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The standard approach to the specification of a secure system is to present a (usually state-hased)
abstract security model separately from the specification of the system's functional n:quirements, and
establishing a correspondence between the two specifications. This complex treatment has resulted in
development methods distinct from those usually advocated for general applications.

We provide a novel and intellectually satisfying formulation of security propel1ies in a process
algebraic framework. and show that these are preserved under refinement. We relate the results to a
more familiar state-based (Z) specification methodology. There are efficient algorithms for verifying
our security properties using model checking.
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1. Introduction

Security requirements of a computer system are regarded as critical properties
that demand the availability of mechanisms which control or protect programs
and data. Three issues in particular are related to the area of computer security:

(i) confidentiality (secrecy), the problem of protecting information from unautho-
rised disclosure; (ii) integrity, the protection of information from unauthorised
modification or destruction; and (iii) denial of service, the avoidance of major
reduction in system performance.

It is possible to rl<gard these security concerns as properties of ;,!/iHlI/lltiol/j/Oll'
within the system and base a specification of security on the absence of undesired
flows. The notion of non-interference [7] captures the idea that no information
can flow from one user to another if the system view of the second is completely
unaffected by actions of the first. We introduce a novel characterisation of non-
interference' based on the notion of deterministic views. This elegant formulation
of non-interference has, unlike others described in the literature, the property of

preserving security require!TIents under refinement.
The development of a secure system entails the construction of an abstract secu-

rity model in addition to the specification of the system's functional requirements.

'This paper is a revised version of [16]. The notation has been slightly modified to make it compatible
with that used in related publications [13. 14].
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The model is intended to capture [\bstractly the complete set of security require-
ments, which are derived from the system's (possibly informal) security policy,
and which form part of the total system requirements. Depending on the level of
rigour required during development, it is necessary to either informally establish
or formally prove a correspondence between the functional specification and the
abstract mode\.

The construction of the security model has been attempted [4, 10) with the same
methods as functional specilications, such as the Z notation [18). We suggest that
there arc good reasons to employ a process algebraic notation for this purpose.
Firstly, it is not the individual operations of the system, but the system as a whole
that is to satisfy critical properties. Secondly, insecurity is introduced not by a
single operation in isolation but by certain sequences of operations. And thirdly, it
turns out to be possible to express non-interference constraints directly on a process

representation of the system, thus eliminating the need for constructing a separate
abstract mode\.

We therefore propose a process-algebraic approach (based on esp [8)) to the

specilication of security properties. In particular the property of a process being
deferlll;//;.\.t;c is fundamental to the conditions we introduce for non-interference.

This property can be veri lied using standard algorithms on linite-state systems,
such as those implemented in the esp model checker FORI [12).

This paper is organised as follows. The following section defines the non-
interference conditions and illustrates some of their properties. The conditions

are generalised to systems with multiple users. Section 3 presents a functional
specilication of a file system that is intended to maintain confidential information.
A systematic way of mapping this specification into process algebra is given in
Section 4, and the particular conditions for non-interference in the process model
are clearly stated. The security flaw of the system is detected by automatic verifi-
cation in Section 5, and it is shown how the system can be made secure. Finally,

wc present our conclusions in Section 6.

2.1. Notation and conventions

We will employ the failures-divergencesmodel of esp, in which a process is
characterised by its failures and its divergences. We use the following notation to
refer to various observations of a process P.

a(P)
TRACES(P)

FAILS(P)

alphabet
traces
failures

set of events process P can engage in
set of linite sequences of events P can engage in
set of pairs (s, X) such that P can refuse events X
after trace s

set of traces after which P may behave chaoticallyDlvs(P) divergences

The semantics of the failures-divergences model of esp is detailed in, e.g., [8].
Of particular relevance below will be the concealment and interleavingoperators
whose formal semantics are given in the Appendix. Informally,P\A is a process
that behaves like P except that occurrences of events in set A are concealed.
A concealed event occurs automaticaIly and instantaneously as soon as it can,
without being observed or controlled by the environment of the process. The III

interleaving operator models asynchronous composition of processes: PIli Q is a
process whose trace forms an arbitrary interleaving of events from processes P and
Q. An event can be refused by the composition only if both component processes
refuse it.

We will interpret some processes Ui as users interacting with another process P
called the system. A user U of P is defined by its interface to the system. For
the moment, it is assumed that the system has exactly two users UJ/ and UL,
with a(P) = H U L, L =I-0, H =I-0, and H n L = 0. This latter condition of
disjoint set of actions available to the users is convenient since it prohibits direct
communication between users by synchronisation. \ .

These simplifying assumptions will be relaxed in Subsection 2.6 where the non-
interference conditions will be generalised to multi-user systems.

2.2. Ab~.tracting events

2. Non-interference and determinism

I FOR (Failurcs Divcrgcncc Refincmcnl) is a product of Formal Syslcms (Europe) Lld., 3 Alfred SI.,
Oxford OX I 3EH. UK.

In a system with two users Ull and UL we will typically want one user (Ud to
be completely unaware of what the other (UJ/) does. In other words, the system
view of UL should be unaffected by the presence or absence of events user UJ/
might engage in. If this is the case, we say that there is no flow of information
from UJ/ to UL, or that UH is non-interfering with UL.

In a sense, it is necessary to abstract away from the actual or potential behaviour
of Ufl and ensure that this abstraction cannot affect how the system appears to UL.
There are several ways this abstraction may be captured, e.g., by concealing or
obscuring Ufl'S actions. In esp, the concealment of events is expressed using
the \ hiding operator, and the obscuring of events may be achieved using III
interleaving.

