
QUERYING DESCRIPTION LOGIC

KNOWLEDGE BASES

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2007

By

Birte Glimm

School of Computer Science

Contents

Abstract 7

Declaration 8

Copyright 9

Acknowledgements 10

1 Introduction 11

1.1 Description Logics . 12

1.1.1 Description Logic Knowledge Bases 12

1.1.2 Historical Background . 14

1.1.3 Application Areas . 15

1.1.4 Semantics of Description Logics 16

1.2 Reasoning Services . 17

1.2.1 Standard Reasoning Services 18

1.2.2 Conjunctive Queries . 18

1.2.3 Challenges of Query Answering 23

1.3 Aims and Objectives . 26

1.4 A Guide for Readers . 27

2 Foundations of Description Logics 28

2.1 Syntax and Semantics . 28

2.2 Standard Reasoning Tasks . 32

2.3 Conjunctive Queries . 35

2.4 Combined and Data Complexity 39

3 Why Query Entailment is Hard 41

3.1 Query Containment . 41

2

3.1.1 The Difficulty of Regular Expressions 42

3.2 Rule Formalisms . 44

3.2.1 The Carin System . 46

3.2.2 Extensions of the Carin System 51

3.3 Hybrid Logics . 53

3.3.1 Hybrid Logic Binders for Query Answering 54

3.4 First-Order Logic . 58

3.5 Summary . 60

4 Query Answering for SHIQ 61

4.1 Query Rewriting by Example . 62

4.1.1 Forest Bases and Canonical Interpretations 62

4.1.2 The Running Example . 70

4.1.3 The Rewriting Steps . 72

4.2 Query Rewriting . 77

4.2.1 Tree- and Forest-Shaped Queries 77

4.2.2 From Graphs to Forests 78

4.2.3 From Trees to Concepts 80

4.2.4 Query Matches . 82

4.2.5 Correctness of the Query Rewriting 84

4.3 Deciding Query Entailment for SHIQ 96

4.3.1 A Deterministic Decision Procedure 96

4.3.2 A Non-Deterministic Decision Procedure 106

4.3.3 Consequential Results . 107

4.4 Summary . 108

5 Query Answering for SHOQ 109

5.1 Forest Bases and Canonical Interpretations 110

5.2 Query Rewriting . 114

5.2.1 Query Shapes and Matches 116

5.2.2 From Forest-Shaped Queries to Concept Atoms 121

5.2.3 Correctness of the Rewriting Steps 123

5.3 Deciding Query Entailment for SHOQ 126

5.3.1 Canonical Models of Bounded Branching Degree 127

5.3.2 Eliminating Transitivity 129

5.3.3 Alternating Automata . 134

3

5.3.4 Tree Relaxations . 135

5.3.5 Deciding Existence of Tree Relaxations 142

5.3.6 Combined Complexity . 148

5.3.7 Consequential Results . 150

5.4 Summary . 150

6 Conclusions 152

6.1 Thesis Achievements . 152

6.2 Significance of the Results . 153

6.3 Future Work . 155

Bibliography 158

Index 173

Word Count 67.201

4

List of Figures

1.1 A graphical representation of a query. 21

1.2 A graphical representation of a query. 24

1.3 The query graph after identifying y and y′. 25

1.4 The query graph for the query from Example 1.3. 25

3.1 A query graph for the query q′. 43

3.2 A complete and clash-free completion graph for K. 48

3.3 A graphical representation of a canonical model I for K. 48

3.4 A graphical representation of a model that does not satisfy q. . . 49

3.5 An abstraction of a completion graph using tree blocking. 50

3.6 A completion graph and its canonical model. 52

3.7 A graphical representation of the query q from Example 3.4. . . . 55

4.1 A representation of a canonical interpretation I for K. 70

4.2 A forest base for the interpretation represented by Figure 4.1. . . 71

4.3 A graph representation of the query from Example 4.3. 71

4.4 A match π for the query q. 72

4.5 A cyclic query and its tree-shaped collapsing. 73

4.6 A split rewriting qsr for the query shown in Figure 4.3. 73

4.7 A split match πsr for the query qsr. 74

4.8 A loop rewriting q`r and its match. 75

4.9 A forest rewriting qfr with a forest match πfr. 75

4.10 A representation of a canonical model. 88

4.11 The match for a forest rewriting. 89

5.1 A representation of a canonical interpretation I for K. 112

5.2 A graphical representation of the query q with its match. 112

5.3 A graphical representation of a nominal rewriting. 115

5.4 A graphical representation of a shortcut rewriting. 115

5

5.5 A representation of a canonical model I for K. 121

5.6 A representation of an alternative canonical model I ′ for K. . . . 121

5.7 A representation of a model for K. 130

5.8 A representation of a canonical model I for elimTrans(K). 136

5.9 A graphical representation of a relaxation for K. 136

5.10 A relaxation and the tree relaxation built from it. 139

6

Abstract

Knowledge representation systems provide a mechanism for storing facts about
some part of the real world in a knowledge base, inferring new knowledge based
on the given facts, and querying knowledge bases. The ability to infer new knowl-
edge is one of the distinguishing features compared to databases. Such inference
services require the definition of knowledge in a language for which such inference
algorithms exist, e.g., a Description Logic (DL). A DL language allows for the
specification of concepts, individuals that are instances of these concepts, and
roles, which are interpreted as binary relations over the individuals.

Description Logics have proved useful in a wide range of applications and form
the foundations of the Web Ontology Language (OWL), which is used in the
Semantic Web as a means for specifying machine processable information.

Despite their popularity, the retrieval facilities provided by DL systems are still
limited. Current algorithms are incomplete or impose restrictions on the types
of allowed queries. This thesis identifies sources of incompleteness in existing
algorithms and presents extended retrieval procedures eliminating the deficien-
cies described above. More precisely, we present query answering algorithms for
unrestricted conjunctive queries for the DLs SHIQ and SHOQ—the former of
which was a long standing open problem. Furthermore, the correctness of the
presented algorithms is proved formally and an analysis of the theoretical com-
plexity is given. The planned future work is targeted on optimisation techniques
to improve the algorithm’s practicality.

The work presented in this thesis should be of value mainly to implementors
of Description Logic systems, as the presented algorithms build the theoretical
foundation for implementable query answering interfaces. Additionally, the al-
gorithms can also be used in order to extend a DL system with datalog style
rules.

7

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

8

Copyright

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns any copyright in it (the “Copyright”) and s/he has given The

University of Manchester the right to use such Copyright for any adminis-

trative, promotional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in

accordance with the regulations of the John Rylands University Library of

Manchester. Details of these regulations may be obtained from the Librar-

ian. This page must form part of any such copies made.

iii. The ownership of any patents, designs, trade marks and any and all other

intellectual property rights except for the Copyright (the “Intellectual Prop-

erty Rights”) and any reproductions of copyright works, for example graphs

and tables (“Reproductions”), which may be described in this thesis, may

not be owned by the author and may be owned by third parties. Such Intel-

lectual Property Rights and Reproductions cannot and must not be made

available for use without the prior written permission of the owner(s) of the

relevant Intellectual Property Rights and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and exploitation of this thesis, the Copyright and any Intellectual Property

Rights and/or Reproductions described in it may take place is available from

the Head of School of School of Computer Science (or the Vice-President).

9

Acknowledgements

First of all, I would like to thank my supervisors Ian Horrocks and Uli Sattler for

their continous support, encouragement, ideas, and advice. I would also like to

thank Carsten Lutz for all his input and for learning that there is no “h” in my

name.

I am deeply grateful to my parents for supporting me whenever I need it. I

thank Frank for believing in me, supporting me, and being there for me in many

difficult days.

I would like to thank Yevgeny for caring so much about me and making me

laugh even if I do not feel like it and Nestan for being as she is. It is a pleasure

to have you around. I also thank everybody in the Information Management

Group. In particular everybody from the coffee round. Thanks to everybody in

room 2.116; I always enjoyed being around. Also thanks to Bijan: when suffering

cannot be avoided, then it is better to suffer together. There are many more

people, who I like to thank: my friends in Germany and many new ones I found

here. Sorry for not listening everybody by name.

Finally, I would like to thank the Foundation of German Business (Stiftung

der Deutschen Wirtschaft) and the Engineering and Physical Sciences Council

for supporting me with a scholarship.

10

Chapter 1

Introduction

The aim of this research is to investigate the logical basis for improving the usabil-

ity of knowledge representation systems, especially the improvement of the query

answering facilities of such systems. A knowledge representation system (KRS)

allows the storage of constraints and facts about some part of the real world in

a knowledge base (KB). In contrast to database systems, a KRS provides infer-

ence services which allow for deducing facts that are only implicitly given. With

queries, users can retrieve knowledge stored in a knowledge base; either knowledge

that has been directly entered into the system or inferred knowledge. Currently

available reasoning systems, such as FaCT++ [113], KAON2 [77], Racer [49],

and Pellet [103], already offer very expressive languages for the specification of

knowledge and the inference services of these systems are very powerful and highly

optimised. The query languages for these systems are, however, still limited. Few

provably correct algorithms for expressive query languages are known, and, fur-

thermore, we show that some of the proposed query answering algorithms [19, 85]

for very expressive Description Logics are incomplete.

The aim of this thesis is, therefore, to devise extended query answering al-

gorithms for expressive Description Logics, which can serve as a basis for imple-

mentation and optimisation in existing DL reasoners.

This chapter informally introduces the underlying foundations of DL based

knowledge representation systems; this includes the languages used to specify

knowledge, available inference services, common application areas of knowledge

representation systems, and ways of querying knowledge bases. Based on these

foundations, the problems of query answering that remain to be solved are high-

lighted and the aims and objectives of this thesis are stated.

11

12 CHAPTER 1. INTRODUCTION

1.1 Description Logics

Description Logics [6] are knowledge representation languages with a formally

defined syntax and semantics. A Description Logic allows for the specification

of concepts (also known as classes), individuals (also known as objects) that

are instances of these concepts, and roles (also known as properties) that are

interpreted as pairs of individuals that are related by the role. Operators, such as

negation (¬) or conjunction (u), can be used in order to build more complicated

composite concepts. As an example, consider the following concept:

Female u > 2 hasChild u ∀hasChild.Female

In natural language, this concept describes females who have at least two chil-

dren and all of whose children are female. The description consists of three sub-

concepts connected with the conjunction operator (u). The first one describes

objects that belong to the atomic concept Female, the second one describes ob-

jects with at least two objects related via the role hasChild, and the third concept

covers all objects for which all (∀) objects related via the role hasChild are in-

stances of the concept Female.

A particular Description Logic is characterised by its set of supported con-

structors. Schmidt-Schauss and Smolka [99] introduced a naming scheme for

Description Logics and called the basic language AL (Attributive concept Lan-

guage). The logic AL allows for negation of atomic concepts (e.g., ¬Female),

conjunction (u), universal quantification (∀hasChild.Female), and unqualified

existential quantification (∃hasChild), which means that all instances of this

concept have a hasChild-successor. For additional operators a further letter is

appended, e.g., AL plus complex negation is called ALC. Complex negation al-

lows the negation of a complex concept expressions as ¬(∀hasChild.(Female u

Doctor)) and not only the negation of an atomic concept as in ¬Female, where

no further definition of Female is given. A more detailed introduction to De-

scription Logics follows in Chapter 2.

1.1.1 Description Logic Knowledge Bases

Using a Description Logic language, users can build a terminology of agreed

terms and use a knowledge representation system to store and reason about such

1.1. DESCRIPTION LOGICS 13

a terminology. A terminology, also called a TBox , is a set of axioms that induce

a concept hierarchy, e.g., the axiom Student v Person states that the concept

Student is a specialisation of (or, is subsumed by) the concept Person and

therefore every instance of the concept Student must also be an instance of the

concept Person.

Description Logics may also allow for a role hierarchy , also called an RBox ,

where, for example, the axiom hasSon v hasChild states that all pairs of

individuals that are related via the role hasSon are also related via the role

hasChild. If a DL in addition supports transitive roles, one can, for exam-

ple, state that the role hasDescendant is transitive. A DL reasoner can then

deduce that, if hasDescendant(Mary, Peter) and hasDescendant(Peter, Bill)

holds, then hasDescendant(Mary, Bill) also holds.

Assertions about individuals have the form Female(Mary), hasChild(Mary,

Peter), or Mary 6
.
= Maria, and are called concept assertions, role assertions, and

inequality assertions, respectively. The first assertion states that the individual

Mary is an instance of the concept Female (in natural language: Mary is a fe-

male), the second one states that the individual Mary is related to the individual

Peter with the role hasChild or, in other words, Peter is a hasChild-successor of

Mary and Mary is a hasChild-predecessor of Peter (in natural language: Peter

is a child of Mary), and the third assertion simply states that Mary is a different

individual from Maria. A collection of assertions about individuals is called an

ABox .

A TBox, RBox (if supported by the language), and ABox together constitute

a knowledge base (also known as ontology).

In this thesis, we consider different expressive DLs and all of them allow for

role hierarchies, transitive roles, and qualified number restrictions of the form

> 2 hasChild.Female. The latter concept describes individuals who have two

or more hasChild successors that are females. The DL SHIQ, which we use

in Chapter 4, additionally allows for inverse roles. With inverse roles we can,

for a role hasChild, use hasChild− as the role that, intuitively, represents the

isChildOf relation. In Chapter 5 we present an algorithm for the DL SHOQ

that supports nominals. With nominals, we can define a concept by enumerating

its instances, e.g., the concept EU can be defined as an enumeration of its member

countries.

Different DLs may have different computational properties. The time needed

14 CHAPTER 1. INTRODUCTION

to decide if, for example, one concept is more general than another (called a

subsumption check), is polynomial in the size of the input concepts for very

inexpressive DLs, such as FL− [15] or EL [18]. For very expressive DLs, the

complexity of this problem increases, e.g., it is ExpTime-complete for SHIQ

[112] and even NExpTime-complete for SHOIQ [86, 111], which allows for both:

nominals and inverse roles. If the knowledge to be modelled does not require high

expressivity, applications can benefit from systems such as CEL [7]. CEL supports

the DL EL+ and implements an algorithm that runs in a polynomial time for the

standard reasoning problems.

1.1.2 Historical Background

Early knowledge representation systems include semantic networks [70, 90] and

frames [75]. Semantic networks use directed graphs, in which nodes represent

concepts and edges—or so called arcs—represent relations between concepts. De-

spite being called semantic networks, a major shortcoming of these early systems

is that the semantics of the relations is not formally defined. Arcs can represent

various kinds of relations [14, 123], e.g., a part-of relation or a sub-concept re-

lationship (sometimes called sub-type, specialisation or IsA-relation). A frame

represents a concept, it has an identifier (ID), and it can have slots or fillers, i.e.,

elements from a concrete domain (e.g., integers) or IDs of other frames. These

slots describe attributes of the objects, together with default values, procedures

to compute values or to propagate side effects, and restrictions on possible fillers.

Attributes in these systems correspond to roles in modern DLs.

Brachman and Schmolze [16] first tried to provide a well-defined semantics for

semantic networks and frames with their system Kl-One. This system was suc-

ceeded by systems based on Description Logics (DL), e.g., Loom [74], Krypton

[17], Nikl [64], Back [89], Kris [5], Classic [13], and others.

Inference algorithms for these systems were often based on analysis and/or

decomposition of the syntax or structure of the knowledge base statements and

were, therefore, called structural comparison algorithms [30]. Some of these sys-

tems already provided very sophisticated query facilities, e.g., Loom, but the

algorithms of these systems typically suffered from incompleteness or were re-

stricted to very simple languages. An algorithm that decides, given two concepts

C and D, whether it holds that D subsumes C, is called complete if it is guar-

anteed that the algorithm returns “yes” whenever the subsumption relationship

1.1. DESCRIPTION LOGICS 15

holds and it is called incomplete otherwise. The algorithm is called sound if it is

guaranteed that, whenever the algorithm returns “yes” that D indeed subsumes

C and it is called unsound otherwise. Finally we call such an algorithm correct ,

if it is both sound and complete. An algorithm that is guaranteed to return an

answer after finitely many steps is called terminating. A decision procedure for

a problem, e.g., subsumption, is an algorithm that is sound, complete, and ter-

minating. Please note that a decision procedure is formulated for a particular

decision problem (here subsumption between two concepts), i.e., a problem that

has a Boolean answer (“yes/no” or true/false).

Current systems, e.g., FaCT++ [113], Racer [49], and Pellet [103], are mostly

based on tableau algorithms and employ highly optimised decision procedures for

subsumption checking, consistency checking (i.e., checking whether a knowledge

base is contradictory and cannot have a model), or instance retrieval (i.e., for

retrieving all individual names that belong to a given, possibly complex, concept).

More recently, a resolution based decision procedure has been implemented in the

DL system KAON2 [77].

1.1.3 Application Areas

Knowledge representation systems have been used in several practical applica-

tions. A short list of examples is given below, a much broader description of

application areas is given in the Description Logic Handbook [6].

Semantic Web The Semantic Web [9, 10] aims to make the information on

the World Wide Web processable for computer programs (agents) by annotating

resources on the web with terms whose meaning is defined in an ontology. As a

language to describe the terms in an ontology, the World Wide Web Consortium

(W3C) standardised the Web Ontology Language OWL [8]. OWL has three sub-

species, called OWL Lite, OWL DL, and OWL Full.1 OWL Lite corresponds to

the DL SHIF(D) (SHI plus functional restrictions and a restricted form of con-

crete domains) and OWL DL corresponds to SHIN (D) (SHI plus unqualified

number restrictions and a restricted form of concrete domains). OWL Full does

not correspond to a Description Logic, and the standard reasoning problems are

undecidable. Recently, OWL 1.1 [79] was proposed, which extends OWL DL with

1Inference in OWL Full is clearly undecidable as OWL Full does not include restrictions on
the use of transitive properties, which are required in order to maintain decidability [57].

16 CHAPTER 1. INTRODUCTION

useful and yet practical features (i.e., implemented systems are already available

[103, 113]). In September 2007 the W3C approved the OWL Working Group2

that is to produce a W3C Recommendation that refines and extends OWL in this

direction.

Medical Informatics In particular in this area, several very large ontolo-

gies are available. For example, GALEN3 provides a clinical terminology with

nearly 25,000 atomic concepts to support the management of clinical information

[91, 124]. The SNOMED ontology [104, 105, 106] provides a comprehensive ter-

minology for health care with more than 250,000 atomic concepts, but a rather

simple structure. The National Cancer Institute4 (NCI) provides a terminology

with more than 25,000 concepts that is used in clinical care, translational and ba-

sic research, and for public information and administrative activities [27]. Other

examples in this area include ontologies about anatomy [44, 100].

Life Sciences The myGrid project uses knowledge representation to organise

workflows for experiments relying on web-based procedures and to describe how

and why results were produced [31, 33, 42, 60, 114, 125]. Several ontology based

methods are also used by biologists, e.g., to associate genotype and phenotype

information [94] or to classify proteins [121]. Well known ontologies from this

area include the Gene Ontology (GO) or the Open Biomedical Ontologies (OBO)

[43, 45, 81].

Other application areas include software engineering [50], configuration [93],

information integration [20], biology [101, 122, 125], geography [46], geology [107],

and defence [69].

1.1.4 Semantics of Description Logics

Description Logics have a well defined semantics, which means that compared to

the older frame systems or semantic networks there is no ambiguity between sub-

sumption relationships, role relationships or individuals and concepts in general.

The semantics of the language constructors and inference tasks is also precisely

defined. The semantics is given by an interpretation I = (∆I ,·I), which consists

2http://www.w3.org/2007/06/OWLCharter
3http://www.opengalen.org
4http://www.nci.nih.gov/

http://www.w3.org/2007/06/OWLCharter
http://www.opengalen.org
http://www.nci.nih.gov/

1.2. REASONING SERVICES 17

of a non-empty set of individuals ∆I called the interpretation domain, and an

interpretation function ·I . The interpretation function maps atomic concepts to

subsets of the domain ∆I , atomic roles to subsets of ∆I × ∆I , and individual

names to elements of the set ∆I . From this, one can also inductively interpret

the complex concepts, e.g., a conjunction of two atomic concepts C and D is

interpreted as the intersection of the two sets CI and DI . For a concept C, we

call the set CI the extension of C. We introduce interpretations more precisely

in the following chapter.

A concept C is called satisfiable if there is an interpretation I such that CI

is non-empty and it is unsatisfiable otherwise. The concept Female u ¬Female,

for example, is unsatisfiable independent of all other facts that might be specified

in the knowledge base since in every interpretation I, ¬Female is interpreted as

the set of elements of the domain that are not in the set FemaleI , i.e., elements

that are in ∆I \FemaleI . We can abbreviate such an unsatisfiable concept with

⊥ and denote it as bottom. On the contrary, the concept Female t ¬Female is

always satisfiable and we call such a concept the top concept and abbreviate it

with >.

Obviously there can be many interpretations for a knowledge base. If the

ABox contains, for example, an assertion (Doctor t Lawyer)(Andrea) (i.e., An-

drea is a doctor or a lawyer), then there could be interpretations in which

AndreaI ∈ DoctorI and others in which AndreaI ∈ LawyerI or both. Inter-

pretations that, informally, respect all facts given in a knowledge base, i.e., if

Female(Mary) is present in the ABox, then MaryI ∈ FemaleI , are called mod-

els for the knowledge base.

1.2 Reasoning Services

Besides just storing the given facts about a domain in a knowledge base, users

want to interact with the system. For example, they want to determine whether

the given facts are contradictory. Current reasoners offer, therefore, a more or

less expressive query language.

18 CHAPTER 1. INTRODUCTION

1.2.1 Standard Reasoning Services

All reasoners use algorithms for inferring implicitly stated knowledge and, based

on these algorithms, they also support some basic reasoning tasks, e.g., deter-

mining if a given individual is an instance of a given concept. Systems usually

support the following standard reasoning tasks:

1. Subsumption Test: to determine whether one concept is more general than

another. Subsumption tests are used to build and maintain a taxonomy of

named concepts, called the concept hierarchy, and the process of building

the concept hierarchy is called classification.

2. Satisfiability Test: to determine whether the constraints implied by the

knowledge base are such that a concept is contradictory and thus its exten-

sion is empty in every model of the knowledge base.

3. Consistency Test: to determine whether a given knowledge base can have

a model.

4. Retrieval: to retrieve all instances of a given concept or all pairs of individ-

uals related via a given role.

However, users often want to use more complex queries. For example, a

query that asks for a triple consisting of a person plus their father and their

mother cannot simply be reduced to a retrieval query for concept or role instances.

Conjunctive queries, which are similar to SQL queries in a database system,

provide a more expressive query language and we briefly introduce them in the

following section.

1.2.2 Conjunctive Queries

In data-intensive applications, querying KBs plays a central role. Instance re-

trieval is, in some aspects, a rather weak form of querying: concepts are used as

queries, and concepts can only express tree-shaped structures. Additionally, it is

not directly possible to retrieve tuples of individuals that fulfill certain conditions.

Conjunctive queries (CQs), well known in the database community, provide an

expressive query language with capabilities that go beyond standard instance

retrieval.

1.2. REASONING SERVICES 19

A conjunctive query is a conjunction of concept atoms of the form C(t) and

role atoms of the form r(t, t′), where C is a concept, r is a role, and t, t′ are

terms, i.e., variables or individual names. If Father and Mother are concepts

and hasChild is a role in the queried knowledge base, a query to retrieve a triple

of father, mother and their child could be expressed as:

(x, y, z)← Father(x) ∧Mother(y) ∧ hasChild(x, z) ∧ hasChild(y, z)

The left hand side of the arrow (x, y, z) defines which variables are distinguished

or answer variables. If all variables are distinguished, as in this example, the

query answer consists of triples of individual names from the knowledge base

such that, after replacing the variables with the corresponding individual names

from the query answer, all conjuncts are true in each model of the knowledge

base. For example, let the knowledge base to be queried consist of the following

TBox and ABox:

T = {

Male u ∃hasChild.> v Father (1.1)

Female u ∃hasChild.> v Mother (1.2)

}

A = {

hasChild(Peter, Paul) (1.3)

hasChild(Mary, Paul) (1.4)

Male(Peter) (1.5)

Female(Mary) (1.6)

}

The triple (Peter, Mary, Paul) is an answer for the query since Father(Peter) is

a consequence of 1.5, 1.3, and 1.1, Mother(Mary) holds due to 1.4, 1.6, and 1.2,

and the last two conjuncts hasChild(Peter, Paul) and hasChild(Mary, Paul)

are a directly stated in the ABox by the assertions 1.3 and 1.4 respectively.

20 CHAPTER 1. INTRODUCTION

Query answering with respect to a knowledge base is different from query an-

swering with respect to a database. In databases we have the Closed World As-

sumption (CWA), which means that everything that is not explicitly stated is as-

sumed to be false. In DL systems (and in First-Order Logic (FOL) in general), we

usually have an Open World Assumption (OWA). Consider, for example, a knowl-

edge base that contains only the two ABox assertions supervises(Ian, Birte) and

Female(Birte). In a DL system, the query

(x)← (∀supervises.Female)(x),

has no answer since there can be a model of the knowledge base in which Ian also

supervises a male student. In a database system, the closed world assumption

means that we can assume that we have complete knowledge about the domain,

i.e., Ian does not supervise any student unless explicitly stated. Hence, a database

would return Ian as an answer to the above query.

In database systems, we also have the Unique Name Assumption (UNA) ,

which means that different individual names are mapped to distinct elements in

the model. In current DL systems we usually do not employ the UNA, which

means that different individual names can be mapped to the same element in a

model.

As a consequence of the fact that DL systems have the OWA (and do usually

not make the UNA), a DL knowledge base has usually more than one model,

whereas a database always has only a single model. Query answering in a database

setting requires, therefore, just checking one model, whereas in our setting it

requires checking all models of a knowledge base, i.e., checking logical entailment.

This explains why query answering with respect to a DL knowledge base is a

(computationally) harder task than query answering with respect to a database.

If the query also contains non-distinguished variables, these variables are

treated as existentially quantified, i.e., we just require the existence of a suitable

element in the model, but this element does not have to correspond to a named

individual in the ABox. Assume, for example, that the TBox of a knowledge base

K contains the axiom

Father vMale u ∃hasChild.Person

and the ABox contains only the assertion Father(Charles). Then Charles is a

1.2. REASONING SERVICES 21

correct answer for the query

(x)← hasChild(x, y),

where y is a non-distinguished variable. This is because all instances of the

concept Father, and therefore also Charles, are males and they have a hasChild-

successor that is an instance of the concept Person. From this, it follows that

Charles has a hasChild-successor, although the name is not known.

In order to find the answers for this particular query, one can use the standard

instance retrieval techniques since finding the answers for this query is equivalent

to retrieving all instances of the concept ∃hasChild.>. The reduction of a query

to a concept by eliminating variables is often called the rolling-up [109] or tuple

graph [19] technique. The term rolling-up stems from the systematics behind

this transformation, and the technique is easier to explain when the query is

represented as a graph, called a query or tuple graph. Understanding the meaning

of longer queries can also be easier with the graph representation.

Example 1.1.

(u)← hasFriend(u, x) ∧ hasChild(x, y) ∧ hasChild(x, y′)∧

Doctor(y) ∧ Lawyer(y′)

The query from Example 1.1 is represented by the graph in Figure 1.1. Infor-

mally, each variable v in the query gives rise to a node in the graph, labelled with

a conjunction of concepts such that, for each conjunct C, C(v) is a concept atom

in the query. Each role atom r(v, v′) gives rise to an edge in the graph going from

the node that represents v to the node that represents v′ and labelled with r.

y′ : Lawyer

u

hasFriend

y : Doctor

x

hasChild

hasChild

Figure 1.1: A graphical representation of a query.

In order to reduce the query from Example 1.1 to a concept, we traverse the

query graph in a depth-first manner, starting at the node that represents the

22 CHAPTER 1. INTRODUCTION

distinguished variable. When reaching a leaf node v, we remove the node and its

incoming edge (v′, v), and conjoin the concept ∃r.C to the label of v′, where r is

the label of the replaced edge and C is the label of v.

We can, for instance, remove the node that represents y and its incoming

hasChild edge by setting the label of the node for x to ∃hasChild.Doctor. This

concept still captures the required existence of some hasChild-successor who is

a Doctor. We can proceed, similarly, for the node that represents y′ and its

incoming edge, resulting in the label

∃hasChild.Doctor u ∃hasChild.Lawyer

for the node that represents x. Finally, the query graph can be collapsed into a

single node labelled with

∃hasFriend.(∃hasChild.Doctor u ∃hasChild.Lawyer).

We can now compute the query answers by retrieving all instances of the above

concept.

For simplicity, we use the variable names occurring in the query directly as

nodes in the query graph. More formally, one should define a different set of

nodes and a one-to-one mapping between the query and its graph representation.

Furthermore, it is not hard to see that, in the absence of inverse roles, this

technique cannot always be applied as straightforwardly as shown above. If, for

example, the edge from x to y went from y to x instead, one can no longer

replace the node y and the edge (y, x) as one would need the concept expression

∃hasChild−.Doctor. Tessaris [109] shows, however, how this technique can be

extended to the logic SHF (that isALC plus transitive roles, role hierarchies, and

functional roles, but without inverses). Since we are mainly concerned with very

expressive logics that provide for inverse roles, we do not discuss this problem in

further detail here. Another problematic situation arises when the query contains

two different role atoms for the same pair of terms. For example, the query

(x) ← loves(x, y) ∧ hasChild(x, y) asks for all individuals that love their child.

If we want to express this query as a concept, we need conjunction on roles in

order to capture that both role relations (loves and hasChild) must hold. If the

logic allows for role conjunction, we can use the concept ∃(loves u hasChild).>

to retrieve all answers to the query. Although we are concerned with expressive

1.2. REASONING SERVICES 23

Description Logics, most of these logics do not support role conjunction. We

present, therefore, suitably extended decision procedures in the following chapters

where necessary.

Queries that do not contain distinguished variables are called Boolean queries

and the answer to such a query is either true or false. Deciding whether a Boolean

query is true or false is known as the query entailment problem, whereas the

problem of finding all answer tuples for a non-Boolean query is known as the

query answering problem. Although not efficient in practice, query answering

can easily be reduced to query entailment by replacing the answer variables with

each possible combination of individual names and by checking entailment of

the resulting Boolean queries. The answers to the query are all those tuples

of individual names for which the resulting Boolean query is entailed by the

knowledge base. As a consequence, we concentrate in the remainder of this thesis

on the problem of query entailment and only come back to query answering, when

necessary, e.g., for complexity analysis.

1.2.3 Challenges of Query Answering

Finding a decision procedure for conjunctive query entailment for very expressive

DLs such as SHIQ, SHOQ, or SHOIQ is not as straightforward as one might

think. Even for simpler logics, there are some pitfalls that have to be avoided.

The main challenge is the correct handling of the non-distinguished variables, in

particular when these are arranged in a cycle. Consider, for example, the query

from Example 1.2, which extends the query given in Example 1.1. The query

graph for this query is depicted in Figure 1.2. We call a query cyclic when the

undirected graph that is underlying its query graph is cyclic (and this is clearly

the case for the given example). All other queries are called acyclic.

Example 1.2.

(u)← hasFriend(u, x) ∧ hasChild(x, y) ∧ hasChild(x, y′) ∧ hasChild(z, y)∧

hasChild(z, y′) ∧Doctor(y) ∧ Lawyer(y′).

Due to the so called tree model property of most DLs [118], a concept can only

express tree-like structures. In ALC (and even more expressive logics), for exam-

ple, we cannot express a concept Narcist as those persons who love themselves.

One could formulate an axiom such as Narcist v Person u ∃loves.Narcist, but

24 CHAPTER 1. INTRODUCTION

hasChild

u

hasFriend
x

hasChild

y : Doctor

y′ : Lawyer

hasChild

hasChild

z

Figure 1.2: A graphical representation of a query.

that would only guarantee that each instance d of the concept Narcist has a

loves-successor that is also an instance of the concept Narcist, but not that this

successor is again d. It is, however, easy to define a query such as

(x)← Person(x) ∧ loves(x, x),

where the answer would consist of all those individual names a for which a is a

person that loves him- or herself. In this case, we cannot apply the rolling-up

technique described above since a concept cannot express such cyclic structures.

Since we can define cyclic structures in the ABox, e.g., we can state that Peter

loves himself by adding the assertion loves(Peter, Peter), we could argue that

we can simply replace variables in cycles with individual names. We could then

use the standard reasoning tasks in order to verify that the chosen individual is

indeed an instance of the concept Person and related to itself.

This argument does not, however, always hold. Consider, for example, the

query from Example 1.2 with respect to a knowledge base containing only the

assertion

(∃hasFriend.(∃hasChild.(Doctor u Lawyer u ∃hasChild.>)))(Mary).

In every model I of the knowledge base, the individual MaryI has a hasFriend-

successor, say d, d has a hasChild-successor, say d′, such that d′ ∈ DoctorI , d′ ∈

LawyerI , and d′ has again a hasChild-successor, say d′′. It is not hard to see that

d meets all the constraints for x, d′ those for y and y′, and d′′ those for z. Since

the same element in a model, here d′, can be used for different variables, here

y and y′, we can not just replace the variables in a cycle with individual names

from the knowledge base; we also have to apply the rolling-up technique to those

acyclic queries that we can obtain by identifying variables. E.g., by identifying

1.2. REASONING SERVICES 25

y′ and y in the query from Example 1.2, we would additionally obtain the acyclic

query

(u)← hasFriend(u, x) ∧ hasChild(x, y) ∧ hasChild(y, z)∧

Doctor(y) ∧ Lawyer(y),

depicted in Figure 1.3.

zu

hasFriend

x

hasChild

y : Doctor, Lawyer

hasChild

Figure 1.3: The query graph for the query obtained from Example 1.2 by
identifying y′ with y.

If we then reduce the query to a concept by applying the rolling-up technique,

using x as the root variable, we obtain the concept

∃hasFriend.(∃hasChild.(Doctor u Lawyer u ∃hasChild.>)).

Instances of this concept are answers to the query, and we would clearly retrieve

Mary for the given knowledge base.

The need to test all possible ways of identifying variables was first pointed out

by Horrocks et al. [56]. This also applies to the tuple graph technique Calvanese

et al. [19], although it is not mentioned there.

Further difficulties arise when the logic allows for transitive roles. Consider,

for example, the query from Example 1.3 and its query graph in Figure 1.4.

Example 1.3.

(u)← hasFriend(u, x) ∧ hasChild(x, y) ∧ hasDescendant(y, z)∧

hasDescendant(x, z)

hasChild

y z

hasDescendant

hasDescendant

u

hasFriend

x

Figure 1.4: The query graph for the query from Example 1.3.

We assume that the knowledge base contains, as before, the assertion

(∃hasFriend.(∃hasChild.(Doctor u Lawyer u ∃hasChild.>)))(Mary).

26 CHAPTER 1. INTRODUCTION

plus a role inclusion axiom that states that hasChild is a sub-role of the tran-

sitive role hasDescendant. In this case, every hasChild-successor is also a

hasDescendant-successor and, additionally, hasDescendant is mapped to a tran-

sitive relation in each model of the KB. It is, therefore, clear that the query is

not really cyclic since the edge from x to z is just a “shortcut” that is implied

in any model of the KB. If we delete the conjunct hasDescendant(x, z) from the

query and apply the rolling-up technique, we obtain the concept

∃hasFriend.(∃hasChild.(∃hasDescendant.>)),

and we can obtain all query answers by retrieving the instances of this concept.

As before, replacing the variables in the cycle with individual names from the KB

would wrongly result in an empty query answer. Deleting role atoms from the

query is, however, not always possible, e.g., when the logic allows for functional

roles or general number restrictions and role hierarchies. For an example, we refer

interested readers to Tessaris [109], Example 7.5.

Due to the difficulties described above, the rolling-up technique [109] imposes

two restrictions on the structure of the queries that the algorithm can handle:

1. Cycles in the query can contain only roles that are not transitive and that

do not have a transitive sub-role.

2. If there are more than two role atoms for the same pair of variables, e.g.,

the query contains the conjunct r(x, y) and s(x, y), then one role must be

a sub-role of the other or both roles must have a common functional super-

role.

Tessaris formulated possible extensions of his algorithm for lifting the restrictions,

but a proof that the suggested extension indeed results in a decision procedure

was left for future work.

1.3 Aims and Objectives

As we have shown above, conjunctive queries allow for a flexible interaction with

knowledge representation systems. Several difficulties arise, however, when de-

vising a decision procedure for conjunctive query answering in expressive DLs.

As a result, known decision procedures are either limited to less expressive logics

1.4. A GUIDE FOR READERS 27

such as ALC, or make restrictions on the structure of the queries, e.g., queries

must be acyclic, no transitive roles are allowed in the query, or non-distinguished

variables are not supported in general. The aim of this thesis is, therefore, to

investigate whether it is possible to development decision procedures for (unre-

stricted) conjunctive queries in expressive DLs.

1.4 A Guide for Readers

This introductory chapter is meant to be more intuitive than precise and most

terms are not formally defined. In Chapter 2 we provide definitions for the De-

scription Logics we use and introduce the important terms and concepts more

precisely. Experts in Description Logics might want to skip this chapter and

start directly with Chapter 3, which introduces related work and analyses the

problems with existing query answering algorithms in greater detail. Addition-

ally, we show in this chapter how techniques known from Hybrid Logics [11] such

as the downarrow binder for labelling states (elements of the domain in DL terms)

can be used to devise a decision procedure for conjunctive queries in SHQ. In

the following chapter, we introduce a decision procedure for unions of conjunctive

queries in SHIQ that is worst-case optimal w.r.t. both combined and data com-

plexity. The algorithm rewrites a given query into a set of structurally simpler

queries that are used in order to determine the query answer. In the following

chapter, we show how the rewriting technique can be adapted to the logic SHOQ.

Finally, the achievements and the significance of the results obtained in this thesis

are outlined in Chapter 6 and directions for future research are discussed.

Chapter 2

Foundations of Description

Logics

To avoid ambiguities, a definition of the syntax, semantics and reasoning prob-

lems of a knowledge representation language is necessary. It was one of the

shortcomings of the early frame systems that their semantics was not clear; as a

consequence, the represented knowledge was interpreted differently by different

people or applications. Furthermore, a proof of the correctness and completeness

of an algorithm is only possible with a well defined semantics.

Description Logics have a well defined semantics, which is introduced in this

chapter. Informal definitions for most of the terms are given in the introduction;

the aim for this chapter is a precise definition of the terms and notation used

within this thesis. We focus on the logic SHOIQ here, as simpler logics can

easily be obtained by disallowing some of its constructors.

2.1 Syntax and Semantics

As already stated in the introduction, Description Logics allow for defining con-

cepts, individuals that are instances of these concepts and roles that are inter-

preted as binary relations. In this thesis, as a convention, concept names are

written in upper case, while role and individual names are written in lower case.

Unless stated otherwise, we use A and B for concept names; C, D, and E for

possibly complex concepts; r, s, and t for role names; a, b, and c for individual

names, and o for nominals. An integer index might be appended if necessary.

We first define the syntax and semantics for roles, and then go on to concepts,

28

2.1. SYNTAX AND SEMANTICS 29

individuals, and knowledge bases.

Definition 2.1. Let NC , NR, and NI be countable, infinite, and pairwise disjoint

sets of concept names, role names, and individual names, respectively. We assume

that the set of role names contains a subset NtR ⊆ NR of transitive role names.

We call S = (NC ,NR,NI) a signature. The set rol(S) of SHOIQ-roles over S

(or roles for short) is NR ∪ {r− | r ∈ NR}, where roles of the form r− are called

inverse roles. A role inclusion axiom (RIA) is of the form r v s with r, s roles.

A role hierarchy R is a finite set of role inclusion axioms.

An interpretation I = (∆I ,·I) consists of a non-empty set ∆I , the domain

of I, and a function ·I , which maps every concept name A ∈ NC to a subset

AI ⊆ ∆I , every role name r ∈ NR to a binary relation rI ⊆ ∆I × ∆I , every

role name r ∈ NtR to a transitive binary relation rI ⊆ ∆I × ∆I , and every

individual name a ∈ NI to an element aI ∈ ∆I . For each role name r ∈ NR, the

interpretation of its inverse role r−
I

consists of all pairs (d, d′) ∈ ∆I × ∆I for

which (d′, d) ∈ rI . An interpretation I satisfies a role inclusion r v s if rI ⊆ sI

and a role hierarchy R if it satisfies all role inclusions in R. 4

For simplicity, we use the following standard notations:

1. It is clear from the semantics that the inverse relation is symmetric, i.e.,

the inverse of r− is again r. To avoid writing role expressions such as r−−

or r−−− we define a function Inv which returns the inverse of a role. More

precisely, Inv(r) = r− if r ∈ NR and Inv(r) = s if r = s− for a role name s.

2. Since an inclusion relation between two roles transfers to their inverses and

since set inclusion is transitive, we define, for a role hierarchy R, v*R as

the reflexive transitive closure of v over R∪{Inv(r) v Inv(s) | r v s ∈ R}.

We use r ≡R s as an abbreviation for r v*Rs and s v*Rr.

3. For a role hierarchy R, we define the set TransR of transitive roles as {r |

there is a role s such that r ≡R s and s ∈ NtR or Inv(s) ∈ NtR}.

4. A role r is called simple w.r.t. a role hierarchy R if, for each role s such

that s v*Rr, s /∈ TransR.

The subscript R of v*R and TransR is dropped if clear from the context.

If a DL supports inverse roles, indicated by the letter I in the name of the DL,

all role relations are bidirectional. The ABox assertion hasChild(Mary, Peter)

can then equally be expressed as Inv(hasChild)(Peter, Mary).

30 CHAPTER 2. FOUNDATIONS OF DESCRIPTION LOGICS

Definition 2.2. Given a signature S = (NC , NR, NI), the set con(S) of SHOIQ-

concepts (or concepts for short) over S is the smallest set built inductively over

symbols from S using the following grammar, where o ∈ NI , A ∈ NC , n ∈ IN0,

r ∈ NR is a role and s ∈ NR is a simple role:

C ::= > | ⊥ | {o} | A | ¬C | C1 u C2 | C1 t C2 |

∀r.C | ∃r.C | 6 n s.C | > n s.C.
4

The restriction to simple roles in number restrictions is necessary to maintain

decidability [57], although recent results show that, in some cases, this restriction

can be lifted [67].

Definition 2.3. The semantics of SHOIQ-concepts over a signature S is defined

as follows:

>I = ∆I (C uD)I = CI ∩DI (¬C)I = ∆I \ CI

⊥I = ∅ (C tD)I = CI ∪DI ({o})I = {oI}

(∀r.C)I = {d ∈ ∆I | if (d, d′) ∈ rI , then d′ ∈ CI}

(∃r.C)I = {d ∈ ∆I | There is a (d, d′) ∈ rI with d′ ∈ CI}

(6 n s.C)I = {d ∈ ∆I |](sI(d, C)) 6 n}

(> n s.C)I = {d ∈ ∆I |](sI(d, C)) > n}

where](M) denotes the cardinality of the set M and sI(d, C) is defined as

{d′ ∈ ∆I | (d, d′) ∈ sI and d′ ∈ CI}.

For C, D ∈ con(S), a general concept inclusion (GCI) is an expression C v D.

A finite set of GCIs is called a TBox . An interpretation I satisfies a GCI C v D

if CI ⊆ DI and a TBox T if it satisfies each GCI in T .

An (ABox) assertion is an expression of the form C(a), r(a, b), ¬r(a, b), or

a 6
.
= b, where C ∈ con(S) is a concept, r ∈ rol(S) is a role, and a, b ∈ NI are indi-

vidual names. We call these assertions concept, role, negated role, and inequality

assertions respectively. An ABox is a finite set of assertions. We use Inds(A) to

denote the set of individual names occurring in A. An interpretation I satisfies

an assertion C(a) if aI ∈ CI , r(a, b) if (aI , bI) ∈ rI , ¬r(a, b) if (aI , bI) /∈ rI ,

and a 6
.
= b if aI 6= bI . An interpretation I satisfies an ABox if it satisfies each

assertion in A, which we denote with I |= A.

