
Language Equivalence for

Probabilistic Automata⋆

Stefan Kiefer1, Andrzej S. Murawski2, Joël Ouaknine1,
Björn Wachter1, and James Worrell1

1 Department of Computer Science, University of Oxford, UK
2 Department of Computer Science, University of Leicester, UK

Abstract. In this paper, we propose a new randomised algorithm for
deciding language equivalence for probabilistic automata. This algorithm
is based on polynomial identity testing and thus returns an answer with
an error probability that can be made arbitrarily small. We implemented
our algorithm, as well as deterministic algorithms of Tzeng and Doyen
et al., optimised for running time whilst adequately handling issues of
numerical stability. We conducted extensive benchmarking experiments,
including the verification of randomised anonymity protocols, the out-
come of which establishes that the randomised algorithm significantly
outperforms the deterministic ones in a majority of our test cases. Fi-
nally, we also provide fine-grained analytical bounds on the complexity
of these algorithms, accounting for the differences in performance.

1 Introduction

Probabilistic automata were introduced by Michael Rabin [16] as a variation on
non-deterministic finite automata. In a probabilistic automaton the transition
behaviour is determined by a stochastic matrix for each input letter. Proba-
bilistic automata are one of a variety of probabilistic models, including Markov
chains and Markov decision processes, that are of interest to the verification
community. However a distinguishing feature of work on probabilistic automata
is the emphasis on language theory and related notions of equivalence as opposed
to temporal-logic model checking [1, 4, 8, 12–14].

Probabilistic automata accept weighted languages: with each word one asso-
ciates the probability with which it is accepted. In this context two automata A
and B are said to be equivalent if each word is accepted with the same probability
by both A and B. It was shown by Tzeng [21] that equivalence for probabilistic
automata is decidable in polynomial time, although this fact can also be ex-
tracted from results of Schützenberger [17] on minimising weighted automata.
By contrast the natural analog of language inclusion—that B accepts each word
with probability at least as great as A—is undecidable [6] even for automata of
fixed dimension [2].

⋆ Research supported by EPSRC grant EP/G069158. The first author is supported by
a postdoctoral fellowship of the German Academic Exchange Service (DAAD).

The motivation of Tzeng to study equivalence of probabilistic automata came
from learning theory. Here our motivation is software verification as we continue
to develop apex [12], an automated equivalence checker for probabilistic imper-
ative programs. apex is able to verify contextual equivalence of probabilistic
programs3, which in turn can be used to express a broad range of interesting
specifications.

apex works by translating probabilistic programs into automata-theoretic
representations of their game semantics [8]. The translation applies to open pro-
grams (i.e., programs with undefined components) and the resultant automata
are highly abstracted forms of the program operational semantics. Intuitively,
only externally observable computational steps are visible in the corresponding
automata and internal actions such as local-variable manipulation remain hid-
den. Crucially, the translation relates (probabilistic) contextual equivalence with
(probabilistic) language equivalence [14]. Accordingly, after two programs have
been translated into corresponding probabilistic automata, we can apply any lan-
guage equivalence testing routine to decide their contextual equivalence. In some
of our case studies, we shall use automata generated by apex for benchmarking
the various algorithms discussed in the paper.

In conjunction with the ability of the apex tool to control which parts of a
given program are externally visible, the technique of verification by equivalence
checking has proven surprisingly flexible. The technique is particularly suited to
properties such as obliviousness and anonymity, which are difficult to formalise
in temporal logic.

In this paper we develop a new randomised algorithm for checking equivalence
of probabilistic automata (more generally of real-valued weighted automata).
The complexity of the algorithm is O(nm), where n is the number of states of
the two automata being compared and m is the total number of labelled transi-
tions. Tzeng [21] states the complexity of his algorithm as O(|Σ| · n4); the same
complexity bound is likewise claimed by [5, 10] for variants of Tzeng’s proce-
dure. Here we observe that the procedure can be implemented with complexity
O(|Σ| · n3), which is still slower than the randomised algorithm.

This theoretical complexity improvement of the randomised algorithm over
the deterministic algorithm is borne out in practice. We have tested the algo-
rithms on automata generated by apex based on an anonymity protocol and
Herman’s self-stabilisation protocol. We have also generated test cases for the
equivalence algorithms by randomly performing certain structural transforma-
tions on automata. Our results suggest that the randomised algorithm is around
ten times faster than the deterministic algorithm. Another feature of our ex-
periments is that the performance of both the randomised and deterministic
algorithms is affected by whether they are implemented using forward reachabil-
ity from the initial states of the automata or using backward reachability from
the accepting states of the automata.

3 Two programs are contextually equivalent if and only if they can be used inter-
changeably in any context.

2 Algorithms for Equivalence Checking

Rabin’s probabilistic automata [16] are reactive according to the taxonomy of
Segala [19]: the transition function has type Q×Σ → Dist(Q), where Q is the set
of states, Σ the alphabet and Dist(Q) the set of probability distributions on Q.
Another type of probabilistic automata are the so-called generative automata in
which the transition function has typeQ → Dist(Σ×Q). The automata produced
by apex combine both reactive and generative states. In this paper we work
with a notion of R-weighted automaton which encompasses both reactive and
generative transition modes as well as negative transition weights, which can
be useful in finding minimal representations of the languages of probabilistic
automata [17]. In the context of equivalence checking the generalisation from
probabilistic automata to R-weighted automata is completely innocuous.