There have been a number of esp formulations of non-interference, such as
Jacob's use of inference functions [9]. None of these approaches is based on
the notion of determinism, which has only recently been recognised as the funda-
mental concept underlying the various definitions on non-interference [13]. This
section will introduce some formal definitions of non-interference and analyse their

properties.
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RUNu = x: H -t RUNH

and combining it with the original system P by interleaving as P IIIRUN H.
This process can never refusc an l-I event since RUN JI is always prepared to

contribute onc in arbitrary places. An outside observer will not be able to tell
whether such an action came originally from P or from RUN H. As above, we

postulate that abstraction by interleaving does not introduce non-determinism.

Definition 2.2. A system P is said to be lazily secure in L if obscuring H events

by interleaving does not introduce non-determinism, i.e.,

The terminology of the conditions reflects the semantics of the operators in-
volved. The \ concealment operator is defined in a way such that hidden (internal)
actions occur instantly. Abstraction of events by concealment is eager in the sense
that the events cannot be prevented or delayed by the environment.

This situation contrasts with the usual interpretation of communications between
interacting processes. The standard interpretation of the occurrence of an event is
that the process and its environment have agreed on the action; it cannot occur
without mutual consent. The agreement of UH to engage in H events cannot be
assumed to be immediately forthcoming. Abstraction by interleaving P III RUN H

does not force events from P to happen, it simply prevents an observer from
knowing whether they came from P or from RUN H. This lack of urgency explains
why this is lazy abstraction. P III RUNH can only be deterministic if the set of
L events available before and after any l-I event of P are the same, since if the
same event is communicated by RUN H the state of P does not change. Lazy
abstraction is thus sensitive not only to the effects of different actions by UH, but
also to the choice between action and inaction.

The possibility of infinite sequences of l-I actions gives rise to the danger that
a system implementation will prefer them forever, thereby denying UL the oppor-
tunity to communicate - which would be a clear breach of security. The eager
security condition, which entails the assumption that H actions are never delayed,
is necessarily sensitive to this possibility as P\H introduces divergence.2 This is
illustrated with Example 2.6 below.

In some practical examples of system models, the applicability of the lazy con-
dition depends on the nature of the events concerned. If these are events which
occur instantaneously - such as a system message appearing on the user's screen -
then they are indistinguishable to UL from the ordinary internal actions of Q. As
long as these "signal" events are guaranteed to occur instantaneously there wi\l be
no refusal of a request by UL at the interface to the\system.

The H events can therefore be divided into two categories: signal events S
which are guaranteed to occur instantly, and events D which cannot occur without
the agreement of UH and may thus be delayed. In many systems, delayable events
take the form of inputs whereas the signals appear as output communications to
the environment (including users). '

Since S events resemble internal system actions we can abstract from them by
hiding while we still use interleaving for ordinary events. The combination of the
two forms of abstraction results in a mixed non-interference condition.

It is well-known that concealment and interleaving of events may introduce
non-determinism [8, pp. 113 and 120]. A non-deterministic system may, under
the same conditions, behave differently towards its environment, due to some in-
ternal, uncontrollable choice. Though this choice cannot be observed directly,
its external effects can, and thus provide clues on abstracted activities. The re-
sult of this abstraction will be that UH'S actions become choices which, though
not visibly directly to UL, may resolve non-determinism that is. The absence of
non-determinism under abstraction of UH 's behaviour guarantees the absence of
undcsired information \low towards UL.

The notion of determinism is formally defined as fqJlows. A process P is
deterministic if it is free of divergence, and if it never has a choice whether to
refuse an event it can engage in.

Pdet <=>DIVS(P)= 0!\ (tr-(a) E TRACES(P)=? (tr, {a}) 1-FAILS(P)).

A process lacking this property is.non-deterministic; under identical environmental
conditions it may behave differently in an unpredictable fashion.

2.3. NOII.illtctjercllce cOllditioll,I'

The conditions we propose arc all based on the absence of non-determinism
after the abstraction of "high-security" events, and are justified in detail in [13).
Concealment is the simplest method of abstracting from events in CSP which can
serve as a lirst attempt to dclinc the notion of non-interference.

Definition 2.1. A system P is said to be cagerly secure in L if concealment of H
events does not introduce non-determinism, i.e.,

[SecdP) <=>(P\H) det.

The terminology will become clear later on. Another way of abstracting events in
CSP is not by concealing but by obscuring their occurrence. This can be achieved
used another process

Definition 2.3. A system P whose H events can be partitioned into delay events D

and signal events S satisfies MSec~D,S) (P) if (P\S) IIIRUN D is deterministic.

LSecdP) <=> (P III RUNH) det.

2The lazy condition (where H actions may be subject to delay) assumes that the implementation is
sufficiently fair to avoid this insecurity.
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2.4. Examples

Example 2.4. Consider the system P with H = {hi, h2} and L = {l} defined

P = (11.14 l 4 P) 0 (11.24 l 4 P).

The system repeatedly offers a choice of a single H event followed by action l.
Concealing H permits UI, to engage in l whenever desired independently of the
(hidden) choice between hi and h2. Hence UL's view of P\H is deterministic and
£SecdP) holds.

We may doubt, however, whether the system should really. be regarded as secure
because the availability of l depends on the previous occurrence of an H action.
We have

(hi, l) E TRACES(P IIIRUN If), but ((hi), {l}) E FAILS(P I11RUN If)

because the hi event from RUN If has been interleaved with he empty trace from
process P. This means that P has in fact made no progress and will therefore
refuse to participate in l.

The lazy condition does not make the assumption that H actions occur so quickly
such that no refusal to communicate l may be recognised by UL. System P
therefore is eagerly but not lazily secure, reflecting a dependence of UL'S system
view on activity of the other user.

The event l) will be removed from the interface when UIf engages in either dl
or d2. Thus UIf will delay the system by communicating dl or d2 until a further
S action is taken. User UL will recognise that the system refuses a request II before
UH'S request is complete.

