  ~ s u E I  

Here, and in the rest of this paper, a, b, . . .  range over E, X, Y, A, B , . . .  over T'(E), 
s, t, v, w over the finite traces E* and u over infinite traces E% 
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Axioms (6) and (7) are both new but straightforward because they are simple 
extensions to axioms (1) and (4) respectively. One more axiom is required, which 
can be thought of as an infinite trace analogue to axiom (3). The latter says that 
anything which, on one step, cannot be refused, must be a possible communication. 
The new axiom will say that when one, from the finite convergent behaviour, can 
show that there must be infinite traces, then there are enough of them. 

One can often prove from the failures of a nondivergent process that some infinite 
trace is possible because one can formulate a strategy for forcing one. The most 
simple-minded form of strategy is that based on a single infinite trace u. If (s, {a}) ¢ 
F for all s(a) < u then it is intuitively clear that a user single mindedly striving for 
the infinite trace u must be successful. However there are more subtle versions of 
this. Consider a process whose failure-set is 

F0 = {(s,X) ] s e {a,b}* A {a,b} ~ X} .  

Imagine always offering this process the set {a,b}: it is never refused, so we can 
guarantee that an infinite trace must arise. However we have no finer control over 
exactly which infinite trace it is, though on further reflection we can observe that, 
since every finite sequence s of a's and bs is possible there must be an infinite trace su 
extending every such s. The necessity of some axiom reflecting the forcing of infinite 
traces is demonstrated by the definition of the hiding operator below. Studying this 
will reveal that if a process P with the above failures did not have an infinite trace, 
then P\{a,  b} would not have any failures, divergences or infinite traces! 

The final axiom proved quite hard to find - several quite plausible versions turned 
out to be incorrect. There are a number of equivalent (in the presence of the other 
7) versions of axiom (8). Several are given in [R3] and [Blaml. Perhaps the nicest 
formulation is the following, which was derived from the first author's earlier version 
by Stephen Btamey. Here T ranges over finite prefix dosed sets of finite traces and 
T = t Vt < u.t T}. 

(8) (s,O) e F =~ 3T.(Vt e T.(st,{a [ t(a) • T}) e F A  {su I u E 7} C_ I) 

This can be interpreted as saying that one can never tell on a single interaction that 
a process is not deterministic, unless it diverges. T represents one of the deterministic 
forms the process might take after the trace 8. It is worth noting that this axiom in 
no way restricts the sets of failures that are possible - if (F, D) is any element of Af' 
and T = {s [ (s, 0) E F} then (F, D, 7 / is always in H. Furthermore, if (F, D, I) E H 
and I C I '  C T,  then (F, D, I') E H. 

The reader might like to check that the elements of/4 with failure set F0 as defined 
above are precisely (F0, 0, I) where I is a set of nonempty infinite traces such that 
every element of {a, b}* is a prefix of some element of I. This follows in part from 
the fact that, if P is a process with the given failure set and T is a prefix closed set 
of finite traces satisfying the conditions of axiom (8) (relative to any s), T must have 
an infinite trace as it is easy to prove that it has arbitrarily long finite traces. Some 
possible I 's  are {a, b} '~, and {su I s e {a, b}*} for any fixed u E {a, b}% 
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The notation of N "~ is easily extended to cover the new model. If P = (F, D, i) 
then we write U[P]] = F,  :D~P~ = D and Z[O~ = I. The set {s ] (s, 0) e F} of finite 
traces of P will be denoted traces(P); while Traces(P) = traces(P) U I will denote 
the set of its finite and infinite traces. 

The nondeterminism order K extends trivially to the new model. If P = (F, D, I} 
and pt = (F  I, D t, tt} are any two triples we say 

P E P '  - F D F ' A D D _ D ' A I D _ I ' .  

If S is any nonempty set of processes we define its nondeterministic composition 
I-IS to be (F, D,I), where 

F = U {F ' [ ( F  ~,D',I'} E S} 
D = U{D' I (F '  ,D',I ')  e S} 
I = u { r  I ( F , D ' , I ' )  E S}. 

This is just the process which can exhibit any behaviour of any element of S. R is 
straightforward to verify that [7 S is always in b/. 

It is clear that P _ ["]S whenever P E S. We say that a process ( F , D , I )  is 
deterministic if it satisfies D = 0 and 

(~,x)  ~ F ** x n {a I (da},0) e F } .  (,) 

Thus it never has the choice of accepting or rejecting an event. The infinite traces 
of a deterministic process P = (F, D, I} are completely determined by the failures - 
t = traces(P). To see this, observe that the only T satisfying the first conclusion 
of axiom (8) for any s is {t ! st E traces(P)}. Actually, a deterministic process P 
is completely determined by traces(P). The deterministic processes are precisely the 
greatest elements of b/ under E (just as over the model without infinite traces) - 
for it is easy to see that they are maximal and also to show that each process has a 
deterministic process above it. It is not true that for every P 

P = [-]{Q I Q is deterministic h P K Q} 

because the right hand side always has D = 0. However it is possible to extend 
the class of deterministic processes in such a way that this becomes true - say that a 
process P = (F, D, I} is pre-deterministic if whenever s • D equation ( . )  above holds. 
In other words, a process is predeterministic if it is deterministic until it diverges. We 
write P for the set of all predeterministic processes. A predeterministic process is 
completely determined by its sets of traces and divergences. 

Ordered by K, 7~ forms a complete partial order whose least element is the imme- 
diately diverging processes and whose greatest elements are the deterministic ones. 7 ~ 
plays a very important role in the next section when we come to discuss fixed points 
of CSP operators over/,/. 

We get the following fundamental result. (Indeed, before the discovery of the form 
of axiom (8) quoted above, this took its place.) 
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L e m m a  1.1 For all P E L/, 

P = [ ~ i m p ( P ) ,  where imp(P) = {Q E 7 ) ] P E Q } .  

Proof .  The fact that imp(P) is nonempty is a trivial consequence of axiom (8), since 
the T produced by the empty trace () yields an implementation. Thus 17 imp(P) 
is well-defined, and trivially 17 imp(P) ~_ P. Thus the Lemma will be proved if we 
can demonstrate the existence of an element of imp(P)  containing each behaviour 
(failure, divergence, infinite trace) of P. For failures it is guaranteed by axiom (8) as 
follows; suppose the failure is (s, X) and for any trace t, Tt is a set of traces generated 
by axiom (8) relative to t. Let the set S of finite traces be 

{t [ t < s} U {t(a)v t t < s A t(a) E traces(P) A t(a) ~ s A v E Tt(~)} 

u{s<a>  I a ¢ x A s(a) e traces(P) A v E T,(~)}. 

It is easy to show that the deterministic process corresponding to S is an element 
of imp(P)  with the failure ( s ,X ) .  Similarly, given a divergence s, take the sets 
S, -- { t  l s <_ s}  and 

$2 = {t I t < s V s g t} O {t(a)v I t < s A t(a) E traces(P) A t(a) y~ s A v E Tt(~)} . 

The unique predeterministic process with divergence set S1 and trace set $2 is the 
required element of imp(P).  

It only remMns to consider infinite traces u, where we define S to be 

{t ] t < u} U {t(a)v I t < u A t(a) E traces(P) At(a)  ~ u A v E T,(a)} . 

The only difficulty in proving that the deterministic process determined by this trace 
set is in imp(P)  is in proving ~ C I. This is a consequence of the fact that if 
u ~ E ~ then either u' = u or, letting s(a) be chosen (necessarily uniquely) such that 
s(a) < u~ A s < u A s(a) ~ u, we know that u" E T~O), where u' = s(a)u ' .  | 

Since divergence (and hence undefinedness) always appears after a finite length of 
trace, there is no obvious way of extending the idea of definedness to infinite traces. 
We therefore extend < in the same way as above: the order on the infinite traces 
being by reverse, inclusion. 

P _< Q ¢, Z)[Q] c_ r I P ]  ^ 

/z(v[P]) c_ traces(Q) A 
Z[[P] D_ ZiQ  

In general we have P _< Q =~ P _ Q but not the reverse; however it is interesting 
to note that if P and Q are two predeterministic processes then P _< Q if and only 
if P _ Q. Obviously all deterministic processes are maximal under _<, but there are 
other maximal elements as well - however they do not seem to be as useful or tangible 
a class as the deterministic processes ~ ad so we do not discuss them further here. 
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We will return to examine some more properties of the partial orders shortly. 
All the usual operators may be defined over/4. As one would expect, in most cases 

the finite parts of these definitions are exactly the same as before (with the notable 
exception of hiding). They are given in full below. 

STOP and SKIP are defined 

SKIP = 

Let P = (F, D, I}, 
Then 

/)J[a -~ P]] = 

Z [ a - +  P1 = 

.T'[a -+ P ]  = 

z)D:  B --+ P d  = 

Z[[x : B -+ P.] = 

~-[*: B -+ P ~  = 

~[[P ~ P'~ = 

zl[e  n e']  = 

f ' [ P  gl P']  = 

I)[PoP'] = 

Z[PE]P'~ = 
: q p D p , ~  = 

I ) [P  BIIo P'] = 

Z I P  BJIc P ' [  = 

~[PBI{c  Pq] = 

7 ) [ P i l l  P'~ = 

Z~PItIP'~ = 

Yt[P I11 P']I = 

STOP = ({((), X) I X c_ E}, 0, 0) 

( { ( ( ) , x ) I v c x } u { ( ( v O , X ) I X  c_ S},0,0).  

P' = (F', D', I'} and, for b e B, Pb = (&, Db,/b) be processes. 