Definition 1. An R-weighted automaton A = (n,Σ,M,α, η) consists of a pos-
itive integer n ∈ N representing the number of states, a finite alphabet Σ, a
map M : Σ → Rn×n assigning a transition matrix to each alphabet symbol,
an initial (row) vector α ∈ Rn, and a final (column) vector η ∈ Rn. The au-
tomaton A assigns each word w = σ1 · · ·σk ∈ Σ∗ a weight A(w) ∈ R, where
A(w) := αM(σ1) · · ·M(σk)η. Two automata A,B over the same alphabet Σ are
said to be equivalent if A(w) = B(w) for all w ∈ Σ∗.

From now on, we fix automata A = (n(A), Σ,M (A), α(A), η(A)), and
B = (n(B), Σ,M (B), α(B), η(B)), and define n := n(A) + n(B). We want to check
A and B for equivalence. It is known that if A and B are not equivalent then
there is a short word witnessing their inequivalence [15]:

Proposition 2. If there exists a word w ∈ Σ∗ such that A(w) 6= B(w) then
there exists a word w of length at most n such that A(w) 6= B(w).

It follows immediately from Proposition 2 that the equivalence problem for
weighted automata is in co-NP. In fact this problem can be decided in poly-
nomial time. For instance, Tzeng’s algorithm [21] explores the tree of possible
input words and computes for each word w in the tree and for both automata
the distribution of states after having read w. The tree is suitably pruned by
eliminating nodes whose associated state distributions are linearly dependent
on previously discovered state distributions. Tzeng’s procedure has a runtime of
O(|Σ| ·n4). Another algorithm was recently given in [10]. Although presented in
different terms, their algorithm is fundamentally a backward version of Tzeng’s
algorithm and has the same complexity. (An advantage of a “backward” algo-
rithm as in [10] is that repeated equivalence checks for different initial state dis-
tributions are cheaper, as results from the first equivalence check can be reused.)
Variants of Tzeng’s algorithm were also presented in [5] for checking linear-time
equivalences on probabilistic labelled transition systems, including probabilis-
tic trace equivalence and probabilistic failures equivalence. These variants all
have run time O(|Σ| · n4) as for Tzeng’s algorithm. It has been pointed out
in [7] that more efficient algorithms can actually be obtained using techniques

from the 60s: One can – in linear time – combine A and B to form a weighted
automaton that assigns each word w the weight A(w) − B(w). An algorithm of
Schützenberger [17] allows to compute a minimal equivalent automaton, which is
the empty automaton if and only if A and B are equivalent. As sketched in [7],
Schützenberger’s algorithm runs in O(|Σ| · n3), yielding an overall runtime of
O(|Σ| · n3) for checking equivalence.

2.1 Deterministic Algorithms

Since the focus of this paper is language equivalence and not minimisation, we
have not implemented Schützenberger’s algorithm. Instead we have managed
to speed up the algorithms of [21] and [10] from O(|Σ| · n4) to O(|Σ| · n3)
by efficient bookkeeping of the involved vector spaces. Whereas [7] suggests to
maintain an LU decomposition to represent the involved vector spaces, we prefer
a QR decomposition for stability reasons. We have implemented two versions
of a deterministic algorithm for equivalence checking: a forward version (related
to [21]) and a backward version (related to [10]). In the following we describe the
backward algorithm; the forward version is obtained essentially by transposing
the transition matrices and exchanging initial and final states.

Figure 1 shows the backward algorithm. The algorithm computes a basis Q
of the set of state distributions

{(

M (A)(σ1) . . .M
(A)(σk)η

(A)

M (B)(σ1) . . .M
(B)(σk)η

(B)

)

| σ1 . . . σk ∈ Σ∗
}

represented by n-dimensional column vectors. It is clear that A and B are equiv-

alent if and only if α(A)u(A) = α(B)u(B) for all vectors

(

u(A)

u(B)

)

in Q.

Computing a basis Q of the set of state distributions requires a membership
test to decide if a new vector is already included in the current vector space.
While a naive membership test can be carried out in O(n3) time, maintaining
the basis in a canonical form (here as an orthogonal set) admits a test in O(n2).

Given a set Q = {q1, . . . , qk} of k ≤ n orthogonal vectors and another vector
u ∈ Rn, we denote by u ↓ Q the orthogonal projection of u along Q onto the
space orthogonal to Q. Vector u ∈ Rn is included in the vector space given by
Q, if u is equal to its projection into Q, i.e., the vector u− u ↓ Q. Vector u ↓ Q
can be computed by Gram-Schmidt iteration:

for i from 1 to k
u := u−

qTi u

qT
i
qi
qi

return u

Thereby qTi denotes the transpose of vector qi. Note that this iteration takes
time O(nk).

The improvement from the O(|Σ| · n4) bound for equivalence checking re-
ported in [5, 10, 21] to O(|Σ| · n3) arises from the fact that we keep the basis in
canonical form which reduces the O(n3) complexity [5, 10, 21] for the member-
ship test to O(n2). Since each iteration of the equivalence checking algorithm

adds a new vector to Q or decreases the size of worklist by one, |Σ| ·n iterations
suffice for termination. Thus the overall complexity is O(|Σ| · n3).

For efficiency, we consider an implementation based on finite-precision float-
ing point numbers. Therefore we need to take care of numerical issues. To this
end, we use the modified Gram-Schmidt iteration rather than the classical Gram-
Schmidt iteration, as the former is numerically more stable, see [20].

