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Non-interference through determinism*

A.W. Roscoe, J.C.P. Woodcock and L. Wulf
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The standard approach to the specification of a sccure system is to present a (usually state-based)
abstract security model separately from the specification of the system’s functional requirements, and
establishing a correspondence between the two specifications. This complex treatment has resulted in
development methods distinct from those usually advocated for general applications.

We provide a novel and intellectually satisfying formulation of security properties in a process
algebraic framework, and show that these are preserved under refinement. We relate the results 1o a
more familiar state-based (Z) specification methodology. There are efficient algorithms for verifying
our security properties using model checking.

Keywords: Security, non-interference, formal methods, process algebra, determinism, automatic verifi-
cation

1. Introduction

Security requirements of a computer system are regarded as critical properties
that demand the availability of mechanisms which control or protect programs
and data. Three issues in particular are related to the area of computer security:
(i) confidentiality (secrecy), the problem of protecting information from unautho-
rised disclosure; (ii) integrity, the protection of information from unauthorised
modification or destruction; and (iii) denial of service, the avoidance of major
reduction in system performance.

It is possible to regard these security concerns as properties ol information flow
within the system and base a specification of security on the absence ol undesired
flows. The notion of non-interference [7] captures the idea that no information
can flow from one user to another if the system view ol the second is completely
unaffected by actions of the first. We introduce a novel characterisation of non-
interference based on the notion of deterministic views. This elegant formulation
of non-interference has, unlike others described in the literature, the property of
preserving security requirements under refinement.

The development of a secure system entails the construction of an abstract secu-
rity model in addition to the specification of the system’s functional requirements.

*This paper is a revised version of [16]. The notation has been slightly modified to make it compatible
with that used in related publications [13, 14].
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The model is intended to capture abstractly the complete set of security require-
ments, which are derived from the system’s (possibly informal) security policy,
and which form part of the total system requirements. Depending on the level of
rigour required during development, it is necessary to either informally establish
or formally prove a correspondence between the functional specification and the
abstract model. _

The construction of the sceurity model has been attempted [4, 10] with the same
methods as functional specilications, such as the Z notation [18]. We suggest that
there are good reasons to employ a process algebraic notation for this purpose.
Firstly, it is not the individual operations of the system, but the system as a whole
(hat is to satisfy critical properties. Secondly, insecurity is introduced not by a
single operation in isolation but by certain sequences of operations. And thirdly, it
turns out to be possible to express non-interference constraints directly on a process
representation of the system, thus eliminating the need for constructing a separate
abstract model.

We therefore propose a process-algebraic approach (based on CSP [8]) to the
specification of sccurity properties. In particular the property of a process being
deterministic is fundamental to the conditions we introduce for non-interference.
This property can be verilicd using standard algorithms on finite-state systems,
such as those implemented in the CSP model checker FDR' [12].

This paper is organised as follows. The following section defines the non-
interference conditions and illustrates some of their properties. The conditions
are generalised to systems with multiple users. Section 3 presents a functional
specification of a file system that is intended to maintain confidential information.
A systematic way of mapping this specification into process algebra is given in
Section 4, and the particular conditions for non-interference in the process model
are clearly stated. The security flaw of the system is detected by automatic verifi-
cation in Section 5, and it is shown how the system can be made secure, Finally,

we present our conclusions in Section 6.

2. Non-interference and determinism

There have been a number of CSP formulations of non-interference, such as
Jacob's use of inference functions [9]. None of these approaches is based on
the notion of determinism, which has only recently been recognised as the funda-
mental concept underlying the various definitions on non-interference [13]. This
section will introduce some formal definitions of non-interference and analyse their

properties.

IFDR (Failures Divergence Refincment) is a product of Formal Systems (Europe) Ltd., 3 Alfred St.,
Oxford OX1 3EH, UK.
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2.1. Notation and conventions

We will einp]qy the failures-divergences model of CSP, in which a process is
thlractenseld by its failures and its divergences. We use the following notation to
refer to various observations of a process P.

N a(P) alphabet set of events process P can engage in
ll{l:\C[',S(P) traces set of finite sequences of events P can engage in
AILS(P)  failures set of pairs (s, X) such that P can refuse events X

after trace s
Divs(P) divergences set of traces after which P may behave chaotically

'I“h‘e semanlics of the failures-divergences model of CSP is detailed in, e.g., [8)
Of pm‘t:‘cular relevance below will be the concealment and interleavin ,o E;al' ;
whose formal semantics are given in the Appendix. Informally, P\ A iE ap ro Ufb
that behaves like P except that occurrences of events in sel‘ A are con[::eaizzs
A. concealed event occurs automatically and instantaneously as soon as it ca .
letlmul being observed or controlled by the environment of the process. The |r|lf
interleaving operator models asynchronous composition of processes: Pi|| Qis a
pm(j:ss whose trace forms an arbitrary interleaving of events from pru;:csscs P z;nd
g%‘m; iivent can be refused by the composition only if both component processes
We will interpret some processes U; as users interacting with another process P
called the system. A user U of P is defined by its interface to the s Slem F
{h.c moment, it is assumed that the system has exactly two users Uf; ami U’Gr
Wl'll'h 'a(P) =HUL,L#W H+#0, and HNL = 0. This latter condition gf
disjoint set of actions available to the users is convenient since it prohibits direct
communication between users by synchronisation. } . '
' Thf:se simplifying assumptions will be relaxed in Subsection 2.6 where the non-
interference conditions will be generalised to multi-user systems,

2.2. Abstracting events

In a system with two users Uy and Uy, we will typically want one user (UL) to
hfi comp!ctc]y unaware of what the other (Uy) does. In other words, the s I;‘t
view of Ur, should be unaffected by the presence or absence of cvc;ns use); (jm
might engage in. If this is the case, we say that there is no flow of informali(::l
from Uy to Uy, or that Uy is non-interfering with U7,.

