
A Theory of Communicating Sequential Processes

S. D. BROOKES

Carnegw-Mellon Umversity, Pittsburgh, Pennsylvania

AND

C. A. R. HOARE AND A. W. ROSCOE

Oxford Umverstty Programmmg Research Group, Oxford, England

Abstract. A mathematical model for communicating sequential processes is given, and a number of
its interesting and useful properties are stated and proved. The possibilities of nondetermimsm are fully
taken into account.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and The-
ory--semantics; syntar, D.3.2 [Programming Languages]: Language Classifications; D.3.3 [Program-
ming Languages]: Language Constructs--concurrent programming structures; F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages--denotattonal semantics

General Terms: Theory

Additional Key Words and Phrases: Communicating sequential processes, synchrony, asynchrony,
nondeterminism, parallehsm, deadlock, safety, liveness

1. Introduction

In the last decade there has been a remarkable growth in general understanding o f
the design and definition o f computer programming languages. This understanding
has been based upon a recognition that the text of each program expressed in the
language should be given a mathematically defined meaning or denotation, in the
same way as any other notational system of logic or mathematics. For a conven-
tional sequential programming language, the simplest mathematical domain suit-
able for this purpose is the space o f partial functions that maps from an abstract
machine state before execution o f a c o m m a n d to the state of the machine afterward.
For a programming language with jumps, the appropriate mathematical domain is
slightly more complicated, involving continuations. For a programming language
in which subprograms are themselves assignable components of the abstract ma-
chine state, the appropriate reflexive domain o f cont inuous functions has been

Part of this research was supported by grants from the Science and Engmeering Research Council of
Great Britain.
Authors' addresses: S. D. Brookes, Department of Computer Science, Carnegie-Mellon University,
Schenley Park, Pittsburgh, PA 15213. C. A. R. Hoare and A. W. Roscoe, Oxford University Program-
ming Research Group, 8-11 Keble Road, Oxford OXI 3QD England.
Permission to copy w~thout fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and nouce is given that copying is by permission of the AssoeiaUon for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or spedfic permission.
© 1984 ACM 0004-5411/84/0700--0560 $00.75

Journal of the Association for Computing Machinery, Vol 31, No 3, July 1984, pp 560-599

A Theory of Communicating Sequential Processes 561

discovered by Scott [26]. His techniques have been applied to a variety of familiar
and novel programming languages [18, 28]. The concept on which all these
developments rest is the familiar mathematical concept of a partial function, and
its familiarity has undoubtedly contributed to the widespread acceptance and
success of the approach. However, there are two features of certain new experi-
mental languages involving concurrency that are not so simply treated as mathe-
matical functions.

(1) In the parallel execution of commands of a program, the effect of each
command can no longer be modeled as a function from an initial state to a final
state of an abstract machine; it is also necessary to model the continuing interactions
of a command with its environment.

(2) In the execution of parallel programs, it is desirable to abstract from the
relative rates of progress of the commands being executed in parallel. In general,
this will give rise to nondeterminacy in the behavior and outcome of the program.

Both these problems arise in acute form in the treatment of a language like that
of Communicating Sequential Processes (CSP) I12].

It is the purpose of this paper to construct a mathematical domain that should
play the same role in defining the semantics of communicating processes as the
domain of partial functions does for sequential and deterministic programming
languages. Every effort has been made to keep the domain simple, and to ensure
that the necessary operators over objects in the domain have elegant and intuitively
valid properties. This paper is a much expanded and improved version of an
Oxford University technical report with the same name [14].

The second section of the paper contains a definition of the required domain of
processes. Following the lead of [9], [19], and [20] we first introduce the concept
of a transition, which is a ternary relation between

(l) the initial state of a process,
(2) a sequence describing its interactions with its environment duringits execution,

and
(3) a possible state of the process after those interactions.

Next we note that the internal states of a process are not observable by its
environment. We therefore define the concept of an observation of a process, which
is a finitely describable experiment to which a process can be subjected. We then
postulate that two processes are identical if they cannot be distinguished by any
such finite observation. This reasoning leads directly to the construction of our
proposed mathematical space of processes.

The next section shows that this space has the usual ordering properties required
of a semantic domain. The relevant partial ordering is simply set inclusion in the
reverse of the normal direction, so that one process is an approximation to another
if it is less deterministic. This partial order on the space of all processes, which is
shown to be complete, is similar in spirit to the usual Smyth ordering [27].

The important consequence of this is that every set of recursive equations in
process-valued variables has a least solution; and this permits the use of recursion
both in a programming language and in its formal definition.

The fourth section defines a wide range of operators over the domain of processes;
these include sequential composition, conditional composition, two forms of
parallel composition, and (perhaps most crucial of all) a concealment operator,
which permits abstraction from the details of internal communications between

562 S. D. BROOKES, C. A. R. HOARE, AND A. W. ROSCOE

processes connected in a network. These operators enjoy a number of elegant and
useful algebraic properties. We hope that this range of defined operators will be a
sufficient basis in terms of which to define all other operations required in the
semantics of a parallel programming language, without any further concern for the
details of the underlying mathematical model. Thus these operators should play
the same role as the basic operators defined by Scott for the LAMBDA calculus,
which shield the practicing user from the complexities of the underlying domain.

The fifth section gives some examples of the application of the model, by showing
that it can be used to define some complex but useful programming language
constructs, and to describe some simple but interesting parallel algorithms.

The sixth section contains a discussion of related work and future directions for
research.

The seventh section discusses the prospects for the development of formal
methods in increasing reliability of implementation and use of a programming
language that includes parallelism.

The final section is an appendix that contains proofs of some of the paper's more
interesting results. In addition it describes some techniques that can be used to
prove the correctness of processes defined within the model.

2. Definition of a Process

The ultimate unit in the behavior of a process is an event. Events are regarded as
instantaneous; if we wish to represent an activity with duration, we must introduce
two events to represent its start and finish so that other events can occur between
them. We shall not be interested in the length of the time interval that separates
events, but only in the relative order in which they occur. We let A stand for the
set of all events with which we shall be concerned. The behavior of a process up to
some moment in time can be recorded as the sequence of all events in which it has
participated; that is known as a trace. We postulate that a process can only perform
a finite number of events in any finite time, and thus all traces have finite length.
The set of all possible traces is denoted by A*.

Let s be a trace and let P and Q be processes. A transition is a proposition
s

P-.-~ Q,

which means that s is a possible trace of the behavior of P up to some moment in
time, and that the subsequent behavior of P may be the same as that of Q. Thus if
t is a possible trace of Q, after which it may behave like R, then clearly st (s
followed by t) is also a possible trace of P, after which it can also behave like R.

This fact is formalized as a general law:
l s t

e - ~ Q & Q----~ R =~ P----~ R. (El)
Sl

Conversely, if P ---* R, then there must exist some intermediate process Q that
behaves exactly like P would behave after doing s but before starting on t. This is
expressed in the law

P --~ R ~ 3Q.P --~ Q & Q --~ R. (L2)

The empty trace () is the sequence with no events. It describes the behavior of
a process that has not yet engaged in any externally recordable event. We adopt
the convention that after doing nothing a process may remain unchanged. More-

A Theory of Communicating Sequential Processes 563

over, if betbre performing any visible event a process remains unchanged, we can
regard all intermediate stages that it may have gone through as equivalent.

P ~--~ a & Q ~--~) P c ~ P = a. (L3)

If Q # P, then the possibility of the transition P ~ Q means that P may make
internal progress, which cannot be observed from outside, after which it can behave
like Q rather than P. Since, in general, a process is nondeterministie, its internal
progress will require the making of arbitrary choices, which are wholly uncontroll-
able and invisible from outside. Such a choice can only reduce the range of possible
future behaviors of P, by excluding behaviors that would have remained possible
if some alternative choice had been made. Thus the effect of a nondeterministic
choice made by a process will be to constrain the ability of the process to perform
events on the next and subsequent steps.

The initials of a process P are those events in which it can engage on the very
first step; they are defined as

initials(P) = {a E A I 3Q.P ~-~ Q],

where (a) is the sequence containing the single event a. The choice of which of
these events, if any, will actually occur will depend (at least in part) on the
environment in which the process is placed. Let X be the set of events that are
possible for that environment. Then the event that actually occurs must be in the
intersection (X n initials(P)). If this intersection is empty, then nothing further can
happen: the process and its environment remain locked forever in deadly embrace
[7]. Unfortunately, if P is nondeterministic, deadly embrace is still possible even
when the intersection is nonempty. This occurs when P can progress invisibly to
become Q, and the intersection (X O initials (Q)) is empty. In such a case, we say
that X is a possible refusal of P, and that P can refuse X.

We want to be able to distinguish between processes by observing their behavior
in finite environments. It will be possible to distinguish between P and Q if and
only if there is a finite sequence s of events possible for P but not for Q (or vice
versa), or there is a sequence s that is possible for both and a finite set X of events
such that P can refuse X after doing s but Q cannot (or vice versa). We adopt this
view of distinguishability because we consider a realistic environment to be one
that is at any time capable of performing only a finite number of events. Bearing
these remarks in mind, we define the set of P's refusals as

refusals(P) = [XI X finite & 3Q.P ~ Q & X n initials(Q) = OI.

From this definition it follows that

(1) O ~ refusals(P);
(2) if Y ~ refusals(P) and X C_ y, then X E refusals(P);
(3) i fX E refusals(P) and Y is a finite subset of (A - initials(P)), then (X O Y) E

refusals(P).

(A - initials(P)) is the set- of events that P cannot perform. The third theorem
above states that P can refuse these events, together with any other set of events
that it can refuse.

A trace of a process is a sequence of events in which it may engage up to some
moment in time. The set of all such traces is defined:

traces(P) = {s ~ A* I 3Q.P --~ Q}.

564 s . D . BROOKES, C. A. R. HOARE, AND A. W. ROSCOE

From this definition it follows that

() E traces(P),

st E traces(P) ~ , s E traces(P).

The second theorem states that any prefix (initial subsequence) of a trace of P is
also a trace of P. We shall write s <_ u when s is a prefix of u.

If s is a trace of P, and if, after engaging in the events of s, P can refuse the finite
set X, we say that the pair (s, X) is a failure of the process P. The set of all such
failures is defined:

Tailures(P) --- {(s, X)I 3Q.P-L~ Q & x E refusals(Q)l.

Since ~ ~ refusals(Q), it follows that s is a trace of P if and only if (s, ~3) is a failure
of P. From this definition it follows that the set F = failures(P) has the properties:

(PI) (s , X) ~ F ~ s E A * &XC_.A&Xf in i te ,
(P2) (() , 0) E F,
(P3) (st, ~) ~ F ~ (s, ~) E F,
(P4) X _C y & (s, Y) E F ==~ (s, X) ~ F,
(P5) (s, X) ~ F & (s(c), ¢~) q~ F ~ (s, X U {c}) ~ F.

Note that (P5) implies that whenever (s, X) is a failure of P and Yis a finite set of
events such that s(c) is not a trace of P, for all c 6 Y, then (s, X U Y) is also a
failure of P. This can be interpreted as saying that impossible events can always be
refused.

The failures of a process represent possible externally observable aspects of its
behavior. The fact that (s, X) E failures(P) means that it is possible for P to do s
and then refuse to do any more, in spite of the fact that its environment allows
any of the events of X. Our next postulate states that there exists a process
corresponding to any possible set of failures.

If F satisfies the five properties of the previous paragraph, then
there exists a process P such that failures(P) = F. (L4)

Finally, we postulate that the failures of a process are the only externally
observable aspects of its behavior. Thus two processes that fail in exactly the same
circumstances are indistinguishable by external observation. Since we deliberately
choose to ignore the details of the internal construction of processes, it is reasonable
to adopt the principle of identity of indiscernibles:

failures(P) = failures(Q) ~ P = Q. (L5)

Postulates (L4) and (L5) together state that a process is uniquely defined by its
failure set. In the future, we shall identify a process with its failure set and define
the transition relation thus:

P --~ Q - (Vt, X.(I, X) ~ a ~ (st, X) E P).