To be more robust in presence of rounding errors, vectors are compared up to
a relative error ǫ > 0. Two vectors v, v′ ∈ Rn are equal up to relative error ǫ ∈ R,

denoted by v ≈ǫ v
′, iff ‖v−v

′‖
‖v‖ < ǫ. The relative criterion is used to compare the

weight of a word in automaton A and B, and to check if a vector u ∈ Rn is
included in a vector space given by a set of base vectors Q, i.e., u ≈ǫ u− u ↓ Q.

Algorithm EQUIV←,det

Input: Automata A = (n(A), Σ,M (A), α(A), η(A)) and B = (n(B), Σ,M (B), α(B), η(B))

if α(A)η(A) 6= α(B)η(B)

return “α(A)η(A) = A(ε) 6= B(ε) = α(B)η(B)”
worklist := {(η(A), η(B), ε)}

η :=

(

η(A)

η(B)

)

if ‖η‖ = 0
return “A and B are both empty and hence equivalent”

Q := {η}
while worklist 6= ∅

choose and remove (v(A), v(B), w) from worklist

forall σ ∈ Σ
u(A) := M (A)(σ)v(A); u(B) := M (B)(σ)v(B); w′ := σw
if not α(A)u(A) ≈ǫ α

(B)u(B)

return “α(A)u(A) = A(w′) 6= B(w′) = α(B)u(B)”

u :=

(

u(A)

u(B)

)

q := u ↓ Q
if not u− q ≈ǫ u

add (u(A), u(B), w′) to worklist

Q := Q ∪ {q}
return “A and B are equivalent”

Fig. 1. Deterministic algorithm (backward version ←).

2.2 Randomised Algorithms

In this section we present a new randomised algorithm for deciding equivalence of
R-weighted automata. Recall from Proposition 2 that two R-weighted automata
with combined number of states n are equivalent if and only if they have the
same n-bounded language, that is, they assign the same weight to all words of

length at most n. Inspired by the work of Blum, Carter and Wegman on free
Boolean graphs [3] we represent the n-bounded language of an automaton by a
polynomial in which each monomial represents a word and the coefficient of the
monomial represents the weight of the word. We thereby reduce the equivalence
problem to polynomial identity testing, for which there is a number of efficient
randomised procedures.

Let A = (n(A), Σ,M (A), α(A), η(A)) and B = (n(B), Σ,M (B), α(B), η(B)) be
two R-weighted automata over the same alphabet Σ. Let n := n(A)+n(B) be the
total number of states of the two automata. We introduce a family of variables
x = {xσ,i : σ ∈ Σ, 1 ≤ i ≤ n} and associate the monomial xσ1,1xσ2,2 . . . xσk,k

with a word w = σ1σ2 . . . σk of length k ≤ n. Then we define the polynomial
P (A)(x) by

P (A)(x) :=

n
∑

k=0

∑

w∈Σk

A(w) · xσ1,1xσ2,2 . . . xσk,k . (1)

The polynomial P (B)(x) is defined likewise, and it is immediate from Proposi-
tion 2 that P (A) ≡ P (B) if and only if A and B have the same weighted language.

To test equivalence of P (A) and P (B) we select a value for each variable xi,σ

independently and uniformly at random from a set of rationals of size Kn, for
some constant K. Clearly if P (A) ≡ P (B) then both polynomials will yield the
same value. On the other hand, if P (A) 6≡ P (B) then the polynomials will yield
different values with probability at least (K − 1)/K by the following result of
De Millo and Lipton [9], Schwartz [18] and Zippel [22] and the fact that P (A)

and P (B) both have degree n.

Theorem 3. Let F be a field and Q(x1, . . . , xn) ∈ F[x1, . . . , xn] a multivariate
polynomial of total degree d. Fix a finite set S ⊆ F, and let r1, . . . , rn be chosen
independently and uniformly at random from S. Then

Pr[Q(r1, . . . , rn) = 0 | Q(x1, . . . , xn) 6≡ 0] ≤
d

|S|
.

While the number of monomials in P (A) and P (B) is proportional to |Σ|n,
i.e., exponential in n, writing

P (A)(x) = α(A)

n
∑

i=0

i
∏

j=1

∑

σ∈Σ

xσ,j ·M
(A)(σ)

 η(A) (2)

it is clear that P (A) and P (B) can be evaluated on a particular set of numerical
arguments in time polynomial in n. The formula (2) can be evaluated in a forward
direction, starting with the initial state vector α(A) and post-multiplying by the
transition matrices, or in a backward direction, starting with the final state
vector η(A) and pre-multiplying by the transition matrices. In either case we get
a polynomial-time Monte-Carlo algorithm for testing equivalence of R-automata.
The backward variant is shown in Figure 2.