2.1. SYNTAX AND SEMANTICS 31

Given a signature S, a knowledge base K is a triple (T , R, A) with T a TBox,

R a role hierarchy, and A an ABox over S. Let I = (∆I ,·I) be an interpretation.

We say that I satisfies K if I satisfies T , R, and A. In this case, we say that

I is a model of K and write I |= K. We say that K is consistent if K has a

model. 4

The TBox and role hierarchy define a general schema and describe the con-

cepts and their relations in the modelled domain. Sometimes this part is referred

to as intensional knowledge. The ABox (partially) instantiates such a schema

by adding assertions about individuals and this part is sometimes referred to as

extensional knowledge.

A concept C is in negation normal form (NNF), if negation occurs only in

front of atomic concepts. Any concept can be transformed in linear time into an

equivalent one in NNF by pushing negation inwards, making use of de Morgan’s

laws and the duality between existential and universal restrictions, and between

atmost and atleast number restrictions (6 n r.C and > n r.C respectively) [58].

For a concept C, we use nnf(¬C) to denote the NNF of ¬C.

The letter S in SHOIQ is an abbreviation for the DL ALCR+ [58], i.e., ALC

extended with transitively closed roles. The letter H indicates the support of role

inclusion axioms, O represents nominals, i.e., concepts such as {o} for o ∈ NI ,

I stands for inverse roles, and N (Q) for (qualified) number restrictions of the

form 6 n s.> and > n s.> (6 n s.C and > n s.C).

Please note that the term individuals is sometimes used ambiguously. It can

refer to elements of the domain, i.e., for an interpretation I = (∆I ,·I), d ∈ ∆I is

an individual in the domain of I, but sometimes the term individual is also used

in the context of ABoxes as an abbreviation for individual name or interpretation

of an individual name. For example, when an ABox A contains the assertion

C(a), we might say that the individual a is an instance of the concept C instead

of saying that the interpretation of the individual name a is in the extension of

the concept C. It should, however, be clear from the context which of the two

meanings is intended.

Some DL systems or algorithms make a Unique Name Assumption (UNA),

which means that different individual names are necessarily mapped to different

elements of the domain. Without the UNA, different individual names can be

mapped to the same element of the domain. In this case, it is usually possible to

explicitly state that two individual names have to be mapped to different elements

32 CHAPTER 2. FOUNDATIONS OF DESCRIPTION LOGICS

of the domain by allowing for inequality assertions in the ABox. It is easy to see

that the UNA can then be simulated by adding inequality assertions for each pair

of individual names.

2.2 Standard Reasoning Tasks

A DL system offers not only the possibility for storing knowledge, it also offers

reasoning services for inferring implicit knowledge, determining concept satisfi-

ability, i.e., if a concept can ever have instances, or for testing if a knowledge

base is contradictory. Typically, the reasoners offer a query interface for these

reasoning tasks and applications use this interface in order to support users in

building knowledge bases that are consistent and for visualising the subsumption

hierarchy to give users a quick overview of the modelled domain. A common

inference task is, therefore, the computation of the subsumption hierarchy, i.e.,

a hierarchy based on the sub-class/super-class relationship between concepts in

a knowledge base. Often these tests are performed w.r.t. a TBox or a knowledge

base. Let K = (T ,R,A) be a knowledge base over a signature S, C, D concepts

over S, and a ∈ Inds(A).

Knowledge Base Consistency Given K as input, a decision procedure for

knowledge base consistency returns “K is consistent” if there is an interpretation

I such that I |= K and it returns “K is inconsistent” otherwise.

Concept Satisfiability Given C and K as input, a decision procedure for

concept satisfiability w.r.t. a knowledge base returns “C is satisfiable w.r.t. K” if

there is an interpretation I = (∆I ,·I) and an element d ∈ ∆I such that I |= K

and d ∈ CI and it returns “C is unsatisfiable w.r.t. K” otherwise.

Concept Subsumption Given C, D, and K as input, a decision procedure for

concept subsumption w.r.t. a knowledge base, returns “D subsumes C w.r.t. K”

if there is no interpretation I = (∆I ,·I) such that I |= K and there is an element

d ∈ ∆I , d ∈ CI , and d ∈ (¬D)I and it returns “D does not subsume C w.r.t. K”

otherwise.

2.2. STANDARD REASONING TASKS 33

Instance Checking Given a, C, andK, a decision procedure for instance check-

ing, returns “a is an instance of C w.r.t. K” if, for each interpretation I = (∆I ,·I)

such that I |= K, aI ∈ CI and it returns “a is not an instance of C w.r.t. K”

otherwise.

Please note that all of the above reasoning tasks are formulated in terms of a

decision problem, i.e., the answer could simply be reduced to yes/no or true/false.

This has the advantage that we can study the behaviour of a given algorithm for

the above problems in terms of complexity theory. A computation problem, such

as instance retrieval, is usually reduced to its corresponding decision problem,

e.g., in order to retrieve all instances of a concept C w.r.t. K, we check, for each

individual name a in A, whether a is an instance of C and return the set of

all those individual names for which this is the case. Such a procedure clearly

terminates since an ABox contains finitely many individual names. We will later

see that a similar relationship holds between the computation problem of query

answering and its corresponding decision problem of query entailment.

Subsumption can be reduced to concept (un)satisfiability and vice versa. A

concept D subsumes a concept C w.r.t. a knowledge base K iff the concept Cu¬D

is unsatisfiable w.r.t. K. A concept C is unsatisfiable w.r.t. K iff ⊥ subsumes C

w.r.t. K. Concept satisfiability (and hence subsumption) can also be reduced to

knowledge base consistency since C is satisfiable w.r.t. K iff K′ = (T ,R,A ∪

{C(an)}) is consistent, where an ∈ NI is an individual name not occurring in

K. Instance checking can be reduced to knowledge base consistency checking as

well since a is an instance of C iff K′ = (T ,R,A ∪ {(¬C)(a)}) is inconsistent.

It is not hard to see that these reductions can be performed in linear time and,

consequently, an algorithm that decides whether a knowledge base is consistent,

can be used for all reasoning tasks described above.

In the presence of transitive roles and role hierarchies, a TBox T can be

internalised using an “approximation” of a universal role u [4, 53, 58]. Testing

the satisfiability of a concept w.r.t. a TBox and a role hierarchy can then be

reduced to testing concept satisfiability w.r.t. the role hierarchy only. If the

logic allows for nominals, an ABox can be expressed in terms of TBox axioms

[97]. Together with the internalisation technique, we can thus reduce the task of

checking the consistency of a SHOIQ knowledge base to testing the satisfiability

of a SHOIQ-concept w.r.t. a role hierarchy.

Another inference service is called entailment or logical implication and allows

34 CHAPTER 2. FOUNDATIONS OF DESCRIPTION LOGICS

to test if, for example, an ABox assertion or a TBox axiom is true in each model of

a knowledge base. Conjunctive query entailment is a further generalisation since

queries can contain variables and several concept and role atoms can be con-

joined. Since this thesis is mainly concerned with conjunctive query entailment,

we introduce this reasoning task in more detail in the following section.

Definition 2.4. Let K be a knowledge base and Γ a GCI or ABox assertion. We

say that K entails Γ, written as K |= Γ, if, for every interpretation I = (∆I ,·I)

such that I |= K, it holds that

1. aI ∈ CI if Γ is a concept assertion of the form C(a),

2. (aI , bI) ∈ rI if Γ is a role assertion of the form r(a, b),

3. (aI , bI) 6∈ rI if Γ is a negated role assertion of the form ¬r(a, b),

4. aI 6= bI if Γ is an inequality assertion of the form a 6
.
= b, and

5. CI ⊆ DI if Γ is a GCI of the form C v D.

Otherwise K does not entail Γ and we write K 6|= Γ. 4

Please note that a knowledge base K is inconsistent iff K |= C(a) and K |=

(¬C)(a). For logics closed under negation, i.e., logics in which, for every con-

cept C, the negation of C is expressible as well, checking concepts for sat-

isfiability can be formulated in terms of entailment and vice versa. A con-

cept C is satisfiable w.r.t. K iff K 6|= C v ⊥. An axiom C v D is entailed

by K iff K′ = (T ,R,A ∪ {(C u ¬D)(an)} is unsatisfiable for an individual

name an ∈ NI not occurring in K, and K entails a concept assertion C(a) iff

K′ = (T ,R,A∪ {¬C(a)}) is unsatisfiable. The latter is known as the refutation

theorem and builds the foundation of resolution and tableau based reasoning

methods. Given a hypothesis such as K |= C(a), tableau methods try to prove

that the hypothesis does not hold by establishing a counter-model, i.e., a model

I of K in which a belongs to the extension of ¬C. Resolution based methods try

to prove that the hypothesis holds by showing that the negated hypothesis leads

to a contradiction. In case the procedures are complete, failure can be taken as

proof of the opposite.

2.3. CONJUNCTIVE QUERIES 35

2.3 Conjunctive Queries

We now formally introduce the terms and notations for conjunctive queries used

throughout this thesis. For query answering, the answer variables are often given

in the head of the query. For example, in the introductory query from Sec-

tion 1.2.2

(x, y, z)← Father(x) ∧Mother(y) ∧ hasChild(x, z) ∧ hasChild(y, z)

the query answers are those tuples (a1, a2, a3) of individual names that, when

substituted for x, y, and z respectively, result in a Boolean query that is entailed

by the knowledge base. For simplicity, and since we mainly focus on query en-

tailment, we do not use a query head even in the case of a non-Boolean query.

Instead, we explicitly say which variables are distinguished/answer variables and

which ones are non-distinguished/existentially quantified. Furthermore, we do

not write a conjunctive query as a conjunction of atoms but as a set. For exam-

ple, we write the Boolean version of the above query

()← Father(x) ∧Mother(y) ∧ hasChild(x, z) ∧ hasChild(y, z)

as

{Father(x), Mother(y), hasChild(x, z), hasChild(y, z)}.

The set notation allows for an easier definition of the query rewriting algorithm

that we present in the following chapters. It further allows the use of standard

set operations, e.g., we can define a sub-query simply as a subset of the original

query.

We now give a more precise definition of Boolean conjunctive queries, followed

by a definition of non-Boolean queries. We then show how non-Boolean queries

can be reduced to Boolean queries. Finally, unions of conjunctive queries are

introduced.

Definition 2.5. Let S = (NC , NR, NI) be a signature and NV a countably

infinite set of variables disjoint from NC , NR, and NI . A term t is an element from

NV ∪NI . Let C be a concept, r a role, and t, t′ terms. An atom is an expression

C(t), r(t, t′), or t ≈ t′ and we refer to these three different types of atoms as

concept atoms, role atoms, and equality atoms respectively. A conjunctive query

q is a non-empty set of atoms. We use Vars(q) to denote the set of variables

36 CHAPTER 2. FOUNDATIONS OF DESCRIPTION LOGICS

occurring in q, Inds(q) to denote the set of individual names occurring in q, and

Terms(q) for the set of terms in q, where Terms(q) = Vars(q)∪ Inds(q). If all terms

in q are individual names, we say that q is ground . A sub-query of q is simply a

subset of q (including q itself).

Since equality is reflexive, symmetric and transitive, we define ≈* as the transi-

tive, reflexive, and symmetric closure of ≈ over the terms in q. Hence, the relation

≈* is an equivalence relation over the terms in q, and we use [t]
≈
* for t ∈ Terms(q)

to denote the ≈* equivalence class of t and, when ≈* is clear from the context, we

omit the subscript and write just [t].

Let I = (∆I ,·I) be an interpretation. A total function π : Terms(q) → ∆I

is an evaluation if (i) π(a) = aI for each individual name a ∈ Inds(q) and (ii)

π(t) = π(t′) for all t ≈* t′. We write

• I |=π C(t) if π(t) ∈ CI ;

• I |=π r(t, t′) if (π(t), π(t′)) ∈ rI ;

• I |=π t ≈ t′ if π(t) = π(t′).

If, for an evaluation π, I |=π at for all atoms at ∈ q, we write I |=π q. We

say that I satisfies q and write I |= q if there exists an evaluation π such that

I |=π q. We call such a π a match for q in I.

Let K be a knowledge base and q a conjunctive query. If, for every interpre-

tation I, I |= K implies I |= q, we say that K entails q and write K |= q.

For brevity and simplicity of notation, we define the relation ∈̄ over atoms in q

as follows: C(t) ∈̄ q if there is a term t′ ∈ Terms(q) such that t ≈* t′ and C(t′) ∈ q,

and r(t1, t2) ∈̄ q if there are terms t′1, t
′
2 ∈ Terms(q) such that t1 ≈

* t′1, t2 ≈
* t′2,

and r(t′1, t
′
2) ∈ q or Inv(r)(t′2, t

′
1) ∈ q in case the logic supports inverses. 4

The definition of the relation ∈̄ is clearly justified by definition of the semantics

and, for logics with inverse roles, it is obvious that if I |= r(t, t′), then I |=

Inv(r)(t′, t).

If we write that we replace r(t, t′) ∈̄ q with s(t1, t2), . . . , s(tn−1, tn) for t =

t1 and t′ = tn, we mean that we first remove any occurrences of r(t̂, t̂′) and

Inv(r)(t̂′, t̂) such that t̂ ≈* t and t̂′ ≈* t′ from q, and then add the atoms s(t1, t2), . . .,

s(tn−1, tn) to q.

2.3. CONJUNCTIVE QUERIES 37

Without loss of generality, we assume that queries are connected. More

precisely, let q be a conjunctive query. We say that q is connected if, for all

t, t′ ∈ Terms(q), there exists a sequence t1, . . . , tn such that t1 = t, tn = t′ and, for

all 1 ≤ i < n, there exists a role r such that r(ti, ti+1) ∈̄ q. Please note that we

use the relation ∈̄ here, which implicitly uses the relation ≈* and abstracts from

the directedness of role atoms. A collection q1, . . . , qk of queries is a partitioning

of q if q = q1 ∪ . . . ∪ qk, qi ∩ qj = ∅ for 1 ≤ i < j ≤ k, and each qi is connected.

Lemma 2.6. Let K be a knowledge base, q a conjunctive query, and q1, . . . , qk a

partitioning of q. Then K |= q iff K |= qi for each i with 1 ≤ i ≤ k.

A proof is given in [109, 7.3.2] and, with this lemma, it is clear that the re-

striction to connected queries is indeed without loss of generality since entailment

of q can be decided be checking entailment of each qi in turn. In what follows,

we therefore assume all queries to be connected.

We now define cyclic and acyclic queries by means of mappings to trees.

Definition 2.7. Let IN∗ be the set of all (finite) words over the alphabet IN. A

tree T is a non-empty, prefix-closed subset of IN∗. The empty word ε is called the

root of T . For w, w′ ∈ T , we call w′ a successor of w if w′ = w · c for some c ∈ IN,

where “·” denotes concatenation. We call w′ a neighbour of w if w′ is a successor

of w or vice versa.

For a mapping f : A→ B, we use dom(f) and ran(f) to denote f ’s domain

A and range B, respectively. Given an equivalence relation ≈* on dom(f), we say

that f is injective modulo ≈* if, for all a, a′ ∈ dom(f), f(a) = f(a′) implies a ≈* a′

and we say that f is bijective modulo ≈* if f is injective modulo ≈* and surjective.

A query q is acyclic if there exists a total function f from terms in q to a tree

such that f is bijective modulo ≈* and r(t, t′) ∈̄ q implies that f(t) is a neighbour

of f(t′); otherwise q is cyclic. 4

Unions of conjunctive queries are a generalisation of conjunctive queries,

which, intuitively, are simply a disjunction of conjunctive queries.

Definition 2.8. A union of conjunctive queries (UCQ) is a formula q1 ∨ . . .∨ q`,

where each disjunct qi is a conjunctive query.

A knowledge base K entails a union of conjunctive queries q1∨ . . .∨q`, written

as K |= q1 ∨ . . . ∨ q`, if, for each interpretation I such that I |= K, there is some

i with 1 ≤ i ≤ ` such that I |= qi. 4

38 CHAPTER 2. FOUNDATIONS OF DESCRIPTION LOGICS

Without loss of generality (cf. [109, 7.3.3]) we assume that the variable names

in each disjunct are different from the variable names in the other disjuncts. This

can always be achieved by naming variables apart [32]. We further assume that

each disjunct is a connected conjunctive query. This is without loss of generality

since a UCQ which contains unconnected disjuncts can always be transformed

into conjunctive normal form; we can then decide entailment for each resulting

conjunct separately and each conjunct is a union of connected conjunctive queries.

Next, we describe this transformation now in more detail and, for convenience in

this proof, we write a conjunctive query {at1, . . . , atk} as at1 ∧ . . . ∧ atk.

Lemma 2.9. Let K be a knowledge base, q = q1 ∨ . . .∨ qn a union of conjunctive

queries such that, for each i with 1 ≤ i ≤ n, q1
i , . . . , q

ki
i is a partitioning of the

conjunctive query qi. Then K |= q iff

K |=
∧

(i1,...,in)∈{1,...,k1}×...×{1,...,kn}

(qi1
1 ∨ . . . ∨ qin

n).

Again, a detailed proof is given in [109, 7.3.3]. Please note that, due to

the transformation into conjunctive normal form, the resulting number of unions

of connected conjunctive queries for which we have to test entailment can be

exponential in the size of the original query. When analysing the complexity of

the decision procedures presented in Chapter 4 and Chapter 5, we show that the

assumption that each CQ in a UCQ is connected does not increase the complexity.

We now make the connection between query entailment and query answering

clearer. For query answering, let the variables of a conjunctive query be typed:

each variable can either be non-distinguished (and thus implicitly existentially

quantified) or distinguished. Let q be a query in n variables (i.e.,](Vars(q)) = n),

of which v1, . . . , vm (m ≤ n) are free variables. The answers of K = (T ,R,A)

to q are those m-tuples (a1, . . . , am) ∈ Inds(A)m such that, for all models I of

K, I |=π q for some π that satisfies π(vi) = ai
I for all i with 1 ≤ i ≤ m. It is

not hard to see that the answers of K to q can be computed by testing, for each

(a1, . . . , am) ∈ Inds(A)m, whether the query q′ obtained from q by replacing each

occurrence of vi with ai for 1 ≤ i ≤ m is entailed by K. Given that there are

a finite number of individual names used in K, there is a bound on the number

of Boolean queries necessary to answer a non-Boolean query. This is clearly not

very efficient, but optimisations can be used, e.g., to identify a (hopefully small)

set of candidate tuples.

2.4. COMBINED AND DATA COMPLEXITY 39

2.4 Combined and Data Complexity

An interesting question, when devising an algorithm, is its behaviour for different

inputs, i.e., whether it always terminates and whether the time required to solve

the problem is linear, polynomial, exponential, or even worse with respect to the

size of the input. By analysing the computational complexity of an algorithm, one

can, in particular, characterise the worst-case behaviour of an algorithm. We give

just a brief introduction into the areas of complexity theory that are of relevance

for this thesis and refer interested readers to Papadimitriou’s textbook [88].

For the complexity analysis, we distinguish between combined and data com-

plexity [116]. For the standard reasoning tasks, e.g., knowledge base consistency,

the combined complexity is measured in the size of the input knowledge base.

For query entailment, the size of the query is additionally taken into account.

When analysing the data complexity of a problem, we consider the ABox as

the only input for the algorithm, i.e., the size of the TBox, the role hierarchy,

and the query is fixed. Since the size of the TBox, role hierarchy, and query is

often small compared to the size of the ABox, the data complexity of a reasoning

problem is a more useful performance estimate since it tells us how the algorithm

behaves when the number of assertions in the ABox increases. As usual, the size

of a knowledge base K or a query q is simply the number of symbols needed to

write it over the alphabet of constructors, concept names, role names, and indi-

vidual names that occur in K or q, where numbers are encoded in binary (if not

mentioned otherwise).

When analysing the complexity of a reasoning problem, we assume, as usual,

that all concepts in concept atoms or ABox assertions are literals , i.e., concept

names or negated concept names. If the input query or ABox contains non-

literal atoms or assertions, we can easily transform these into literal ones in an

entailment preserving way: for each concept atom C(t) in the query where C is a

non-literal concept, we introduce a new atomic concept AC ∈ NC , add the axiom

C v AC to the TBox, and replace C(t) with AC(t); for each non-literal concept

assertion C(a) in the ABox, we introduce a new atomic concept AC ∈ NC , add an

axiom AC v C to the TBox, and replace C(a) with AC(a). Such a transformation

is obviously polynomial, so without loss of generality, it is safe to assume that

the ABox and query contain only literal concepts. This has the advantage that

the size of each atom and ABox assertion is constant.

40 CHAPTER 2. FOUNDATIONS OF DESCRIPTION LOGICS

The computational complexity of the standard reasoning problems are well-

understood, and it is known that the combined complexity of these reasoning

problems is ExpTime-complete for SHIQ [112] and NExpTime-complete for

SHOIQ [112]. For SHOQ an ExpTime upper bound was always conjectured,

but a proof has, to the best of our knowledge, never been published. As part

of our conjunctive query entailment decision procedure for SHOQ presented

in Chapter 5, we devise an ExpTime decision procedure for SHOQ knowledge

base consistency checking, thereby showing that this problem is indeed ExpTime-

complete for SHOQ. For SHIQ, instance retrieval is known to be data complete

for co-NP [63]. Please note that, as usual, when saying that a reasoning problem,

e.g., instance retrieval, is in a complexity class C, we mean that the decision

problem corresponding to the stated task (e.g., instance checking in the case of

instance retrieval) is in C.

Chapter 3

Why Query Entailment is Hard

In this chapter, we introduce related work, existing approaches, and areas that

have a close connection with query entailment. We also point out why some of

the existing approaches are incomplete or cannot easily be applied for expressive

logics.

3.1 Query Containment

A related reasoning problem from databases to query entailment is query con-

tainment , where the task is to check whether the result of one query is a subset

of the result of another query for every model of a given schema, which can be

seen as a TBox plus a role hierarchy. More precisely, a query q is contained in a

query q′ w.r.t. a schema S, denoted as S |= q v q′, if, for every interpretation I

such that I |= S and I |= q, it holds that I |= q′.

Query containment is important in many areas, including information inte-

gration [20, 21, 26] and query optimisation [1, 2]. It is well known that query con-

tainment w.r.t. a TBox can be reduced to deciding query entailment for (unions

of) conjunctive queries w.r.t. a knowledge base [19]. Hence, a decision procedure

for unions of conjunctive queries can also be used for deciding query containment

w.r.t. to a schema. This reduction also works in the other direction, since a de-

cision procedure for query entailment w.r.t. a schema can also be used to decide

query entailment w.r.t. a knowledge base.

41

42 CHAPTER 3. WHY QUERY ENTAILMENT IS HARD

3.1.1 The Difficulty of Regular Expressions

The first conjunctive query algorithm [19] was actually specified for the purpose

of deciding conjunctive query containment for DLRreg [29]. DLRreg is a very

expressive Description Logic that allows for n-ary relations (i.e., a generalisation

of roles), regular expressions over roles, and role hierarchies. The presented al-

gorithm contains one of the fundamental ideas for query entailment that is also

used in this thesis, namely, the reduction of tree-shaped queries to concepts. The

equivalence of such queries with concepts was already known from First-Order

Logic [12], but Calvanese et al. were the first to use this equivalence for the pur-

pose of query answering.

The presented algorithm is, however, not a decision procedure since it is in-

complete for cyclic queries. It has already been pointed out by Horrocks et al. [56]

that, in some cases, a cyclic query can be transformed into a tree-shaped query

by identifying variables (cf. Example 1.2 and Figure 1.3 in the introduction). We

show here that this is not the only source of incompleteness and that just identi-

fying variables in all possible ways is not enough to obtain a decision procedure.

As a consequence of this observation, the journal version of the above mentioned

DLRreg algorithm [24], which was recently accepted for publication, allows for a

less expressive query language compared to the original paper.

The main problem is that the algorithm depends on a strict tree model prop-

erty, which can be disturbed by transitive or inverse roles. We give an example in

standard Description Logic notation, which is more intuitive and easily possible

since we need only binary relations and regular expressions that correspond to

inverse roles. The DLRreg notation is slightly different and the algorithm involves

a translation into graded converse Propositional Dynamic Logic (CPDLg) that

results in quite lengthy formulae.

As an example for the incompleteness in case of cyclic queries, consider the

Boolean conjunctive query q = {(∃r.>)(a)} with a ∈ Inds(q), the cyclic Boolean

conjunctive query q′ = {r(z1, z2), s
−(z2, z1)} with z1, z2 ∈ Vars(q′), and the

schema (T ,R) with T = ∅ andR = {r v s}. Clearly, every model for (T , R) and

q is also a model of q′ and, hence, (T ,R) |= q v q′. However, Calvanese et al.

argue that cycles cannot be expressed in the schema itself and, therefore, the

variables in q′ have to be replaced with individual names or variable names from

q. In our example, this is only a, resulting in q′ = {r(a, a), s−(a, a)}. After the

replacement it is, however, no longer the case that every model of q is also a

3.1. QUERY CONTAINMENT 43

model of q′ and, as a result, the algorithm incorrectly answers (T ,R) 6|= q v q′.

In order to decide query entailment, the algorithm tries to build a counter-

model, i.e., an interpretation that is a model for the schema and the (possibly)

more specific query q, but that does not satisfy the more general query q′. The

more specific query is treated as an ABox, where each constant and variable name

from the query occurs as an individual name in the ABox. Each concept atom

becomes a concept assertion and each role atom a role assertion. For the above

example, the ABox contains only the assertion (∃r.>)(a). The more general query

is expressed as a concept Cq by applying the rolling-up or tuple graph technique

(cf. Example 1.1 on page 21). We then try to find a model for the ABox from the

more specific query and the schema extended with the axiom > v ¬Cq. In order

to roll the query up into a concept, we represent the query as a graph, called

a tuple graph, and we build the query concept while we traverse the graph in a

depth first manner.

Since CPDLg, as most DLs, allows only for binary roles, the original algorithm

uses reification in order to reduce n-ary relations to binary relations. Informally,

for each relation r of arity n, a fresh concept name Nr is introduced and instances

of this concept represent tuples from the interpretation of r. Additional auxiliary

axioms guarantee that each Nr instance has one functional fi-successor for each

i with 1 ≤ i ≤ n that correspond to the n elements in the n-ary relation r. Name

formulae (aka representative concepts) are used in order to reduce also the ABox

to a CPDLg formula, i.e., for each individual name a occurring in the input, we

introduce a fresh concept name Na. We then express an ABox assertion C(a)

as an axiom Na v C and an assertion r(a, b) as Na v ∃r.Nb. It can be shown

that, for each DLRreg knowledge base, there is an equisatisfiable CPDLg-concept

[19, 28].

The tuple graph we show here for the above example is different from the one

that would be obtained when following the algorithm in the original paper since

our edge labels do not show the CPDLg translation of the role expressions from

the query and we omit the name formulae as labels for the nodes.

z2

r

s−

z1

Figure 3.1: A query graph for the query q′.

44 CHAPTER 3. WHY QUERY ENTAILMENT IS HARD

Since the example uses only binary relations and regular expressions (in the

form of inverse roles in the DL notation), no reification is necessary, and the tuple

graph in Figure 3.1 is a relative straightforward representation of the query q′.

We can now build a concept that represents the tuple graph by traversing it from

an arbitrary starting node (cf. Example 1.1 on page 21 from the introduction).

For further details, we refer interested readers to Calvanese et al. [19]. In this

case the query graph is cyclic, which means that (the name formulae for) the

variables are replaced with (the name formulae of) the variables or constants

from the more specific query, i.e., a (or, more precisely, its name formula Na) in

our example.

It should be noted, however, that due to the role axiom r v s and due to

the semantics of inverse roles the simpler query q
′′

= {r(z1, z2)} is entailed by

the schema if and only if q′ is entailed by the schema. Hence, both queries are

equivalent. The tuple graph for q
′′

is, however, not cyclic, which illustrates again

why replacing the variables with constants or their name formulae is incorrect.

Summary

In order to devise a decision procedure for query containment in DLRreg , one

needs to analyse cyclic query graphs more carefully. It is obvious that, as in

the given example, not every cyclic tuple graph constitutes a “real” cycle that

can only be present in each model of the schema due to ABox assertions. Some

“cycles” are just transitive shortcuts or represent the same relation just written in

a different syntax and by possibly using a subrole as in the above example. Please

note also that such situations arise only in the presence of regular expressions

in the query q′. Hence, the algorithm is a decision procedure for containment

between queries that do not contain regular expressions.

3.2 Rule Formalisms

Function-free Horn rules are, like Description Logics, a decidable yet very expres-

sive subset of First-Order Logic. Roughly speaking, a rule is a statement of the

following form: if the precondition P holds, then the conclusion C holds, where

P and C are logical formulae. As an example, consider the following rule which,

3.2. RULE FORMALISMS 45

intuitively, expresses the requirements for concluding that y is the aunt of x:

hasAunt(x, y)← hasParent(x, z) ∧ hasSibling(z, y) ∧ Female(y).

In general, the atom on the left hand side of the arrow is called the head of the

rule and the right hand side is called the rule body. A finite set of rules is called

a program. A set of rules is called recursive if the body of one rule directly or

indirectly depends on the head of another rule and it is called non-recursive oth-

erwise. Unlike typical Description Logics, rules also allow for expressing non-tree-

like structures (as in the above example) by allowing for an arbitrary interaction

between variables in a rule. Predicates are also not limited to unary and binary

ones, but can be of any arity. Many rule formalisms also allow for using negation-

as-failure, which introduces a form of non-monotonic behaviour. A combination

of DL knowledge bases with rules is, therefore, desirable for many applications,

but an unrestricted combination of both formalisms easily leads to the undecid-

ability of the standard reasoning tasks [51, 72]. In order to provide a decision

procedure for rules, it is, therefore, necessary to impose suitable restrictions on

the set of allowed rules.

When combining a DL knowledge base with rules, the predicates of a rule,

e.g., Female or hasAunt, may not necessarily appear in the DL part of the

knowledge base. If the predicate is a concept or role name from the signature

of the knowledge base, the atom is called a DL-atom, otherwise it is a non-

DL-atom. Conjunctive queries can be seen as a special case of such rules: the

rule body corresponds to a conjunctive query, while the head corresponds to the

tuple of answer variables. A decision procedure for consistency of DL knowledge

bases extended with non-recursive rules is, therefore, also a decision procedure

for conjunctive query entailment. For deciding query entailment, the rules can be

restricted even further to rules where the head is a non-DL-atom and all atoms

in the body are DL-atoms. Going back to the previous example, we can query

for all pairs of individuals (a, b) for which b is the aunt of a, by extending the

knowledge base again with the rule

hasAunt(x, y)← hasParent(x, z) ∧ hasSibling(z, y) ∧ Female(y);

this time assuming that hasParent, hasSibling, and Female are DL-atoms. The

query answers are then all those pairs (a, b) for which adding ¬hasAunt(a, b) leads

46 CHAPTER 3. WHY QUERY ENTAILMENT IS HARD

to an inconsistency.

There are several different decidable rule formalisms known, and decidability

is either achieved by significantly reducing the expressivity of the Description

Logic [72] or, more commonly, by imposing some form of safety condition on the

rules [72, 78, 92]. One possible safety condition [78] requires that each variable

occurs in at least one non-DL-atom in the rule body. Intuitively, forcing variables

to occur in non-DL-atoms assures that all variables are bound to individual names

occurring in the ABox of the knowledge base.

Relaxed safety conditions also allow for existentially quantified variables, i.e.,

variables that do not necessarily correspond to individuals named in the ABox. A

recent example is Rosati’s DL+log framework [92]. In this framework, a knowl-

edge base in the Description Logic DL can be extended with so called weakly-safe

Datalog rules. The weakened safety condition ensures, intuitively, that at least

the variables in the head of a rule correspond to named individuals from the

ABox, which results in a close similarity between a rule and a conjunctive query.

Indeed, Rosati shows that the consistency of such extended knowledge bases is

decidable iff the conjunctive query containment problem for DL is decidable. To

the best of our knowledge, it was an open problem so far whether conjunctive

query containment is decidable for very expressive DLs such as SHIQ, SHOQ,

or SHOIQ. We show in the following two chapters that this question can be

answered positively for SHIQ and SHOQ, respectively.

3.2.1 The Carin System

The first framework for combining a Description Logic knowledge base with rules

was the CARIN system [71]. CARIN provides a so-called existential entailment

algorithm that is a decision procedure for non-recursive rules and conjunctive

queries over ALCNR knowledge bases (where R stands for role conjunction).

The algorithm is very similar to the known tableau algorithms that are used in

many modern reasoning systems, although the original algorithm is specified in

terms of a constraint system. We introduce the basic ideas of the algorithm here,

but we use the nowadays more standard terminology of tableau algorithms. We

also briefly illustrate how this algorithm can be extended to SHIQ if the query

contains only simple roles, and the problem that arises when we, additionally,

allow for either nominals or transitive roles in the query.

In order to decide conjunctive query entailment, the algorithm constructs

3.2. RULE FORMALISMS 47

completion trees/graphs for the knowledge base. For simpler Description Logics

such as ALCNR, there is a direct correspondence between the completion graphs

and the canonical models for the knowledge base. Initially, a completion graph

contains a node for each individual in the ABox and the nodes are labelled with

the concepts from the corresponding concept assertions in the ABox. Each role

assertion is represented by an edge between two nodes in the initial completion

graph. An initial completion graph is expanded according to a set of expansion

rules that reflect the constructors allowed in the language. The expansion stops

when an obvious contradiction, called a clash, occurs, or when no more rules are

applicable. In the latter case, the completion graph is called complete. Termina-

tion is guaranteed by a cycle-checking technique called blocking . The expansion

and blocking rules are such that we can build a canonical model for the knowledge

base from each complete and clash-free completion graph.

It should be noted that ALCNR has the finite model property and, in par-

ticular, it is possible to construct a finite canonical model from each complete

and clash-free completion graph. The algorithm uses the complete and clash-free

completion graphs to syntactically check whether a match for the given query

exists. Given an ALCNR knowledge base K and a Boolean conjunctive query q,

the algorithm answers “K entails q” if a match for q exists in each complete and

clash-free completion graph and it answers “K does not entail q” otherwise.

There are two main problems that need to be overcome in order to use this

approach. In the first place, we need to (syntactically) check in the completion

graph whether the canonical model represented by the completion graph satisfies

the query. This might be difficult if a non-atomic concept C is used in one of

the concept atoms of the query because an element of the model might be in the

extension of C without this being explicitly stated in the completion graph. This

problem is overcome by augmenting the knowledge base with axioms of the form

> v C t¬C for each concept C that occurs in a concept atom in q. This clearly

has no logical impact on the knowledge base because C t¬C is equivalent to >,

but it ensures that, for each node in the completion graph, a decision is made as

to whether the corresponding domain element belongs to the extension of C or

to the extension of ¬C.

The second problem is that we can only construct a subset of all models for

the knowledge base, namely the canonical models. This problem is overcome by

showing that, if there is a model in which q is false, then there is also a canonical

48 CHAPTER 3. WHY QUERY ENTAILMENT IS HARD

model in which q is false, i.e., a model that corresponds to a complete and clash-

free completion graph. A major modification of the standard blocking technique is

needed in order to ensure that this is the case. For ALCNR knowledge bases, the

standard blocking condition is to stop the expansion of a branch in the constraint

system if we find a pair of nodes x and y such that x is an ancestor of y and

the label of y is a subset of the label of x. In this case, we say that x blocks y

and no further expansion rules are applied to y. In the canonical model for the

completion graph, a block corresponds to a cyclic path that links the predecessor

of the blocked node y to x instead of to y. For query entailment, the blocking

condition has to additionally take into account the length of the longest path in

the query. We illustrate this by means of an example.

n2 : C, ∃r.C

r

n1 : C, ∃r.C

r

a : C, ∃r.C

Figure 3.2: A complete and
clash-free completion graph for
K. The node n2 is blocked by
the node n1, which is indicated
by the dashed line.

r

r

a : C, ∃r.C

n1 : C, ∃r.C

Figure 3.3: A graphical repre-
sentation of a canonical model
I for K.

Example 3.1. Let K = (T , A) be an ALCNR knowledge base with T = {C v

∃r.C} and A = {C(a)} and let q = {r(x, x)} be a Boolean conjunctive query.

Figure 3.2 illustrates the only (apart from differences in naming) complete and

clash-free completion graph for K and Figure 3.3 shows a representation of the

corresponding canonical model I. It is not hard to check that I |= K and that

the mapping π : x 7→ n1 is such that I |=π q.

There are, however, other models of the knowledge base that are counter-

models for the query entailment, i.e., we can find a model I such that I |= K,

but I 6|= q. One such example is shown in Figure 3.4. Another example consists of

3.2. RULE FORMALISMS 49

a single, infinite r-chain rooted in a. Intuitively, the model depicted in Figure 3.4

shows that we can still use finite models, but we have to make sure that the cycles

that we build from a blocking situation are “big enough”, where “big enough”

depends on the length of the longest path in the query.

r

n2 : C, ∃r.C

n1 : C, ∃r.C

r

a : C, ∃r.C

r

Figure 3.4: A graphical representation of a model I ′ for K that does not satisfy
q.

In CARIN, the blocking condition requires two isomorphic trees instead of a

pair of nodes such that the depth of the trees is equal to the number of atoms in

the query (which clearly can be used as an upper approximation for the longest

path in the query). The leaves of the descendant tree are considered as blocked.

In Example 3.1, the query contains only one atom. Hence, the blocking condition

requires just two trees of depth one. Figure 3.5 shows an abstraction of a complete

and clash-free completion graph using the modified blocking condition. Please

note that, due to the simplicity of the example, the trees consist of simple paths.

When building a canonical model from a completion graph, one can, instead

of building a cycle, also append infinitely many copies of the blocking tree and

the path between the blocking and the blocked tree. This technique is usually

used for more expressive logics and also works for ALCNR. If the logic does not

allow for transitive roles, or the query contains only simple roles, this technique

works for logics as expressive as SHIQ [83]. Intuitively, we can prove this in two

steps:

1. In the first step, we show that, for query entailment, we can restrict our

attention to the canonical models of the knowledge base.

50 CHAPTER 3. WHY QUERY ENTAILMENT IS HARD

n4 : C, ∃r.C

r

a : C, ∃r.C

n1 : C, ∃r.C

n2 : C, ∃r.C

n3 : C, ∃r.C

r

r

r

Figure 3.5: An abstraction of a complete and clash-free completion graph for
K using tree blocking.

2. In the second step, we show that the query is satisfied in each complete and

clash-free completion graph iff it is satisfied in each canonical model of the

knowledge base.

Showing that the first claim holds is very useful for showing the correctness

of any query entailment procedure and we give definitions of canonical models

and detailed proofs for this claim in SHIQ and SHOQ in the following two

chapters (Lemma 4.2 and Lemma 5.3). The main idea of the proof is that we

can take an arbitrary counter-model for the query, i.e., a model of the knowledge

base that does not satisfy the query and “unravel” it into a canonical model

such that the non-entailment of the query is preserved. This is possible since,

during the unravelling process, cycles are replaced with infinite paths, while the

interpretation of concepts is preserved. Intuitively, this “breaking” of cycles does

not introduce any edges that could make the query true in the unravelled model.

Once this claim is proved, we can restrict our attention to the canonical models

of the knowledge base only.

For the second claim, we then have to show that the query is satisfied in

each complete and clash-free completion graph iff it is satisfied in each canonical

model of the knowledge base. The only-if direction is straightforward because

a mapping for the query into the completion graph can directly be used in the

corresponding unravelled canonical model. The if direction is not too hard to

show given the assumption that the logic does not allow for transitive roles or

that the query contains only simple roles. Under this restriction, we can take any

canonical model of the knowledge base together with a match π for the query and

construct a modified mapping π′ that uses only those parts of the canonical model

3.2. RULE FORMALISMS 51

that correspond to the completion graph by “shifting” the mapping upwards to

an isomorphic part that is closer to the roots of the canonical model. The roots,

in this case, are those elements that correspond to named individuals.

3.2.2 Extensions of the Carin System

It should be noted that the technique of “shifting” the mapping up as described

above does not work if the query contains non-simple roles. Hence, the proof

does not easily extend to SHIQ with unrestricted conjunctive queries as claimed

by Ortiz de la Fuente et al. [85] and later works [83] are indeed restricted to con-

junctive queries that contain only simple roles. We illustrate the problem of

non-simple roles here by means of an example. We try to show that the query is

true in each canonical model of the knowledge base iff the query has a mapping

into each complete and clash-free completion graph. The problematic direction

is the only if direction, which, in its contrapositive form, claims the following:

if there is a complete and clash-free completion graph such that the query has

no mapping into the completion graph, then there is a canonical model for the

knowledge base that does not satisfy the query.

Example 3.2. Let q be the Boolean conjunctive query {C(x), t(x, y), C(y)} and

K = (T , R, A) a SHIQ knowledge base with T = {> v Ct¬C,> v ∃t.>} for t

a transitive role, R = ∅, and A = {(¬C)(a)}. The axiom > v Ct¬C makes sure

that, for each node of a completion graph, we choose either C or ¬C, which then

allows for a purely syntactic mapping of the query into the completion graph. The

left hand side of Figure 3.6 shows a possible (but simplified) completion graph

G for K. The grey underlying triangle shapes illustrate the two isomorphic trees

used for blocking, and clearly there is no mapping for q into G since there is only

one node that has C in its label. Please note that we used just trees of depth

one here since the longest path in q is of length one. The example can, however,

equally be repeated with any desired depth for the blocking trees. The partial

representation of a model depicted in the right hand side of Figure 3.6 shows that,

by unravelling G, we would get a model I of K such that I satisfies q. This is the

case because there is no longer only one element in the extension of C, and all

role relationships for q are satisfied since t is transitive. Please note that implicit

transitive relationships are only shown in the figure where they are relevant for

the query match. Even choosing a larger depth for the two trees would allow this

52 CHAPTER 3. WHY QUERY ENTAILMENT IS HARD

t

t

t

t

t

t

t

t

t

t

t

a : ¬C, ∃t.>

n1 : ¬C, ∃t.>

n2 : ¬C, ∃t.>

n3 : C, ∃t.>

n4 : ¬C, ∃t.>

n5 : ¬C, ∃t.>

tt

t

n2 : ¬C, ∃t.>

n′

1
: ¬C, ∃t.>

n′

2 : ¬C, ∃t.>

n′

3 : C, ∃t.>

n′′

1
: ¬C, ∃t.>

n′′

2
: ¬C, ∃t.>

a : ¬C, ∃t.>

n1 : ¬C, ∃t.>

n3 : C, ∃t.>

Figure 3.6: A completion graph G with trees for blocking (left) and a partial
representation of a model I for K and q (right). The match for the query in I
is shown in red.

to happen since the decision for C or ¬C is purely non-deterministic.

The absence of a mapping for the query into the completion graph does,

therefore, not guarantee that the canonical model for the completion graph does

not satisfy the query. Requiring several isomorphic trees or pairs before blocking

occurs obviously does not help either since only one path between the isomorphic

trees/pairs could contain the twice required C in the node label. The problem

is that, due to the transitive edges that are only made explicit in the model,

elements that are several steps away from each other can be directly related in

the canonical model. By repeating the unique part between the blocking and the

blocked node, we can thus produce a structure that suddenly provides a query

match.

The extension of the CARIN-style algorithms to SHOIQ [84], even when

only simple roles are present in the query, is problematic for different reasons.