{(a)stsED} 

{(a)u 1~ e I }  
{ ( ( ) , X )  la C x } u  { ( (a ) , , x )  1 (s ,x )  e F} 

{(b)s i b e  BAs e Db} 

{(b>u l b E BAu ¢ £} 
{(< ), X )  1B n X = 0} u {(<b>s, X )  t b e B A (s, X )  e F~} 

DUD' 

I U I '  

FU F' 

D UD' 

I O I '  

{( ( ) ,X)  I ( ( ) ,X)  e F n  F'}U 
{ ( , ,X)  I s ¢ () ^ (s ,X) e FUF'}U 
{(s, X) l s E V~PDP'~} 

{st ls e (BUC)* As~B ¢ D A sbC ¢ traces(P')} 
U{ st [ s ¢ ( B U C)* A sb B E traces(P) A sbC E D'} 

{u E (B U C) ~" [u}B ¢ Traces(P) A u~C ¢ Traces(P')} 
U{su Is 6 9[P ,iIc P'~} 

{(s, ( x  n B) u (Y n c )  u z )  I s e (B u c)* A (sbB, X) e FA 
( ~ c ,  Y) e F'  ^ z n (B u C) = ~} 
u { ( s , X )  I s e VI[P BIIc P']}  

U{merge(s,t) I s e D At E traces(P')} 
UU{me~e(s,t)  Is e D'A t e traces(P)} 
U{merge(s,t) I s ~ Traces(F) ̂  t e T~ce4P')  ^ s or t infinite} 

{(s, X)  I Bt, t'. s E merge(t, t') A (t, X )  E F A (t', X )  ¢ F' }  
u{ (s ,X )  ! s e ~[[P Ill P']]} 
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:D[P;P'] = {st ls e D A stick-free} 
UIst I s(v/) • traces(P) A t • D' A s tick-free} 

27~P; P'] = {u I u E I A u tick-free} 
U{su ]S<v/) • traces(P)A u E I' A stick-free} 
UIsu I s • :DIP; P']} 

~[P;P']  = {(s ,X)  l ( s ,X U {v/}) • F A stick-free} 
U{(st, X) I s<v/) • traces(P) A s tick-free A (t, X) • F'} 
U{(s, X) I s E :DIP; P']} 

29[P\X]] = {(u\X)t  [ u • I A u\X is finite} U {(s \X)t  [ s • D} 

Z[P\X]  = {u\X [ u • I A u\X is infinite} U {su Is • :DIP\X]} 

.~[P\X] = { (s \X,Y)  [ (s, X U Y) • F}  U { ( s , Y ) [ s  • DIP\X]}  

T)[f[P]] = {(f(s))t  ls • D} 

zU[P] ]  = {f(u) lu e I} u {(f(s))u Is • D} 

~'[f[P]] = { ( f ( s ) , X ) l ( ~ , f - ' ( X ) )  • F}  U { ( s , g )  Is • vU[P]~}  

D[f-x[P]] = {s If(s) • D} 

zU-a[P] ]  -- {u If(u) • I} 

~.[y-l[p]~ = { ( s ,x)  l ( f (s ) ,y(x))  • F} 

We have already seen how 17 S is defined. 

The only definition that really requires comment is that of hiding. The definition 
of :DI[P\X] is rather simpler than in earlier models, since a divergence caused by 
the hiding now arises from a single infinite behaviour rather than from an infinite 
collection of finite ones. With this exception, failures and divergences never depend 
on the infinite traces of the operands. 

We can easily extend the after operator to the new model. If P = (F, D, I 1 E/4 
and s E traces(P) then P after s is defined to be (F', D', I'), where 

F' = {(t ,X) l(st,  X) • F}  
D' = { t [ s t E D }  
I' = {u I s u  • I } .  

P after s is the process which behaves like P after communicating the trace s. 

T h e o r e m  1.2. All the operators are well defined (i.e., preserve the axioms) and 
monotonic with respect to both orders. All operators are both finitely and infinitely 
distributive: i.e., F(D]S) = [-]{F(P) [ P • S} for all operators F and nonempty 
S C_Lt. 

We should perhaps note that no claim has been made for the continuity of the 
operators, which is because many of them are not continuous as a consequence of 
unbounded nondeterminism. The main consequence of this lack of continuity is that 
the fixed points of recursively defined programs need not have appeared by the wth 
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iteration from _k so familiar to computer scientists. However, once we can show that 
necessary least upper bounds exist there is no problem in defining the meaning of 
any recursive term to be the least fixed point of the appropriate monotone function: 
it is given by fa(_L) for sufficiently large a. Once one can do this, we can define a 
semantic function 8 : E --+ UEnv -*/.4, where E is the set of all CSP terms and 
UEnv is the set of mappings from process variables to/4, in the obvious way. II 

Properties of the partial orders 

The following Lemma records some of the facts we have already noted and one or two 
other elementary facts about the two partial orders. 

L e m m a  1.3. 

a) P _U Q if, and only if, imp(P) D__ imp(Q). 

b) P<_Q~ P U Q  

c) .k = {E* x T'(E), E*, E °~) is the least element of U for both orders. 

d) I f P < R a n d P E Q _ R ,  t h e n P < Q .  

e) A process P is pre-deterministic if and only if there is a deterministic Q such 
that P < Q. 

f) The E-maximal elements of U are precisely the deterministic processes. 

P roof .  (a), (b) and (c) are trivial. For (d), we observe that P <: Q if and only if 
P E Q and 

(i) (s, X) E ~'~P~ A s ¢ D[P~ =v (s, X) e U~Q~, and 

(ii) #(T)~P]) c traces(Q), 

so to prove the result it will be sufficient to prove (i) and (ii). If (s, X)  E ~'[P] A s 
7)~P~ then, since P _< It, we know (s, X) e ~'[R]. Hence (s, X) e 9riQ~ as Q _ R. 
Exactly the same argument applies for (ii). 

Part  (e) is elementary once we observe that if P is not pre-deterministic then its 
nondeterministic convergent behaviour must be present in any Q such that P < Q. 

It is easy to show that if P and Q are both deterministic and P _E Q then 
P = Q. It follows that if P is deterministic then imp(P) = {P}, and, by (a), 
that all deterministic processes are maximal. It is easy to see that, for any P E H, 
imp(P) contains a deterministic process Q (since any pre-deterministic process is 
weaker than some deterministic one by (e)). It follows that P ~ Q and hence that 
no nondeterministic process can be maximal. This proves (f). | 
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We cannot hope that ___ is complete in general, for it is not complete over A/" when 
is infinite. Unfortunately, neitherorder is complete, even when ~ = {a, b}. It is easy 

to construct increasing <-sequences of processes, all with F = F0 as defined above 
and D = 0 which can have no upper bound. As a simple example, let us = ((a)=(bl)~ 
be the infinite trace which has n a's then a b cyclically. It is clear that the sets 
{su,~ I s E {a, b}*} are disjoint as n varies, and therefore that, if we set I,~ = {su,, I 
s E {a, b}* ^ m > n}, any upper bound for the sequence ((F0, 0, I , )  I n E NI) must 
have an empty se, t of infinite traces. This is impossible for < as, since all the processes 
are divergence-free, any upper bound must have failure set Fo. (And we have already 
observed that a[[ such elements of/~ have nonempty I.) It is also impossible for E 
since any upper bound must have an implementation Q (necessarily deterministic). 
Q must also be an implementation of all processes in the sequence and therefore have 
an infinite trace - a contradiction. 

We will return to this incompleteness shortly and show that it is, to some extent 
at least, inevitable. Before we do this, however, it will be nice to establish a few 
positive properties. 

T h e o r e m  1.4 

a) Any nonempty subset S of/~ has greatest lower bounds with respect to both < 
and E. In general, ['1< S E [']c S. 

b) In either o~rder, any subset of h¢ with any upper bound has a least upper bound. 

c) If L J< S is defined then so is U E S and the two are equal. Furthermore I1< S = 
P* = (F*, D*, I*), where F* = A{F I (F, D, I) E S}, D* = A{D I (F, D~I) E 
S} and I* = M{I [ (F, D, I) E S}. 

d) If S is a nonempty set then II E S exists if and only if n{imp(P) ] P E S} is 
nonempty, and in that case lIE S = [-](n{imp(P) I P E S}). 

e) If f :/¢ --* U is a function which is monotone with respect to one of the orders 
and there is P e U such that f (P)  <_ P (respectively f (P)  E P), then f has a 
least fixed point given by f " ( ± )  for some ordinal a. 

f) If f : H ~ U is monotone with respect to both orders then any least fixed point 
for one order is also the least fixed point for the other. 

Proof .  It is easy to see that ['] S is the E-greatest lower bound of any nonempty set 
S. It does not work in general for the definedness order <, however, since one does 
not in general have P C S =~ H S  < P. The greatest lower bound of S = {(F~,D~, I~) ] 
i E A} is, as was the case in A/t, constructed so that it diverges as soon as the finite 
behaviour of any two elements of S starts to differ. We define ~< S to be (F,D, II, 
where 

• D = U{D,: [i  e A} u {st [ 3i, j.(3Y.(s,Y) E Fi \ Fj) V (3a.(s(a),O) E Fi \ Fj)} 

• F = U{FI I i E A} U { ( s , X )  I s e D} 
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* I = U { [ i l i E A } t J { s u l s E D }  

It is easy to show that this process is in/g and is indeed the _< greatest lower bound 
of S. Trivially ['1< S E ~ S. This completes the proof of (a). 