In a sense, it is necessary to abstract away from the actual or potential behaviour
of Uy and ensure that this abstraction cannot affect how the system appears to U
There are several ways this abstraction may be captured, ¢.g., by concealin gr
obscuring Uy’s actions. In CSP, the concealment of events is expressed uﬁing

the \ hiding operator, and the obscuring of cvents may be achieved using |||
interleaving. :
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It is well-known that concealment and interleaving of events may introduce
non-determinism [8, pp. 113 and 120]. A non-deterministic system may, under
the same conditions, behave differently towards its environment, due to some in-
ternal, uncontrollable choice. Though this choice cannot be observed directly,
its external effects can, and thus provide clues on abstracted activities. The re-
sult of this abstraction will be that Ug’s actions become choices which, though
not visibly directly to Up, may resolve non-determinism that is. The absence of
non-determinism under abstraction of Ug'’s behaviour guarantees the absence of

undesired information flow towards Up,.
The notion of determinism is formally defined as follows. A process P is
deterministic if it is free of divergence, and if it never has a choice whether to

refuse an event it can engage in.
Pdet & DIVS(P) = 0 A (tr'{a) € TRACES(P) = (tr, {a}) ¢ FAILS(P)).

A process lacking this property is. non-deterministic; under identical environmental

conditions it may behave differently in an unpredictable fashion.

2.3 Non-interference conditions

The conditions we propose are all based on the absence of non-determinism
after the abstraction of “high-security” events, and are justified in detail in [13].
Concealment is the simplest method of abstracting from events in CSP which can
serve as a first attlempt Lo define the notion of non-interference.

Definition 2.1. A system P is said to be eagerly secure in L if concealment of H
events does not introduce non-determinism, 1.e.,

£Secy (P) « (P\H)det.

r later on. Another way of abstracting events in

The terminology will become clea
hieved

CSP is not by concealing but by obscuring their occurrence. This can be ac

used another process
RUNH =z H— RUN”

and combining it with the original system P by interlcaving as P ||| RUN i
This process can never refuse an H event since RUNyp is always prepared to
contribute onc in arbitrary places. An outside observer will not be able to tell
whether such an action came originally from P or from RUN . As above, we
postulate that abstraction by interleaving does not introduce non-determinism.

Definition 2.2. A system P is said to be lazily secure in L if obscuring H events
by interleaving does not introduce non-determinism, i.e.,

LSecr(P) & (P RUN ) det.
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The terminology of the conditions reflects the semantics of the operators i
vol}!ed, The \ concealment operator is defined in a way such that hidden (intcrn"nl;
actions occur instantly. Abstraction of events by concealment is eager in the s ‘l‘
that the f‘:vcms cannot be prevented or delayed by the environment i
‘ This §11ua110n contrasts with the usual interpretation of communications between
interacting processes. The standard interpretation of the occurrence of an event i
lh_at the process and its environment have agreed on the action; it cannot occus
without mutual consent. The agreement of Uy to engage in H Ievents cannot ;
assumed to be immediately forthcoming. Abstraction by interleaving P ||| RUN -
does FlUl. force events from P to happen, it simply prevents an observer frmfrf)
knowm‘g \fvhethcr they came from P or from RUN . This lack of urgency explains
why this is lazy abstraction. P ||| RUN g can only be deterministic if the ls)c‘l of
L evenls aw?i]ablc before and after any H event of P are the same, since if llic
same c\:'entlls communicated by RUN g the state of P does not (:E}angc Laz
abstraction is thus sensitive not only to the effects of different actions b U b '
also to the choice between action and inaction. R

The possibility of infinite sequences of [ actions gives rise to the danger that
a S)‘(Slell‘l implementation will prefer them forever, thereby denying Uy, the oppor-
tunity to communicate — which would be a clear breach of sccurity) The Eg er
§ccur1ty condition, which entails the assumption that H actions are ne'ver dela id
is necessarily sensitive to this possibility as P\ H introduces divergence ¢ TI?’ ie
illustrated with Example 2.6 below. Ea

. Iln some practical examples of system models, the applicability of the lazy con-
dition hdepends on the nature of the events concerned. If these are events ):Jvhich
occur instantaneously — such as a system message appearing on the user’s gcrccn -
then they are indistinguishable to Uy, from the ordinary internal actions of (). As
long as these “signal” events are guaranteed to occur instantaneously there wiil be
nnrrefusa] of a request by Uy, at the interface to the 'system.

!‘hc H events can therefore be divided into two categories: signal events S
which are guaranteed to occur instantly, and events D which cannot occur withot‘n
the agreement of Uy and may thus be delayed. In many systems, delayable events
take the form of inputs whereas the signals appear as output C(;mmunicalio 5
the environment (including users). : e

‘S.mce S events resemble internal system actions we can abstract from them b
Iudm:g while we still use interleaving for ordinary events. The combination of (I 4
two forms ol abstraction results in a mixed non-interference conditi{)n,‘ N

Deﬁn'ition 2.3. A system P whose H events can be partitioned into delay events [J
and signal events S satisfies MSecf,_f)’S)(P) if (P\S) ||| RUNp is deterministic

Do spe
The lazy condition (where I actions ma subyj
' ‘ y be subject to delay) as 5 the i ion is
sufficiently fair to avoid this insecurity. RTINS
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2.4. Examples
Example 2.4. Consider the system P with H = {hi,h2} and L = {1} defined
P=(h == P)Oha 21— P).

The system repeatedly offers a choice of a single H event followed by action L.
Concealing H permits Uy, to engage in | whenever desired independently of the
{hidden) choice between hy and hy. Hence Up’s view of P\ H is deterministic and

ESecy, () holds.
We may doubt, however, whether the system should really-be regarded as secure
because the availability of I depends on the previous occurrence of an H action.

