1

A

Veritying an infinite family of inductions
simultaneously using data independence and

FDR*
S. J. Creese and A. W. Roscoe

Oxford University Computing Laboratory
Wolfson Building, Parks Road
Oxford OX1 3QD, UK
{Sadie.Creese, Bill.Roscoe}@comlab.ox.ac.uk

March 7, 1999

Abstract

We present a technique for formally establishing results for scalable
systems, such as distributed systems and communication protocol net-
works, where the results are independent of the system’s parameters.
Example parameters are network topology, size and buffer capacity.
The technique combines the use of the process algebra CSP to model
systems and their specifications, and the FDR tool to help reason
about them. We give examples of the techniques implementation on
a simple distributed system and a communications protocol involving
the multiplexing of channels.

Keywords: process algebra, verification, communication protocols,
induction, data-independence, model checking.

Introduction

n important current area of research in the verification of distributed sys-

tems is scalability: how do we handle the verification of realistic sized sys-

*The work reported in this paper was supported by DERA Malvern and the US Office

of Naval Research

tems, and families of system under parameterisations that lead to unbound-
edly large state spaces? Two of the best known approaches to this problem
are induction and data independence. This paper explores the interface be-
tween the two — specifically, by developing a proof method which combines
them. What we actually show is how data independence can allow a finite
automated proof which establishes an infinite number of inductions simulta-
neously.

The technique is implemented using the process algebra CSP[9, 14] to
model systems, and the FDR model checker tool [7] to help reason about
them, though we have no doubt that our ideas would work in other contexts as
well. CSP models a system as a process which interacts with its environment
by means of atomic events. A series of semantic models facilitate the capture
of a wide range of behaviours including safety and liveness properties. The
theory of refinement in CSP allows correctness conditions to be en-coded as
refinement checks between processes. If A C B is true (where C represents
refinement) then the behaviours of B are contained within the behaviours of
A. In particular, refinement is transitive; if P C Q and Q C R this implies
that P C R.

FDR takes a machine-readable dialect of CSP as its input syntax', and
can be used to check refinements as well as determinism, deadlock freedom
and livelock freedom of processes. FDR performs a check by invoking a
normalisation procedure for the specification process, which represents the
specification in a form which the implementation can be checked against
using simple model-checking techniques.

This paper is organised as follows: we will briefly survey existing work
on induction and the theory of data independence we will be using; we then
present the method and give a detailed example of its implementation; we
discuss a further example of a communications protocol for channel multi-
plexing; finally, we present our conclusions and discuss its general applica-
bility.

2 Related Work

A number of authors have demonstrated that induction is a method which
can be successfully used in the analysis of distributed systems. Kurshan
and McMillan [11] and Wolper and Lovinfosse [18] published similar work
using structural induction to reason about systems with unboundedly large
numbers of identical components. Both methods require an invariant to
be defined and rely on proof obligations which correspond to the base case

! Appendix A contains a summary of the CSP relevant to this paper.

Figure 1: Road with a narrow section

and inductive step (using model checkers to discharge them). In [11] the
method is demonstrated on an algorithm for maintaining the consistency of
multiple copies of data object in a distributed system. In [18] two examples
are given: a buffer composed of identical elementary buffers and a version of
the distributed mutual exclusion problem (similar to that in [11]).

The following example is a good illustration of this basic induction method,
in particular because it demonstrates the power of structural induction to
cover a wide variety of network topologies, as alluded to in [3]. Figure 1
shows a road layout allowing visitors to drive around a monument?. All cars
enter the road at A and pass around the loop until they exit at B. Two adja-
cent rocks mean that one stretch of road is too narrow for cars to pass each
other — it is single-lane there and two-lane or one-way elsewhere. To prevent
deadlock in the road system a constraint has to be applied to the network,
namely that out-going cars (i.e. rightward in the picture) are given priority
over in-coming ones, in the sense that an in-coming car is not allowed to
enter the single-lane segment C until segment D is empty.