Algorithm EQUIV←,rand

Input: Automata A = (n(A), Σ,M (A), α(A), η(A)) and B = (n(B), Σ,M (B), α(B), η(B))

if α(A)η(A) 6= α(B)η(B)

return “α(A)η(A) = A(ε) 6= B(ε) = α(B)η(B)”
v(A) := η(A); v(B) := η(B)

for i from 1 to n do
choose a random vector r ∈ {1, 2, . . . ,Kn}Σ

v(A) :=
∑

σ∈Σ
r(σ)M (A)(σ)v(A)

v(B) :=
∑

σ∈Σ
r(σ)M (B)(σ)v(B)

if α(A)v(A) 6= α(B)v(B)

return “∃w with |w| = i such that A(w) 6= B(w)”
return “A and B are equivalent with probability at least (K − 1)/K”

Fig. 2. Randomised algorithm, backward version

Algorithm EQUIV←,rand

Input: Automata A = (n(A), Σ,M (A), α(A), η(A)) and B = (n(B), Σ,M (B), α(B), η(B))

v
(A)
0 := η(A); v

(B)
0 := η(B);

for i from 1 to n do
choose a random vector r ∈ {1, 2, . . . ,Kn}Σ

v
(A)
i :=

(

∑

σ∈Σ
r(σ)M (A)(σ)

)

v
(A)
i−1;

v
(B)
i :=

(

∑

σ∈Σ
r(σ)M (B)(σ)

)

v
(B)
i−1;

if α(A)v
(A)
i 6= α(B)v

(B)
i

w := ε;
u(A) := α(A); u(B) := α(B);
for j from i downto 1 do

choose σ ∈ Σ with u(A)M (A)(σ)v
(A)
j−1 6= u(B)M (B)(σ)v

(B)
j−1;

w:= wσ;
u(A) := u(A)M (A)(σ);
u(B) := u(B)M (B)(σ);

return “α(A)u(A) = A(w′) 6= B(w′) = α(B)u(B)”
return “A and B are equivalent with probability at least (K − 1)/K”

Fig. 3. Randomised algorithm with counterexamples, backward version

2.3 Runtime

The randomised algorithm is simpler to implement than the deterministic algo-
rithm since there is no need to solve large systems of linear equations. While the
deterministic algorithm, carefully implemented, runs in time O(|Σ| ·n3), the ran-
domised algorithm runs in time O(n · |M |), where |M | is the number of nonzero
entries in all M(σ), provided that sparse-matrix representations are used. In al-
most all of our case studies, below, the randomised algorithm outperforms the
deterministic algorithm.

2.4 Extracting Counterexamples

We can obtain counterexamples from the randomised algorithm by exploiting
a self-reducible structure of the equivalence problem. We generate counterex-
amples incrementally, starting with the empty string and using the randomised
algorithm as an oracle to know at each stage what to choose as the next letter
in our counterexample. Here the important thing is to avoid repeatedly running
the randomised algorithm, which would negate the complexity advantages of this
procedure over the deterministic algorithm. In fact this can all be made to work
with some post-processing following a single run of the randomised procedure as
we now explain.

Once again assume that A and B are weighted automata over the same
alphabet Σ and with combined number of states n. To evaluate the polynomial
P (A) we substitute a set of randomly chosen rational values r = {rσ,i : σ ∈
Σ, 1 ≤ i ≤ n} into the expression (2). Here we will generalize this to a notion

of partial evaluation P
(A)
w (r) of polynomial P (A) with respect to values r and a

word w ∈ Σm, m ≤ n:

P (A)
w (r) = α(A)M (A)(w)

n
∑

i=m

n
∏

j=m+1

∑

σ∈Σ

rσ,j ·M
(A)(σ)

 η(A) (3)

Notice that P
(A)
ε (r) = P (A)(r) where ε is the empty word and, at the other

extreme, P
(A)
w (r) = A(w) for any word w of length n. We define P

(B)
w similarly.

Proposition 4. If P
(A)
w (r) 6= P

(B)
w (r) then either A(w) 6= B(w) or m < n and

there exists σ ∈ Σ with P
(A)
wσ (r) 6= P

(B)
wσ (r)

Proof. Considering the equation (3) and the corresponding statement for B the

contrapositive of the proposition is obvious: if A(w) = B(w) and P
(A)
wσ (r) 6=

P
(B)
wσ (r) for each σ ∈ Σ then P

(A)
w (r) = P

(B)
w (r).

From Proposition 4 it is clear that the algorithm in Figure 3 generates a
counterexample trace given r such that P (A)(r) 6= P (B)(r).

3 Experiments

Implementation. To evaluate the deterministic and randomised algorithms, we
have implemented an equivalence checker for probabilistic automata in C++
and tested their performance on a 3.07 GHz workstation with 48GB of memory.
The forward and the backward algorithm have about 100 lines of code each,
and the randomised one around 80, not counting supporting code. We use the
Boost uBLAS library to carry out vector and matrix operations. Numbers are
represented as double-precision floating point numbers. In order to benefit from
the sparsity of vectors and transition matrices, we store them in a sparse repre-
sentation which only stores non-zero entries.

Sparsity also plays a role in the Gram-Schmidt procedure because, in our
context, the argument vector u often shares non-zeros with only a few base
vectors. We have implemented an optimised version of Gram-Schmidt that only
projects out base vectors that share non-zero positions with the argument. This
can lead to dramatic speed-ups in the deterministic algorithms (the randomised
algorithm does not use Gram-Schmidt).

3.1 Herman’s protocol

We consider Herman’s self-stabilization protocol [11], in which N processes are
arranged in a ring. Initially each process holds a token. The objective of Herman’s
protocol is to evolve the processes into a stable state, where only one process
holds a token. The algorithm proceeds in rounds: in every round, each process
holding a token tosses a coin to decide whether to keep the token or to pass it
to its left neighbour; if a process holding a token receives an additional token,
both of these tokens expire. We will be interested in the number of rounds that
it takes to reach the stable state. The corresponding apex model “announces”
each new round by making calls to an undefined (external) procedure round
inside the control loop of the protocol. Making the announcements at different
program points within the loop (e.g. at the very beginning or the very end)
results in different automata shown in Figure 4 (for N = 3).