We have
(hy,1) € TRACES(P ||| RUN 1), but ((h1), {1}) € FAILS(P ||| RUN i)

because the h; event from RUN g has been interleaved with he empty trace from
1 pty
process . This means that I’ has in fact made no progress and will therefore

refuse to participate in [.

The lazy condition docs not make the assumption that H actions occur so quickly
such that no refusal to communicate [ may be recognised by Upr. System P
therefore is cagerly but not lazily secure, reflecting a dependence of UL’s system
view on activity of the other user.

Example 2.5. Let H = {h} and L = {l1,12}. In the system
Q=(h-Q0UL-»L—-Q)DuL Q)

there is the possibility of an infinite sequence of h actions. This potentially endless
delay of Up’s actions is flagged by the eager condition since, e.g.,

() € DIvS(Q\ H),
so @ is not eagerly secure. However @ ||| RUN g is deterministic so that process (®]
does satisfy the lazy condition.

Example 2.6. Let H = {dy,da, 51,52} and L = {ly,1;}. In the system
R=(l =1l = R)
O(dy — s1 = R)
O(dy — 52 = R)

there is again the possibility of infinite pre-emption of L activity, so eager security
cannot hold. IR also fails the lazy condition since

(di, 1) € TRACES(R ||| RUN ), but ({di),{li}) € Faws(R ||| RUN g1).
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The event [; will t.Je removed from the interface when Uy engages in either d,
orddlg.. T_hus [?H \;’JII] c[z:ay the system by communicating d; or d; until a further
s action is taken. User Uy, will recognise that the s
: ‘ 7 ystem refuses a reques
Ug’s request is complete. A
If we identify s; and s, as signal events, then we can partition H in the obvious

way and apply the mixed security criterion, and find th e
indeed hold. ’ Bt P dong

2.5. Properties of conditions

Frlom the eager and lazy conditions based on the notion of determinism it is
possible to c.!erivc conditions involving only observations of the process conccrncci
Egger security can be paraphrased as stating that nothing which is observed in L
after trace tr will allow the H events which happened during tr to be inferred

Proposition 2.7. [f system P satisfies £Sec ]
% r(P), then P\H i
and for any two traces tr, tr' € TRACES(P), ) L il

tr | L=tr' | L= (Pftr)\H =pp (P/tr')\H.
A corresponding consequence can be derived from the definition of lazy security

Proposition 2.8. If system P satisfies LSecr,(P ] 3
i ¢ L(P), then P
Jor any two traces tr, tr' € TRACES(P), & e

tr | L=tr'| L= (P/tr)|||RUNy =pp (P/tr') ||| RUN.

T'he approach 9f postulating determinism after abstraction of high-security events
can be generalized by analysing various models of Uy. The framework in which
this can be done is provided by the condition .

(P [[H]|U)\H det ()

.for a suitability chosen process U which has to synchronise with P on every event
in H. Process U can be regarded as a model of user Up.
The user with the widest range of behaviour is one whose actions are unpre-

diCidb]B al'ld unconlrﬂl]ab!e Su[.h dL(i Vll.y iS re])]e €n Ed i I
. t H
C S n CS by i pl’OCCSS

CHAOSy = STOP N (z: H — CHAOSy)
displaying the most non-deterministic behaviour which is free of divergence. A sys-

tem with such a non-deterministic user will lack interference only in the case of
both eager and lazy security.
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Proposition 2.9. A system P satisfies ESecr,(P) and LSecy,(P) if, and only if, the
process (P |[H|| CHAOS )\H is deterministic.

It is shown in [13] that all three non-interference conditions (cager, lazy, and
mixed) can in fact be expressed in the form of (1). For eager security, the model
for user Uy is simply identical to RUNp since P|[H]|RUNy = P for all
processes P,

Corresponding formulations for lazy and mixed security require a more powerful
model of CSP. In the infinite traces model [11] the failures-divergences represen-
tation of a process is augmented with its set of infinite traces. The model of
user Uy required for lazy security is a process FINITE ;r which behaves just like
CHAOS i but without ever engaging in an infinite trace. This restriction prohibits
the occurrence of infinite H sequences resulting in divergence under concealment.

Proposition 2.10. Eager; lazy, and mixed security can all be expressed in the gen-
eral form of (1) as follows.
ESccy,(P) « (P |[H]| RUN ;)\ H det,
LSeeyr,(P) < (P |[H]| FINITE ;)\ H det,
MSec\P9)(P) & (P |[H]| (RUNs ||| FINITEp))\H det.

These various ‘users’ suggest a more general approach to security specification: for
a particular context, choose a process U which characterises all possible behaviours
of Uy under which it is expected that confidentiality will be maintained. Usually
this will be all its behaviours, but it is possible to imagine other circumstances,
for example if the system P represents a mail system where it is allowable for
a high-sccurity user to send a message to a low-security one, we might expect
to maintain confidentiality so long as no such messages are sent. (This type of
property is known as conditional non-interference [7].)

The more non-deterministic the abstract model U the stronger is the equivalent
securily condition. When a more deterministic process is substituted for U, the
properties of CSP refinement guarantee the preservation on non-interference.

More precisely, if I is a system component in context C', then refinement of P
— replacing it with a less non-deterministic component — preserves determinism of
the original system:

C(P)det A PC P' = C(P')det.
It is equally a consequence of this fact that refining P preserves the determinism
of (P|[H]|U)\H, and that therefore each of our non-interference properties is
preserved under refinement. This is a result which may be exploited in system

(lcvclopmenl or maintenance.
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Proposition 2.11. Eager, lazy, and mixed security are preserved under refinement:
ESec, C(PY)APC P = ESecr (C(P)),
LSec, (C(P))APC P = LSecy (C(P')),
MSec?”NCcPYAPC P = MSec”S)(c(p)).