It is possible to model the actual road network seen in Figure 1 to show
that the constraint described makes the network deadlock-free, and FDR will
prove this in a few seconds. However, this only establishes this property for
the particular network modelled, and in no way implies that any other net-
work topology is also deadlock-free. This more general goal can be achieved
using structural induction.

To perform a structural induction a range of structural rules are required
which describe how the various components have to be connected. In this
case these components are the CSP processes representing the lane segments
of type A, B and CD (it is necessary to constrain the appearance of segments
of type C to only occur with segment D attached, as described above). The
rules describe how these lane segments should be connected, and also how two

2This example is based on an exercise in [14].

deadlock-free road networks can be connected to each other. For example:
(1) “We can have a single road segment of type A” (this is the base case).
(i1) “The road network can have segments of type A connected to its in
channel” (an inductive step).

The rules are translated into refinement relations which are the proof

obligations for the induction, they can be automatically discharged using
FDR. The FDR checks performed are:

(1) P [F= A

(ii) P [F= P [in <-> out] A

(iii) P [F= P [out <-> in] B

(iv) P [F= P [in <-> leftout, out <-> leftin] CD
(v) P [F= P [in <-> out] P,

where P is the property of deadlock freedom, and ‘[F=" refinement in the fail-
ures model of CSP. The piping operator X[a<->b]Y connects the channels a
and b (belonging to X and Y respectively) together, and hides all communi-
cations over them.

Note that the processes A and B are equivalent, they are distinguished in
this example for consistency with the Figure. Check (i) establishes the base
case for the induction. Checks (ii) and (iii) establish that road segments
of the type A and B can be tacked on to deadlock-free road networks in the
manner described and the resulting road networks will maintain this property.
Check (iv) establishes the same for segments of type CD, and (v) establishes
that any two deadlock-free road networks (of the type under consideration)
can be connected together (the input to one network is the output of the
other), and the resulting road network will also be deadlock-free.

It is clear that by transitivity of refinement, and so by using normal
inductive reasoning, that in combining (i) to (v) above, it is possible to
claim that any road network made up of segments of type A, B and CD,
according to the given rules, will be deadlock-free. More interesting case
studies of this technique can be found in [4, 5, 15].

The buffer example in [18] is a remarkable one. Here the property proved
by induction bears little resemblance to the final objective, but when com-
bined with data independence properties of the implementation is enough to
prove it (though the definition of buffer implied in that paper is not quite
the CSP standard one of [9, 14]). We remark that this provides a com-
pletely different combination of data independence and induction to the one
we will shortly describe. Other approaches for proving properties of systems
of arbitrary size have included the use of temporal logic [1, 2, 8, 16].

Just because a property is true of all the systems constructed by a set of
structural rules does not guarantee that it can be proved inductively. Ideas

such as strengthening the hypothesis frequently help, but can require consid-
erable ingenuity. The main limitation on the induction method, described
above, is that it can only address systems in which the individual components
are completely independent of the overall structure of the system: adding an
extra process does not change the semantics of the components that were
already there. For example, they cannot know the identities of the other
components, for then it is not true to say that an n + 1-process system
can be constructed by adding one more to the n—process version. It is this
limitation on induction that we address.

3 Data Independence

A system is said to be data independent of a data-type variable T when it
makes sense for any non-empty substituted type and it satisfies structural
rules, meaning that it handles the type in a relatively simple way. The process
representing the system may not perform any operations on values of that
type, it can only input them, store them, output them, and perform equality
tests between them. Many communications protocols are data independent
since they simply pass around data ensuring that only desirable recipients
are able to extract it; their behaviour is entirely independent of the data
itself.

Data independence ideas have been developed for a number of notations,
having first been studied formally in [17], but we use here the theory devel-
oped for CSP by Lazic and Roscoe (see [12, 13] and Section 15.2 of [14]). They
have developed theorems which state that for certain (data independent) sys-
tems it is possible to verify that the system possesses certain properties, for
all instances of its independent types, by performing a specific finite number
of checks with finite instances of the types. Data independence theorems
frequently allow us to generate thresholds for given checks: a size of type
T such that one or more checks of a property for this and perhaps smaller
types will imply that the property holds for all 7. Space unfortunately pre-
vents us from quoting in detail the various theorems and definitions of data
independence, for which we refer the reader to [12, 13, 14].

