
Static Timing Analysis for

Hard Real-Time Systems�

Reinhard Wilhelm, Sebastian Altmeyer, Claire Burguière,
Daniel Grund, Jörg Herter, Jan Reineke,
Björn Wachter, and Stephan Wilhelm

Saarland University, Saarbrücken, Germany

Abstract. Hard real-time systems have to satisfy strict timing con-
straints. To prove that these constraints are met, timing analyses aim
to derive safe upper bounds on tasks’ execution times. Processor com-
ponents such as caches, out-of-order pipelines, and speculation cause a
large variation of the execution time of instructions, which may induce
a large variability of a task’s execution time. The architectural platform
also determines the precision and the complexity of timing analysis.

This paper provides an overview of our timing-analysis technique and
in particular the methodological aspects of interest to the verification
community.

1 Introduction

Hard real-time systems have to satisfy strict timing constraints. Traditionally,
measurement has been used to show their satisfaction. However, the use of mod-
ern high-performance processors has created a severe problem. Processor com-
ponents such as caches, out-of-order pipelines, and all kinds of speculation cause
a large variability of the execution times of instructions, which induces a po-
tentially high variability of whole programs’ execution times. For individual in-
structions, the execution time may vary by a factor of 100 and more. The actual
execution time depends on the architectural state in which the instruction is
executed, i.e. the contents of the caches, the occupancy of the pipeline units,
contention on the busses etc.

Different kinds of timing analyses are being used today [1]; measurement-
based/hybrid [2,3,4] and static analysis [5] being the most prominent. Both
methods compute estimates of the worst-case execution times for program frag-
ments like basic blocks. If these estimates are correct, i.e. they are upper bounds
on the worst-case execution time of the program fragment, they can be combined
to obtain an upper bound on the worst-case execution time of the task.
� The research leading to these results has received funding from the following

projects (in alphabetical order): the Deutsche Forschungsgemeinschaft in SFB/TR 14
AVACS, the German-Israeli Foundation (GIF) in the Encasa project, and the Eu-
ropean Community’s Seventh Framework Programme FP7/2007-2013 under grant
agreement number 216008 (Predator).

G. Barthe and M. Hermenegildo (Eds.): VMCAI 2010, LNCS 5944, pp. 3–22, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

4 R. Wilhelm et al.

While using similar methods in the combination of execution times of program
fragments, the two methods take fundamentally different approaches to compute
these estimates:

– Static analyses based on abstract models of the underlying hardware com-
pute invariants about the set of all execution states at each program point
under all possible initial states and inputs and derive upper bounds on the
execution time of program fragments based on these invariants.

– Measurement executes each program fragment with a subset of the possible
initial states and inputs. The maximum of the measured execution times is
in general an underestimation of the worst-case execution time.

If the abstract hardware models are correct, static analysis computes safe upper
bounds on the WCETs of program fragments and thus also of tasks. However,
creating abstract hardware models is an error-prone and laborious process, es-
pecially if no precise specification of the hardware is available.

The advantage of measurement over static analysis is that it is more easily
portable to new architectures, as it does not rely on such abstract models of the
architecture. On the other hand, soundness of measurement-based approaches is
hard to guarantee. Measurement would trivially be sound if all initial states and
inputs would be covered. Due to their huge number this is usually not feasible.
Instead, only a subset of the initial states and inputs can be considered in the
measurements.

This paper provides an overview of our state-of-the-art timing-analysis ap-
proach. In Section 2, we describe the architecture and the component function-
alities of our framework for static timing analysis.

Section 3 is devoted to several aspects of the memory hierarchy, in partic-
ular caches. Memory-system performance often dominates overall system per-
formance. This makes cache analysis so important for timing analysis. The
most relevant property is predictability [6,7]. This notion—a hot topic of cur-
rent research—is fully clarified for caches [8,9]. A second notion, exemplified
for caches, is the relative competitiveness of different cache architectures. They
allow one to use the cache-analysis results of one cache architecture to pre-
dict cache performance for another one. A third property of cache architectures
is their sensitivity to the initial state. Results show that some frequently used
cache replacement-strategies are highly sensitive. This has severe consequences
for measurement-based approaches to timing analysis. Missing one initial cache
state in a non-exhaustive set of measurements may lead to dramatically wrong
results.

Data-cache analysis would fail for programs allocating data in the heap since
the addresses and therefore the mapping to cache sets would be statically un-
known. We approach this problem in two different ways, firstly, by converting
dynamic to static allocation and using a parametric timing analysis, and sec-
ondly, by allocating in a cache-aware way.

Pipelines are much more complex than caches and therefore more difficult to
model. The analysis of their behavior needs much more effort than cache analysis
since a huge search space has to be explored and no abstract domain with a

Static Timing Analysis for Hard Real-Time Systems 5

compact representation of sets of pipeline states has been found so far. Symbolic
data structures as used in model checking offer some potential to increase the
efficiency. A novel symbolic approach to timing analysis has shown promising
results [10]. We give a short overview in Section 4.