{\ ‘number of additional resfulls concerning the composition and decomposition of
_:.ccluf"e systems may be derived [13, 14]. One such result, proved in detail in [14)]
I‘S fmt a system P may be decomposed into two non-interacting parts if it is lazil

secure with respect to two disjoint alphabets. o

Pljop.cvblitionl 2.12. Let A., B be disjoint alphabets. £Sec A(P) and LSecy(P) hold
of a system :f and only if, there are two deterministic processes Py with a(P,) =
A and Pg with a(Pg) = B such that P — Py |[0]| Pg. oS

l*urtherl Prop{?rtiesi of our non-interference conditions as well as the proofs of the
propositions in this section may be found in the appendix and in [13, 14)

2.6. Generalisation

‘ t\IP]Ve will now generalise the determinism conditions for multi-user systems. If I

15 the system whose non-interference properti i :
perties we attempt to establis ]

model can be described as ’ T

SYSTEM = Users |[S]| F, where Users — ;s Ui

f"md Sis the users“ivntcrfacc (common events) to the system. It is assumed that there

:s.a security classification associated with each user. Let CLASS be the partiall

mdcrj:d sclt of these classifications. The total function ¢l: Users — CLASS assigni

one classification to each user process. A further as ion is ;

s i assumption is e (U;) Ne(U,) = ()
Ihe function low: CLASS —» Pa(SYSTEM) yields the set of events that

are regarded as “low-level” on a partic .
i particular level of secu ‘lassificati :
defined - rity classification. It is

low(e) = | J{a(Us) | cl(Uy) < ¢).
The non-interference conditions of Subsection 2.3 i
‘ .3 hold fi - 5
if they hold on each security level of the system. S sl
Definition 2.13. A multi-user system P eagerly and (respectively) lazily-secure if
Ve € CLASS e ESeciow(e;) (P), and
Ve; € CLASS o LSecigy(c,)(P).
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In a realistic system it is typically the mixed non-interference condition that requires
verification on each security level, as will be illustrated in the following case
study.

3. A “secure” file system

This and the following section will illustrate the framework in which our non-
interference conditions can be applied. The example is that of a file system in
which confidential data is to be maintained. 3

It is widely accepted that a formal specification can increase the level of assur-
ance that a system will meet its security requirements [5]. In fact governmental
standards for the development of sccure systems mandate the use of formal meth-
ods and proof. The Z notation [18] is particularly suited for this task since (i) it
has a well-defined semantics; (ii) it has been sucesslully employed in industrial
scale software development; and (iii) it has become increasingly popular for the
specification and verification of secure systems [3, 4, 10].

We begin the specification of the file system by introducing some basic types.
The set of users of the system is represented by type USER, each of which holds
an associated security classification from the set CLASS. FID represents the set
of file identifiers, and DATA refers to the set of possible data that may be stored in
a file. This type contains a special value NULL representing invalid data. These
arc the basic types we will use

(USER, CLASS, FID, DATA]

There is a security classification associated with each user. We use a global func-
tion ¢l to obtain the appropriate class by supplying it with a user identification. It
is declared as a tetal function; there cannot be users without classification.

| cl: USER — CLASS
3.1. File model

Bach file has the structure?

_File
class : CLASS
data : DATA

3n Z. formal notation is separated from informal des

criptions by so-called schema boxes. A schema

contains a number of declarations and,
line followed by appropriate predicates.
operations on structures.

if there arc any constraints on these declarations, a separating

Schemas are used to represent structured state as well as
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whe.re. t.he.cluss component relates to the level of security of the stored data. Each
file initialised with the level of clearance at which the file is created.

—Init
Pile’
clear? : CLASS

class’ = clear?

data’ = NULL

We follow a standard convention of decorating inputs with ?, outputs with !, and
states after completion of the operation with a prime ‘. i ”
schemas refer to states before the operation.

']v\'.fo operations are provided on files: reading stored data, and writing new data
provn?lcd the file access is carried out with the appropriate clearance. Reading i:;
permitted only when the operation is carried out with appropriate acccs's pcrmissﬁon
F:Zea'r? = class, in which case stored data is output as data!. The notation = Fil
indicates that reading a file does not change its state. -

Unprimed variables or

__RdO
E File
clear? : CLASS
data! : DATA

clear? = class
data! = data

Storlqg new data in a file is carried out with a Wr0 operation which is permitted
only if the user clearance is equal to the file classification. The AFile schema
F:omponent indicates that writing data changes the file state; the input data new?
is stored in the data component of File. ‘

Wr0

r— AFile
clear? : CLASS
new? : DATA

clear? = class = class'
data’ = new?

To indicate the success or failure of an operation, we define the system’s response
as type

RESP ::= ok | fail.
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Each operation on a file is accompanied by an indication of whether it has suc-
ceeded. The output message is defined by the (horizontal) schemas

Success = [resp! : RESP | respl = ok],
Failure = [resp! : RESP | resp! = fail].
We do not give the user any indication of whether a failure was caused by a

functional error or a security breach, in order to avoid a potential channel of

information flow.

If a request for file access is carried out without valid clearance the operation
fails, and the file status remains unchanged (= File). “The case of invalid read
access is described as

__NoRdAccess

= File

Fuailure

clear? : CLASS
data! - DATA

clear? < cl(;s
data! = NULL

The corresponding error condition for writing is

NoWrAccess
EFile
Failure

clear? : CLASS

clear? # class

The total read and write operations are Rd and Wr specified as
Rd = (RdO A Success) vV NoRdAccess,
Wr = (Wr0 A Success) V NoWrAccess.

If the request is carried out with appropriate clearance the system reports with ok,

otherwise the user just reccives a fail message and the file remains unaltered.
3.2. File system

Our file system is given by

FileSystem
Fﬁles . FID — File
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Component files is declared as a partial function from file identifiers to files. This
means that no two files can have the same name. The system initially contains no
files:

‘FInit = [FileSystem' | files' = §].