(b) follows because, as is fairly well known, any partial order which has greatest 
lower bounds for nonempty sets has this property. The usual argument is repeated 
here. If S is a set with an upper bound, then Us, the set of upper bounds of S is 
nonempty and so x = ["]Us exists. Since y _< z whenever y E S and z E Us it follows 
that each y E S is a lower bound for Us. As x is the greatest lower bound for S it 
follows that x > y for all y E S and therefore that x E Us. Plainly x is the least 
element of Us and is therefore the least upper bound of S. 

The first part of (c) follows trivially from the formula which is the second part. 
However it has an interesting separate proof. Note that, since Q _< P =~ Q _ P, if 
P = ~< S exists then it is a U-upper bound for S and hence Q = [.JE_ S exists and 
Q ~ P .  W h e n e v e r R E  S we then have R ff Q E P a n d  R_< P. Lemmal .3  (d) 
above then tells us that R < Q. It follows that Q is a <-upper bound for S and hence 
that Q >_ P. We then have Q E P and P E Q. The result follows immediately. 

For the second part, we show first that if pr = (F r, D r, I r) is the actual least 
upper bound of S then D* = D'. For trivially D ~ C D* so let s E #D* (where recall 
D* = N{D I fF, D,I} E S}). Note that there must b e P  = (F ,D , I )  E S such 
that s E #D. Since P _< pr we must have s E traces(P'). If s ~ D ~ then consider 
Pr' = (F", D", I") defined as 

F" = F r u { ( s t ,  X )  I t e E * A X C E  } 
D" = D r U { s t l t E E  *} 

r'  = I'U{sulue  }. 

traces(P") is prefix closed by the observation above. It is thus easy to see that P"  is 
a process, that P -< P" for all P 6 S and that P '  :~ P". It follows that P '  cannot be 
the least upper bound on S, a contradiction. Hence/~D* _ D'; it easily follows that 
D* C D r, so the two are equal as desired. 

That P* defined in the statement of the theorem satisfies axioms (1), (2), (4), 
(5), (6) and (7) is trivial. We next note that trivially F* D F'.  Now by the above 
paragraph those parts of F* and F' implied by divergence and axiom (5) are equal. 
Suppose that s • D' = D*. Then there is P = (F ,D , I )  6 S s u c h t h a t  s ¢ D. 
Necessarily T~P~8 = R[P'~s as P < P'. It follows that n ~ P ' ] ,  2 7~[P*~s (for the 
latter is the intersection of a set containing 7~.P~s). Putting these facts together 
yields F' 2 F*, proving that in fact F '  = F*. Note that this implies that P* satisfies 
axiom (3). 

Since we have now shown that D* = D' and F* = F r, and it is trivial that I* _D I ~ 
a n d / F  r, D r, It) E U it follows directly that P* satisfies axiom (8) and is therefore in 
b/. The fact that it is the _<-least upper bound for S is then trivial. This completes 
the proof of (c). 

(d) follows easily from Lemma t.3 and (b) above. 
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(e) is true in any partial order with property (a). By another standard argument, 
if f is monotonic and z = I'I{P I f(P) <- P} exists in a partial order then it is the 
least fixed point of f .  We still have to show that  the least fixed point can also be 
found by iterating f~(_l_). The only place at which the standard cpo proof of this 
could go wrong iLs where, for hmit ordinals ),, one defines f~(_L) = I I{f~(±) I ~ E $} 
since this least upper bound might not be defined. But it always is, since it is easy 
to prove by transfinite induction that all the f~(_l_) are bounded above by the least 
fixed point x constructed above so that  we can always apply (b) when constructing 
fa(W). 

(f) follows easily from (c) and (e). If f is monotonic with respect to both orders 
and has any fixed point then it follows easily from (e) that  it has least fixed points 
f~(&) and f c~(&) with respect to these two orders. But one can prove from (c) that  
if-both of these exist then the value of f~(±)  is independent of whether it was defined 
using < or E by an easy transfinite induction on 3'. From this it is easily seen that  
both processes reach the same fixed point, and do so at the same time. 

(f) can alternatively be proved by observing that, by (e), if f has a fixed point 
then it has a least fixed point with respect to both orders. If z and y denote the 
<-least and _E-least fixed points respectively, we have x < y and hence x _U y by 
Lemma 1.2. But we know y _ z so it follows that  x = y. I 

We should remark now that  all of the properties of the partial orders identified in 
Lemma 1.3 and Theorem 1.4 extend easily (some of them appropriately amended) to 
products of H, :i.e., he^(= A --+ H) for an arbitrary nonempty set A, with the order 
19 < Q (or P _E Q_.) if and only if Px < Q~ (or Px E Q~) for all ,k E A. Some of the more 
useful properties of these product spaces, which are important in the consideration 
of mutual  recursions and in the definition of the partial abstraction functions later 
on, are summarised below. All the proofs are either standard or straightforward 
extensions of w]hat we have already seen. 
T h e o r e m  1.5. 

a) ±^ is least element of b /wi th  respect to both orders. 

b) Any nonempty subset S of U ̂  has greatest lower bounds with respect to both 
< and E. In general, N< S E ~ S. In either case the greatest lower bound's 
h-component is given by r]{P:~ r P E s}, where 17 here denotes the greatest 
lower bound operator over U in the appropriate order. 

c) 

d) 

e) 

In either order, any subset of H with any upper bound has a least upper bound. 
In that  case its h-component is given by II{P~ I P E S}. 

If US S is defined then so is lIE S and the two are equal. Furthermore (11< S)x = 
P~ = (F~:, D~, IX) , where F ~ - -  n{~-[P~] 1 P  E S}, D~ = f'I{~DI[P~] 1 ~  E S} 
and I7, = A{Z[P~] I P E S}. 

If f : /C A ~ /~^ is a function which is monotone with respect to one of the 
orders and there is P E 5l ̂  such that I ( P )  < P (respectively f ( P )  E P) ,  then 
f has a least fixed point given by f~(.L ̂ ) for some ordinal a. 
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f) If f : /gA _+ UA is monotone with respect to both orders then any least fixed 
point for one order is also the least fixed point for the other. [I 

These theorems and what we have shown up to now show that < and _U are 
exceptionally well-betlaved partial orders. It is interesting to note that E_ has its 
lower bounds given by union and < has its upper bounds given by intersection, but 
that the reverse facts are not true. For example [']{a -+ S T O P ,  b ---+ S T O P }  = 1 
or (a --+ S T O P )  I-1 (b --+ S T O P )  depending on which order is chosen, and II{(a -+ 
S T O P )  rl (b -+ S T O P ,  (a --.+ S T O P )  M (b ---+ S K I P ) }  = a --+ S T O P  under -- which is 
not the intersection of the two. Indeed even in cases where S is a chain, II E S might 
exist but not be given by component-wise intersection. If P~ is the nth process in the 
chain seen earlier with no upper bound, then, if we define 

Q,~ = (c --+ S T O P )  M (d ---+ P,~) 

the least upper bound of this sequence is c ---+ S T O P  even though ((d), @) is a failure 
of every Qn. 

The first author's first reaction on finding that the two "natural" partial orders 
were incomplete was to try to find another one that was but which gave the same 
semantics. After all, that had been one of the main reasons for the development of 
the < order over Af' since it gave exactly the same least fixed point semantics but 
was complete, showing that all desired fixed points actually exist. We should perhaps 
remark at this point that the given orders do actually compute the correct values for 
CSP definable recursions and that the least upper bounds required to compute them 
always exist. Of course the proof of these facts will be the subject of much work later, 
but it is worthwhile seeing some examples here. 

E x a m p l e s .  Abbreviate by a ~° the process that performs n a's and then STOPs.  Set 
P = ["[{ an I n E N}, so that P can perform any finite number of a's but not an infinite 
sequence of them. Operationally we can think of P as a process which, as its first 
action, takes a secret decision on exactly how many a's to perform. Now consider the 
recursively defined process 

Q = (a -+ Q){a}il~o}P 

and let F : b / -+  L( be the function associated with the right hand side of this recursion. 
Since the right hand side of the highest level parallel construct initially imposes a 
bound on the number of a's Q can perform, it is clear that Q itself cannot perform an 
infinite sequence of them. On the other hand it is clear that Q can perform as large 
a finite number of a's as it pleases. We would therefore expect P = Q. However, as 
is easily verified, F~(_L) can perform an infinite sequence of a's (it is equal to P M R, 
where R = a -+ R). On the other hand, F~+I(A_) = (a -+ (P M R)){a)II{~)P = P and 
F ( P )  = P,  so this recursion reaches the operationally correct fixed point at w + 1. 
Some more examples of recursions, their fixed points and the ordinal required to reach 
them are summarised below. The reader might enjoy constructing a few of his own. 

® If f : E -+ E is such that f'~(a) # f '~(a)  when n # m then the recursion 

Q! = S T O P  n a -* ((Q1 ~l[~ P)  n f ( Q , ) )  
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(with P as above) reaches its fixed point (which is the same as that of the 
recursion P '  = P I"1 a ~ f[P']  which converges in w steps), in exactly w.2 
iterations. 

• Let a be an infinite ordinal and 2 = a (the set of all fl < a). Then the recursion 

Q2 = ~ :  (~ -~ ((7 : ~ -'* S T O P )  slit, Q : ) \ a  

takes exactly a steps to converge to its fixed point ~ : a -+ S T O P .  Q~ is a 
process that inputs any element/~ of a and then outputs any element of fl to a 
copy of itself or deadlocks if fl = 0. (The fact that this is the natural fixed point 
is an easy ,consequence of the fact that there is no infinite descending sequence 
of ordinals.) 