A few remarks are due regarding our graphical representation of automata.
Initial states are marked by a grey background. Accepting states are surrounded
by a double border and labelled by a distribution over return values, e.g., the
automaton on the left returns value 0 with a probability of 3

4 .

0 (0,3/4)	 r u n _ r o u n d , 1

	 r u n _ r o u n d , 1 / 4

0 (0,1)
	 r u n _ r o u n d , 3 / 4

2

	 r u n _ r o u n d , 1 / 4 	 r u n _ r o u n d , 3 / 4
	 r u n _ r o u n d , 1 / 4

Fig. 4. Herman’s protocol: automata for early (left) and late (right) announcement.

These automata are structurally different and not bisimilar. However, intu-
itively, it should not matter at which position within the loop the announcement

is made and therefore we check if the resulting automata are equivalent. Here is
how the four algorithms perform in this case study.

states equivalence checking
N sspec sprot t←,rand t←,det t→,rand t→,det

9 23 24 0.00 0.00 0.00 0.00
11 63 64 0.00 0.09 0.05 0.13
13 190 191 0.15 2.66 1.19 3.60
15 612 613 3.98 93.00 30.32 119.21

3.2 Grade Protocol

Assume that a group of students has been graded and would like to find out the
sum of all their grades, e.g. to compute the average. However, none wants to
reveal their individual grade in the process.

The task can be accomplished with the following randomised algorithm. Let
S ∈ N be the number of students, and let {0, · · · , G − 1} (G ∈ N) be the set
of grades. Define N = (G − 1) · S + 1. Further we assume that the students
are arranged in a ring and that each pair of adjacent students shares a random
integer between 0 and N−1. Thus a student shares a number l with the student
on the left and a number r with the student on the right, respectively. Denoting
the student’s grade by g, the student announces the number (g + l − r)mod N .
Because of the ring structure, each number will be reported twice, once as l and
once as r, so the sum of all announcements (modulo N) will be the same as the
sum of all grades. What we can verify is that only this sum can be gleaned from
the announcements by a casual observer, i.e. the observer cannot gain access to
any extra information about individual grades. This correctness condition can be
formalised by a specification, in which the students make random announcements
subject to the condition that their sum equals the sum of their grades.

Correct protocol. To check correctness of the Grade protocol, we check if the
automaton resulting from the implementation of the protocol is equivalent to
the specification automaton. Both automata are presented in Figure 5 for G = 2
and S = 3. Both automata accept words which are sequences of grades and
announcements. The words are accepted with the same probability as that of
producing the announcements for the given grades. Adherence to specification
can then be verified via language equivalence.

In Figure 6 we report various data related to the performance of apex and
the equivalence checking algorithms. The reported times tspec and tprot are those
needed to construct the automata corresponding to specification and the pro-
tocol respectively (we also give their sizes sspec, sprot). The columns labelled by
t←,rand, t←,det, t→,rand, t→,det give the running time of the language equivalence
check of the respective automata using the four algorithms. The symbol −means
that the computation timed out after 10 minutes.

The running time of the deterministic backwards algorithm is higher than
the one of the forward algorithm because the backwards algorithm constructs a
different vector space with a higher number of dimensions.

0

30

	 1 _ g r a d e , 1 / 4

31

	 0 _ g r a d e , 1 / 4

32

	 0 _ g r a d e , 1 / 4 33

	 1 _ g r a d e , 1 / 4

34

	 1 _ g r a d e , 1 / 4

35	 0 _ g r a d e , 1 / 4

36

	 0 _ g r a d e , 1 / 4

37	 1 _ g r a d e , 1 / 4

27	 w r i t e (3) _ o u t , 1

29

	 w r i t e (3) _ o u t , 1

28

	 w r i t e (0) _ o u t , 1

	 w r i t e (0) _ o u t , 1

	 w r i t e (1) _ o u t , 1

26
	 w r i t e (1) _ o u t , 1

	 w r i t e (2) _ o u t , 1

	 w r i t e (2) _ o u t , 1

(0,1)

