Formal Verification of Arbitrary Network Topologies

*

S. J. Creese and A. W. Roscoe

Oxford University Computing Laboratory
Wolfson Building, Parks Road
Oxford OX1 3QD, UK

Abstract We show how data independence re-
sults can be used to generalise an inductive proof
from binary to arbitrary branching tree networks.
The example used is modelled on the RSVP Re-
source Reservation Protocol. Of particular inter-
est is the need for a separate lower-level induction
which is itself closely tied to data independence.
The inductions combine the use of the process alge-
bra CSP to model systems and their specifications,
and the FDR tool to discharge the various proof
obligations.

Keywords: induction, data independence, CSP,
FDR, model-checking.

1 Introduction

Our ability to formally verify systems of real-
istic size is inevitably restricted (in part) by
the limitations of our chosen tool support. For
example, it is not possible to use a finite space
model checker to reason about a system which
may be of arbitrary size (since its parameter-
isation might lead to an unboundedly large
state space). In these cases the largest check
which could be performed would depend on the
maximum size the model checker could han-
dle. Whilst this can provide some confidence
in the system’s integrity, it is not a proof that
the system meets its specifications for an arbi-
trary sized parameter/number of components.
This paper presents a technique which is de-
signed to overcome these limitations for certain

*The work reported in this paper was supported by
DERA Malvern and the US Office of Naval Research

types of scalable systems. In particular, the
technique uses a unique combination of induc-
tion and data independence to formally estab-
lish properties of arbitrary branching networks.
The technique is implemented using the pro-
cess algebra CSP[6, 11] to model systems, and
the FDR model checker tool [5] to help reason
about them, though we have no doubt that our
ideas would work in other contexts as well.

CSP is a process algebra which is useful for
describing systems that interact by communi-
cation. The collection of mathematical models
and associated semantics that make up CSP fa-
cilitate the capture of a wide range of process
behaviours. The theory of refinement in CSP
allows correctness conditions to be encoded as
refinement checks between processes. Refine-
ment is transitive; if process S is refined by
process R (written S C R), and R is refined by
T then S is refined by T'. The FDR tool takes a
machine-readable dialect of CSP), as its input
syntax, and can be used to check refinements
as well as determinism, deadlock freedom and
livelock freedom of processes.

This paper is organised as follows: we briefly
survey existing work on structural induction
and the theory of data independence we will
be using; we then present the method; finally,
we present our conclusions.

2 Structural Induction
It has been demonstrated that induction is a

method which can be successfully used in the
analysis of distributed systems. Kurshan and

McMillan [7] and Wolper and Lovinfosse [14]
published similar work using structural induc-
tion to reason about systems with unbound-
edly large numbers of identical components.
Both methods require an invariant to be de-
fined and rely on proof obligations which corre-
spond to the base case and inductive step (us-
ing model checkers to discharge them). The
inductive step(s) corresponding to rules for
construction of the associated networks. In
[1, 2, 12] a similar type of structural induc-
tion scheme was perfected for CSP, utilising the
FDR tool to discharge the various proof obli-
gations. It is this type of structural induction
which forms part of the technique we present
below.

The basic induction method involves using
FDR to discharge proof obligations which take
the form of refinement relations between pro-
cesses. Consider (1) and (2) below:

P C C(Core (1)
P C Plright < left]Node, (2)

where the alphabet of Core and P is {right},
and the alphabet of Node is {left, right}. The
linked parallel operator used in (2), ([right +—
left]), has the effect of piping the two pro-
cesses: renaming the two channels to the same,
putting the relevant processes in parallel over
that channel, and hiding the communications
between them.

Figure 1: A chain of nodes with all events inside
the dashed box hidden.

Refinement (1) corresponds to the base case
of the induction, and (2) the inductive step.
It is clear by transitivity of refinement that
(1) and (2) can be combined to prove that a
Core process can be piped, on its right chan-
nel, into the left channel of any arbitrary num-
ber of Node processes piped together as given
in (2), and the resulting network will always
satisfy property P. Figure 1 above shows a
typical system one could create.