However, of particular relevance to the technique we present in this paper
is the ability to consider data independent processes with the addition of
constant symbols and (in general many-valued) predicates on variable types.
The theorems used put some constraints on the use of these predicates. They
must be uninterpreted, in that they should be treated as symbols and a
verification should establish a property for all possible interpretations. The
predicate must be a function into a fixed finite type, which in our case will be

{true, false} (otherwise the problem would become intractably infinite). This
will be important to us as it will allow statement of an inductive principle
which to some extent overcomes the limitation discussed at the end of Section
2. Again we must refer the reader to [12, 13] for relevant theorems and
definitions.

4 Induction Over Data Independent Types

Our technique is useful in the analysis of systems which are built as indexed
parallel compositions over types which each individual process (elements of
the type) treats data independently. We can’t deal with these systems us-
ing traditional inductive techniques because the individual processes vary
with the type (they know each others identities, for example, if their iden-
tities are the data independent type) and we can’t deal with them using
data independence alone because indexed parallel composition over data in-
dependent types is prohibited in that theory®. While our method readily
extends to some more complex cases (one of which appears in Example
2 below), we will consider here the objective of proving that a specifica-
tion Spec, data-independent in T, is refined by the parallel combination
[l x:T @ [A(x)] N(x) in which the terms A(x) and N(x) are themselves
data independent in 7. Here N(x) is the component process, and A(x) is
its alphabet. Our aim is to show that the parallel combination of N(x) pro-
cesses, where x is an element of type 7', refines Spec no matter how large T’
is. Further, we want to do this using only a finite amount of work.

We build a (usually sequential) process representing partially constructed
versions of the system under consideration. The aim is that it should be data
independent in 7', should be refined by the partially constructed network it
models, and when complete should refine Spec. As this process is often a
representation of the state of a parallel system we term it Superstate(S),
where S is the (nonempty) subset of T that constitutes the partial network.
The aims can thus be formally stated

Superstate(S) (Il x:8 @ [A(x)] N(x)) (1)

L
C Superstate(T) (2)

Spec

These two statements, if true, are of course sufficient to establish our overall
aim. If an appropriate Superstate has been constructed, then (2) presents
no new theoretical challenges as it already fits within the established theory

3This is largely because allowing such compositions would allow one to count the type
T.

of data independence: we can reasonably expect it to be verifiable indepen-
dently of T" by finding the appropriate threshold and doing the necessary
refinement checks.

The role of induction comes in establishing (1), which does not come
within standard data independence theory as it contains the indexed parallel
composition. What we do is to perform an induction on the size of S (from
1 up to |T'|). The base case of the induction is to show that one node refines
Superstate:

Superstate({c}) LT N(c) (3)

where the constant symbol ¢ represents an arbitrary member of 7. The
inductive step is to show that for any nonempty S and constant c outside S,

Superstate(S’) [C Superstate(S)[AA(S)|[A(c)IN(c) (4)

where S’ is the union of S and {c} and AA(S) is the alphabet of Superstate(S),
which is the union of {A(x) | x <- S} (the alphabets of each node).

If we can establish these two things the inductive proof of (1) follows
easily: if it is true for S then

Superstate(S’) [C Superstate(S)[AA(S)|[A(c)IN(c)
C (]l x:8 @ [A(x)] N(x))[AA(S)|IA(c)INC(c)
C (]l x:8” @ [A(x)] N(x)).

The second line is from the monotonicity of the parallel operator and induc-
tion, and the final one from the definition of indexed parallel.

We can thus conclude that the truth of (3) and (4) (for arbitrary T, S
and c) imply that (1) holds for all nonempty S and finite 7. Note that this
conclusion actually requires not one induction, but rather demonstrates that
an infinite number of different inductions (one for each T') all work.