If we identify SI and S2 as signal events, then we can partition H in the obvious

way and apply the mixed security criterion, and find that MSec},D,S)(p) does
indeed hold.

2.5. Properties of conditions

From the eager and lazy conditions based on the notion of determinism it is
possible to derive conditions involving only observations of the process concerned.
Eager security can be paraphrased as stating that nothing which is observed in L
after trace tr will allow the H events which happened during tr to be inferred.

Proposition 2.7. If system P satisfies £SecdP). then P\H isfree of divergence,
alldfor allY two traces tr, tr' E TRACES(P).

tr rL = tr' rL =} (Pltr)\H =PD (Pltr')\H.

A corresponding consequence can be derived from the definition of lazy security.

Example 2.5. Let H = {h} and L = {ll,h}. In the system

Q = (h 4 Q) 0 (ll 4 h 4 Q) 0 (ll 4 Q)

there is the possibility of an infinite sequence of h actions. This potentiallyendless
delay of U[,'s actions is flaggedby the eager condition since, e.g.,

Proposition 2.8. If system P satisfi£:sL:SecL(P). thell P is free of divergence, and
for any two traces tr, tr' E TRACES(P),

tr rL = tr' rL =} (Pltr) IIIRUNH =FD (Pltr') IIIRUNH.

() E DIYS(Q\H),

so Q is not eagerly secure. However Q III RUN If is deterministic so that process Q
does satisfy the lazy condition.

Example 2.6. Let H = {dl,d2,SI,S2} and L = {ll,l2}. In the system

R = (ll 4 l2 4 R)

o(dl 4 SI 4 R)

o (rh 4 S2 4 R)

there is again the possibility of infinite pre-emption of L activity, so eager security
cannot hold. R also fails thc lazy condition since

(clI, ll) E TRACES(R IIIIWN 1l), but ((dl), {ld) E FAILS(R IIIRUN If)'

The approach of postulating determinism after abstraction of high-security events
can be generalized by analysing various models of UIf. THe framework in w\1ich
this can be done is provided by the condition

(P I[HJIU)\H det (I)

for a suitability chosen process U which has to synchronise with P on every event
in H. Process U can be regarded as a model of user UIf.

The user with the widest range of behaviour is one whose actions are unpre-
dictable and uncontrollable. Such activity is represented in CSP by a process
CHA OS defined as

CHAOSH = STOpn (x: H 4 CHAOSH)

displaying the most non-deterministic behaviour which is free of divergence. A sys-
tem with such a non-deterministic user will lack interference only in the case .of
both eager and lazy security.
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It is shown in [13 J that all three non-interferencc conditions (cager, lazy, and
mixed) can in fact be expressed in the form of (I). For eager security, the model
for user Un is simply identical to RUN H since P IIHII RUN H = P for all
processes P.

Corresponding formulations for lazy and mixed security require a more powerful
model of esp. In the infinite traces model [11] the failures-divergences represen-
tation of a process is augmented with its set of infinite traces. The model of
user UH required for lazy security is a process FINITE If which behaves just like
CHAOS H but without ever engaging in an infinite trace. This restriction prohibits
the occurrence of infinite H sequences resulting in divergence under concealment.

35

Proposition 2.11. Eager, lazy, and mixed security are preserved under refinement:

£SecL ~C(P)) 1\ P !; p' =>£SecL (C(P')),

.cSecL (C(P)) 1\ P !; P' => .cSecdC(P')),

MSeclD,S)(C(P)) 1\ P!; P' => MSeclD,S)(C(P')).

A number of additional results concerning the composition and decomposition of
secure systems may be derived [13, 14]. One such result, proved in detail in [14]
is that a system P may be decomposed into two non-interacting parts if it is lazily
secure with respect to two disjoint alphabets.

A, W. Roscoe et al. / Non-inteiference through determinism

Proposition 2.9. A system P sati$fies£SecdP) and .cSecLCP) if, and only if, the
pmcc,\',\'(1' IIIIJIClIAOSII )\H is deterministic.

£SecdP) {=}(P IIIJII /WNn )\IJ dct,

.cSecdP) {=}(p IIH]I FINITEn )\H det,

MSec~D,S)(p) {=}(P IIHII (RUNs IIIFINITED))\H det.

Proposition 2.12. Let A, B be disjointalphabets. .cSecA(P) and .cSecB(P) hold
of a system if, and only if, there are two deterministic processes PA with o:(PA) =
A and PB with o:(PB) = B such that P = PA 110]1 PB.

Further properties of our non-interference conditions as well as the proofs of the
propositions in this section may be found in the appendix and in [13, 14].

2.6. Generalisation

Proposition 2.10. Eaget; lazy, alld mixed security can all be expressed in the gen-
eralfortll of (J) as follows.

These various 'users' suggest a more general approach to security specification: for
a particular context, choose a process U which characterises all possible behaviours
of UH under which it is expected that confidentiality will be maintained. Usually
this will be all its behaviours, but it is possible to imagine other circumstances,
for example if the system P represents a mail system where it is allowable for
a high-security lIscr to send a mcssage to a low-security one, we might expect
10 maintain conlidentialily so long as no such messages are sent. (This typc of
propcrty is known as cOllditiollal non-interference [7].)

The more non-detenninistic the abstract model U the stronger is the equivalent
security condition. When a more deterministic process is substituted for U, the
propcrties of esp refinement guarantee the preservation on non-interference.