2

	 w r i t e (3) _ o u t , 1

3 	 w r i t e (2) _ o u t , 1

4 	 w r i t e (1) _ o u t , 1

5

	 w r i t e (0) _ o u t , 1

6 	 1 _ g r a d e , 1

	 0 _ g r a d e , 1

7
	 1 _ g r a d e , 1

	 0 _ g r a d e , 1

8

	 0 _ g r a d e , 1

	 1 _ g r a d e , 1

9

	 1 _ g r a d e , 1

	 0 _ g r a d e , 1

10

	 w r i t e (3) _ o u t , 1

11

	 w r i t e (3) _ o u t , 1

12

	 w r i t e (0) _ o u t , 1

13

	 w r i t e (0) _ o u t , 1

14

	 w r i t e (1) _ o u t , 1

15

	 w r i t e (1) _ o u t , 1

16

	 w r i t e (2) _ o u t , 1

17

	 w r i t e (2) _ o u t , 1

18

	 w r i t e (3) _ o u t , 1

19

	 w r i t e (0) _ o u t , 1

20

	 w r i t e (1) _ o u t , 1

21

	 w r i t e (2) _ o u t , 1

22

	 w r i t e (3) _ o u t , 1
23

	 w r i t e (0) _ o u t , 1

24

	 w r i t e (1) _ o u t , 1

25

	 w r i t e (2) _ o u t , 1

	 0 _ g r a d e , 1 / 4

	 1 _ g r a d e , 1 / 4

	 1 _ g r a d e , 1 / 4

	 0 _ g r a d e , 1 / 4

	 0 _ g r a d e , 1 / 4

	 1 _ g r a d e , 1 / 4

	 0 _ g r a d e , 1 / 4

	 1 _ g r a d e , 1 / 4

	 1 _ g r a d e , 1 / 4

	 1 _ g r a d e , 1 / 4

	 1 _ g r a d e , 1 / 4

	 1 _ g r a d e , 1 / 4

	 0 _ g r a d e , 1 / 4

	 0 _ g r a d e , 1 / 4

	 0 _ g r a d e , 1 / 4

	 0 _ g r a d e , 1 / 4

	 0 _ g r a d e , 1 / 4

	 0 _ g r a d e , 1 / 4

	 0 _ g r a d e , 1 / 4

	 0 _ g r a d e , 1 / 4

	 1 _ g r a d e , 1 / 4

	 1 _ g r a d e , 1 / 4

	 1 _ g r a d e , 1 / 4

	 1 _ g r a d e , 1 / 4

	 1 _ g r a d e , 1 / 4

	 1 _ g r a d e , 1 / 4

	 1 _ g r a d e , 1 / 4

	 1 _ g r a d e , 1 / 4

	 0 _ g r a d e , 1 / 4

	 0 _ g r a d e , 1 / 4

	 0 _ g r a d e , 1 / 4

	 0 _ g r a d e , 1 / 4

0

18	 0 _ g r a d e , 1

19

	 1 _ g r a d e , 1

14

	wr i t e (2)_ou t , 1 /4

15

	wr i t e (1)_ou t , 1 /4

16

	 w r i t e (0) _ o u t , 1 / 4

17

	wr i t e (3)_ou t , 1 /4

	wr i t e (3)_ou t , 1 /4

	wr i t e (2)_ou t , 1 /4

	wr i t e (1)_ou t , 1 /4

	 w r i t e (0) _ o u t , 1 / 4

(0,1)

2 	 w r i t e (1) _ o u t , 1

3 	 w r i t e (2) _ o u t , 1

4

	 w r i t e (0) _ o u t , 1
5

	 w r i t e (3) _ o u t , 1

6

	 0 _ g r a d e , 1

	 1 _ g r a d e , 1

7
	 1 _ g r a d e , 1

	 0 _ g r a d e , 1

8

	 1 _ g r a d e , 1

	 0 _ g r a d e , 1

9
	 0 _ g r a d e , 1

	 1 _ g r a d e , 1

10

	wr i t e (3)_ou t , 1 /4

	wr i t e (2)_ou t , 1 /4

	wr i t e (1)_ou t , 1 /4

	 w r i t e (0) _ o u t , 1 / 4

11

	 w r i t e (0) _ o u t , 1 / 4

	wr i t e (3)_ou t , 1 /4

	wr i t e (2)_ou t , 1 /4

	wr i t e (1)_ou t , 1 /4

12
	wr i t e (2)_ou t , 1 /4

	wr i t e (1)_ou t , 1 /4

	 w r i t e (0) _ o u t , 1 / 4

	wr i t e (3)_ou t , 1 /4

13

	wr i t e (1)_ou t , 1 /4

	 w r i t e (0) _ o u t , 1 / 4

	wr i t e (3)_ou t , 1 /4

	wr i t e (2)_ou t , 1 /4

	 0 _ g r a d e , 1

	 1 _ g r a d e , 1

	 1 _ g r a d e , 1

	 0 _ g r a d e , 1

	 1 _ g r a d e , 1

	 0 _ g r a d e , 1

	 0 _ g r a d e , 1

	 1 _ g r a d e , 1

Fig. 5. Automata generated by apex: protocol (top) and specification (bottom)

apex states equivalence checking
G S tspec tprot sspec sprot t←,rand t←,det t→,rand t→,det

2 10 0.00 0.02 202 1102 0.00 0.41 0.00 0.02
2 20 0.05 0.24 802 8402 0.10 26.09 0.03 0.26
2 50 1.75 6.46 5,002 127,502 8.08 - 1.21 10.07
2 100 25.36 82.26 20,002 1,010,002 240.97 - 10.56 159.39
2 200 396.55 - 80,002 -
3 10 0.02 0.16 383 3803 0.02 5.79 0.01 0.09
3 20 0.22 1.64 1,563 31,203 0.69 598.78 0.23 1.33
3 50 6.99 39.27 9,903 495,003 61.76 - 9.29 63.16
3 100 102.42 - 39,803
3 200 - -
4 10 0.04 0.56 564 8124 0.07 37.32 0.04 0.36
4 20 0.53 5.47 2,324 68,444 2.25 - 0.77 4.95
4 50 15.94 142.59 14,804 1,102,604 210.00 - 30.27 222.50
4 100 232.07 - 59,604
4 200 - -
5 10 0.09 1.46 745 14,065 0.17 164.87 0.10 0.68
5 20 0.96 16.39 3,085 120,125 5.36 - 1.92 14.49
5 50 28.81 417.58 19,705 1,950,305 508.86 - 62.64 335.01
5 100 417.59 - 79,405
5 200 - -