Fortunately, both (3) and (4) are statements that can be proved using
data independence extended by predicate symbols and constants, as we can
naturally treat S (the subset of the network present in a partially-built net-
work) as a predicate symbol (mapping a member of T' to true if it is in the
set). Therefore we can reasonably hope to justify these statements for all
values of their parameters, and thus be able to conclude (1) from a finite
collection of checks which can be verified automatically on FDR.

One way of looking at this technique is that it provides a way of ex-
tending the advantage of data independent proofs to systems which involve
indexed parallel composition. However this can only be done in cases where
an appropriate Superstate definition can be found, something which at best
requires more ingenuity on the part of the user than other data independence
results, and may well in some cases be impossible. (The greatest challenge

7

in building Superstate appears to be keeping it sufficiently finite-state to
enable both finite thresholds and automated checking.)

Example 1 Consider an example of a distributed system which combines
leadership election and token passing. This example has much in common
with one of those given in [3, 18], though the main point of the present one
— the knowledge of all identities by each process — is not present in these
papers. It is the leader’s job to distribute a token in turn allowing some
critical region to be entered into by the process having it. The leader can do
critical sections (though this is completely optional in the model), and the
leadership can only move when the leader has the token. Below is the CSP
description of a process expressed as input syntax for FDR:

Leader(T,id) = leader?j:T -> (if j==id then Leader(T,id)
else Empty(T,id,j))
[] cr_start.id -> cr_end.id —-> Leader(T,id)
[1 pass!id?j:others(id,T) -> pass.j.id -> Leader(T,id)

Empty(T,id,L’) = pass.L’.id-> Full(T,id,L’)
[1 leader?j’ -> (if j’==id then Leader(T,id)
else Empty(T,id,j’))

Full(T,id,L’) = pass.id.L’ -> Empty(T,id,L’)
[1 cr_start.id -> cr_end.id -> Full(T,id,L’)

others(i,T) = diff(T,{i})

diff (P,Q) is the difference of the two sets P and Q. The parameter T is the
type of nodes in use; it is required since nodes need to know who is present in
the system. If S is any set of these nodes, and L0 is a constant representing
the initial leader, we can build the composition of all the nodes from S as:

LNet(T,S,L0) = || i:S @ [A(T,i)] (if i==LO then Leader(T,i)
else Empty(T,i,L0))

LNet (P,S,L0) is the parallel composition of processes in S of the appropri-
ately initialised node processes, which we can name N(T,L0,i) for consis-
tency with the notation earlier. Note that this model abstracts away from the
leadership election process, which is delegated here to a perhaps unrealistic
multi-way synchronisation.

We need, for our method, to create a process Superstate(S) that mod-
els the behaviour of the parallel composition of the nodes from a subset S of
T. These will inevitably agree (thanks to the synchronisation on leader) on
who the leader is. The main problem one faces in building the process is what
to do when the leader is outside S, for then the partially composed network

has many aberrant behaviours due to the fact that there is no coordinated
leadership; since the leader is outside of the network it can misbehave. In
particular, the leader may allow any number of nodes to get into critical sec-
tions at once. In order to overcome this the Superstate process incorporates
this misbehaviour; essentially things stay fine as long as no imaginary leader
outside S hands out too many tokens:

Superstate(T,S,L) = leader?j:T -> Superstate(T,S,j)
[] member(L,S) & cr_start.L -> cr_end.L ->
Superstate(T,S,L)
[1 member(L,S) & pass!L?j:others(L,T) ->
Superstate’ (T,S,L,j)
[1 not member(L,S) & pass!L?j:others(L,S) ->
Superstate’ (T,S,L,j)

Superstate’(T,S,L,j) = member(j,S) & cr_start.j ->
Superstate’’(T,S,L,j)
[1 pass.j.L -> Superstate(T,S,L)
[1 not member(L,S) &
(STOP |~ | pass.L?k:S -> CHAOS(Events))

Superstate’’(T,S,L,j) = cr_end.j -> Superstate’(T,S,L,j)
[] not member(L,S) &
(STOP |~ | pass.L?k:S -> CHAOS(Events))

CHAOS (Events) is the process that can perform or refuse any possible event:
it is used here when we don’t care what the process does, namely after one
of the misbehaviours mentioned above. This approach is similar to that used
by Wolper and Lovinfosse in [18].