More precisely, if P is a system component in context C, then refinement of P
- replacing it with a less non-deterministic component - preserves determinism of

the original system:

We will now generalise the determinismconditionsfor multi-usersystems. If F
is the system whose non-interferenceproperties we attempt to establish, the systemmodel can be described as

SYSTEM = Users /[SIIF, where Users = Illi>o Ui

and S is the users' interface (common events) to the system. It is assumed that there

is a security classification associated with each user. Let CLASS be the partially
ordered set of these classifications. The total function cl: Users -t CLASS assigns
onc classification to each uscr process. A further assumption is o:(Ud n o:(Uj) = '"whenever cl(U;) =I cl(Uj).

The function low: CLASS -t /P'o:(SYSTEM) yields the set of events that
are regarded as "Iow-level" on a particular,level of security classification. It isdefined

low(c) = U{o:(Ui) I cl(Ui) :::;c}.

C(P) det /\ P !; P' =>C(P') det.
The non-interference conditions of Subsection 2.3 hold for a multi-user system

if they hold on each security level of the system.

Definition 2.13. A multi-user system P eagerly and (respectively) lazily-secure if,

Vc; E CLASS. £SeClo,u(c;)(P), and

Vc; E CLASS. .cSeclow(Cj)(P).

It is equally a consequence of this fact that refining P preserves the determinism
or (P IIHIIU)\H. and that therefore each of our non-interference properties is
preserved under refinement. This is a result which may be exploited in system
dcvelopmcnt or maintenance.
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In a realistic system it is typically the mixed non-interference condition that requires
verification on each security level, as will be illustrated in the following case

study.

where the class component relates to the level of security of the stored data. Each
file initialised with the level of clearance at which the file is created.

[nit
File'
clear? : CLASS

3. A "secure" file system
class' = clear?
data' = NULLThis and the following section will illustrate the framework in which our non-

interference conditions can be applied. The example is that of a file system in
which confidential data is to be maintained.

It is widely accepted that a formal specification can i';-erease the level of assur-
ance that a system will meet its security requirements [5). In fact governmental
standards for the development of secure systems mandate the use of formal meth-
ods and proof. The Z notation 118) is particularly suited for this task since (i) it
has a well-delined semantics; (ii) it has been sucessfully employed in industrial
scale software development; and (iii) it has become increasingly popular for the

specification and verification of secure systems [3, 4, 10).
We begin the specification of the file system by introducing' some basic types.

The set of users of the system is represented by type USER, each of which holds
an associated security classification from the set CLASS. FID represents the set
of file identifiers, and DATA refers to the set of possible data that may be stored in
a file. This type contains a special value NULL representing invalid data. These
are the basic types we will use

We follow a standard convention of decorating inputs with ?, outputs with !, and
states after completion of the operation with a prime '. Unprimed variables or
schemas refer to states before the operation.

Two operations are provided on files: reading stored data, and writing new data,
provided the file access is carried out with the appropriate clearance. Reading is
permitted only when the operation is carried out with appropriate access permission
clear? ;;: class, in which case stored data is output as data!. The notation S File
indicates that reading a file does not change its state.

RdO
S File
clear? : CLASS
data! : DATA

[USER, CLASS, FID, DATAl
clear? ;;: class
data! = data

There is a security classification associated with each user. We use a global func-
tion cl to obtain the appropriate class by supplying it with a user identification. It
is declared as a total function; there cannot be users without classification.

I cl: USER --t CLASS

Storing new data in a file is carried Qut ~ith a WrO operation which is permitted
only if the user clearance is equal to the file classification. The L1File schema
component indicates that writing data changes the file state; the input data new?
is stored in the data component of File.

File
class: CLASS
data: DATA

WrO
L1File
clear? : CLASS
new? : DATA

3.1. File model

Each file has the structure3

clear? = class = class'
data' = new?

J III Z, formalllotation is separated from informal descriptions by so-called schema boxes. A schema
contains a number of declarations and, if there arc any constraints 011these declarations. a separatillg
line followed by appropriate predicates. Schemas arc used to represent structured state as well as

operations on structures.

To indicate the success or failure of an operation, we define the system's response
as type

RESP ::= ok Ifail.
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Each operation on a file is accompanied by an indication of whether it has' suc-
ceeded. The output message is defined by the (horizontal) schemas

SncCC'.ss;; [1'esp! : RES? Ires])! = ok],
Failure;; [1'CS]!!: RES? I reST)!= fail].

Component files is declared as a partial function from file identifiers to files. This
means that no two files can have the same name. The system initially contains no
files:

'FInit ;; [FileSystem' I files' = 0].

We do not give the user any
functional error or a security
information flow.

If a request for file access is carried out without valid clearance the operation
fails, and the file status remains unchanged (E File). ''fhe case of invalid read
access is described as

indication of whether a failure was caused by a
breach, in order to avoid a potential channel of

In addition to the initialisation occurring when a file is created at the system level,
we want the operations of reading and writing a file to be available at the system
interface. This is a achieved by promoting the schemas Init, Rd, and Wr with
the aid of two "framing" schemas:

NoRtlAccess
EFile
Failm'e
clear? : CLASS
da/.(/.!: DATA

pI

L1FileSystem
file? : FID
user? : USER

clear? = cl( user?)
files' = files El){file? t--t0 File'}

clem'? < class
data! = NULL

The corresponding error condition for writing is

No WrAccess
E File
Failm'c
clear'! : CLASS

p2
pI

file? E domfiles
(JFile = files (file?)

clear'! =1=class

The promoted 'operations will require both a file name (file?) and a user identi-
fication (user?) as input. The ~ser's classification is then the clearance at which
the file operation is carried out. The three operations available at the interface are

Rd;; (RdO A Success) V NoRdAccess,

Wr ;; ( WrO A Success) V No WrAccess.

If the request is carried out with appropriate clearance the system reports with ok,
otherwise the user just receives a fail message and the file remains unaltered.

CreateO;; 3File' . (pi A Init),

ReadO ;; 3L1File.(p2 A Rd),

WriteO;; 3L1File. (p2 A Wr).