In addition to the initialisation occurring when a file is created at the system level
we want the operations of reading and writing a file to be available at the systcm,
interface. This is a achieved by promoting the schemas Init, Rd, and Wr with
the aid of two “framing” schemas: ’

|
AFileSystem
file?: FID

user? : USER

clear? = cl(user?)
files” = files @ {file? v 0 File"}

/)
D1

file? € dom files
0 File = files(file?)

The 'promowd operations will require both a file name (file?) and a user identi-
fication (user?) as input. The user’s classification is then the clearance at which
the file operation is carried out. The three operations available at the interface are

Create0 = JFile’ o (P1 A Init),
Read0 = JAFile o ($2 A Rd),
Write0 = JAFile o (32 A Wr),

It is necessary to ensure that no operation is carried out on files which do not exist
This error condition can occur if the user supplies an invalid file identifier.

_ UnknownFile
Z FileSystem
Failure
file? : FID

file? ¢ dom files

e e e R e
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Similarly, a request for file creation cannot succeed if the suggested name has
wready been used for another file.

___FileExists
Z FileSystem
Failure

file? : FID
file? € dom files

The total operations available at the file system interface are 4hen given by
Create = (Create0 A Success) V FileEuists,
Read = Read0 vV UnknounFile,

Write = WriteO vV Unknowntile.

We suggest that a security analysis is best carried out on a process algebraic
representation of the system. This representation may be regarded-as a security
model [5] which can in fact be derived by translation, It is therefore unnecessary
to engage in the formidable task to prove a correspondence between model and
spécification. In the coming section we map the functional specification of the file
ystem into CSP and state the non-interference conditions that require verification.

&, Zinto CSP

The Z specification may be translated into CSP according to the technique
described in [20]. The theoretical basis for this work may be found in [19].

First we interpret the Z specification as an action system [2] whose state is
specified by File. It has two actions corresponding to the operations Rd and Wr.
tiowever, each of these operations also has an output, and we must be careful to
separate the two parts of the operation and associate an action with each, since
we cannot regard input and output as happening simultaneously. When a user has
invoked an operation, but has not consumed its output, then the system will do
nothing else while that output is pending. When no output is pending, all operation
actions are enabled.

This interpretation of a Z specilication is informal (albeit systematic), but it
Goes correspond to the intuitive meaning given to Z specifications (see [18], for
example).

Consider the Wr operation. We must separate it into (wo parts: the first part
consumes the input and then stores its output in the state; the second part waits
{ur the opportunity of delivering its output. Define a new free type that is either a

response or nothing:

RESP ., ::= nullresp | outresp((RESP))
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and augment the state of a file with a ir
nd aug component that contains the i
rEp pending output

File 4
File
wrpend : RESP

The first part of the operation is as follows:

s
Af“?:£€+

clear? : CLASS

new? : DATA

wrpend = nullresp
dresp! : RESP | wrpend’ = outresp(resp!) ¢ Wr

and the second part is

|
AF?:ZB.;.

E File

resp! : RESP

wrpend # nullresp
resp! = outresp™ (wrpend)
wrpend’ = nullresp

[ n pr() c thal e ()I‘l]y C]lan d T y 1 W
wWe ca v []l ge we are ]nakln to W b
o g Sph |ﬂg mto two 1s

F Wr = Juwrpend, wrpend' : RESP . « Wry @ Wr_

According to [20], we i i

201, can now translate our specification of th i i
/ . ew :
Into two actions. e e

wr?clear?new A wrpend = nullresp — Wr

wrout!(outresp™ (wrpend)) A wrpend # nullresp — wrpend := nullresp

Thusl, upon receipt of the communication of a clearance and some new data, then

providing that there is no write-output pending, the Wr.. operation is perf(;rmed,

Output may be transmitted whenever it is pending. .
We can make similar transformations for the other operations.
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The actions may now be embedded in a CSP-framework process. We now have
a CSP process which is formally equivalent to the File abstract data type.

File = init?class — File(class, NULL, (nullresp, nulldata), nullresp)

File(class, data, rdpend, wrper ud) =
if rdpend = nullresp A\ wrpend = nullresp
then
rd?clear —
if clear = class -
then File(class, data, (outresp(ok), outdata(data)), wrpend)
else IMile(class, data, (outresp( fail), outdata(NULL)), wrpend)
) wrtelear Tnew —
if clear = class
then File(class, new, rdpend, outresp(ok))
clse File(class, data, rdpend, outresp (fail))
else
if rdpend £ nullresp
then rdout!outresp”™ (rdpend)
—» File(class, data, (nullresp, nulldata), wrpend)
else wrout!outresp™ (wrpend)
—+ File(class, data, rdpend, nullresp)

The File process may now be transformed using the laws of CSP, and, if desired,
{he state variables containing the pending outputs elided.

In [20], the connection is made between the technique of promotion in Z, and
the use of subordination or the means of sharing through interleaving. In this way,
(he file system can be created as a system of CSP processes.

The structure of the resulting CSP implementation is illustrated in Fig. 1.
FILES will be a shared pool of files accessible through the interface FSYS. Each

FileSystem E
User; ""—_*'__" 51 :
; FSYS :
User; o———] .
-. FILES :
e Sy 5
i | CLEARANCE ::

Fig. 1. The file system implemented by communicating processes.
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file has an associated name and classi i
an z assification, and may contain arbi
process File models a file waiting to be initialised. acandats

File = init?file?class — File(file, class, NULL)

A file after initialisation may be read or written to.

File(file, class, data) = Rd(file, class, data) O Wr(file, class, data)
The read operation is implemented by process Rd as

Rd(file, class, data) = rd.file?clear —
if clear = class

then rdout.file!ok!data — File(file, class, data)
else rdout. file! failNULL — File(file, class, data)

Storing new data in a file is realised with process

Wr(file, class, data) = wr.file?clear Tnew —
if clear = class

then wrout.file!ok — File(file, class, new)
else wrout.file!fail — File(file, class, data)

The total pool of files 15 given by
FILES = ||lpg <y, File.