Because we have adopted the names for processes as used in the ear-
lier formulation of the inductive claim, the base case and step case of the
induction are almost literally (3) and (4). The result proved by the induc-
tion is (1) where, when S = T the right-hand-side is the complete network
LNet(T,T,L0). As we will shortly see, by analysing the checks (3) and (4)
we can establish finite collections of checks which prove them, and hence (1),
for all 7" and S.

Though we have not had space to detail the results underlying these cal-
culations, it is nevertheless interesting to derive thresholds and sufficient sets
of checks to establish the base and inductive cases of our induction. For
checks which either explicitly or (like ours) implicitly involve equality checks
between members of the data independent type, the threshold when there are
no predicate symbols, is the greatest number of potentially distinct values
that might be present simultaneously during a symbolic comparison between

the specification and implementation. When there is a single predicate sym-
bol, it is the sum, over all values the predicate might take, of the largest
number there might be in a comparison with that value. The formulae, such
as the following, (quoted in Section 15.2 of [14]) provide upper bounds, often
crude, for these quantities.

I'mpl
B = WSpec 4 Wlmpl + max(LSpec, ?mp ,Lémpl)

where WW5P¢¢ and W™ are the maximum number of values of type T that the
Specification and Implementation, respectively, ever have to store for future

use. LI™" and LS7°° are the largest number of values of type 7' that can

be input in any single visible event of the Implementation and Specification,
respectively. LL™' is the largest number of values of type T that can be
nondeterministically chosen in any single nondeterministic choice made over
sets involving 7" in the implementation. In the base case (3) this particular
formula predicts a threshold of 24+ 2+ 1 = 5, and in the step case (4) the
same formula gives 2+ 2+ 2+ 1 = 7. However, the presence of the predicate
symbol increases the second threshold to 13, 6 in S and 7 outside S, (as by
definition we know that the constant ¢ does not satisfy the predicate). The
predicate brings about the increase because the values stored in the program
may or may not satisfy it, and the threshold has to be big enough to cater
for this.

These naive calculations assume that all processes can have distinct values
for the leader, whereas in fact they all agree. Let us concentrate on the more
complex case: the threshold for (4). Consider W57 and W™l the leaders
L and are counted in both but must be identical, as must L’. Therefore, we
can ignore two of them giving a new threshold of 9: 4 in S and 5 outside S.
Also, the j in W!™Pl is either identical to the L’ or the id in Empty giving
a new threshold of 7: 3 in S and 4 outside S. Finally, we know that j and
L can not both be outside S U {¢} because if the leader and the token are
actually both outside the S U {c}, then no-one in our system knows where
the token is. Thus we can deduct another 1 from the number that can be
outside S. Our final threshold is 6, 3 in S and 3 outside. A largest inductive
step check we would need to do is:

Superstate({1..6},{1..4},1) [FD=
Superstate({1..6},{1..3},1)
[AA({1..6},{1..3}) | IA({1..6},4)] Empty({1..6},4,1)

Where ‘[FD=" means refinement in the failures/divergences model of CSP,
this being the strongest notion of process refinement. Further checks (there
are 24 including the above) need to be performed for the cases in which there
are fewer objects either or both inside and outside S, and to deal with the

10

L N
NENE=Y L Y F
Ier a.i\\ // \\ //b| h
t.i) o R right.i
0 gi 7 < cil RO :
K \\\/ RA baCk SA ’g/ .
TR YR b
0, 1RO

Figure 2: Multiplexing Channels

cases where LO is inside S, equal to c, or neither. These checks can, of course,
be performed quickly and easily on FDR. We believe that the threshold and
number of required checks could be reduced further by ad hoc arguments, but
much the best prospect here is the ideas for symbolic execution discussed in
the Conclusions below. Similar analysis can bring the threshold for the base
case down to 3, so a largest check of the 5 required is

Superstate({1..3},{1},1) [FD= Leader({1..3},1)

An interesting fact about this example — though by no means univer-
sally true — is that Superstate(T,T,L0)=LNet(T,T,L0). It follows that any
data independent specification we want to prove of LNet (T,T,L0) can be ad-
dressed through this particular Superstate. Examples that can be proved
include deadlock freedom and at most only one critical section being active
at any one time: each, provided it is suitably finite-state and data indepen-
dent, should be provable in general as an instance of (2).