The total read and write operations are Rd and Wr specified as

It is necessary to ensure that no operation is carried out on files which do not exist.
This error condition can occur if the user supplies an invalid file identifier.

FileSystem

files: FID -* File

UnknownFile
S FileSystem
Failure
file? : FID

file? f/:domfiles

3.2. File system

Our file system is given by
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Similarly, a request for file creation cannot succeed if the suggested name has
...ready been used for another file. .

FileE:cists

:=FileSystem
Failure

file? : FID

file? E dom filcs

The total operations available at the file system interface are .then given by

Create::;: (CreateO /\ Success) V FileExists,

Rmd::;: RetuLOV UnkuownFile,

Write::;: WriteO V Unkno'UJnFile.

Wc suggest that a security analysis is best carried out on a process algebraic
representation of the system. This representation may be regarded. as a security
model [5) which can in fact be derived by translation. It is therefore unnecessary
to engage in the formidable task to prove a correspondence between model and
specification. In the coming section we map the functional specification of the file
.:ystem into CSP and state the non-interference conditions that require verification.

~" Z into CSP

The Z specilication may he translated into CSP according to the technique
ckscribed in [20). The theoretical basis for this work may be found in [19].

First wc interpret the Z specification as an action system [2] whose state is
specified by File. It has two actions corresponding to the operations Rd and Wr.
However, each of these operations also has an output, and we must be careful to

separate the two parts of the operation and associate an action with each, since
wc cannot regard input and output as happening simultaneously. When a user has
invoked an operation, but has not consumed its output, then the system will do
nOlhing else while that output is pending. When no output is pending, all operation
:lclions arc enabled.

This interpretation of a Z specification is informal (albeit systematic), but it
lilIes correspond to the intuitive meaning given to Z specilications (see [18], for
example).

Consider the WT' operation. We must separate it into two parts: the first part
~L)nsumes the input and then siores its output in the state; the second part waits
fJr the opportunity of delivering its output. Define a new free type that is either a
response or nothing:

RES? + ::= nullr'esp I outreslJ«RES?))

" , ~~.~.. .'-"- ' . ~ ~ .~
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and augment the state of a file with a component that contains the pending output
(if it exists)

File +
File

wrpend : RESP +

The first part of the operation is as follows:

Wr+
LlFile+
clear? : CLASS
new?: DATA

wrpend = nullresp

3resp! : RES? I wrpend' = outresp(resp!) .Wr

and the second part is

Wr_

LlFile +
:=File

resp! : RES?

wrpend =F nullresp
resp! = outresp~ (wrpend)
wrpend' = nullresp

j
I

I

I

I

I

I

I

!r,

We can prove that the only change we are making to Wr by splitting into two is
to delay its output:

I- Wr = 3wrpend, wrpend' : RESP + . Wr+,~ Wr_

According to [20), we can now translate our specification of the write operation
into two actions.

wr? clear?new /\ wrpend = nullresp -+ Wr+

wrout! (outresp~ (wrpend» /\ wrpend =F nullresp -+ wrpend := nullresp

Thus, upon receipt of the communication of a clearance and some new data, then,
providing that there is no write-output pending, the Wr + operation is performed.
Output may be transmitted whenever it is pending.

We can make similar transformations for the other operations.

,':;
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The actions may now be embed.ded in a eSP-framework process. We now have
a esp process which is formally equivalent to the File abstract data type.

File = init?class --+ Filc(class, NULL, (null1'csp, mdldata), nullresp)

file has an associated name and classification, and may contain arbitrary data. The
process File models a file waiting to be initialised.

Pile = init?file?class --+File(file, class, NULL)

A file after initialisation may be read or written to.

Filc(class, dal.a, 1'Ilpcnd, wrpcnd) =
if 1'dpcnd = 1t1Lllrcsp!\ wrpend = rmllresp
then

rd?clear --+
if clear ~ class
then File (class, data, (outresp( ok), outdata( data)), wrpend)
else File ( cla.ss, data, (01tt7'csp(Jail), outdata( NULL)), wrpcnd)

o 1/J1''1dea.r?nc1lJ --+
if clea1'= clCtSS

then File (class, new, rdpend, outresp(ok))
else Filc ( class, data, rdpcltll, outreS1!(Jail))

else
if rdpcnd f= nullresp
then rdout! outresp~ (rdpend)

--+ File(class, data, (nullresp, nulldata), wrpend)
else wrout! outresp~ (wrpend)

--+ File(class, data, rdpend, nullresp)

Pile (file , class, data) = Rd(file, class, data) 0 Wr(jile, class, data)

The read operation is implemented by process Rd as

Rd(file, class, data) = rd.file?clear --+
if clear ~ class

then rdout .file! ok! data --+ File (file, class, data)
else rdout.file!fail!NULL --+ File (file, class, data)

Storing new data in a file is realised with process

Wr(file, class, data) = wr.jile?clear?new --+
if clear = class

then wrout .file! ok --+ File (file, class, new)
else wrout.file!fail --+File(file, class, data)

The total pool of files is given by

FILES = 1110:;;;i<nFile.

Thc File process may now be transformed using the laws of esp, and, if desired,
the state variables containing the pending outputs elided.

In [201. the connection is made between the technique of promotion in Z, and
the use of subordination or the means of sharing through interleaving. In this way,
the tile system can be created as a system of esp processes.

The structure or the resulting esp implementation is illustrated in Fig. I.
FILES will be a shared pool of tiles accessible through the interface FSYS. Each

4.1. The system interface

It is not possible to conjoin FILES with the set of user processes directly because
users must be protected from a number of functional errors, such as reading a file
which does not exist. To this purpose, we will provide a system interface process
FSYS which manages access to the individual files.