3.3. HYBRID LOGICS 53

Without nominals, a completion graph can be seen as a forest, where each in-

dividual from the ABox is the root of a tree. We can have arbitrary edges as

induced by the role assertions in the ABox only between the roots. If we further

add nominals to the logic, this forest structure is blurred even further. Concepts

of the form ∃r.{o} with o a nominal, or similar concepts using atleast number

restrictions, can now cause links from within a tree back to the node that repre-

sents the nominal o. This clearly has a consequence on the blocking conditions.

If we want to guarantee that a match for the query in a canonical model can

be “shifted up” as described in the proof sketch above, then a tree should also

consider links back to nominals and all further edges up to a depth that depends

on the query. For SHOIQ, however, this spoils the termination proof since

the algorithm generates also new nominal nodes in certain circumstances. These

new nominal nodes should not be considered in the blocking condition since the

bound on their number depends on the length of the longest path before block-

ing occurs. If the blocking condition takes these nodes into account, as required

for the completeness proof as sketched above, then we have cyclic dependencies

between the completeness and the termination proof and we have the choice of

either being incomplete or non-terminating. Currently it is, to the best of our

knowledge, not known if the bound on the number of new nominals generated by

the tableau algorithm for SHOIQ [54] and the blocking conditions can be fixed

independently of each other.

3.3 Hybrid Logics

In this section, we introduce an algorithm for query entailment in SHQ. The

algorithm is only a decision procedure for a restricted class of conjunctive queries

and SHQ is subsumed by both SHIQ and SHOQ for which we present decision

procedures in the following two chapters. We nevertheless include the algorithm

since it is based on a completely different technique that uses the ↓ operator

known from Hybrid Logics [11]. We discuss the relationship of this technique with

existing ones at the end of this section and illustrate the difficulties of extending

it to more expressive logics.

54 CHAPTER 3. WHY QUERY ENTAILMENT IS HARD

3.3.1 Hybrid Logic Binders for Query Answering

An extension of the rolling-up technique to cyclic queries is not directly possible

(cf. Chapter 1). Due to the tree model property of most DLs [47], a concept cannot

capture cyclic relationships, but it is also not always correct to replace variable

names in a cycle with individual names from the knowledge base (cf. Section 3.1).

In this section, we show how cyclic queries for an SHQ knowledge base can be

rolled-up into SHQ↓-concepts. The ↓ binder can label elements in a model with

a variable, and this variable can be used to enforce a co-reference. For example,

consider the simple cyclic query q = {r(y, y)}, which cannot straightforwardly be

expressed as a Description Logic concept. With ↓ binders and variables, however,

we can express the query by the following concept: Cq = ↓y.(∃r.y). A knowledge

base K does not entail q iff K extended with the axiom > v ¬Cq = ↓y.(∀r.(¬y))

is consistent. A model for such an extended knowledge base is a model in which

each element d is not an r-successor of itself because in such a model we can

bind the variable y to each element in the domain and all reachable r-successors

are different from y. More precisely, we define the syntax and semantics of the ↓

binder and concepts including variables as follows:

Definition 3.3. Let NC , NR, NI , and NV be countably infinite and pairwise

disjoint sets of concept, role, individual, and variable names respectively, and

let L be a Description Logic. With L↓, we denote the language obtained by,

additionally, allowing for y and ↓y.C as concepts, for y ∈ NV and C an L↓-

concept over the signature S = (NC , NR, NI , NV).

For an interpretation I = (∆I ,·I), an element d ∈ ∆I , and a variable y ∈ NV ,

we denote with I[y/d] the interpretation that extends I such that yI = {d}. The

L↓-concept ↓y.C is then interpreted as (↓y.C)I = {d ∈ ∆I | d ∈ CI[y/d]}. 4

We say that a variable y is free in an L↓-concept C if y is not bound by ↓.

We assume, without loss of generality, that every variable y is only bound once

by an occurrence of ↓y. Every concept C in which this is not the case can be

transformed into an equivalent one by naming variables apart [32].

For some queries, we also need role conjunctions and inverse roles in order

to express the query as a concept. If the query contains constants or individual

names, then nominals are very convenient for defining the rolling-up procedure.

Example 3.4. Let q = {s(x, x′), r1(x, x′), s(x′, a), r2(x, y), r3(y, z), r4(z, x)} be a

3.3. HYBRID LOGICS 55

Boolean conjunctive query with Inds(q) = {a} and Vars(q) = {x′, x, y, z}. Fig-

ure 3.7 shows a query graph for q. By using nominals, inverse roles, role con-

junctions, and the ↓ binder, we can equivalently express the query as the concept

(using x as the starting node for the rolling-up):

Cq = ↓x.(∃r2.(∃r3.(∃r
−
4 .x))) u ∃(s u r1).(∃s.({a}))

x′

r3 r4

z

r2y asx s, r1

Figure 3.7: A graphical representation of the query q from Example 3.4.

Nominals are only used in a very weak form in the query concepts: in order to

decide entailment os q, we decide whether the queried knowledge base extended

with the axiom > v nnf(¬Cq) is consistent, where nnf(¬Cq) denotes the negation

normal form of ¬Cq. Hence, nominals occur only negated in the extended knowl-

edge base and cannot enforce any non-tree-shaped relational structures in a model

of the extended knowledge base. It is, therefore, also possible to use representa-

tive concepts or name formulae as introduced in the beginning of this chapter.

Adding inverse roles and role conjunction to SHQ (resulting in SHIQu) is also

not a big problem, and we present a decision procedure for SHIQu knowledge

base consistency in Chapter 4.

Adding ↓ binders, however, makes even the relatively simple DL ALC unde-

cidable [11]. We can observe, however, some interesting properties for our query

concepts:

1. After the rolling-up, all variables occur only positively.

2. Only existential restrictions are introduced in the rolling-up.

Hence, by negating the query concept, as required for building an extended knowl-

edge base, and by transforming it into negation normal form, we obtain a concept

in which all variables occur negated and are under the scope of universal quan-

tifiers. As a consequence, some kind of tree model property is still preserved.

For arbitrary concepts with variables and ↓ binders, this is clearly not the case.

56 CHAPTER 3. WHY QUERY ENTAILMENT IS HARD

Adding an axiom > v ↓y.(∃r.y), for example, makes r a reflexive relation in each

model of the knowledge base. Even more complicated concepts can be used that

enforce models which do not have any form of tree model property.

An interesting consequence even of the weak ↓ concepts that we need for

expressing queries is that we loose the finite model property, which SHQ normally

enjoys (i.e., if an SHQ knowledge base is satisfiable, then it is satisfiable in a

model with finite domain). For example, let q = {t(y, y)}, which is rolled-up

into the concept ↓y.(∃t.y). An extended knowledge base would then contain the

axiom > v ↓y.(∀t.(¬y)). Assume further that the knowledge base contains also

the axiom > v ∃t.> with t a transitive role. This axiom enforces a t-successor for

every individual in the domain. Normally, a finite model could contain a t-cycle

instead of an infinite chain, but this would clearly violate ↓y.(∀t.(¬y)) in case t

is transitive. Hence, every model of K must be acyclic and, therefore, contain

infinitely many individuals.

Since SHQ is a subset of both SHIQ and SHOQ and we present conjunctive

query entailment decision procedures for both logics in the following two chapters,

we mainly want to give an idea of this technique. For simplicity, we assume,

therefore, that no inverse roles are required to build the query concept. We

informally discuss later what is required when inverse roles are necessary to build

the query concept.

Our algorithm is based on the tableau algorithm for SHIQ [58], which also

decides knowledge base satisfiability for SHQ. A rough sketch of a tableau al-

gorithm and the required terminology is given in Section 3.2.1. We assume that

representative concepts/name formulae [28, 109] are used instead of nominals for

the constants in the query.

In order to handle query concepts that may contain binders and state vari-

ables, some adaptations of the existing algorithm are necessary. In order to store

the bindings of the variables, we modify the node labels such that they contain

tuples of the form (C, B), where C is a concept and B is a (possibly empty) set of

bindings of the form {y1/v1, . . . , yn/vn}, where y1, . . . , yn are the free variables in

C and v1, . . . , vn are nodes of the completion graph. The next obvious addition

is a rule to handle concepts of the form ↓y.C: if (↓y.C, B) is in the label of a

node v, we add (C, {y/v}∪B) and (y, {y/v}) to the label of v. The latter states

that y is bound to v at the node v, and the former that the free variable y in C

is bound to v. All other existing rules have to propagate the bindings as well,

3.3. HYBRID LOGICS 57

e.g., the ∀-rule applied to (∀r.C, B) in the label of a node v adds (C, B) to the

labels of v’s r-successors. The set B contains all and only the bindings for the

free variables in C. Another obvious consequence is the addition of a new clash

condition: if both (y, {y/v}) and (¬y, {y/v}) are in the label of the node v, then

this is a clash.

A more challenging task is the extension of the blocking condition. In the

absence of inverse roles, however, we argue that we can simply ignore the bindings,

i.e., if (C, B) is in the label, we consider only C in the blocking condition. This

clearly ensures termination. But why does this guarantee that we can unravel

a complete and clash-free completion graph into a model? Obviously, without

inverse roles, there is no way to propagate information “back” from a node to its

ancestors and clashes according to the new clash condition can only occur through

a cyclic structure. More precisely, a node v is only labelled with (y, {y/v}) by

an application of the new ↓-rule to some concept (↓y.C, B) in the label of v.

Furthermore, ¬y with v as the binding for y can only occur in the label of v when

(C, {y/v} ∪ B) is expanded to (¬y, {y/v}) via a cyclic path back to v. Without

inverse roles in the query concept, this is obviously only possible among individual

nodes and, therefore, no clash in the tableau can by caused by unravelling.

The above arguments for ignoring the bindings in the blocking condition are

obviously no longer valid when the query concept contains inverse roles. In this

case, we have to consider also the bindings in the blocking condition. If we say,

as usual, that a node is blocked if it has an ancestor that has the same label

(more precisely, we have to consider pairs of nodes in the presence of inverse roles

and number restrictions), then termination is no longer guaranteed because the

bindings can be different for each node. We need, therefore, a weaker condition

that is still strong enough to guarantee that a complete and clash-free completion

graph can be unravelled into a model.

Please note that the bindings that we store together with the concepts make

it possible to trace the expansion of concepts that contain free variables. We

can use these traces in order to define a revised blocking condition by requir-

ing that, for every pair (C, B) in the label of the blocked node, there is a pair

(C, B′) in the blocking node such that the trace for (C, B) is “isomorphic” to

the trace of (C, B′), for a suitable definition of isomorphic in this context. If

the query contains only simple roles, this form of blocking is a weak form of the

tree blocking that is used in the CARIN-style algorithms. It is weaker since

58 CHAPTER 3. WHY QUERY ENTAILMENT IS HARD

we do not require whole trees, but only isomorphic traces. In particular, if the

labels do not contain any bindings, we can use the normal blocking conditions,

whereas in the CARIN-style algorithms tree blocking is always necessary. If the

query contains also non-simple roles, an extension of the blocking conditions is

not as straightforward. Consider again a knowledge base containing the axiom

> v ∃t.> with t a transitive role and the query concept ↓y.(∃t.y), for which we

extend the queried knowledge base with the axiom > v ↓y.(∀t.(¬y)). In this

case, the expansion rules generate a new t-successor for each node due to the

axiom > v ∃t.> and blocking is necessary to ensure termination. The axiom

> v ↓y.(∀t.(¬y)), however, causes (∀t.(¬y), {y/v}) to be present in the label of

each node v and, since t is transitive, the expansion rules add not only (¬y, {y/v})

to v’s t-successor, but also (∀t.(¬y), {y/v}). Hence, concepts of the form ∀t.(¬y)

with different bindings for y accumulate the more we expand the completion tree

and we cannot find isomorphic traces as required for blocking. A possible weak-

ening of the blocking conditions could be the following: for each pair (C, B) in

the blocked node, there is either a pair (C, B′) in the blocking node such that the

trace of (C, B′) is either isomorphic to the trace of (C, B), or (C, B) occurs also

in the label of the blocking node. In this case, the concepts in the blocking node

witness the further expansion of the concepts from the blocked node during the

unravelling and provide us with enough information to know that no clash occurs

in the unravelled tableau/model.

Summing up, an extension of this technique into a decision procedure for

arbitrary conjunctive queries is non-trivial. We sketch a possible solution above

and it is not hard to see that a further extension to the DL SHIQ in the queried

knowledge base is then straightforward. We do not provide formal proofs here

since we present a different decision procedure for SHIQ in the next chapter that

is worst-case optimal regarding both data and combined complexity. It is left for

future work to specify the details of the above sketched algorithm and prove its

correctness.

3.4 First-Order Logic

Finally, another interesting question is whether or not there are decision pro-

cedures for fragments of First-Order Logic (FOL) that we can exploit for the

3.4. FIRST-ORDER LOGIC 59

purpose of deciding query entailment. A Boolean conjunctive query is an exis-

tential, conjunctive FOL formula and it is well known that a SHOIQ knowledge

base can be translated into C2, the two-variable fragment of FOL with counting

quantifiers [112]. The satisfiability problem for C2 is decidable in NExpTime [87].

Hence, we can see the problem of deciding conjunctive query entailment with re-

spect to a DL knowledge base also as deciding logical implication of a formula

with respect to an FOL theory. Adding conjunctive queries to a background the-

ory that is expressive enough to capture expressive DLs such as SHOIQ does

not, however, result in a known decidable fragment of FOL. One reason for this is

that a query can contain an unbounded number of variables and, hence, does not

belong to a bounded variable fragment as standard DLs. In particular in the case

of cyclic queries, we cannot eliminate variables in a straightforward way, e.g., by

rewriting the query, since the variables are necessary to keep the co-reference in

the cycle.

For expressive DLs such as the ones we consider here, conjunctive queries

do also not fall into the guarded fragment (GF) [3, 48] or any of its extensions.

Formulae of the guarded fragment are such that all quantification is guarded, i.e.,

formulae of the guarded fragment have one of the following two forms:

∀~x. (G→ F) or ∃~x. (G ∧ F) ,

where G is an atom that contains all free variables of F . The atom G is called

a guard for F . Simpler Description and Modal Logics naturally belong to the

guarded fragment and, for many constructors of expressive DLs, e.g., nominals

or number restrictions, decidable extensions are known [65]. One of the main

problems, however, are transitive roles since an FOL formula that states the

transitivity of a role is not guarded. E.g., if t is a transitive role, a corresponding

FOL formula is

∀x, y, z. (t(x, y) ∧ t(y, z)→ t(x, z)) .

Please note that none of the two atoms t(x, y) and t(y, z), which could act as

atom guards, contain all free variables from t(x, z). For DL knowledge bases, this

is usually not a problem since, even for SHOIQ, checking the consistency of a

knowledge base in a logic with transitive roles can polynomially be reduced to

checking an extended knowledge base without transitive roles [62, 66, 76]. This

reduction can, however, not be applied to queries.

60 CHAPTER 3. WHY QUERY ENTAILMENT IS HARD

In the guarded fragment with transitivity, one can directly declare some re-

lations as transitive, instead of expressing the transitivity via axioms as the one

stated above. In general, this fragment is undecidable even for the two-variable

fragment of GF without equality [34]. Decidability can be regained, however,

by requiring that transitive relations occur only as guards [108]. For conjunctive

queries, the latter fragment is not sufficient since in conjunctive queries guards

are not necessarily atomic. Conjunctive queries are better captured by the loosely

guarded fragment (LGF) [115]. In LGF , the notion of guards is relaxed. A guard

may be a conjunction of atoms, which is naturally the case for conjunctive queries.

Conjunctive queries with transitive roles belong, however, to LGF with transi-

tive guards [LGF + TG], which is, again, undecidable even if only one transitive

relation is used [68].

3.5 Summary

In this chapter we have introduced related areas and previous work. We intro-

duced the first conjunctive query answering algorithm [19], which provides the

ideas that are also part of the work presented in the following two chapters. We

also show pitfalls that arise in the construction of query answering algorithms

for very expressive logics and highlight sources of incompleteness in existing al-

gorithms. We further point out connections to other areas in logic and show how

the ↓ operator from Hybrid Logics can be used in the design of query answering

algorithms. A generalisation of the suggested techniques to expressive logics is,

however, a non-trivial task since the ↓ operator requires careful attention and,

without restrictions, already makes the simple DL ALC undecidable. Finally, we

briefly introduce the guarded fragment, which is closely related to Description

and Modal Logics, and show that none of its decidable extensions is suitable for

expressing conjunctive queries. Hence, to the best of our knowledge, a solution for

the decision problem of conjunctive query entailment can not be found by a sim-

ple translation into known decidable fragments of FOL or other logics. Summing

up, this chapter contains rather discouraging results regarding the decidability

problem for conjunctive queries in expressive DLs. The next two chapters show,

however, that for the DLs SHIQ and SHOQ this problem is decidable, although

of a higher complexity than the standard reasoning problems.

Chapter 4

Query Answering for SHIQ

In this chapter, we present a decision procedure for answering unions of conjunc-

tive queries (UCQs) with respect to SHIQ knowledge bases. SHIQ is obtained

from SHOIQ by disallowing nominals. More precisely, for S = (NC , NR, NI) a

signature, the set of SHIQ-concepts is the smallest set built inductively over S

using the following grammar, where A ∈ NC , n ∈ IN0, r ∈ NR is a role and s ∈ NR

is a simple role:

C ::= > | ⊥ | A | ¬C | C1 u C2 | C1 t C2 |

∀r.C | ∃r.C | 6 n s.C | > n s.C.

In our query entailment decision procedure we allow, in particular, for non-

distinguished variables and transitive (more precisely, non-simple roles) in the

query body. Previously existing algorithms forbid either one of these two features:

without non-distinguished variables, query answering trivially reduces to instance

retrieval; with the restriction to simple roles in the query body, the paths in the

completion graph that can be used in the query mapping are of bounded length

(cf. Section 3.2.1).

In the algorithm for SHIQ, we rewrite a conjunctive query into a set of

conjunctive queries such that each resulting query is either tree-shaped (i.e., it can

be expressed as a concept) or grounded (i.e., it contains only constants/individual

names and no variables). For both types of queries, entailment can be reduced to

standard reasoning tasks [19, 55]. In Section 4.1, we motivate the query rewriting

steps by means of an example. In Section 4.2, we give exact definitions for

the rewriting procedure and show that a Boolean query is indeed entailed by a

knowledge base K iff the disjunction of the rewritten queries is entailed by K. In

61

62 CHAPTER 4. QUERY ANSWERING FOR SHIQ

Section 4.3, we present a deterministic algorithm for UCQ entailment in SHIQ

that runs in time single exponential in the size of the knowledge base and double

exponential in the size of the query. We further show that conjunctive query

entailment in SHIQ is co-NP-complete regarding data complexity, and thus not

harder than instance retrieval.

4.1 Query Rewriting by Example

In this section, we motivate the ideas behind our query rewriting technique by

means of examples. In the following section, we give precise definitions for all

rewriting steps.

4.1.1 Forest Bases and Canonical Interpretations

Similarly to the technique introduced in the CARIN system, the main obser-

vation is that we can focus on the canonical models of the knowledge base, i.e.,

models that have a kind of tree or forest shape. In the CARIN system, com-

pletion trees are used as finite representations of the canonical models, and a

Boolean query is entailed by the knowledge base iff the query can be mapped to

every complete and clash-free completion tree. Here we proceed in the opposite

way: we use the rewritten queries in order to construct a canonical model in

which the query is false.

We now define more precisely what we mean by canonical or forest models

and we show that, for deciding query entailment, we can restrict our attention

to forest models. We then explain how the rewriting steps are used to transform

cyclic subparts of the query into tree-shaped ones such that the resulting query

can be mapped to a forest model.

In order to make the forest model property even clearer, we also introduce

forest bases, which are forest-shaped interpretations that interpret transitive roles

in an unrestricted way, i.e., not necessarily in a transitive way. In particular, we

require that a forest base does not include any relationships between elements

of the domain that could be inferred due to role transitivity. The term tree, as

used below, is to be understood as in Definition 2.7 on page 37. In the following,

we assume that the ABox contains at least one individual name, i.e., Inds(A) is

non-empty. This is without loss of generality since we can always add an assertion

>(a) to the ABox for a fresh individual name a ∈ NI . For readers familiar with

4.1. QUERY REWRITING BY EXAMPLE 63

tableau algorithms, it is worth noting that forest bases can also be thought of as

those tableaux generated from a complete and clash-free completion graph [58].

Definition 4.1. A forest base for K is an interpretation J = (∆J ,·J) that

interprets transitive roles in an unrestricted (i.e., not necessarily transitive) way

and, additionally, satisfies the following conditions:

T1 ∆J ⊆ Inds(A)×IN∗ such that, for all a ∈ Inds(A), the set {w | (a, w) ∈ ∆J }

is a tree;

T2 if ((a, w), (a′, w′)) ∈ rJ , then either w = w′ = ε or a = a′ and w′ is a

neighbour of w; and

T3 for each a ∈ Inds(A), aJ = (a, ε).

An interpretation I is canonical for K if there exists a forest base J for K such

that I is identical to J except that, for all non-simple roles r, we have

rI = rJ ∪
⋃

s v*Rr, s∈TransR

(sJ)+.

In this case, we say that J is a forest base for I and, if I |= K, we say that I is

a canonical model for K. 4

For convenience, we extend the notion of successors and neighbours to ele-

ments in canonical models. Let I be a canonical model with (a, w), (a′, w′) ∈ ∆I .

We call (a′, w′) a successor of (a, w) if either a = a′ and w′ = w · c for some c ∈ IN

or w = w′ = ε. We call (a′, w′) a neighbour of (a, w) if (a′, w′) is a successor of

(a, w) or vice versa.

Please note that the above definition implicitly relies on the unique name

assumption (UNA) (cf. T3). This is without loss of generality as we can guess

an appropriate partition among the individual names and replace the individual

names in each partition with one representative individual name from that par-

tition. In Section 4.3, we show how the partitioning of individual names can be

used to simulate the UNA. Hence, our decision procedure does not rely on the

UNA. We also show that this does not affect the complexity.

Lemma 4.2. Let K be a SHIQ knowledge base and q a union of conjunctive

queries, then K 6|= q iff there exists a canonical model I of K such that I 6|= q.

64 CHAPTER 4. QUERY ANSWERING FOR SHIQ

For the only if direction of the proof, we take an arbitrary counter-model

for the query, which exists by assumption, and “unravel” all non-tree structures.

Since, during the unraveling process, we only replace cycles in the model with

infinite paths and leave the interpretation of concepts unchanged, the query is

still not satisfied in the unravelled canonical model.

Proof. The “if” direction is trivial.

For the “only if” direction, since an inconsistent knowledge base entails every

query, we can assume that K is consistent. Hence, there is an interpretation

I ′ = (∆I′

, ·I
′

) such that I ′ |= K and I ′ 6|= q. From I ′, we construct a canonical

model I for K and its forest base J as follows: we define the set P ⊆ (∆I′

)∗ of

paths to be the smallest set such that

• for all a ∈ Inds(A), aI′

is a path;

• d1 · · ·dn · d is a path, if

– d1 · · · dn is a path,

– (dn, d) ∈ rI
′

for some role r,

– if there is an a ∈ Inds(A) such that d = aI′

, then n > 2.

Please note that the last condition is to prevent unravelling cycles in the ABox.

Now fix a set S ⊆ Inds(A)× IN∗ and a bijection f : S → P such that, for each

a ∈ Inds(A),

(i) (a, ε) ∈ S,

(ii) {w | (a, w) ∈ S} is a tree,

(iii) f(a, ε) = aI′

, and

(iv) if (a, w), (a, w′) ∈ S with w′ a successor of w, then f(a, w′) = f(a, w) · d for

some d ∈ ∆I′

.

For all (a, w) ∈ S, set Tail(a, w) = dn if f(a, w) = d1 · · · dn. We now define a

forest base J = (∆J ,·J) for K as follows:

(a) ∆J = S;

(b) for each a ∈ Inds(A), aJ = (a, ε) ∈ S;

4.1. QUERY REWRITING BY EXAMPLE 65

(c) for each A ∈ NC and (a, w) ∈ S, (a, w) ∈ AJ iff Tail(a, w) ∈ AI′

;

(d) For all roles r, ((a, w), (b, w′)) ∈ rJ if either

(I) w = w′ = ε and (aI′

, bI
′

) ∈ rI
′

or

(II) a = b, w′ is a neighbour of w, and (Tail(a, w), Tail(b, w′)) ∈ rI
′

.

It is clear that J is a forest base for K due to the definition of S and the

construction of J from S.

Let I = (∆I ,·I) be an interpretation that is identical to J except that, for

all non-simple roles r, we set

rI = rJ ∪
⋃

s v*Rr, s∈TransR

(sJ)+

We demonstrate why I is indeed a model of K by showing that, for each (a, w) ∈

∆I and concept C ∈ cl(K), (a, w) ∈ CI iff Tail(a, w) ∈ CI′

.

We start with the if direction and prove this inductively on the structure of

concepts: for the base case of atomic concepts, i.e., C ∈ NC , this clearly follows

from (c). The cases for disjunction and conjunction, i.e., when C = C1 t C2 and

C = C1 u C2 are straightforward by induction and since I ′ |= K.

Let C = (∃r.D) and (a, w) ∈ CI . Hence, there is an element (b, w′) such that

((a, w), (b, w′)) ∈ rI and (b, w′) ∈ DI . By definition of the forest base J , there

is a sequence of elements d1, . . . , dn such that d1 = (a, w), dn = (b, w′), and, for

each i with 1 ≤ i < n, (di, di+1) ∈ rJ . By (d) we additionally have that, for each

i with 1 ≤ i < n, the pair (di, di+1) with di = (ai, wi) and di+1 = (ai+1, wi+1) is

such that either

1. wi = wi+1 = ε and (aI′

i , aI′

i+1) = (Tail(a1, w1), Tail(ai+1, wi+1)) ∈ rI
′

or

2. ai = ai+1, wi+1 is a neighbour of wi and (Tail(ai, wi), Tail(ai+1, wi+1)) ∈ rI
′

.

By definition of the semantics, we then have that (Tail(a, w), Tail(b, w′)) ∈ rI
′

and, by induction, that Tail(b, w′) ∈ DI′

, which proves the claim.

Let C = (∀r.D) and (a, w) ∈ CI . Assume, to the contrary of what is to be

shown that d = Tail(a, w) /∈ CI′

. Hence, there is an element d′ such that (d, d′) ∈

rI
′

and d′ ∈ (¬D)I
′

. By construction of I, we have that f(a, w) = d1 · · · dk with

dk = d and d1 · · · dk is a path. We distinguish two cases:

66 CHAPTER 4. QUERY ANSWERING FOR SHIQ

1. The path d1 · · · dk is of length one, i.e., k = 1. Hence, there is an individual

a ∈ Inds(A) such that aI′

= d and w = ε. We now again distinguish two

cases:

(a) There is an individual b ∈ Inds(A) such that bI
′

= d′. Then, d′ is a path

and, by construction of I, (a, ε), (b, ε) ∈ ∆I and ((a, ε), (b, ε)) ∈ rI .

By induction, (b, ε) ∈ (¬D)I , contradicting the initial assumption that

(a, ε) ∈ (∀r.D)I .

(b) There is no individual b ∈ Inds(A) such that bI
′

= d′. Then, d · d′ is

a path and, by construction of I, d = (a, ε) and d′ = (a, c) for some

c ∈ IN. By (d), ((a, ε), (a, c)) ∈ rI and, by induction, (a, c) ∈ (¬D)I ,

contradicting the initial assumption that (a, ε) ∈ (∀r.D)I .

2. The path d1 · · · dk is of length greater than one. Since (d, d′) ∈ rI
′

by

assumption, d1 · · · dk · d′ is a path and, by construction of I, (a, w · c) ∈ ∆I

for some c ∈ IN and, by (d), ((a, w), (a, w · c)) ∈ rI . Now, by induction,

(a, w · c) ∈ (¬D)I , which again contradicts the initial assumption. This

finishes the proof of the claim.

Let C = (> n s.D) and (a, w) ∈ CI . Then (a, w) has n distinct successors

(a1, w1), . . . , (an, wn) such that, for each i with 1 ≤ i ≤ n, either w = wi = ε or

a = ai and wi is a successor of w. In both cases, by construction of the set P and

since f is a bijection, also Tail(a, w) has n distinct s-successors d1, . . . , dn such

that, by induction, di ∈ DI′

for each i with 1 ≤ i ≤ n. Hence, Tail(a, w) ∈ CI′

as required.

Let C = (6 n s.D) and (a, w) ∈ CI . We assume to the contrary of what

is to be shown that Tail(a, w) ∈ (> n + 1 s.D)I
′

. Let f(a, w) = d1 · · · dk, then

Tail(a, w) = dk has at least n + 1 distinct s-successors d1
s, . . . , d

n+1
s such that, for

each i with 1 ≤ i ≤ n + 1, di
s ∈ DI′

. We distinguish two cases:

1. The path d1 · · · dk is of length one, i.e., k = 1. Hence, aI′

= dk and w = ε.

For each di
s with 1 ≤ i ≤ n + 1, we again distinguish two cases:

(a) There is some b ∈ Inds(A) such that bI
′

= di
s. Then, by definition

of paths, di
s ∈ P and, by construction of J and by (iii), (b, ε) ∈ S

with f(b, ε) = bI
′

. Then, by (d), ((a, ε), (b, ε)) ∈ sI and, by induction,

(b, ε) ∈ DI .

4.1. QUERY REWRITING BY EXAMPLE 67

(b) There is no b ∈ Inds(A) such that bI
′

= di
s. Hence, d1 · · · dk · di

s is a

path and, by construction of I, (a, w · c) ∈ S for some c ∈ IN and

f(a, w · c) = d1 · · · dk · di
s. By (d), ((a, w), (a, w · c)) ∈ sI and, by

induction, (a, w · c) ∈ DI .

2. The path d1 · · · dk is of length greater than one. Then, by definition of

paths, d1 · · · dk · di
s is also a path. By construction of I, (a, w · c) ∈ ∆I for

some c ∈ IN and f(a, w · c) = d1 · · ·dk · di
s. By (d), ((a, w), (a, w · c)) ∈ sI

and, by induction, (a, w · c) ∈ DI .

Since each di
s is distinct by assumption, we have that (a, w) has n+1 s-successors,

which belong to the extension of D in I, contradicting the initial assumption.

For the only if direction, we again prove the claim inductively on the structure

of concepts. The base case of concept names follows directly from the definition

of I, in particular from (c). The cases of disjunction and conjunction are also

straightforward.

Let C = (∃r.D) and Tail(a, w) = d ∈ CI′

. Hence, there is an element d′ ∈ ∆I′

such that (d, d′) ∈ rI
′

and d′ ∈ DI′

. We distinguish two cases:

1. There is an individual name a ∈ Inds(A) such that aI′

= d. By definition

of J this implies that w = ε and f(a, w) = d. We again distinguish two

cases:

(a) There is an individual name b ∈ Inds(A) such that bI
′

= d′. By

definition of paths, d′ is a path and, by definition of J , (b, ε) ∈ S with

f(b, ε) = d′. By (d) and since (d, d′) ∈ rI
′

, we have that ((a, ε), (b, ε)) ∈

rI and, by induction, that (b, ε) ∈ DI . Then, by definition of the

semantics, (a, w) = (a, ε) ∈ CI as required.

(b) There is no individual name b ∈ Inds(A) such that bI
′

= d′. By

definition of paths, d · d′ is a path and, by definition of J , there is

some c ∈ IN such that f(a, w · c) = d · d′. By (d), we then have that

((a, w), (a, w · c)) ∈ rI and, by induction, (a, w · c) ∈ DI . Hence,

(a, w) ∈ CI = (∃r.D)I as required.

2. There is no individual name a ∈ Inds(A) such that aI′

= d. Hence,

f(a, w) = d1 · · ·dk with dk = d. By definition of paths and since (d, d′) ∈ rI
′

,

d1 · · · dk · d′ is a path and, by definition of S and J , there is a c ∈ IN such

that (a, w · c) ∈ S and f(a, ·c) = d1 · · · dk · d′. By (d), we then have that

68 CHAPTER 4. QUERY ANSWERING FOR SHIQ

((a, w), (a, w · c)) ∈ rI and, by induction, (a, w · c) ∈ DI , which yields that

(a, w) ∈ CI as required.

Let C = (∀r.D) and let Tail(a, w) ∈ CI′

. Assume, to the contrary of what

is to be shown, that (a, w) /∈ CI , i.e., there is an element (a′, w′) such that

((a, w), (a′, w′)) ∈ rI , and (a′, w′) ∈ (¬D)I . We distinguish two cases:

1. The element (a′, w′) is a root, i.e., w′ = ε. Then, by definition of S, there

is an element d′ ∈ ∆I′

such that a′I
′

= d′ and (d, d′) ∈ rI
′

. Since, by

induction, Tail(a′, w′) = d′ ∈ (¬D)I
′

, we have that d ∈ (∃r.(¬D))I
′

, which

is a contradiction to our initial assumption.

2. The element (a′, w′) is not a root. Then, a′ = a and w′ = w · c for some

c ∈ IN and f(a, w · c) = f(a, w) · d′ for some d′ ∈ ∆I′

. By (d), this means

that (d, d′) ∈ rI
′

and, by induction, d′ ∈ (¬D)I
′

. Hence, d ∈ (∃r.(¬D))I
′

,

which contradicts our initial assumption.

Let C = (> n s.D) and let Tail(a, w) ∈ CI′

. By definition of the semantics,

Tail(a, w) has at least n distinct s-successors d1
s, . . . , d

n
s such that, for each i with

1 ≤ i ≤ n, di
s ∈ DI′

. Let d1 · · ·dk be the path such that f(a, w) = d1 · · ·dk and

dk = Tail(a, w). Such a path exists since f is a bijection and by definition of I

and Tail. We distinguish two cases:

1. The path d1 · · · dk is of length one, i.e., k = 1. Hence, aI′

= dk and w = ε.

For each di
s with 1 ≤ i ≤ n, we again distinguish two cases:

(a) There is some b ∈ Inds(A) such that bI
′

= di
s. Then, by definition

of paths, di
s ∈ P and, by construction of J and by (iii), (b, ε) ∈ S

with f(b, ε) = bI
′

. Then, by (d), ((a, ε), (b, ε)) ∈ sI and, by induction,

(b, ε) ∈ DI .

(b) There is no b ∈ Inds(A) such that bI
′

= di
s. Hence, d1 · · · dk · di

s is a

path and, by construction of I, (a, w · c) ∈ S for some c ∈ IN and

f(a, w · c) = d1 · · · dk · di
s. By (d), ((a, w), (a, w · c)) ∈ sI and, by

induction, (a, w · c) ∈ DI .

2. The path d1 · · · dk is of length greater than one. Then, by definition of

paths, d1 · · ·dk ·di
s is also a path, for each i with 1 ≤ i ≤ n. By construction

of I, (a, w · c) ∈ ∆I for some c ∈ IN and f(a, w · c) = d1 · · · dk · di
s. By (d),

((a, w), (a, w · c)) ∈ sI and, by induction, (a, w · c) ∈ DI .

4.1. QUERY REWRITING BY EXAMPLE 69

Since each di
s is distinct by assumption, we have that (a, w) has n distinct s-

successors, which belong to the extension of D in I. Hence, (a, w) ∈ CI =

(> n s.D)I .

Let C = (6 n s.D) and Tail(a, w) ∈ CI′

. We assume to the contrary of

what is to be shown that (a, w) ∈ (> n + 1 s.D)I . Then (a, w) has at least

n + 1 distinct s-successors (a1, w1), . . . , (an+1, wn+1) such that, for each i with

1 ≤ i ≤ n + 1, (ai, wi) ∈ DI . We distinguish two cases:

1. The element (a, w) is a root, i.e., w = ε. By (iii), there is some da ∈ ∆I′

such that aI′

= da. For each i with 1 ≤ i ≤ n + 1 we again distinguish two

cases:

(a) The element (ai, wi) is a root, i.e., wi = ε. By (iii), there is some dai
∈

∆I′

such that ai
I′

= dai
. Since ((a, w), (ai, wi)) ∈ sI by assumption

and by (d), we have that (da, dai
) ∈ sI

′

and, by induction, that dai
∈

DI′

.

(b) The element (ai, wi) is not a root. Let f(a, w) = d1 · · · dk. Since f is a

bijection and by (ii) and (iv), we have that ai = a and wi = w · c for

some c ∈ IN. Furthermore, f(ai, wi) = d1 · · · dk · di for some di ∈ ∆I′

.

By definition of paths and Tail, we then have that (dk, di) ∈ sI
′

and,

by induction, that di ∈ DI′

.

Due to the unique name assumption and since each di
s is distinct by assump-

tion, this implies that Tail(a, w) = dk ∈ (> n + 1 s.D)I
′

, which contradicts

the initial assumption.

2. The element (a, w) is a not root, i.e., w 6= ε. Then, by (ii) and (iv), we

have that, for each i with 1 ≤ i ≤ n + 1, ai = a and wi = w · ci for some

ci ∈ IN. By definition of J and paths we further have that f(a, w) =

d1 · · · dk and f(ai, wi) = d1 · · · dk · di for some di ∈ ∆I′

. By assumption,

((a, w), (ai, wi)) ∈ sI , for each i with 1 ≤ i ≤ n+1, which, together with (d),

implies that (dk, di) ∈ sI
′

and di ∈ DI′

by induction. Hence, Tail(a, w) =

dk ∈ (> n + 1 s.D)I
′

, which again contradicts the initial assumption.

Since J is a forest base, it follows that I is a canonical model for K.

Therefore, we only have to show that I 6|= q. Assume to the contrary that

I |= q and let q = q1 ∨ . . . ∨ qn. Then there is some π and i with 1 ≤ i ≤ n

such that I |=π qi. We now define a mapping π′ : Terms(qi) → ∆I′

by setting

70 CHAPTER 4. QUERY ANSWERING FOR SHIQ

π′(t) = Tail(π(t)) for all t ∈ Terms(qi). It is not difficult to check that I ′ |=π′

qi

and hence I ′ |=π′

q, which is a contradiction.

4.1.2 The Running Example

We use the following Boolean query and knowledge base as a running example:

Example 4.3. Let K = (T ,R,A) be a SHIQ knowledge base with r, t ∈

NtR, k ∈ IN

T = { Ck v > k p.>,

C3 v > 3 p.>,

D2 v ∃s−.>u ∃t.>

}

R = { t v t−,

s− v r

}

A = { r(a, b),

(∃p.Ck u ∃p.C u ∃r−.C3)(a),

(∃p.D1 u ∃r.D2)(b)

}

and q = {r(u, x), r(x, y), t(y, y), s(z, y), r(u, z)} with Inds(q) = ∅ and Vars(q) =

{u, x, y, z}.

For simplicity, we choose to use a CQ instead of a UCQ. In the case of a UCQ,

the rewriting steps are applied to each disjunct separately.

D2

t, t− t, t−

t, t−

C3C2

(a, 11) (a, 12) . . . (a, 1k)

pp p

(a, 2) (a, 3) (b, 2)

(a, ε)

p p r−

p p

(a, 33)(a, 32)(a, 31)

p

r
r

r

r
r

p

r
r

r, s−

(b, 21) (b, 22)

r

(b, ε)

(a, 1) (b, 1)D1C1

Figure 4.1: A representation of a canonical interpretation I for K.

Figure 4.1 shows a representation of a canonical model I for the knowledge

base K from Example 4.3. Each labelled node represents an element in the

domain, e.g., the individual name a is represented by the node labelled (a, ε). The

edges represent relationships between individuals. For example, we can read the r-

labelled edge from (a, ε) to (b, ε) in both directions, i.e., (aI , bI) = ((a, ε), (b, ε)) ∈

4.1. QUERY REWRITING BY EXAMPLE 71

rI and (bI , aI) = ((b, ε), (a, ε)) ∈ r−
I
. The “shortcuts” due to transitive roles are

shown as dashed lines, while the relationship between the nodes that represent

ABox individuals is shown in grey. Please note that we did not indicate the

interpretations of all concepts in the figure.

Since I is a canonical model for K, the elements of the domain are pairs (a, w),

where a indicates the individual name that corresponds to the root of the tree,

i.e., aI = (a, ε) and the elements in the second place form a tree according to our

definition of trees. For each individual name a in our ABox, we can, therefore,

easily define the tree rooted in a as {w | (a, w) ∈ ∆I}.

r

(a, 11) (a, 12) (a, 1k). . .

ppp

(a, 2)(a, 1) (a, 3) (b, 1) (b, 2)

(a, ε)

p p r−

p p p

(a, 32)(a, 31) (a, 33)

p

(b, ε)

r, s−
t, t−

(b, 21) (b, 22)

r

Figure 4.2: A forest base for the interpretation represented by Figure 4.1.

Figure 4.2 shows a representation of a forest base for the interpretation from

Figure 4.1 above. For simplicity, the interpretation of concepts is no longer shown.

The two trees, rooted in (a, ε) and (b, ε) respectively, are now clear.

u r

r

x

r
t

y

s

z

Figure 4.3: A graph representation of the query from Example 4.3.

A graphical representation of the query q from Example 4.3 is shown in Fig-

ure 4.3, where the meaning of the nodes and edges is analogous to the ones given

for interpretations; e.g., the role atom r(u, x) is represented by the r-labelled

edge from the node u to the node x. We call this query a cyclic query since its

underlying undirected graph is cyclic (cf. Definition 2.7).

Figure 4.4 shows a match π for q and I and, although we consider only one

canonical model here, it is not hard to see that the query is true in each model

of the knowledge base, i.e., K |= q.

The forest model property is also exploited in the query rewriting process.

We want to rewrite q into a set of queries q1, . . . , qn of ground or tree-shaped

72 CHAPTER 4. QUERY ANSWERING FOR SHIQ

t, t−

(a, 12) . . . (a, 1k) (a, 31) (a, 32) (a, 33)

u

r

x
(b, ε)

r

(b, 2)y
r

(b, 21)

r, s−

r
r

(b, 22)

r

r−

(a, 3)

(a, ε)

(a, 2)(a, 1) (b, 1)
r

r

z

t, t−

t, t−

(a, 11)

Figure 4.4: A match π for the query q from Example 4.3 onto the model I
from Figure 4.1.

queries such that K |= q iff K |= q1 ∨ . . . ∨ qn. Since the resulting queries are

ground or tree-shaped, we can exploit known techniques for deciding entailment

of these queries. As a first step, we transform q into a set of forest-shaped queries.

Intuitively, forest-shaped queries consist of a set of tree-shaped sub-queries, where

the roots of these trees might be arbitrarily interconnected (by atoms of the form

r(t, t′)). A tree-shaped query is a special case of a forest-shaped query where

there is a single root node. We will call the arbitrarily interconnected terms of a

forest-shaped query the root terms (or, for short, just roots). At the end of the

rewriting process, we replace the root terms with individual names from Inds(A)

and transform the tree parts into a concept by applying the so called rolling-up

or tuple graph technique [19, 109].

In the proof of the correctness of our procedure, we use the structure of the

forest bases in order to explicate the transitive “shortcuts” used in the query

match. By explicating we mean that we replace each role atom that is mapped

to such a shortcut with a sequence of role atoms such that an extended match

for the modified query uses only paths that are in the forest base.

4.1.3 The Rewriting Steps

The rewriting process for a query q is a six stage process. At the end of this

process, the rewritten query may or may not be in a forest shape. As we show

later, this “don’t know” non-determinism does not compromise the correctness

of the algorithm. In the first stage, we derive a collapsing qco of q by adding

(possibly several) equality atoms to q. Consider, for example, the cyclic query

q = {r(x, y), r(x, y′), s(y, z), s(y′, z)} (see Figure 4.5), which can be transformed

into a tree-shaped one by adding the equality atom y ≈ y′.