Example 2 Consider a simple communications protocol which enables the
multiplexing of as many channels as we please over a single pair of links —
one each way (fwd and back). This is done in our implementation by passing
tagged data and acknowledgements over the links, and combining a protocol
with buffering to stop any one channel impeding others. For simplicity we
only consider the case where all the channels are in the same direction (from
left.i to right.i in Figure 2).

Evidently, as we let the number N of channels grow, the number of states
in the resulting CSP implementation soon becomes unmanageable for a model
checker. However, the sort of data independent induction presented above
can prove that our system is equivalent to N independent one-place buffer

11

processes for any /N. Thereby establishing the correctness of the protocol or
any arbitrary number of multiplexed channels.

There are actually two types in the example that are susceptible to data
independence arguments. The more obvious one is the type of data passed
by the channels: the theorems of [13, 14] easily show that it is sufficient to
set this type with size 2 to prove that the system behaves properly for any
type. This argument is quite separate from the induction. The type over
which we induct is that of TAGS (the channel names).

The system is constructed of the processes T(i) and R(i), which are
the transmitter and receiver processes respectively (one for each i in TAGS),
connected to the fixed collection of processes SM, RM, RA and SA. The T(3i)
and R(i) communicate with the environment on the left.i and right.i
channels. Below are the definitions of the processes:

SM =a 7?7 i:TAGS 7 x > fwd ! i . x -> SM
BM =fwd 27t ?7x->b . t ! x ->RM

SA =c¢c ? i:TAGS -> back ! i -> SA

RA =back 7t ?2x->d . t ! x ->RA

left.i 27 x ->a.i ! x =>d.i -> T(i)
b.i ? x -> right.i ! x => c.i -> R(3)

T(i)
R(i)

The central core of the system is the following:

CORE = (SM [I{Ifwdl}|] RM\{Ifwdl} |||
(SA [l{Ivack|}|] RA)\{Ibackl|}

This process (data independent in TAGS) has the same parallel structure
however large TAGS is, but we get a situation similar to that in Example
1 when the transmitter/receiver pairs are added, as this requires parallel
compositions indexed over TAGS. The result has the channels a, b, ¢ and
d hidden, leaving only left and right visible to the environment. Our
objective is to prove that the complete system is the composition of a COPY
for each tag, where COPY is the process which inputs data on its left channel,
and outputs that data on its right channel (behaving as a one-place buffer).
COPY is defined as:

COPY = left?x -> right!x -> COPY

In order to prove this we show that the abstraction to an arbitrary chan-
nel is correct by induction, and deduce the overall result from that. We
shall concentrate on channel CO. The specification SPEC(S) of a partially
constructed system, where S C TAGS and CO € S, says that on CO the process
must act like a one-place buffer except that it can refuse to input or output

12

when there is outstanding data outside S on the a/b or c/d link. (Space con-
straints prevent us from giving the detailed code of this specification here.)
Our claim is that a network constructed from CORE plus all the T(i) and
R(i) from i in S, all internal communication hidden and all channels in S
other than CO lazily abstracted®, refines SPEC(S) (the specification of the
system of S channels multiplexed).