This definition is consistent with
(using conditions P I-P5)

st p----> Q

P~O
traces(P)

initials(P)
refusals(P)
failures(P)

the laws (LI)-(L3). From the definition we deduce

t - 3R.(P ----,s R & R ----> Q),
=_QC_p,

= [s l(s, ~) ~ P},
= {al ((a) , 0) E P},
= {x l ((), x) ~ PI,
- - - e .

A Theory of Communicating Sequenttal Processes 565

Since transitions can be defined in terms of failure sets and failure sets in terms of
transitions, it is permissible to use either method in the definition of any particular
process. It will be found convenient to give an intuitive explanation of the intended
behavior of a process by gwing laws governing its transitions, followed by a formal
definition in terms of failure sets. Usually, the laws given will only specify sufficient
conditions tbr the transitions of the process being defined. The formal definition
will then specify a failure set whose transitions are precisely those deducible from
the given laws using (LI)-(L3). In this precise sense, the formal definition using
transitions specifies the required failure set.

It might be argued that modeling a process in terms of the negative aspects of its
behavior is unnatural. However, we are primarily interested in two types of
properties of processes, usually referred to as safety and liveness [16]. Safety
properties of behavior can be treated well in a traces model [29]. Liveness properties,
m particular absence of deadlock, cannot be treated in a model based on traces
alone, because traces only give possible pOSltlve information about what might
happen. By giving possible negative information; that is, failures or refusals, we are
also able to support reasoning about what must happen. An alternative formulation
of our model could have been based on the dual concept of acceptances. However,
this approach seems to lead to rather more conceptual difficulties than the present
approach.

We end this section with some examples of processes definable in our model.

Example 1. The simplest process is STOP, a process that never does anything,
and therefore always refuses to do anything. It obeys the law

STOP ~ STOP.

Furthermore, we can show, using this defining law and (LI)-(L3), that this is the
only law that it obeys; that is,

S

S T O P ~ Q ~ s = () & Q = S T O P .

The process that has these properties is defined:

STOP = {((), X) IX __ A & X finitel.

Clearly, it refuses to do whatever its environment may offer.

Example 2. If Q is a process and a is an event, then the process (a ---> Q) is a
process that first does a and then behaves like Q:

S

Q---. R (a Q) R.

We also permit Q to make internal progress while waiting for a:

Q ~ Q' ~ (a ~ Q) ~ (a ~ Q').

The process specified by these laws is

(a ~ Q) = {((), X) lX c_ (A - {a}) & X finite}
U {((a)s, X) I (s, X) ~ QI.

Clearly, ~t-cannot iniually refuse to perform a if offered; but it may (indeed must)
refuse everything else. Two examples of processes built using this construction are

Pa = (a ~ Si?OP), Pb = (b ~ STOP).

566 S. D. BROOKES, C. A. R. HOARE, AND A. W. ROSCOE

/ (} ~ " ~ P ~ " - " ~ T P t2 ' ~ Q~ o~ O

FIGURE 1

Example 3. Let B be a subset of A, and let P(x) be a process for each x in B.
Then (x :B ..-. P(x)) is a process that first does any event b in the set B and then
behaves like P(b).

P(b) --~ Q ~ (x :B --.. P(x)) ~ Q, any b E B.

Again we permit internal progress to be made while waiting for the first event:

(Vx • B.l~x) ~ e'(x)) ~ (x :B --, e(x)) ~ (x :B ---, e'(x)).

The process specified by these laws is

(x :B -.--> P(x)) = {((), X) I X C (A - B) & X finite}
t.J {((b)s, X)[b • B & (s, X) • P(b)}.

When B is a singleton set {a} this reduces to the definition of (a ~ P(a)), and when
B is empty the definition coincides with that of STOP.

Note that x is a bound variable of this construction, so that

(x :B ~ P(x)) = (y : B ~ P(y)).

An example of a process using this construction is

Example 4.

Pab = (X: {a, b} ~ STOP).

With the above definitions of P,, Pb, and P~b, let

Q,,= P,,t.J P,~b,
Q~ = eb t.J e, , ,

Q,,b = P,,t3 Pb,
Ra = Pa O STOP,
Rb ---- Pb 0 STOP,
Q - Qab t.J STOP.

Figure 1 shows the transitions between these processes (other than those deducible
by transitivity).

A Theory of Communicating Sequenttal Processes 567

Process Initials Refusals

Q {a, b} O, {al, {bl, {a, bl
R,~ {a} O, [al, {b}, {a, b}
Ro {b] O, {a], {b], la, bl
Q~ {a, b} O, la], {hi
Qo [a, b} O, {b}
Qb {a, b] O, {a]
Po~ la, b] O
Pa {al 0, {b}
Pb {b} 0, [a]
STOP O 0, {a], {b}, [a, bl

FIGURE 2

I fA = {a, b}, Figure 2 shows the initials and refusals of each of these processes,
proving that they are distinct.

Example 5. RUN is a process that will always do anything offered by the
environment. Thus it satisfies the law:

S

RUN ~ RUN, for all s E A*.

The required definition is

RUN = {(s, ~)1 s E A*}.

Clearly, RUN can never refuse anything. A similar process RUNB that will always
perform events drawn from a subset B __. A can be defined as

RUNB = {(s, X) I s E B* & X C_ A - B & X finite].

Example 6. CHAOS is a process that can do anything at all; but in contrast to
RUN, it can also at any time refuse to do anything at all. Indeed, it can decide at
any stage to behave like any other process.

S

CHAOS ---* P, for all s E A*, and all P.

The required definition is

CHAOS = {(s, X) I s E A* & X C A & X finite}.

Example 7. Given a nonempty, prefix-closed set T of traces, there is a process
det(T) with trace set T, which at any stage refuses only impossible events. Its
definition is

det(T) = {(t, X) lt ~ T& (X finite & Vx E X.t<x) q~ T)}.

Thus the failures of this process are precisely those deducible from knowledge of
its trace set and laws (PI)-(P5). Such processes can be thought of as deterministic,
because, in general, a process P satisfies the condition

e J.~ Q ~ p = Q,

so that no internal decision by P can reduce the range of its possible future actions,
if and only if P = det(traces(P)).

3. Nondeterminism

This section investigates the properties of nondeterminism. The transition relation <) .

~s a natural partial order on the space of processes corresponding to a measure

568 s . D . BROOKES, C. A. R. HOARE, AND A. W. ROSCOE

of nondeterminism, the maximal elements with respect to this ordering being
precisely the deterministic processes. Indeed, this partial ordering gives the structure
of a complete semilattice to the space of the processes. This important fact is
proved in the Appendix. We use the methods of lattice theory [28] to show how
every recursive definition uniquely determines a process; the mathematics required
is not difficult, and is fully explained.

3.1. NONDETERMINISTIC COMPOSITION. If P and Q are processes, the combi-
nation P rl Q is a process that behaves exactly like P or like Q; but the choice
between them is wholly nondeterministic: It is made autonomously by the process
(or by its implementor), and cannot be influenced or even observed by the
environment. Thus P I"1 Q can do (or refuse to do) everything that P or Q can do
(or refuse to do):

$ $

P--~ R V Q-.-..~ R ~ (P I'I Q)......~ R.

The process determined by this law is simply

P H Q = P u Q .

This operation is clearly associative, commutative, and idempotent. It has
CHAOS as its zero.

(P n Q) FIR = e n (a n R)
P n Q = Q H P
p r l p = p

CHAOS H p = CHAOS

(associative),
(commutative),
(idempotent),
(zero).

The following relation indicates the intimate connection between nondeterministic
composition and the transition relation ----> :

P~--~ a ~=~ (PIT Q) = p.

This fact is closely connected with the partial-order properties of <--~.

3.2. DISTRmUTIVITY. One of the main reasons for specifying a nondeterministic
process such as P In Q is to allow an implementor the freedom to select and
implement either P or Q, whichever of them is cheaper or gives better performance.
Suppose F is some function from processes to processes. F(.) may be regarded as
an assembly with a vacant slot, into which an arbitrary component may be plugged,
producing F(P) or F(Q), for example. The behavior of the assembly is then a
function of the behavior of this component. Suppose that an implementor has to
implement F(P) fl F(Q). The straightforward way to do this is to implement F(P)
and F(Q) and then select between them. An alternative way is first to select the
component, and plug in just that one. This alternative is the same as the standard
way of implementing F(P rl Q). We would like to ensure that both implementations
give the same result, that is, that

F(P H Q) = F(P) n F(Q).

A function F that satisfies this condition for all processes P and Q is said to be
distributive. Another reason for preferring distributive functions is that they sim-
plify proofs of the properties of processes by allowing case analysis of the alternative
behaviors.

As an example, the construction (a ~ .) is distributive, since

(a --~ (P I1 Q)) = (a ~ P) n (a ~ Q).

A Theory of Communicating Sequential Processes 569

This means that there is no discernible difference regardless of whether the choice
between P and Q is made before or after the occurrence of a.

A function of two or more arguments is distributive if it is distributive in each
argument separately. Thus nondeterministic composition is itself distributive,
because

e q (Q O R) = (e f q a) o (e n R) and (O n R) n P - - (a n p) n (R n e) .

Furthermore, the construction (x : B ~ P(x)) is distributive in P(x) for all x E B:

(x: B ~ (P(x) n a(x))) = (x: B ~ P(x)) I'1 (x: B ~ Q(x)).

Thus all operations introduced so far are distributive. We shall normally make this
a requirement for all operators introduced hereafter. The only exceptions will be
operators that may need to call more than one version of an operand into existence.
For example, if a one-place operator op is defined by means of the two-place
distributive operator op* by the law

op(P) = op*(P, P),

then we see that

op(P O Q) = op(P) n op(Q) fq op*(e, Q) f] op*(Q, P),

which may very well be strictly more nondeterministic than op(P) n op(Q). The
extra nondeterminism is brought about by the fact that the operator may select a
different implementation of its operand on each occasion when it is used.

3.3. LXMITS. The relation P ~ Q means that the process P may, as the result
of internal progress, transform itself automatically into the process Q. A chain of
processes is an infinite sequence <P, I i __ 0), each member of which may transform
itself into its successor; thus, it satisfies the law:

P, ~ P,+l, for all i.

For each such chain there exist a limit process, denoted U,Pi, which can make a
transition if and only if every member of the chain can:

---~ Q) ~ ---~ Q.

For justification, recall that the transition relation is

p}.~ Q=_pD_Q,

the reversion inclusion relation on failure sets. It is easy to prove that the intersec-
tion of a chain of processes is again a process (see the Appendix). It follows that
the desired limit process may be defined as

UP, = NP,, provided W.P, ~ P,+l.
! !

The limit process can do (or refuse) anything ihat every member of the chain can
do (or refuse); every failure of the limit is a failure of all P,. This operation is again
distributive:

provided that <P~ I i ~ 0) and <Q,I i ~_ 0) are chains.

570 s . D . BROOKES, C. A. R. HOARE, AND A. W. ROSCOE

The fact that this operation produces a limit with respect to the nondeterminism
• ~ .

ordenng ~ ~s expressed:

Pj ~--~ (UPi) , for all j,

and for all processes Q,

The relation P ~ Q means simply that the set Q is contained in the set P, as we
remarked above. Thus everything that Q can do so can P:

traces(Q) c__ traces(P),

and everything that Q can refuse so can P:

refusals(Q) __. refusals(P).

In other words, P differs from Q only in that it is less deterministic, and that Q
can result from P by resolution of some of P's inherent nondeterminism. In the
case of a chain, where P, ~ P,+I for all i, this can mean that there is a potential
infinity of nondeterministic decisions to be taken; but perhaps none of them will
actually reach the limit I I,Pi. Thus UiPi can be regarded as an "ideal" element, of
which the P, are an ever-improving sequence of approximations, getting as close as
we wish to the limit but perhaps never actually reaching it. However, in imple-
menting the limit process, we wish to allow an implementor (if so desired) to make
all the nondeterministic choices in advance of delivering the product.