In [1, 2] this induction technique was used
to prove various end-to-end properties of ar-
bitrary binary tree networks which modelled
aspects of the resource reservation protocol
RSVP!. RSVP is a protocol designed to sup-
port reservation for high-bandwidth multicasts
over IP networks. Resource reservations are
created and maintained along each link of a
previously determined mulitcast route, where
routes consist of multiple sources and receivers
connected by arbitrary numbers of interme-
diate nodes. Messages requesting amounts
of bandwidth originate at receivers and are
passed upstream towards the source. At any
node, if a resource reservation is in place for an
amount of bandwidth then it may be shared by
all receivers downstream, removing any unnec-
essary duplication and reducing network traf-
fic. If at any intermediate node a request is re-
jected a reject message is passed downstream
and the request discarded. Otherwise, requests
are propagated as far as the closest point along
the way to the source where a reservation level
greater than or equal to it has been made.

It is this traffic-reducing property which is
modelled in [1, 2]. Here the protocol nodes
are binary in that they possess two down-
stream channels and one upstream, in contrast
a source process only has a downstream chan-
nel (since it is the ultimate destination). The
property proven is that the receivers always
receive a response to each unique request for
bandwidth (or, that the interface presented by
the network to a receiver at any point has the
behaviour of a source process independently
of how many intermediate nodes lie along the
path between source and receiver). It is estab-
lished that this correct behaviour is presented
on a particular interface no matter what events
are performed elsewhere on the network. This
is achieved by lazily abstracting all the net-
work’s behaviour which is not on the path be-
tween the source and receiver under consider-
ation. To lazily abstract a channel means to
hide the channel in such a way that we do not

A description of RSVP can be found at
http://www.isi.edu/div7/rsvp/.index.html.

Source

Node %

Node

Node

Figure 2: A Binary Tree. Dotted boxes containing
* represent the lazy abstraction of all events on that
channel.

assume that hidden events must occur. It pro-
vides the best way of formulating what a pro-
cess looks like to an observer who can only see a
subset of its alphabet (see Chapter 12 of [11]).

So in Figure 2 the correct behaviour pre-
sented on the downstream branch at A is in-
dependent of the behaviour of the rest of the
network at the points marked *, achieved by
the lazy abstraction of all events occurring at
the points marked *. In this case there would
be two refinement relations corresponding to
the inductive step, one for each of the down-
stream channels of a Node where the other has
been lazily abstracted away.

Using this type of structural induction it
would be possible to prove properties of an
arbitrary tree constructed from certain nodes.
However, in such a proof the maximum degree
of branching will be fixed, and separate induc-
tive cases need to be model-checked for each
branching degree. The technique we present
in this paper allows all degrees of branching to
be dealt with at once with a few checks, by
using the techniques of data independence to
generalise arguments.

3 Data Independence

A system is said to be data independent of a
data-type variable T" when it makes sense for
any non-empty substituted type and it satis-
fies structural rules, meaning that it handles
the type in a relatively simple way. The pro-
cess representing the system may not perform
any operations on values of that type, it can
only input them, store them, output them, and
perform equality tests between them. Many
communications protocols are data indepen-
dent since they simply pass around data en-
suring that only desirable recipients are able
to extract it; their behaviour is entirely inde-
pendent of the data itself.

Data independence ideas have been devel-
oped for a number of notations, having first
been studied formally in [13], but we use here
the theory developed for CSP by Lazi¢ and
Roscoe (see [8, 9] and Section 15.2 of [11]).
They have developed theorems which state
that for certain (data independent) systems it
is possible to verify that the system possesses
certain properties, for all instances of its in-
dependent types, by performing a specific fi-
nite number of checks with finite instances of
the types. Data independence theorems fre-
quently allow us to generate thresholds for
given checks: a size of type T such that one
or more checks of a property for this and per-
haps smaller types will imply that the property
holds for all T'. Space unfortunately prevents
us from quoting in detail the various theorems
and definitions of data independence, for which
we refer the reader to [8, 9, 11].