The base case of our proof is that the system with one transmitter/receiver
pair (labelled CO) refines the corresponding specification:

BASE = (CORE [1{la.C0,b.C0,c.C0,d.COI}I] (T(CO)|IIR(CO)))
\ {la.C0,b.C0,c.C0,d.CO|}
SPEC({C0}) [F= BASE

The inductive step required is that if we add a further T(XK)/R(K), hiding
internal and abstracting external communications appropriately, we preserve
SPEC:

SPEC(S’) [F= (LAbs(SPEC(S) [| intevs |]

(TK)ITIR®X))) ({Ileft.K,right.K|})) \ intevs
intevs = {la.K,b.K,c.K,d.K|}
LAbs(P) (X) = (P [IX|] CHAOS(X))\X

Here LAbs (P) (X) is the lazy abstraction (as discussed above) of events X from
process P, and S’ is the union of S and {K}.

As in Example 1, data independence theorems allow thresholds to be
calculated which establish an upper limit on the size of TAGS which guarantees
that the refinements will hold for any arbitrary non-empty size of TAGS (i.e.
largest size of TAGS). For the base case the threshold is no more than 8.
For the inductive step the threshold is 7. This is unlike the situation in
Example 1 where the step threshold was significantly larger. This is primarily
because only the base case contains the process CORE which stores 4 values.
So by performing a fixed finite amount of refinement checks on FDR, for
each possible configuration of each check with S smaller than or equal to the
threshold, we have shown that for any size of TAGS our multiplexed system
is equivalent to that many copies of COPY. Therefore, the integrity of each
channel is not compromised by the addition of further channels over the same
pair of links (fwd and back).

4To lazily abstract a channel means to hide the channel in such a way that we do not
assume that hidden events must occur. It provides the best way of formulating what a
process looks like to an observer who can only see a subset of its alphabet. See Chapter
12 of [14].

13

5 Conclusions

The technique described here provides an interesting combination of induc-
tion and data-independence which is capable of allowing model checkers to
deal with a significant new class of problem. While the examples quoted
here are fairly simple, we in fact developed the method as part of an analy-
sis of a much more complex case study [6] — a version of the Time Triggered
Group Membership Protocol(TTP) [10]. We successfully applied the method
there after generalising the protocol to make it sufficiently data independent,
and correcting a fault that our analysis revealed. Other examples we have
considered include: extending the applicability of the structural induction ar-
gument in [5] from binary to arbitrary branching; and the proof of a routing
protocol.

Future work will hopefully lead to an understanding and broadening of the
classes of systems to which our method applies. We are also interested in the
methodology required for formulating the Superstate induction hypothesis
and whether this can be automated. Ongoing developments in the symbolic
handling of data in refinement checks on FDR should be a great help in
discharging the model checking obligations generated by our techniques. In
effect this should completely automate the application of data independence.
It would no longer be necessary to calculate thresholds (and the ad hoc
arguments used to bring the threshold down), as all of the analysis would
be done at “run-time” and automatically. Furthermore, there is every hope
that the checks would complete much faster, as this method should reduce
many equivalence-classes of essentially similar states down to a single one.

Acknowledgements

We would like thank Ranko Lazi¢ for his work on data independence, and
Gavin Lowe whose independent work on the integration of data independence
and induction led us to look for the connections we eventually found.

References

[1] M.C. Browne, E.M. Clarke and O. Grumberg, Reasoning about Networks with
Many Identical Finite State Processes, Information and Computation, 81(1),
13-31, April 1989.

[2] E.M. Clarke and O. Grumberg, Awvoiding The State Ezplosion Problem In
Temporal Logic Model Checking Algorithms, Proceedings of the 6th An-
nuak ACM Symposium on Principles of Distributed Computing, Vancouver,
Canada, August 1987.

14

3]

[13]

[14]
[15]

[16]

E.M. Clarke and O. Grumberg and S. Jha, Verifying Parameterized Networks
using Abstraction and Regular Languages, Proceedings of CONCUR’95, 395-
407, LNCS 962, 1995.

S.J. Creese, An Inductive Technique for FDR, Master’s thesis, Oxford Uni-
versity, 1997.

S.J. Creese and J. Reed, Verifying End-to-End Protocols Using Induction with
CSP/FDR, Paper accepted for presentation at FMPPTA’99, Puerto Rico,
April 1999.