3.4. CONa'INOITY. Let F be a distributive function from processes to processes.
Then F is monotonic because

e <.-~> Q a ~ (p f q Q) = p
=, F(P fq Q) = F(P)

F(P) fl F(Q) = F(P)
F(P) ~ F(Q),

for all P and Q. Let (P, I i ___ 0) be a chain. Suppose that an implementor is faced
with the problem of implementing F(UiP,). The straightforward method would be
to obtain the limit U,P~ and then plug it into the assembly, producing F(IliP,). But
suppose that the limit process is in some sense unattainable. Then we can apply F
to each of the approximations P~, obtaining the chain (F(P,) I i _> 0), and then take
the limit of that. We would like to be sure that both implementations are the same:

Then, even if the limit U,F(P,) is unattainable, we can be sure of getting as close
as we need by the sequence of approximations F(P,). If this condition holds for all
chains, then F is said to be continuous• Another good reason for preferring
continuous functions is that they simplify proofs of the properties of processes and
allow an elegant treatment of recursively defined processes. This will be explained
in more detail in the next section.

A Theory of Communicating Sequential Processes 571

As an example, the construction (a ~ .) is continuous, because

(a --o UP,) = U(a P,),

whenever <P, I i _> 0) is a chain.
A function of two or more arguments is continuous if it is continuous in each

argument separately. Thus nondeterministic composition is continuous, because
for every process Q and every chain <P, I i _ 0) we have (by elementary properties
of union and intersection)

(UP,) n Q = U(P, li Q) and Q n (UP,)= U(QflP,).
l \ / / l

Furthermore, the construction (x:B ---, P(x)) is continuous in P(x) for all x E B:

provided <P,(x) I i ~ 0) is a chain for each x ~ B.
Finally, the limit construction is itself continuous:

provided that for all i, <P,j IJ -> O) is a chain, and for each j, (P,jl i >_. O) is a chain.
Thus all of the operators introduced so far are continuous, and we shall make

this a requirement for all operators introduced hereafter. This will ensure that any
expression composed from named components by applying continuous operators
will also be continuous in each of its named components.

3.5. RECURSION. Let F be a continuous function from processes to processes.
We define the n-fold composition of F by induction on n:

F°(P) = P, Fn+~(e) = F(F"(P)).

Since F is continuous, it is also monotonic. Since CHAOS is the most nondeter-
ministic process of all, it follows that the sequence

<F"(CHAOS) I n ___ 0)

constitutes a chain; and its limit is defined by

up.F(p) = UF"(CHAOS).
n

Note that in this notation, p plays the role of a bound variable, so that

uP" F(p) = #q. F(q).

Provided that F is continuous, it is clear that uP" F(p) is a fixed point of F, in
the sense that it satisfies the equation P = F(P).

F(up.F(p))= F (UF"(CHAOS))

= UF(F"(CHAOS)) by continuity
n

= UF~÷~(CHAOS)
n

= t~p.F(p).

572 s .D . BROOKES, C. A. R. HOARE, AND A. W. ROSCOE

Furthermore, this is the most general solution, in the sense that it can progress
autonomously to any other solution:

Q = F(Q) ~ #p.F(p) ~ Q.

Equivalently, up.F(p) is the least fixed point ofF. Thus the equation p -- F(p) can
be regarded as a recursive defimtion of the process #p.F(p); for example, we could
have defined

RUN -- t~p.(x:A ~ p),
RUNn = up.(x:B ~ p), for any B C_ A.

For another example, the least fixed point uP.P of the identity function is simply
CHAOS.

A similar construction can be used to find the solution of mutually recursive
equations such as

p = F(p, q), q = G(p, q),

even (in some cases) when the number of equations is infinite. We will give more
details in the examples of later sections and in the Appendix.

The desire to define processes freely by recursion and to be able to manipulate
recursive definitions in order to prove properties of such processes is one of the
major motives for requiring operators to be continuous.

4. Operators on Processes

In this section we define the most important primitive operators on processes, and
state their chief properties. The section is sadly devoid of examples; these will be
found in the next section. Proofs of some of the more interesting results appear in
the Appendix.

4.1. PARALLEL COMPOSITION BY INTERSECTION. The combination (PII Q) is
intended to behave like both P and Q, progressing in parallel. Thus an event can
occur only when both P and Q are able to participate in it simultaneously. The
same is therefore true of sequences of events:

Sp, SQ,
P ~ & Q ~ ~ (PII Q) ~ (P' II Q'). (1)

The process determined by this law is defined as

(P II Q) -- I(s, xt .J Y)l(s, s) ~ e & (s, Y) ~ Q}.

Thus, (P II Q) can refuse a set of events if P can refuse part of it and Q can refuse
the rest.

The operator II is distributive, continuous, associative, and commutative. It has
STOP as its zero and RUN as its unit; that is,

ell STOP = STOP, P II RUN = P.

Furthermore,

(x:n ~ P(x))II (y:C ---, Q(y)) = (z:(B N C) ~ (P(z)II Q(z))).

A partial converse to the defining relation (1) above can be proved:

(PII Q) ..L> R ~ 3P', a ' .P _2_, p , & a . ~ Q, & R ~ (P' II a ') .

- - 4.2. CONDITIONAL COMPOSITION. The process (P D Q) behaves either like P or
like Q, but it differs from (prq Q) in that the choice between them can be influenced

A Theory of Communicating Sequential Processes 573

by the environment on the very first step. If the environment offers an event a that
is possible fi~r P but not for Q, then P is selected; and conversely for Q. But if the
environment offers an event that is possible for both processes, the selection
between them is nondeterminate, and the environment does not get a second
chance to influence it. Thus

P ~-~ R V Q <--~ R ~ (P II Q) <--~ R.

Before occurrence of the first event, P and Q may progress independently:

P <.-~> P' & Q <--~ Q' ~(PDQ)<-~>)(P ' D Q ') .

The process determined by these laws is defined

(PD Q) = 1((), X) l (() , X) ~ P & (() , X) e Q}
u {(s, x) ls # () & ((s, x) e P v (s, X) E Q)}.

P D Q initially refuses a set if and only if it is refused by both P and Q.
The operator D is distributive, continuous, associative, commutative, and idem-

potent. It has unit STOP. Furthermore, it admits distribution thus:

p n (Q 0 R) = (p n Q) 0 (p n R),
(x:B ~ e(x)) n (y:C---, Q(y)) = (z : (B u C) ---, R(z)),

where

R (z) = P (z) if z E B - C ,
= Q(z) if z E C - B,
= P(z) lq Q(z) otherwise.

When P = Q, the last theorem is much more simply expressed:

(x: B W C --* P(x)) -- (x: B ---* P(x)) D (x: C --+ P(x)).

4.3. PARALLEL COMPOSITION BY INTERLEAVING. The process (P [11 Q) behaves
like P and Q operating in parallel, but it differs radically from (P j[Q) in that each
event requires participation of only one of the processes rather than both. Thus
each trace of (P [U Q) is an interleaving of a trace of P and a trace of Q, as stated
in the law

S l Q t U
P ~ P ' & Q ~ ~ (P III Q) ~ (P' Ill Q'),

where u is an interleaving of s and t.
The process determined by this law is

P III a = [(u, X) l 3s, t.(s, X) E P & (t, X) E a
& u is an interleaving of s and t}.

P Ul Q can initially refuse a set only if both P and Q refuse it.
The operator III is distributive, continuous, associative, and commutative. It

has unit STOP and zero RUN. Furthermore, if P = (x:B ~ P(x)) and Q --
(y: C ---> Q(y)), then

Pill a = (x:B ~ (P(x)III a)) D (y:C---> (Pill a(y))).

Thus if an event can be performed by both processes, which of them actually
performs it is nondeterministic.

4.4. SEQUENTIAL COMPOSITION. Let o," (pronounced tick) denote an event that
we interpret as successful termination of a process. Then SKIP is defined as a

574 S.D. BROOKES, C. A. R. HOARE, AND A. W. ROSCOE

process that does nothing but terminate successfully:

SKIP = (v ---> STOP)
= 1((), X) l v. ~ x }

O {((v) , X)IXC_ A & Xis finite}.

The process (P;Q) behaves like P until P terminates, after which it behaves like Q.
However, the occurrence of v- at the end of P does not appear in any trace of
(P;Q). It occurs automatically, without the knowledge or participation of the
environment. Thus, if s does not contain v~ we formulate the laws:

Q<_%> s p , Q, (p;Q)
p ----> & ~ (P' ;Q') ,

st Qt. t Q, (p.,Q)
e S ~ p , & Q._.~

Note that we allow Q to make internal progress while waiting for P to finish.
The definition that satisfies these laws is

P;Q = {(s, X) ls does not contain ~" & (s, X U {~'}) E P}
U [(st, X) l s does not contain v" & (s(~,'), 9) ~ P & (t, X) ~ Q}.

This definition shows that while P is still running, (P;Q) cannot refuse a set X
unless P can also refuse to terminate successfully.

In general, it is a useful convention that 11 should be used only in the process
SKIP. In particular, in the construction (x:B ~ P(x)), the set B should never
contain v ; in all of our examples we will assume that this convention is observed.

Sequential composition is distributive, continuous, and associative. Furthermore,

SKIP;P -- P,
STOP;P = STOP,

(x:B ~ P(x));Q -- (x:B ~ P(x);Q), if v, ~ B,
(SKIP 0 P);Q = Q I-I (Q I-I (p;Q)).

The process (SKIP fl p) can either terminate immediately or behave like P. The
sequential composition (SKIP n p);Q may choose arbitrarily the first alternative;
that is, SKIP;Q(= Q), or it may leave the choice to the environment; that is,
(SKIP;Q) 13 (P;Q).

The process _*P behaves like an infinite sequential composition 4.5. ITERATION.
of the process P."

P;P;P;...
It can be simply defined by recursion:

*P = ttq.(~q).

Iteration is continuous, but not distributive. It fails to be distributive for the reason
described earlier: *P may well need to call into existence many copies of P, and
different implementations can be used. In addition to continuity, iteration has the
following properties:

(p;*e) _- _*p,
(_*(x:B ---} P(x)));Q -- *(x:B ~ P(x)), if i i $ B,

*STOP = STOP,
*SKIP -- CHAOS.

The last result might seem surprising: it may seem more intuitive that _*SKIP
should equal STOP. Indeed, it is permitted to implement _*SKIP as STOP. But

A Theory ~fCommunicating Sequential Processes 575

.*SKIP behaves like a process engaging in a nonterrninating internal computation,
never interacting with its environment. When a process is defined as a set of
failures, it is important to be able to determine whether a particular failure is
outside the set. Since *SKIP never interacts with its environment, the environment
cannot rule out at any stage the possibility that the process might eventually
perform some observable action. In such a situation it is only reasonable to identify
the process with the wholly arbitrary process CHAOS. Note that the identity .*SKIP
= CHAOS is a direct consequence of our definition: CHAOS is the least fixed
point of the equation p = SKIP;p.

A terminating form of iteration can be defined

P until Q = up.(Q [3 (P;p)).

This repeats P any number of times, possibly ending with a single execution of Q.
It has the following properties, where we have assumed that w' ~ B:

.*P = P until (.*P) = P until STOP,
((x: B ---> P(x)) until (y: C ~ Q(y));R = (x: B ---, P(x)) until (y: C ~ (Q(y);R),

SKIP until Q = (CHAOS [3 Q).

The third result is again surprising: it could be argued that in the implementation
of (SKIP until Q) the opportunity to behave like Q occurs infinitely often; and it
is "unfair" to neglect such an opportunity forever. But it seems impossible to define
a notion of fairness such that a "fair" process can be distinguished from an "unfair"
one by any finite observation. That is why our theory makes no stipulation of
fairness.

Some of these problems can be avoided if we insist that * and until are used only
on processes whose first event cannot be o-. In such cases, we have the identities

.*(x:B P(x)) = up.(x:B P(x);p),
(x :B ~ P(x)) until (y : C ~ Q(y)) = ~p.((y:C---~ Q(y)) fl (x :B ~ (P(x);p))).

The same technique can be used to define a parallel iteration, in which each
activation of the body of the loop progresses in parallel with all previous activations:

• *(x:B ---> P(x)) = #p.(x:B --. (P(x) III P)).