Suppose _~ is some partial order which does all we want: namely give the same 
fixed point theory and make U complete. Clearly it must make all CSP operators 
monotonic and have the same minimal element .L. To give the same fixed point theory 
it must have the property that, when C is a linearly ordered subset of/4 with respect 
to _~ and one of our existing orders, then a least upper bound for ~ is also a least 
upper bound for the other. (Note that _ and < are in this relationship.) It must also 
make P '  -~ Q, where Q is defined as in the example above and P'  = S T O P  M a --~ P' .  
For Q is a fixed :point of this recursion but is distinct from the natural fixed point (by 
assumption the -<-least) which has the infinite sequence of a's. (P'  ~ Q can also be 
proved by looking at the recursion of Q, where P'  is the wth iterate.) 

From these simple facts and assumptions we will be able to prove that ___ cannot 
exist: for there is a sequence of processes i n / / w h i c h  are provably ordered by ~ but 
which can have no upper bound. Set E = {a, b}. Recall that the set Fo of failures 
was defined 

F0 = { ( s , X ) I s  E {a,b}* ^ {a,b} ~ X} .  

The corresponding set where a process can refuse anything at any time is 

F1 = e {a,b)* ^ X c ( a , b ) } .  

Recall that the triples (F0, O, I) satisfying the axioms were those where I contains an 
extension of every finite trace. All triples (F1, 0, I) satisfy the axioms. 

We will now construct some subsets of {a, b} ~ to go along with F0 and F1. If 
u E {a, b} ~ and n E N, define r,~(u) to be the ratio of the number of a's to the 
number of b's plus one in the first n elements of u. (The "plus one" is to make this 
always defined.) We should perhaps remark that some traces u have lim=..,~o r,~(u) 
existing and some do not. (In fact, there are uncountably many u's with any given 
limit in [0, c~).) In the first author's experience the ratios r~(u)  are very useful when 
it comes to choosing pathological subsets of {a, b} '~ and similar. 

For n E {1,,,,3, . .} we define 

1 
I ,  = e {a ,  b}= I 3c  > O. m.Vk >_ < < - - 

n 
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Thus u E t~ if and only if the ratios eventually stay within (0, ~) and away from the 
boundaries of that interval. This last condition means, amongst other things, that 
in contains no sequence with limit 0 or i Notice that u E In does not imply that 
lirn~__.~ r,~(u) exists. The sets In have some interesting properties. First, the I,~ all 
contain elements beginning with any chosen s E {a, b}* (in fact, uncountably many). 
Also I,~+t C_ Is and N{/~ [ n E {1, 2, . . .}} -- 9. Perhaps the most interesting property 
is that, if m _< n then 

(j{raerge(s,~> [ s E In U {a, b}* A t EIm U {a, b}* A s or t is infinite} = Ira. 

Also, the insertion or deletion of finitely many elements of a sequence u does not 
effect membership of any I since the limiting behaviour r~(u) is not affected by such 
manipulations. We can now define some processes 

P,~ = (Fo, O,I ,~> f o r n E { 1 , 2 , 3 , . . . }  
Qn = (F~,~),I,~) f o r n E { 1 , 2 , 3 , . . . }  
eo = (Fo, O, 
Qo = (F1, 9, {a, b}~> 
Q~ = (~ ,o ,o>  

We will prove that the Pn are a ___-increasing sequence. 

Now if f : Z ~ ~ is defined by f (a)  = f(b) = a, we have f-~[P']  = Q0 and 
f - l[Q] = Qoo, where pI and Q are as described at the start of this discussion. Hence 
Q0 ~ Q¢~ as f -1  is monotonic. 

Now for all n it is not too hard to see that P~ Ill Q0 = Po and P~ [1[ Q~ = P~. It 
follows that P0 _~ P~ for all n _>_ 1 as [[1 is monotonic. 

Next, observe that Pn ~i[~ P-~ = Q~ if m < n. (The transition from F0 to F~ 
arises because one side of the parallel may refuse a and the other b.) It follows that 
Qm = (Po ~tiz Pro) ~__ (P~ ~ils P,~) = Q~ when m < n. 

The property of the I~ described above implies that P,~ 11[ Q~ = Pk, where k is 
the lesser of n and m. Hence, when m _< n, P,~ = P~ IlIQ~ ~ P~ ItlQ. = P~. This 
completes the proof that the P~ form an increasing sequence. 

The fact that the P~ are ~-inereasing is unsurprising, since they are increasing 
with respect to _ and _<. We have specified that all _ least upper bounds of sequences 
increasing in both orders are also _ least upper bounds. Since f']{In [ n E N} is empty, 
azly E_ least upper bound for this sequence has I = 9. But there is no element of 
L/with F C_ F0 and I = ~. It follows that this sequence has no upper bound with 
respect to _~. Therefore -< cannot be complete. 

We therefore have to give up all hope of a conventional fixed point theory, though 
note that, by Theorem 1.4, if we can show every CSP term has some fixed point, 
or even maps some point down in either order, then we essentially have one. The 
first author's proof that these fixed points exist was via a congruence theorem with 
operational semazatics; this was both complex and, because it relied on structures 
outside the model, not fully satisfying. Recently the second author has discovered a 
much simpler proof, within the model, which is described in the next section. 
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2. The fixed point theorem 

To show that all the CSP operators have least fixed points, we appeal to a sort of 
'dominated convergence theorem', which states that if F _E G and G has a fixed point, 
CG, then F has a least fixed point for: 

F (Ca) E a (Ca) = c a  

so that the fixed point of G is mapped down by F and then Theorem 1.4 (e) implies 
the existence of a least fixed point for F.  

The usefulness of this observation is that we may find a dominating G which is 
monotonic and preserves predeterminism so that the completeness of that subspace 
guarantees a fixed point for G. Indeed, we can go one step further for, suppose we 
can find a monotonic function G : P --~ P such that F~7 ~ E_ G, then we may extend 
G by: 

G* (P)=[']{G(Q) I Q ~ imp(P)} 

which agrees with G on 7 ~ since if P E P,  then P E imp (P) and since G is monotonic, 
G (P) E G (Q) for all Q E imp (P) giving G* (P) = G (P). Furthermore, G dominates 
F everywhere for: 

F(P) = Fq-]imp(P)) 

E [7 {F (Q) [ Q E imp (P)} 

E F]{G(Q)[QE imp(P)} 
= G*(F) 

We know that any fixed point of G is a fixed point of G* and that G has a fixed point, 
so we can now see that F has a least fixed point. 

Let us see this restriction in action. We will exhibit a monotonic function with no 
fixed point and show that its restriction has no dominating function. 

F(X)  = ( (a --.* X)r[ [sP ,  P ~ X 
a ~ X ,  P E X  ( 

where 
P ~ -  ~ ] a  n 

n<¢o 

This function really is monotonic for if X E Y and P E X or P ~ Y, then both X 
and Y follow the same branch of F;  otherwise P ~ X and P E Y and 

F(X)  = (a --, X)~H~P E (a --* Y)~H~P E a ~ Y = F(Y)  
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The chain got by applying this function to _L is: 

± 

STOP I-1 a± 

-] a k Yl an± 
k<n 

P 

[7 ak 
n<k<w 

which has no supremum since any limit would be unable to refuse {a} at any time 
but would not have the infinite sequence of a's among its infinite traces. If we restrict 
ourselves to a model whose alphabet is just {a}, the only predeterministic processes 
are a '~, a '~ and a~± and the application of F to each of these gives: 

F ( a " )  = a ~+t 

F(a '~) = P 
F (a"±) = a'~+~± n ['7 a k 

k~n 

We know that any dowSnating G with a fixed point must fix one of the predetermin- 
istic processes. However, there is no predeterministic process which is mapped down 
by F so we cannot find such a G. (Clearly F would map any fixed point of G down, 
because G is assumed to dominate F.) 

Proceeding with the proof, note that composition is a monotonic function on the 
function space of a partial order. Therefore, if two CSP functions are dominated 
by predeterminism-preserving functions, the composition is, also. Further, the prop- 
erty is preserved through recursion because if F(P, Q) is dominated by G(P, Q) and 
Q E P ,  then #p.F(p, Q) exists (by the argument given earlier) and is dominated by 
#p.G(p, O), which is predeterrrfinistic. 

So, we only need to show that the restriction of each primitive CSP function to P 
is dominated by a predeterminism-preserving function. We list a set of algebraic laws 
which the CSP operators satisfy and which show just where the operators introduce 
nondeterminism and use these laws to motivate the definition of a bounding function 
for each CSP operator. Each of the following operators is strict and distributive 
in each of its arguments. If we let P abbreviate x : B ~ Px and Q abbreviate 
y : C ---* Q~, we have: 

P D Q  = z : (B U C) - ,  Rz 
{ P~, z E B - C  

where Rz = Pz I-1Q~, z E B N C 
Q~, z E C -  B 
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P xI[YQ = z: D --* Rz 
when D = ( B N ( X - Y ) ) U ( B N C N X N Y ) U ( C N ( Y - X ) )  

{ P~xllvQ, z E B ( I ( X - Y )  
R~ = P~xl[vQ~, z E B N C M X M Y  

PxIIYQ~, z E C N (Y - X) 

x:  B ~ (P;~;Q), v / ¢  B 
P; Q = ((x : B - {v"} --* (P~; Q)) nQ) I-1 Q, x,/E S 

S x:  B --., (P~\X),  B n X = 0 
P \ X  

"t ( ( x : B - X  ~(P=\X))oQ) MQ, BNX ~O 
where Q = VI{P=\X[x E S n X}  

f [ P ] = y :  f ( B ) ~ [ ' ] { f [ P ~ l l x e  f - I ( y ) M B }  

f-1 [p] = y :  f-1 (B) ~ f-1 [Ps(u)] 

It is helpful to note that any predeterministic process P is either _L or can be written 
x : B ~ P= for some set B C ~ and predeterministic processes P=. For those 
operators which introduce nondeterminism on P,  we aim to define new operators 
which make a particular nondeterministic choice. This is done by cases. We give 
below the equations which we expect the dominating operators to satisfy. In fact, we 
define the new operators (over P only) to be the least ones which satisfy the given 
equations. 