S.J. Creese and A.W.Roscoe, Oxford University Computing Laboratory Tech-
nical Report, PRG-TR-1-99.

Failures-Divergence Refinement: FDR2 User Manual, Formal Systems (Eu-
rope) Ltd, 1992-7.

Steven M. German and A. Prasad Sistla, Reasoning about Systems with Many
Processes, Journal of ACM, 39, 675-735, July 1992.

C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.

S. Katz, P. Lincoln and J. Rushby, Low-overhead time-triggered group mem-
bership, Proceedings of WDAG 97, LNCS 1320, 1997.

R.P. Kurshan and K. McMillan, A Structural Induction Theorem for Pro-
cesses, Proceedings of 8th Symposium on Principles of Distributed Comput-
ing, Edmonton, 1989.

R. Lazi¢ and A.W. Roscoe, Verifying Determinism of Concurrent Systems
Which Use Unbounded Arrays, Proceedings of INFINITY’ 98, Aalborg, Den-
mark, July 1998, extended version as Oxford University Computing Labora-
tory TR-2-98.

R.S. Lazi¢, A semantic study of data-independence with applications to the
mechanical verification of concurrent systems, Oxford University D.Phil the-
sis, 1999.

A.W. Roscoe, The theory and practice of concurrency, Prentice Hall, 1998.

J.N. Reed, D. M. Jackson, B. Deianov and G. M. Reed, Automated Formal
Analysis of Networks: FDR Models of Arbitrary Topologies and Flow-Control
Mechanisms, Proceedings of ETAPS’98, Lisbon, Portugal, to appear in IEEE
Transactions on Software Engineering, March 1998.

Moshe Y. Vardi and Pierre Wolper, Reasoning about Infinite Computations,
Information and Computation, 115, 1-37, 1994.

15

[17] P. Wolper, Ezpressing interesting properties of programs in propositional tem-
poral logic, 184-193, Proceedings of the 13** ACM POPL, 1986.

[18] P. Wolper and V. Lovinfosse, Verifying Properties of Large Sets of Processes

with Network Invariants (Extended Abstract), Proceedings of the Interna-

tional Workshop on Automatic Verification Methods for Finite State Ma-
chines, LNCS 407, 1989.

Appendix A. The CSP Language

The CSP processes that we use are constructed from the following:

STOP is the simplest CSP process; it never engages in any action, nor terminates.
It is equivalent to deadlock.

a -> P is the most basic program constructor. It waits to perform the event a
and then behaves as process P. The same notation is used for outputs (c!v -> P)
and inputs (c?x -> P(x)) of values along named channels.

P |~| Q represents internal choice. It behaves as P or Q nondeterministically.

P [1 Q represents external choice. It will offer the initial actions of both P and Q
to its environment at first; its subsequent behaviour is like P if the initial action
chosen was possible only for P, and like Q if the action selected Q. If both P and
Q have common initial actions, its subsequent behaviour is nondeterministic (like
[~]). STOP [] P behaves as P.

P [| a |] Q represents parallel composition. P and Q evolve concurrently, except
that events in a occur only when P and Q agree to perform (i.e. synchronise on)
them.

P ||| Q represents interleaved parallel composition. P and Q evolve separately,
and do not synchronise on any events. Equivalent toP [| {| |} |1 Q

P [a |l b1 Qrepresents alphabetised parallel. P and Q have to agree on events
in the intersection of their alphabets.

|| x:a @ [A(x)] P(x) represents replicated alphabetised parallel. This constructs
the parallel composition of P (x) processes, one for each x in a, over their respective
alphabets.

P\ A is the CSP hiding operator. This process behaves as P except that events in set
A are hidden from the environment and are solely determined by P; the environment
can neither observe nor influence them.

P [[a <- b]] represents the process P with a renamed to b.

P [a<->b] Q isthe linked parallel operator. P and Q synchronise on chan-
nels a and b, which have been renamed to the same and hidden. There are also
straightforward generalisations of the choice operators over non-empty sets, written
|7 x:X@P(x) and [] x:X @ P(x).

16