Unfortunately, this technique cannot be applied when a similar problem arises in
the next section.

4.6. CONCEALMENT. Let b denote an event (other than o-) that is to be regarded
as an internal operation of the process P. For example, it may be an interaction
between some component processes from which P has been constructed. We wish
such events to occur automatically whenever they can, without the participation
or even the knowledge of the environment of P. We therefore define Pkb as the
process that behaves like P except that every occurrence of b is removed from its
traces; it therefore satisfies the law

s skb
P --~ Q =0 (P\b) ---> (Q\b),

where skb is formed from s by removing all occurrences of b.
For reasons explained in the previous section, if P can engage in an infinite

sequence of occurrences of b, so that P\b can perform an unbounded sequence of
hidden actions, without ever interacting with its environment, then Pkb equals
CHAOS:

(Vn.P, ~ P,+,) =0 (PoXb) ~ CHAOS.

576

The required definition is

PXb = {(s\b, X) l(s, X O {b}) E P}
U {((s\b)t, X) I Vn.(sb n, 0) E P & (t, X) E CHAOS],

where sb ~ is s followed by n occurrences of b.
This operation is distributive and continuous, and

(P \b) \ c -- (P\c) \b , (P \b) \b -- P\b.

Therefore, if B is any finite set of events, [b~ b,}, we can define

e k B = (. . . ((P\b ,) \b2) \ . . . kbn).

Other theorems are

S. D. BROOKES, C. A. R. HOARE, AND A. W. ROSCOE

STOP\b = STOP,
RUN-~b = CHAOS,

CHAOSXb = CHAOS,
(b ~ P) \b = P\b,

(x : B ---, P(x)) \b = (x : B ~ P(x)\b) , if b $ B,
((b ~ P) D (x : B --. P(x))) \b = (P\b) [q ((P\b) 13 (x : B ~ P(x)\b)) , if b $ B.

The Appendix contains proofs of some of the interesting properties of the hiding
operator.

4.7. INVERSE IMAGE. Let f be any (total) function from events to events.
Then we define f-~(P) to be a process that can do a whenever P could have done
f(a):

p ~ Q ~ f _ , (p) s ,
f - (Q),

where the sequencef(s) is obtained by applyingfto each element of s.
The required definition is

f-~(P) --- [(s, X) l(f(s), f (X)) E e & X is finite},

where we have used f(X) for the set [f(x)lx ~ X}. We shall also usef-~(B) for the
inverse image of B under f, that is, {alf(a) E B}.

f - ' is distributive and continuous; furthermore

f - ' (g - ' (P)) = (g o f) - ' (P) ,
f-~(STOP) = STOP,
f - ' (RUN) -- RUN,

f-~(x: B ~ P(x)) = (y ' f - l (O) ~ j a - l (p (j~y)))) .

f - ' distributes through D, II, Ill, and ; (providedf- '(o ") -- {~,'1) and

f - ' (PkB) = f - ' (P) \ f - t (B) ,

providedf-~(B) is finite and each event in B lies in the range o f f
The Appendix contains proofs of some of these properties.

4.8. DmECT IMAGE. Let f be any total function from events to events with
the property that the set f-~(a) is finite for all a E A. (This is called the finite pre-
image property.) We define t iP) to be a process that can perform fla) whenever P
could have done a:

~_~ f(Q) P ~ Q ~ f(P)

A Theory of Commumcating Sequential Processes 577

The required definition is

f(P) = {(f(s), X) l(s, f-I(X)) ~ P}.

This operation is distributive and continuous; furthermore

fig(P)) = (f og)(P),
fiSTOP) = STOP,
f (RUN) = R U N , A),

J(a ~ P) = (f(a) ~ f(P)).

fdistributes through 13, II (provided f i s injective), III, and ; (provided f '~(v ') =
{v," }). Some connections between the inverse and direct image operations are

f-i(fle)) = p, when f i s injective;
f(f-l(e)) = p, when f i s surjective.

Moreover, when f i s a bijection, the direct image of P under f -I agrees with the
inverse image of P under f, as we would expect.

5. Applications

In this section we give a number of examples of the use of the operators defined
above in the definition of simple processes. In each case, we use laws about
transitions to specify the required behavior of a process before constructing it.

5.1. A COUNT REOSTER. A COUNT is a process that behaves like an un-
bounded nonnegative integer register, with initial value zero. It engages in three
kinds of event:

up increments the register, and can occur at any time.
down decrements the register, and cannot occur when its value is zero.
iszero can occur only when the value is zero.

Thus the behavior of COUNT is specified by the law:

COUNT ~ Q ~ (EQ(s) & initials(Q) = [up, iszero])
V (LESS(s) & initials(Q) = {up, down]),

where EQ(s) means that the number of occurrences of "up" and of "down" in s
are equal, and LESS(s) means that there are fewer occurrences of "down" than
"up" in s.

A simple definition of a process COUNTo, which satisfies these laws, can be
given by an infinite mutual recursion (indexed by the natural numbers). The
process COUNTn defines the behavior of a count register holding the value n.

COUNTo = (iszero ~ COUNTo) lq (up ~ COUNT0,
COUNTn+I = (down ~ COUNTn) 0 (up ~ COUNTn+2).

Another process that satisfies these laws is ZERO, where

ZERO = (iszero .-o ZERO) [3 (up ~ (POS;ZERO))

and

POS = (down ~ SKIP) U (up ~ (POS;POS)).

Note that POS terminates successfully when it first performs one more "down"
than "up". In order to compensate for an initial "up", it needs to perform two

578 S.D. BROOKES, C. A. R. HOARE, AND A. W. ROSCOE

more "down"s than "up"s. This is achieved by first performing one more, and then
one more again. A third definition of the same process is Co, where

Co = (iszero --, Co) [3 (up --, Cz),
Cn+l -- POS;Cn.

5.2. CHANNEL NAMING. In this and later sections we shall assume that the only
events are communications between processes, which are linked by named chan-
nels. Thus each event consists of two parts "m.t", where m is the name of a channel
along which the communication takes place, and t is the content of the message
that passes. We define

chan(m.t) = m,
contm(m.t) = t.

If P is a process, then (m.P) is the process that engages in m.t whenever P would
have engaged in t; this is the direct image of P under the renaming function

re(a) = m.a, for all a E A,
(m.e) -- re(P).

For example,

m.COUNT3 = (m.down ---> m.COUNT2) Iq (m.up --~ m.COUNT4).

We can now construct two separate COUNTs, communicating along differently
named channels and operating in parallel:

(n.COUNTo) Ill (m.COUNT3).

Suppose now that a process MASTER requires to use a count register, commu-
nicating with it along some channel named m. To use the register, it engages in
the events m.up, m.down, and m.iszero. By using the operator [[, we can ensure
that the process m.COUNT engages in these events at the same time as the
MASTER. But first we need to ensure that m.COUNT will ignore all communi-
cations of the MASTER, except those that are directed along the channel m, This
is done by using the interleaving operator. Let M = Im.up, re.down, m.iszero}.
Then define

P ignoring B = (e Ill RUN~),

for any set B of events. We wish to run the "slave" COUNT process in parallel
with its MASTER, but ignoring events outside of the set M, and we also want to
hide the internal communications between the master and slave process. To this
end, we define the master-slave construction [m:P II Q] and use it as follows:

[m:COUNT3 II MASTER] = (((m.COUNT3) ignoring (.4 - M))II MASTER)kM.

If the MASTER requires to use two differently named COUNTs, we can similarly
define

[n:COUNTo II [re:COUNT3 II MASTER]].

For example, the MASTER may contain the following process code, which termi-
nates successfully when it has added the current value of m to the current value of
n, leaving the former unchanged:

ADD = #p.((m.iszero ---> SKIP) [3 (m.down ---> (n.up --, (p;(m.up --> SKIP))))).

A Theory of Communicating Sequential Processes 579

ADD has the property that

[n:COUNT, II [m:COUNTj II (ADD;RESTOFMASTER)]]
--- [n:COUNT,+~ II [m:COUNTj II RESTOFMASTER]].

This example shows how simultaneous participation in events by parallel processes
can achieve the effect of communication between them.

It is possible (with care) to use the master-slave relation recursively, as shown
by yet another example of the COUNT register:

COUNT = ttp.[m:p II LOOP],

where

LOOP = gq.[(iszero --~ q)
13 (up --* ttr.(up --. m.up ---* r

13 down -~ (m.down ~ r) 13 (m.iszero --~ q)))].

The process LOOP is initially able to reveal that its value is zero or to accept an
increment "up". Subsequent "up"s are relayed to the slave, as are "down"s when
the slave is prepared to accept them. If the slave has value zero it will not cooperate
in "m.down" but will instead communicate "m.iszero", a signal for the LOOP to
return to its initial state.

It can be shown that all of our recursive definitions of COUNT registers define
the same process:

COUNT = COUNTo = Co -- ZERO.

The Appendix contains some of the details of the proof, and illustrates the
techniques available in proving such results.

5.3. BUFFERS AND CHAINS. We define a BUFFER (of type T) as a process that
inputs any sequence of values from the set T along a channel named "in" and
outputs the same sequence of values along a channel named "out". Let m be a
channel name, and let

m.T = {m.tlt ~ T},
(s Im) = contm(s\(A - m. T)),
XIm = {tlm.t E X}.

Less formally, (s rm) is the sequence of values whose communication along channel
"m" is recorded in the trace s. Now a BUFFER is a process that satisfies the law

$

BUFFER ~ Q =0
s E (in. T tO out. T)* &
(s rout _< s tin) &
(s I'out = s Fin =0 initials(Q) = in.T) &
(stout ¢ srin ~ initials(Q) n out.T ¢ •).

The third line states that an empty buffer must input any value of type T, and the
fourth line states that a nonempty buffer must always be prepared to output some
value of type T. The condition that the output sequence be a prefix of the input
sequence (line 2) guarantees that the values are transmitted in the correct order. It
is left undetermined whether a nonempty buffer may refuse to input.

A simple example that meets this specification is the single-portion buffer BI:

B I = _*(x: (in.T) ---> (out.(cont,n(x)) --* SKIP)).

580 S .D. BROOKES, C. A. R. HOARE, AND A. W. ROSCOE

In future we shall use abbreviations:

(?x: T --~ P(x)) for (y: (in. T) --* P(conti.(y))),
!x for (out.x --, SKIP).

Thus the example B l could have been written

B l = *(?x: T --~ !x),

or, using the definition of the iteration operator,

B l = i~p.(?x: T ~ !x;p).

Let us define the bound of a buffer (if it exists) to be the minimum number of
items it can contain and refuse to input any further item. Thus, B l is a buffer with
bound I. An unbounded buffer can be defined by an infinite set of mutually
recursive equations, indexed on the current content of the buffer, which starts
empty:

BUFF<> = (?x: T --~ BUFF<x>),
BUFFs <x) = (?Y: T ~ BUFF<y)s<x)) D (Ix;BUFFs).

The process (P >> Q) is one in which everything output by P on channel "out" is
simultaneously input by Q on channel "" "" m , and all such communications are
concealed from their common environment. Thus all external communication on
channel "in" is received by P and ignored by Q, and all external communication
on channel "out" is sent by Q and ignored by P. Communication between P and
Q is achieved by transforming each event "out.x" of P and each event "in.x" of Q
to the same event x. This is achieved by applying the function strip~ that removes
channel name m from messages:

strip~(x) = t, if x = m.t,
= x, otherwise.

Assuming that T is finite, we may define

(P >> Q) = [((stripou,(P)) ignoring out.T)II ((strip,,(Q)) ignoring in.T)l\T.

We normally only use the operator >> for processes whose traces are built from
events in.t and out.t for t E T. This operation can be thought of as chaining the
two processes together.

The operator >> is partially associative: provided the traces of P, Q, and R are
all contained in the set (in. T U out. T)* and there is no possibility of an unbroken
infinite sequence of hidden internal communications in either P >> Q or Q >> R,
then we have the identity P >> (Q >> R) = (P >> Q) >> R. Note that the associative
law always holds when P, Q, and R are buffers, since any infinite sequence of
internal communications in P >> Q could only arise from P outputting an infinite
number of items after it had only input a finite number, which no buffer can do.