A common property of the next three rewriting steps is that they allow for

4.1. QUERY REWRITING BY EXAMPLE 73

y, y′y

z

y′

s s

r r

x

z

x

s

r

Figure 4.5: A representation of a cyclic query and of the tree-shaped query
obtained by adding the atom y ≈ y′ to the query depicted on the left hand
side.

substituting (implicit) shortcut edges with (explicit) paths that imply the short-

cut. The three steps aim at different cases in which these shortcuts can occur

and we describe their goals and application now in more detail.

The second stage is called split rewriting . In a split rewriting we take care

of all role atoms that are matched to transitive shortcuts connecting elements of

two different trees and by-passing one or both of their roots. We substitute these

shortcuts with either one or two role atoms such that the roots are included. In

our running example, π maps u to (a, 3) and x to (b, ε). Hence I |=π r(u, x),

but the used r-edge is a transitive shortcut connecting the tree rooted in a with

the tree rooted in b, and by-passing (a, ε). Similar arguments hold for the atom

r(u, z), where the path that implies this shortcut relationship goes via the two

roots (a, ε) and (b, ε). It is clear that r must be a non-simple role since, in the

forest base J for I, there is no “direct” connection between different trees other

than between the roots of the trees. Hence, (π(u), π(x)) ∈ rI holds only because

there is a role s ∈ TransR such that s v*Rr. In the case of our example, r itself is

transitive. A split rewriting eliminates transitive shortcuts between different trees

of a canonical model and adds the “missing” variables and role atoms matching

the sequence of edges that induce the shortcut. For the rewritten query, we also

define a set of root terms, which contains the variables that are mapped to the

roots in the canonical model. For our running example, we guess that the set of

root terms is {ux, x}.

u

r

r r
t

r

s

ux x

y

z

Figure 4.6: A split rewriting qsr for the query shown in Figure 4.3.

74 CHAPTER 4. QUERY ANSWERING FOR SHIQ

Figure 4.6 depicts the split rewriting

qsr = { r(u, ux), r(ux, x), r(x, y), t(y, y), s(z, y),

r(u, ux), r(ux, x), r(x, z)}

of q that is obtained from q by replacing (i) r(u, x) with r(u, ux) and r(ux, x)

and (ii) r(u, z) with r(u, ux), r(ux, x), and r(x, z). Please note that we both

introduced a new variable (ux) and re-used an existing variable (x). Figure 4.7

shows a match for qsr and the canonical model I of K in which the two trees are

only connected via the roots.

t

s−, r

(b, 21)

r(a, ε)

r−

(b, ε)

u

ux x

y

z

(b, 2)(a, 3)

r

(a, 11) (a, 12) . . . (a, 1k)

(a, 2)

(a, 31) (a, 32) (a, 33)

(a, 1) (b, 1)
r

(b, 22)

, t−

Figure 4.7: A split match πsr for the query qsr from Figure 4.7 onto the
canonical interpretation from Figure 4.1.

Figure 4.7 also indicates that ux and x are the variables in qsr that correspond

to roots.

In the third step, called loop rewriting , we eliminate “loops” for variables v

that do not correspond to roots by replacing atoms r(v, v) with two atom r(v, v′)

and r(v′, v), where v′ can either be a new or an existing variable in q. In our

running example, we eliminate the loop t(y, y) as follows:

q`r = { r(u, ux), r(ux, x), r(x, y), t(y, y′), t(y′, y), s(z, y),

r(u, ux), r(ux, x), r(x, z)}

is the query obtained from qsr (see Figure 4.6) by replacing t(y, y) with t(y, y′)

and t(y′, y) for a new variable y′. Please note that, since t is defined as transitive

and symmetric, t(y, y) is still implied, i.e., the loop is also a transitive shortcut.

Figure 4.8 shows the canonical interpretation I from Figure 4.1 with a match π`r

for q`r. The introduction of the new variable y′ is needed in this case since there

is no variable that could be re-used and the individual (b, 22) is not in the range

of the match πsr.

The forth rewriting step, called forest rewriting , again involves the replace-

ment of role atoms with sets of role atoms. This allows for the elimination of

4.1. QUERY REWRITING BY EXAMPLE 75

s−

(a, 12) . . . (a, 1k)

(a, 1) (a, 2)

(a, 31) (a, 32) (a, 33)

(a, ε)

(a, 3)

ux

r−

u

r
x
(b, ε)

(b, 2)y(b, 1)

t, t−

(b, 21)
z y′

(b, 22)

, r

r

(a, 11)

r

Figure 4.8: A loop rewriting q`r and a match for the canonical interpretation
from Figure 4.1.

cycles that are within a single tree. A forest rewriting qfr for our example can

be obtained from q`r by replacing the role atom r(x, z) with r(x, y) and r(y, z),

resulting in the query

qfr = { r(u, ux), r(ux, x), r(x, y), t(y, y′), t(y′, y), s(z, y),

r(u, ux), r(ux, x), r(x, y), r(y, z)}.

Clearly, this results in tree-shaped sub-queries, one rooted in ux and one rooted

in x. Hence qfr is forest-shaped w.r.t. the root terms ux and x. Figure 4.9 shows

the canonical interpretation I from Figure 4.1 with a match πfr for qfr.

y

y′
(b, 22)(b, 21)

t, t−
r, s−

(b, ε)
x

r

u

(a, 33)(a, 32)(a, 31). . . (a, 1k)(a, 12)(a, 11)

(a, ε)

r−

ux

(b, 1)(a, 1) (a, 2) (b, 2)(a, 3)

r

z

Figure 4.9: A forest rewriting qfr and a forest match πfr for the canonical
interpretation from Figure 4.1.

In the fifth step, we use the standard rolling-up technique [19, 55] and express

the tree-shaped sub-queries as concepts. In order to do this, we traverse each tree

in a bottom-up fashion and replace each leaf (labelled with a concept C, say) and

its incoming edge (labelled with a role r, say) with the concept ∃r.C added to its

predecessor. For example, the tree rooted in ux (i.e., the role atom r(u, ux)) can

be replaced with the atom (∃r−.>)(ux). Similarly, the tree rooted in x (i.e., the

role atoms r(x, y), r(y, z), s(z, y), t(y, y′), and t(y′, y)) can be replaced with the

atom

(∃r.((∃(r u Inv(s)).>) u (∃(t u Inv(t)).>))(x).

Please note that we have to use role conjunctions in the resulting query in order to

76 CHAPTER 4. QUERY ANSWERING FOR SHIQ

capture the semantics of multiple role atoms relating the same pair of variables.

Recall that, in the split rewriting, we have guessed that x and ux correspond

to roots and, therefore, correspond to individual names in Inds(A). In the sixth

and last rewriting step, we guess which variable corresponds to which individual

name and replace the variables with the guessed names. A possible guess for our

running example would be that ux corresponds to a and x to b. This results in

the (ground) query

{(∃r−.>)(a), r(a, b), (∃r.((∃(r u Inv(s)).>) u (∃(t u Inv(t)).>)))(b)},

which is entailed by K.

Please note that we focused in the running example on the most reasonable

rewriting. There are several other possible rewritings, e.g., we obtain another

rewriting from qfr by replacing ux with b and x with a in the last step. For a

UCQ, we apply the rewriting steps to each of the disjuncts separately.

At the end of the rewriting process, we have, for each disjunct, a set of ground

queries and/or queries that were rolled-up into a single concept atom. The latter

queries result from forest rewritings that are tree-shaped and have an empty set

of roots. Such tree-shaped rewritings can match anywhere in a tree and can, thus,

not be grounded. Finally, we check if our knowledge base entails the disjunction

of all the rewritten queries. We show that there is a bound on the number of

(forest-shaped) rewritings and hence on the number of queries produced in the

rewriting process.

Summing up, the rewriting process for a connected conjunctive query q in-

volves the following steps:

1. Build all collapsings of q.

2. For each collapsing and set of roots R, build all split rewritings.

3. Build all loop rewritings of the split rewritings.

4. Build all (forest-shaped) forest rewritings of the loop rewritings.

5. Roll-up each tree-shaped sub-query in a forest-rewriting into a concept atom

and

6. replace the roots in R with individual names from the ABox in all possible

ways.

4.2. QUERY REWRITING 77

Let q1, . . . , qn be the queries resulting from the rewriting process. In the next

section, we define each rewriting step and prove that K |= q iff K |= q1 ∨ · · · ∨

qn. Checking entailment for the rewritten queries can easily be reduced to KB

consistency and any decision procedure for SHIQu KB consistency can be used in

order to decide if K |= q. We present one such decision procedure in Section 4.3.

4.2 Query Rewriting

In the previous section, we used several terms, e.g., tree- or forest-shaped query,

rather informally. In the following, we give definitions for the terms used in the

query rewriting process. Once this is done, we formalise the query rewriting steps

and prove the correctness of the procedure, i.e., we show that the forest-shaped

queries obtained in the rewriting process can indeed be used for deciding whether

a knowledge base entails the original query or not.

4.2.1 Tree- and Forest-Shaped Queries

In order to define tree- or forest-shaped queries more precisely, we use mappings

between queries and trees or forests. In the following definition, we use the two

relations ∈̄ and ≈* , which were defined in Definition 2.5 on page 35.

Definition 4.4. Let q be a query. A tree mapping for q is a total function f

from terms in q to a tree such that

1. for each t, t′ ∈ Terms(q), t ≈* t′ iff f(t) = f(t′),

2. r(t, t′) ∈̄ q iff f(t) is a neighbour of f(t′), and,

3. if a ∈ Inds(q), f(a) = ε.

The query q is tree-shaped if](Inds(q)) ≤ 1 and there is a tree mapping for q.

A root choice R for q is a subset of Terms(q) such that Inds(q) ⊆ R and, if t ∈ R

and t ≈* t′, then t′ ∈ R. For t ∈ R, we use Reach(t) to denote the set of terms

t′ ∈ Terms(q) for which there exists a sequence of terms t1, . . . , tn ∈ Terms(q) such

that

1. t1 = t and tn = t′,

2. for all 1 ≤ i < n, there is a role r such that r(ti, ti+1) ∈̄ q, and,

78 CHAPTER 4. QUERY ANSWERING FOR SHIQ

3. for 1 < i ≤ n, if ti ∈ R, then ti ≈* t.

We call R a root splitting w.r.t. q if either R = ∅ or if, for ti, tj ∈ R, ti 6≈
* tj implies

that Reach(ti) ∩ Reach(tj) = ∅. Each term t ∈ R induces a sub-query

subq(q, t) = {at ∈̄ q | the terms in at occur in Reach(t)}\

{r(t, t) | r(t, t) ∈̄ q}.

A query q is forest-shaped w.r.t. a root splitting R if each sub-query subq(q, t) for

t ∈ R is tree-shaped or if R = ∅ and q is tree-shaped. 4

For each term t ∈ R, we collect the terms that are reachable from t in the set

Reach(t). By Condition 3, we make sure that R and ≈* are such that each t′ ∈

Reach(t) is either not in R or t ≈* t′. Since queries are connected by assumption,

we would otherwise collect all terms in Reach(t) and not just those t′ /∈ R. For a

root splitting, we require that the resulting sets are mutually disjoint for all terms

t, t′ ∈ R that are not equivalent. This guarantees that all paths between the sub-

queries go via the root nodes of their respective trees. Intuitively, a forest-shaped

query is one that can potentially be mapped onto a canonical interpretation I =

(∆I ,·I) such that the terms in the root splitting R correspond to roots (a, ε) ∈ ∆I .

In the definition of subq(q, t), we exclude loops of the form r(t, t) ∈̄ q, as these

parts of the query are grounded later in the query rewriting process, and we allow

arbitrary relationships between ground terms.

Consider, for example, the query qsr of our running example from the previous

section (cf. Figure 4.6, page 73). Let us again make the root choice R = {ux, x}

for q. The sets Reach(ux) and Reach(x) w.r.t. qsr and R are {ux, u} and {x, y, z}

respectively. Since the two sets are obviously disjoint, R is a root splitting w.r.t.

qsr. If we choose, however, R = {x, y}, the set R is not a root splitting w.r.t. qsr

since Reach(x) = {ux, u, z} and Reach(y) = {z} are not disjoint.

4.2.2 From Graphs to Forests

We are now ready to define the query rewriting steps. Given an arbitrary query,

we exhaustively apply the rewriting steps and show that we can use the resulting

queries that are forest-shaped to decide entailment of the original query. Please

note that the following definitions are for conjunctive queries and not for unions of

conjunctive queries since we apply the rewriting steps for each disjunct separately.

4.2. QUERY REWRITING 79

Definition 4.5. Let q be a Boolean conjunctive query. A collapsing qco of q is

obtained by adding zero or more equality atoms of the form t ≈ t′ for t, t′ ∈

Terms(q) to q. We use co(q) to denote the set of all queries that are a collapsing

of q.

Let K be a SHIQ knowledge base. A query qsr is called a split rewriting of q

w.r.t. K if it is obtained from q by choosing, for each atom r(t, t′) ∈̄ q, to either:

1. do nothing,

2. choose a role s ∈ TransR such that s v*Rr and replace r(t, t′) with s(t, u),

s(u, t′), or

3. choose a role s ∈ TransR such that s v*Rr and replace r(t, t′) with s(t, u),

s(u, u′), s(u′, t′),

where u, u′ ∈ NV are possibly fresh variables, i.e., variables that may or may not

occur in q. We use srK(q) to denote the set of all pairs (qsr, R) for which there is

a query qco ∈ co(q) such that qsr is a split rewriting of qco and R is a root splitting

w.r.t. qsr.

A query q`r is called a loop rewriting of q w.r.t. a root splitting R and K if it

is obtained from q by choosing, for all atoms of the form r(t, t) ∈̄ q with t /∈ R,

a role s ∈ TransR such that s v*Rr and by replacing r(t, t) with two atoms s(t, t′)

and s(t′, t) for t′ ∈ NV a possibly fresh variable. We use lrK(q) to denote the set

of all pairs (q`r, R) for which there is a tuple (qsr, R) ∈ srK(q) such that q`r is a

loop rewriting of qsr w.r.t. R and K.

For a forest rewriting, fix a set V ⊆ NV of variables not occurring in q such

that](V) ≤](Vars(q)). A forest rewriting qfr w.r.t. a root splitting R of q and K

is obtained from q by choosing, for each role atom r(t, t′) such that either R = ∅

and r(t, t′) ∈̄ q or there is some tr ∈ R and r(t, t′) ∈̄ subq(q, tr) to either

1. do nothing, or

2. choose a role s ∈ TransR such that s v*Rr and replace r(t, t′) with ` ≤

](Vars(q)) role atoms s(t1, t2), . . . , s(t`, t`+1), where t1 = t, t`+1 = t′, and

t2, . . . , t` ∈ Terms(q) ∪ V .

We use frK(q) to denote the set of all pairs (qfr, R) for which there is a tuple

(q`r, R) ∈ lrK(q) such that qfr is a forest-shaped forest rewriting of q`r w.r.t. R

and K. 4

80 CHAPTER 4. QUERY ANSWERING FOR SHIQ

If K is clear from the context, we say that q′ is a split, loop, or forest rewriting

of q instead of saying that q′ is a split, loop, or forest rewriting of q w.r.t. K.

We assume that srK(q), lrK(q), and frK(q) contain no isomorphic queries, i.e.,

differences in (newly introduced) variable names only are neglected. Please note

that, if (qsr, R) ∈ srK(q) and r(t, t) ∈̄ qsr with t /∈ R, this does necessarily imply

that a loop rewriting can be applied to the atom r(t, t) since r could be a simple

role.

In the next section, we show how we can build a disjunction of conjunctive

queries q1 ∨ · · · ∨ q` from the queries in frK(q) such that each qi for 1 ≤ i ≤ ` is

either of the form C(v) for a single variable v ∈ Vars(qi) or qi is ground, i.e., qi

contains only constants and no variables. It then remains to show that K |= q iff

K |= q1 ∨ · · · ∨ q`.

4.2.3 From Trees to Concepts

In order to transform a tree-shaped query into a single concept atom and a

forest-shaped query into a ground query, we define a mapping f from the terms

in each tree-shaped sub-query to a tree. We then incrementally build a concept

that corresponds to the tree-shaped query by traversing the tree in a bottom-up

fashion, i.e., from the leaves upwards to the root. This technique for expressing

tree-shaped queries as concepts is well-known and is usually called the rolling-up

or tuple graph technique [19, 109].

Definition 4.6. Let q be a tree-shaped query with at most one individual name.

If a ∈ Inds(q), then let tr = a otherwise let tr = v for some variable v ∈ Vars(q).

We now inductively assign, to each term t ∈ Terms(q), a concept con(q, t) as

follows:

• Let f be a tree mapping such that f(tr) = ε.

• If f(t) is a leaf, then con(q, t) =
d

C(t)∈̄q C.

• If f(t) has successors f(t1), . . . , f(tk), then

con(q, t, f) =
d

C(t)∈̄q C u
d

1≤i≤k ∃
(d

r(t,ti)∈̄q r
)

.con(q, ti).

Finally, the query concept of q w.r.t. tr is con(q, tr). 4

4.2. QUERY REWRITING 81

Please note that the above definition takes equality atoms into account. This

is because the function f is bijective modulo ≈* and, in case there are concept

atoms C(t) and C(t′) for t ≈* t′, both concepts are conjoined in the query concept

due to the use of the relation ∈̄. Similar arguments can be applied to the role

atoms.

The following lemma shows that query concepts indeed capture the semantics

of q.

Lemma 4.7. Let q be a tree-shaped query with tr ∈ Terms(q) as defined above,

Cq = con(q, tr), and I an interpretation. Then I |= q iff there is a match π and

an element d ∈ Cq
I such that π(tr) = d.

The proof given by [56] easily transfers from DLR to SHIQ. By applying

the result from the above lemma, we can now transform a forest-shaped query

into a ground query as follows:

Definition 4.8. Let (qfr, R) ∈ frK(q) for R 6= ∅, and τ : R → Inds(A) a total

function such that, for each a ∈ Inds(q), τ(a) = a and, for t, t′ ∈ R, τ(t) = τ(t′)

iff t ≈* t′. We call such a mapping τ a ground mapping for R w.r.t. A. We obtain

a ground query ground(qfr, R, τ) of qfr w.r.t. the root splitting R and ground

mapping τ as follows:

• replace each t ∈ R with τ(t), and,

• for each a ∈ ran(τ), replace the sub-query qa = subq(qfr, a) with con(qa, a).

We define the set groundK(q) of ground queries for q w.r.t. K as follows:

groundK(q) = {q′ | there exists some (qfr, R) ∈ frK(q) with R 6= ∅

and some ground mapping τ w.r.t. A and R

such that q′ = ground(qfr, R, τ)}

We define the set of treeK(q) of tree queries for q as follows:

treeK(q) = {q′ | there exists some (qfr, ∅) ∈ frK(q) and

v ∈ Vars(qfr) such that q′ = (con(qfr, v))(v)}
4

Going back to our running example, we have already seen that (qfr, {ux, x}) ∈

frK(q) for

qfr = {r(u, ux), r(ux, x), r(x, y), t(y, y′), t(y′, y), s(z, y), r(y, z)}.

82 CHAPTER 4. QUERY ANSWERING FOR SHIQ

There are also several other queries in the set frK(q), e.g., (q, {u, x, y, z}), where

q is the original query and the root splitting R is such that R = Terms(q), i.e.,

all terms are in the root choice for q. In order to build the set groundK(q),

we now build all possible ground mappings τ for the set Inds(A) of individual

names in our ABox and the root splittings for the queries in frK(q). The tuple

(qfr, {ux, x}) ∈ frK(q) contributes two ground queries for the set groundK(q):

ground(qfr, {ux, x}, {ux 7→ a, x 7→ b}) =

{r(a, b), (∃Inv(r).>)(a), (∃r.((∃(r u Inv(s)).>) u (∃(t u Inv(t)).>)))(b)},

where ∃Inv(r).> is the query concept for the (tree-shaped) sub-query subq(qfr, ux)

and ∃r.((∃(r u Inv(s)).>) u (∃(t u Inv(t)).>) is the query concept for subq(qfr, x)

and

ground(qfr, {ux, x}, {ux 7→ b, x 7→ a}) =

{r(b, a), (∃Inv(r).>)(b), (∃r.((∃(r u Inv(s)).>) u (∃(t u Inv(t)).>)))(a)}.

The tuple (q, {u, x, y, z}) ∈ frK(q), however, does not contribute a ground query

since, for a ground mapping, we require that τ(t) = τ(t′) iff t ≈* t′ and there

are only two individual names in Inds(A) compared to four terms q that need a

distinct value. Intuitively, this does not result in any loss of generality since in the

first rewriting step (collapsing) we produce all those queries in which the terms of

q have been identified with each other in all possible ways. In our example, K |= q

andK |= q1∨· · ·∨q`, where q1∨· · ·∨q` are the queries from treeK(q) and groundK(q)

since each model I of K satisfies qi = ground(qfr, {ux, x}, {ux 7→ a, x 7→ b}).

4.2.4 Query Matches

Even if a query is true in a canonical model, it does not necessarily mean that the

query is tree- or forest-shaped. However, a match π for a canonical interpretation

can guide the process of rewriting a query. Similarly to the definition of tree- or

forest-shaped queries, we define the shape of matches for a query. In particular,

we introduce three different kinds of matches: split matches, forest matches, and

tree matches such that every tree match is a forest match, and every forest match

is a split match. The correspondence to the query shapes is as follows: given a

split match π, the set of all root nodes (a, ε) in the range of the match define

a root splitting for the query; if π is additionally a forest match, the query is

4.2. QUERY REWRITING 83

forest-shaped w.r.t. the root splitting induced by π and, if π is additionally a tree

match, then the whole query can be mapped to a single tree (i.e., the query is

tree-shaped or forest-shaped w.r.t. an empty root splitting). Given an arbitrary

query match into a canonical model, we can first obtain a split match and then

a tree or forest match by using the structure of the canonical model to guide the

application of the rewriting steps.

Definition 4.9. Let K be a SHIQ knowledge base, q a query, I = (∆I ,·I) a

canonical model of K, and π : Terms(q) → ∆I an evaluation such that I |=π q.

We call π a split match if, for all r(t, t′) ∈̄ q, one of the following holds:

1. π(t) = (a, ε) and π(t′) = (b, ε) for some a, b ∈ Inds(A); or

2. π(t) = (a, w) and π(t′) = (a, w′) for some a ∈ Inds(A) and w, w′ ∈ IN∗.

We call π a forest match if, additionally, for each term tr ∈ Terms(q) with π(tr) =

(a, ε) and a ∈ Inds(A), there is a total and bijective mapping f from {(a, w) |

(a, w) ∈ ran(π)} to a tree T such that r(t, t′) ∈̄ subq(q, tr) implies that f(π(t))

is a neighbour of f(π(t′)). We call π a tree match if, additionally, there is an

a ∈ Inds(A) such that each element in ran(π) is of the form (a, w).

A split match π for a canonical interpretation induces a (possibly empty) root

splitting R such that t ∈ R iff π(t) = (a, ε) for some a ∈ Inds(A). We call R the

root splitting induced by π. 4

For two elements (a, w) and (a, w′) in a canonical model, the path from (a, w)

to (a, w′) is the sequence (a, w1), . . . , (a, wn) where w = w1, w
′ = wn, and, for

1 ≤ i < n, wi is a predecessor of wi+1. The length of the path is n. Please

note that, for a forest match, we do not require that w is a neighbour of w′ or

vice versa. This still allows to map role atoms to paths in the canonical model

of length greater than two, but such paths must be between ancestors and not

between elements in different branches of the tree. The mapping f to a tree also

makes sure that, if R is the induced root splitting, then each sub-query subq(q, t)

for t ∈ R is tree-shaped. For a tree match, the root splitting is either empty or

t ≈* t′ for each t, t′ ∈ R, i.e., there is a single root modulo ≈* , and the whole query

is tree-shaped.

84 CHAPTER 4. QUERY ANSWERING FOR SHIQ

4.2.5 Correctness of the Query Rewriting

The following lemmas state the correctness of the rewriting step by step for each

of the rewriting stages. As motivated in the previous section, we can use a given

canonical model to guide the rewriting process such that we obtain a forest-shaped

query that also has a match into the model.

Lemma 4.10. Let I be a model for K.

1. If I |= q, then there is a collapsing qco of q such that I |=πco qco for πco an

injection modulo ≈* .

2. If I |=πco qco for a collapsing qco of q, then I |= q.

Proof. For (1), let π be such that I |=π q, let qco be the collapsing of q that

is obtained by adding an atom t ≈ t′ for all terms t, t′ ∈ Terms(q) for which

π(t) = π(t′). By definition of the semantics, I |=π qco and π is an injection

modulo ≈* .

Condition (2) trivially holds since q ⊆ qco and hence I |=πco q.

In the next step, we show that there is a split rewriting for at least one of the

collapsings.

Lemma 4.11. Let I be a model for K.

1. If I is canonical and I |=π q, then there is a pair (qsr, R) ∈ srK(q) and a

split match πsr such that I |=πsr qsr, R is the induced root splitting of πsr,

and πsr is an injection modulo ≈* .

2. If (qsr, R) ∈ srK(q) and I |=πsr qsr for some match πsr, then I |= q.

For the first part of the lemma, we proceed exactly as illustrated in the ex-

ample section and use the canonical model I and the match π to guide the

rewriting steps. We first build a collapsing qco ∈ co(q) as described in the proof

of Lemma 4.10 such that I |=πco qco for πco an injection modulo ≈* . Since I is

canonical, paths between different trees can only occur due to non-simple roles,

and thus we can replace each role atom that uses such a shortcut with two or

three role atoms such that these roots are explicitly included in the query (cf. the

query and match in Figure 4.4 on page 72 and the obtained split rewriting and

split match in Figure 4.7 on page 74).

4.2. QUERY REWRITING 85

Proof. The proof of 2 is relatively straightforward: since (qsr, R) ∈ srK(q), there

is a collapsing qco of q such that qsr is a split rewriting of qco. All roles replaced in

a split rewriting are non-simple and are replaced with transitive subroles. Since

I |= qsr by assumption, we have, therefore, that I |= qco. By Lemma 4.10 (2), we

then have that I |= q as required.

We go through the proof of (1) in more detail: let qco be in co(q) such that

I |=πco qco for a match πco that is injective modulo ≈* . Such a collapsing qco

and match πco exist due to Lemma 4.10. If πco is a split match w.r.t. q and I

already, we are done since a split match induces a root splitting R and (qco, R)

is trivially in srK(q). If πco is not a split match, there are at least two terms t, t′

with r(t, t′) ∈̄ qco such that πco(t) = (a, w), πco(t
′) = (a′, w′), a 6= a′, and w 6= ε or

w′ 6= ε. We distinguish two cases:

1. Both t and t′ are not mapped to roots, i.e., w 6= ε and w′ 6= ε. Since

I |=πco r(t, t′), we have that (πco(t), πco(t
′)) ∈ rI . Since I is a canonical

model for K, there must be a role s with s v*Rr and s ∈ TransR such that

{(πco(t), (a, ε)), ((a, ε), (a′, ε)), ((a′, ε), πco(t
′))} ⊆ sI .

If there is some t̂ ∈ Terms(qco) such that πco(t̂) = (a, ε), then let u = t̂,

otherwise let u be a fresh variable. Similarly, if there is some t̂′ ∈ Terms(qco)

such that πco(t̂′) = (a′, ε), then let u′ = t̂′, otherwise let u′ be a fresh

variable. Hence, we can define a split rewriting qsr of qco by replacing

r(t, t′) with s(t, u), s(u, u′), and s(u′, t′). We then define a new mapping πsr

that agrees with πco on all terms that occur in qco and that maps u to (a, ε)

and u′ to (a′, ε).

2. Either t or t′ is mapped to a root. Without loss of generality, let this

be t, i.e., π(t) = (a, ε). We can use the same arguments as above: since

I |=πco r(t, t′), we have that (π(t), π(t′)) ∈ rI and, since I is a canonical

model for K, there must be a role s with s v*Rr and s ∈ TransR such that

{(π(t), (a′, ε)), ((a′, ε), π(t′))} ⊆ sI . If there is some t̂ ∈ Terms(qco) such

that πco(t̂) = (a′, ε), then let u = t̂, otherwise let u be a fresh variable. We

then define a split rewriting qsr of qco by replacing r(t, t′) with s(t, u), s(u, t′)

and a mapping πsr that agrees with πco on all terms that occur in qco and

that maps u to (a′, ε).

It immediately follows that I |=πsr qsr. We can proceed as described above for

86 CHAPTER 4. QUERY ANSWERING FOR SHIQ

each role atom r(t, t′) for which π(t) = (a, w) and π(t′) = (a′, w′) with a 6= a′ and

w 6= ε or w′ 6= ε. This will result in a split rewriting qsr and a split match πsr such

that I |=πsr qsr. Furthermore, πsr is injective modulo ≈* since we only introduce

new variables when the variable is mapped to an element that is not yet in the

range of the match. Since πsr is a split match, it induces a root splitting R and,

hence, (qsr, R) ∈ srK(q) as required.

Lemma 4.12. Let I be a model of K.

1. If I is canonical and I |= q, then there is a pair (q`r, R) ∈ lrK(q) and a

mapping π`r such that I |=π`r q`r, π`r is an injection modulo ≈* , R is the

root splitting induced by π`r and, for each r(t, t) ∈̄ q`r, t ∈ R.

2. If (q`r, R) ∈ lrK(q) and I |=π`r q`r for some match π`r, then I |= q.

For the first part, we proceed again as described in the examples section and

use the canonical model I and the match π to guide the rewriting process. We

first build a split rewriting qsr and its root splitting R as described in the proof

of Lemma 4.11 such that (qsr, R) ∈ srK(q) and I |=πsr qsr for a split match πsr.

Since I is a canonical model, it has a forest base J . In a forest base, non-root

nodes cannot be successors of themselves, so each such loop is a shortcut due to

some transitive role. An element that is say r-related to itself has, therefore, a

neighbour that is both an r- and Inv(r)-successor. Depending on whether this

neighbour is already in the range of the match, we can re-use an existing variable

or introduce a new one, when making this path explicit (cf. the loop rewriting

depicted in Figure 4.8 on page 75 obtained from the split rewriting shown in

Figure 4.7 on page 74).

Proof. The proof of (2) is analogous to the one given in Lemma 4.11 since, by

definition of loop rewritings, all roles replaced in a loop rewriting are again non-

simple.

For (1), let (qsr, R) ∈ srK(q) be such that I |=πsr qsr, πsr is a split match, and

R is the root splitting induced by πsr. Such a split rewriting qsr and match πsr

exist due to Lemma 4.11 and the canonicity of I.

Let r(t, t) ∈̄ qsr for t /∈ R. Since R is the root splitting induced by πsr and

since t /∈ R, πsr(t) = (a, w) for some a ∈ Inds(A) and w 6= ε. Now, let J be a

forest base for I. We show that there exists a neighbour d of πsr(t) and a role

s ∈ TransR such that s v*Rr and (πsr(t), d) ∈ sI ∩ Inv(s)I . Since I |=πsr qsr,

4.2. QUERY REWRITING 87

we have (πsr(t), πsr(t)) ∈ rI . Since J is a forest base and since w 6= ε, we have

(πsr(t), πsr(t)) /∈ rJ . It follows that there is a sequence d1, . . . , dn ∈ ∆I and a role

s ∈ TransR such that s v*Rr, d1 = πsr(t) = dn, and (di, di+1) ∈ sJ for 1 ≤ i < n

and di 6= d1 for each i with 1 < i < n. Then it is not hard to see that, because

{w′ | (a, w′) ∈ ∆I} is a tree and w 6= ε, we can choose di such that d2 = dn−1.

Since (d1, d2) ∈ sJ and (dn−1, dn) ∈ sJ with dn−1 = d2 and dn = d1, the role s

and the element d = d2 is as required. For each r(t, t) ∈̄ qsr with t /∈ R, select an

element dr,t and a role sr,t as described above. Now let q`r be obtained from qsr

by doing the following for each r(t, t) ∈̄ qsr with t /∈ R:

• if dr,t = πsr(t
′) for some t′ ∈ Terms(qsr), then replace r(t, t) with sr,t(t, t

′)

and sr,t(t
′, t);

• otherwise, introduce a new variable vr,t ∈ NV and replace r(t, t) with

sr,t(t, vr,t) and sr,t(vr,t, t).

Let π`r be obtained from πsr by extending it with π`r(vr,t) = dr,t for each newly

introduced variable vr,t. By definition of q`r and π`r, q`r is connected, π`r is

injective modulo ≈* , and I |=π`r q`r.

The following lemma shows that we indeed restrict our attention to forest

matches and forest-shaped queries:

Lemma 4.13. Let I be a model of K.

1. If I is canonical and I |= q, then there is a pair (qfr, R) ∈ frK(q) such that

I |=πfr qfr for a forest match πfr, R is the induced root splitting of πfr, and

πfr is an injection modulo ≈* .

2. If (qfr, R) ∈ frK(q) and I |=πfr qfr for some match πfr, then I |= q.

The main challenge is again the proof of (1) and, before we prove the lemma,

we give a short and informal idea of the proof. At this point, we know from

Lemma 4.12 that we can use a query q`r for which there is a root splitting R and

a split match π`r. Since π`r is a split match, the match for each such sub-query

is restricted to a tree and thus we can separately transform each sub-query of q`r

induced by a term in the root choice. The following example is meant to illustrate

why the given bounds on the numbers of new variables and role atoms that can

be introduced in a forest rewriting suffice. Figure 4.10 depicts the representation

88 CHAPTER 4. QUERY ANSWERING FOR SHIQ

of a tree from a canonical model, where we use only the second part of the names

for the elements, e.g., we use just ε instead of (a, ε). For simplicity, we also do

not indicate the concepts and roles that label the nodes and edges, respectively.

We use black color to indicate the nodes and edges that are used in the match

for a query and dashed lines for shortcuts due to transitive roles. In the example,

the grey edges are those that belong to the forest base and the query match uses

only shortcuts.

ε

1

111

1211

Figure 4.10: A part of a representation of a canonical model, where the black
nodes and edges are used in a match for a query and dashed edges indicate
shortcuts due to transitive roles.

The forest rewriting aims at making the shortcuts more explicit by replacing

them with as few edges as necessary to obtain a tree match. In order to do this,

we need to include the “common ancestors” in the forest base between each two

nodes used in the match. For w, w′ ∈ IN∗, we therefore define the longest common

prefix (LCP) of w and w′ as the longest ŵ ∈ IN∗ such that ŵ is a prefix of both

w and w′. For a forest rewriting, we now determine the LCPs of any two nodes

in the range of the match and add a variable for those LCPs that are not yet in

the range of the match to the set V of new variables used in the forest rewriting.

In the example from Figure 4.10 the set V contains a single variable v1 for the

node 1.

We now explicate the shortcuts as follows: for any edge used in the match,

e.g., the edge from ε to 111 in the example, we define its path as the sequence of

elements on the path in the forest base, e.g., the path for the edge from ε to 111

is ε, 1, 11, 111. The relevant path is obtained by dropping all elements from the

path that are not in the range of the mapping or correspond to a variable in the

set V , resulting in a relevant path of ε, 1, 111 for the example. We now replace

the role atom that was matched to the edge from ε to 111 with two role atoms

such that the match uses the edge from ε to 1 and from 1 to 111. An appropriate

transitive sub-role exists since otherwise there could not be a shortcut. Similar

4.2. QUERY REWRITING 89

arguments can be used to replace the role atom mapped to the edge from 111 to

12 and for the one that is mapped to the edge from ε to 12, resulting in a match

as represented by Figure 4.11. The given restriction on the cardinality of the set

V is no limitation since the number of LCPs in the set V is maximal if there is

no pair of nodes such that one is an ancestor of the other. Since a tree of n leaf

nodes that is at least binarily branching can have at most n inner nodes, we need

at most n new variables for a query in n variables.

ε

111

1211

1

Figure 4.11: The match for a forest rewriting obtained from the example given
in Figure 4.10.

For the bound on the number of role atoms that can be used in the replacement

of a single role atom, consider, for example, the cyclic query

q = {r(x1, x2), r(x2, x3), r(x3, x4), t(x1, x4)},

for the knowledge base K = (T ,R,A) with T = ∅,R = {r v t} with t ∈ TransR

and A = {(∃r.(∃r.(∃r.>)))(a)}. It is not hard to check that K |= q. Similarly

to our running example from the previous section, there is also a single rewriting

that is true in each canonical model of the KB, which is obtained by building

only a forest rewriting and doing nothing in the other rewriting steps, except

for choosing the empty set as root splitting in the split rewriting step. In the

forest rewriting, we can explicate the shortcut used in the mapping for t(x1, x4)

by replacing t(x1, x4) with t(x1, x2), t(x2, x3), t(x3, x4).

Now that we have informally introduced the main ideas, we prove the above

lemma:

Proof. The proof of (2) is again analogous to the one given in Lemma 4.11. For

(1), let (q`r, R) ∈ lrK(q) be such that I |=π`r q`r, R is the root splitting induced

by π`r, π`r is injective modulo ≈* and, for each r(t, t) ∈̄ q`r, t ∈ R. Such a loop

90 CHAPTER 4. QUERY ANSWERING FOR SHIQ

rewriting and match π`r exist due to Lemma 4.12 and the canonicity of I. By

definition, R is a root splitting w.r.t. q`r and K.

For w, w′ ∈ IN∗, the longest common prefix (LCP) of w, w′ is the longest

ŵ ∈ IN∗ such that ŵ is prefix of both w and w′. For the match π`r we now define

the set D as follows:

D = ran(π`r) ∪ {(a, w) ∈ ∆I | w is the LCP of some w, w′

with (a, w′), (a, w′′) ∈ ran(π`r)}.

Let V ⊆ NV \ Vars(q`r) be such that, for each d ∈ D \ ran(π`r), there is a unique

vd ∈ V . We now define a mapping πfr as π`r ∪ {vd 7→ d | vd ∈ V and d ∈

D \ ran(π`r)}. By definition of V and vd, πfr is a loop match as well. The

set V ∪ Vars(q`r) will be the set of variables for the new query qfr. Note that

ran(πfr) = D.

Fact (a) if (a, w), (a, w′) ∈ ran(πfr), then (a, w′′) ∈ ran(πfr), where w′′ is the

LCP of w and w′;

Fact (b)](V) ≤](Vars(q`r))

Fact (b) is due to the fact that, in the worst case, all (a, w) in ran(π`r) are

“incomparable” and can thus be seen as leaves of a binarily branching tree.

Now, a tree that has n leaves and is at least binarily branching at every

non-leaf has at most n inner nodes, and thus](V) ≤](Vars(q`r)).

For a pair of individuals d, d′ ∈ ∆I , the path from d to d′ is the (unique) shortest

sequence of elements d1, . . . , dn ∈ ∆I such that d1 = d, dn = d′, and di+1 is a

neighbour of di for all 1 ≤ i < n. The length of a path is the number of elements

in it, i.e., the path d1, . . . , dn is of length n. The relevant path d′
1, . . . , d

′
` from d

to d′ is the sub-sequence of d1, . . . , dn that is obtained by dropping all elements

di /∈ D.

Claim 1. Let r(t, t′) ∈̄ subq(q`r, tr) for some tr ∈ R and let d′
1, . . . , d

′
` be the

relevant path from d = d′
1 = π`r(t) to d′ = d′

` = π`r(t
′). If ` > 2, there is a role

s ∈ TransR such that s v*Rr and (d′
i, d

′
i+1) ∈ sI for all 1 ≤ i < `.

Proof. Let d1, . . . , dn be the path and d′
1, . . . , d

′
` the relevant path from π`r(t)

to π`r(t
′). Then ` > 2 implies n > 2. We have to show that there is a role

s as in the claim. Let J be a forest base for I. Since I |=π`r q`r, n > 2

implies (π`r(t), π`r(t
′)) ∈ rI \ rJ . Since I is based on J , it follows that there

4.2. QUERY REWRITING 91

is an s ∈ TransR such that s v*Rr, and (di, di+1) ∈ sJ for all 1 ≤ i < n. By

construction of I from J , it follows that (d′
i, d

′
i+1) ∈ sI for all 1 ≤ i < `, which

finishes the proof of the claim.

Now let qfr be obtained from q`r as follows: for each role atom r(t, t) ∈̄

subq(q`r, tr) with tr ∈ R, if the length of the relevant path d′
1, . . . , d

′
` from

d′
1 = π`r(t) to d′

` = π`r(t
′) is greater than 2, then select a role s and variables

tj ∈ D such that πfr(tj) = d′
j as in Claim 1 and replace the atom r(t, t′) with

s(t1, t2), . . . , s(t`−1, t`), where t = t1, t′ = t`. Please note that these tj can be

chosen in a “don’t care” non-deterministic way since πfr is injective modulo ≈* ,

i.e., if πfr(tj) = dj = πfr(t
′
j), then tj ≈

* t′j and we can pick any of these.

We now have to show that

(i) I |=πfr qfr, and

(ii) πfr is a forest match.

For (i), let r(t, t′) ∈̄ q`r\qfr and let s(t1, t2), . . . , s(t`−1, t`) be the atoms in qfr that

replace r(t, t′) in qlr. Since I |=π`r q`r, I |=π`r r(t, t′) and (π`r(t), π`r(t
′)) ∈ rI .

Since r(t, t′) was replaced in qfr, the length of the relevant path from π`r(t) to

π`r(t
′) is greater than 2. Hence, it must be the case that (π`r(t), π`r(t

′)) ∈ rI \ rJ .

Let d1, . . . , dn with d1 = π`r(t) and dn = π`r(t
′) be the path from π`r(t) to π`r(t

′)

and d′
1, . . . , d

′
` the relevant path from π`r(t) to π`r(t

′). By construction of I from

J , this means that there is a role s ∈ TransR such that s v*Rr and (di, di+1) ∈ sJ

for all 1 ≤ i < n. Again by construction of I, this means (d′
i, d

′
i+1) ∈ sI for

1 ≤ i < ` as required. Hence I |=πfr s(ti, ti+1) for each i with 1 ≤ i < ` by

definition of πfr.

For (ii): the mapping πfr differs from π`r only for the newly introduced

variables. Furthermore, we only introduced new role atoms within a sub-query

subq(q`r, tr) and π`r is a split match by assumption. By construction, πfr is a

split match and we only have to show that πfr is a forest match. Since πfr is a

split match, we can do this “tree by tree”.

For each a ∈ Inds(A), let Ta = {w | (a, w) ∈ ran(πfr)}. We need to construct

a mapping f as specified in Definition 4.9, and we start with its root tr. If Ta 6= ∅,

let tr ∈ Terms(q) be the unique term such that πfr(tr) = (a, wr) and there is no

t ∈ Terms(q) such that πfr(t) = (a, w) and w is a proper prefix of wr. Such a term

exists since πfr is a split match and it is unique due to Fact (a) above. Define a

trace to be a sequence w̄ = w1 · · ·wn ∈ T+
a such that

92 CHAPTER 4. QUERY ANSWERING FOR SHIQ

• w1 = wr;

• for all 1 ≤ i < n, wi is the longest proper prefix of wi+1.

Since I is canonical, each wi ∈ Ta is in IN. It is not hard to see that T = {w̄ |

w̄ is a trace} ∪ {ε} is a tree. For a trace w̄ = w1 · · ·wn, let Tail(w̄) = wn. Define

a mapping f that maps each term t with πfr(t) = (a, w) ∈ Ta to the unique trace

w̄t such that w = Tail(w̄t). Let r(t, t′) ∈ qfr such that πfr(t), πfr(t
′) ∈ Ta. By

construction of qfr, this implies that the length of the relevant path from πfr(t)

to πfr(t
′) is exactly 2. Thus, f(t) and f(t′) are neighbours in T and, hence, πfr

is a forest match as required.

Putting everything together, we get the following theorem, which shows that

we can use the ground queries in groundK(q) and the queries in treeK(q) in order

to check whether K entails q, and checking entailment for tree-shaped and ground

queries are well understood problems.

Theorem 4.14. Let K be a SHIQ knowledge base, q a Boolean conjunctive

query, and {q1, . . . , q`} = treeK(q)∪groundK(q). Then K |= q iff K |= q1∨ . . .∨q`.