However, of particular relevance to the tech-
nique we present in this paper is the ability
to consider data independent processes with
the addition of constant symbols and (in gen-
eral many-valued) predicates on variable types
The theorems used put some constraints on the
use of these predicates. They must be unin-
terpreted, in that they should be treated as
symbols, and the verification will establish a
property for all possible interpretations®. The

2Where there are mutliple predicate symbols, or con-

predicate must be a function into a fixed finite
type (otherwise the problem would become in-
tractably infinite), which in our case will be
{true, false}. Again we must refer the reader
to [8, 9, 10] for relevant theorems and defini-
tions.

4 Data Independent
Structural Induction

We take as our starting point the protocol
model in [2]. Our aim is to show that any
arbitrary tree network of N-branching nodes
will offer correct behaviour, (specified by prop-
erty P), on any interface to a receiver. In the
case of the binary trees we lazily abstracted
one of the two downstream channels of any
intermediate node in the network, to achieve
N-branching node trees we need to establish
the structural induction for all-but-one of any
number of channels lazily abstracted. So, we
need to establish (3) and (4) below for a Node
with any N down channels, where AlphDown
is the set of all downstream communication ez-
cept that labelled by a particular constant C
(the name of the arbitrary channel we are leav-
ing visible).

P
P

Source (3)

L
C Laphdown(P[down <— up]Node), (4)

L A(P) represents the lazy abstraction of the
events in A from P. Superficially we cannot
do this using a finite state model checker like
FDR, since it requires an infinite number of
checks, whose state spaces grow with N. Care-
ful use of data independence, however, enables
it.

Let the type 17" under consideration repre-
sent the names of the downstream channels of
a node. So long as P and Node can be con-
structed in such a manner as to be data inde-
pendent of T, (and also satisfy various other
rules), it may be possible to establish a thresh-
old on the size of T for (3) and (4). FDR can

stant symbols as well, it is possible and frequently de-
sirable to check only those cases in which these are in
a defined relationship. For example we might want to
check the cases in which one predicate is contained in
another and a constant belongs to their difference.

Down(1) Down(2)| . . . Down(n)

downstream

Figure 3: (a) An n-branching node. Note that all
events internal to the node, inside the dashed box,
are hidden.

then be used to check refinement relations cor-
responding to (3) and (4) for all sizes smaller
than or equal to the threshold, thus estab-
lishing the structural induction for all possible
sizes of T', and so for any arbitrary number of
N-branching nodes.

The Node process is constructed from a, pro-
cess representing its core behaviour (Core) and
the parallel combination of processes service
a downstream channel (Down). Each of the
Down processes must be data independent in
the type T of all Down processes, as must Core
(though the Down process as its own name as a
constant symbols. Figure 3 shows a node with
n downstream channels. Each of the Down
processes is responsible for maintaining state
on the reservations already in place on the
node, and can issue responses to requests as
appropriate. If a request is to be propagated
upstream then the Down process sends the re-
quest to the Core, on a local request chan-
nel. The Core process then propagates this up-
stream. In order to perform effective merging
of requests, and so achieve the desired traffic
reduction properties, each of the Down pro-
cesses needs to know of responses to requests
made on the other downstream channels of the
node. Figure 3 indicates how this is achieved;
all replies from upstream are sent to the Core
which in turn forwards these over the one re-

ply channel to all of its Down processes (this is
thus a broadcast communication, as indicated
by the different way this channel is treated in
this and later figures). We can hide all of the
internal events of a node since no other pro-
cesses in the network will ever need to synchro-
nise on them. However, we are unable to use
this construction of a node in (4) because in-
dexed parallel composition over data indepen-
dent types is prohibited in the theory of data
independence we are using?.