Understandably, there is a close relationship between buffers and the chain
operator; there are several interesting results that demonstrate this. For example, if
P and Q are two processes such that traces(PIT Q) _c (in. T u out. T)*, then whenever
two of the processes P, Q and P >> Q are buffers, so is the third. This result can be
used both to justify the construction of large buffers from smaller ones and to
prove buffers correct by various means.

For example, a buffer with bound 2, which stores two portions, may be defined:

B 2 = B 1 >>BI.

A Theory of Communicating Sequential Processes 581

In general, a buffer Bn that stores n portions is defined inductively:

B! = BI,
Bn+l = Bn >> B 1.

Two unbounded buffers may be defined:

B® = up.(?x: T - - . (p >> !x;B1)),
B* = up.(?x: T ~ (p >> !x;p)).

Two buffers whose capacities grow steadily in proportion to the number of items
they have output may be defined:

B* = up.(?x: T --. (B1 >> !x;p))
B' = ~p. (Bl >> (?x: T - -* !x;p)).

A buffer that may have any bound or none can be defined:

B~ = ~p.(B1 I1 (?x: T - -* (p >> !x;Bl))) .

Note that it is not possible to define in our model a buffer with a nondeterminist-
ically chosen finite bound, without also allowing an unbounded buffer as an
implementation. This is because there is no finite test that could demonstrate that
a buffer is unbounded.

The following identities may be proved by various methods:

(a) B* --- B= = BUFF~ >,
(b) (Boo >> B®) = (Bn >> B®) = (B® >> B.) = Boo,
(c) (Bn >> Bin) = Bn+m,
(d) (BUFFv >> BUFFw) = BUFFvw,
(e) B* -- B'.

There are more interesting connections between buffers and the chain operator.
One of these states that whenever P >> Q is a buffer, so is ?x: T ~ (P >> !x;Q).
This result can be extended recursively in several ways: for example, it can be
shown that if two processes P and Q satisfy the equation

P >> Q = ?x: T---~ (P >> !x;Q)

then P >> Q is a buffer. A generalization of this last result is discussed in the
Appendix, which also contains proof methods for establishing the above results.

Let f : T* ~ T* be a prefix-preserving function on strings; that is, f(s) is always
a prefix off(st). A process P is said to be a pipe f o r f i f it satisfies the law

$ p----~ Q ~
s E (in. T t_J out. T)* &
(s rout ___ f(s Iin)) &
(s rout = f(s tin) =~ initials(Q) --- in. T) &
(s rout ~ f(s tin) ~ initials(Q) N out.T ~ •).

Thus a buffer is just a pipe for the identity function. I f P is a pipe f o r f a n d Q is a
pipe for g, then (P >> Q) is a pipe for (go f) . A simple example is a pipe for the
sine function:

SIN - *(?x:REAL ~ !sine(x)),

and so are (SIN >> B3), (B8 >> SIN), etc.
Suppose now a MASTER process requires to use the SIN process to compute

sines, using a channel named sin. It sends the argument x by sin!x (an abbreviation

582 S .D. BROOKES, C. A. R. HOARE, AND A. W. ROSCOE

for (sin.in.x ---, SKIP)), and it inputs the result by (sin?y: REAL ---, P(y)), which is
also an abbreviation for something similar. (Note the coding trick that assimilates
output by the master with input by the slave.) The required effect can be achieved
by the combination

[sin:SIN II MASTER].

A pipe for the tangent function can be defined:

[sin:SIN II [cos:COS II TAN]],

where COS is defined similarly to SIN, and where

TAN -- *((?x: REAL --~ sin!x);
(sin?y: REAL --~ (cos?z: REAL --~ !(y/z)))).

A process is said to be a variable (of type T) if it is always prepared to input a
new value, and, once it has been initialized, it is always prepared to output the
value it has most recently input; that is, for all Q,

$

P ---* Q ~ (s Iin = () ~ initials(Q) = in. T) &
(srin # () =, initials(Q) = (in.T O lout.t})),

where

t = l a s t (s t i n) .

A process definition satisfying these laws is

VARr = (?x: T --, Vx),

where

Vx = (?y: T ~ Vr) D (!x;Vx), for all x ~ T.

Vx is the behavior of a variable with initial value x. A fresh local instance of such
a variable can be declared thus:

[m:VARr II MASTER].

A stack (for type T) is a process P that outputs everything that it has input, on
a last-in, first-out principle; and outputs the signal "isempty" when empty. It obeys
the law

$

P.--, Q ~
(length(s tin) = length(s rout) =. initials(Q) = (in.T u {out.isemptyl)) &
(length(s tin) > length(s rout) =, in.T ___ initials(Q)
& initials(Q) N out. T # ~).

A trace s of a stack satisfies the condition

Vt ___ s.length(t tin) >_ length(t rout)

and the number of items on the stack after this trace is simply

size(s) = length(s tin) - length(s rout);

if this number is zero, the stack is empty. If u(out.x) is a trace of a stack, then u
can be written in the form s(in.x)t, where t is a stack trace with size (t) = 0. This
corresponds to the last-in, first-out property.

A Theory of Communicating Sequential Processes 583

Three different implementations of a stack can be modeled on three different
implementations of the COUNT register. We hope the reader will enjoy construct-
ing them.

6. Conclusions
We have introduced a mathematical model for a powerful language of communi-
cating processes, and demonstrated that the model enjoys many elegant mathe-
matical properties. In our examples we showed thatsome interesting problems can
be tackled in our model, and we outlined some proof techniques that may be used
to prove properties of processes defined in the model. Our work can be seen as a
step toward providing a tractable semantic model for parallel processes.

Several alternative approaches to the problems of parallelism have been proposed,
and our work is most closely related to Milner's calculus of communicating systems
(CCS) [20] and the work of the Edinburgh group (e.g., [9, 11]). Several authors
have reported recently on connections between the underlying semantic models of
CCS and CSP, notably Brookes [3] and Hennessy and de Nicola [10]. The
relationship with Kennaway's work [15] is discussed in [2]. As we remarked earlier,
our failures model is a direct extension of earlier models based on traces [12, 13]
that were unable to cope properly with nondeterminism. The chief advantage the
failures model appears to have over most other attempted approaches derived from
traces (e.g., possible futures [25]) is its mathematical tractability.

The proof techniques of our paper, and those of [23], have been successfully
applied to many interesting parallel programming problems. The mathematical
elegance of our model helps considerably in such endeavors. Although, as yet, our
proof methods are relatively informal, there are grounds for hope that powerful
formal proof systems can be developed based on our semantic domain [2, 4, 21].
Formal proof systems for tracelike models already exist [6, 29]; Hoare-style proof
systems for CSP [1, 17] are also well known.

Our model is very well suited to reasoning about the problems associated with
deadlock. A related problem is divergence, which arises when a process performs
an unbounded sequence of internal actions without responding to the requests of
its environment. This problem has been touched upon briefly in this paper; for
example, in the treatment of iteration and hiding. However, it can be argued that
the present model does not cope entirely adequately with divergence. Extensive
discussions of these points can be found in [2] and [23]. Future work will show
that the model and associated proof rules can be simply adapted to give a
satisfactory treatment of divergent processes [5]. In addition, the model can be
adapted to cope with imperative parallel languages [24]. A similar attempt based
on traces was made in [8].

Although we presented our semantics in denotational style, the failure sets of
compound processes being built up from the failures of their components, our
alternative formulation based on transitions can be developed into an operational
semantics in the style of [11] and [22]. This issue will be elaborated in [5].

7. Prospects

The original objective of denotational semantics was to provide a clear, consistent,
and unambiguous definition of a programming language that is likely to have more
than one implementation. Such a definition could serve usefully as a national or
international standard; it would give a precise specification that must be met by

584 S. D. BROOKES, C. A. R. HOARE, AND A. W. ROSCOE

each implementor; and it would tell each programmer exactly what he can rely on
in all implementations. Thus it would achieve the primary objective of standardi-
zation, namely, the reliable conjunction of programs and implementations from
widely differing sources. The deficiencies of existing language standards can be
directly attributed to their failure to take advantage of this known technologyma
failure that to future generations will probably seem amazing. In the area of parallel
programming languages, we hope that the development of a suitable semantic
model at an early stage will forestall a repetition of the problems that have beset
the development and standardization of sequential programming languages.

Apart from the improved quality of programming language standards, the
techniques of mathematical semantics have much to offer in improving the quality
of computer programs. In the first place, they offer the possibility that an imple-
mentor can prove with mathematical rigor that his implementation meets the
standard specification of the language. Clearly, no program can be more reliable
than the implementation of the language in which it is expressed for input to a
computer.

A second advantage of a mathematical description of a programming language
is that it offers the individual programmer the opportunity to prove the correctness
of his program with respect to some description of its intended behavior. For this,
he would need to identify the mathematical object denoted by his program, and
then prove that this object exhibits the required mathematical properties. Unfor-
tunately, this method of program proving is impractically laborious; it is like trying
to solve differential equations using only the original definitions of derivatives in
the epsilon-delta terminology of analysis. What is required for practical program
development and proof is a formal calculus, similar to the assertional calculus for
sequential programs, that will permit a reasonably direct expression of the purpose
of each command, and a method of proving that it meets its purpose. Such a
calculus must be firmly based on a proof of its conformity with an appropriate
mathematical model, just as the differential calculus can be ultimately based on
the Dedekind model of real numbers, and as Hoare-style logics for sequential
languages can typically be based on a conventional state-transformation semantics.
But these are topics for future research.

Appendix

This Appendix contains proofs of some of the results stated in the paper. The
selection of example proofs provided here is intended to be illustrative of our
general methods and techniques. More extensive accounts and proofs of all of the
results in the paper will be found in either Brookes [2] or Roscoe [23].

After recalling the definition of a process as a set of failures satisfying a number
. () .

of condmons, we show that the nondetermlnlsm ordering ----> gwes the space of
processes the structure of a complete semilattiee. This fact was used, together with
the continuity of all operations used in the paper, to justify our use of recursively
defined processes. Next we prove some properties of parallel composition: hiding
and inverse image. Finally, we introduce a proof method, based on fixed-point
induction, for reasoning about recursively defined processes; we show how to
establish in this way the properties of some of the example processes of Section 5.

A process is a subset P C A* x ~(A) satisfying the conditions:

(PI) (s, X) E P ~ X i s finite,
(P2) (() , ~) E P,
(P3) (st, ~) ~ P =. (s, ~) E P,

THEOREM 1.

PROOF. Let
failures of P are

A Theory of Communicating Sequential Processes 585

(P4) Y . C _ X & (s , X) E P ~ (s , Y) E P ,
(P5) (s, X) ~ e & (s(c), 0) q~ P =, (s, X U {c}) E P.

Let M be the set of all such processes.
For a trace s E A*, the transition relation on processes is defined:

p - - ~ a 0 , a c_ {(t, x) l (s t , x) E el.

In particular,

p ~--~ Q c~ Q C__ p,
() . .

so that ~ is just the superset relation. I f P # Q and P ~ Q we say that P is more
nondeterministic than Q. { ~ .

Since any collection of sets is partially ordered by the superset relation, ~ is a
partial order on M:

p ~.~..~) a ~-..~) e co e = a,

Now we show that the union of any non-empty set of processes is again a process,
and that the intersection of any directed set of processes is a process. This will
establish the fact that the space (M, J--~)) is a complete semilattice.

The union of any nonempty set of processes is a process.

be a nonempty set of processes, and let P = U ~, so that the

(s, X) E P ~ 3Q E ~.(s, X) ~ Q.

We need to verify that P has the properties (P1)-(P5). This is straightforward. By
way of illustration, consider (P5). Suppose

(s, X) ~ P & (s(c), f~) q~ P.

By definition of P, there is a process Q ~ ~ with

(s, X) E Q & (s(c), ¢~) q~ Q.