Proof. For the “if” direction: let us assume that K |= q1 ∨ . . . ∨ q`. Hence, for

each model I of K, there is a query qi with 1 ≤ i ≤ ` such that I |= qi. We

distinguish two cases: (i) qi ∈ treeK(q) and (ii) qi ∈ groundK(q).

For (i): qi is of the form C(v) where C is the query concept for some query

qfr w.r.t. v ∈ Vars(qfr) and (qfr, ∅) ∈ frK(q). Hence I |=π qi for some match π,

and thus I |=π C(v). Let d ∈ ∆I with d = π(v) ∈ CI . By Lemma 4.7, we then

have that I |= qfr and, by Lemma 4.13, we then have that I |= q as required.

For (ii): since qi ∈ groundK(q), there is some pair (qfr, R) ∈ frK(q) such that

qi = ground(qfr, R, τ). We show that I |=πfr qfr for some match πfr. Since I |= qi,

there is a match πi such that I |=πi qi. We now construct the match πfr. For

each t ∈ R, qi contains a concept atom C(τ(t)) where C = con(subq(qfr, t), t) is

the query concept of subq(qfr, t) w.r.t. t. Since I |=πi C(τ(t)) and by Lemma 4.7,

there is a match πt such that I |=πt subq(qfr, t). We now define πfr as the union

of πt, for each t ∈ R. Please note that πfr(t) = πi(τ(t)). Since Inds(qfr) ⊆ R

and τ is such that, for each a ∈ Inds(qfr), τ(a) = a and τ(t) = τ(t′) iff t ≈* t′, it

follows that I |=πfr at for each atom at ∈̄ qfr such that at contains only terms

from the root choice R and hence I |=πfr qfr as required.

4.2. QUERY REWRITING 93

For the “only if” direction we have to show that, if K |= q, then K |= q1∨ . . .∨

q`, so let us assume that K |= q. By Lemma 4.2 in its negated form we have that

K |= q iff all canonical models I of K are such that I |= q. Hence, we can restrict

our attention to the canonical models of K. By Lemma 4.13, I |= K and I |= q

implies that there is a pair (qfr, R) ∈ frK(q) such that I |=πfr qfr for a forest

match πfr, R the induced root splitting of πfr, and πfr an injection modulo ≈* .

We again distinguish two cases:

(i) R = ∅, i.e., the root splitting is empty and πfr is a tree match, and

(ii) R 6= ∅, i.e., the root splitting is non-empty and πfr is a forest match but not

a tree match.

For (i): since (qfr, ∅) ∈ frK(q), there is some v ∈ Terms(qfr) such that C =

con(qfr, v) and qi = C(v). By Lemma 4.7 and, since I |= qfr, there is an element

d ∈ ∆I such that d ∈ CI . Hence I |=π C(v) with π : v 7→ d as required.

For (ii): since R is the root splitting induced by πfr, for each t ∈ R there

is some at ∈ Inds(A) such that πfr(t) = (at, ε). We now define the mapping

τ : R → Inds(A) as follows: for each t ∈ R, τ(t) = at iff πfr(t) = (at, ε). By

definition of ground(qfr, R, τ), qi = ground(qfr, R, τ) ∈ groundK(q). Since I |=πfr

qfr, I |= subq(qfr, t) for each t ∈ R. Since qfr is forest-shaped, each subq(qfr, t)

is tree-shaped. Then, by Lemma 4.7, I |= q′i, where q′i is the query obtained from

qfr by replacing each sub-query subq(qfr, t) with C(t) for C the query concept of

subq(qfr, t) w.r.t. t. By definition of τ from the forest match πfr, it is clear that

I |= ground(qfr, R, τ) as required.

We now give upper bounds on the size and number of queries in treeK(q) and

groundK(q). As before, we use](S) to denote the cardinality of a set S. The

size |K| (|q|) of a knowledge base K (a query q) is simply the number of symbols

needed to write it over the alphabet of constructors, concept names, and role

names that occur in K (q), where numbers in number restrictions are encoded in

binary. Obviously, the number of atoms in a query is bounded by its size, hence

](q) ≤ |q| and, for simplicity, we use n as the size and the cardinality of q in what

follows.

Lemma 4.15. Let q be a Boolean conjunctive query, K = (T ,R,A) a SHIQ

knowledge base, |q| = n and |K| = m. Then there is a polynomial p such that

1.](co(q)) ≤ 2p(n) and, for each q′ ∈ co(q), |q′| ≤ p(n),

94 CHAPTER 4. QUERY ANSWERING FOR SHIQ

2.](srK(q)) ≤ 2p(n)·log p(m), and, for each q′ ∈ srK(q), |q′| ≤ p(n),

3.](lrK(q)) ≤ 2p(n)·log p(m), and, for each q′ ∈ lrK(q), |q′| ≤ p(n),

4.](frK(q)) ≤ 2p(n)·log p(m), and, for each q′ ∈ frK(q), |q′| ≤ p(n),

5.](treeK(q)) ≤ 2p(n)·log p(m), and, for each q′ ∈ treeK(q), |q′| ≤ p(n), and

6.](groundK(q)) ≤ 2p(n)·log p(m), and, for each q′ ∈ groundK(q), |q′| ≤ p(n).

Proof.

1. The set co(q) contains those queries obtained from q by adding at most

n equality atoms to q. The number of collapsings corresponds, therefore,

to building all equivalence classes over the terms in q by ≈* . Hence, the

cardinality of the set co(q) is at most exponential in n. Since we add at

most one equality atom for each pair of terms, the size of a query q′ ∈ co(q)

is at most n + n2, and |q′| is, therefore, polynomial in n.

2. For each of the at most n role atoms, we can choose to do nothing, replace

the atom with two atoms, or with three atoms. For every replacement, we

can choose to introduce a new variable or re-use one of the existing variables.

If we introduce a new variable every time, the new query contains at most 3n

terms. Since K can contain at most m non-simple roles that are a sub-role of

a role used in role atoms of q, we have at most m roles to choose from when

replacing a role atom. Overall, this gives us at most 1+m(3n)+m(3n)(3n)

choices for each of the at most n role atoms in a query and, therefore, the

number of split rewritings for each query q′ ∈ co(q) is polynomial in m

and exponential in n. In combination with the results from (1), this also

shows that the overall number of split rewritings is polynomial in m and

exponential in n.

Since we add at most two new role atoms for each of the existing role atoms,

the size of a query q′ ∈ srK(q) is linear in n.

3. There are at most n role atoms of the form r(t, t) in a query q′ ∈ srK(q) that

could give rise to a loop rewriting, at most m non-simple sub-roles of r in

K that can be used in the loop rewriting, and we can introduce at most one

new variable for each role atom r(t, t). Therefore, for each query in srK(q),

the number of loop rewritings is again polynomial in m and exponential

4.2. QUERY REWRITING 95

in n. Combined with the results from (2), this bound also holds for the

cardinality of lrK(q).

In a loop rewriting, one role atom is replaced with two role atoms, hence,

the size of a query q′ ∈ lrK(q) at most doubles.

4. We can use similar arguments as above in order to derive a bound that is

exponential in n and polynomial in m for the number of forest rewritings

in frK(q).

Since the number of role atoms that we can introduce in a forest rewriting

is polynomial in n, the size of each query q′ ∈ frK(q) is at most quadratic

in n.

5. The cardinality of the set treeK(q) is clearly also polynomial in m and

exponential in n since each query in frK(q) can contribute at most one

query to the set treeK(q). It is not hard to see that the size of a query

q′ ∈ treeK(q) is polynomial in n.

6. By (1)-(4) above, the number of terms in a root splitting is polynomial in n

and there are at most m individual names occurring in A that can be used

for the mapping τ from terms to individual names. Hence the number of

different ground mappings τ is at most polynomial in m and exponential

in n. The number of ground queries that a single tuple (qfr, R) ∈ frK(q)

can contribute is, therefore, also at most polynomial in m and exponential

in n. Together with the bound on the number of forest rewritings from

(4), this shows that the cardinality of groundK(q) is polynomial in m and

exponential in n. Again it is not hard to see that the size of each query

q′ ∈ groundK(q) is polynomial in n.

As a consequence of the above lemma, there is a bound on the number of

queries in groundK(q) and treeK(q) and it is not hard to see that the two sets

can be computed in time polynomial in m and exponential in n. At this point,

any decision procedure for SHIQu knowledge base consistency can be used for

deciding query entailment. In the following section, we present one such deci-

sion procedure that is based on an extension of the translation to looping tree

automata given by Tobies [112].

96 CHAPTER 4. QUERY ANSWERING FOR SHIQ

4.3 Deciding Query Entailment for SHIQ

We now devise a decision procedure for entailment of unions of Boolean conjunc-

tive queries that uses, for each disjunct, the queries obtained in the rewriting

process as defined in the previous section. For a knowledge base K and a union

of Boolean conjunctive queries q1∨ . . .∨q`, we show how we can use the queries in

treeK(qi) and groundK(qi) for 1 ≤ i ≤ ` in order to build a set of knowledge bases

K1, . . . ,Kn such that K |= q1 ∨ . . . ∨ q` iff all the Ki are inconsistent. This gives

rise to two decision procedures: a deterministic one in which we enumerate all

Ki, and which we use to derive a tight upper bound for the combined complexity;

and a non-deterministic one in which we guess a Ki, and which yields a tight

upper bound for the data complexity. Recall that, for combined complexity, the

knowledge base K and the queries qi both count as input, whereas for the data

complexity only the ABox A counts as an input, and all other parts are assumed

to be fixed.

4.3.1 A Deterministic Decision Procedure

We first define the deterministic version of the decision procedure and give an

upper bound for its combined complexity. The given algorithm takes as input

a union of connected conjunctive queries and works under the unique name as-

sumption (UNA). We show afterwards how it can be extended to an algorithm

that does not make the UNA and that takes arbitrary UCQs as input, and that

the complexity results carry over.

We now construct a set of knowledge bases that extend the original knowledge

base K both w.r.t. the TBox and ABox. The extended knowledge bases are such

that a given KB K entails a query q iff all the extended KBs are inconsistent.

We handle the concepts obtained from the tree-shaped queries differently to the

ground queries: the axioms we add to the TBox prevent matches for the tree-

shaped queries, whereas the extended ABoxes contain assertions that prevent

matches for the ground queries.

Definition 4.16. Let K = (T ,R,A) be a SHIQ knowledge base and q =

q1 ∨ . . . ∨ q` a union of Boolean conjunctive queries. We set

1. T = treeK(q1) ∪ . . . ∪ treeK(q`),

2. G = groundK(q1) ∪ . . . ∪ groundK(q`), and

4.3. DECIDING QUERY ENTAILMENT FOR SHIQ 97

3. Tq = {> v ¬C | C(v) ∈ T}.

An extended knowledge base Kq w.r.t. K and q is a tuple (T ∪Tq,R,A∪Aq) such

that Aq ∈ {{¬at1, . . . ,¬atn} | ati ∈ q′i and {q′1, . . . , q
′
n} = G}. 4

Informally, the extended TBox T ∪Tq ensures that there are no tree matches.

Each extended ABox A ∪Aq contains, for each ground query q′i obtained in the

rewriting process, an assertion ¬ati with ati ∈ q′i that “spoils” a match for q′i. A

model for such an extended ABox can, therefore, not satisfy any of the ground

queries. If there is a model for any of the extended knowledge bases, we know

that this is a counter-model for the original query.

We can now use the extended knowledge bases in order to define the deter-

ministic version of our algorithm for deciding entailment of unions of Boolean

conjunctive queries in SHIQ.

Definition 4.17. Given a SHIQ knowledge base K = (T ,R,A) and a union

of connected Boolean conjunctive queries q as input, the algorithm answers “K

entails q” if each extended knowledge base w.r.t. K and q is inconsistent and it

answers “K does not entail q” otherwise. 4

The following lemma shows that the above described algorithm is indeed cor-

rect.

Lemma 4.18. Let K be a SHIQ knowledge base and q a union of connected

Boolean conjunctive queries. Given K and q as input, the algorithm from Defini-

tion 4.17 answers “K entails q” iff K |= q under the unique name assumption.

Proof. For the “only if”-direction: let q = q1∨. . .∨q`. We show the contrapositive

and assume that K 6|= q. We can assume that K is consistent since an inconsistent

knowledge base trivially entails every query. Let I be a model of K such that

I 6|= q. We show that I is also a model of some extended knowledge base

Kq = (T ∪ Tq,R,A ∪ Aq). We first show that I is a model of Tq. To this end,

let > v ¬C in Tq. Then C(v) ∈ T with C = con(qfr, v) for some pair (qfr, ∅) ∈

frK(q1) ∪ . . . ∪ frK(q`) and v ∈ Vars(qfr). Let i be such that (qfr, ∅) ∈ frK(qi).

Now CI 6= ∅ implies, by Lemma 4.7, that I |= qfr and, by Lemma 4.13, I |= qi

and, hence, I |= q, contradicting our assumption. Thus I |= > v ¬C for each

> v ¬C ∈ Tq and, thus, I |= Tq.

Next, we define an extended ABox Aq such that, for each q′ ∈ G,

98 CHAPTER 4. QUERY ANSWERING FOR SHIQ

• if C(a) ∈ q′ and aI ∈ ¬CI , then ¬C(a) ∈ Aq;

• if r(a, b) ∈ q′ and (aI , bI) /∈ rI , then ¬r(a, b) ∈ Aq.

Now assume that we have a query q′ = ground(qfr, R, τ) ∈ groundK(q1) ∪ . . . ∪

groundK(q`) such that there is no atom at ∈ q′ with ¬at ∈ Aq. Then trivially

I |= q′. Let i be such that (qfr, R) ∈ frK(qi). By Theorem 4.14, I |= qi and thus

I |= q, which is a contradiction to our assumption. Hence Kq is an extended

knowledge base and I |= Kq as required.

For the “if”-direction, we assume that K |= q, but the algorithm answers

“K does not entail q”. Hence there is an extended knowledge base Kq = (T ∪

Tq,R,A ∪ Aq) that is consistent, i.e., there is a model I such that I |= Kq.

Since Kq is an extension of K, I |= K. Moreover, we have that I |= Tq and

hence, for each d ∈ ∆I , d ∈ ¬CI for each C(v) ∈ treeK(q1) ∪ . . . ∪ treeK(q`). By

Lemma 4.7, we then have that I 6|= q′ for each q′ ∈ treeK(q1)∪ . . .∪ treeK(q`) and,

by Lemma 4.13, I 6|= qi for each i with 1 ≤ i ≤ `.

By definition of extended knowledge bases, Aq contains an assertion ¬at for

at least one atom at in each query q′ = ground(qfr, R, τ) from groundK(q1)∪ . . .∪

groundK(q`). Hence I 6|= q′ for each q′ ∈ groundK(q1) ∪ . . . ∪ groundK(q`). Then,

by Theorem 4.14, I 6|= q, which contradicts our assumption.

Combined Complexity of Query Entailment in SHIQ

According to the above lemma, the algorithm given in Definition 4.17 is cor-

rect. We now analyse its combined complexity and thereby prove that it is also

terminating.

For the complexity analysis, we assume, as usual [23, 63, 83], that all concepts

in concept atoms and ABox assertions are literals, i.e., concept names or negated

concept names. If the input query or ABox contains non-literal atoms or asser-

tions, we can easily transform these into literal ones in an entailment preserving

way: for each concept atom C(t) in the query where C is a non-literal concept,

we introduce a new atomic concept AC ∈ NC , add the axiom C v AC to the

TBox, and replace C(t) with AC(t); for each non-literal concept assertion C(a) in

the ABox, we introduce a new atomic concept AC ∈ NC , add an axiom AC v C

to the TBox, and replace C(a) with AC(a). Such a transformation is obviously

polynomial so, without loss generality, it is safe to assume that the ABox and

4.3. DECIDING QUERY ENTAILMENT FOR SHIQ 99

query contain only literal concepts. This has the advantage that the size of each

atom and ABox assertion is constant.

Since our algorithm involves checking the consistency of a SHIQu knowl-

edge base, we now analyse the complexity of this reasoning service. Tobies [112]

proves an ExpTime upper bound for deciding the consistency of SHIQ knowl-

edge bases (even with binary coding of numbers) by translating a SHIQ KB to

an equisatisfiable ALCQIb knowledge base. The b stands for safe Boolean role

expressions built from ALCQIb roles using the operator u (role intersection),

t (role union), and ¬ (role negation/complement) such that, when transformed

into disjunctive normal form, every disjunct contains at least one non-negated

conjunct. Given a query q and a SHIQ knowledge base K = (T ,R,A), we

reduce query entailment to deciding knowledge base consistency of an extended

SHIQu knowledge base Kq = (T ∪ Tq,R,A ∪ Aq). Recall that Tq and Aq are

the only parts that contain role conjunctions and that we use role negation only

in ABox assertions. We extend the translation given for SHIQ so that it can

be used for deciding the consistency of SHIQu KBs. Although the translation

works for all SHIQu KBs, we assume in our complexity analysis that the input

KB is of exactly the form of extended knowledge bases as described above. This

is so because the translation for unrestricted SHIQu is no longer polynomial, as

in the case of SHIQ, but exponential in the size of the longest role conjunction

under a universal quantifier. Since role conjunctions occur only in the extended

ABox and TBox, and since the size of each role conjunction is, by Lemma 4.15,

polynomial in the size of q, the translation is only exponential in the size of the

query in the case of extended knowledge bases.

We define the closure cl(C,R) of a SHIQ-concept C w.r.t. a role hierarchy

R as the smallest set satisfying the following conditions:

• if D is a sub-concept of C, then D ∈ cl(C,R),

• if D ∈ cl(C,R), then nnf(¬D) ∈ cl(C,R),

• if ∀r.D ∈ cl(C,R), sv*Rr, and s ∈ TransR, then ∀s.D ∈ cl(C,R).

We now show how we can extend the translation from SHIQ into ALCQIb

given by Tobies to SHIQu. We first consider SHIQu-concepts and then extend

the translation to knowledge bases.

100 CHAPTER 4. QUERY ANSWERING FOR SHIQ

Definition 4.19. For a role hierarchy R and roles r, r1, . . . , rn, let

↑(r,R) =
l

r v*Rs

s and ↑(r1 u . . . u rn,R) =↑(r1,R) u . . .u ↑(rn,R).

4

Please note that, since r v*Rr, r occurs in ↑(r,R).

Lemma 4.20. Let R be a role hierarchy, and r1, . . . , rn roles. For every interpre-

tation I such that I |= R, it holds that (↑(r1 u . . . u rn,R))I = (r1 u . . . u rn)I .

Proof. The proof is a straightforward extension of Lemma 6.19 in [112]. By

definition, ↑ (r1 u . . . u rn,R) =↑ (r1,R) u . . .u ↑ (rn,R) and, by definition of

the semantics of role conjunctions, we have that (↑(r1,R) u . . .u ↑(rn,R))I =

↑(r1,R)I ∩ . . . ∩ ↑(rn,R)I . If s v*Rr, then {s′ | r v*Rs′} ⊆ {s′ | s v*Rs′} and

hence ↑(s,R)I ⊆ ↑(r,R)I . If I |= R, then rI ⊆ sI for every s with r v*Rs.

Hence, ↑(r,R)I = rI and (↑(r1 u . . . u rn,R))I = (↑(r1,R) u . . .u ↑(rn,R))I =

↑(r1,R)I ∩ . . . ∩ ↑(rn,R)I = r1
I ∩ . . . ∩ rn

I = (r1 u . . . u rn)I as required.

With the extended definition of ↑ on role conjunctions, we can now adapt the

definition (Def. 6.22 in [112]) that Tobies provides for translating SHIQ-concepts

into ALCQIb-concepts.

Definition 4.21. Let C be a SHIQu-concept in NNF and R a role hierarchy.

For every concept ∀(r1 u . . .u rn).D ∈ cl(C,R), let Xr1u...urn,D ∈ NC be a unique

concept name that does not occur in cl(C,R). Given a role hierarchyR, we define

the function tr inductively on the structure of concepts by setting

tr(A,R) = A for all A ∈ NC

tr(¬A,R) = ¬A for all A ∈ NC

tr(C1 u C2,R) = tr(C1,R) u tr(C2,R)

tr(C1 t C2,R) = tr(C1,R) t tr(C2,R)

tr(./ n(r1 u . . . u rn).D,R) = (./ n ↑(r1 u . . . u rn,R).tr(D,R))

tr(∀(r1 u . . . u rn).D,R) = Xr1u...urn,D

tr(∃(r1 u . . . u rn).D,R) = ¬(Xr1u...urn,nnf(¬D))

where ./ stands for 6 or >. Set tc((r1 u . . . u rn),R) = {(t1 u . . . u tn) |

ti v*Rri and ti ∈ TransR for each i such that 1 ≤ i ≤ n} and define an extended

4.3. DECIDING QUERY ENTAILMENT FOR SHIQ 101

TBox TC,R as

TBC,R =

{Xr1u...urn,D ≡ ∀ ↑(r1 u . . . u rn,R).tr(D,R) | ∀(r1 u . . . u rn).D ∈ cl(C,R)} ∪

{Xr1u...urn,D v ∀ ↑(T,R).XT,D | T ∈ tc(r1 u . . . u rn,R)}
4

Lemma 4.22. Let C be a SHIQu-concept in NNF, R a role hierarchy, and tr

and TC,R as defined in Def. 4.21. The concept C is satisfiable w.r.t. R iff the

ALCQIb-concept tr(C,R) is satisfiable w.r.t. TC,R.

Given the extension of ↑(r,R) to role conjunctions in Definition 4.19 and the

proof of Lemma 4.20 that we can capture the semantics of a given role hierarchy

by using role conjunctions, the proof of Lemma 4.22 is a long, but straightforward

extension of the proof given by Tobies 2001.

We now analyse the complexity of the above described problem. Let m = |R|

and r1 u . . . u rn the longest role conjunction occurring in C, i.e., the maximal

number of roles that occur in a role conjunction in C is n. The TBox TC,R can

contain exponentially many axioms in n since the cardinality of the set tc((r1 u

. . .u rn),R) for the longest role conjunction can only be bounded by mn because

each ri can have up tp m transitive sub-roles. It is not hard to show that the size

of each axiom is polynomial in |C|. Since deciding whether an ALCQIb concept

C is satisfiable w.r.t. an ALCQIb TBox T is an ExpTime-complete problem

(even with binary coding of numbers) [112, Theorem 4.42], the satisfiability of a

SHIQu-concept C can be checked in time 2p(m)2p(n)
.

We now extend the translation from concepts to knowledge bases. Tobies

assumes that all role assertions in the ABox are of the form r(a, b) with r a role

name or the inverse of a role name. Extended ABoxes contain, however, also

negated roles in role assertions, which require a different translation. A positive

role assertion such as r(a, b) is translated in the standard way by closing the role

upwards. The only difference of using ↑ directly is that we additionally split the

conjunction (↑(r,R))(a, b) = (r1 u . . . u rn)(a, b) into n different role assertions

r1(a, b), . . . , rn(a, b), which is clearly justified by the semantics. For negated roles

in a role assertion such as ¬r(a, b), we close the role downwards instead of upwards

and add a role atom ¬s(a, b) for each sub-role s of r. This is again justified by the

semantics. Let K = (T ∪ Tq,R,A ∪ Aq) be an extended knowledge base. More

102 CHAPTER 4. QUERY ANSWERING FOR SHIQ

precisely, we set

tr(T ∪ Tq,R) = {tr(C,R) v tr(D,R) | C v D ∈ T ∪ Tq},

tr(A ∪Aq,R) = {(tr(C,R))(a) | C(a) ∈ A ∪Aq} ∪

{s(a, b) | r(a, b) ∈ A ∪Aq and r v*Rs} ∪

{¬s(a, b) | ¬r(a, b) ∈ A ∪Aq and s v*Rr},

and we use tr(K,R) to denote the ALCQIb knowledge base (tr(T ∪Tq,R), tr(A∪

Aq,R)).

For the complexity of deciding the consistency of a translated SHIQu knowl-

edge base, we can apply the same arguments as above for concept satisfiability,

which gives the following result:

Lemma 4.23. Given a SHIQu knowledge base K = (T ,R,A) where m = |K|

and the size of the longest role conjunction is n, we can decide consistency of K

in deterministic time 2p(m)2p(n)
with p a polynomial.

Proof. We first translate K into the ALCQIb knowledge base

tr(K,R) = (tr(T ,R), tr(A,R)).

Since the longest role conjunction is of size n, the cardinality of each set tc(R,R)

for a role conjunction R is bounded by mn. Hence, the TBox tr(T ,R) can contain

exponentially many axioms in n. It is not hard to check that the size of each

axiom is polynomial in m. Since deciding whether an ALCQIb KB is consistent

is an ExpTime-complete problem (even with binary coding of numbers) [112,

Theorem 4.42], the consistency of tr(K,R) can be checked in time 2p(m)2p(n)
.

We are now ready to show that the algorithm given in Def. 4.17 runs in

deterministic time single exponential in the size of the input KB and double

exponential in the size of the input query.

Lemma 4.24. Let K = (T ,R,A) be a SHIQ knowledge base with m = |K| and

q a union of connected Boolean conjunctive queries with n = |q|. Given K and q

as input, the algorithm given in Definition 4.17 decides whether K |= q under the

unique name assumption in deterministic time in 2p(m)2p(n)
.

Proof. We first show that there is some polynomial p such that we have to check

at most 2p(m)2p(n)
extended knowledge bases for consistency and then that each

4.3. DECIDING QUERY ENTAILMENT FOR SHIQ 103

consistency check can be done in time 2p(m)2p(n)
, which gives an upper bound of

2p(m)2p(n)
on the time needed for deciding whether K |= q.

Let q = q1 ∨ . . . ∨ q`. Clearly, we can use n as a bound for `, i.e., ` ≤ n.

Moreover, the size of each query qi with 1 ≤ i ≤ ` is bounded by n. Together

with Lemma 4.15, we get that](T) and](G) are bounded by 2p(n)·log p(m) for some

polynomial p and it is clear that these sets can be computed in this time bound

as well.

Due to Lemma 4.15 (5), the size of each query q′ ∈ T is polynomial in n.

Computing a query concept Cq′ of q′ w.r.t. some variable v ∈ Vars(q′) can be

done in time polynomial in n. Thus the TBox Tq can be computed in time

2p(n)·log p(m).

The size of each query q′ ∈ G w.r.t. an ABox A is polynomial in n and, when

constructing Aq, we can add a subset of (negated) atoms from each q′ ∈ G to Aq.

Hence, there are at most 2p(m)2p(n)
extended ABoxes Aq and, therefore, 2p(m)2p(n)

extended knowledge bases that have to be tested for consistency. The size of

an extended ABox Aq is maximal if we add, for each of the 2p(n)·log p(m) ground

queries in G, all atoms in their negated form. Since, by Lemma 4.15 (6), the size

of these queries is polynomial in n, the size of each extended ABox Aq is bounded

by 2p(n)·log p(m) and it is clear that we can compute an extended ABox in this time

bound as well.

Hence, the size of each extended KB Kq = (T ∪ Tq,R,A∪Aq) is bounded by

2p(n)·log p(m). Since role conjunctions occur only in Tq or Aq, and the size of each

concept in Tq and Aq is polynomial in n, the length of the longest role conjunction

is also polynomial in n.

When translating an extended knowledge base into an ALCQIb knowledge

base, the number of axioms resulting from each concept C that occurs in Tq or

Aq can be exponential in n. Thus, the size of each extended knowledge base is

bounded by 2p(n)·log p(m).

Since deciding whether an ALCQIb knowledge base is consistent is an Ex-

pTime-complete problem (even with binary coding of numbers) [112, Theorem

4.42], it can be checked in time 2p(m)2p(n)
whether K is consistent.

Since we have to check at most 2p(m)2p(n)
knowledge bases for consistency, and

each check can be done in time 2p(m)2p(n)
, we obtain the desired upper bound of

2p(m)2p(n)
for deciding whether K |= q.

104 CHAPTER 4. QUERY ANSWERING FOR SHIQ

We now show that this result carries over even when we do not restrict inter-

pretations to the unique name assumption.

Definition 4.25. Let K = (T ,R,A) be a SHIQ knowledge base and q a SHIQ

union of Boolean conjunctive queries. For a partition P of Inds(A), a knowledge

base KP = (T ,R,AP) and a query qP are called an A-partition w.r.t. K and q if

AP and qP are obtained from A and q as follows: For each P ∈ P

1. Choose one individual name a ∈ P .

2. For each b ∈ P , replace each occurrence of b in A and q with a.

4

Please note that, without loss of generality, we assume that all constants that

occur in the query occur in the ABox as well and that thus a partition of the

individual names in the ABox also partitions the query.

Lemma 4.26. Let K = (T ,R,A) be a SHIQ knowledge base and q a union of

Boolean conjunctive queries. K 6|= q without making the unique name assumption

iff there is an A-partition KP = (T ,R,AP) and qP w.r.t. K and q such that

KP 6|= qP under the unique name assumption.

Proof. For the “only if”-direction: Since K 6|= q, there is a model I of K such that

I 6|= q. Let f : Inds(A)→ Inds(A) be a total function such that, for each maximal

set of individual names {a1, . . . , an} for which a1
I = ai

I for 1 ≤ i ≤ n, f(ai) = a1.

Let AP and qP be obtained from A and q by replacing each individual name a in

A and q with f(a). Clearly, KP = (T ,R,AP) and qP are an A-partition w.r.t.

K and q. Let IP = (∆I , ·I
P

) be an interpretation that is obtained by restricting

·I to individual names in Inds(AP). It is easy to see that IP |= KP and that the

unique name assumption holds in IP . We now show that IP 6|= qP . Assume,

to the contrary of what is to be shown, that IP |=π′

qP for some match π′. We

define a mapping π : Terms(q)→ ∆I from π′ by setting π(a) = π′(f(a)) for each

individual name a ∈ Inds(q) and π(v) = π′(v) for each variable v ∈ Vars(q). It is

easy to see that I |=π q, which is a contradiction.

For the “if”-direction: Let IP = (∆I , ·I
P

) be such that IP |= KP under

UNA and IP 6|= qP and let f : Inds(A)→ Inds(AP) be a total function such that

f(a) is the individual that replaced a in AP and qP . Let I = (∆I ,·I) be an

interpretation that extends IP such that aI = f(a)I
P

. We show that I |= K and

4.3. DECIDING QUERY ENTAILMENT FOR SHIQ 105

that I 6|= q. It is clear that I |= T . Let C(a) be an assertion in A such that a was

replaced with aP in AP . Since IP |= C(aP) and aI = f(a)I
P

= aP
IP

∈ CIP

, we

also have that I |= C(a). We can use a similar argument for (possibly negated)

role assertions. Let a 6
.
= b be an assertion in A such that a was replaced with

aP and b with bP in AP , i.e., f(a) = aP and f(b) = bP . Since IP |= aP 6
.
= bP ,

aI = f(a)I
P

= aP
IP

6= bP
IP

= f(b)I
P

= bI and I |= a 6
.
= b as required. Therefore,

we have that I |= K as required.

Assume that I |=π q for a match π. Let πP : Terms(qP) → ∆I be a mapping

such that πP(v) = π(v) for v ∈ Vars(qP) and πP(aP) = π(a) for aP ∈ Inds(qP)

and some a such that aP = f(a). Let C(aP) ∈ qP be such that C(a) ∈ q

and a was replaced with aP , i.e., f(a) = aP . By assumption, π(a) ∈ CI , but

then π(a) = aI = f(a)I
P

= aP
IP

= πP(aP) ∈ CIP

and IP |= C(aP). Similar

arguments can be used to show entailment for role and equality atoms, which

yields the desired contradiction.

Let C be the complexity class of deciding whether K |= q under the unique

name assumption and n = 2|A|. Since the number of partitions for an ABox is at

most exponential in the number of individual names that occur in the ABox, the

following is a straightforward consequence of the above lemma: for a knowledge

base K = (T ,R,A) in a Description Logic DL and a Boolean conjunctive DL

query q, deciding whether K |= q without making the unique name assumption

can be reduced to deciding n problems in C.

In order to extend our algorithm to unions of possibly unconnected Boolean

conjunctive queries, we first transform the input query q into an equivalent query

q′ that is in conjunctive normal form (CNF) (cf. Lemma 2.9 on page 38). We then

check entailment for each conjunct qi, which is now a union of connected Boolean

conjunctive queries. The algorithm returns “K entails q” if each entailment check

succeeds and it answers “K does not entail q” otherwise. By Lemma 2.9 and

Lemma 4.18, the algorithm is correct.

Let K be a knowledge base in a Description Logic DL, q a union of connected

Boolean conjunctive DL queries, and C a complexity class such that deciding

whether K |= q is in C. Let q′ be a union of possibly unconnected Boolean

conjunctive queries with |q′| = n and cnf(q′) the CNF of q′. Since the number

of conjuncts in cnf(q′) is at most exponential in n, deciding whether K |= q′ can

be reduced to deciding 2n problems in C. This, together with the results from

Lemma 4.24, gives the following general result:

106 CHAPTER 4. QUERY ANSWERING FOR SHIQ

Theorem 4.27. Let K = (T ,R,A) be a SHIQ knowledge base with m = |K|

and q a union of Boolean conjunctive queries with n = |q|. Deciding whether

K |= q can be done in deterministic time in 2p(m)2p(n)
.

A corresponding lower bound follows from [73] and, hence, the above result

is tight. The result improves the known co-3NExpTime upper bound for the

setting where the roles in the query are restricted to simple ones [82].

Corollary 4.28. Let K be a SHIQ knowledge base with m = |K| and q a

union of Boolean conjunctive queries with n = |q|. Deciding whether K |= q

is a 2ExpTime-complete problem.

4.3.2 A Non-Deterministic Decision Procedure

In order to study the data complexity of query entailment, we devise a non-

deterministic decision procedure which provides a tight bound for the complexity

of the problem. Actually, the devised algorithm decides non-entailment of queries:

it returns “K does not entail q” if we can guess an extended knowledge base Kq

that is consistent, and it returns “K entails q” otherwise.

Definition 4.29. Let T be a SHIQ TBox, R a SHIQ role hierarchy, and q

a union of Boolean conjunctive queries. Given a SHIQ ABox A as input, the

algorithm guesses an A-partition KP = (T ,R,AP) and qP w.r.t. K = (T , R,

A) and q. The query qP is then transformed into CNF and one of the resulting

conjuncts, say qPi , is chosen. The algorithm then guesses an extended knowledge

base KP
qi

= (T ∪Tqi
,R,AP∪AP

qi
) w.r.t. KP and qPi and returns “K does not entail

q” if KP
qi

is consistent and it returns “K entails q” otherwise. 4

Compared to the deterministic version of the algorithm (Definition 4.17), we

do not make the UNA but guess a partition of the individual names. We also non-

deterministically choose one of the conjuncts that result from the transformation

into CNF. For this conjunct, we guess an extended ABox and check whether the

extended knowledge base for the guessed ABox is consistent and, therefore, a

counter-model for the query entailment.

In its (equivalent) negated form, Lemma 4.18 says that K 6|= q iff there is an

extended knowledge base Kq w.r.t. K and q such that Kq is consistent. Together

with Lemma 4.26 it follows, therefore, that the algorithm from Def. 4.29 is correct.

4.3. DECIDING QUERY ENTAILMENT FOR SHIQ 107

Data Complexity of Query Entailment in SHIQ

We now analyze the data complexity of the algorithm given in Definition 4.29

and show that deciding UCQ entailment in SHIQ is indeed in co-NP for data

complexity. We assume that all concepts in concept atoms of the query or ABox

assertions are literals. This is without loss of generality as we have shown in

Section 2.4.

Theorem 4.30. Let T be a SHIQ TBox, R a SHIQ role hierarchy, and q a

union of Boolean conjunctive queries. Given a SHIQ ABox A with ma = |A|,

the algorithm from Definition 4.29 decides in non-deterministic polynomial time

in ma whether K 6|= q for K = (T , R, A).

Proof. Clearly, the size of an ABox AP in an A-partition is bounded by ma.

As established in Lemma 4.27, the maximal size of an extended ABox AP
q is

polynomial in ma. Hence, |AP ∪ AP
q | ≤ p(ma) for some polynomial p. Due to

Lemma 4.15 and since the size of q, T , and R are assumed to be fixed, the sets

treeKP (qi) and groundKP (qi) for each i such that 1 ≤ i ≤ ` can be computed

in time polynomial in ma. From Lemma 4.24, we know that the translation of

an extended knowledge base into an ALCQIb knowledge base is polynomial in

ma and the runtime of the algorithm for deciding consistency of an ALCQIb

knowledge base in [112] is also polynomial in ma.

The bound given in Theorem 4.30 is tight since the data complexity of con-

junctive query entailment is already co-NP-hard for the ALE fragment of SHIQ

[96].

Corollary 4.31. Conjunctive query entailment in SHIQ is data complete for

co-NP.

4.3.3 Consequential Results

Due to the correspondence between query containment, query answering, and

query entailment [19], the algorithm can also be used to decide containment of

two unions of conjunctive queries over a SHIQ knowledge base, which gives the

following result:

Corollary 4.32. Given a SHIQ knowledge base K and two unions of conjunctive

queries q and q′, the problem whether K |= q ⊆ q′ is decidable.

108 CHAPTER 4. QUERY ANSWERING FOR SHIQ

By using [92, Thm. 11], we further show that the consistency of a SHIQ

knowledge base extended with (weakly-safe) Datalog rules is decidable.

Corollary 4.33. The consistency of SHIQ+log-KBs (both under FOL seman-

tics and under NM semantics) is decidable.

4.4 Summary

With the decision procedure presented for entailment of unions of conjunctive

queries in SHIQ, we close a long standing open problem. The solution has

immediate consequences on related areas, as it shows that several other open

problems such as query answering, query containment and the extension of a

KB with weakly safe Datalog rules for SHIQ are decidable as well. Regarding

combined complexity, we present a deterministic algorithm that needs time single

exponential in the size of the knowledge base and double exponential in the size of

the query, which gives a tight upper bound for the problem. This result shows that

deciding conjunctive query entailment is strictly harder than instance checking for

SHIQ. We further prove co-NP-completeness for data complexity. Interestingly,

this shows that, regarding data complexity, deciding UCQ entailment is (at least

theoretically) not harder than instance checking for SHIQ, which was also a

previously open question.

Chapter 5

Query Answering for SHOQ

So far, none of the conjunctive query answering techniques [19, 61, 71, 83, 109]

is able to handle nominals. In this chapter, we address this issue and present a

decision procedure for entailment of unions of conjunctive queries in SHOQ.

The Description Logic SHOQ is obtained from SHOIQ by disallowing in-

verse roles. More precisely, for S = (NC , NR, NI) a signature, the set of SHOQ-

concepts is the smallest set built inductively over S using the following grammar,

where o ∈ NI , A ∈ NC , n ∈ IN0, r ∈ NR is a role name and s ∈ NR is the name of

a simple role:

C ::= > | ⊥ | {o} | A | ¬C | C1 u C2 | C1 t C2 |

∀r.C | ∃r.C | 6 n s.C | > n s.C.

Since, in the presence of nominals, the ABox can be internalised [97], we

assume that a SHOQ knowledge base K is a pair (T ,R) over a signature S =

(NC , NR, NI), where T is a TBox and R is a role hierarchy. We use nom(K) for

the set of individual names that occur in K and we assume that nom(K) is non-

empty without further notice. This is without loss of generality since, otherwise,

we can always add an axiom {o} v > to the TBox for a fresh nominal o ∈ NI .

In order to simplify the notation, we do not allow for constants (individual

names) in the query. In the presence of nominals this is clearly without loss of

generality since we can, for each constant o in a query q, replace all occurrences

of o with a fresh variable xo ∈ NV and add an additional concept atom ({o})(xo)

to q.

The presented algorithm uses similar ideas to the decision procedure for

SHIQ from the previous chapter, but the rewriting steps are slightly different

109

110 CHAPTER 5. QUERY ANSWERING FOR SHOQ

due to the different structure of canonical models in SHOQ. We try, however,

to make the chapter self-contained by giving full definitions and proofs instead of

just pointing out the difference to the case of SHIQ. We add references to the

previous chapter, where it is relevant. In the case of SHOQ, the rewritten queries

consist only of concept atoms, and we again use these concepts to reduce the task

of deciding query entailment to the task of testing the consistency of extended

SHOQu knowledge bases. To the best of our knowledge, there exists no decision

procedure for SHOQu knowledge base consistency checking and there is also no

straightforward translation to another logic for which a decision procedure exits.

We devise, therefore, an automata based decision procedure for this problem and

also analyse the (combined) complexity of the given algorithm.

5.1 Forest Bases and Canonical Interpretations

As for SHIQ, our first goal is to show that we can restrict our attention to the

canonical models of a knowledge base. Since the logic now allows for nominals,

the forest structure of the canonical models is no longer as obvious. We can,

however, still use a domain that builds a collection of trees. The elements within

a tree can, however, not only be related to their direct successors, but also to

some root/nominal nodes. Hence, the definition of canonical models and forest

bases for SHOQ is similar to the one given in Chapter 4 for SHIQ, but takes

this additional case into account. We again make the unique name assumption

first and show later that this is without loss of generality.

Definition 5.1. Given a set of elements R = {r1, . . . , rn}, a forest F w.r.t.

R is a subset of R × IN∗ such that, for each ri ∈ R, (ri, ε) ∈ F and the set

{w | (ri, w) ∈ F} is a tree.

Let K be a SHOQ knowledge base. A forest base for K is an interpretation J

= (∆J ,·J) that interprets transitive roles in an unrestricted (i.e., not necessarily

transitive) way and, additionally, satisfies the following conditions:

T1 ∆J is a forest w.r.t. nom(K), and

T2 if ((o, w), (o′, w′)) ∈ rJ , then either

(a) w′ = ε or

(b) o = o′ and w′ is a successor of w.

5.1. FOREST BASES AND CANONICAL INTERPRETATIONS 111

An interpretation I is canonical for K if there exists a forest base J for K such

that I is identical to J except that, for all non-simple roles r, we have

rI = rJ ∪
⋃

s v*Rr, s∈NtR

(sJ)+

In this case, we say that J is a forest base for I and, if I |= K, we say that I is

a canonical model for K. 4

We use the following Boolean query and knowledge base as a running example

in this chapter:

Example 5.2. Let K = (T ,R) be a SHOQ knowledge base with t, t′ ∈ NtR

T = { {o} v ∃t.(C u ∃r.(∃r.(D u ∃t.({o}))))

{o′} v ∃s.> u ∃s.({o})}

R = { r v t′}

and q = {C(x), D(z), t′(x, z), t(z, x), r(x, y), r(y, z)} with Vars(q) = {x, y, z}.

Figure 5.1 show a graphical representation of a canonical model for K and

Figure 5.2 shows a representation of the query used in the running example. It is

not hard to check that I |=π q for π : {x 7→ (o, 1), y 7→ (o, 11), z 7→ (o, 111)} and

that also K |= q.

The following lemma justifies our focus on canonical models.

Lemma 5.3. Let K be a SHOQ knowledge base and q a union of connected

Boolean conjunctive queries. K 6|= q iff there is some canonical model I of K

such that I 6|= q.

Proof. The “if” direction is trivial.

The proof of the “only if” direction is very similar to the one for SHIQ

(cf. Lemma 4.2). In order to make this chapter still relatively self contained,

we present the adapted construction of a canonical model here and refer to the

previous chapter for a detailed proof of the fact that the construction indeed yields

a model for K. Where it is relevant, we point out differences in the construction.