4.1. The system interface

l [.IS not possible to conjoin FILES with the set of user processes directly because
isers must be protected from a number of functional errors, such as reading a ﬁ‘lc

which does not exist. To this i i
: ; purpose, we will provide a system interfa 5
FSYS which manages access (o the individual files. ’ S

a(FSYS)=5US US,;
Sp = {m‘eate, createout, read, f-eaclioui, write, wm’teout}
Sy = {init, rd, rdout, wr, wrout}
Sy = {clear}
FSYS holds state variable files, the set of current file names
FSYS(files) = Create(files) O Read(files) ) Write(files)

I hf‘: t]ll €e Servic a a]tabl ]’ p b = =
e at I.I]e 1111{3[13('.(4 are 1 ment
v ICS V m le ed “‘l[ll rocesses Create
Rﬁad, ﬂnd Ii’ T 'ﬂtﬁ, [’espe(,[lvel ) C
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Create(files) = creatc?user?file =

if file ¢ files

then clear.user?class — ini

— FSYS(files U {file})
else createout . user!fail — FSYS(files)

tfile'class — createout.user Yok

Read(files) = read?user?file —
it file € files
then clear.user?class — rd.file!class — rdout.file?resp?result

s readout.user.file!resp!result — FSYS(files)
clse readout.user.file!faillNULL — FSYS(files)

Write(files) = write?userfile?new —

if file € files
then clear.user?class — wr-file!class!new — wrout.file?resp

_y writeout.user. filelresp — FSYS(files)
else writeout.user. file! fail = FSYS (files)

Process CLEARANCE provides the appropriate classification of a user when

required.
CLEARANCE = (Oclear.u!(cl(u)) — CLEARANCE)
for all w € USER

lete file system is given by parallel composition of the interface pro-

The comp
ess, with intermediate channels con-

cess, the file pool, and the clearance proc

cealed.

PileSystem = ((FSYS(D) |[$1)| FILES) |[S:]| CLEARANCENS) U S,

4.2, Security specification

Any particular instance of the lile system can be subjected to the security con-

ditions presented in Scction 2. We will consider the case of three users with the

following classifications.

CLASS

3 (highest)
2

| (lowest)

USER
Lisa
Mari
Nina
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‘I‘t is cltinvcmcnt to partition the events at the system interface into “delay” and
signal” events on each level of user classification (except the top level)

H2d = {create.user.file, read.user.file, write.user. file. data
| user € {Lisa}}

H?2s = {createout.user.resp, readout. user. file.resp. data,
writeout.user. file.resp | user € {Lisa}}

H1d = {create.user.file, read.user file, write.user.file. data
| user € {Lisa, Mari}}

H1s = {createout.user.resp, readout .user. file.resp.data,

writeout.user. file.resp | user € { Lisa, Mari}}

The file system satisfies eager security if

(FileSystem\(H2d U H2s)) det A (FileSystem\(H1d U H1s)) det.
The file system is lazily secure if

(FileSystem ||| RUN (maaums)) det A (FileSystem ||| RUN (g1a0m15)) det.
The file system satisfies the mixed security property if

((FileSystem\H2s) ||| RUN g24) det A

({F:rlieSystem\Hls) [|| RUN g14) det.

It :jurr?s out t‘hat none of these conditions is met — i.e., that the system contains
un hcsi]red information flows. Since it may not be obvious that the conditions fail
to hold (and why not), we employ a verification tool.

5. Automated verification

leu: ‘cffort_ of formulating the eager/lazy/mixed non-interference conditions would
be hm'Iel without a method of verifying them. Luckily, the absence of .
determinism on which the conditions are based can be aum;nalicall verified n‘m
standard algorithms on finite-state systems. We show that the CSP yr(mfl e I]IJ-_&‘lng
can be used to complete the security analysis. d ks

5.1. FDR

N Thc FDB tool [12] has been originally designed to verify behavioural CSP spec-
1hcat19ns, in pqr!];ular refinement relations between processes. These refinement
c f:ckm.g capabilities are employed to decide whether a given process is determi

istic using the following algorithm: o
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1. Search through the state space of P, resolving all non-determinism that is
encountered. In a “stable” state (in which internal progress is impossible)
a single representative for each available action is selected, whereas in a
state where internal actions are possible we chose one of these arbitrar-
ily. This search either finds a divergence of P (in which case it is clearly
non-deterministic) or yields a deterministic process ) that refines the origi-
nal I°.

Use the refinement checker to confirm whether () C P. The check succeeds
if, and only if, P is deterministic.

r2

The algorithm is justified by the fact that the deterministic processes are maximal
in the failures-divergences model of CSP, and are therefore incomparable. Thus,
for some arbitrary deterministic refinement ) of P,

Pdet < P =pp Q
5.2. Making the file system secure

Checking the security specification of Subsection 4.2 using FDR confirms that
the file system is neither cagerly nor lazily secure. There is no eager security since
there is the danger of infinite Lisa and Lisa/Mari activity, thus pre-empting any
progress of the low-level users. This danger is detected by recognising divergence
of both processes whose determinism was to be verified. The reason for lack of
lazy security lies in the basic structure of the system interface: a menu of services is
offered to users with various classifications, and a choice of service by a particular
user 1s followed by a system response on the same security level.

This structure resembles that of the (much simpler) process R of Example 2.6
which was already observed to be insecure under the eager and lazy conditions.
As was motivated there, these “pure” conditions are inappropriate for a system
whose interface has a request-response type structure (like R or FileSystem), and
it becomes necessary to partition events into delay and signal events in order to
apply the mixed condition.