Fig. 6. Equivalence checks for the Grade Protocol

apex states equivalence checking
G S tspec tprot sspec sprot t←,rand t∗

←,rand t←,det t→,rand t∗
→,rand t→,det

2 10 0.00 0.10 202 8,845 0.02 0.02 6.71 0.01 0.01 0.26
2 20 0.05 2.24 802 151,285 1.85 1.86 - 0.12 0.14 11.28
2 50 1.75 170.40 5,002 6,120,205 - - - 17.38 18.60 -
3 10 0.00 0.10 383 63685 0.51 0.51 - 0.06 0.07 6.81
3 20 0.05 2.24 1,563 1,150,565 86.57 86.61 - 2.51 2.84 441
3 50 1.75 170.40 9,903 -
4 10 0.00 0.10 564 207,125 8.04 8.04 - 0.34 0.35 60.57
4 20 0.05 2.24 2,324 3,816,145 - - - 17.11 17.31 -
4 50 1.75 170.40 14,804 -
5 10 0.00 0.10 745 481,765 27.22 27.25 - 1.33 1.37 269.71
5 20 0.05 2.24 3,085 8,966,725 - - - 72.29 72.53 -
5 50 1.75 170.40 19,705 -

Fig. 7. Inequivalence checks for the Grade Protocol

Faulty protocol. Moving to test cases for inequivalence checking, we compare
the specification for the Grade Protocol with a faulty version of the protocol in
which the students draw numbers between 0 and N − 2 (rather than N − 1, as
in the original protocol). The running times and automata sizes are recorded in
Figure 7.

Both the deterministic and the randomised algorithms are decision algo-
rithms for equivalence and can also generate counterexamples, which could serve,
e.g., to repair a faulty protocol. We test counterexample generation on the faulty
version of the protocol.

The deterministic algorithm stores words in the work list which immediately
yield a counterexample in case of inequivalence. In the context of the randomised
algorithm (as described in Section 2.4), counterexample generation requires extra
work: words need to be reconstructed using matrix vector multiplications. To
quantify the runtime overhead, we record running times with counterexample
generation switched on and off.

The running time of the backward randomised algorithm with counterexam-
ple generation is denoted by t∗←,rand and analogously for the forward algorithm.
The runtime overhead of counterexample generation remains below 12%.

3.3 Randomised Inflation

Next we discuss two procedures that can be used to produce random instances of
equivalent automata. We introduce two directional variants (by analogy to the
forward and backward algorithms) that, given an input automaton, produce an
equivalent automaton with one more state. Intuitively, equivalence is preserved
because the new state is a linear combination of existing states, which are then
suitably adjusted.

Backward Inflate From a given automaton A = (n,Σ,M,α, η), we con-
struct an equivalent automaton A′ with an additional state such that the
automaton A′ is not bisimilar to the original automaton A. The automaton
A′ = (n + 1, Σ,M ′, α′, η′) has an additional state that corresponds to a linear
combination of states in A. To this end, the inflation procedure randomly picks
several vectors:

– a single row vector δ ∈ Rn which controls the transitions out of the new
state; to obtain a substochastic transition matrix, we ensure δ ≥ (0, . . . , 0)
(where ≥ is meant componentwise) and δ(1, . . . , 1)⊤ = 1;

– column vectors s(σ) ∈ Rn for all σ ∈ Σ that define the probability that
flows into the new state; for probabilistic automata one should ensure
(0, . . . , 0)⊤ ≤ s(σ) ≤ (1, . . . , 1)⊤ and s(σ)δ ≤ M(σ).

We define the transition matrices such that the new state n + 1 is a linear
combination of the old states, weighted according to δ. The transition matrix
for σ ∈ Σ is defined as folllows:

M ′(σ) :=

(

M(σ)− s(σ)δ s(σ)
δM(σ) 0

)

and α′ := (α 0) and η′ :=

(

η
δη

)

.

Proposition 5. A and A′ are equivalent.

Proof. For any word w = σ1 · · ·σk ∈ Σ∗, define c(w) := M(σ1) · · ·M(σk)η and
c′(w) := M ′(σ1) · · ·M

′(σk)η
′. We will show:

c′(w) =

(

c(w)
δc(w)

)

for all w ∈ Σ∗. (4)

Equation (4) implies the proposition, because A′(w) = α′c′(w)
(4)
= αc(w) =

A(w). We prove (4) by induction on the length of w. For the induction base, we

have c′(ε) = η′ =

(

η
δη

)

=

(

c(ε)
δc(ε)

)

. For the induction step, assume (4) holds

for w. Let σ ∈ Σ. Then we have

c′(σw) = M ′(σ)c′(w) =

(

M(σ)− s(σ)δ s(σ)
δM(σ) 0

)(

c(w)
δc(w)

)

=

(

M(σ)c(w)
δM(σ)c(w)

)

=

(

c(σw)
δc(σw)

)

,

completing the induction proof. ⊓⊔

Forward Inflate Forward Inflate is a variant obtained by “transposing” Back-
ward Inflate. In this variant it is hard to keep the matrices stochastic. How-
ever, nonnegativity can be preserved. Construct an automaton A′ = (n +
1, Σ,M ′, α′, η′) as follows. Pick randomly:

– a column vector δ ∈ Rn;
– row vectors s(σ) ∈ Rn for all σ ∈ Σ; for nonnegative automata one should

ensure δs(σ) ≤ M(σ).