Since an inconsistent knowledge base entails every query, we can assume that

K is consistent. Hence, there is an interpretation I ′ = (∆I′

, ·I
′

) such that I ′ |= K

and I ′ 6|= q. From I ′, we construct a canonical model I for K and its forest base

112 CHAPTER 5. QUERY ANSWERING FOR SHOQ

(o, 11)

t

r, t′

(o, 111) D

(o, ε) o (o′, ε)

s

o′

s

(o′, 1)(o, 1) C

t

tr, t′

t′

Figure 5.1: A representation
of a canonical interpretation I
for K. The transitive short-
cuts are shown as dashed lines;
without them, the figure would
show a representation of a for-
est base for I.

t′

r

t

z D

x C

r

y

Figure 5.2: A graphical repre-
sentation of the query q with a
match in the canonical model
(shown in grey, and without la-
bels).

J as follows: we define the set P ⊆ (∆I′

)∗ of paths to be the smallest set such

that

• for all o ∈ nom(K), oI
′

is a path;

• d1 · · ·dn · d is a path, if

– d1 · · · dn is a path,

– (dn, d) ∈ rI
′

for some role name r,

– if there is an o ∈ nom(K) such that d = oI
′

, then n > 2.

Now fix a set S ⊆ nom(K) × IN∗ and a bijection f : S → P such that, for each

o ∈ nom(K),

(i) (o, ε) ∈ S,

5.1. FOREST BASES AND CANONICAL INTERPRETATIONS 113

(ii) {w | (o, w) ∈ S} is a tree,

(iii) f(o, ε) = oI
′

,

(iv) if (o, w), (o, w′) ∈ S with w′ a successor of w, then f(o, w′) = f(o, w) · d for

some d ∈ ∆I′

.

For all (o, w) ∈ S, set Tail(o, w) = dn if f(o, w) = d1 · · ·dn. Now, define a forest

base J = (∆J ,·J) for K as follows:

(a) ∆J = S;

(b) for each o ∈ nom(K), oJ = (o, ε) ∈ S;

(c) for each A ∈ NC and (o, w) ∈ S, (o, w) ∈ AJ iff Tail(o, w) ∈ AI′

;

(d) for each r ∈ NR, ((o, w), (o′, w′)) ∈ rJ iff either

(I) w′ = ε and (Tail(o, w), o′I
′

) ∈ rI
′

or

(II) o = o′, w′ is a successor of w, and (Tail(o, w), Tail(o′, w′)) ∈ rI
′

.

Please note that, compared to the construction for SHIQ, Condition (d)(I)

only requires that w′ = ε, i.e., we can have relations from elements within a tree

to any root node. Condition (d)(II) is now stricter since without inverse roles,

we have to use successors and not neighbours as it is the case for SHIQ.

The proof that J is indeed a forest base for K is quite long, but not very hard.

Due to the close similarity of the argumentation with the proof of Lemma 4.2,

we just refer back to the previous chapter here.

Let I = (∆I ,·I) be an interpretation that is identical to J except that, for

all non-simple roles r, we set

rI = rJ ∪
⋃

s v*Rr, s∈NtR

(sJ)+

Since I |= K and J is a forest base for I, I is a canonical model for K.

Therefore, we only have to show that I 6|= q. Let q = q1∨ . . .∨ qn and assume

to the contrary of what is to be shown that I |= q. Then there is some π and i

with 1 ≤ i ≤ n such that I |=π qi. We now define a mapping π′ : Vars(qi)→ ∆I′

by setting π′(x) = Tail(π(x)) for all x ∈ Vars(qi). Since I and I ′ agree on the

interpretation of all concepts and I contains even less cycles than I ′, it is not

hard to see that I ′ |=π′

qi and, hence, I ′ |=π′

q, which is a contradiction.

114 CHAPTER 5. QUERY ANSWERING FOR SHOQ

5.2 Query Rewriting

For deciding whether a given UCQ is entailed by a SHOQ knowledge base, we

transform each disjunct of the query in a four stage process into a set of SHOQu

concepts, i.e., SHOQ with role conjunctions. We can then reduce the task of

deciding CQ entailment to the task of deciding SHOQu knowledge base consis-

tency. As for SHIQ, we show that if the query is entailed by the knowledge base,

then, for any canonical model, there is a rewritten query that is forest-shaped

and has a match in the canonical model. We will briefly introduce the rewriting

steps by means of our running example before we give a formal definition.

The first step, collapsing , in which we can identify variables, is as for SHIQ.

In the second step, called nominal rewriting , we can replace role atoms of the form

r(x, x′) for which r is non-simple with two role atoms by possibly introducing a

fresh variable. This allows for explicating all shortcuts that bypass a nominal. In

our running example, we can choose to replace the atom t(z, x), which bypasses

the nominal node (o, ε) for the given mapping π and canonical model I, with

t(z, xr), t(xr, x) for xr ∈ NV a fresh variable. We call this nominal rewriting qnr.

Figure 5.3 shows a graphical representation of qnr and it is not hard to check

that I |=πnr qnr, where πnr is the extension of π that maps xr to (o, ε). At the end

of the nominal rewriting step, we also “guess”, for each of the rewritten queries,

which variables correspond to nominals.

In the third step, called shortcut rewriting , we explicate shortcuts within

a tree such as t′(x, z) in our running example, by replacing role atoms with a

non-simple role with up to](q) role atoms that use a transitive sub-role. In our

running example, we can replace t′(x, z) with t′(x, y), t′(y, z), which yields a query

that no longer uses any shortcuts in I with the given mapping (see Figure 5.4).

In the forth and last step, we filter out those queries that can still not be

expressed as a SHOQu concept. Those queries are trivially false since the struc-

ture specified by the query cannot be enforced by a SHOQ concept and hence

cannot be mapped to the canonical models of the knowledge base. The remain-

ing queries are transformed into concepts by applying the rolling-up technique.

For our running example, we can guess, for example, that xr corresponds to the

nominal o. The query can then be expressed by the following concept:

{o} u ∃t.(C u ∃(r u t′).(∃(r u t′).(D u ∃t.{o})))

5.2. QUERY REWRITING 115

y

t′

r

z D

xr

t

x C

tr

Figure 5.3: A graphical rep-
resentation of the nominal re-
writing qnr for q. The canon-
ical model I is shown in grey
(without labels).

tr, t′

y

r, t′

z D

xr

t

x C

Figure 5.4: A graphical rep-
resentation of the shortcut
rewriting qsr for qnr. The ca-
nonical model I is shown in
grey (without labels).

Finally, we use the concepts from all possible rewritings and reduce the task of

deciding query entailment to the task of deciding knowledge base consistency in

a similar way as for SHIQ by augmenting K with an axiom of the form > v ¬Cq

for each obtained concept Cq.

Please note that in the following definitions, we assume that q is a conjunctive

query and not a union of conjunctive queries since we apply the rewriting steps

to each disjunct separately.

Definition 5.4. Let K be a SHOQ knowledge base and q a Boolean conjunctive

query. A collapsing qco of q is obtained by adding zero or more equality atoms

of the form x ≈ x′ for x, x′ ∈ Vars(q) to q. We use co(q) to denote the set of all

queries that are a collapsing of q.

A nominal rewriting qnr of q and K is obtained by choosing, for each role atom

r(x, y) ∈̄ q such that there is a role s ∈ TransR and s v*Rr to either do nothing or

to replace r(x, y) with s(x, z) and s(z, y) for z ∈ NV a possibly fresh variable. We

use nrK(q) to denote the set of pairs (qnr, R) such that qnr is a nominal rewriting

116 CHAPTER 5. QUERY ANSWERING FOR SHOQ

of a query qco ∈ co(q) and R is a subset of Vars(qnr). We call R a root choice for

qnr.

A shortcut rewriting of q and K is obtained from q by replacing each role atom

t(x1, xn) from q for which there is a sequence r1(x1, x2), . . . , rn−1(xn−1, xn) ∈̄ q and

a role s ∈ NtR such that s v*Rt with n − 1 role atoms s(x1, x2), . . . , s(xn−1, xn).

We use srK(q) to denote the set of all pairs (qsr, R) such that there is a pair

(qnr, R) ∈ nrK(q) and qsr is a shortcut rewriting of qnr. 4

We assume that nrK(q) contains no isomorphic queries, i.e., differences in

(newly introduced) variable names only are neglected.

Readers might wonder why we do not delete the role atom t(x1, xn) in a

shortcut rewriting and require that ri v*Rs for 1 ≤ i < n. For SHOQ this would

be possible, and certainly advisable in practical implementations; we comment on

this later in Remark 5.8. Roughly speaking, this would require a stricter definition

of canonical models, which would make both the proofs and the definitions more

complicated. Since our goal is mainly to show decidability, we only sketch what

might be done in order to optimise the algorithm.

5.2.1 Query Shapes and Matches

We now show how we can filter out those queries that are trivially false since

they have a structure that cannot occur in canonical models. For this, we define

forest-shaped queries, similar to our forest-shaped canonical models. Intuitively,

the variables in the root choice of a rewritten query correspond to nominals and a

forest-shaped query can be mapped to a set of trees such that each variable in the

root choice is mapped to the root of a tree. All other variables are mapped such

that, for each role atom r(x, y) in the query, either the image of y is a successor of

the image of x in one tree or y corresponds to a nominal and r(x, y) corresponds

to an edge back to some nominal.

Definition 5.5. A tree mapping w.r.t. q is a total function f from Vars(q) to a

tree such that

1. f is bijective modulo ≈* ,

2. r(x, y) ∈̄ q implies that f(y) is a successor of f(x).

A query q is tree-shaped if there exists a tree mapping w.r.t. q.

5.2. QUERY REWRITING 117

A forest mapping w.r.t. q and a root choice R is a total function f from Vars(q)

to a forest F w.r.t. R such that

1. f is bijective modulo ≈* ,

2. if r(x, y) ∈ q, then either

(a) y ∈ R or

(b) there is some (xr, w) ∈ F and c ∈ IN such that xr ∈ R, f(x) = (xr, w),

and f(y) = (xr, w · c).

We say that q is forest-shaped w.r.t. R if either R = ∅ and q is tree-shaped or

R 6= ∅ and there exists a forest mapping w.r.t. q and R.

We use frK(q) to denote the set of all pairs (qsr, R) ∈ srK(q) for which qsr is

forest-shaped w.r.t. R. 4

Similarly to tree- and forest-shaped matches for SHIQ conjunctive queries,

we also define tree- and forest-shaped matches on canonical models for SHOQ

conjunctive queries.

Definition 5.6. Let I = (∆I ,·I) be a canonical model for K such that I |=π q.

The match π induces the root choice R = {x | π(x) = (o, ε) for some o ∈

nom(K)}. We call π a tree match if the induced root choice R = ∅ and there

exists a total function f from ran(π) to a tree T such that

1. f is bijective modulo ≈* and

2. r(x, y) ∈̄ q implies that f(π(y)) is a successor of f(π(x)).

We call π a forest match if either π is a tree match or there is a total mapping f

from ran(π) to a forest F w.r.t. the induced root choice R such that

1. f is bijective modulo ≈* ,

2. if r(x, y) ∈ q, then either

(a) y ∈ R or

(b) there is some (xr, w) ∈ F and c ∈ IN such that f(π(x)) = (xr, w) and

f(π(y)) = (xr, w · c).

4

118 CHAPTER 5. QUERY ANSWERING FOR SHOQ

The following lemma shows that we can indeed omit queries that are not

forest-shaped w.r.t. their root choice.

Lemma 5.7. Let I = (∆I ,·I) be a model for K.

(1) If I is canonical and I |= q, then there is a pair (qfr, R) ∈ frK(q) and a

forest match πfr such that I |=πfr qfr and R is the root choice induced by

πfr.

(2) If (qfr, R) ∈ frK(q) and I |= qfr, then I |= q.

Proof. For (1): Let π be such that I |=π q. First, we build a collapsing qco of q

by adding an atom x ≈ y for all variables x, y ∈ Vars(q) for which π(x) = π(y).

It is not hard to verify that qco is indeed a collapsing of q, I |=π qco, and that π

is an injection modulo ≈* .

We now identify the role atoms to which we need to apply the nominal rewrit-

ing step. For this, we first define the set of role atoms that conform with the

conditions for forest matches. The nominal rewriting is then applied to the re-

maining role atoms: let S ⊆ qco be the set of all role atoms r(x, y) such that, for

π(x) = (o, w) and π(y) = (o′, w′), either

1. w′ = ε or

2. o = o′ and w is a proper prefix of w′.

Let Snr ⊆ qco be the set of role atoms r(x, y) such that r(x, y) /∈ S. We now

build a nominal rewriting of qco by replacing each role atom r(x, y) ∈ Snr with

two role atoms that contain a possibly new variable. This variable corresponds,

intuitively, to one of the roots. Since SHOQ does not allow for inverse roles, such

relationships can only exist due to transitive roles and links back to a nominal

node.

More precisely, let J be a forest base for I. We show that, for each r(x, y) ∈

Snr with π(x) = (o, w) and π(y) = (o′, w′), there exists a role s ∈ NtR such

that s v*Rr, (π(x), (o′, ε)) ∈ sI , and ((o′, ε), π(y)) ∈ sI . Since I |=π qco, we have

(π(x), π(y)) ∈ rI . Since r(x, y) /∈ S, either

1. o 6= o′ and w 6= ε or

2. o = o′ and w′ is not a proper prefix of w.

5.2. QUERY REWRITING 119

Because J is a forest base, this implies that (π(x), π(y)) /∈ rJ . It follows that

there is a sequence d1, . . . , dn ∈ ∆I and a role s ∈ NtR such that d1 = π(x), dn =

π(y), sv*Rr, and (di, di+1) ∈ sJ for 1 ≤ i < n. Moreover, by definition of forest

bases, there is an i with 1 ≤ i ≤ n such that di = (o′, ε).

For each r(x, y) ∈ Snr, we select an appropriate element di and a role s as

described above, denote the former with do′, the latter with sxRy, and obtain the

query qnr from qco by doing the following:

• if do′ = π(z) for some z ∈ Vars(qco), then replace r(x, y) with sxRy(x, z) and

sxRy(z, y);

• otherwise, introduce a new variable vo′ ∈ NV and replace r(x, y) with

sxRy(x, vo′) and sxRy(vo′ , y).

It is not hard to check that qnr is indeed a nominal rewriting of qco.

Let πfr be the extension of π that maps each newly introduced variable vo′

to do′ . It is easily seen that qnr is connected, πfr is injective modulo ≈* , and

I |=πfr qnr. The match πfr induces the root choice

R = {x | πfr(x) = (o, ε) for some o ∈ nom(K)}.

Since qnr is a nominal rewriting of qco and by definition of the set nrK, the pair

(qnr, R) is in nrK(q). If πfr is already a forest match w.r.t. R, we are done since

a query for which there is a forest match is forest-shaped w.r.t. R. Assume,

therefore, that πfr is not a forest match. Since we already dealt with all atoms

that are mapped from one tree into another one or that used a relationship to an

ancestor within the same tree, the only remaining situation in which πfr is not a

forest match is that we have a shortcut to a descendant and, hence, an undirected

cycle. More precisely, there are atoms r1(x1, x2), . . . , rn−1(xn−1, xn) and t(x1, xn)

in qnr with πfr(xi) = (o, wi) and wi is a proper prefix of wi+1 for each i with 1 ≤

i < n. We show that n > 2 implies that there is a role s such that s ∈ NtR, s v*Rt

and (πfr(xi), πfr(xi+1)) ∈ sI for each i with 1 ≤ i < n. Since I |=πfr qnr,

we have (πfr(x1), πfr(xn)) ∈ tI and (πfr(xi), πfr(xi+1)) ∈ ri
I for each i with

1 ≤ i < n. Since J is a forest base and wi is a proper prefix of wi+1, n > 2 implies

that (πfr(x1), πfr(xn)) /∈ tJ . It follows that there is a unique shortest sequence

d1, . . . , dm ∈ ∆I and a role s ∈ NtR such that d1 = πfr(x1), dm = πfr(xn), s v*Rt,

and (di, di+1) ∈ sJ for 1 ≤ i < m. By definition of canonical models and since

120 CHAPTER 5. QUERY ANSWERING FOR SHOQ

wi is a proper prefix of wi+1 for each i with 1 ≤ i < n, each (o, wi) occurs in the

sequence d1, . . . , dm and, since s ∈ NtR, ((o, wi), (o, wi+1)) ∈ sI for each i with

1 ≤ i < n. For each t(x1, xn) as described above, we select an appropriate role s

and replace t(x1, xn) with n− 1 role atoms s(x1, x2), . . . , s(xn−1, xn) and call the

resulting query qsr.

It is again not hard to check that qsr is indeed a shortcut rewriting of qnr

and that, hence, (qsr, R) ∈ srK(q). Furthermore, πfr is now a forest match w.r.t.

R, which implies that qsr is forest-shaped w.r.t. R. Hence, (qfr, R) ∈ frK(q) for

qfr = qsr as required.

For (2): Since (qfr, R) ∈ frK(q), (qsr, R) ∈ srK(q) for qsr = qfr. Furthermore,

there is a pair (qnr, R) ∈ nrK(q) such that qsr is a shortcut rewriting of qnr. In a

shortcut rewriting, a role atom t(x1, xn) is replaced with a sequence of role atoms

s(x1, x2), . . . , s(xn−1, xn) such that s is a transitive sub-role of t. Hence, I |= qsr

implies I |= qnr. Similarly, (qnr, R) ∈ nrK(q) implies that there is a collapsing

qco ∈ co(q) such that qnr is a nominal rewriting of qco. Repeating the same

argument as for the shortcut rewriting, we have that I |= qnr implies I |= qco.

Since qco is a collapsing of q and since q is a subset of qco, we trivially have that

I |= q as required.

Remark 5.8. As promised above, we comment on why we do not allow the

complete deletion of role atoms in a shortcut rewriting by requiring, additionally,

that ri v*Rs for 1 ≤ i < n. For example, let q = {r1(x1, x2), r2(x2, x3), t(x1, x3)}

and K = (T , R) with t ∈ NtR,R = ∅, and

T = {{o} v ∃r1.(∃r2.>) u ∃t.(∃t.>)}.

With the stricter definition, the query has no shortcut rewriting and is not forest-

shaped. Hence, we directly (and correctly) conclude K 6|= q. Unfortunately,

Lemma 5.7 does not hold with the stricter definition. For example, let I =

(∆I ,·I) be a canonical model for K as depicted in Figure 5.5. It is not hard to

check that I |= q and that, hence, according to the above lemma there should

be a forest-shaped shortcut rewriting of q, which is not the case. In order for

the above lemma to hold, we need a stricter definition of canonical models. In

the existing definition of canonical models (Definition 5.1), we neither minimise

the interpretation of roles nor maximise the number of successors by splitting

successors whereever possible. For example, let I ′ = (∆I′

, ·I
′

) be an alternative

5.2. QUERY REWRITING 121

canonical model for K as depicted in Figure 5.6. In fact, I ′ is exactly homomor-

phic to a model that the tableau algorithm for SHOQ [52] would generate since,

for each existential quantifier or atleast number restriction, we introduce new

successors and we merge successors only when necessary due to atmost number

restrictions. In order to use the optimised definition of shortcut rewritings, we

would need a similar requirement for our canonical models, which is, however,

more complicated to formalise.

(o, ε)

(o, 11)

r2, t

(o, 1)

r1, t

t

Figure 5.5: A representation of
a canonical model I for K.

tr1

(o, 1)

r2

(o, 11) (o, 21)

t

t (o, 2)

(o, ε)

Figure 5.6: A representation of
an alternative canonical model
I ′ for K.

5.2.2 From Forest-Shaped Queries to Concept Atoms

We now build a query that consists only of concept atoms for each (qfr, R) ∈

frK(q) by replacing the variables from R with nominals from nom(K) and applying

the rolling-up technique.

Definition 5.9. Let (qfr, R) ∈ frK(q). A grounding for qfr w.r.t. R is a total

function τ : R → nom(K) that is injective modulo ≈* . We build con(qfr, R, τ) as

follows:

1. For each r(x, xr) ∈̄ qfr with xr ∈ R, replace r(x, xr) with (∃r.{τ(xr)})(x).

2. For each xr ∈ R, add a concept atom ({τ(xr)})(xr) to qfr.

3. Call the result of 1 and 2 q.

122 CHAPTER 5. QUERY ANSWERING FOR SHOQ

4. We now inductively assign, to each x ∈ Vars(q) a concept con(x) as follows:

• if there is no role atom r(x, x′) ∈̄ q, then con(x) =
d

C(x)∈̄q C,

• if there are role atoms r(x, x1), . . . , r(x, xk) ∈̄ q, then

con(x) =
d

C(x)∈̄q C u
d

16i6k ∃
(d

r(x,xi)∈̄q r
)

.con(xi).

5. Finally, con(qfr, R, τ) = {(con(x))(x) | x ∈ Vars(q) and there is no role

atom r(x′, x) ∈̄ q}.

We use conK(q) for the set {con(qfr, R, τ) | (qfr, R) ∈ frK(q) and τ is a grounding

w.r.t. R}. 4

Please note that, after the first step, the resulting query consists of a set of

unconnected components such that each component is a tree-shaped query with

a distinguished root variable. This root variable must not necessarily belong

to the root choice R. In Step 4, we collect all query concepts for these root

variables in the set con(qfr, R, τ). Hence con(qfr, R, τ) is a conjunctive query of

the form {C1(x1), . . . , Cn(xn)} with xi 6= xj for 1 ≤ i < j ≤ n and each Ci is a

SHOQu-concept.

Lemma 5.10. Let K be a SHOQ knowledge base, q a Boolean conjunctive query,

and I a model of K.

(1) If I is canonical and I |= q, then there is some con(qfr, R, τ) ∈ conK(q)

such that I |= con(qfr, R, τ).

(2) If I |= con(qfr, R, τ) for some con(qfr, R, τ) ∈ conK(q), then I |= q.

Proof. For (1): By assumption, I is canonical and I |= q. By Lemma 5.7 there

is a pair (qfr, R) ∈ frK(q) and a forest match πfr such that R is the root choice

induced by πfr and I |=πfr qfr. Let τ be such that each x ∈ R is mapped to

πfr(x), where πfr(x) = (o, ε) for some o ∈ nom(K). Such a mapping τ exists since

R is the root choice induced by πfr. By definition of the semantics, we clearly

have that I |= q′ for q′ the query obtained after the first two steps of building

con(qfr, R, τ). Since q′ is a collection of (directed) trees, each with a unique root

variable, Lemma 4.7 easily tranfers from SHIQu to SHOQu and we get that

I |= con(qfr, R, τ).

5.2. QUERY REWRITING 123

For (2): We can again proceed in a similar way as in the proof of Lemma 4.7

to show that I |= con(qfr, R, τ) implies I |= qfr. Together with Lemma 5.7 this

proves the claim.

5.2.3 Correctness of the Rewriting Steps

We now show that the union of the queries in conK(q) can be used to decide

entailment of q and that there is a bound on the cardinality of this set. We can

then use the standard methods for deciding entailment of tree-shaped conjunctive

queries in order to decide entailment of arbitrary conjunctive queries in SHOQ.

Theorem 5.11. Let {q1, . . . , q`} = conK(q). Then K |= q iff K |= q1 ∨ . . . ∨ q`.

Proof. For the “if” direction: by assumption, K |= q1 ∨ . . . ∨ q`. Hence, for each

model I of K, there is a query qi with 1 6 i 6 ` such that I |= qi. Since

qi ∈ conK(q), it is of the form con(qfr, R, τ) and, by Lemma 5.10 it follows that

I |= q.

For the “only if” direction: by Lemma 5.3 (in its negated form) we have that

K |= q iff all canonical models I of K are such that I |= q. Hence, we can

restrict our attention to the canonical models of K. Now let I be a canonical

model of K and assume that I |= q. Hence, by Lemma 5.10, there is some

qi = con(qfr, R, τ) ∈ conK(q) such that I |= qi as required.

We now give upper bounds on the size and number of queries in conK(q).

Obviously, the number of atoms in a query is bounded by its size, hence](q) ≤ |q|

and, for simplicity, we use n as the size and the cardinality of q in what follows.

Lemma 5.12. Let q be a Boolean conjunctive query, K = (T , R) a SHOQ

knowledge base, |q| = n and |K| = m. Then there is a polynomial p such that

1.](co(q)) ≤ 2p(n) and, for each q′ ∈ co(q), |q′| ≤ p(n),

2.](nrK(q)) ≤ 2p(n)·log p(m), and, for each q′ ∈ nrK(q), |q′| ≤ p(n),

3.](srK(q)) ≤ 2p(n)·log p(m), and, for each q′ ∈ srK(q), |q′| ≤ p(n),

4.](conK(q)) ≤ 2p(n)·log p(m), and, for each q′ ∈ conK(q), |q′| ≤ p(n).

Proof.

124 CHAPTER 5. QUERY ANSWERING FOR SHOQ

1. Since the collapsing step is the same for SHIQ and SHOQ, the proof of

Lemma 4.15 directly applies to this claim.

2. For each of the at most n role atoms, we can choose to do nothing or

replace the atom with two atoms. For every replacement, we can choose to

introduce a new variable or re-use one of the at most n existing variables. If

we introduce a new variable every time, the new query contains at most 2n

variables. Since K contains at most m non-simple roles that are a sub-role

of a role used in role atoms of q, we have at most m roles to choose from

when replacing a role atom. Overall, this gives us at most 1 + m(n + 1)

choices for each of the at most n role atoms in a query and, therefore, the

number of nominal rewritings for each query q′ ∈ co(q) is polynomial in m

and exponential in n. Since the number of variables in a nominal rewriting

is linear in the number of variables in q, the number of root choices for each

nominal rewriting is at most exponential in n and, in combination with the

results from (1), this also shows that the cardinality of the set nrK(q) is

polynomial in m and exponential in n.

Since we add at most one new role atom for each of the existing role atoms,

the size of a query q′ ∈ nrK(q) is linear in n.

3. In a shortcut rewriting, each role atom r(x, y) can be replaced with at most

n − 1 role atoms that use one of the at most m transitive sub-roles of r.

Hence, whenever this step is applicable to a role atom, we have m choices

and, together with the bounds on the cardinality of nrK(q), this shows that

the cardinality of the set srK(q) is exponential in n and polynomial in m.

Since the number of role atoms that we can introduce for each existing role

atom is bounded by n − 1, the size of each query q′ ∈ srK(q) is at most

quadratic in n.

4. By (1)-(3) above, the number of variables in a root choice is at most 2n

and there are at most m nominal names occurring in K that can be used

for the mapping τ from variables to nominal names. Hence the number of

different ground mappings τ is at most polynomial in m and exponential in

n. The number of ground queries that a single tuple (qfr, R) ∈ srK(q) can

contribute is, therefore, also at most polynomial in m and exponential in n.

Together with the bound on the cardinality of srK(q), this shows that the

5.2. QUERY REWRITING 125

cardinality of conK(q) is polynomial in m and exponential in n. Again it is

not hard to see that the size of each query q′ ∈ conK(q) is polynomial in n.

As a consequence of the above lemma, there is a bound on the number of

queries in conK(q) and it is not hard to see that this set can be computed in time

polynomial in m and exponential in n.

Please note that each query q′ ∈ conK(q) is a set of concept atoms of the

form {C1(x1), . . . , Cn(xn)}, i.e., each q′ contains n unconnected components. In

the following, we assume for convenience that conjunctive queries are written as a

conjunction of atoms and not in the set notation, e.g., we now write C1(x1)∧ . . .∧

Cn(xn). By transforming the disjunction q1 ∨ . . . ∨ q` of queries in conK(q) into

conjunctive normal form (cf. [109, 7.3.2]), we can reduce the problem of deciding

whether K |= q1 ∨ . . .∨ q` to deciding whether K entails each union of connected

conjunctive queries {at1}∨ . . .∨{at`} such that ati is a concept atom from qi. Let

conK(q) = {q1, . . . , q`}. We use cnf(conK(q)) for the conjunctive normal form of

q1∨ . . .∨ q`. We now show how we can decide entailment of unions of conjunctive

queries, where each conjunct consists of one concept atom only. This suffices to

decide conjunctive query entailment for SHOQ.

Definition 5.13. Let K = (T , R) be a SHOQ knowledge base, q a Boolean

conjunctive query, and C1(x1) ∨ . . . ∨ C`(x`) a conjunct from cnf(conK(q)). An

extended knowledge base w.r.t. K and q is a pair (T ∪Tq,R) such that Tq = {> v

¬Ci with 1 ≤ i ≤ `}. 4

We can now use the extended knowledge bases in order to decide conjunctive

query entailment:

Theorem 5.14. K |= q iff each extended knowledge base Kq w.r.t. K and q is

inconsistent.

Please note that the extended knowledge bases are in SHOQu. At this point,

any reasoning algorithm for SHOQu can be used for deciding query entailment.

In the following section, we present one such decision procedure and we analyse

the complexity of the presented algorithm. As a first step, we analyse here the

bounds on the number of extended knowledge bases and their size.

126 CHAPTER 5. QUERY ANSWERING FOR SHOQ

Lemma 5.15. Let q be a Boolean conjunctive query with |q| = n and K a SHOQ

knowledge base with |K| = m. There is a polynomial p such that the number of

extended knowledge bases w.r.t. K and q is bounded by 2p(n)·log p(m), the size of

each extended knowledge base is polynomial in m and exponential in n, and the

longest role conjunction occurring in an extended knowledge base is polynomial in

n.

Proof. By Lemma 5.12 (4) there is a polynomial p such that the cardinality of

conK(q) is bounded by 2p(n)·log p(m). The size of each query in conK(q) and, hence,

the number of its concept atoms is polynomial in n. Hence, there is a polynomial

p′ such that cnf(conK(q)) contains at most 2p′(n)·log p′(m) conjuncts and this bound

also holds for the number of disjuncts in each of the conjuncts. This means that

we have to test at most 2p′(n)·log p′(m) extended knowledge bases, where the size of

each extended knowledge base is also polynomial in m and exponential in n. Since

the size of each concept that occurs in a conjunct of cnf(conK(q)) is polynomial

in n and since these are the only concepts that can contain role conjunctions, the

size of the longest role conjunction is also bounded by n.

5.3 Deciding Query Entailment for SHOQ

We now devise a decision procedure for SHOQu knowledge base consistency.

By Theorem 5.14 this also gives us a decision procedure for unions of Boolean

conjunctive queries in SHOQ. Since the only existing decision procedure for

SHOQ [52] is tableau based and, as most tableau based decision procedures,

not worst-case optimal, we devise a novel automata based decision procedure

here. Since automata cannot directly handle transitive roles, we first transform

a SHOQu knowledge base K into an equisatisfiable ALCHOQu knowledge base

K′, i.e., in K′ all roles are treated as non-transitive. We show that each model of

K′ in which we transitively close the interpretation of the roles that are transitive

in K is a model of K. The decision procedure for consistency of ALCHOQu

knowledge bases that we present runs in single exponential deterministic time

in the size of the input knowledge base. We use alternating automata, which

have already been used for obtaining worst-case optimal decision procedures for

the hybrid µ-calculus [95] and for ALCQIbreg [22, 25], which can encode SHIQ

knowledge bases .

5.3. DECIDING QUERY ENTAILMENT FOR SHOQ 127

5.3.1 Canonical Models of Bounded Branching Degree

Since automata also rely on the tree/forest model property of the logic, we extend

the definition of canonical models for a SHOQ knowledge base in the straightfor-

ward way to canonical models for SHOQu knowledge bases (cf. Definition 5.1 on

page 110). Usually, automata work on trees of bounded branching degree, where

the branching degree d(w) of a node w in a tree T is the number of successors

of w. If there is a k such that d(w) ≤ k for each w ∈ T , then we say that T

has branching degree k. We now show that a consistent SHOQu knowledge base

has a canonical model I = (∆I ,·I), where, for each o ∈ nom(K), the branching

degree of the tree {w | (o, w) ∈ ∆I} is bounded by some k that is polynomial in

the size of K assuming unary coding of numbers. For such a canonical model I,

we say that I has branching degree k. We use this result when we show how to

eliminate transitivity, and when we introduce the abstractions of models that are

accepted by our automata.

Definition 5.16. For a SHOQu knowledge base K = (T ,R), we define the

closure cl(K) as the smallest set satisfying the following conditions:

• if C v D ∈ T , then nnf(¬C) tD ∈ cl(K),

• if D is a sub-concept of C ∈ cl(K), then D ∈ cl(K),

• if D ∈ cl(K), then nnf(¬D) ∈ cl(K).

4

Lemma 5.17. Let K be a SHOQu knowledge base with |K| = m, nmax the maxi-

mal number occurring in number restrictions, and k = m·nmax. If K is consistent,

then K has a canonical model I with branching degree k.

Proof. Let I ′ = (∆I′

, ·I
′

) be an interpretation such that I ′ |= K. From I ′, we

construct a canonical model I for K with branching degree k and its forest base

J as follows: we define a non-deterministic function choose that returns, for a

concept C ∈ cl(K) and an element d ∈ ∆I′

a subset SC,d of ∆I′

such that

1. if C = (∃r.D) and d ∈ CI′

, then SC,d = {d′}, for some d′ such that (d, d′) ∈

rI
′

and d′ ∈ DI′

,

2. if C = (> n r.D) and d ∈ CI′

, then SC,d = {d1, . . . , dn}, (d, di) ∈ rI
′

, and

di ∈ DI′

for each i with 1 ≤ i ≤ n,

128 CHAPTER 5. QUERY ANSWERING FOR SHOQ

3. SC,d = ∅ otherwise.

We define the set P ⊆ (∆I′

)∗ of paths to be the smallest set such that

• for all o ∈ nom(K), oI
′

is a path;

• d1 · · ·dn · d is a path, if

– d1 · · · dn is a path,

– dn ∈ CI for some C ∈ cl(K) with d ∈ choose(C, dn),

– if there is an o ∈ nom(K) such that d = oI
′

, then n > 2.

Now fix a set S ⊆ nom(K) × IN∗ and a bijection f : S → P such that, for each

o ∈ nom(K),

(i) (o, ε) ∈ S,

(ii) {w | (o, w) ∈ S} is a tree,

(iii) f(o, ε) = oI
′

, and

(iv) if (o, w), (o, w′) ∈ S with w′ a successor of w, then f(o, w′) = f(o, w) · d for

some d ∈ ∆I′

.

Due to the definition of choose, there are, for each ~d ∈ P , at most m · nmax

elements d1, . . . , dm·nmax such that ~d · di with 1 ≤ i ≤ m · nmax is a path in P .

Since, additionally, f is a bijection, the tree T = {w | (o, w) ∈ S} has branching

degree k.

For all (o, w) ∈ S, set Tail(o, w) = dn if f(o, w) = d1 · · ·dn. Now, define a

forest base J = (∆J ,·J) for K as follows:

(a) ∆J = S;

(b) for each o ∈ nom(K), oJ = (o, ε) ∈ S;

(c) for each C ∈ NC , (o, w) ∈ CJ iff (o, w) ∈ S and Tail(o, w) ∈ CI′

;

(d) for each r ∈ NR, ((o, w), (o′, w′)) ∈ rJ iff either

(I) w′ = ε and (Tail(o, w), o′I
′

) ∈ rI
′

or

(II) o = o′, w′ is a successor of w and (Tail(o, w), Tail(o′, w′)) ∈ rI
′

.

5.3. DECIDING QUERY ENTAILMENT FOR SHOQ 129

It is clear that J is a forest base for K due to the definition of S and the con-

struction of J from S.

Let I = (∆I ,·I) be an interpretation that is identical to J except that, for

all non-simple roles r, we set

rI = rJ ∪
⋃

s v*Rr, s∈NtR

(sJ)+

We can prove that I |= K inductively over the structure of concepts following the

argumentation given in the proof of Lemma 4.2. Since the requirement on the

branching degree is fulfilled as argued above, this proves the claim.

5.3.2 Eliminating Transitivity

Transitivity axioms are known to be difficult to handle in, for example, automata

or resolution based decision procedures. Testing the consistency of a knowledge

base in a logic with transitive roles can, however, often be polynomially reduced

to checking an extended knowledge base without transitive roles [62, 66, 76]. We

introduce this reduction first for SHIQ (a similar reduction works for SHOIQ)

and then show which difficulties arise when, instead of inverses, we have nomi-

nals plus role conjunctions, and how we can, nevertheless, eliminate transitivity.

The price we have to pay, in particular for allowing both role conjunctions and

transitivity, is that the translation is no longer polynomial, but exponential in

the size of the longest role conjunction. Please note that this is also the case for

the translation from SHIQu to ALCQIb in the previous chapter. To the best

of our knowledge, it is unknown if this blow-up can be avoided.

Let K = (T ,R,A) be a SHIQ knowledge base. The closure cl(K) of a SHIQ

knowledge base K is defined as the closure for SHOQu KBs (cf. Definition 5.16),

but, additionally, satisfies the following conditions:

• if C(a) ∈ A, then C ∈ cl(K),

• if ∀r.D ∈ cl(K), s v*Rr, and s ∈ TransR, then ∀s.(∀s.D) ∈ cl(K).

Let elimTrans(K) be the ALCHIQ knowledge base obtained from K by treat-

ing all transitive roles as non-transitive and by adding an axiom ∀r.C v ∀t.(∀t.C)

for each concept ∀r.C ∈ cl(K) and role t such that t v*Rr and t ∈ TransR. Then

elimTrans(K) is consistent iff K is consistent [76, Thm. 5.2.3] and the size of

elimTrans(K) is polynomial in the size of K.

130 CHAPTER 5. QUERY ANSWERING FOR SHOQ

The simultaneous presence of transitive roles, role conjunctions, and nominals

makes the elimination of transitive roles more involved than usual [62, 66, 76].

For example, let K = (T ,R) be a SHOQu knowledge base with

T = {{o} v ∃t.A,

A v ∃t.B,

B v ∃t.({o′}),

{o} v ∃r.({o′})},

R = ∅, and t a transitive role. Figure 5.7 shows a representation of a model for

K.

o′

B

t

A
t

t

t
t

o r

Figure 5.7: A representation of a model for K, where the black edges represent
the role t, the grey edge represents the role r and the dashed edges indicate
shortcuts due to t being transitive.

It is not hard to check that adding the axiom {o} v ∀(r u t).(¬{o′}) makes

the knowledge base inconsistent.

We now introduce a naive extension of the function elimTrans to SHOQu input

knowledge bases and show why this does not yield an equisatisfiable knowledge

base as desired. Let K = (T , R) be a SHOQu knowledge base. The function

elimTrans(K) yields an ALCHOQu knowledge base obtained from K by treating

all transitive roles as non-transitive and by adding an axiom

∀(r1 u . . . u rn).C v ∀(t1 u . . . u tn).(∀(t1 u . . . u tn).C)

for each concept ∀(r1 u . . . u rn).C ∈ cl(K) and roles t1, . . . , tn ∈ NtR such that

ti v*Rri for each i with 1 ≤ i ≤ n.

For the above example knowledge base (cf. Figure 5.7), elimTrans(K) contains

the additional axioms ∀t.X v ∀t.(∀t.X) with X ∈ {A, B, {o′}} and all roles are

non-transitive. Adding the axiom {o} v ∀(r u t).(¬{o′}) to K does not yield

5.3. DECIDING QUERY ENTAILMENT FOR SHOQ 131

any additional axioms in the translation, since r is a simple role. Since none

of the added axioms explicate the implicit t relation between the nominals o

and o′, extending K with the axiom {o} v ∀(r u t).(¬{o′}) yields a consistent

knowledge base after applying the translation, contradicting our assumption that

a knowledge base K is consistent iff elimTrans(K) is consistent.

Intuitively, this problem arises since, even in canonical models, we can have

arbitrary relations between nominals, and not only tree-like structures as in the

remaining parts. This can lead to situations where, as in the above example,

we have an explicit relationship between two nominals, but only together with

the implicit transitive shortcut can the universal quantifier over the role conjunc-

tion be applied. To handle these situations correctly, we explicate all transitive

shortcuts between nominals.

Definition 5.18. Let K = (T , R) be a SHOQu knowledge base. The function

elimTrans(K) yields the ALCHOQu knowledge base obtained from K as follows:

1. regard all transitive roles as non-transitive,

2. for each role t ∈ NtR and each nominal o ∈ nom(K), add an axiom

∃t.(∃t.({o})) v ∃t.({o}), and

3. for each concept ∀R.C ∈ cl(K) with R = r1 u . . .u rn and roles t1, . . . , tn ∈

NtR such that ti v*Rri for each 1 ≤ i ≤ n, add an axiom ∀R.C v ∀T.(∀T.C),

where T = t1 u . . . u tn.

4

With the above definition, the resulting knowledge base elimTrans(K) for the

example knowledge base K, contains, additionally, the axioms ∃t.(∃t.({o})) v

∃t.({o}) and ∃t.(∃t.({o′})) v ∃t.({o′}). The latter one ensures that the implicit

t-edges that are shown as dashed lines in Figure 5.7 are made explicit. As a conse-

quence, adding the axiom {o} v ∀(ru t).(¬{o′}) indeed results in an inconsistent

knowledge base as desired.

Lemma 5.19. Let K be a SHOQu knowledge base. Then K is consistent iff

elimTrans(K) is consistent.

Proof. Let R = r1 u . . . u rn and T = t1 u . . . u tn.

We start with the only if direction since it is rather trivial. Let I = (∆I ,·I)

be a model of K. Clearly I is also a model of the knowledge base obtained

132 CHAPTER 5. QUERY ANSWERING FOR SHOQ

by treating all roles as non-transitive. We show that I also satisfies the addi-

tional axioms. Assume that there is a role t ∈ NtR and a nominal o such that

d ∈ (∃t.(∃t.({o})))I . We have to show that this implies that d ∈ ∃t.({o}). By

definition of the semantics, d ∈ (∃t.(∃t.({o})))I implies that there are elements

d′ and do such that (d, d′), (d′, do) ∈ tI and do = oI . Transitivity of t then implies

that (d, do) ∈ tI and, hence, d′ ∈ (∃t.({o}))I as required.

For the remaining axioms, assume that there is an element d ∈ ∆I such that

d ∈ (∀R.C)I , but d /∈ (∀T.(∀T.C))I . Hence, by definition of the semantics, d ∈

(∃T.(∃T.(¬C)))I and there are elements d′, d′′ ∈ ∆I such that (d, d′), (d′, d′′) ∈ T I

and d′′ ∈ (¬C)I . Since ti ∈ NtR, for all 1 ≤ i ≤ n, we have that (d, d′′) ∈ T I

and, since ti v ri for each 1 ≤ i ≤ n, we also have that (d, d′′) ∈ RI . Since d′′ ∈

(¬C)I , d ∈ (∃R.(¬C))I , contradicting our initial assumption that d ∈ (∀R.C)I .

For the if direction: Let I = (∆I ,·I) be a canonical model of elimTrans(K),

which exists due to Lemma 5.17. Since elimTrans(K) is an extension of K apart

from the fact that all roles are treated as non-transitive, I |= K if we treat also

all roles in K as non-transitive. Let I ′ be the interpretation that is identical to

I except that, for all non-simple roles r, we have

rI = rJ ∪
⋃

s v*Rr, s∈NtR

(sJ)+.

Please note that, by definition of elimTrans(K), forest bases, and canonical models,

I is a forest base for I ′. We have to show that I ′ |= T . Most importantly,

we have to show that if d ∈ (∀R.C)I , then d ∈ (∀R.C)I
′

since these are the

only concepts affected by transitively closing the interpretation of transitive roles

(recall that roles in number restrictions are simple). More precisely, assume that

there are two elements (o, w), (o′, w′) ∈ ∆I such that (o, w) ∈ (∀R.C)I , (o′, w′) ∈

(¬C)I , ((o, w), (o′, w′)) /∈ RI , but ((o, w), (o′, w′)) ∈ RI′

. Hence, there is at least

one role r ∈ {r1, . . . , rn} for which there is a transitive sub-role t ∈ NtR with

t v*Rr and a sequence of elements (o1, w1), . . . , (om, wm) with m > 2, (o1, w1) =

(o, w), (om, wm) = (o′, w′) and, for each i with 1 ≤ j < m, ((oi, wi), (oi+1, wi+1)) ∈

tI\tI
′

. If oi = o = o′, and wi+1 is a successor of wi for each i with 1 ≤ i < m, this is

rather trivial: due to the canonicity of I, there is a role ti ∈ NtR such that, for each

i with 1 ≤ i ≤ n, ti v*Rri and elimTrans(K) contains an axiom ∀R.C v ∀T.(∀T.C).