C (a constant process) Let Q be some fixed predeterministic implementation of C. 
Dominating function: Q. 

F (P) w h e r e  F~ (P) = P,~ (This function is needed so that functions such as 
F(p) = p and F(p) = PxllrP can be written as compositions of primitive 
functions; it is a sort of syntactic glue.) Dominating function: itself. 

x : B --* P= Dominating function: itself. 

I-]~e^ P~ Choose A0 E A. Dominating function: P~0. 

PDQ Dominating function: P ~ Q  defined to be hi-strict (i.e., PD-J_ and _L~-Q are 
both .L) and to satisfy: 

(x :  B --, P~) ~- (y:  C ~ Q~) = z :  (B U C) --, R~ 

where Rz= Q,, z E B  
z E C - B  

Px  HYQ Dominating function: itself. 
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Pt l l  Q Dominating function: P ~4Q defined to be bi-strict and to satisfy: 

where P = x : B --~ P= and Q = y : C -+ Qy. 

P; Q Nondeterminism is only introduced when P offers termination and other events. 
We choose to make it terminate immediately. Dominating function: P [ ~  de- 
fined to be strict in its first argument and to satisfy: 

(x : B - ,  P ~ ) ~  = [ 0, , / e B  

P \ X  Nondeterminism arises through choices of hidden events. Let c be a choice 
function on X.  Dominating function: P\¢X defined to be strict and the least 
operator to satisfy: 

B --, P) \ ~ x  = ~ ~ : "  -* ( P V X ) ,  ~ n x = 0 
• I. Pcw~x)\ ~x, B n X ¢ 0 

f [P] Nondeterminism is introduced by mapping two events to the same event. Let c 
be a choice function on the domain of f .  Dominating function: f {P} defined 
to be strict and to satisfy: 

f -1  [p] Dominating function: itself. 

We must now verify that the functions ~-, ~, ~t,  \~ and f {.} exist and that 
they do indeed bound the CSP operators on ph.  First note that if Y is complete 
(consistently complete) and X is a partial order, then the space of monotonic functions 
X -~ Y is Mso complete (consistently complete). Each of the above operators is 
defined to be the least fixed point of some function on ;vA -4 p ,  e.g. \cX is the least 
fixed point of the function F where: 

F G ( ± )  = ± 

FG(z:B--+P=) = { x:(B~GIP=)' BNX=O 
G Pc(Box) , B N X ¢ O  

That F has a least fixed point which is a monotonic function ;D _+ 5D can be seen be- 
cause if G is monotonic then F G is monotonic and if G is predeterminism-preserving 
then so is F G. Furthermore, if G E G' then F G E_ F G' so that F is a monotonic 
function on the complete space T' --+ ~.  

We now turn to showing that these operators dominate the CSP operators on 
T ~A. We continue with the example of hiding. First of all we note that i X is a fixed 
point of a monotonic function F '  on :P -+ H given by the algebraic law above. Since 
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F' G(P) E F G(P) for all P e P and G : T' -o /4  we have that F '  E F.  Now, since 
the monotonic functions T' - o / 4  form a consistently complete space, we may infer 
the existence of eL least fixed point of F '  which is weaker than the least fixed point of 
F.  All we have to do is to show that the CSP operators (restricted to T') are indeed 
the least fixed points of those laws. The rest of this proof is devoted to establishing 
this fact. We shall refer to the algebraic laws as the fixed point equations for the 
operators. 

We can put a sort of metric on the space as follows. We first define the nth- 
restriction operator, P ~ n, which gives a process which behaves like P for the first n 
steps and then diverges: 

l)[PSn]] = {st I s e tracesP A #s  >_ n} U :D[P~ 
.~[[Pln] = 9v~P]U {(s ,X) Is E 9 [ P l n ] }  
Z[[PSn] = {uE aP '~ ]Vs < u.s E tracesPSn} 

The 'metric' is defined by: 

d(P,Q) = i n f { 2  -"  tn  < wA P $ n  = Q$n}  

which satisfies the ultra-metric form of the triangle inequality, namely: 

d(P,R) <_ max(d(P,Q) ,d(Q,R))  

but if d (P, Q) = O, we may only deduce that the failure and divergence sets of P and 
Q are equal. In fact, if we define the closure of a process, ~ ,  to be P with all possible 
infinite traces, i.e: 

5[~P'~ = {u E ~P~ ]Vs < u. s E tracesP} 
:D~"~ = :DIP ] 

then we notice that the distance between processes is equal just when their closures 
are equal: 

d(P,Q)=Oc:~ P = Q  

This sort of 'metric' is usually known as a pseudo-metric. 

Note also that the closure of a process is always weaker than the process in both 
orderings. 

Since the pseudo-metric is bounded (it is never bigger than 1), we may define a 
corresponding pseudo-metric on any function spaze X ~ ld by the usual construction: 

d(f ,g)  = sup d ( f  (x) ,g (x)) 
xEX 

and note that d(f ,g)  = 0 just when ? = y where f ( x )  = f (x). 

If we study the fixed point equations for the operators, we find that in all cases 
except that for hiding, the recursions are 'guarded'. That is, all the recnrsions are 
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given in the form F G P = P '  and we can easily show that d (F  G, F G') _< ½d (G, G') 
so that if we have two operators G and G j which satisfy the equations then 

(G, G') = d (F G, F G') < l d  (G, G') d 

giving d (G, G') = 0 and so ~ = ~P. In all cases except hiding and forward renaming 
( f  [-]) the result of applying the operators to a tuple of predeterministic processes 
is a closed process (as can be verified by inspection of the operator definitions in 
the last section - effectively this is because these are the only operators other than 

which can introduce unbounded nondeterminism). This means that all possible 
infinite traces are present and there can be no smaller fixed point. 

Of these guarded recursions we are only left to dispose of forward renaming. Since 
any other fixed point has the same divergence and failure set, we need only consider 
the non-divergent infinite traces. Suppose G satisfies the equation and that u is a 
non-divergent infinite trace of G (P). We shall construct a sequence of traces si such 
that si < s~+l, f(s~)u~ = u and ui is an infinite trace of G(Paflers~).  Then the 
existence of the traces si imply that P must have an infinite trace whose image under 
f is u, so u is an infinite of f [P]. 

We take so to be < } and uo = u. Since u is non-divergent, s,~ is not a divergence 
of G (P after s~), therefore, there is a B such that P after s,~ = x:  B -* P after sn (x} 
so that the equation which G satisfies tells us that: 

G ( P  after s = ) = y :  f ( B ) ~ [ ' ] { G ( P  afters={x)) l x e f - '  (y) Cl B} 

Now, if b is the first element of us, then b E f (B) and there must be some a E 
f-1 (b) N B such that the tail of us is an infinite trace of G (Pafters= (a)). We take 
S~+l = s~ (a) and u=+l to be the tail of us. Lastly, f (S=+l) u=+l = f (s~) us = u as 
required. 

The only operator left is hiding (whose fixed point equation is not guarded). We 
will assume that the set X to be hidden is nonempty, the result being trivial if X = 
since both \0 and \~¢ are the identity function. The first observation to make is that 
the fixed point theory of < and G are the same. This follows because each fixed 
point equation is _<-monotonic and preserves <__-monotonic functions; since ± is the 
least element for each order and LI <S = [J c_S whenever the first exists, the standard 
iterative technique of finding the least fixed point must produce the same result. Now, 
if G is the least fixed point of the equation for hiding, then G < \X .  All we have to 
do is check that the minimal divergences of any fixed point are divergences of \ X  and 
that convergent infinite traces of a fixed point are infinites of \X .  Both parts of the 
proof are achieved by a construction similar to that which we used for the forward 
renaming operator. 

If t e #:DIG (P)] (u e ZIG (P)]]), the idea is to construct a sequence of traces si 
such that st < Si+l and 

s~\xt~ = t ( sAXu~ = u) 
ti e #:DIG (P after si)~ (ul e Z~[G (P after si)~) 



181 

for then P has an infinite trace, v, which is the limit of the s~ with v \ X  = t ( v \ X  = u) 
giving t e ~[[P\X] (u e :r~P\X]). 

Choose So = (> and to = t (u0 = u). We define the n + l t h  sequences from the 
nth. If P after s~ = 3_ then we must have t ,  = (> so we may set S=+l to be any 
extension of s ,  by an element of X (the situation cannot arise if u is a non-divergent 
infinite); otherwise Pn after s ,  = x : B --* P after s ,  (z> for some B. If B N X = 0, 
then 

G (P after sn) = x:  B --+ G (P after s,~ (x) ) 

by the fixed point equation so there must be a b 6 B and t,~+l (resp. u,~+l) such 
that tn = (b) tn+1 (resp. u. = (b) u.+1) and tn+l 6 #Y)[G(P after s= (b))] (resp. 
Un+l 6 E[G(P a/ters~ (b>)]) so take s.+l  = s= (b>. 