In order to perform our structural induction
we need to use a process in (4) which is equiv-
alent to a node with all but one of its down-
stream channels lazily abstracted, which is not
itself constructed of the parallel composition
of Down processes. Since the lazy abstraction
of events on a channel allows any possible set
of events to occur, including the empty set, it
would seem intuitive that we could push the
lazy abstraction higher up into the node and in-
stead lazily abstract all the events which Down
uses to send its requests to Core. If we could
show that a node with all but one of its down-
stream channels lazily abstracted is equiva-
lent to one which is not fully constructed, in
that not all of the Down processes are present
on the local request channels of Core, where
all possible requests which could have come
from those Down processes have been lazily
abstracted, then we would have a data inde-
pendent representation of a N-branching node
which could be used as Node in (4). We need
to show that the nodes (a) and (b) in Figure
4 are equivalent. We can’t use data indepen-
dence directly for the reasons discussed above,
however, we can show this using a combination
of induction and data independence:

Lemma 1 Let the node (a) in Figure J be
NODEa, and node (b) be NODEDb, then
NODEaq= NODED.

We prove this using a technique called data
independent induction: see [3] for a more de-

3This is largely because allowing such compositions
would allow one to count the type T.

Core

Down(1) Down(2| . . . Down(n)

@ *

bown(m| ok . . . ok

(b)

Figure 4: (a) A node with n downstream channels,
all but one lazily abstracted. (b) A node with n lo-
cal request channels for Core all but one lazily ab-
stracted away, the remaining one having a Down
process attached to it. In both (a) and (b) the
channel which Core uses to propagate replies to the
Down processes is represented by a large single ar-
row.

tailed explanation. We use data independence
to prove a separate induction for each size of
the type; discharging the base and step cases
for all sizes simultaneously with a finite col-
lection of refinement checks. We will use this
type of induction to show that if we have a
Core process with a set of n Down processes
on a proper subset of its downstream request
channels, then the process that results from
abstracting the downstream events of this col-
lection of Down processes is the same as re-
sults from lazily abstracting the same set of
channels from Core directly, (i.e. without the

Down process). The result shown in Figure 4 is
then implied by the case where there are Down
processes on all but 1 of the local downstream
request channels.

The base case (n = 0) of this induction is
trivial as the processes which the induction
claims are equal are syntactically the same.
The step case is proved by showing that a sin-
gle Down process, whose external interface is
abstracted, can be removed and replaced by
the abstraction of its request channel to Core.
This is illustrated in Figure 5: ABS represents
a set of request channels already abstracted.

Core

Down(B)

T

. *(downstream)

(8 LOW(ABSB)

Core

(b) HI(ABS,B)

Figure 5: We can replace the lazy abstraction of
a downstream channel from Down by the removal
of Down and the lazy abstraction of all events on
its local request output channel to Core. Lazy ab-
straction of channels is denoted by dotted curved
cornered rectangles.

In order to prove equivalence of two pro-
cesses in CSP it is sufficient to show that each
refines the other in the failures/divergences

model of CSP. We use data independence the-
orems to generate a threshold, this time on the
size of T', where ABS is treated as a predicate
mapping each member to true if it is in the
set. We can then show that the following re-
finements hold for all sizes of T" for all possible
configurations of ABS, equal to the threshold
and below it, then we have shown the two to
be equivalent for all T

HI(T,ABS,B) Cpp LOW(T,ABS,B)®5)
LOW(T,ABS,B) Cpp HI(T,ABS,B) (6)

As with all the examples in the paper, the
threshold is small and is 3: the constant B
outside ABS, one member of T inside ABS
and one outside. This actually only leaves two
checks for each of (5) and (6) which handle the
cases of ABS being empty and of size one. This
pair of lemmas easily justifies the induction, so
proving Lemma 1, which in turn allows us to
use the NODED in (4).

Thanks to the replacement of NODFEa by
NODED (3) and (4) now become properties
which can be proved by data independent rea-
soning (again with a small threshold). Thus a
few refinement checks combined with our ear-
lier results show that any branching width of
node can validly be used in our RSVP struc-
tural induction. Hence, a much wider range of
network topologies have been proven to have
the desired property.