Define

M ′(σ) :=

(

M(σ)− δs(σ) M(σ)δ
s(σ) 0

)

and α′ := (α αδ) and η′ :=

(

η
0

)

.

Proposition 6. A and A′ are equivalent.

The proof is analogous to that of Proposition 5.

We have conducted experiments in which we compare automata with their
multiply inflated versions. Our initial automaton is the doubly-linked ring of
size 10, i.e. the states are {0, · · · , 10}, there are two letters l and r such that the
probability of moving from i to (i+ 1)mod 10 on r is 0.5 and the probability of
moving from i to (i− 1)mod 10 on l is 0.5 (otherwise the transition probabilities
are equal to 0). The table below lists times needed to verify the equivalence of
the ring with its backward inflations.

#inflations t←,rand t←,det

1 0.001282 0.00209
5 0.001863 0.004165

10 0.002986 0.008560
20 0.003256 0.007932
50 0.009647 0.058917

100 0.045588 0.306103
200 0.276887 2.014591
500 3.767168 29.578838

4 Conclusion

This paper has presented equivalence checking algorithms for probabilistic au-
tomata. We have modified Tzeng’s original deterministic algorithm [21]: by keep-
ing an orthogonal basis of the underlying vector spaces, we have managed to
improve the original quartic runtime complexity to a cubic bound. Further, we
have presented a novel randomised algorithm with an even lower theoretical
complexity for sparse automata. Our randomised algorithm is based on poly-
nomial identity testing. The randomised algorithm may report two inequalent
automata to be equivalent. However, its error probability, established by a theo-
rem of Schwarz and Zippel, can be made arbitrarily small by increasing the size
of the sample set and by repeating the algorithm with different random seeds.
The randomised algorithm outperforms the deterministic algorithm on a wide
range of benchmarks. Confirming the theoretical error probabilities the algo-
rithm has detected all inequivalent automata and was able to generate suitable
counterexample words.

References

1. C. Baier, N. Bertrand, and M. Größer. Probabilistic automata over infinite words:
Expressiveness, efficiency, and decidability. In DCFS, volume 3 of EPTCS, pages
3–16, 2009.

2. V. D. Blondel and V. Canterini. Undecidable problems for probabilistic automata
of fixed dimension. Theoretical Computer Science, 36 (3):231–245, 2003.

3. M. Blum, A. Chandra, and M. Wegman. Equivalence of free boolean graphs can
be decided probabilistically in polynomial time. Inf. Process. Lett., 10(2):80–82,
1980.

4. K. Chatterjee, L. Doyen, and T. A. Henzinger. Probabilistic weighted automata.
In CONCUR, volume 5710 of Lecture Notes in Computer Science, pages 244–258.
Springer, 2009.

5. Linda Christoff and Ivan Christoff. Efficient algorithms for verification of equiva-
lences for probabilistic processes. In CAV, volume 575 of Lecture Notes in Computer

Science, pages 310–321. Springer, 1991.
6. A. Condon and R. Lipton. On the complexity of space bounded interactive proofs

(extended abstract). In Proceedings of FOCS, pages 462–467, 1989.
7. C. Cortes, M. Mohri, and A. Rastogi. On the computation of some standard

distances between probabilistic automata. In Proc. of CIAA, pages 137–149, 2006.
8. V. Danos and R. Harmer. Probabilistic game semantics. ACM Transactions on

Computational Logic, 3(3):359–382, 2002.

9. R. DeMillo and R. Lipton. A probabilistic remark on algebraic program testing.
Inf. Process. Lett., 7(4):193–195, 1978.

10. L. Doyen, T. Henzinger, and J.-F. Raskin. Equivalence of labeled Markov chains.
International Journal of Foundations of Computer Science, 19(3):549–563, 2008.

11. T. Herman. Probabilistic self-stabilization. Inf. Process. Lett., 35(2):63–67, 1990.
12. A. Legay, A. S. Murawski, J. Ouaknine, and J. Worrell. On automated verification

of probabilistic programs. In Proceedings of TACAS, volume 4963 of Lecture Notes

in Computer Science, pages 173–187. Springer, 2008.
13. Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager. Compositionality for

probabilistic automata. In CONCUR, volume 2761 of Lecture Notes in Computer

Science, pages 204–222. Springer, 2003.
14. A. S. Murawski and J. Ouaknine. On probabilistic program equivalence and re-

finement. In Proceedings of CONCUR, volume 3653 of Lecture Notes in Computer

Science, pages 156–170. Springer, 2005.
15. A. Paz. Introduction to Probabilistic Automata. Academic Press, 1971.
16. M. O. Rabin. Probabilistic automata. Information and Control, 6 (3):230–245,

1963.
17. M.-P. Schützenberger. On the definition of a family of automata. Inf. and Control,

4:245–270, 1961.
18. J. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.

J. ACM, 27(4):701–717, 1980.
19. R. Segala. Modeling and verification of randomized distributed real -time systems.

Technical report, MIT, Cambridge MA, USA, 1996.
20. L.N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, 1997.
21. W. Tzeng. A polynomial-time algorithm for the equivalence of probabilistic au-

tomata. SIAM Journal on Computing, 21(2):216–227, 1992.
22. R. Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM, vol-

ume 72 of Lecture Notes in Computer Science, pages 216–226. Springer, 1979.