But Q, being a process, has property (P5), which gives

(s, X U {cl) E Q,

and hence, since Q E ~, it follows that

(s, x u {cl) e P,

as required. The remaining properties are established similarly. I"1

Definition 1. A set ~ of proceses is directed if it is nonempty and

VQ~, Q2 ~ ~.3R E ~.(Q, ~ R & Q2 ~ R).

THEOREM 2. The intersection of any directed set of processes is a process.

PROOF. Let ~ be directed and let P = I'3 ~, so that

(s, X) ~ P ¢* VQ ~ 2.(s, X) ~ Q.

Again we must prove that P satisfies conditions (P1)-(P5). Again we give details
only for (P5). Suppose

(s, X) E P & (s(c), 0) q~ P.

386 S .D. BROOKES, C. A. R. HOARE, AND A. W. ROSCOE

This means that

VQ E ~.(s, X) ~ Q,

but there is a process Q, ~ ~ such that

(s(c), 0) ~ O,.
We want to prove that (s, X U {c}) E P, and this will be true unless there is a
process Q2 E ~ with

(s, X U [c]) $ (22.

If such a process existed, we would be able to use directedness to find a process
R E ~ such that

Q, ~--~) R & Q2 ~--.~) R,

that is, R C__ Q, N Qz. But then we would have, by our previous assumptions,

(s,X)~ R,
(s(c), ~) ~ R,

(s, X o IcD ~ R.

If R is a process, this would contradict (P5). There cannot, therefore, be any such
process; and it must be the case that

(s, X O {c}) E P,

as required. That completes the proof. []

The parallel composition of two processes P and Q was defined

PII Q= {(s, X U Y)I(s ,X) E P & (s, Y) E Q}.

Next we show that this is a well-defined operation on processes, and then we
establish its continuity.

THEOREM 3. I f P and Q are processes, so is P II a.

PROOf. (PI)-(P3) are trivial. For (P4), let (s, Z) E PII Q & Z ' __. Z. We want
to show that (s, Z') ~ P II Q. By hypothesis, there are sets X and Y such that

Z = X U Y , (s ,X)~P , (s , Y) E Q .

Let X' = X N Z ' , Y' = Y N Z ' . Then we have

Z' = X' U Y', (s, X') E P, (s, Y') ~ Q,

using (P4) for the processes P and Q. It follows by definition that (s, Z ') E Pll Q,
as required.

For (P5), suppose that (s, Z) E P II Q and that (s(c), f3) q~ P II Q. Again let X and
Y be such that

Z = X U Y, (s ,X)EP, (s, Y)EQ.

Since s(c) is not a trace of P II Q, it cannot be a trace of both P and Q. Without
loss of generality, assume it is not a trace of P. Then we have

(s, X) E P & (s(c), 0) q~ e.

By (P5) this gives (s, X O {c]) E P, from which we deduce that

(s, X U {c} U Y) E P II Q.

That completes the proof. []

A Theory of Communicating Sequential Processes 587

Parallel composition is a symmetric operation. In order to prove continuity of
this operation, it is only necessary to establish continuity in one argument.

THEOREM 4. Parallel composition is continuous.

PROOF. Let (P,I n ___ 0) be a chain of processes with limit P -- A,Pn. Let Q be
any process, w e must show that

P II Q = n , (P . II a) .

It is easy to prove from the definitions that

P tl Q c n . (P , II a) .

The converse is more difficult. Suppose (s, Z) is a failure of n.(P. II a) ; choose sets
X,,)1, accordingly, so that

Z = X . U Y,, (s , X ,) E P . , (s, Y ,) ~ Q ,

for all n >_ 0. Since Z is a finite set and the X, and Y, are subsets of Z, the list of
pairs (X,, Y,) contains only finitely many distinct pairs. Some pair, say (X, Y),
must occur infinitely often. For this pair we have

Z = X U Y& (s, Y) ~ Q,

and also, for infinitely many n, (s, X) E P,. Since the P, form a chain, this means
that (s, X) E P. Putting these results together, we have

Z = X U Y, (s , X) ~ P , (s, Y) E Q ,

and hence (s, Z) E P II a. This shows that every failure of A~(P, U Q) is also a
failure of P II Q, as required to complete the proof. []

The hiding operation \b on traces simply deletes all occurrences of the event b.
It may be defined inductively on the length of traces:

() \ b = () ,
(s(c))kb = skb, if c = b,

= (skb)(c), if c ~ b.

It is easy to see that (st)kb = (skb)(tkb) for all s and t.
The hiding operation on processes was defined

Pkb = {(s\b, X) I(s, X U {b}) E P}
o {((s\b)t, X) I Vn.(sb", C)) E P & (t, X) E CHAOSI.

The following lemma will be useful in proving the well definedness of hiding.

LEMMA 1. I f P is a process, then

(s, ~) E P ~ (skb, 0) E e \b .

PROOf. There are two cases to consider. If (sb", 13) ~ P for all n, then by
definition we see that ((skb)t, X) ~ Pkb for all t, X. In particular, therefore,
(s\b, f~) E P\b. The other case is when there is an integer n such that (sb n, 0) E P
but (sb "+', ~) q~ P. By (P5) this gives (sb", {b}) E P, from which it follows that
((sbn)kb, 0) ~ Pkb. Since (sb")kb = skb, the result follows. []

THEOREM 5. I f P is a process so is Pkb.

PROOF. (PI)-(P4) are straightforward, using Lemma 1 and elementary proper-
ties o f \ b on traces. For (P5), let (u, X) E P\b and (u(c), 0) q~ Pkb. The ease when

588 S .D. BROOKES, C. A. R. HOARE, AND A. W. ROSCOE

c -- b is easily dealt with, so suppose c # b. There are two possibilities for (u, X):

(1) 3s.s\b = u & (u, X U Ib}) ~ P,
(2) 3s.s\b <_ u & Vn.(sb", 0) ~ P.

But (2) can be ruled out, because in this case we would get (u(c), 9) E P \b too,
contradicting our assumption. We may therefore assume that there is a trace s such
that

s \b = u & (s, X U {b}) E P.

If(s(c), 9) E P, then by Lemma 1 we would have

((s\b)(c), 0) = (u(c), 9) ~ P\b,

contradicting our hypothesis. Thus, (s(c), 9) qi P. But we know that (s, X tO [b})
E P, so (P5) gives (s, X u {b, cl) E P\b, as required. []

The operation of removing all occurrences of a particular event from a trace is
deafly commutative and idempotent:

(skb)\c = (skc)\b, (skb)kb = skb.

When hiding a set B = {b~, . . . , b,} of events, therefore, the order of deletion is
irrelevant; we write

skB - (. . . (skb0 . . .) \b , .

For consistency with this notation, we adopt the convention that

S \ ~ = S.

It is easily seen that for any pair of finite sets B and C,

(skB)\C = sk(B U C).

Before we derive similar results for the hiding operation on processes, we need a
technical lemma.

LEMMA 2. Let B be a finite set of events and w be a trace. I f (s,I n >_ O) is a
sequence o f traces such that for a# n,

snkB <_ w,

then either infinitely many of the s, are equal, or there is a trace s and an increasing
sequence o f traces tk E B k, such that, for all k, Stk is a prefix of some s,.

PROOF. Since w has finite length, it has only a finite number of prefixes.
At least one of its prefixes must, therefore, be generated by applying kB to in-
finitely many of the s,. So there is a trace w' _< w and an infinite subsequence
(s, k] k >_ 0) such that for all k,

S n k \ B = w ' <_ w .

Without loss of generality (replacing w by w' and sk by s,k), we can assume that
for all n,

s, kB--- w.

This does not affect the conclusion of the lemma, but simplifies the argument. Let
the trace w be

w = a l a 2 " . . ar ,

A Theory o f Communicat ing Sequential Processes 589

where each a, ~ A. Each s, must have the form

s, = u~°)alu~ ') . . . arug),

where each u~) E B*. But B is a finite set and the events a, . . . ar are fixed. If the
sn are bounded in length only finitely many of them can be distinct, since there is
only a finite number of distinct traces of any fixed length having this form. In this
case, then, some trace s occurs infinitely often in the sequence (s, I n ~ 0) and we
have the first alternative. In the case when the s, are unbounded in length, there
must be a position z at which the u~) terms (n ___ 0) are unbounded in length. Taking
i to be the smallest such index, we can apply the above argument to the traces
obtained by truncating the s, at this position. This time we deduce that there is a
trace s and infinitely many n such that

SU(~) < Sn.

Since the u~) ~ B* appearing here are unbounded in length, and since B is finite,
we can use Konig's Lemma to deduce the existence of an increasing sequence

u (') < "(') k > O. ?/k ~ n k + l '

Putting tk equal tO the length k prefix of u(~'~, we get an increasing sequence
(tkl k >_ O) with

Stk <- Sn~ & tk E B k,

as required for the second alternative. That completes the proof. []

THEOaEM 6

(ekb) \ c = {((skb)\c, X) I (s, X U {b, c}) ~ P}
U {(((skb)kc)t, X) I Vn :lu ~ {b, c}".(su, 0) E P & (t, X) ~ CHAOS}

PROOF. It is easy to check that every failure of the right-hand side is also a
failure of (P\b) \c . For the converse, let (w, X) E (Pkb)\c. We must show that
either

(1) 3s . (s \b) \ c = w & (s, X U {b, cl) E P

o r

(1') 3s . (s \b) \ c <_ w & V n 3 u ~ {b, c}"(su, 0) E P.

Since (w, X) E (PXb)\c, we have either

(2) 3 t . t \ c = w & (t, X U {c}) E PXb

o r

(2') 3t.tXc < w & Vn.(tc", 0) E Pkb.

First consider case (2). Let t be a trace such that t \ c = w and (t, X U {c}) E PXb.
By definition of PXb this means that either

(3) 3 s . s \ b = t & (s, X U {b, c}) E P

or

(3') 3 s . s \ b <_ t & Vn.(sb", 0) E P.

But since tkc = w it is clear that (3) ~ (1) and (3') ~ , (1'). It remains to consider
case (2'). Now let t be a trace such that t \ c <_ w and (tc", 0) E Pkb for all n. This

590 s . D . BROOKES, C. A. R. HOARE, AND A. W. ROSCOE

means that for each n, either

(4) 3Sn.S.\b = tcn & (s,, {b}) E P

o r

(4') 3s , . s . \ b <_ tc" & Vm.(snb m, 0) E P.

If (4') holds for any n we can repeat the argument of case (3') to show that
(1 ') holds. The only remaining possibility is, therefore, when there is a sequence
(s, [n ___ 0) such that for all n,

(5)

Since tXc <- w, we also have

s,kb = tc" & (s,, {b}) E P.

Vn.(s . \b) \c ~_ w,

and we may apply Lemma 2 with B = {b, cl. From (5) we see that it is impossible
for infinitely many of the s, to be identical because

length(s,) >_ length(t) + n.

There must be, therefore, a trace s and a subsequence (s, k I k _> 0), and an increasing
sequence of traces Uk E B k such that

Yk.SUk <--- s, k.

But for each k we also have from (5)

s.k\b = tc" & (s. k, {b}) E P.

Hence we have (skb)\c <- w and, using (P3) and (P4),

(s.~, 0) ~ P ~ (SUk, 0) ~ P.

Thus we have established (1 '). That completes the proof. []

Notice that the expression derived here for (P\b)kc is symmetric in b and c, and
that putting b -- c produces again the failure set for P\b. It follows that hiding is
commutative and idempotent:

(P \b) \ c = (Pkc)\b, (Pkb)kb -- Pkb.

We may therefore write

PkB = (. . . (P k b ,) . . .) \ b ,

for any finite set B = [b~ b,}. Again we adopt the convention that

P \ O = P.

It is clear that for any pair of finite sets B and C,

(P k B) \ C = Pk(B U C).

Lemma 2 is also applicable in the following proof.

THEOREM 7. Hiding is continuous.

PROOF. Let {P, [n _> 0) be a chain of processes with limit P. We must show
that

n.(P.kb) = PXb.

A Theory o f Communicating Sequential Processes 591

As usual, one inclusion is easy:

Pkb C_ fl,,(P.kb).