5 Conclusions

We have shown how data independence can
be used to lift results obtained for limited-
branching networks to ones with arbitrary
branching. The most interesting part of the
proof was caused by the parallel nature of the
individual nodes and the consequent need to
use a separate level of induction to eliminate
most of this parallelism. Since, at least concep-
tually, many system components have simple
message-handling processes resident on many
channels, we imagine that this lower-level in-
duction will have analogues in other applica-
tions. Indeed, there are reasonably close ana-
logues with the second main example of [3] in

which an arbitrary number of channels are mul-
tiplexed along a single pair. However, in many
cases it will be possible to use data indepen-
dence to deal directly (namely without the low-
level induction) with arbitrary branching.

The way data independence is effectively
used, in the low-level induction, to verify a
separate induction for each size of type, is de-
scribed in more detail in [3, 4]. The examples
there are in some ways more ambitious since
in most cases all nodes are supplied with the
others’ identities (as a type) and can use these
in non-trivial ways.

Ongoing developments in the symbolic han-
dling of data in refinement checks on FDR
should be a great help in discharging the model
checking obligations generated by our tech-
niques. In effect this should completely au-
tomate the application of data independence.
It would no longer be necessary to calculate
thresholds (and the ad hoc arguments used to
bring the threshold down), as all of the anal-
ysis would be done at “run-time” and auto-
matically. Furthermore, there is every hope
that the checks would complete much faster, as
this method should reduce many equivalence-
classes of essentially similar states down to a
single one.

Acknowledgements

We would like thank Ranko Lazi¢ for his work
on data independence and Joy Reed for ear-
lier collaborative work on this example which,
indeed, she brought to our attention.

References

[1] S.J. Creese, An Inductive Technique for FDR,
Master’s thesis, Oxford University, 1997.

[2] S.J. Creese and J. Reed, Verifying End-to-End
Protocols Using Induction with CSP/FDR, Paper
accepted for presentation at FMPPTA’99, Puerto
Rico, April 1999.

[3] S.J. Creese and A.W. Roscoe, Verifying an in-
finite family of inductions simultaneously using
data independence and FDR, Paper submitted to
FORTE/PSTV ’99.

[4] S.J. Creese and A.W. Roscoe, Oxford University
Computing Laboratory Technical Report, PRG-
TR-1-99.

[6] Failures-Divergence Refinement: ~ FDR2 User
Manual, Formal Systems (Europe) Ltd, 1992-7.

[6] C.A.R. Hoare, Communicating Sequential Pro-
cesses, Prentice-Hall, 1985.

[7] R.P. Kurshan and K. McMillan, A Structural In-
duction Theorem for Processes, Proceedings of 8th
Symposium on Principles of Distributed Comput-
ing, Edmonton, 1989.

[8] R.S. Lazi¢, A semantic study of data-independence
with applications to the mechanical verification of
concurrent systems, Oxford University D.Phil the-
sis, 1999.

[9] R.S. Lazi¢ and A.W. Roscoe, Verifying Determin-
ism of Concurrent Systems Which Use Unbounded
Arrays, Proceedings of INFINITY’98, Aalborg,
Denmark, July 1998, extended version as Oxford
University Computing Laboratory TR-2-98.

[10] R.S. Lazi¢ and A.W. Roscoe, Data independence
with predicate symbols, This volume.

[11] A.W. Roscoe, The theory and practice of concur-
rency, Prentice Hall, 1998.

[12] J.N. Reed, D. M. Jackson, B. Deianov and G. M.
Reed, Automated Formal Analysis of Networks:
FDR Models of Arbitrary Topologies and Flow-
Control Mechanisms, Proceedings of ETAPS’98,
Lisbon, Portugal, to appear in IEEE Transactions
on Software Engineering, March 1998.

[13] P. Wolper, FEzpressing interesting properties of
programs in propositional temporal logic, 184-193,
Proceedings of the 13** ACM POPL, 1986.

[14] P. Wolper and V. Lovinfosse, Verifying Properties
of Large Sets of Processes with Network Invariants
(Extended Abstract), Proceedings of the Interna-
tional Workshop on Automatic Verification Meth-
ods for Finite State Machines, LNCS 407, 1989.