This implies that (o′, w′) ∈ CI , contradicting our assumption. Hence, we assume

that, for some i with 1 ≤ i ≤ m, oi 6= o or, for some i with 1 ≤ i < m, wi+1 is

5.3. DECIDING QUERY ENTAILMENT FOR SHOQ 133

not a successor of wi. Due to the canonicity of I, we have that, for some i with

1 ≤ i ≤ m, (oi, wi) = (o′, ε). We distinguish two cases:

1. i = m and (oi, wi) = (om, wm) = (o′, w′) = (o′, ε) and

2. i < m.

For (1): Since m > 2, by definition of the semantics and of canonical models,

we have that the pair (om−2, wm−2) is in (∃t.(∃t.({o′})))I . Since t ∈ NtR, o′ ∈

nom(K), by definition of elimTrans(K) we have that elimTrans(K) contains an ax-

iom ∃t.(∃t.({o′})) v ∃t.({o′}), which implies that (om−2, wm−2) ∈ (∃t.({o′}))I .

Repeating this argument for the preceding elements on the path yields that

(o1, w1) = (o, w) ∈ (∃t.({o′}))I , ((o, w), (o′, w′)) ∈ tI ∩ tI
′

and, since t v*Rr,

((o, w), (o′, w′)) ∈ rI∩rI
′

. By the arbitrariness of r, we have that ((o, w), (o′, w′)) ∈

RI and, hence, (o′, w′) ∈ CI , contradicting our assumption.

For (2): Let i be the maximal i < m such that (oi, wi) = (o′, ε). Applying

the same arguments as for (1), we have that ((o, w), (o′, ε)) ∈ RI ∩ RI′

. By the

canonicity of I, and since i < m, we have that, for each j with 1 ≤ j ≤ n, there

is a transitive role tj ∈ NtR such that tj v*Rrj and, since elimTrans(K) contains

the axiom ∀R.C v ∀T.(∀T.C), we have that (o′, ε) ∈ ∀T.CI . Since i is maximal

and by the canonicity of I, (o′, wj+1) is a successor of (o′, wj) for each j with

i ≤ j < m and we can apply the same arguments as used for the first case.

Lemma 5.20. Let K be a SHOQu knowledge base with |K| = m and the length

of the longest role conjunction occurring in K is n. Then there is a polynomial p

such that |elimTrans(K)| is bounded by 2p(n)·log p(m).

Proof. Both the number of nominals and the number of transitive roles in K is

clearly bounded by m. Hence, the number of axioms from step (2) is at most

quadratic in m. The number of concepts of the form D = ∀R.C ∈ cl(K) with

R = r1 u . . . u r` is clearly also bounded by m. For each role ri occurring in R

we have at most m choices of transitive roles. Since the longest role conjunction

is of length n, each such concept D can give rise to at most mn axioms of size

linear in the size of D, which proves the claim.

In the remainder, we assume without further notice that existential and

universal restrictions in ALCHOQu knowledge bases are expressed using num-

ber restrictions. This is clearly without loss of generality since all roles in an

ALCHOQu knowledge base are simple, and hence we can make use of the fol-

lowing equivalences: ∃R.C ≡ > 1 R.C and ∀R.C ≡ 6 0 r.(¬C).

134 CHAPTER 5. QUERY ANSWERING FOR SHOQ

5.3.3 Alternating Automata

Alternating automata on infinite trees are a generalisation of non-deterministic

automata on infinite trees [110], and they allow for a very elegant description

of decision procedures for very expressive logics. They were first introduced by

Muller and Schupp [80]. In this section, we devise an alternating automaton

that accepts exactly (abstractions) of models of ALCHOQu knowledge bases.

Such automata have first been used in the context of modal logics [119] and

have also been extended to the hybrid µ-calculus [95] (with converse programs),

i.e., for deciding the consistency of ALCIO knowledge bases with a universal

role and fixpoints. The latter approach, however, lacks support for qualified

number restrictions and adding those would result in a logic that is no longer

decidable in ExpTime [112]. Recently, alternating automata have also been used

for answering regular path queries in ALCQIbreg , which are a generalisation of

unions of conjunctive queries [25]. Both of the aforementioned approaches use

two-way alternating automata that are ideally suited for logics that allow for

inverse roles (converse programs in the µ-calculus). Since the logic we consider

here does not support inverse roles, we choose the slightly simpler standard (one-

way) alternating automata, where we can only move downwards in input tree.

We use the same definition for trees as in Definition 4.1 (cf. page 63). Addi-

tionally, for w a node in a tree T we define w · 0 = w. A labelled tree over an

alphabet Σ is a pair (T,L), where T is a tree and L : T → Σ maps each node in

T to an element of Σ.

Alternating automata have the power of making both universal and existential

choices. Informally, this means that in the transition function, we can create

copies of the automaton, send them to successor nodes, and require that either

some (existential) or all (universal) of them are accepted. We use, as usual,

positive Boolean formulae as defined below in the specification of the transition

function.

Definition 5.21. Let X be a set of atoms. The set B+(X) of positive Boolean

formulae is built over atoms from X, true, and false using only the connectives ∧

and ∨. Let X> be a subset of X. We say that X> satisfies a formula φ ∈ B+(X)

if assigning true to all atoms in X> and false to all atoms in X \ X> makes φ

true.

Let [k] = {0, 1, . . . , k}. An alternating looping tree automaton on k-ary Σ-

labelled trees is a tuple A = (Σ, Q, δ, q0), where Q is a finite set of states, q0 ∈ Q

5.3. DECIDING QUERY ENTAILMENT FOR SHOQ 135

is the initial state, and δ : Q× Σ→ B+([k]×Q) is the transition function.

A run of A on a Σ-labelled k-ary tree (T,L) is a (T ×Q)-labelled tree (Tr,Lr)

that satisfies the following conditions:

• Lr(ε) = (ε, q0),

• if y ∈ Tr with Lr(y) = (x, q) and δ(q,L(x)) = φ, then there is a (possibly

empty) set S ⊆ [k]×Q that satisfies φ such that, for each (c, q′) ∈ S, y has

a successor y · i in Tr with i ∈ IN and Lr(y · i) = (x · c, q′).

An automaton A accepts an input tree T if there exists a run of A on T . The

language accepted by A, lang(A), is the set of all trees accepted by A. 4

For alternating automata, the non-emptiness problem is the following: given

an alternating automaton A, is there a tree (T,L) such that A has an accepting

run on (T,L)? It is known that this problem is solvable in time that is exponential

in the number of A’s states [117].

Please note that, since we use looping automata, we do not impose any ac-

ceptance conditions and each run is accepting, i.e., we require only that the

conditions imposed on a run are satisfied. Other existing automata based proce-

dures for Description or Modal Logics use Büchi or parity acceptance conditions

[25, 95, 119], usually because the logics allow for the transitive closure operator

to be used on roles, which is not the case for ALCHOQu.

5.3.4 Tree Relaxations

In this section, we show how we can obtain labelled k-ary trees from a model for

an ALCHOQu knowledge base such that these trees can be used as input for our

automaton. We make use of canonical models here since they already have a kind

of forest shape, which is a good starting point for building tree representations.

Since the labelled trees that an automaton takes as input cannot have labelled

edges, we additionally store, in the label of a node, with which roles it is related to

its predecessor. Unfortunately, this does not work for the nominal nodes since a

nominal node can be the successor of arbitrary elements and does not necessarily

have a unique predecessor. In a first step, we build, therefore, a relaxation for a

canonical model where, for each relationship between a node and a nominal node,

we create a dummy node that is a representative of the nominal node. The label of

the representative node is the extension of the label for the nominal node with rep

136 CHAPTER 5. QUERY ANSWERING FOR SHOQ

and the role names with which the node is related to the nominal. For a graphical

illustration, we use again the knowledge base K from Example 5.2 on Page 111.

More precisely, we use the equisatisfiable ALCHOQu version elimTrans(K), which

also contains the axioms ∃t.(∃t.({o})) v ∃t.({o}) and ∃t′.(∃t′.({o})) v ∃t′.({o}).

s

(o′, ε) o′

s

(o′, 1)(o, 1)

(o, 111) D

r, t′

(o, 11)

r, t′

C

t

t

(o, ε) o

Figure 5.8: A representation of a canonical model I for elimTrans(K).

s

(o, ε) o (o′, ε) o′

(o, 11) r, t′

r, t′, D(o, 111)

(o, 111)↑(o, ε)

t, C(o, 1)

t, rep, o

(o′, ε)↑(o, ε) (o′, 1)
s, rep, o

Figure 5.9: A graphical representation of a relaxation for K.

Figure 5.8 shows a canonical model for elimTrans(K) and Figure 5.9 shows a

relaxation for K built from I. In a second step, we build labelled trees from a

relaxation, which we call tree relaxations.

Definition 5.22. Let K = (T , R) be an ALCHOQu knowledge base over a

signature S = (NC , NR, NI). A set H ⊆ cl(K) is called a Hintikka set for K if

the following conditions are satisfied:

5.3. DECIDING QUERY ENTAILMENT FOR SHOQ 137

1. For each C v D ∈ T , nnf(¬C) tD ∈ H .

2. If C uD ∈ H , then {C, D} ⊆ H .

3. If C tD ∈ H , then {C, D} ∩H 6= ∅.

4. There is no concept name A ∈ NC ∩ cl(K) with {A,¬A} ⊆ H .

5. For all C ∈ cl(K), either C ∈ H or nnf(¬C) ∈ H .

We use H(K) to denote the set of all Hintikka sets for K.

A relaxation R = (∆I ,L) for K with L : ∆I → 2cl(K)∪rol(K)∪{rep} satisfies the

following properties:

(R1) Let D = nom(K) × IN∗ and B = {d↑d′ | d ∈ D and d′ ∈ nom(K) × {ε}},

then ∆I ⊆ D ∪ B.

(R2) For each o ∈ nom(K), (o, ε) ∈ ∆I .

(R3) Each set {w | (o, w) ∈ ∆I ∩D is a tree}.

(R4) If d↑d′ ∈ ∆I ∩ B, then {d, d′} ⊆ ∆I ,L(d↑d′) ∩ cl(K) = L(d′) ∩ cl(K), and

rep ∈ L(d↑d′).

(R5) For each d ∈ ∆I ,L(d) ∩ cl(K) ∈ H(K).

(R6) For each d ∈ ∆I , if r v s ∈ R and r ∈ L(d), then s ∈ L(d).

(R7) For each (o, ε) ∈ ∆I ,L(o, ε) ∩ rol(K) = ∅.

(R8) If d = (o, w) ∈ ∆I and (> n (r1 u . . . u rk).C) ∈ L(d), then there are

n distinct elements d1, . . . , dn ∈ ∆I such that, for each i with 1 ≤ i ≤

n, {r1, . . . , rk, C} ⊆ L(di) and either di = (o, w · c) with c ∈ IN or di = d↑

d′ ∈ ∆I ∩ B.

(R9) If d = (o, w) ∈ ∆I and (6 n (r1 u . . . u rk).C) ∈ L(d), then]({d′ ∈ ∆I |

d′ = (o, w · c) for some c ∈ IN or d′ = d↑do ∈ ∆I ∩ B and {r1, . . . , rk, C} ⊆

L(d′)}) ≤ n.

4

Lemma 5.23. Let K be an ALCHOQu knowledge base. K has a relaxation iff

K is consistent.

138 CHAPTER 5. QUERY ANSWERING FOR SHOQ

Proof. For the if direction, let I = (∆I ,·I) be a canonical model of K, which

exists due to Lemma 5.17. From I, we define a relaxation R = (∆I ′,L) for K

where

∆I ′ = ∆I ∪ {d↑d′ | d, d′ ∈ ∆I and there is some r ∈ rol(K) and o ∈ nom(K)

such that (d, d′) ∈ rI , and oI = d′}

and L is the smallest set that satisfies the following conditions:

1. For each d ∈ ∆I , {C ∈ cl(K) | d ∈ CI} ⊆ L(d).

2. For each d↑d′ ∈ ∆I ′ \∆I , {C ∈ cl(K) | d′ ∈ CI} ∪ {rep} ⊆ L(d↑d′).

3. For each (o, w) ∈ ∆I with w = w′ · c for w′ ∈ IN+ and c ∈ IN, {r ∈ rol(K) |

((o, w′), (o, w)) ∈ rI} ⊆ L(o, w).

4. For each d↑d′ ∈ ∆I ′ \∆I , {r ∈ rol(K) | (d, d′) ∈ rI} ⊆ L(d↑d′).

It is not hard to check that, by definition of canonical models and by definition

of R from I, R is a relaxation for K.

Let R = (∆I ′,L) be a relaxation for K. We define an interpretation I =

(∆I ,·I) from R as follows:

1. ∆I = ∆I ′ \ {d | rep ∈ L(d)}

2. For each o ∈ nom(K), {o}I = {d ∈ ∆I | {o} ∈ L(d)}.

3. For each A ∈ cl(K) ∩NC , AI = {d ∈ ∆I | A ∈ L(d)}.

4. For each r ∈ rol(K), rI =

{(d, d′) ∈ ∆I ×∆I | r ∈ L(d′), d = (o, w), and d′ = (o, w · c) for c ∈ IN} ∪

{(d, d′) ∈ ∆I ×∆I | d↑d′ ∈ ∆I ′ and r ∈ L(d↑d′)}

We first show that I is a model of K. Clearly I |= R due to Property R6 of

relaxations and by definition of ·I from R. Nominals are interpreted as singleton

sets due to Properties R4, R2, and by definition of ∆I from ∆I′. Since, by

Property R5, L(d) ∩ cl(K) is a Hintikka set for each d ∈ ∆I ′, we only have to

show that number restrictions are not violated. For each concept C ∈ cl(K),

Condition 5 of Hintikka sets forces a decision whether C or nnf(¬C) is in the set.

This allows us, for an at least number restriction 6 n (r1 u . . . u rk).C to simply

count the successors that contain r1, . . . , rk and C in their label. This, together

5.3. DECIDING QUERY ENTAILMENT FOR SHOQ 139

with Properties R8, R9, and R1, and by definition of ·I from R for roles proves

the claim.

In a second step, we build a so-called tree relaxation that is a labelled tree.

For this, we additionally add a dummy root node labelled with root that has all

nominal nodes as successors, and we require that the domain is a tree.

s

(o, ε) o

(o, 111)↑(o, ε)

t, C(o, 1)

(o, 11) r, t′

(o, 111) r, t′, D

t, rep, o

(o′, ε) o′

ε root

t, rep, o

s, rep, os
t, C

r, t′111

1111 r, t′, D

11111

22

o′2o1

(o′, ε)↑(o, ε) 11(o′, 1) 21
s, rep, o

Figure 5.10: On the left hand side, we again see the relaxation from Figure 5.9
together with a tree relaxation built from it.

Figure 5.10 shows a representation of a tree relaxation built from the relax-

ation for our running example. The tree relaxation can, additionally, have dummy

nodes labelled with #, but we do not show any dummy nodes in the figure. For

ease of presentation, we assume in the remainder that all tree relaxations are full

trees, i.e., all non-leaf nodes have the same number of successors, and we add

dummy nodes labelled with # where necessary.

Definition 5.24. Let K = (T , R) be an ALCHOQu knowledge base over a

signature S = (NC , NR, NI). A tree relaxation for K is a labelled tree (T,L) with

L : T → 2cl(K)∪rol(K)∪{rep,#,root} that satisfies the following conditions:

(T1) L(ε) = {root} and, for each w ∈ IN+,L(w) ∩ {root} = ∅.

(T2) For each o ∈ nom(K), there is a unique c ∈ IN ∩ T with o ∈ L(c) and

{rep, #, rol(K)} ∩ L(c) = ∅.

140 CHAPTER 5. QUERY ANSWERING FOR SHOQ

(T3) If c ∈ IN ∩ T and nom(K) ∩ L(c) = ∅, then L(c) = {#}.

(T4) For each w ∈ IN+ ∩ T,](L(w) ∩ nom(K)) ≤ 1.

(T5) For each w = w′ · c ∈ T with w′ ∈ IN+ and c ∈ IN, if L(w) ∩ nom(K) 6= ∅,

then rep ∈ L(w).

(T6) For each w, w′ ∈ T and o ∈ nom(K), if o ∈ L(w)∩L(w′), then cl(K)∩L(w) =

cl(K) ∩ L(w′).

(T7) For each w ∈ IN+ ∩T , if {rep, #}∩L(w) 6= ∅, then, for each successor w′ of

w, # ∈ L(w′).

(T8) For each w ∈ T , if L(w) ∩ {#, root} = ∅, then L(w) ∩ cl(K) ∈ H(K).

(T9) For each w ∈ T and r v s ∈ R, if r ∈ L(w), then s ∈ L(w).

(T10) For each w ∈ T , if (> n (r1 u . . .u rm).C) ∈ L(w), then there are at least n

distinct successors w1, . . . , wn of w with {r1, . . . , rm, C} ⊆ L(wi), for each i

with 1 ≤ i ≤ n.

(T11) For each w ∈ T , if (6 n (r1u . . .u rm).C) ∈ L(w), then there are at most n

distinct successors w1, . . . , wn of w with {r1, . . . , rm, C} ⊆ L(wi), for each i

with 1 ≤ i ≤ n.

If T has branching degree k, then we say that (T,L) is a k-ary tree relaxation for

K . 4

Lemma 5.25. Let K be an ALCHOQu knowledge base, nmax the maximal num-

ber occurring in a number restriction in K, and k = nmax · |K| +](nom(K)). K

has a k-ary tree relaxation iff K is consistent.

Proof. For the only if direction, we show that we can build a relaxation R =

(∆I ,L′) for K from a k-ary tree relaxation (T,L), which, by Lemma 5.23, is

enough to prove the claim. We define a non-deterministic function choose that

returns, for a concept C ∈ cl(K) and an element w ∈ T such that C ∈ L(w) and

rep /∈ L(w), a subset SC,w of T such that

1. if C = (> n (r1 u . . . u rm).D), then SC,w = {w · c1, . . . , w · cn}, where, for

each i with 1 ≤ i ≤ m, ci ∈ {1, . . . , k}, {r1, . . . , rm, D} ⊆ L(w · ci), and

/∈ L(w · ci), and

5.3. DECIDING QUERY ENTAILMENT FOR SHOQ 141

2. SC,w = ∅ otherwise.

Such a function exists by Property T10 of tree relaxations.

We now inductively define the domain ∆I of R together with a total and

injective mapping τ : ∆I → T . We first fix the roots of R: for each o ∈ nom(K),

(o, ε) ∈ ∆I and τ(o, ε) = c for c ∈ {1, . . . , k}, o ∈ L(c), and # /∈ L(c). Such a

unique element c exists due to Property T2 of tree relaxations. For the induction:

Let (o, w) ∈ ∆I , τ(o, w) = w̄, C = (> n R.D) ∈ L(w̄), c ∈ choose(C, w̄). We

distinguish two situations:

1. If rep /∈ L(w̄ · c), then (o, w · c) ∈ ∆I and τ(o, w · c) = w̄ · c.

2. If rep ∈ L(w̄ ·c), then d↑d′ ∈ ∆I with d = (o, w), d′ = (o′, ε) for o′ ∈ L(w̄ ·c),

and τ(d↑d′) = w̄·c. Such o′ exists and is unique due to Properties T4 and T5.

The latter case adds those elements that represent links back to some nominal.

Such elements have a different form from the other elements of the domain and

have only dummy descendants in T due to Property T7.

Now let L′ : d 7→ L(τ(d)), for each d ∈ ∆I . It is not hard to check that R is

indeed a relaxation for K.

For the if direction: Let k′ = nmax · |K|. By Lemma 5.17, K has a k′-ary

canonical model I. Let (∆I ,L′) be the relaxation built from I as shown in the

proof of Lemma 5.23. We use (∆I ,L′) to inductively define a tree relaxation

(T,L) for K together with a total and injective mapping τ from ∆I to T as

follows:

1. For each (o, ε) ∈ ∆I , there is a unique c ∈ T ∩ IN with τ(o, ε) = c.

2. For each (o, w), (o, w′) ∈ ∆I , if w′ is a successor of w, then τ(o, ε) · w′ ∈ T

and τ(o, w′) = τ(o, ε) · w′.

3. For each d↑d′ ∈ ∆I with τ(d) = w and τ(d′) = c, w′ = w · (k′ + c) ∈ T and

τ(d↑d′) = w′.

4. For each d ∈ ∆I , L(τ(d)) = L′(d).

5. L(ε) = {root}.

It is not hard to check that, for each (o, w) ∈ ∆I , there are at most k′ elements

(o, w′) ∈ ∆I such that w′ is a successor of w and there are at most](nom(K))

142 CHAPTER 5. QUERY ANSWERING FOR SHOQ

elements of the form (o, w)↑(o′, ε) ∈ ∆I . Hence, the tree T has indeed branching

degree k since, for each node, we require at most k′ successors in Step 2 and at

most](nom(K)) successors in Step 3. It is not hard to check that, by definition

of (T,L) from (∆I ,L′), (T,L) satisfies all properties for tree relaxations.

5.3.5 Deciding Existence of Tree Relaxations

In order to decide consistency of an ALCHOQu knowledge base K, it remains

to devise a procedure that decides whether K has a tree relaxation. For this, we

define an alternating automaton that accepts exactly the tree relaxations of K.

More precisely, we first define two alternating automata ĀK and AK, and then

define an automaton BK as their intersection. Informally, the automaton ĀK just

checks that the input tree has a structure as required whereas the automaton

AK checks that the input is indeed a tree relaxation for K. For alternating

automata, intersection is simple: we introduce a new initial state q0 and set

δ(q0, σ) = (0, q(0,1)) ∧ (0, q(0,2)), where q(0,1) and q(0,2) are the initial states of ĀK

and AK respectively. The size of the resulting automaton is the sum of the sizes

of ĀK and AK.

The automaton ĀK is relatively straightforward and helps to keep the defini-

tion of the automaton AK, where we do the real work, transparent. Informally,

it guarantees the following:

• We distinguish root (state qr), nominal (state qo), nominal representative

(state qrep), dummy (state q#), and normal nodes (state qn).

• The label root is only found in the root node.

• The level one nodes are either “real” nominal nodes (i.e., they are not

marked as representatives with rep) with exactly one nominal and no roles

in their label, or they are dummy nodes labelled with # only.

• The level one nominal nodes have either normal, nominal representative, or

dummy nodes as successors.

• Nominal representative nodes are marked with rep, and have exactly one

nominal in their label.

• Dummy nodes have only dummy nodes as successors.

5.3. DECIDING QUERY ENTAILMENT FOR SHOQ 143

More precisely, let nmax be the maximal number occurring in number restric-

tions in K, and k = nmax · |cl(K)|+](nom(K)). The alphabet Σ for both automata

ĀK and AK is

2{rep,#,root}∪cl(K)∪rol(K)∪nom(K).

We define ĀK as (Σ, {qr, qo, qn, qrep, q#}, δ̄, qr). The transition function δ̄ is as

follows:

δ̄(qr, σ) =

{

∧k
i=1(i, qo) ∨ (i, q#) if σ = {root}

false otherwise

δ̄(qo, σ) =











∧k
i=1((i, qn) ∨ (i, qrep) ∨ (i, q#)) if](nom(K) ∩ σ) = 1 and

{root, rep, #, rol(K)} ∩ σ = ∅

false otherwise

δ̄(qn, σ) =

{

∧k
i=1((i, qn) ∨ (i, qrep) ∨ (i, q#)) if {root, rep, #, nom(K)} ∩ σ = ∅

false otherwise

δ̄(qrep, σ) =

{

∧k
i=1(i, q#) if](nom(K) ∩ σ) = 1, rep ∈ σ, and {root, #} ∩ σ = ∅

false otherwise

δ̄(q#, σ) =

{

∧k
i=1(i, q#) if {#} = σ

false otherwise

The automaton AK mainly checks the formulae occurring in the labels of

the input. Hence, most of the states correspond to formulae in cl(K) and the

transition function is more or less determined by the semantics. In the root

node, we additionally make a non-deterministic choice, for each nominal and

each atomic concept, whether the concept or its negation holds at the nominal

node. This choice is propagated downwards in the tree in order to ensure that

the nominal representatives agree with their corresponding real nominal nodes

on all atomic concepts. This enables us to simply count over the successors of a

node for the qualified number restrictions. We propagate the concepts via a kind

of universal role and we assume that u is a symbol that does not occur in cl(K)

or rol(K). We define, therefore, the following set of auxiliary states

Qrep ={¬{o} t A | o ∈ nom(K) and A ∈ NC ∩ cl(K)}∪

{¬{o} t ¬A | o ∈ nom(K) and A ∈ NC ∩ cl(K)}.

144 CHAPTER 5. QUERY ANSWERING FOR SHOQ

We then define AK as (Σ, Q, δ, q0), where q0 is the initial state and the set Q

of states is

{q0} ∪ cl(K) ∪ rol(K) ∪ {¬r | r ∈ rol(K)} ∪ {qT , qR} ∪Qrep ∪ {∀u.C | C ∈ Qrep}∪

{〈./ nR.C, i, j〉 |./∈ {6, >}, ./ nR.C ∈ cl(K), and 0 ≤ i, j ≤ k},

States of the form 〈./ n R.C, i, j〉 are used to check that the number restric-

tions are satisfied. We now give a definition for the transition function together

with an explanation for each of the different types of states. For each σ ∈ Σ, the

transition function δ is defined as follows:

The Root Node At the root node, we are in the initial state q0 which has

the following tasks: (a) we make the non-deterministic guesses for all atomic

concepts, (b) we check that there is exactly one nominal node for each of the

nominals in nom(K), and (c) we make sure that the GCIs and in T and the RIAs

in R are satisfied in all non-dummy descendants. The automaton ĀK guarantees

already that each non-dummy level one node has exactly one nominal in the label.

Let ` =](nom(K)).

δ(q0, σ) =
∧

A∈σ∩NC

∧̀

i=1

(

k
∧

j=1

(j, ∀u.(¬{oi} tA)) ∨
k
∧

j=1

(j, ∀u.(¬{oi} t ¬A))

)

∧

∧̀

i=1

k
∨

j=1

(j, {oi}) ∧
∧

1≤i<j≤k

(

∧

o∈nom(K)

(i,¬{o}) ∨ (j,¬{o})

)

k
∧

i=1

(i, qT) ∧ (i, qR)

Propagating the Non-deterministic Choice for the Atomic Concepts

at Nominal Nodes Whenever we are in a state that is used to propagate

information downwards through the whole tree via the “universal role” and we

are not at a dummy node, we check that the required concept holds at the current

node and also check all successors. More precisely, for each C ∈ Qrep,

δ(∀u.C, σ) =



















((0, C))∧
k
∧

i=1

(i, ∀u.C) if # /∈ σ

true otherwise

5.3. DECIDING QUERY ENTAILMENT FOR SHOQ 145

TBox and RBox Axioms All non-dummy descendants of the root nodes

must satisfy the TBox and RBox axioms, which is guaranteed by the following

transitions:

δ(qT , σ) =











∧

CvD∈T

(0, (nnf(¬C) tD)) ∧
k
∧

i=1

(i, qT) if # /∈ σ

true otherwise

δ(qR, σ) =











∧

rvs∈R

((0,¬r) ∨ (0, s)) ∧
k
∧

i=1

(i, qR) if # /∈ σ

true otherwise

Atomic Concepts and Roles The concepts that are used as states are in-

ductively decomposed according to the semantics. We start by defining the base

cases:
For each α ∈ (NC ∩ cl(K)) ∪ rol(K) ∪ nom(K)

δ(α, σ) =







true if α ∈ σ

false otherwise

δ(¬α, σ) =







true if α /∈ σ

false otherwise

Nominals Since we use constructors for nominals, they are not handled as

atomic concepts:

For each o ∈ nom(K),

δ({o}, σ) = (0, o)

δ(¬{o}, σ) = (0,¬o)

Conjunction and Disjunction Conjunction and disjunction are handled in

the straightforward way:

For each C1 u C2 ∈ cl(K), δ(C1 u C2, σ) = (0, C1) ∧ (0, C2)

For each C1 t C2 ∈ cl(K), δ(C1 t C2, σ) = (0, C1) ∨ (0, C2)

Number Restrictions For number restrictions, we have to use a more sophis-

ticated technique that involves states that count how many successors have been

checked and how many of the checked ones fulfill the requirements of the num-

ber restriction. This technique was introduced by Calvanese et al. [22]. More

146 CHAPTER 5. QUERY ANSWERING FOR SHOQ

precisely, for each concept of the form (> n R.C) ∈ cl(K) with R = r1 u . . .u rm,

δ(> n R.C, σ) =

{

(0, 〈> n R.C, 0, 0〉) if rep /∈ σ

true otherwise

For 1 ≤ i ≤ k and 1 ≤ j ≤ n

δ(〈> n R.C, i, j〉, σ) = (((i,¬r1) ∨ . . . ∨ (i,¬rm) ∨ (i, nnf(¬C)))∧

(0, 〈> n R.C, i + 1, j〉))∨

((i, r1) ∧ . . . ∧ (i, rm) ∧ (i, C)∧

(0, 〈> n R.C, i + 1, j + 1〉))

For 1 ≤ i ≤ k

δ(〈> n R.C, i, n〉, σ) = true

For 1 ≤ j < n

δ(〈> n R.C, k, j〉, σ) = false

Informally, we use the counter i to count how many of the k successors have al-

ready been checked and j is increased for each successor that fulfills the require-

ments of the number restriction. The atmost number restrictions are handled

similarly:

δ(6 n R.C, σ) =

{

(0, 〈6 n R.C, 0, 0〉) if rep /∈ σ

true otherwise

For 1 ≤ i ≤ k and 1 ≤ j ≤ n

δ(〈6 n R.C, i, j〉, σ) = (((i,¬r1) ∨ . . . ∨ (i,¬rm) ∨ (i, nnf(¬C)))∧

(0, 〈6 n R.C, i + 1, j〉))∨

((i, r1) ∧ . . . ∧ (i, rm) ∧ (i, C)∧

(0, 〈6 n R.C, i + 1, j + 1〉))

For 1 ≤ i ≤ k

δ(〈6 n R.C, i, n + 1〉, σ) = false

For 1 ≤ j < n

δ(〈6 n R.C, k, j〉, σ) = true

We can now check whether the language accepted by the automaton BK is

empty, which is enough to decide consistency of K as shown by the following

theorem:

5.3. DECIDING QUERY ENTAILMENT FOR SHOQ 147

Theorem 5.26. Let K be an ALCHOQu knowledge base and BK an alternating

automaton as defined above. Then K is consistent iff the language accepted by

BK is non-empty.

Proof. The if direction is mainly a consequence of the definition of the transition

function for ĀK and AK. We show that each tree (T,L) accepted by BK is a tree

relaxation for K by showing that it satisfies all the conditions for tree relaxations.

By Lemma 5.25 this suffices to prove the claim.

Property T1 holds by definition of ĀK. Property T2 holds by definition of

the transition function for the initial state of AK. Property T3 holds due to the

definition of the transition function for the states qr, qo, and q#. Properties T4

and T5 hold by definition of the transition function for qo, qn, and qrep in ĀK.

Property T6 holds due to the definition of the transition function for q0 and the

states of the form ∀u.(¬{o}tC). Property T7 holds by definition of the transition

function for qrep and q# in ĀK. Property T8 and T9 hold due to the definition of

the transition function for q0, qT , and qR in AK. Finally, Property T10 and T11

are a consequence of the transition functions for number restrictions in AK.

For the only if direction: We show that, if K is consistent, then there is

a tree relaxation (T,L) for K such that BK has an accepting run on (T,L).

Let nmax be the maximal number occurring in a number restriction in K and

k = nmax · |cl(K)| +](nom(K)). By Lemma 5.25, K has a k-ary tree relaxation

(T,L).

We first show that ĀK accepts (T,L): due to Property T1, the root and only

the root of T is labelled with {root} as required by the transition function for the

initial state. Due to Property T3, all non-nominal successors are dummy nodes

labelled with {#}. Due to Property T2, the labels of all nominal successors (state

qo) contain exactly one nominal, no roles, and neither rep nor #. All successors

of the nominal nodes have to be normal nodes (state qn), nominal representatives

(state qrep), or dummy nodes (state q#). For q#, this is quite trivial, due to

Property T7. For qrep, due to Properties T5 and T4, a successor has at most one

nominal in its label and, if it has one, then it also has rep in its label. All other

states are trivially normal states and the transition function is satisfied.

Hence, we have to show that AK also accepts (T,L). First, due to Prop-

erty T6, a nominal node and its representatives agree on all atomic concepts, so

the non-deterministic choice for the atomic concepts and states qrep can easily be

satisfied. The other conditions for the initial state hold due to Properties T2, T3,

148 CHAPTER 5. QUERY ANSWERING FOR SHOQ

T8, and T9. The conditions for qT and qR hold due to Properties T8 and T9.

The transition function on atomic concepts, roles, conjunction, and disjunction

trivially hold since labels are Hintikka sets due to Property T8. Finally, the

number restrictions are satisfied due to the definition of Hintikka sets and by

Properties T10 and T11. Hence, BK accepts (T,L) as required.

5.3.6 Combined Complexity

As before (cf. Section 4.3.1) and, without loss of generality, we assume for the

complexity analysis that all concepts in concept atoms of the input query are

literals, i.e., concept names or negated concept names. We first analyse the

complexity of checking the consistency of ALCHOQu knowledge bases. We can

combine this result with the results from Lemma 5.19 and Lemma 5.20 about re-

ducing consistency checking of SHOQu knowledge bases to consistency checking

of ALCHOQu knowledge bases.

Theorem 5.27. Let K be an ALCHOQu knowledge base with |K| = m, then

deciding the consistency of K can be done in deterministic time in 2p(m) for a

polynomial p assuming unary encoding of numbers in number restrictions.

Proof. Since looping alternating tree automata are a special case of alternating

Büchi tree automata, we can use the result of Vardi [117] that, for an alternating

Büchi automaton A with n states and input alphabet with ` elements, non-

emptiness of the language accepted by A is decidable in time exponential in n

and polynomial in `.

The alphabet of BK is 2{rep,#,root}∪cl(K)∪rol(K)∪nom(K) and, since cl(K), rol(K) and

nom(K) are linear in m, the number of symbols in Σ is bounded by 2p(m) for some

polynomial p.

The automaton ĀK consists of just 5 states. For the automaton AK, the

cardinality of the sets cl(K) and rol(K) is linear in m. The cardinality of Qrep

is at most quadratic in m. The number of states introduced for the number

restrictions is polynomial in m (with unary coding of numbers) and, counting

all states together, we get that their number is again polynomial in m. Hence,

emptiness of BK can be decided in time single exponential in m.

Since, by Lemma 5.19 and Lemma 5.20, a SHOQu knowledge base of size m

whose longest role conjunction is of length n can be reduced to an equisatisfiable

5.3. DECIDING QUERY ENTAILMENT FOR SHOQ 149

ALCHOQu knowledge base of size polynomial in m and exponential in n, we

obtain the following upper bound on deciding consistency of SHOQu knowledge

bases.

Theorem 5.28. Let K be a SHOQu knowledge base where |K| = m and the

length of the longest role conjunction occurring in K is n. Deciding the consistency

of K can be done in deterministic time in 2p(m)·2p(n)
for a polynomial p assuming

unary encoding of numbers in number restrictions.

A straightforward consequence of the above is that, without role conjunctions,

i.e., for SHOQ knowledge bases, the problem is in ExpTime. A corresponding

lower bound follows immediately from the hardness result for ALC with general

TBoxes [98].

Corollary 5.29. For a SHOQ knowledge base K with |K| = m, deciding the

consistency of K is an ExpTime-complete problem assuming unary encoding of

numbers in number restrictions.

Combining Theorem 5.14, Theorem 5.28, and the upper bounds on the number

and sizes of extended knowledge bases from Lemma 5.15, we get the following:

Theorem 5.30. Let K be a SHOQ knowledge base with |K| = m assuming unary

coding of numbers and q a union of connected Boolean conjunctive queries with

|q| = n. Deciding whether K |= q under the unique name assumption can be done

in deterministic time in 2p(m)2p(n)
for some polynomial p.

We can apply the same technique (cf. Lemma 4.26 and Lemma 2.9) that we

used for SHIQ in order to show that the complexity results carry over when we

do not make the unique name assumption and/or when we do not require the

disjuncts in the input query to be connected conjunctive queries, which gives the

following corollary:

Corollary 5.31. Let K be a SHOQ knowledge base with |K| = m assuming unary

coding of numbers and q a union of Boolean conjunctive queries with |q| = n.

Deciding whether K |= q can be done in deterministic time in 2p(m)2p(n)
for some

polynomial p.

150 CHAPTER 5. QUERY ANSWERING FOR SHOQ

5.3.7 Consequential Results

Due to the correspondence between query containment and query answering [19],

the algorithm can also be used to decide containment of two unions of conjunctive

queries over a SHOQ knowledge base, which gives the following result:

Corollary 5.32. Given a SHOQ knowledge base K and two unions of conjunc-

tive queries q and q′, the problem whether K |= q ⊆ q′ is decidable.

By using [92, Thm. 11], we also show that the consistency of a SHOQ knowl-

edge base extended with (weakly-safe) Datalog rules is decidable.

Corollary 5.33. The consistency of SHOQ+log-KBs (both under FOL seman-

tics and under NM semantics) is decidable.

5.4 Summary

We have presented a decision procedure for unions of Boolean conjunctive queries

in SHOQ that runs in deterministic time single exponential in the size of the

input knowledge base and double exponential in the size of the input query. As

for the complexity of knowledge base consistency, the upper bounds for SHOQ

agree with the ones for SHIQ. It is still an open problem as to whether this is

also the case for the lower bounds. The hardness proof for SHIQ [73] very much

relies on the ability to propagate information upwards via inverse roles. Nominals

however, also give the possibility of propagating information upwards, which may

be used to obtain a similar hardness result for SHOQ. The complexity results

for SHOQ are currently restricted to unary coding of numbers, but a similar

construction as used by Tobies [112] could possibly be used to show that the

result also applies to the case of binary coding of numbers.

The problem of data complexity for SHOQ is not as clearly defined as for

SHIQ, since, in the presence of nominals, we can internalise the ABox and

the clear separation between schema and data is no longer given. One could,

however, still separate the part of the data that uses nominals only in a form

that corresponds to ABox assertions and study the complexity of the algorithm

w.r.t. this part as input, but we leave the study of the data complexity of this

problem for future work.

As for SHIQ, it is worth noting that, except for the collapsing step, all rewrit-

ing steps are only applicable to non-simple roles. It is, therefore, not unlikely that

5.4. SUMMARY 151

most real-world queries will produce a relatively small set of rewritings. Since the

size of the query is usually small compared to the size of the queried knowledge

base, and since the algorithm is “only” double exponential in the size of the query,

a more goal directed version of the algorithm might still be useful for practical

applications.

Chapter 6

Conclusions

In this thesis, we have presented several results regarding conjunctive query en-

tailment. We have pointed out mistakes and sources of incompleteness in existing

algorithms, presented new decision procedures and query answering techniques

together with a range of complexity results, which we briefly summarise in this

chapter.

6.1 Thesis Achievements

In Chapter 3, we have introduced related work and analysed existing algorithms

for conjunctive query entailment in expressive Description Logics. We anal-

yse why the decision procedure for conjunctive query entailment in DLRreg by

Calvanese et al. [19] is incomplete when regular expressions are allowed in the

queries.

Secondly, we briefly introduce the CARIN system [72], which provides a deci-

sion procedure for conjunctive query entailment in the Description LogicALCNR

and which has been extended to SHIQ for queries with only simple roles [83]. We

give an example of why the completeness proof for the extension of the CARIN

technique to SHIQ with arbitrary roles in the query [85] does not work and we

discuss why a straightforward extension of this technique to SHOIQ with only

simple roles in the query [84] is either incomplete or non-terminating.

Thirdly, we show in this chapter how the ↓ operator known from Hybrid

Logics can be used in the setting of query answering. This operator allows a

very elegant way of expressing queries as concepts but, in an unrestricted form,

it makes even the basic Description Logic ALC undecidable. We show, however,

152

6.2. SIGNIFICANCE OF THE RESULTS 153

that for deciding query entailment, we need only a very restricted form of the ↓

binder and we sketch how the tableau algorithm for SHIQ can be extended in

order to deal with the concepts that we obtain from a conjunctive query.

Various attempts at extending the above mentioned, known techniques or

logics to SHIQ, SHOQ, or SHOIQ with transitive roles in the query have

failed [84, 85, 109]. Hence, we have developed a new technique based on query

rewriting.

The main results of this thesis are presented in Chapter 4 and in Chapter 5,

where we present decision procedures for entailment of unions of conjunctive

queries in SHIQ and SHOQ, respectively. Prior to our work, it was open

whether conjunctive query entailment was decidable in such expressive Descrip-

tion Logics. The presented algorithms rewrite a given query into a set of queries

that are of a simpler structure. Using the standard rolling-up technique, we then

express these simpler queries as concepts that may additionally use role conjunc-

tions. The task of checking query entailment is then reduced to possibly several

knowledge base consistency checks for SHIQu and SHOQu, respectively. For

checking knowledge base consistency in SHIQu, we extend the translation given

by Tobies [112], which allows us to exploit the complexity results obtained for

ALCQIb in our setting. For SHOQu, we reduce the problem of knowledge base

consistency to the emptiness problem for looping tree automata. We further anal-

yse the complexity of the given decision procedures and derive 2-ExpTime upper

bounds on the combined complexity of the problem in both logics. For SHIQ,

a recent result on the lower bound of the problem [73] yields that conjunctive

query entailment is 2-ExpTime-complete. Query answering for SHIQ is, there-

fore, strictly harder than instance retrieval. Regarding data complexity, we show

that deciding entailment of unions of conjunctive queries is a co-NP-complete

problem in SHIQ. Hence, regarding data complexity, it is not harder than other

standard reasoning tasks and, even for the much weaker DL ALE , the standard

reasoning tasks are co-NP-hard regarding data complexity.

6.2 Significance of the Results

With the growing number of Semantic Web related applications, the demand for

automated reasoning facilities as provided by modern DL reasoners increases. Al-

though DL reasoners provide highly optimised reasoning support for the standard

154 CHAPTER 6. CONCLUSIONS

reasoning tasks such as checking concept subsumption or knowledge base consis-

tency, they only provide limited support for ABox query answering, typically only

providing for the retrieval of the instances of a possibly complex concept. This

is not surprising due to the lack of decision procedures for more expressive query

languages for the DLs that are underpinning OWL. Query answering is likely

to become increasingly important, however, as ontologies mature and are more

widely deployed in applications. This is also reflected by the work of the Data

Access Working Group that developed the W3C recommendation SPARQL1: a

proposed standard for a conjunctive query language that can be used with Se-

mantic Web languages such as RDF and OWL.

In this thesis, we make a significant step towards more expressive query an-

swering facilities for Semantic Web applications: we present a decision procedure

for conjunctive query entailment in OWL Lite.2 The main challenge for a de-

cision procedure for the more expressive OWL DL is the additional support of

nominals. In this direction we also make a step forward, by presenting a decision

procedure for SHOQ, which allows for nominals, but does not support inverse

roles as would be required for OWL DL.

Finally, it is interesting to note that conjunctive queries also play an important

rôle in rule language extensions for Description Logics [92]. The least restrictive

but still decidable rule extension proposed so far is the DL+log framework [92].