However the mixed condition fails to hold as well, which must be of serious
concern to the system designers. FDR flags the security breach as follows:

(create.lisa.id, create.nina.id, createout.nina.ok)
€ TRACES((FileSystem\H 1s) ||| RUN 114)
since event ereate.lisa.id has been contributed by RUN py,4. We also have
((create.lisa.id, create.nina.id), { createout. nina. ok })
€ FAILS(( FileSystem\H1s) ||| RUN g14) '

since create.lisa.id could in fact have been an actual user request for file creation.
The file system, however, was specified to prohibit the existence of two files with
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the same name; l‘his feature is a security flaw since a user who attempts to create
aI ﬁlelﬁ(wjt.h identifier id say) and fails has learned that a file named id of higher
classification exists. This clear breach of non-i i i
. f -interference is reflecte i

of the mixed condition. iy

The question remains how the flaw can be overcome. One idea may be to
rchf‘mge the Crf_:ate operation so that a request of file creation always succeeds
This aplpmach Is probably unsatisfactory if creation of a file which already exi';ls;
:{‘:sulls in §lorcq data to be lost. A more promising approach is to somehow ass:n-
ciate f:lasmﬁt:almns with file identifiers in order to guarantee that files on different
security levels have different names. )
-(A- simple way QF implementing this is to provide pairwise disjoint sets of iden-
ti lers fqt the different levels. For the system in Section 4 one might consider
partitioning the set FID into three sets (say)

FID| = {a,b}, FID, = {c,d}, FID; = {e, f},
so that for all i € CLASS

FID = J FID,.

Doing so entails the re-definition of the Create operation which now needs to

confirm whether the use of a particular identi i i ;
lar identifier is valid with re
s ard 'g
Sssification: gard to the user’s

Create(files) = createluser?file —
if file ¢ files
then clear.user?class —
if file € FID g,
then init!file! class — createout.user! dh ; ]
else createout.user!fail — FS YS(ﬁ.{es{))k R L)
else createout.user!fail — FSYS(files)

Verlﬁqalio_n of.thc mixed security condition now shows that the mixed security
condition is satisfied, provided that the number of files available through the system

& ] altoore Cc 1 ne ot (][ 1 i rs ra cvels classiication
c fﬂ “ ]
|§0|:Ir|| li 0 Or exce ’[15 |I e [:(J]I]]H (! 1 a] dLntlI V I Of la rc {

FILES = logicn File
we require n > size(FID). Without the proviso the file system does n.ot pass the

mixed condition, again because an attempt of the file creation may fail. This time

the security breach is caused ? e
files. sed by the potential exhaustion of the pool of available
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6. Conclusion

This paper presents process algebraic specifications as a practical framework for
the development of systems with security constraints. The approach is illustrated
with an example of a file system intended to maintain secret data, but in fact our
results apply equally to systems with security concerns other than confidentiality.
This is a consequence of defining general non-interference conditions which require
the system view of particular users to be unaffected by the actions taken by others.

Our non-interference conditions are based on the notion of deterministic views.
This elegant characterisation of secure systems has only recently been recognised
as the fundamental concept underlying various definitions of non-interference, such
as those surveyed in [6]. Although these alternative definitions are cast in rather
different notation without employing determinism, Roscoe [13] demonstrates that
many arc cither straightforward consequence of, or closcly related to, the conditions
for eager, lazy, and mixed security. For example, our lazy property LSecy, ()
corresponds precisely both to Graham-Cumming’s own non-inlerference property
and those of Allen [1] and Ryan [17] for systems whose overall behaviour is
deterministic (as opposed to the abstractions used in formulating our properties).
A significant advantage of our conditions in comparison to others is the preservation
ol non-interference under refinement, thus eliminating the potential compromise of
security during development. A detailed discussion of this phenomenon, and an
explanation of why it is desirable, may be found in [13].

The general framework envisaged for the development of secure systems falls
into two parts: functional specifications of the system using state-based notations as
for general applications, followed by an analysis of non-interference properties of a
process-algebraic representation of the system. The main advantage of this method
is in avoiding the complex treatment of establishing a correspondence between the
specification and a separate generic security model. In contrast, the mapping of
the specification into process algebra can in many cases be carried out by direct
translation (tool support for this task is, however, at present not available). Process
algebras such as CSP based on possible sequences (traces) ol events provide an
ideal notation for non-interference analysis since they naturally incorporate the
notion of (non-)determinism, thus permitting the application of the conditions of
Secction 2. These conditions can then be automatically verified using a currently
available proof tool.

Initial experience with the CSP model checker FDR [12] shows that a security
analysis as illustrated in Section 5 can be carried out within minutes. This result
propounds the hope that the verification approach will scale up lo systems of
realistic size. The size of problem we can deal with will benefit from the proposed
development [12] of FDR to incorporate implicit model-checking techniques such
as the hierarchical compression of intermediate state-spaces. Verification speed
will further increase by the exploitation of behavioural independence of processes
from particular values of data communicated. This property of data-independence
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[ISJI has already shown promise in significant reduction of state spaces as well as
the induction of properties of arbitrary data types based on finite checks.

Future work is required to formalise the mapping of state-based specifications
(o process descriptions. The techniques of [19, 20] still have to be extended to
be applicable to specifications with complex semantics, and utilised to provide
tool support for the translation into process algebra. We intend to appls these
techniques and the framework outlined in this paper in a case study of a large-scale
secure system. A further avenue of research is to explore potential applications
of our determinism-based conditions for non-interference on systems with critical
requirements other than security, such as in the areas of safety-critical systems
fault tolerance, and feature independence. ! ‘
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Appendix A: CSP reference

A.l. Processes

aP alphabet (possible events) of process P

Pt process P after it has engaged in trace ¢

P|[A)|Q  parallel composition with synchronisation (only) on events A
Plie parallel interleaving (without synchronisation)

PR internal (non-deterministic) choice between P and Q

POQ external (deterministic) choice between P and Q

a: A — P prefixing of P with an event from A

STOP, RUN, and CHAOS are special processes. Process STOP never engages
in any evenl. RUN 4 is always willing to contribute an event from sct A:

RUN4=a: A— RUN .