If B N X # ~1, then 

G (P after s,~) = ( (x :  B - X ~ G (P after s,~ (x>)) [:]Q) v1Q 

where 

Q =  [7 G(Pafters,~(x)) 
xEBnX 

so that  either the required behaviour comes from performing some action from B -  X 
immediately, in which case we employ the same construction as in the last case; or 
else, the behaviour comes from G (P after s= (b)) for some b 6 B N X, in which case 
we define s ,+l  = sn (b> and t ,+ l  = t,~ (u=+l = u , ) .  

The results of this section are summarised in the following theorem. 

2.1 T h e o r e m .  Every CSP definable function has a least fixed point, and therefore 
its denotational semantics over/4 is well-defined. | 

3. Operational semantics 

In this section we present an operational semantics for CSP with unbounded non- 
determinism, and summarise the main details of the congruence proof referred to in 
the introduction. But  first we will define the abstraction functions from transition 
systems to /4  tha t  will play a crucial role in the statement and proof of this theorem. 
The proofs of all but a very few results are omitted from this presentation - readers 
wishing more details should consult [R3]. 

S u m m a r y  of  n o t a t i o n ,  n o m e n c l a t u r e  a n d  resu l t s .  A transition system is a set 

of states with a binary relation 8 ~ for each element 6 of the set E + = E U {r} of 
transitions, where r denotes an internal transition. We should note tha t  E (the set 
of visible actions) is an implicit parameter of almost everything we do from now on, 
as indeed it was in the last section. 

A movphism [R1,R4] is a function from one transition system to another which 
characterises the property of indistinguishability in that  no experimenter who can 
only see transitions (visible or invisible) should be able to tell P from F(P) if F is a 
morphism. F : (7 ~ D is said to be a morphism if and only if: 
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(i) e _2. Q F(P) A ,  F(Q), and 

(ii) F(P) ~-~ X ~ 3Q.P e-2-+ Q A F(Q) = X .  

Morphisms are closely related to the idea of bisimulation but differ in that they treat 
internal actions in exactly the same rigid way that they treat visible ones, and that 
they are functions rather than relations. 

The index of nondeterrainisrn i(C) of a transition system C is the smallest infinite 

regular cardinaP which is strictly larger than card{Q P ~ Q} for all P E C and 
S E E  +. 

The  func t ions .  Given an element P of a transition system, we can construct its sets 
of failures, divergence and infinite traces in natural ways which are described below. 

We first define two multi-step versions of the transition relation. If P, Q E C and 
s = (xi I 0 < i < n} E (E+) * we say P ~ Q if there exist P0 = P, P~, . . . ,  Pn = Q 
such that P~ Z_~ Ph+l for k E {0, 1 , . . . ,  n - 1}. Unlike this first version, the second 

S ! ignores rs. For s E E* we write P = ~  Q if there exists s' E (E+) * such that P ; ." Q 
and s' \ r = s. The following properties of ~ and ~ are all obvious. 

L e m m a  3.1. 

(a) P 

(b) P ==% 

(c) P 

(d) P =2~ 

(e) f 

Q A Q = ~  R implies P ~ R 

Q / x Q  t R i m p l i e s P ~ L ~ R  

R implies 3Q.P =~ Q A Q :=~ R 

R implies 2Q.P ~ Q A Q t~L* R 

Suppose C is a transition system and P E C. We say P can diverge, written PT, 
if there exist P0 = P, P1, P2,-. • such that, for all n E N, P~ _2+ P,~+I. 

divergences(P) = {st 1 3Q.P Q A e$}  

Notice that we have said that st is a divergence trace whenever s is. This is moti- 
vated by a desire (inspired by our abstract semantics) to make all possibly divergent 
processes undefined. (As will be apparent from a careful reading of the proofs below, 
the fact that our semantic models and functions are strict with respect to divergence 
is sometimes of great importance.) 

Say P E C is stable provided there is no Q such that P -5-* Q (in other words, if 
P cannot make any internal progress). If B C_ E we say P ref B if 

Va E B U {T}.~?Q E C.P _2_+ Q. 

4A regular cardinal ,~ is one which is not the union of less than ,k sets all of which are of 
size less than ,L There are arbitrarily large regular cardinals, since for example every successor 
cardinal is regular. The combinatorial properties which make regular cardinals the natural bounds 
for nondeterminism axe well illustrated in [R3]. 
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Thus P ref B implies tha t  P is stable. We can now define 

failures(P) = {(s ,B) [ 3Q.P ~ Q h Q ref B} U {(s ,B) ] s E divergences(P)}. 

The point of these definitions is that  a process can properly refuse B only when it 
is in a stable state, for as long as it is performing internal actions one cannot be 
sure that  it will not come into a state where a desired event is possible. On the 
other hand,  when a process diverges it also refuses (in a different sense perhaps) all 
communications offered to it. The second part  of the definition is also motivated by 
the desire to make a divergent process undefined. 

If u E E ~ is an infinite trace and P E C, we write P =% if there are P = 
P0, P1, P2 , . . .  E C and x~ E E + such that  Vk.Pk ~k Pk+l and {ak I k E N A ak ~ ~') = 
u. This lets us define 

infinites(P) = {u E E °~ I P =%} U {su ts e divergences(P) ^ u E ~ }  . 

Similarly, if (xil i E w) = u E (E+) ~ we can write P , ".~ if there exist P = 
Po, P1,P2,. . .  sud] that ,  for all i, Pi ='7 Pi+I. 

Clearly it is possible to define other functions, and to vary these definitions for 
another definition of divergence. However the above are exactly the required maps 
to define the abstraction map into H. 

De f in i t i on .  If C is any transition system then we define the abstraction map • : 
C ~ H as follows. 

~ ( P ) = (failures(P), divergences(P), infinites( P ) ) 

We now state a theorem which establishes some basic properties of ¢. 

T h e o r e m  3.2. ¢~ is well defined, and furthermore 

a) If F :  C ~ D is a morphism then ¢(F(P))  = q~(P) for all P E C. 

b) If P E C and C is a sub-system of D (i.e., a subset closed under all the transition 
relations) t:hen ¢ ( P )  does not depend on whether we think of P as an element 
of C or of D. 

c) Given any transition system C there is another one C'  such tha t  C is a subsys- 
tem of C' and ~ : C'  --+ L/is  onto. I 

It might seem a little curious that  we have gone to the trouble of extending an 
arbitrary transition to one on which ~ is onto. The reason for this will become 
apperent when this result is used later. 

In proving our congruence theorem later we will need not only the map ¢ : C ~ U 
but also a sequence of approximations to it. We will define a map ¢~ : C ---* U for each 
ordinal a .  (Once again, C is here an arbitrary transition system.) It is convenient to 
define q~ in terms of a functional 
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If k~: C --+ H and P E C, we define G(~)(P)  = (F', D', I '), where 

P' = { ( ( ) , x )  J P m I X }  
u{(s,x) 13Q.P __z_, Q ^  ( s ,X)  e ~-[g(Q)]} 
U{((a)s,X) I SQ.P _a Q A  ( s ,X)  E .fIN'(Q)]} 

D' = {s I 3Q.P ~ Q h s E z)~,~(Q)]} 
U{(a)s I 3Q.P ~ Q A s E 79[[~(Q)]} 

I' = {u [ 3Q.P - -~  Q ^ u E Eli,(Q)]} 
U{(a)u I 3Q.P _2-+ Q A u E E~(Q)]} 

The following Theorem establishes some useful properties of G. 

T h e o r e m  3.3. 

a) G is welt defined and monotonic with respect to both orders. 

b) ~, as defined earlier in this section, is a fixed point of ~. 

Proof .  The whole of part (a) follows immediately from the fact that G can be 
re-written entirely in CSP. The operator P i> Q used below is an abbreviation for 
(pc]Q) M Q (the process which can offer the choice between P and Q but which 
must eventually make an internal transition to become Q if no action occurs). It is a 
useful operator since it allows more conciseness, and has appeared before in similar 
circumstances in the literature, e.g. [HH]. 

~(O)(P) = x: p0 ~[-]{~(Q) I P - ~  Q} if flQ.P r .  Q 
G(~)(P) = ((x: p0 _~I-I{~(Q) ] P ", Q}) otherwise 

% I"I{g~(Q) ] P ~ Q} 

where p0 denotes {a E E I 3Q.P ~ ~ Q}. It is easy to see that our two definitions of 
are equivalent. Note that the overall structure of this CSP definition depends only 

on the transitions within C, and is therefore independent of the value of ~.  It is this 
last fact which proves that G is monotone with respect to both orders. 

Part  (b) is intuitively obvious. Consider, for example, the divergence component. 
It follows immediately from the definition of • that 7:)[(I)(P)] = divergences(P) is 
equal to 

{st l P  ~ , Q A Q ~ R A R T } U { ( a } s t l P  4 Q A Q ~ R A R T }  

which in turn is equal to 

{s I P ~ Q A s E divergences(Q)} tO {(a)s [ P ..2-+ Q A s E divergences(Q)} 

which is :D[G((I))(P)] by definition of ~. Both the other cases are similar and depend 
on this one. The failures case divides into three components rather than two for 
obvious reasons. I 
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By Theorem 1.5 applied to the product space/4 c (= C --~/4), it follows from the 
existence of one fixed point that ~ has a least fixed point which is equal to ~ ,  for 
s o m e  oL w h e r e  

q)o(P) = _L for a l l P E C  
¢,~(P) = I I{¢~(P) 1/~ E #} if # is a limit ordinal 

,1~+1 = g ( ~ )  

since ~0 is the least element of the product space and ~a = G~(~0). (Since G is CSP- 
definable it also follows from the result of Section 2.) These ¢~ will play a crucial 
role in the main congruence theorem in the next section. This is essentially because 
of the next theorem, whose proof may be found in JR3]. 