This extension is decidable for a given Description Logic DL iff the entailment

problem for unions of conjunctive queries is decidable for that DL. The results

from Chapter 4 and 5 immediately imply, therefore, the decidability of this rule

extension in SHIQ and SHOQ.

We believe that the results presented in this thesis will be the basis of more

expressive reasoning services and are, therefore, directly relevant for implementors

of DL reasoners and, indirectly, for users of DL based systems. The analysis of

what is difficult in devising decision procedures for query entailment in expressive

DLs will also be helpful for other researchers who want to develop extensions of

query answering algorithms by either allowing for more expressive logics or more

expressive query languages.

Our complexity results show that, although SHIQ conjunctive query entail-

ment is a reasoning task that is strictly harder than the standard SHIQ reasoning

1http://www.w3.org/TR/2007/PR-rdf-sparql-query-20071112/
2More precisely, in an extension of OWL Lite with qualified number restrictions.

http://www.w3.org/TR/2007/PR-rdf-sparql-query-20071112/

6.3. FUTURE WORK 155

problems, the data complexity is the same. The data complexity is considered

to be a more informative performance estimate whenever the size of the TBox

and query is small compared to the size of the ABox, which is often the case

in practical applications. A more detailed analysis of our algorithms also shows

that queries that require a large number of knowledge base consistency checks

are relatively rare since most of the rewriting steps are only applicable to queries

that use non-simple roles.

6.3 Future Work

The work presented in this thesis can, basically, be extended in two directions:

one is to improve the practicability of the algorithms and the other is to extend

the framework by allowing for a more expressive underlying logic or by allowing

for a more expressive query language.

For improving practicability, there are a few optimisations that directly come

to mind and we briefly describe some of the options here:

1. Currently, the algorithms are not goal directed at all. For example, the

forest rewriting step (cf. Definition 4.5 on page 79) uses the number of

atoms in the query as a bound on the number of atoms that can replace

one role atom. The goal of this step is, however, to obtain a query that

is forest-shaped, and we can reduce the number of rewritings to those that

can indeed lead to a forest-shaped query.

2. A very simple and straightforward optimisation for the algorithms would

be to roll up all non-cyclic parts of the query as a kind of preprocessing

step. More precisely, we can, as a first step, replace all tree-shaped parts of

the query with a concept atom. By Lemma 4.7 and Lemma 5.10, this does

not affect the correctness of the algorithm. This clearly reduces the number

of atoms and variables in the query and, therefore, the overall number of

produced rewritings.

3. For cycles in a query that do contain a constant, we can use this constant

or a representative concept for it, and express the cyclic sub-query as a

concept in which we use the representative concept to enforce the necessary

co-reference. As in the previous optimisation, this can be done before any

156 CHAPTER 6. CONCLUSIONS

query rewriting is applied and reduces, therefore, the overall number of

rewritings and knowledge base consistency checks that are required.

4. Using a query entailment decision procedure for query answering is not

very efficient since we need one query entailment check for each possible

answer tuple. For finding suitable candidate tuples we can use heuristics,

i.e., simpler queries that help to exclude obvious non-candidates, or cached

results of previous queries. Some work has already been carried out in this

direction [35, 102, 120]. Returning “cheap” answers first, i.e., answers that

can be found without involving complex reasoning, might also help in prac-

tical implementations. This technique is, for example, already successfully

employed in the Racer system [120].

The above list is certainly not exhaustive, and many ideas from databases can

also be incorporated in order to make conjunctive query answering a more feasible

reasoning task in practise. The algorithms presented in this thesis are only the

starting point for implementable systems; however, our detailed analysis of the

models, in particular in the correctness proofs of the query rewriting steps, also

give valuable insights when starting to devise optimisations.

Regarding an extension to more expressive logics, SHOIQ is certainly one

of the first logics that come to mind since it underlies OWL DL. It is, therefore,

reasonable to ask, why we cannot simply combine the two algorithms that we

have for SHIQ and SHOQ in order to devise a decision procedure for conjunc-

tive query entailment in SHOIQ. The logic SHOIQ is, however, “trickier”

than SHIQ and SHOQ. The DL SHOIQ is not only in a higher complexity

class (NExpTime-complete [112] instead of ExpTime-complete as SHIQ and

SHOQ), but also devising a decision procedure for knowledge base consistency

proved to be a more difficult task and was a long-standing open problem. Most

importantly, for SHOIQ we do not know how to fix the names of the nomi-

nals a priori. Recall that a very essential property used in our proofs is the fact

that we can restrict our attention to the canonical models of a knowledge base.

The domains of these canonical models consist of a collection of trees such that

the roots correspond to the individuals occurring in the ABox of the SHIQ in-

put knowledge base or the nominals on the input SHOQ knowledge base. In

SHOIQ, however, we cannot restrict our attention to canonical models in which

only the nominals from the input knowledge base occur as roots of the trees.

If our canonical models contain also roots that do not correspond to nominals

6.3. FUTURE WORK 157

from the input knowledge base and we use only the existing nominal names in

the rewriting procedure, then our algorithm would be incomplete. On the other

hand, we cannot just introduce arbitrary new nominal names. A similar problem

already occurs when extending the query entailment algorithm from the CARIN

system to SHOIQ with queries that are restricted to contain only simple roles

(cf. the discussion in Section 3.2.2).

Existing algorithms for SHOIQ knowledge base consistency [54, 66] might

also introduce new nominals in execution of the algorithm but, for knowledge

base consistency we just need to find one model and it is possible to prove an

upper bound on the number of the required new nominals. For query entailment,

however, proving the existence of a model for the knowledge base is not enough.

We need to make a statement about every model of the knowledge base. Studying

the model theoretic properties of SHOIQ or related logics such as the guarded

fragment with counting or the two variable fragment with counting might help to

understand the structure of canonical models better. This could help to devise

a suitable adapted unravelling procedure for constructing canonical models and,

consequently, a suitably extended decision procedure for SHOIQ.

Bibliography

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison

Wesley Publ. Co., Reading, Massachussetts, 1995. [41]

[2] A. V. Aho, Y. Sagiv, and J. D. Ullman. Efficient optimization of a class of

relational expressions. ACM Transactions on Database Systems, 4:297–314,

1979. [41]

[3] H. Andréka, I. Neméti, and J. van Benthem. Modal languages and bounded

fragments of predicate logic. Journal of Philosophical Logic, 27(3):217–274,

1998. [59]

[4] F. Baader. Augmenting concept languages by transitive closure of roles: An

alternative to terminological cycles. In Proceedings of the 12th International

Joint Conference on Artificial Intelligence (IJCAI 1991), pages 446–451,

Sydney, Australia, 1991. [33]

[5] F. Baader and B. Hollunder. A terminological knowledge representation

system with complete inference algorithm. In Proceedings of the Workshop

on Processing Declarative Knowledge (PDK 1991), number 567 in Lecture

Notes in Artificial Intelligence, pages 67–86. Springer-Verlag, 1991. [14]

[6] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-

Schneider, editors. The Description Logic Handbook. Cambridge University

Press, January 2003. [12, 15]

[7] F. Baader, C. Lutz, and B. Suntisrivaraporn. Efficient reasoning in EL+.

In Proceedings of the International Workshop on Description Logics (DL

2006), CEUR Workshop Proceedings, 2006. [14]

[8] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness,

158

BIBLIOGRAPHY 159

P. F. Patel-Schneider, and L. A. Stein. OWL web ontology language refer-

ence. Technical report, World Wide Web Consortium, February 10 2004.

http://www.w3.org/TR/2004/REC-owl-ref-20040210/. [15]

[9] T. Berners-Lee, M. Fischetti, and M. L. Dertouzos. Weaving the Web:

The Original Design and Ultimate Destiny of the World Wide Web by its

Inventor. Harper San Francisco, 1999. [15]

[10] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic Web. Scientific

American, 284(5):34–43, 2001. [15]

[11] P. Blackburn and J. Seligman. Hybrid languages. Journal of Logic, Lan-

guage and Information, 4(3):251–272, 1995. Special issue on decompositions

of first-order logic. [27, 53, 55]

[12] A. Borgida. On the relative expressiveness of description logics and predi-

cate logics. Artificial Intelligence, 82(1–2):353–367, 1996. [42]

[13] A. Borgida, R. J. Brachman, D. L. McGuinness, and L. A. Resnik. CLAS-

SIC:a structural data model for objects. In Proceedings of the ACM SIG-

MOD International Conference on Management of Data, pages 59–67, 1989.

[14]

[14] R. J. Brachman. On the epistemological status of semantic networks. As-

sociative Networks, 1975. [14]

[15] R. J. Brachman and H. J. Levesque. The tractability of subsumption in

frame-based description languages. In AAAI, pages 34–37, 1984. [14]

[16] R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledge

representation system. Cognitive Science, 9(2):171–216, 1985. [14]

[17] R. J. Brachman, V. Pigman Gilbert, and H. J. Levesque. An essential

hybrid reasoning system: Knowledge and symbol level accounts in KRYP-

TON. In Proceedings of the 9th International Joint Conference on Artificial

Intelligence (IJCAI 1985), pages 532–539, 1985. [14]

[18] S. Brandt. Polynomial time reasoning in a description logic with existential

restrictions, GCI axioms, and—what else? In R. L. de Mantáras and

L. Saitta, editors, Proceedings of the 16th European Conference on Artificial

Intelligence (ECAI 2004), pages 298–302. IOS Press, 2004. [14]

http://www.w3.org/TR/2004/REC-owl-ref-20040210/

160 BIBLIOGRAPHY

[19] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of

query containment under constraints. In Proceedings of the 17th ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-

tems (PODS 1998), pages 149–158. ACM Press and Addison Wesley, 1998.

[11, 21, 25, 41, 42, 43, 44, 60, 61, 72, 75, 80, 107, 109, 150, 152]

[20] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. De-

scription logic framework for information integration. In Proceedings of the

6th International Conference on Principles of Knowledge Representation

and Reasoning (KR 1998), 1998. [16, 41]

[21] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati.

Source integration in data warehousing. In Proceedings of the 9th Inter-

national Workshop on Database and Expert Systems Applications (DEXA

1998), pages 192–197. IEEE Computer Society Press, 1998. [41]

[22] D. Calvanese, G. De Giacomo, and M. Lenzerini. 2atas make dls easy. In

Proceedings of the 2002 Description Logic Workshop (DL 2002), volume 53.

CEUR (http://ceur-ws.org/), April 19–21 2002. [126, 145]

[23] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data

complexity of query answering in description logics. In P. Doherty, J. My-

lopoulos, and C. A. Welty, editors, Proceedings of the 10th International

Conference on Principles of Knowledge Representation and Reasoning (KR

2006), pages 260–270. AAAI Press/The MIT Press, 2006. [98]

[24] D. Calvanese, G. De Giacomo, and M. Lenzerini. Conjunctive query con-

tainment and answering under description logics constraints. Transactions

on Computational Logic, 2007. To Appear. [42]

[25] D. Calvanese, T. Eiter, and M. Ortiz. Answering regular path queries in

expressive description logics: An automata-theoretic approach. In Pro-

ceedings of the 22th National Conference on Artificial Intelligence (AAAI

2007), 2007. [126, 134, 135]

[26] T. Catarci and M. Lenzerini. Representing and using interschema knowl-

edge in cooperative information systems. Journal of Intelligent and Coop-

erative Information Systems, 2(4):375–398, 1994. [41]

http://ceur-ws.org/

BIBLIOGRAPHY 161

[27] S. de Coronado, M. W. Haber, N. Sioutos, M. S. Tuttle, and L. W. Wright.

NCI thesaurus: Using science-based terminology to integrate cancer re-

search results. In Proceedings of MEDINFO 2004. IOS Press, 2004. [16]

[28] G. De Giacomo. Decidability of Class-Based Knowledge Representation

Formalisms. PhD thesis, Dipartimento di Informatica e Sistemistica, Uni-

versita’ di Roma “La Sapienza”, 1995. [43, 56]

[29] G. De Giacomo and M. Lenzerini. Tbox and abox reasoning in expressive

description logics. In L. C. Aiello, J. Doyle, and S. Shapiro, editors, Pro-

ceedings of the 5th International Conference on the Principles of Knowledge

Representation and Reasoning (KR 1996), pages 316–327, San Francisco,

California, 1996. Morgan Kaufmann, Los Altos. [42]

[30] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in de-

scription logics. Principles of Knowledge Representation and Reasoning,

Studies in Logic, Language and Information, CSLI Publications:193–238,

1996. [14]

[31] A. Emmen. The grid needs ontologies—onto-what?, 2002.

http://www.hoise.com/primeur/03/articles/monthly/AE-PR-02-03-7.html.

[16]

[32] M. Fitting. First-Order Logic and Automated Theorem Proving. Springer-

Verlag, 2st edition, 1996. [38, 54]

[33] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The physiology of the

grid: An open grid services architecture for distributed systems integration,

2002. http://www.globus.org/research/papers/ogsa.pdf. [16]

[34] H. Ganzinger, C. Meyer, and M. Veanes. The two-variable guarded frag-

ment with transitive relations. In Proceedings of the 14th Annual IEEE

Symposium on Logic in Computer Science (LICS 99), Washington, DC,

USA, 1999. IEEE Computer Society Press. [60]

[35] B. Glimm. A query language for web ontologies, June 29

2004. Bachelor Report, Hamburg University of Applied Sciences,

http://www.cs.man.ac.uk/~glimmbx/download/report.pdf. [156]

http://www.hoise.com/primeur/03/articles/monthly/AE-PR-02-03-7.html
http://www.globus.org/research/papers/ogsa.pdf
http://www.cs.man.ac.uk/~glimmbx/download/report.pdf

162 BIBLIOGRAPHY

[36] B. Glimm and I. Horrocks. Handling cyclic conjunctive

queries. In Proceedings of the 18th International Work-

shop on Description Logics (DL 2005), Edinburgh, Scot-

land, UK, July 26–28 2005. CEUR (http://ceur-ws.org/).

http://www.cs.man.ac.uk/~glimmbx/download/GlHo05a.pdf. []

[37] B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive

query answering in the description logic SHIQ. LTCS-Report LTCS-

06-01, Chair for Automata Theory, Institute for Theoretical Com-

puter Science, Dresden University of Technology, Germany, 2006.

http://www.cs.man.ac.uk/~glimmbx/download/GHLS06a.pdf. []

[38] B. Glimm, I. Horrocks, and U. Sattler. Conjunctive query answer-

ing for description logics with transitive roles. In Proceedings of the

19th International Workshop on Description Logics (DL 2006), 2006.

http://www.cs.man.ac.uk/~glimmbx/download/GlHS06a.pdf. []

[39] B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive query answer-

ing in the description logic SHIQ. In Proceedings of the Twentieth In-

ternational Joint Conference on Artificial Intelligence (IJCAI 2007), 2007.

http://www.cs.man.ac.uk/~glimmbx/download/GHLS07a.pdf. []

[40] B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive query an-

swering for the description logic SHIQ. Journal of Artificial Intelligence

Research, 2007. To Appear. []

[41] B. Glimm, I. Horrocks, and U. Sattler. Conjunctive query

entailment for SHOQ. In Proceedings of the 20th Inter-

national Workshop on Description Logics (DL 2007), 2007.

http://www.cs.man.ac.uk/~glimmbx/download/GlHS07a.pdf. []

[42] C. Goble, S. Pettifer, R. Stevens, and C. Greenhalgh. Knowledge Integra-

tion: In Silico Experiments in Bioinformatics. In I. Foster and C. Kessel-

man, editors, The Grid: Blueprint for a New Computing Infrastructure,

pages 121–134. Morgan Kaufmann, Los Altos, 2003. [16]

[43] C. Golbreich and I. Horrocks. The OBO to OWL mapping, GO to OWL 1.1!

http://ceur-ws.org/
http://www.cs.man.ac.uk/~glimmbx/download/GlHo05a.pdf
http://www.cs.man.ac.uk/~glimmbx/download/GHLS06a.pdf
http://www.cs.man.ac.uk/~glimmbx/download/GlHS06a.pdf
http://www.cs.man.ac.uk/~glimmbx/download/GHLS07a.pdf
http://www.cs.man.ac.uk/~glimmbx/download/GlHS07a.pdf

BIBLIOGRAPHY 163

In Proceedings of the 3rd OWL Experiences and Directions Workshop, num-

ber 258 in CEUR Workshop Proceedings. CEUR (http://ceur-ws.org/),

2007. [16]

[44] C. Golbreich, S. Zhang, and O. Bodenreider. The foundational model of

anatomy in OWL: Experience and perspectives. Journal of Web Semantics,

4(3), 2006. [16]

[45] C. Golbreich, M. Horridge, I. Horrocks, B. Motik, and R. Shearer. OBO and

OWL: Leveraging semantic web technologies for the life sciences. In Pro-

ceedings of the 6th International Semantic Web Conference (ISWC 2007),

Lecture Notes in Computer Science. Springer-Verlag, 2007. To Appear. [16]

[46] J. Goodwin. Experiences of using OWL at the ordnance survey. In Proceed-

ings of the First OWL Experiences and Directions Workshop, volume 188 of

CEUR Workshop Proceedings. CEUR (http://ceur-ws.org/), 2005. [16]

[47] E. Grädel. Description logics and guarded fragments of first order logic.

In Proceedings of the International Workshop on Description Logics (DL

1998), CEUR Workshop Proceedings, 1998. [54]

[48] E. Grädel. On the restraining power of guards. Journal of Symbolic Logic,

64(4):1719–1742, 1999. [59]

[49] V. Haarslev and R. Möller. Racer system description. In R. Gor, A. Leitsch,

and T. Nipkow, editors, Automated Reasoning: 1st International Joint Con-

ference (IJCAR 2001), volume 2083 / 2001 of Lecture Notes in Computer

Science, pages 701–705. Springer-Verlag, June 18–23 2001. [11, 15]

[50] V. Haarslev, R. Möller, R. Van Der Straeten, and M. Wessel. Extended

query facilities for Racer and an application to software-engineering prob-

lems. In V. Haarslev and R. Möller, editors, Proceedings of the International

Workshop in Description Logics (DL 2004),, volume 14, pages 148–157,

June 6–8 2004. [16]

[51] I. Horrocks and P. Patel-Schneider. Reducing OWL entailment to descrip-

tion logic satisfiability. Journal of Web Semantics, 1(4):345–357, 2004. [45]

[52] I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(d) descrip-

tion logic. In B. Nebel, editor, Proceedings of the 17th International Joint

http://ceur-ws.org/
http://ceur-ws.org/

164 BIBLIOGRAPHY

Conference on Artificial Intelligence (IJCAI 2001), pages 199–204. Morgan

Kaufmann, Los Altos, 2001. [121, 126]

[53] I. Horrocks and U. Sattler. A tableaux decision procedure for SHOIQ. In

Proceedings of the 19th International Joint Conference on Artificial Intel-

ligence (IJCAI 2005), July 30 – August 5 2005. [33]

[54] I. Horrocks and U. Sattler. A tableau decision procedure for SHOIQ.

Journal of Automated Reasoning, 39(1), 2007. To Appear. [53, 157]

[55] I. Horrocks and S. Tessaris. A conjunctive query language for description

logic aboxes. In Proceedings of the 17th National Conference on Artificial

Intelligence (AAAI 2000), pages 399–404, 2000. [61, 75]

[56] I. Horrocks, U. Sattler, S. Tessaris, and S. Tobies. Query contain-

ment using a DLR ABox. LTCS-Report LTCS-99-15, LuFG Theo-

retical Computer Science, RWTH Aachen, Germany, 1999. Available

online at http://www-lti.informatik.rwth-aachen.de/Forschung/Reports.html.

[25, 42, 81]

[57] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive de-

scription logics. In H. Ganzinger, D. McAllester, and A. Voronkov, editors,

Proceedings of the 6th International Conference on Logic for Programming

and Automated Reasoning (LPAR 1999), number 1705 in Lecture Notes in

Artificial Intelligence, pages 161–180. Springer-Verlag, 1999. [15, 30]

[58] I. Horrocks, U. Sattler, and S. Tobies. Reasoning with Individuals for the

Description Logic SHIQ. In D. McAllester, editor, Proceedings of the 17th

International Conference on Automated Deduction (CADE 2000), number

1831 in Lecture Notes in Artificial Intelligence, pages 482–496. Springer-

Verlag, 2000. [31, 33, 56, 63]

[59] I. Horrocks, B. Glimm, and U. Sattler. Hybrid log-

ics and ontology languages. Electronic Notes in Theoret-

ical Computer Science, 174(6):3–14, 2007. Proceedings of

the International Workshop on Hybrid Logic (HyLo 2006).

http://www.cs.man.ac.uk/~horrocks/Publications/download/2007/HoGS07a.pdf.

[]

http://www-lti.informatik.rwth-aachen.de/Forschung/Reports.html
http://www.cs.man.ac.uk/~horrocks/Publications/download/2007/HoGS07a.pdf

BIBLIOGRAPHY 165

[60] D. Hull, E. Zolin, A. Bovykin, I. Horrocks, U. Sattler, and R. Stevens.

Deciding semantic matching of stateless services. In Proceedings of the 20th

National Conference on Artificial Intelligence (AAAI 2005), pages 1319–

1324, 2006. [16]

[61] U. Hustadt, B. Motik, and U. Sattler. A decomposition rule for decision

procedures by resolution-based calculi. In Proceedings of the 11th Inter-

national Conference on Logic for Programming, Artificial Intelligence, and

Reasoning (LPAR 2004), volume 3452 of Lecture Notes in Computer Sci-

ence. Springer-Verlag, March 14–18 2004. [109]

[62] U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ− Description Logic

to Disjunctive Datalog Programs. In D. Dubois, C. A. Welty, and M.-

A. Williams, editors, Proceedings of the 9th International Conference on

Principles of Knowledge Representation and Reasoning (KR 2004), pages

152–162, Whistler, Canada, June 2–5 2004. AAAI Press/The MIT Press.

[59, 129, 130]

[63] U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning in

very expressive description logics. In Proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI 2005), pages 466–471, 2005.

[40, 98]

[64] T. S. Kaczmarek, R. Bates, and G. Robins. Recent developments in NIKL.

In Proceedings of the 5th National Conference on Artificial Intelligence

(AAAI 1986), pages 978–985, 1986. [14]

[65] Y. Kazakov. Saturation-Based Decision Procedures for Extensions of the

Guarded Fragment. PhD thesis, Universität des Saarlandes, Saarbrücken,

Germany, 2006. [59]

[66] Y. Kazakov and B. Motik. A resolution-based decision procedure for

SHOIQ. In U. Furbach, J. Harrison, and N. Shankar, editors, Proceed-

ings of the Third International Joint Conference on Automated Reasoning

(IJCAR 2006), volume 4130, pages 662–667, Seattle, WA, USA, August

17–20 2006. Springer-Verlag. [59, 129, 130, 157]

[67] Y. Kazakov, U. Sattler, and E. Zolin. How many legs do i have? non-simple

166 BIBLIOGRAPHY

roles in number restrictions revisited. In In Proceedings of the 14th Inter-

national Conference on Logic for Programming, Artificial Intelligence, and

Reasoning (LPAR 2007), Lecture Notes in Artificial Intelligence. Springer-

Verlag, 2007. To Appear. [30]

[68] E. Kieronski. Results on the guarded fragment with equivalence or transi-

tive relations. In Computer Science Logic (CSL 2005), Proceedings of the

14th Annual Conference of the European Association for Computer Science

Logic (EACSL), volume 3634 of Lecture Notes in Computer Science, pages

309–324. Springer-Verlag, 2005. [60]

[69] L. Lacy, G. Aviles, K. Fraser, W. Gerber, A. Mulvehill, and R. Gaskill.

Experiences using OWL in military applications. In Proceedings of the

First OWL Experiences and Directions Workshop, volume 188 of CEUR

Workshop Proceedings. CEUR (http://ceur-ws.org/), 2005. [16]

[70] F. Lehmann. Semantic networks. Semantic Networks in Artificial Intelli-

gence, pages 1–50, 1992. [14]

[71] A. Y. Levy and M.-C. Rousset. CARIN: A representation language combin-

ing horn rules and description logics. In European Conference on Artificial

Intelligence, pages 323–327, 1996. [46, 109]

[72] A. Y. Levy and M.-C. Rousset. Combining horn rules and description

logics in CARIN. Artificial Intelligence, 104(1–2):165–209, September 1998.

[45, 46, 152]

[73] C. Lutz. Inverse roles make conjunctive queries hard. In Proceedings of

the 20th International Workshop on Description Logics (DL 2007), 2007.

[106, 150, 153]

[74] R. MacGregor and R. Bates. The LOOM knowledge representation lan-

guage. Technical Report ISI/RS-87-188, The University of Southern Cali-

fornia, Information Sciences Institute, 1987. [14]

[75] M. Minsky. A framework for representing knowledge. Cognitive Science,

1992. The original appeard as a longer version in 1974 as MIT-AI Labo-

ratory Memo 306, reprinted in The Psychology of Computer Vision, 1975

and a shorter version also appeared in Mind Design, MIT Press, 1981. [14]

http://ceur-ws.org/

BIBLIOGRAPHY 167

[76] B. Motik. Reasoning in Description Logics using Resolution and Deductive

Databases. PhD thesis, Univesität Karlsruhe (TH), Karlsruhe, Germany,

January 2006. [59, 129, 130]

[77] B. Motik and U. Sattler. A comparison of reasoning techniques for querying

large description logic aboxes. In M. Hermann and A. Voronkov, editors,

Proceedings of the 13th International Conference on Logic for Programming

Artificial Intelligence and Reasoning (LPAR 2006), volume 4246 of Lec-

ture Notes in Computer Science, pages 227–241, Phnom Penh, Cambodia,

November 13–17 2006. Springer-Verlag. [11, 15]

[78] B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL with

rules. In Proceedings of the 3rd International Semantic Web Conference

(ISWC 2004), Hiroshima, Japan, November 2004. [46]

[79] B. Motik, P. F. Patel-Schneider, and I. Horrocks. OWL 1.1 web ontology

language structural specification and functional-style syntax. URL, Decem-

ber 19 2006. http://www.w3.org/Submission/owl11-owl_specification. [15]

[80] D. E. Muller and P. E. Schupp. Alternating automata on infinite trees.

Theor. Comput. Sci., 54(2-3):267–276, 1987. [134]

[81] OBO. Open biomedical ontologies repository.

http://www.bioontology.org/repositories.html#obo, 2007. [16]

[82] M. Ortiz, D. Calvanese, and T. Eiter. Data complexity of answering unions

of conjunctive queries in SHIQ. In Proceedings of the 19th International

Workshop on Description Logics (DL 2006), 2006. [106]

[83] M. M. Ortiz, D. Calvanese, and T. Eiter. Characterizing data complexity for

conjunctive query answering in expressive description logics. In Proceedings

of the 21th National Conference on Artificial Intelligence (AAAI 2006),

2006. [49, 51, 98, 109, 152]

[84] M. M. Ortiz de la Fuente. Answering Conjunctive Queries in Expressive

Description Logics. PhD thesis, Vienna University of Technology, Austria.

Free University of Bolzano, Italy., 2006. MSc thesis. [52, 152, 153]

http://www.w3.org/Submission/owl11-owl_specification
http://www.bioontology.org/repositories.html#obo

168 BIBLIOGRAPHY

[85] M. M. Ortiz de la Fuente, D. Calvanese, T. Eiter,

and E. Franconi. Data complexity of answering con-

junctive queries over SHIQ knowledge bases, 2005.

http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:cs/0507059.

[11, 51, 152, 153]

[86] L. Pacholski, W. Szwast, and L. Tendera. Complexity of two-variable logic

with counting. In Proceedings of the 12th Annual IEEE Symposium on Logic

in Computer Science (LICS 1997), Washington, DC, USA, 1997. IEEE

Computer Society Press. [14]

[87] L. Pacholski, W. Szwast, and L. Tendera. Complexity results for first-

order two-variable logic with counting. SIAM Journal on Computing, 29

(4):1083–1117, 2000. [59]

[88] C. H. Papadimitriou. Computational Complexity. Addison Wesley Publ.

Co., Reading, Massachussetts, 1994. [39]

[89] J. Quantz and K. Kindermann. Implementation of the BACK system ver-

sion 4. KIT Report 78, Department of Computer Science, Technische Uni-

versität Berlin, Berlin, Germany, 1990. [14]

[90] M. R. Quillian. Word concepts: A theory and simulation of some basic

semantic capabilities. Readings in Knowledge Representations, 12:410–430,

1967. Appears also in Behavioral Science 12:410-430. [14]

[91] A. Rector, W. Solomon, W. Nowlan, and T. Rush. A terminology server for

medical language and medical information systems. Methods of Information

in Medicine, 34:147–157, 1994. [16]

[92] R. Rosati. DL+log: Tight integration of description logics and disjunctive

datalog. In Proceedings of the Tenth International Conference on Principles

of Knowledge Representation and Reasoning (KR 2006), pages 68–78, 2006.

[46, 108, 150, 154]

[93] N. Rychtyckyj. DLMS: An evaluation of KL-ONE in the automobile in-

dustry. In Proceedings of the 5th International Conference on Principles

of Knowledge Representation and Reasoning (KR 1996), pages 588–596,

Cambridge, MA, November 4–8 1996. Morgan Kaufmann, Los Altos. [16]

http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:cs/0507059

BIBLIOGRAPHY 169

[94] S. Sahoo, O. Bodenreider, K. Zeng, and A. Sheth. An experiment in in-

tegrating large biomedical knowledge resources with rdf: Application to

associating genotype and phenotype information. In Proceedings of Inter-

national Workshop on Health Care and Life Sciences Data Integration for

the Semantic Web, 2007. [16]

[95] U. Sattler and M. Y. Vardi. The hybrid µ-calculus. In IJCAR ’01:

Proceedings of the First International Joint Conference on Automated Rea-

soning, pages 76–91, London, UK, 2001. Springer-Verlag. [126, 134, 135]

[96] A. Schaerf. On the complexity of the instance checking problem in concept

languages with existential quantification. Journal of Intelligent Information

Systems, 2(3):265–278, 1993. [107]

[97] A. Schaerf. Reasoning with individuals in concept languages. Data Knowl-

edge Engineering, 13(2):141–176, 1994. [33, 109]

[98] K. Schild. A correspondence theory for terminological logics: preliminary

report. In Proceedings of the 12th International Joint Conference on Arti-

ficial Intelligence (IJCAI 1991), pages 466–471, Sidney, AU, 1991. [149]

[99] M. Schmidt-Schauss and G. Smolka. Attributive concept descriptions with

complements. Artificial Intelligence, 48:1–26, 1991. [12]

[100] S. Schulz and U. Hahn. Parts, locations, and holes - formal reasoning

about anatomical structures. In Proceedings of AIME 2001, volume 2101

of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2001. [16]

[101] A. Sidhu, T. Dillon, E. Chang, and B. S. Sidhu. Protein ontology devel-

opment using OWL. In Proceedings of the First OWL Experiences and

Directions Workshop, volume 188 of CEUR Workshop Proceedings. CEUR

(http://ceur-ws.org/), 2005. [16]

[102] E. Sirin and B. Parsia. Optimizations for answering conjunctive abox

queries. In Proceedings of the 19th International Workshop on Description

Logics (DL 2006), 2006. [156]

http://ceur-ws.org/

170 BIBLIOGRAPHY

[103] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pel-

let: A practical OWL-DL reasoner. Accepted for the Journal of Web Se-

mantics, Available online at http://www.mindswap.org/papers/PelletJWS.pdf,

2006. [11, 15, 16]

[104] K. A. Spackman. Managing clinical terminology hierarchies using algorith-

mic calculation of subsumption: Experience with SNOMED-RT. Journal

of the American Medical Informatics Association, 2000. Fall Symposium

Special Issue. [16]

[105] K. A. Spackman and K. E. Campbell. Compositional concept representation

using SNOMED: Towards further convergence of clinical terminologies. In

Proceedings of AMIA Annual Fall Symposium, pages 875–879, 1998. [16]

[106] K. A. Spackman, K. E. Campbell, and R. A. Côté. SNOMED RT: A

reference terminology for health care. Journal of the American Medical

Informatics Association, pages 640–644, 1997. Fall Symposium Supplement.

[16]

[107] SWEET. Semantic web for earth and environmental terminology

(SWEET). Jet Propulsion Laboratory, California Institute of Technology,

2007. http://sweet.jpl.nasa.gov/. [16]

[108] W. Szwast and L. Tendera. On the decision problem for the guarded frag-

ment with transitivity. In Proceedings of the 16th Annual IEEE Symposium

on Logic in Computer Science (LICS 2001), page 147, Washington, DC,

USA, 2001. IEEE Computer Society Press. [60]

[109] S. Tessaris. Questions and answers: reasoning and querying in

Description Logic. PhD thesis, University of Manchester, 2001.

[21, 22, 26, 37, 38, 56, 72, 80, 109, 125, 153]

[110] W. Thomas. Languages, Automata, and Logic. Springer-Verlag, New York,

NY, USA, 1997. [134]

[111] S. Tobies. The complexity of reasoning with cardinality restrictions and

nominals in expressive description logics. Journal of Artificial Intelligence

Research, 12:199–217, 2000. [14]

http://www.mindswap.org/papers/PelletJWS.pdf
http://sweet.jpl.nasa.gov/

BIBLIOGRAPHY 171

[112] S. Tobies. Complexity Results and Practical Algorithms for Logics

in Knowledge Representation. PhD thesis, RWTH Aachen, 2001.

[14, 40, 59, 95, 99, 100, 101, 102, 103, 107, 134, 150, 153, 156]

[113] D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: Sys-

tem description. In U. Furbach and N. Shankar, editors, Proceedings of

the Third International Joint Conference on Automated Reasoning (IJCAR

2006), volume 4130 of Lecture Notes in Computer Science, pages 292 – 297.

Springer-Verlag, August 17 – 20, 2006. [11, 15, 16]

[114] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kessel-

man, T. Maquire, T. Sandholm, D. Snelling, and P. Vander-

bilt. Open grid services infrastructure (ogsi) version 1.0, 2003.

http://www.ogf.org/documents/GFD.15.pdf. [16]

[115] J. van Benthem. Dynamic bits and pieces. Technical Report LP-1997-01,

Universiteit van Amsterdam, Institute for Logic, Language and Computa-

tion, 1997. [60]

[116] M. Y. Vardi. The complexity of relational query languages. In Proceedings

of the 14th Annual ACM Symposium on Theory of Computing, pages 137–

146. ACM Press and Addison Wesley, 1982. [39]

[117] M. Y. Vardi. Alternating automata and program verification. In J. van

Leeuwen, editor, Computer Science Today, volume 1000 of Lecture Notes

in Computer Science, pages 471–485. Springer-Verlag, 1995. [135, 148]

[118] M. Y. Vardi. Why is modal logic so robustly decidable? In Descriptive Com-

plexity and Finite Models: Proceedings of a DIMACS Workshop, volume 31

of DIMACS: Series in Discrete Mathematics and Theoretical Computer Sci-

ence, pages 149–184. American Mathematical Society, January 14–17 1997.

[23]

[119] M. Y. Vardi. Reasoning about the past with two-way automata. In ICALP

’98: Proceedings of the 25th International Colloquium on Automata, Lan-

guages and Programming, pages 628–641, London, UK, 1998. Springer-

Verlag. [134, 135]

http://www.ogf.org/documents/GFD.15.pdf

172 BIBLIOGRAPHY

[120] M. Wessel and R. Möller. A high performance semantic web query answer-

ing engine. In Proceedings of the 18th International Workshop on Descrip-

tion Logics, 2005. [156]

[121] K. Wolstencroft, A. Brass, I. Horrocks, P. Lord, U. Sattler, D. Turi, and

R. Stevens. A Little Semantic Web Goes a Long Way in Biology. In

Proceedings of the 2005 International Semantic Web Conference (ISWC

2005), 2005. [16]

[122] K. Wolstencroft, R. McEntire, R. Stevens, L. Tabernero, and A. Brass.

Constructing Ontology-Driven Protein Family Databases. Bioinformatics,

21(8):1685–1692, 2005. [16]

[123] W. A. Woods. What’s in a link: Foundations for semantic networks. Rep-

resentation and Understanding: Studies in Cognitive Science, pages 35–82,

1975. [14]

[124] C. Wroe, J. J. Cimino, and A. L. Rector. Integrating existing drug formula-

tion terminologies into an HL7 standard classification using OpenGALEN.

Journal of the American Medical Informatics Association, 2001. Special

Conference Issue. [16]

[125] C. Wroe, C. A. Goble, M. Greenwood, P. Lord, S. Miles, J. Papay, T. Payne,

and L. Moreau. Automating experiments using semantic data on a bioin-

formatics grid. IEEE Intelligent Systems, 19(1), 2004. Special Issue on

e-Science. [16]

Index

↓-rule, 56

↓ operator, 53, 54

|=, see entailment

↑, 100

·I , 17, 29

∈̄, 36

≈* , 36

v*R, 29

A-partition, 104

ABox, 13, 30

ABox assertion, see assertion

acyclic query, 23, 37

AL, 12

ALC, 12

ALCQIb, 99

alternating automaton, 134

alternating looping tree automaton, 134

assertion, 30

concept, 13, 30

inequality, 13, 30

role, 13, 30

atom

concept, 19, 35

equality, 35

role, 19, 35

bijective modulo ≈* , 37

blocking, 47, 57

Boolean conjunctive query, 23, 35

branching degree, 127

C2, 59

canonical interpretation, 63

SHOQ, 111

canonical model, 63

SHOQ, 111

CARIN, 46

clash, 47, 57

classes, see concepts

Closed World Assumption, 20

closure

SHIQ-concepts, 99

SHIQ, 129

SHOQu, 127

co(q), 115

collapsing, 72, 79, 114, 115

combined complexity, 39

combined complexity

SHIQ query entailment, 106

SHOQ query entailment, 149

completeness, 14

completion graph, 47

completion tree, 47

complexity

combined, 39

data, 39

computation problem, 33

concepts, 12

SHOIQ, 30

173

174 INDEX

concept satisfiability, 17, 32

concept subsumption, see subsumption

conjunctive query, 19, 35

connected query, 37

con(S), 30

consistency, see knowledge base consis-

tency

constraint system, 46

correctness, 15

CPDLg, 42

CWA, see Closed World Assumption

cyclic query, 37

cyclic query, 23

data complexity, 39

data complexity, 107

SHIQ query entailment, 107

decision problem, 15, 33

decision procedure, 15

∆I , 17, 29

DL+log, 46

DLRreg , 42

dom(f), 37

domain

of an interpretation, see ∆I

elimTrans

SHIQ, 129

SHOQu, 131

entailment, 33

query, 36

evaluation, 36

expansion rules, 47

extended knowledge base

SHIQ, 97

SHOQ, 125

conK(q), 122

finite model property, 56

First-Order Logic, 58

FOL, see First-Order Logic

forest, 110

forest-shaped query, 72, 78, 117

forest base

SHIQ, 63

SHOQ, 110

forest mapping, 117

forest match, 83, 117

forest model property, 62

forest rewriting, 74, 79

frames, 14

frK(q), 79, 117

GCI, see general concept inclusion

general concept inclusion, 30

ground query, 36

grounding, 121

groundK, 81

ground mapping, 81

guard, 59

guarded fragment, 59

H(K), see Hintikka set

Hintikka set, 136

Horn rules, 44

Hybrid Logics, 53

incompleteness, 14, 15

Inds(A), 30

individuals, 12, 29, 31

Inds(q), 36

injective modulo ≈* , 37

internalisation, 33

ABox, 109

INDEX 175

interpretation, 16, 29

interpretation function, see ·I

Inv, 29

KB, see knowledge base

knowledge

extensional, 31

intensional, 31

knowledge base, 13, 31

SHOQ, 109

knowledge base consistency, 31, 32

labelled tree, 134

LCP, see longest common prefix

LGF, see loosely guarded fragment

literal, 39, 98

logical implication, see entailment

longest common prefix, 88, 90

loop rewriting, 74, 79

loosely guarded fragment, 60

lrK(q), 79

match, 36

model, 31

name formula, 43

NC , 29

negation normal form, 31

neighbour

canonical model, 63

tree, 37

NI , 29

NNF, see negation normal form

nominal rewriting, 114, 115

nom(K), 109

non-emptiness problem, 135

NR, 29

nrK(q), 115

NtR, 29

NV , 35

objects, see individuals

ontology, see knowledge base

Open World Assumption, 20

OWA, see Open World Assumption

positive Boolean formula, 134

property, see roles

query concept, 80

query answering, 23, 38

query containment, 41

query entailment, 23, 36

query graph, 21

query rewriting, 71, 76, 115

ran(f), 37

RBox, see role hierarchy

reification, 43

relaxation, 135, 137

relevant path, 88, 90

rep, 135

representative concept, 43

RIA, see role inclusion axiom

role inclusion axiom, 29

roles, 12

SHOIQ, 29

role conjunction, 22

role hierarchy, 13, 29

rolling-up technique, 21, 54, 75, 80, 121

rol(S), 29

root choice, 77, 116

root splitting, 78

induced, 83

176 INDEX

root terms, 72

run, 135

safety condition, 46

satisfiability

concept, 32

query, 36

semantic network, 14

SHOIQ, 30

semantics, 30

SHOIQ-concepts, 30

shortcut rewriting, 114, 116

signature, 29

simple roles, 29

size, 93

soundness, 15

split match, 83

split rewriting, 73, 79

srK(q), 79, 116

structural comparison, 14

sub-query, 36

subsumption, 13, 32

successor

canonical model, 63

tree, 37

TBox, 13, 30

tc, 100

term, 35

terminology, see TBox

Terms(q), 36

tr, 100

trace, 91

trans, 29

transition function, 135, 143, 144

tree, 37

labelled, 134

tree-shaped query, 72, 77, 116

treeK, 81

tree mapping, 77, 116

tree match, 83, 117

tree model property, 23, 55

tree relaxation, 139, 139

tuple graph, 21, 43

UCQ, see union of conjunctive queries

UNA, see Unique Name Assumption,

see Unique Name Assumption,

63

union of conjunctive queries, 37

Unique Name Assumption, 20, 31

unravelling, 64

unsoundness, 15

Vars(q), 35

weakly-safe Datalog rules, 46

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Description Logics
	Description Logic Knowledge Bases
	Historical Background
	Application Areas
	Semantics of Description Logics

	Reasoning Services
	Standard Reasoning Services
	Conjunctive Queries
	Challenges of Query Answering

	Aims and Objectives
	A Guide for Readers

	Foundations of Description Logics
	Syntax and Semantics
	Standard Reasoning Tasks
	Conjunctive Queries
	Combined and Data Complexity

	Why Query Entailment is Hard
	Query Containment
	The Difficulty of Regular Expressions

	Rule Formalisms
	The Carin System
	Extensions of the Carin System

	Hybrid Logics
	Hybrid Logic Binders for Query Answering

	First-Order Logic
	Summary

	Query Answering for SHIQ
	Query Rewriting by Example
	Forest Bases and Canonical Interpretations
	The Running Example
	The Rewriting Steps

	Query Rewriting
	Tree- and Forest-Shaped Queries
	From Graphs to Forests
	From Trees to Concepts
	Query Matches
	Correctness of the Query Rewriting

	Deciding Query Entailment for SHIQ
	A Deterministic Decision Procedure
	A Non-Deterministic Decision Procedure
	Consequential Results

	Summary

	Query Answering for SHOQ
	Forest Bases and Canonical Interpretations
	Query Rewriting
	Query Shapes and Matches
	From Forest-Shaped Queries to Concept Atoms
	Correctness of the Rewriting Steps

	Deciding Query Entailment for SHOQ
	Canonical Models of Bounded Branching Degree
	Eliminating Transitivity
	Alternating Automata
	Tree Relaxations
	Deciding Existence of Tree Relaxations
	Combined Complexity
	Consequential Results

	Summary

	Conclusions
	Thesis Achievements
	Significance of the Results
	Future Work

	Bibliography
	Index