S1

a(FSYS) = So U SI U S2
I

So = {create, createout, read, readout, write, writeout}

SI = {init, rd, rdout, wr, wrout}

S2 = {clear}

FSYS holds state variable files, the set of current file names

FSYS(files) = Create(files) 0 Read(files) 0 Write(files)

The three services available at the interfaceare implementedwithprocesses Create,
Read, and Write, respectively.

Useri

Userj

----....-.---------------------------------------......,..
FileSystem

FSYS

: I I I FILES.,..,...
~ ~

Fig. I. The file system implemented by communicating processes.
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Write (files ) = writc?user?filc?new ~

if file E files
then clear. user? class ~ wr .file! class! new ~ wrout.file?resp ,

~ writeolLt.lLscr.file!resp ~ FSYS(files)

else writeolLt.lLscr.file!fail ~ FSYS(filcs)

It is convenient to partition the events at the system interface into "delay" and
"signal" events on each level of user classification (except the top level).

H2d = {create.lLser.file, read.user.file, write.user.file.data

I user E {Lisa}}

H2s = {createout. user. resp, readout. user .file. resp. data,

writeout. user .file.resp Iuser E {Lisa}}

HId = {create.user.file,read.user.file,write.user.file.data

I user E {Lisa, Mari}}

HIs = {createout. user. resp, readout. user .file. resp. data,

writeout.user.file.resp Iuser E {Lisa, Mari}}

The file system satisfies eager security if

Cr'eate(files) = cr'catc?user-?file ~

if file 1-files
then clear.user?class ~ init!file!class ~ createout.user!ok

~ FSYS(files U {file})
else createout. user !fail ~ FS YS (files)

Read (files ) = rcad?1tser-?filc ~

if file E files
then clear. user'? class ~ r-d.file!class ~ rdout.file?resp?result

~ readout.user.file!resp!result ~ FSYS(files)

else r'eadout.lLser'.file!fail!NULL ~ FSYS(files)

(FileSystem \ (H2d U H2s)) det 1\ (FileSystem \ (H 1d U HIs)) del.

Process CLEARANCE provides the appropriate classification of a user when

required.

CLEARANCE = (Oclc(tr'.u!(cl(u)) ~ CLEARANCE)

for all 11.E USER

The complete file system is given by parallel composition of the interface pro-
cess, the file pool, and the clearance process, with intermediate channels cOn-
cealed.

FileSystem = «FSYS(0) \lSdl FILES) I[S211CLEARANCE)\SI U S2

The file system is lazily secure if

(FileSystem IIIRUN(H2duH2s») det 1\ (FileSystem IIIRUN (HldUHls») del.

The file system satisfies the mixed security property if

« FileSystem \H2s) II1RUN H2d) det 1\

«FileSystem \HIs) III RUN Hid) del.

It turns out that none of these conditions is met - i.e., that the system contains
undesired information flows. Since it may not be obvious that the conditions fail
to hold (and why not), we employ a verification tool.

5. Automated verification

4.2. Sccurity specificatioll

Any particular instance of the tile systcm can bc subjected to the security con-
ditions prcscnted in Section 2. Wc will consider the case of three users with the
following classifications.

The effort of formulating the eager/lazy/mixeq non-interference conditions would
be futile without a method of verifying them. Luckily, the absence of non-
determinism on which the conditions are based can be automatically verified using
standard algorithms on finite-state systems. We show that the CSP proof tool FOR
can be used to complete the security analysis.

5.1. FOR

USER
Lisa
Mari
Nina

CLASS

3 (highest)
2
I (lowest)

The FOR tool [12] has been originally designed to verify behavioural CSP spec-
ifications, in particular refinement relations between processes. These refinement
checking capabilities are employed to decide whether a given process is determin-
istic using the following algorithm:
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Pdet <=>P =FD Q.
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the same name; this feature is a security flaw since a user who attempts to create
a file (with identifier id say) and fails has learned that a file named id of higher
classification exists. This clear breach of non-interference is reflected in the failureof the.mixed condition.

The question remains how the flaw can be overcome. One idea may be to
change the Create operation so that a request of file creation always succeeds.
This approach is probably unsatisfactory if creation of a file which already exists
results in stored data to be lost. A more promising approach is to somehow asso-
ciate classifications with file identifiers in order to guarantee that files on different
security levels have different names.

A simple way of implementing this is to provide pairwise disjoint sets of iden-
tifiers for the different levels. For the system in Section 4 one might consider
partitioning the set FID into three sets (say)

A. Iv. Ro.rcoe et al. / Non-interference through determini.rm

I. Search through the state space of P, resolving all non-determinism that is
encountered. In a "stable'" state (in which internal progress is impossible)
a single representative for each available action is selected, whereas in a
state where internal actions are possible we chose one of these arbitrar-
ily. This search either finds a divergence of P (in which case it is clearly
non-detenninistic) or yields a deterministic process Q that refines the origi-
nal P.

2. Use the refinement checker to confirm whether Q !; P. The check succeeds
if, and only if, P is detcrministic.

The algorithm is justified by the fact that the deterministic processes are maximal
in the failures-divergences model of esp, and are therefore incomparable. Thus,
for some arbitrary deterministic refinement Q of P,

Checking the security specification of Subsection 4.2 using 'FDR confirms that
the lite system is neilher eagerly nor lazily secure. There is no eager security since
there is the danger of inlinitc Lisa and Usa/Mari activity, thus pre-empting any
progress of the low-level users. This danger is detected by recognising divergence
of both processes whose determinism was to be verified. The reason for lack of
lazy security lies in the basic structure of the system interface: a menu of services is
offered to users with various classifications, and a choice of service by a particular
user is followed by a system response on the same security level.