For the converse, let (u, X) ~ N.(P.kb); we need to prove that (u, X) E Pkb. For
this, we require either

(1) 3s . skb= u & (s , X U {bl)EP,

o r

(1') 3s . s \b <- u & Vn.(sb", 0) E P.

By hypothesis, (u, X) E Pnkb for each n, so there is a sequence (s, I n ~ 0) of traces
such that for each n, either

(2) s ,kb= u & (s , , X U [b l) E P , ,

o r

(2') s,kb <_ u & Vm.(s,b m, 0) E P,.

One of these conditions must hold for infinitely many n, and hence (by the chain
condition) for all n. In either case Lemma 2 is applicable, with B - {b}, and we
treat separately the two possible conclusions. The first case is when infinitely many
of the s, are identical to some trace, say s. Rewriting (2) and (2'), we have either

(3) skb = u & (s, X U [b}) ~ P, for infinitely many n,

or

(3') s \b <_ u & Vm.(sb", 0) ~ P,, for infinitely many n.

Now the chain condition shows that (3) =* (1) and (3') =0 (1'). The second and
final case is when the s, are of unbounded length; we know in this case that there
is a trace s and an infinite subsequence (s, k I k _ 0) such that

sM <_ s,k, for all k.

From either (3) or (3') we can deduce (using (P3) and (P2)) that

skb <_ u & (sb k, 0) E P,~, for all k.

But then for each k it is clear that (sb k, 0) ~ P, for infinitely many, and hence for
all, n. Thus,

skb <_ u & Vk.(sb k, 0) E P,

as required for (1 '). That completes the proof. []

In Sections 4.7 and 4.8 we introduced renaming operations, which are total
functions from events to events. For any such operation f we use the same name
for the extension of f to a function on traces and for the pointwise extension o f f
to sets:

f ((c , , e,)) = (f(c,) , f (c ,)) ,

f (x) = I f (x) l x x l .

Similarly we write

f - ' (b) = {a
f - ' (t) = Is

f f ' (X) - - {a

E A If(a) = b},
A* If(s) = tl,

E A If(a) E XI.

592 S.D. BROOKES, C. A. R. HOARE, AND A. W. ROSCOE

The inverse image of a process P under f i s defined:

f-~(P) = {(s, X) I (f(s),f(X)) E P & X finite}.

Using the elementary facts that

f (()) = (), f(st) =f(s)f(t) ,
f (o) = o, y c_ x = f (D c_ f (x) ,

it is easy to verify thatf-~(P) is a process whenever P is. We now prove a connection
between the hiding operation and inverse image. In this theorem we assume that f
has the finite pre-image property.

THEOREM 8. Let f be a renaming operation and let B be a finite subset of the
range o f f Then, for all processes P,

f - l (p~B) = f - ' (P) \ f - ' (B) .

PROOf. Let C = f - ' (B) . Since B is a subset of the range of f , we know that
f (C) = B. If B is empty there is nothing to prove, since f-~(~) = O and
PXO = P. Assume therefore that B is nonempty. The proof relies on a simple
lemma: for all t and s,

tkB =f (s) ¢* 3u.t = f (u) & uXC = s.

Note the corollary that f (ukC) = f(u)kB. Now suppose (s, X) is a failure of
f - I (p) \ c . We show that (s, X) is also a failure off-~(PkB). By definition o f f - I (p) \ c
we have either

(1) :lu.u\C = s & (u, X U C) E f-I(P),

or

(2) Hu.u\C <_ s & VnHw ~ C".(uw, 0) E f - ' (P) .

In the first case we have

Hu.u\C = s & (f(u), f (X) U f(C)) E P
Ht.tkB = f(s) & (t, f (X) O B) E P.

But this implies (f(s), f (X)) E PkB, and hence (s, X) E f - ' (PkB), as required. In
the other case we have

3u.uXC <_ s & V n 3 w E C".(f(u)f(w), 0) ~ P.

But w E C" ~ f (w) E B", so (putting t -- f(u), v --f(w)) we get

3t. tkB <_ f(s) & Vn3v E B".(tv, ~) E P.

This again implies that (f(s),f(X)) ~ PkB, and again (s, X) ~f-~(PkB). So far we
have shown that

f - l (p) \ c ~ f - l (p~B) .

The converse is established in the same way, to complete the proof. []

The fifth section of this paper introduced a few of the types of results that can
be proved of processes defined in our model. Many of these results have long and
technical proofs, so it is not possible here to prove all of them in detail. What we
can do is to indicate some of the methods that can be employed in proving such
results, and illustrate our methods by applying them to some of the simpler

A Theory of Commumcatlng Sequential Processes 593

examples. A much more extensive exposition of these topics can be found in
Roscoe [23].

The results quoted earlier fall into two basic categories. First, we have the general
technical results, the main examples of which were the following:

(i) partial associativity of >>;
(ii) if two of P, Q and P >> Q are buffers, then so is the third;

(iii) i f P >> Q is a buffer, then so is ?x: T--* (P >> !x;Q);
(iv) i f P is a pipe f o r f and Q is a pipe for g, then P >> Q is a pipe for g o f

Results of this type must be proved by analysis of the definitions involved, much
as in the proofs of the results from Sections 3 and 4. This analysis is much assisted
by such lemmas as the following:

LEMMA 3. I f traces(PA Q) c. (in .TO out.T)*, then

P >> Q = {(s, (X n in.T) to (Y n out.T) tO Z) [3u, v. s ~ filter(u, v) &
(u ,X) E e & (v, Y) E Q &
(Xlout tO YIin) = T &
Z is finite & Z C (in. T U out. T)}
U {(st, X) I 3 ®(u, v). s E filter(u, v) &

(u, 0) E P & (v, ~) ~ Q & (t, X) ~ CHAOS},

where

filter(u, v) = {s E (in.T U out.T)*l sl in = ulin &
s rout -- v rout & u rout = v tin}.

Here the notation X is used for the complement of a set. Note that Lemma 3
states that in the combination P >> Q the left-hand process P has control over the
input events and the fight-hand process Q controls the output. The traces s of
P >> Q are obtained from traces u of P and v of Q that agree on the internal
communications (u lout = v tin), by filtering out the output events of u and the
input events of v. We omit the proof of this result, as it is a direct consequence of
the definition of the >> operator. Once this and similar lemmas have been
established, the proofs of the four theorems (i)-(iv) above are, although long, not
too difficult.

The second group of results are those which we wish to prove of individual
processes, such as

(v) Co = COUNT;
(vi) Boo is a buffer.

Proofs of such results are obtained by application of technical results of the
above type together with analysis of the recursive constructions used in the
definitions of the processes involved. Recall that a recursively defined process is
either the least fixed point of some function from processes to processes or, when
mutual recursion is used, a component of the least fixed point of some function
defined on a product space of processes. Our analysis of recursive constructions
will be helped by first defining a standard means of approximating the behavior of
a process.

I f P is a process, define P~n, the restriction of P to n steps, to be

{(s, X) I length(s) < n & (s, X) E P} U {(st, X) I s ~ traces(P) & length(s) = n}.

594 s . D . BROOKES, C. A. R. HOARE, AND A. W. ROSCOE

P~n is the process that behaves exactly like P for n steps, and then dissolves into
CHAOS. The following easily proved identities hold for processes P and Q, and all
natural numbers m, n.

P~0 = CHAOS,
(P~n)~m -- P~min(m, n),

pJ, n <-..~> p,

(Vn.P~,n ~- Q,[n) =, P = Q.

Thus, for example, any process is determined uniquely by its restrictions to finite
depth. Indeed, the sequence (P~,n I n > O) is always a chain with limit P.

Suppose F is a function from processes to processes. If F is continuous, we know
that its effect on any process P is uniquely determined by its effect on the finite
restrictions of P."

F(P) -- I IF(e~n).
B

We say that F is nondestructive if for all P

F(P)~n = F(P~n)~n,

and constructive if

F(P)I(n + 1) = F(P~n)~(n + 1).

Informally, a nondestructive function can be regarded as producing results whose
n-step behavior depends only on the n-step behavior of its operand; similarly, a
constructive function produces results whose n + 1-step behavior depends only on
the n-step behavior of its operand. Note that every constructive function is also
nondestructive.

These results and definitions generalize in the obvious way to functions of more
than one argument. Let us write M A for the product space whose elements are
vectors of processes indexed by a set A. (M A is isomorphic to the function space
A ---> M, where M is the space of processes). A typical element o f M A can be written
(Px I X ~ A), and if/~ ~ M A we will denote the X-component of /~ by Px. The
definition of restriction ~n on product spaces is simply:

(Pxl X E A)~n = (Px~n I X E A).

A function of more than one argument can be constructive or nondestructive in
any or all of its arguments. For example, a two-place function F : M x M ~ M
is constructive in its second argument if for all P and Q and all n we have
F(P, Q)J,(n + 1) = F(P, Q ln) , (n + 1).

Of our existing operators, (a ~ .), I'l, Iq, II, III, ;, f -~, f, and a.() are all
nondestructive in each of their arguments, and (a ~ .), (x: T ~ .) and
(?x: T ~ .) are all constructive. The last two of these operators can properly be
regarded as functions from M r to M.

The following results are not hard to prove.

(i) If F: M A ~ M a and G: M a --~ M ° are nondestructive, then so is GoF; if in
addition one o f f and G is constructive, then so is GoF.

(ii) If F : M A --~ M ° and G : M A ~ M a are nondestructive (construc-
tive, respectively) then so is the function H: M x --~ (M ° x M a) defined H(/~) =
(F(P), G([')).

(iii) If F : (M a x M A) ---> M A is nondestructive in its second argument and
nondestructive (constructive, respectively) in its first argument, then the function

A Theory o f Communicating Sequential Processes 595

G : M ~ - . M A defined G(P) = g0.F(/5, 0) is nondestructive (constructive, respec-
tively).

A corollary to these results is the fact that if F is any function defined using any
combination of our operators other than hiding, then F is nondestructive. Further-
more, if all occurrences of an operand of F are directly or indirectly guarded,
then F is a constructive function of that operand. For example, the function
F: (M × M) ~ M defined

F(P, Q) = PD(a --~ #p.(SKIP 13 PD (p;a)))

is nondestructive in its first argument and constructive in its second.
Now suppose that R: M A --~ [true, false] is a predicate. We will say that R is

satisfiable if there exists some P E M A such that R(P) = true. We will say that R
is continuous if it satisfies the condition

V/5.ttVn.]0.(/~n = 0~n) & Rt0)) ~ RtP)).

A predicate is continuous if and only if its truth can be determined by examining
finite restrictions of its argument.

Tnv.OREM 9. Suppose that F : M A ~ M A is a (monotone) constructive function
with least f ixed point P. Suppose also that R is a continuous satisfiable predicate o f
M A and that R is F-inductive in the sense that qO.(R(O) =~ R(F(O)). Then R([')
holds.

PROOF. By satisfiability of R, we can choose 0 such that R(0) holds. It is easy
to prove by induction on n that R(F"(O)) holds for all n. We claim that in addition

P~n = F"(O)+n

holds for all n. We use induction on n.
The base case n = 0 is easy, because P&0 = 0~0 = CHAOS ̂ .
Now suppose that P&n = F"(O)&n. Then we have

P~(n + 1) = F(P)~(n + 1)
--- F(P~n)~(n + 1)
= F(F (Q)ln)~(n + 1)
= r (r " (O)) ~ (n + 1)
= F"+'(O)~(n + 1).

since/3 = F(P),

by constructivity,
by hypothesis,
by constructivity,

This establishes the claim that P~n = Fn(O)~n for all n. Since we now have

Vn.(R(F"(O)) & (P~n = Fn(O)~,n))

we can infer R(P), by continuity of R. []

This theorem gives us a general method for proving properties of recursively
defined processes. Informally it tells us that if the truth of a reasonable (i.e.,
satisfiable, continuous) predicate is preserved by the function of a sufficiently well-
defined (monotone, constructive) recursion then we may infer the truth of that
predicate on the least fixed point.