T h e o r e m  3.4. ¢ is the least fixed point of G. Hence there exists a such that (I)a = (I). 
| 

This result shows the equivalence of the natural operationally defined abstraction 
function and one which it obtained by iterating a CSP definition through the ordinals. 
This is exactly what we shall want to do on a much wider scale when we seek to prove 
the congruence theorem in the final section. It will turn out that this last result is 
perhaps the most important component of the proof of that theorem. 

T h e  o p e r a t i o n a l  s e m a n t i c s  

This section is devoted to the definition of the operational semantics for CSP and 
closely related semantics over more general transition systems. 

A crucial starting point for the creation of any semantics is the definition of the 
programming language. The definition we take is just the usual core CSP extended 
by unbounded nondeterminism and infinite hiding. For formal reasons we must fix ab 
initio the range of unbounded nondeterminism allowed. However this may be as large 
as we please. In particular, it is convenient to fix it strictly larger than the cardinality 
of the alphabet }]. Thus the following language is implicitly parameterised both by 
the alphabet E of all possible communications and by the bound ~, an infinite regular 
cardinal on the unbounded nondeterminism. 

Because the unbounded nondeterminism operator (unavoidably) and the guarded 
choice operator (avoidably at a price) are infinitary operators (take a potentially 
infinite number of process arguments) one should, for rigour, be rather careful over 
the definition of the syntax of this version of CSP. On the one hand we can write 
down the usual sort of BNF definition. 

P ::= pISTOPISKIPla- -*PIx:B--+g(x)  IPmQIPNQ[  
P BI~ Q t P ]1] Q I P; Q I P\B I f[P] I f-lip] ] #p.p I I-IS 

where g is any function from B (a subset of Z) to processes, S ranges over nonempty 
sets of processes smaller than $, f ranges over the set AT of (not necessarily finite- 
to-one) alphabet transformations, p over the set Var of process variables, etc. 
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When there are infinitary operators in a syntax, like those in this language, the 
idea of what is defined by a syntax like this one is less obvious than it usually is 
and should therefore be discussed briefly. If we are to have a principle of structural 
induction and have a way of defining the semantics of programs we cannot have a 
program of the form ~ S  or x : B ~ g(x) which is itself in S or in the range of g. 
One can, of course, regard BNF definitions like the above as fixed point equations, 
defining the smallest syntactic class which is closed under the various operations on 
the right. For a language with only finitary constructs this fixed point is reached by w 
iterations (every program is "born on a finite day") but we have to go further, to cater 
for programs like n : N ~ P~ where P ,  is born on d~,  n. The functional implied by the 
right hand side of the above BNF definition is dearly monotone (the more programs 
there are, the more it delivers) but since it is not operating over a set (rather over 
the proper Class of all syntactic objects) it is by no means obvious it even has a fixed 
point. Fortunately it does, and is guaranteed to reach it by ~ iterations, where 
is the bound on nondeterminism and the size of E already mentioned. (See [BRW] 
for some more discussion of this question.) The principle of structural induction is 
then perfectly valid and corresponds to the principle of transfinite induction on the 
"birthday" of a term. 

To simplify the operational semantics a little it is convenient, as was done in 
[BRW], to treat the constructs STOP, SKIP and a ~ P as special cases of the 
construct x : B --* g(x): STOP has B empty, a ~ P has B = {a} and g(a) = P,  and 
SKIP = v / --+ STOP.  

Let E be the set of all CSP terms defined by the above. An element of E may 
have free process variables, in which case it is said to be open. If it has none it is 
said to be closed; we denote the set of all closed terms by P.  Closed terms are of 
importance since their meaning is fully determined; there axe no slots for processes 
waiting to be fitted in. 

If P,Q E E and p E Vat then P[Q/p] denotes the term where Q has been 
substituted for all free occurrences of p is P. When Q is not closed (though for us 
it usually will be) some care will be necessary to prevent P binding any of Q's free 
variables. 

The Plotkin-style semantics regards the set P of all closed CSP-terms as a tran- 
sition system, since it describes the set of all actions each closed term can perform 
and which new terms it may then become. The clauses of this operational semantics 
are given in the usual "natural deduction" style below. 

Below, a, b range over E and x, y over E + = E U {r}. Alphabet transformations 
(functions from E to E) are extended to E + by setting f(~') = r. 

(z:  B --, g( , ) )  g(b) 
(b e B) 

p N Q - k . +  p P R Q  ~'~, Q 

#p.P ~: P[#p.P/p] 
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p ~,}, p t  

PDQ ~ , P'DQ 
p ~.., p, 

PDQ ~ ~ P' 

p --~P' 
P BIb Q ~ , P' slb 

P slb 

P ~lb 
p__~p,  

P s]~ Q 
p ._~p, 

PI I [Q-~  P'][I 

Q r > Q l  

PDQ ~)PDQ' 
Q ~ , Q '  

PDQ - ~  Q' 

Q Pslb Q ~, PBIb Q' 
p ~;p, 

(a E B - C )  
Q --~ P' .lb Q 

Q ~'Q' ( a E C - B )  
Q ~. PB[~ Q' 

Q %Q' ( a E B n C )  
% P' .[b Q' 

Q - ~  Q' 

Q PIIIQ =*PI]tQ' 
p --~p'  

p;Q =, p,;Q 

3P'.P ~ P' 
P;Q ~,Q 

p =~p' 

P\B -2-+ P'\B 
p .--%p' 

P\B --~ P'\B 
p =.. p, 

f[P] ~ f[P'] 
p =;p, 

f-~[p] ~', f-~[p,] 
P E S  

~ S  ~'~P 

(~# 4) 

(~ ¢ B) 

(a E B) 

(y -- f(x)) 

( f (v)  = x) 

Note at thi,~ point that the operationally natural element of M corresponding to 
each closed term P is given by ¢(P) ,  where/I) is as defined in Section 2 and P is 
considered to be an element of the transition system P defined above. Theorem 3.2 
shows that this is equal to ¢(F(P)) for any morphism F.  We can now state the main 
congruence result that we would like to prove, namely that for all closed CSP terms 
P, ~p(P) = SIP]I, where S~P]] denotes the value in/4 defined by the semantics defined 
earlier. 
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There are two structure clashes between the operational and denotational seman- 
tics. The first is the obvious one that one is given in terms of transition systems 
and the other in terms of the abstract model U. But perhaps the more difficult one 
to resolve is the clash between the term rewriting style of the operational semantics 
and the denotational style of the other. Of course the latter means that the semantic 
value of each term is deduced from the semantic value of its subcomponents in a 
transparent way and that an abstract fixed point theory is used. In the earlier paper 
on the operational semantics of CSP [BRW] these two issues were resolved separately 
by creating an intermediate, denotational tree semantics. Unfortunately the complete 
metric spaces of trees used in that paper no longer exist because of the introduction 
here of infinite branching. 

The main result of [R3] is that, for each infinite regular cardinal/k, there exists 
a transition system I~ such that for all transition systems C with i(C) <_ ~, there 
exists a unique morphisln HA : C --~ T~. Thus T~ is a final object in the category of 
transition systems with morphisms as arrows. Analogues of the contraction mapping 
theorem and related results hold which are useful when one uses these systems. T~ 
can be used to give an intermediate denotational semantics to CSP in the style of 
[BRW]. However, because of the complexity of this new theory and thanks mainly to 
the construction of the ¢~ in the previous section we do not now need to do so. 

It is useful to extend the operational space defined above to include non-closed 
terms with their variables instantiated by elements of an arbitrary transition system. 

Def in i t ion .  If C is any transition system then C cse  is the system of CSP syntactic 
terms over C: namely the set of all substitutions by elements of C for all free variables 
of general terms in the language. All terms are distinct. Note that C cse  contains 
every closed CSP term and every element of C. The transitions of each term are those 
of P if P E C (i.e., P ~ Q in C csP if and only if P ~ Q in C). The transitions of 
proper syntactic terms are determined from the operational semantic clauses above 
(from those of their subterms or otherwise). 

The stipulation that all terms are distinct means that each possible construction 
of a term leads to a different element of the system. For example, in (Ccse) cse,  for 
each P E C the terms a -+ a -+ rp1, a --~ ra --* pn and ra --* a --+ pn are all different, 
where the syntactic quotes r 7  denote the boundary between the inner and outer 
syntactic construction. However the obvious map from (CCSP) csP to C cse  which 
"forgets" these boundaries is easily shown to be a morphism. 

Note that Theorem 3.2 (a) tells us that the image under ¢ of a closed term P is 
independent of whether it is considered to belong to the space P of closed terms or 
any C csP, since there is an obvious morphism embedding P into any C cse.  

We are now in a position to begin the proof of the main theorem of this section, 
namely that t hem semantics for CSP is congruent to the operational semantics. We 
will eventually complete the proof by performing a structural induction over C cse,  
but before we do that it is helpful to establish that the operational and denotational 
versions of all the non-recursive operators are congruent. 