This structure resembles that of the (much simpler) process R of Example 2.6
which was already observed to be insecure under the eager and lazy conditions.
As was motivated there, these "pure" conditions are inappropriate for a system
whose interface has a request-response type structure (like R or FileSystem), and
it becomes necessary to partition events into delay and signal events in order to
apply the mixed condition.

However the mixed condition fails to hold as well, which must be of serious
concern to the system designers. FDR flags the security breach as follows:

(cl'catc .lisa. id, creatc. nina. id, createout. nina. ok)

E TRACES((FilcSystem\Hls) IIIRUN Hid)

FID) = {a,b}, FID2= {c,d}, FID)= {e,!},
so that for al1i E CLASS

5.2. Making thefile system secure

FID = UFIDi.

Doing so entails the re-definition of the Create operation which now needs to
confirm whether the use of a particular identifier is valid with regard to the user'sclassification:

Create (files) = create?user?file -+
if file <I-files
then clear. user? class -+

if file E FID class

then init!file! class -+ createout. user! ok -+ FSYS(files U {file})
else createout. user !fail -+ FS YS (files)

else createout.user!fail-+ FSYS(files)

Verification of the mixed security condition ~ow shows that the mixed security
condition is satisfied, provided that the number of files available through the system
is equal to or exceeds the combined total of identifiers for all levels of classification.So if

since event t:1'cal.c.lisa.id has been contributed by RUN /lid. We also have

((crcatc.lislL. id, cr'cate. nina. id), {createout. nina.ok})

E FAILs((FileSystem\Hls) IIIRUN Hid)

FILES = 1110(;<"File

since crcatc.lisa.id could in fact have been an actual user request for file creation.
The file system, however, was specified to prohibit the existence of two files with

we require n ~ size (FID). Without the proviso the file system does not pass the
mixed condition, again because an attempt of the file creation may fail. This time
the security breach is caused by the potential exhaustion of the pool of availablefiles.
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6. Conclusion

This paper presents process algebraic specifications as a practical framework for
[he development of systems with security constraints. The approach is illustrated
with an example of a file system intended to maintain secret data, but in fact our
results apply equaIly to systems with security concerns other than confidentiality.
This is a consequence of defining general non-interference conditions which require
[he system view of particular users to be unaffected by the actions taken by others.

Our non-interference conditions are based on the notion of deterministic views.

This elegant characterisation of secure systems has only recently been recognised
as the fundamental concept underlying various definitions of ;;on-interference, such
as those surveyed in [6J. Although these alternative definitions are cast in rather
different notation without employing determinism, Roscoe [13] demonstrates that
many are either straightforward consequence of, or closely related to, the conditions
for eager, lazy, and mixed security. For example, our lazy property .cSecLCP)
corresponds precisely both to Graham-Cumming's own non-interference property
and those of AIIen [I] and Ryan [17] for systems whose overaIl behaviour is
deterministic (as opposed 10 the abstractions uscd in formulating our properties).
A signilicant advantage of our conditions in comparison to others is the preservation
of non-interference under refinement, thus eliminating the potential compromise of
security during development. A detailed discussion of this phenomenon, and an
explanation of why it is desirable, may be found in [13].

The general framework envisaged for the development of secure systems faIls
into two parts: functional specilications of the system using state-based notations as
for general applications, foIlowed by an analysis of non-interference properties of a
process-algebraic representation of the system. The main advantage of this method
is in avoiding the complex treatment of establishing a correspondence between the
specification and a separate generic security model. In contrast, the mapping of
[he specification into process algebra can in many cases be carried out by direct
translation (tool support for this task is, however, at present not available). Process
algebras such as CSP based on possible sequences (traces) of events provide an
ideal notation for non-interference analysis since they naturally incorporate the
notion of (non- )determinism, thus permitting the application of the conditions of
Section 2. These conditions can then be automatically verified using a currently
available proof tool.

Initial experience with the CSP model checker FDR [121 shows that a security
analysis as illustrated in Section 5 can be carried out within minutes. This result
propounds the hope that the verification approach will scale up to systems of
realistic size. The size of problem we can deal with will benefit from the proposed
development [12] of FDR to incorporate implicit model-checking techniques such
as the hierarchical compression of intermediate state-spaces. Verification speed
will further increase by the exploitation of behavioural independence of processes
from particular values of data communicated. This property of data-independence

""~':I..,.,;.,.,... ~ r~.~..._.........
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[15] has already shown promise in significant reduction of state spaces as weIl as
the induction of properties of arbitrary data types based on finite checks.

Future work is required to formalise the mapping of state-based specifications
to process -descriptions. The techniques of [19, 20] still have to be extended to
be applicable to specifications with complex semantics, and utilised to provide
tool support for the translation into process algebra. We intend to apply these
techniques and the framework outlined in this paper in a case study of a large-scale
secure system. A further avenue of research is to explore potential applications
of our determinism-based conditions for non-interference on systems with critical
requirements other than security, such as in the areas of safety-critical systems,
fault tolerance, and feature independence.
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aP

Pit
P I[AJIQ
PIIIQ
pnQ
POQ
n.: A ---?P

alphabet (possible events) of process P
process P after it has engaged in trace t
parallel composition with synchronisation(only) on events A
parallel interleaving(without synchronisation)
internal (non-deterministic)choice between P and Q
external (deterministic) choice betwee,PP and Q
prefixing of P with an event from A