In fact, it is easy to show that any constructive function has only one fixed point.
This is a corollary to the above result when we put R(P) = (P = Q), where 0 is
chosen to be any fixed point ofF. This R is continuous and satisfiable, and satisfies
R(P) ~ R(F(P)). It follows that the least fixed point is identical to 0, and hence
that there is a unique fixed point for F.

596 s . D . BROOKES, C. A. R. HOARE, AND A. W. ROSCOE

Theorem 9 can be generalized to certain nonconstructive recursions that can be
proved independently to have unique fixed points. The class of allowable predicates
in such generalizations may need to be different from the one used above.

The class of continuous predicates is large. A few examples are listed below for
functions of a single variable.

LEMMA 4. The following predicates are continuous.

(i) R(P) -- (P = Q), any Q,
(ii) R(P) (< " ~)'

(iii) g(P) (Q--~P),
(w) "P is a buffer,"
(v) P is free from deadlock (=- Vs.-~(P --~ STOP)),

(vi) Vs ~ traces(P).~(s) (~b any predicate on ~,*),
(vii) A,~IR,(P), all R, continuous,

(viii) RI(P) V R2(P), Rl, R2 continuous.

We are now sufficiently well equipped to be able to tackle some of our examples.
The first example will be to prove that ZERO = COUNTo.

Recall that the COUNT processes are defined by means of the following function
F from M s --~ M ~, where N is the set of natural numbers:

where

Qo = (iszero ---> Po) D (up --* P0,
Qn+l = (down ---> P~) D (up --* Pn+2).

Let COUNT = (COUNT~ I n E N) denote the least fixed point o fF . We wish to
show that COUNTo = ZERO, where ZERO satisfies

ZERO = (iszero ~ ZERO) D (up ---> POS; ZERO),
POS = (down ~ SKIP) 13 (up ---> POS; POS).

We will prove the following predicate of COUNT

R(P) = Vn.Pn = POS~;ZERO,

where POS ° = SKIP and POS n+l = POS;POS n. This predicate on M s is easily seen
to be continuous and satisfiable. The function F of the COUNT recursion is
constructive, since all recursive calls are guarded. To prove R(COUNT) it is
sufficient to prove that, for all P, we have R(/5) ~ R(F(P)); the result then follows
by fixed point induction, using Theorem 9. To this end, suppose R(/5) holds. Let
Q = F(P). Then we have

Qo = (iszero ---, Po) D (up ---, PI)

= (iszero ~ ZERO) D (up ~ POS;ZERO)
= ZERO

Also, by a similar argument, we have

Q~+l = (down ~ P~) 13 (up ~ Pn+2)

by definition of F,
by hypothesis that R(P) holds,
by definition of ZERO.

by definition of F,
= (down ---> POSn;ZERO) D (up ---> POSn+2;ZERO) by hypothesis that

R holds,
= ((down --. SKIP) D (up ---> POS;POS));POSn;ZERO
= POS;POS";ZERO by definition of POS,
= POS~+I;ZERO.

A Theory ofCommumcating Sequenttal Processes 597

This shows that R(Q) holds, and completes the proof. Notice that this particular
application of our rule can be interpreted as an instance of the unique fixed point
property of constructive functions.

The constructiveness of functions is not quite so easy to establish when hiding is
used, as is the case in recursions that use the master-slave operator [II m:] and the
chaining operator >>. The function

F(Q) = [P U m:Q]

is not in general constructive; however, some conditions can be imposed on P that
make the function constructive. For example, if the alphabet used to communicate
with the slave Q is B, then F will be constructive if P satisfies the condition

s ~ traces(P) ~ length(s) _> 2 x length(s IB).

Intuitively, this condition requires that P does not communicate with its slave too
often between other actions.

Similarly, the function G(P) = (P >> Q) is nondestructive, if Q is constrained to
satisfy

s E traces(Q) ~ length(s lout) ___ length(s tin).

Likewise, if P satisfies the condition

s ~ traces(P) ~ length(s Iin) _ length(s lout),

then the function H(Q) = (P >> Q) is nondestructive. This result can be used to
show that the function

F(Q) = ?x: T--* (Q >> !x;Bl)

is constructive. Then we may show that B® is a buffer by a simple argu-
ment. Assume P is a buffer. Then (P >> B1) is also a buffer. This implies that
?x: T---~ (P >> !x;Bl) is a buffer. Thus the predicate "is a buffer" is preserved by
the function F above. Since B® is the least fixed point of this function, it follows
by Theorem 9 that Boo is a buffer.

This method of proof can be used for most of the results in Section 5 that refer
to individual processes. In some cases, however, it is not sufficiently sophisticated.
Several modifications to the method are possible in order to extend considerably
the class of problems that can be tackled. In particular, it is straightforward to
generalize to functions defined on sets of processes.

For a set A' of processes, define A'~n = {P~n I P ~ ~g]. For a set-valued function
F: ~ (M) --* 9 (M) , say F is constructive if, for all sets of processes A" C M and
all integers n, we have

F(.~g)~(n + 1) = F(_g$n)~(n + 1).

This generalizes the notion of constructiveness to functions defined on sets of
processes. For any predicate R of M, we can apply R to a set of processes _g in the
obvious way; we will write R(A') for the conjunction AetheR(P). The proof method
based on Theorem 9 for constructive functions of M generalizes also, as follows.

THEOREM 10. Suppose F : 9(M)---~ ~ (M) ts constructive and R is a continuous
satisfiable predtcate of M. Suppose that for all ~g C M we have

(R(_g) ~ R(F(~))).

Then whenever ~g satisfies the condition ~ C_ F(_g) we can infer RGlg).

598 s . D . BROOKES, C. A. R. HOARE, AND A. W. ROSCOE

We sketch here an example using this method. Suppose that {(P~, Q~)I ~ ~ A}
is an indexed set of pairs of processes. Suppose also that for every X E A there is a
function gx: T---> A such that the process Px >> Qx satisfies

Px >> Qx = ?x: T---> (Pg~x) >> !x;Qg~x)).
If we now define an appropriate F (on sets of pairs of processes), we can show
that the predicate "is a buffer" is preserved by application of the function. The
inductive proof rule of Theorem 10 can then be used to show that each of the
processes Pa >> Qx is a buffer. For a more detailed proof of this result and an
explanation of how it can be used to prove correctness of a wide variety of buffers,
see Roscoe [23]. In particular, consider the general result that states that whenever
P and Q are processes such that

P >> Q = ?x: T---> (P >> !x;Q),
then P >> Q is a buffer. This was stated without proof in Section 5. It is now an
immediate corollary of the above result, obtained by choosing the obvious gx.

ACKNOWLEDGMENTS. This work has been inspired and guided by the pioneering
research reported in [19] and [20], and by fruitful discussions with Bill Rounds.
The exposition has benefited from suggestions by Geraint Jones and by the referees.

REFERENCES

1. APT, K.R., FRANCEZ, N., AND DE ROEVER, W.P. A proof system for communicating sequential
processes. ACM Trans. Program Lang. Syst. 2, 3 (July 1980), 359-385.

2. BROOKES, S.D. A model for commumcating sequential processes. D.Phil. d~ssertation, Oxford
Univ., Oxford, England, 1983.

3. BROOKES, S.D. On the relationship of CCS and CSP. In Proceedings of the 1983 Internatwnal
Conference on Automata, Languages, and Programming (ICALP 83) Lecture Notes in Computer
Science, vol, 154. Springer-Verlag, New York, 1983.

4. BROOKES, S.D. A semantics and proof system for communicating proces.~es. In Proceedings of the
NSF/ONR Conference on Logics of Programs. Lecture Notes in Computer Science, vol. 164.
Springer-Verlag, New York, 1983.

5. BROOK,S, S.D., AND ROSCOE, A.W. An improved failures model for communicating processes,
to be published as CMU Tech. Rep., 1984.

6. CHANDY, R.M., AND MISRA, J. An axiomatic proof techmque for networks of communicating
processes. Tech. Report TR-98, Univ. of Texas, Austin, Tex.

7. DOKSTRA, E.W. Cooperating sequential processes. In Programming Languages, F. Genuys, Ed.
Academic Press, New York, 1968.

8. FRANCEZ, N., LEaMANN, D., AND PNEOU, A. A linear history semantics of languages for d~stnb-
uted programming. In Proceedings of the 21st IEEE Foundations of Computer Science Symposmm
IEEE, New York, 1980.

9. HENNESSY, M., AND MILNER, R. On observing nondeterminism and concurrency. In Proceedings
of the 1980 lnternatwnal Conference on Automata, Languages, and Programming (ICALP 80).
Lecture Notes in Computer Science, vol. 85. Springer-Verlag, New York, 1980.

10. HENN~SV, M., ANO DE NICOLA, R. Testing equivalences for processes. In Proceedings of the 1983
Internatwnal Conference on Automata, Languages, and Programming (ICALP 83). Lecture Notes
in Computer Science, vol. 154. Springer-Verlag, New York, 1983.

11. HENNESSY, M., AND PLOTKIN, G. A term model for CCS. In Proceedings of the 9th Conference on
Mathematical Foundations of Computer Science Lecture Notes in Computer Science, vol. 88
Springer-Verlag, New York, 1980.

12. HOARE, C.A.R. Communicating sequentml processes. Commun ACM 21, 8 (Aug. 1978),
666-676.

13. HOARE, C. A.R. A model for commumcating sequential processes. Teeh. Report PRG-22, Oxford
Umv. Programming Research Group, Oxford, England, 1981.

14. HOARE, C.A.R., BROOKES, S.D., AND ROSCOE, A.W. A theory of communicating sequential
processes. Tech. Report PRG-16, Oxford Univ. Programming Research Group, Oxford, England,
1981.

A Theory of Communicating Sequential Processes 599

15. KENNAWAY, J.R. Formal semantics of nondeterminism and parallelism, D.PhiL dissertation,
Oxford Univ., Oxford, England, 1981.

16. LAMPORT, L. Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng. SE-3,
2 (Mar. 1977).

17. LEVlN, G.L. A proof technique for communicating sequential processes (with an example). Ph.D.
dissertation, Cornell Univ., Ithaca, N.Y., 1979.

18. MILNE, R., AND STRACHEY, C. A Theory of Programming Language Semantics. Chapman Hall,
London, and Wiley, New York, 1976.

19. MILNER, R. Algebras for communicating systems. Tech. Report CSR-25-78, Computer Science
Dept., Edinburgh Umv., Edinburgh, England, 1978.

20. MILNER, R. A Calculus of CommumcatingSystems Lecture Notes in Computer Science, vol. 92.
Springer-Vedag, New York, 1980.

21. DE NICOLA, R. A complete set of axioms for a theory of communicating sequential processes. In
Proceedings of the 1983 Conference on the Fundamentals of Computation Theory. Lecture Notes
in Computer Science, vol. 158. Spnnger-Vedag, New York, 1983.

22. PLOTKIN, G. An operational semantics for CSP. In Proceedings of the W.G.2.2 Conference, 1982.
23. ROSCOE, A.W. A mathematical theory of commumcating processes. D.Phil. dissertation, Oxford

Umv., Oxford, England, 1982.
24. ROSCOE, A.W. Denotational Semantics for occam In preparation.
25. ROUNr)S, W.C., AND BROOKES, S.D. Possible futures, acceptances, refusals and communicating

processes. In Proceedmgs of the 22nd IEEE Foundations of Computer Science Symposium. IEEE,
New York, 1981.

26 SCOTT, D.S. Data types as lattices. SIAMJ Comput. 5 (1976), 522-587.
27. SMYTH, M.B. Powerdomams. J Comput. Syst. Sct 16 (1978).
28. STOY, J.E. Denotatwnal Semantics MIT Press, Cambridge, Mass., 1977.
29. ZHOU, C.C., AND HOARE, C. A.R. Partial correctness of communicating processes and protocols.

Tech. Report PRG-20, Oxford Umv. Programming Research Group, Oxford, England, 1981.

RECEIVED AUGUST 1981; REVISED SEPTEMBER 1983 AND OCTOBER 1983; ACCEPTED OCTOBER 1983

Journal of the Assoctatlon for Computing Machinery, Vol. 3 I, No. 3. July 1984