CHAOS 4 is the most non-deterministic, but divergence-free, process communi-
cating in A:

CHAOS 4 = STOP M (a: A — CHAOS ).

A.2. Semantics
In the failures-divergences model, each process P is determined by its failure
set, FAILS(P), and its divergence set, Divs(P).

— each failure is a pair (s, X) where s is a finite trace of the process and X is
a set of events which it may refuse after s, and
— each divergence is a finite trace on which the process can perform an infinite

sequence of internal actions.

In the failures-divergences model of CSP, two processes are regarded as equal if
they agree in their failures and their divergences:

> —pp Q <> FAILS(P) = FAILS(Q) A DIvs(P) = Divs(Q)

When a process @ is more deterministic than another process P we say that P is
refined by Q. This relation is written P C @ and formally defined by

P C Q < FaiLs(P) 2 FAILS(Q) A Divs(P) 2 Divs(Q)
The semantics of the hiding operator in the failures-divergences model is given by
FaiLs(P\A) = {(s\4, X) | (s, X U A) € FAILS(P)} U
{(s,X) | s € Divs(P\A)}
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Divs(P\A) = {(s\4)t | s € Divs(P)} U
{(s\A)t| (VneNe(Juec A* e
#u > n A s"u € TRACES(P)))}
The set of all possible interleavings of traces s and t is s ||| ¢, defined as
sllit=t|lls
s|lIQ) = {s}
(@)s 1oyt = {(a)r | r € s[|(b)t} U{(b)T | r € (a)s|l| £}
The semantics of process interleaving is defined as
FAILS(P ||| Q) = {(r, X) | s,ter € s|||t A
(s, X) € FAILS(P) A (t, X) € FAILLS(Q)} U
{(w,X) | u € DIVS(P[||Q) A X C 5}
DIVS(P ||| Q) = {r'u| Is,ter € s|||t A
(s € DIvs(P) At € TRACES(Q)) A
t (s € TRACES(P) At € DIvs(Q))}

The set o l p SSlbl lnlel‘l a\‘". g races s i €€ On eve
I 1 3] 0 { eavings Oi t and t Wh h
: | I ' 1C agl’ n nts S

slS)E=1t](S]|s
SIS () = {s} (if s 1S = ()
(@s|[S]| ()t = {(a)r | r € s|[S]|t} (ifacS)
(@)s|[S][ ()t = {(b)r | r € (a)s|[S]|t} (faecSAbES)
(as |[S]] (b)t = {{a)r | € s](S]| (B2} U
{®yr|reays|(S)t) (fabgs)
The shared interface parallel operator between processes is defined
FAILS(P[S]| Q) ={(r,( X NY)U(X NS)u (Y NS)) |
Js,teres|[S)|tn
(s, X) € FAILS(P) A (t,Y) € FAILS(Q)} U
{(u, X) | u e DIVS(P|[S]|Q) A X C I}
Divs(P|[S]| Q) = {r"u | Is,t e r € s|[S]|t A
(s € DIvs(P) At € TRACES(Q)) A
(s € TRACES(P) At € Dws(Q))}
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Appendix B: Proofs

Proof of Proposition 2.8. If ¢r and tr' are two traces of P such that tr [ L =
tr' | L, then we can find a trace i of P||| RUNu such that

— " L=t |L=1r[L,and
— {7 and &' are both subsequences of tr'.

In other words, there exist u,v € H* such that ¢r' is both an interleaving of tr
and u, and one of ¢/ and v. If (P/tr)|||RUNu # (P/tr') ||| RUN g, with
~ the difference showing up after trace s, then there would be nondeterminism in
P||| RUN y after trace ¢r'’s. O -

Proof of Proposition 2.9. (1) Suppose that (P |[H]| CHAOS )\ H is determinis-
tic. Since we have

P\H = (P |[H)| RUN)\H 2 (P|[H]| CHAOSm)\H.

by standard properties of CSP (as RUNy 3 CHAOSy), P\H must equal
(P|[H)| CHAOS g)\H as deterministic processes have no proper refinements.
Thus P satisfies £Secy,(P). If it fails LSecy,(P) then P ||| RUN gy exhibits non-
determinism. Since certainly it is divergence-free, if follows that there must be
s € TRACES(P ||| RUN i) and a € L such that

(s,{a}) € FAILS(P ||| RUN ;) and s'(a) € TRACES(P ||| RUNg).

(The fact that a is in L rather than H is a consequence of the fact that P ||| RUN
never refuses an element of H.) As before, there are thus traces tr and try of P,
and u,v € H* such that

_ s is an interleaving of tr; and u, and one of try and v (from which it follows
that try [ L = tra | L);

- (try, {a}) € FALS(P);

- try’(a) € TRACES(P).

It follows that
(tro'(a)) | L € TRACES(P\H) = TrRACES((P |[H]| CHAOS g)\H),

and also that (tri [ L,{a}) € Faws((P|[H]| CHAOS )\H) (the process
CHAOS ; contributes the refusal of H that \H requires). But since try | L =
tr> | L this contradicts the assumption that (P |[H)| CHAOS y)\H is determinis-
tic. This establishes implication one way.

(2) For the converse, suppose P satisfies £Secy,(P) and LSecr(P). From the
former we know that (P|[H]| CHAOSy)\H is divergence-free, for the sets of
traces and divergences of P are the same as those of P |[H]| CHAOS g and it is
these that determine the divergences after hiding. If (P |[H]| CHAOS i)\ H were
nondeterministic, there must therefore be a trace t"(a) (necessarily in L*) such that
(t,{a}) is a failure. These imply the existence of traces tr and tr’ of P such that
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=iy =t
- (tr,{a}) € FALLS(P);
~ tr'(a) € TRACES(P).

Reversing the argument that produced very similar circumstances in the first half

of this proof quickly yields th: : SR T
dic[inn,p i 1 Yy yields that P||| RUN g is nondeterministic, giving a contra-

TSR