DIVS(P\A) = {(s\A)'t 1sE DIVS(P)} u

{(s\A)'t I (V'nE Ne (3u E A* e

#u> n /\ SAUE TRACES(P)))}

The set of all possible interleavings of traces sand t is sillt, defined as

slllt=tllls

slll()={s}

(a)'s III(Wt = {(arr 1rEs I11(Wt} U {(Wr IrE (ars IIIt}

The semantics of process interleaving is defined as

FAILs(PIIIQ) = {(r,X) 13s,ter E slllt/\

(s,X) E FAILS(P)/\ (t,X) E FAILS(Q)}U

{(u, X) I u E Dlvs(P II1Q) /\ X ~ L}

Dlvs(P IIIQ) = {rAuI3s, te rEs III t /\

(s E Dlvs(P) /\ t E TRACES(Q)) /\

(s E TRACES(P) /\ t E Dlvs(Q))}

The set of all possible interleavings of traces sand t which agree on events S
is s liS]! t, defined as

s liS]! t = t liS] 1s

s IISII () = {s} (if s rS = ())

(a)AsIISII(Wt = {(arr IrE s IISII t} (if a E S)

(ars I[SII(Wt = {(Wr 1r E (ars liS] 1t} (if a E S /\ b rj. S)

(ars IISII (Wt = {(arr IrE s IISII (Wt} U

{(Wr IrE (ars IISIIt} (if a, b rj.S)

The shared interface parallel operator between processes is defined

FAILS(P IISII Q) = {(r, (X n Y) U(X n S) U (Y n S)) I

3s, t erE s IISIIt /\ .

(s, X) E FAILS(P)/\ (t, Y) E FAILS(Q)}U

{(u, X) Iu E DIVS(P IISJIQ) /\ X ~ L}

Dlvs(P IISIIQ) = {rAuI3s, t erE s IISII t /\

(s.E DIVS(P) /\ t ,E TRACES(Q~)/\

(s E TRACES(P) /\ t E Dlvs(Q))}

Appendix A: esp reference

A.J, Processes

STOP, RUN, and CHAOS are special processes. Process STOP never engages
in any event. RUN A is always willing to contribute an event from set A:

RUN A = a: A ---?RUN A.

CIIA OSA is the most non-deterministic, but divergence-free,.process communi.
cating in A:

CIIAOSA = STOP n (a: A ---?CHAOS A)'

A.2. Semantics

In the failures-divergences model, each process P is determined by its failure

set, FAILS(P), and its divergence set, DIVS(P).

_ each failure is a pair (s, X) where s is a finite trace of the process and X is
a set of events which it may refuse after s, and

_ each divergence is a finite trace on which the process can perform an infinite
sequence of internal actions.

In the failures-divergences model of esp, two processes are regarded as equal if
they agree in their failures and their divergences:

P =FD Q {:>FAtLS(P) = FAILS(Q) /\ Dlvs(P) = DIVS(Q)

When a process Q is more deterministic than another process P we say that P is
refined by Q. This relation is written PG Q and formally defined by

PG Q {:>FAILS(P) ;2 FAILS(Q)/\ Dlvs(P) ;2 Dlvs(Q)

The semantics of the hiding operator in the failures-divergencesmodel is given by

FAILS(P\A) = {(s\A, X) I (s,X U A) E FAILS(P)}U

{(s, X) I s E DIVS(P\A)}
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Proof of Proposition 2.8. If tr and tr' are two traces of P such that tr rL =
tr' rL, then we can find a trace tr" of P III RUN H such that

- tT." rL = tr' rL = tr rL, and
_ 1.1'and tT' are both subsequences of tr".

In other words, there exist 1t.,v E H* such that tr" is both an interleaving of tr
and It, and one of tr' and v. If (Pjtr) IIIRUNH =1=(Pjtr') IIIRUNH, with
the difference showing up after trace s, then there would be nondeterminism in

P III RUN H after trace tr"'s. b

- tr rL = tr' rL = t;
- (tr, {a}) E FAILS(P);

- tr"(a) E TRACES(P).

Reversing the argument that produced very similar circumstances in the first half
of this proof quickly yields that P III RUNH is nondeterministic,giving a contra-
diction. 0

Appendix B: Proofs

Proof of Proposition 2.9. (1) Suppose that (P I[H]I CHAOS H)\H is determinis-
tic. Since we have

P\H = (PI[HJI RUNH)\H;;;) (PI[HJI CHAOSH)\H,

by standard properties of CSP (as RUN H ;;;) CHA OS H), P\H must equal
(PI[H]I CHAOSH)\H as deterministic processes have no proper refinements.
Thus P satislies £SecdP). If it fails £SecL(P) then P IIIRUN H exhibits non-
determinism. Since certainly it is divergence-free, if follows that there must be
sE TRACES(p IIIRUN H) and a EL such that

(s, {a}) E FAILS(P IIIRUN H) and s'(a) E TRACES(P IIIRUN H)'

(The fact that a is in L rather than H is a consequence of the fact that P III RUN H

never refuses an element of H.) As before, there are thus traces tr. and trz of P,
and It,v E H* such that

_ s is an interleaving of trl and It, and one of trz and v (from which it follows
that trl rL = trz rL);

- (tn, {a}) E FAILS(P);
- tT2-(a)E TRACES(P).

It follows that

(tT'z-(a)) rL E TRACES(P\H) = TRACES((PI[HJICHAOSH)\H),

and also that (trl r L, {a}) E FAILS((PI[HJI CHAOSH)\H) (the process
Cl/A OS II contributes the refusal of H that \H requires). But since trl rL =
tTz rL this contradicts the assumption that (P I[HJI CHAOS H)\H is determinis-
tic. This establishes implication one way.

(2) For the converse, suppose P satisfies £SecLCP) and £SecL(P)' From the
former we know that (P I[HJI CHA OS H) \H is divergence-free, for the sets of
traces and divergences of P are the same as those of P I[HJICHAOSH and it is
these that determine the divergences after hiding. If (P I[H]I CHA OS H )\H were
nondeterministic, there must therefore be a trace f(a) (necessarily in L*) such that

(t, {a}) is a failure. These imply the existence of traces tr and tT' of P such that