T h e o r e m  3.5. The operational versions of the various CSP operators are all con- 
gruent to the denotational versions over/ / .  In other words, for each operator (D and 
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L e m m a  3.5.1 (ii). 
ordinals a we have 

each P, Q E C csP, 
¢ ( P  ® Q) = (~(p) ® ¢ (Q) .  

Furthermore all the operators are well behaved with respect to the partial abstraction 
functions (Ii~ in the sense that 

O , (P  ® Q) _< 4)~(P) ® ~),(Q) 

for each a. (The form of these clauses is modified suitably when the operator ® is not 
binary. The precise statement for each operator in turn can be found in the Lemmas 
below.) 

Proof .  This theorem is no more nor less than a convenient grouping of a large number 
of similar though separate results. These are stated below, grouped by operator, plus 
for each operator a further result which is crudal in the proof of the full congruence 
part of the Lemma. In each of these Lemmas it is assumed that the given term is 
an element of C csP of the given form; the immediate subterms being unrestricted 
elements of C csP (i.e., not necessarily elements of C itself). 

The operators break into two classes as far as style of proof is concerned: prefixing 
and nondeterministic choice, which are easiest, and the rest of the operators, which 
require very similar though more difficult arguments - these proofs are omitted here 
but may be found in [R3]. As usual, recursion is a special case and will be dealt with 
on its own later. 

L e m m a  3.5.1 (i). For all terms P= denoting functions from A into C csP, we have 

¢ ( x :  A ~ P~) = x :  A ~ ¢(P~).  

For all terms Px denoting functions from A to C csP and all 

~)~(x : A --, P,) _< x:  A --, ~ ( P , ) .  

L e m m a  3.5.2 (i). For a~l S c C csP (of size less than our bound on nondeterminism) 
we have 

¢ ( ~ S )  = r ] { ¢ ( P )  } P E S} .  

L e m m a  3.5.2 (ii). For all P, Q in C csP and all ordinals a we have 

¢ ~ ( A S )  _<A{¢~(P) I P E S}.  

L e m m a  3.5.8 (i) If P ,Q E C csP and ® is any one of o, ;, xllz, III, N then 
(I)(P ® Q) = ¢ (P )  ® ¢(Q). 

L e m m a  3.5.3 (ii) If P,Q E C °sP, ® is any one of [:], ;, xHY, I]], N and a is any 
ordinal then ¢ , ( P  ® Q) < (I)~(P) ® (I)~(Q). 

L e m m a  3.5.4 (i). 
~( t (P) )  = t((~(P)). 
L e m m a  3 .5 .4  (ii) .  
ordinal then 

This completes Theorem 3.5. 

If P E C csP and t is any one of f[-], f - ' [ . ]  and \ X  then 

If P E CCSP,t is any one of f[.], f - ' [ . ]  and \ X  and a is any 

• ,(*(P)) _< * (¢ , (P ) ) .  

| 
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These results provide the building blocks of the proof of the main result, and are 
put together below. The next Theorem is the main result of this section. 

Def ini t ions .  Given a CSP term P and a p E OEnv = Vat ~ C CsP, we can 
define an operational "semantic function": O[P]p E C CsP is defined to be the result 
of substituting each free variable p in P by p(p). (Note that P may have no free 
variables, finitely many, or infinitely many. This last possibility arises because of the 
two infinitary operations [1 and x : A -+ P,.) Given p E OEnv we can define the 
corresponding element ~ of UEnv = Vat --~ bl by 

= C O ( p ) )  

and also, for each a, an approximation 

= c o O ( p ) )  • 

In this theorem we will assume that the basic transition system C is such that 
: C -~ 3/ is  onto (following Theorem 3.2 (c)). This is helpful in the proof, since it 

means that for each ~r E UEnv there is a p E OEnv such that ~ = ~r. 

T h e o r e m  3.6. Suppose P is any CSP term. Then the following hold. 

a) 8IIP]]-~ = ~(O[P~p) for all p E OEnv. 

b) For each ordinal a and each p E OEnv we have $[P]-fi ~ >_ ~'~(O[P~p). 

Proof .  This is by structural induction on P.  Given the sequence of Lemmas above, 
the cases of all the non-recursive operators are trivial, parts (a) and (b) respectively 
following from the (i) and (ii) of the Lemmas under Theorem 3.5 above. 

It only remMns to consider the case of a recursively defined term #p.P, where the 
result is known to hold of P. 

For part (a), observe that $[#p.P~-~ is defined to be the least fixed point of F(Y)  = 
S[P~-fi[Y/p]. Now set X = ~(O~#p.P~p) and note that since the only transition of 
O[#p.P~p is a r-transition to O[P[#p.P/p]]p, we have 

X = ~(O~P[#p.P/p]]p) 
= ~(O[P]]p[O[#p.P]p/p]) 
= S[P~p[O~gp.P]p/p] by induction 
= s [ P N X / p ]  
= F ( x )  

and so X is a fixed point of F and so is certainly greater than S~#p.P]'fi. 

For the reverse inequality we win prove by induction on a that O~(O[ttp.P]lp) < 
F~(±)  for all a. This is enough since we know that for sufficiently large a the left 
hand side equals ~(O[#p.P]p) and the right hand side is 8[#p.P]-fi. The cases of 
a = 0 and a a limit ordinal are both trivial, the latter because both sides are defined 
to be the least upper bounds of the terms for smaller ordinals. So suppose it holds 
for fl and a = fl + 1. Then q)~(O[[#p.P]p) = ¢~(O[P[ttp.P/p]]p) because of the 
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initial T-transition and the definition of 6. But this by induction and monotonicity 
is weaker than F'~(_I_), as required. 

It only remains to prove (c), in other words that, given p and a, 

• ~(O[#p.P]p) < S[#p.PI 'F.  

Once again we prove this by transfinite induction on a. Again the result is easy for 
a = 0 since the left hand side is 2. and also for the limit ordinal case since the left 
hand side at a is then the least upper bound of the previous left hand sides, and S~P] 
is monotone. So suppose a = fl + 1 and that the result holds at ft. Then 

#)Z+l(O[Itp.P]p) = ~(O[P[#p.P/p]]p) 
= ~(O[P]p[O[#p.P]]p/p]) 

<_ 8[P]p[O[[#p.P]p/p] 'z by (c) of P 
<_ S[P~pe[¢e(O[i~p.P]p)/p] 
<_ S[P]-~[S[#p.P]~/p] induction and monotonicity 
= S[[#p.P~"fi ~ as recursions denote fixed points 
<_ S[#p.P]y~ +1 by monotonicity 

which proves it for fl + 1. This completes the proof of Theorem 3.5. | 

The reader may have noticed that this section has not discussed the operational 
semantics of processes defined by mutual recursion, whether finite or infinite. This 
was because the proof for single recursion was quite difficult enough, and that for the 
more general case adds little except complexity. Also, as is pointed out in [R3], there 
is a simple CSP transformation which allows one to re-cast any mutual recursion as 
a single recursion. It would certainly be possible to base a proof of the operational 
validity of mutual recursion on that. 

4. C o n c l u s i o n s  

We have seen how to construct the infinite traces model U, how it has unusual partial 
order properties, and how to overcome the incompleteness of the underlying orders. 
We have also seen the main points of the proof that our denotational semantics are 
congruent to the natural operational semantics. 

The two orders < and K have both been used throughout the paper in various 
ways. This leads to the same question as was posed in [R2], namely that of which is 
the natural order to use when presenting the model and semantics, given that both 
work. Here the arguments are slightly different. On the one hand now neither order 
is complete (whereas only < was over A/"). However < does still have a nicer theory 
of least upper bounds than K, for they are always given by intersection where they 
exist while this is not even true for directed sets for K. On the other, K is simpler 
to define and is perhaps more intuitive, but it does not have such a claim over U to 
be the "establis]hed" order as over Af or AP. And also K played an important part 
in the proof of the existence of fixed points seen in Section 2. This question will be 
best resolved by time and experience. 
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On the technical side we have seen in this work that completeness and conti- 
nuity are natural casualties of the introduction of unbounded nondeterminism, but 
that their absence does not matter unduly except in the sense that proofs become 
more difficult. It will be interesting to see whether similar problems arise in other 
formalisms. 

We have also sketched the proof that our semantics is operationally valid. Perhaps 
the most interesting feature of the proof is the way the approximate abstraction func- 
tions • ~ show that the least fixed point corresponds with the operationally natural 
o n e  via a type of "non-destructiveness" argument. 

Future work on this model will include a fuller investigation of its algebraic prop- 
erties. Another issue will be the study of other unb0undedly nondeterministic con- 
structs such as fair hiding operators. We should note that it is only permissible to 
add a new operator (other than one derived from existing operators) to this version 
of CSP if its restriction to 7:' can is dominated by an operator which preserves prede- 
terminism, to allow the proof in Section 2 to carry through. It will also be interesting 
to see what use can be made of the infinite traces component in the specifications of 
processes. For example one could add a clause to the usual specification of a buffer 
which stated that the buffer never does infinitely many inputs without an output, so 
that anything one puts in is eventually going to come out (even in the presence of an 
environment which eagerly places as much as possible into the buffer at all times). 

The difficulties one encounters when dealing with unbounded nondeterminism, 
particularly the sort which is only detectable from infinite behaviours, are certainly 
not restricted to the models seen in this paper. Hopefully some of the work reported 
here will transfer to other formalisms for concurrency. One place where valuable work 
could be done is in timed CSP (see [RR1, RR2, Re]). The incorporation of infinite 
behaviours there (were it possible) would allow more abstract and general expressions 
of such modalities as "eventually" which appear in some forms of temporal logic. 
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