This article centers around static timing analysis. An extended description of
our approach can be found in [11]. A comprehensive survey of timing-analysis
approaches is given in [1].

1.1 The Architectural Challenge—and How to Cope with It

Hard real-time systems need guarantees expressed in terms of worst-case perfor-
mance. However, the architectures on which the real-time programs are executed
are optimized for average-case performance. Caches, pipelines, and all kinds of
speculation are key features for improving average-case performance. Caches are
used to bridge the gap between processor speed and the access time of main
memory. Pipelines enable acceleration by overlapping the executions of different
instructions. The consequence is that the execution time of individual instruc-
tions, and thus the contribution to the program’s execution time can vary widely.
The interval of execution times for one instruction is bounded by the execution
times of the following two cases:

– The instruction goes “smoothly” through the pipeline; all loads hit the cache,
no pipeline hazard happens, i.e. all operands are ready, no resource conflicts
with other currently executing instructions exist.

– “Everything goes wrong”, i.e. instruction and/or operand fetches miss the
cache, resources needed by the instruction are occupied, etc.

We will call any increase in execution time during an instruction’s execution
a timing accident and the number of cycles by which it increases the timing
penalty of this accident. Timing penalties for an instruction can add up to several
hundred processor cycles. Whether the execution of an instruction encounters

F
re

q
u
en

cy

Exec-timeLB BCET WCET UB

In addition: abstraction-induced variance

Input- and state-induced variance Overest.

Fig. 1. Notions in Timing Analysis. Best-cast and worst-case execution time (BCET
and WCET), and computed lower and upper bounds.

6 R. Wilhelm et al.

a timing accident depends on the architectural state, e.g. the contents of the
cache(s), the occupancy of other resources, and thus on the execution history.
It is therefore obvious that the attempt to predict or exclude timing accidents
needs information about the execution history.

We use static analysis to compute invariants about the set of all possible
architectural states at all program points. Indeed, due to abstraction, over-
approximations of these sets are computed. They are used to derive safety prop-
erties of the kind: “A certain timing accident will not happen at this program
point.”. Such a safety property allows the timing-analysis tool to prove a tighter
worst-case bound.

Some abstraction of the execution platform is necessary to make a timing
analysis of the system feasible. These abstractions lose information, and thus are
in part responsible for the gap between WCETs and upper bounds and between
BCETs and lower bounds. How much is lost depends both on the methods used
for timing analysis and on system properties, such as the hardware architecture
and the analyzability of the software.

1.2 Timing Anomalies

Most powerful microprocessors have so-called timing anomalies [12]. Timing
anomalies are contra-intuitive influences of the (local) execution time of one in-
struction on the (global) execution time of the whole program. Several processor
features can interact in such a way that a locally faster execution of an instruction
can lead to a globally longer execution time of the whole program. Hence, resolving
uncertainty in the analysis by only assuming local worst-cases might be unsound.

One would assume that a cache miss is always the worst-case possibility for a
memory access. However, the cache miss may prevent an expensive branch mis-
prediction and, thus, globally be the better case. This was observed for the MCF
5307 [13,5]. Since the MCF 5307 has a unified cache and the fetch and execute
pipelines are independent, the following can happen: A data access hitting in the
cache is served directly from the cache. At the same time, the pipeline fetches
another instruction block from main memory, performing branch prediction and
replacing two lines of data in the cache. These may be reused later on and cause
two misses. If the data access was a cache miss, the instruction fetch pipeline
may not have fetched those two lines, because the execution pipeline may have
resolved a misprediction before those lines were fetched.

The existence of timing anomalies forces the timing analysis to explore all
successor states that cannot be excluded, not only the local worst-case ones.
Besides the fact that timing penalties may partly mask each other out, timing
anomalies are another reason why timing is not compositional.

2 A Timing Analysis Framework

Over roughly the last decade, a more or less standard architecture for timing-
analysis tools has emerged. Figure 2 gives a general view of this architecture.
First, one can distinguish four major building blocks:

Static Timing Analysis for Hard Real-Time Systems 7

– control-flow reconstruction
– static analyses for control and data flow
– micro-architectural analysis computing upper and lower bounds on the exe-

cution times of basic blocks
– global bounds analysis computing upper and lower bounds for the whole

program

The following list presents the individual phases and describes their objectives
and main challenges.

1. Control-flow reconstruction [14] takes a binary executable to be analyzed,
reconstructs the program’s control flow and transforms the program into a
suitable intermediate representation. Problems encountered are dynamically
computed control-flow successors, e.g. those stemming from switch state-
ments, function pointers, etc.

2. Value analysis [15] computes an over-approximation of the set of possible
values in registers and memory locations by an interval analysis and/or con-
gruence analysis. The computed information is used for a precise data-cache
analysis and in the subsequent control-flow analysis. Value analysis is the
only one to use an abstraction of the processor’s arithmetic. A subsequent
pipeline analysis can therefore work with a simplified pipeline where the
arithmetic units are removed. One is not interested in what is computed,
but only in how long it will take.

Binary
Executable

CFG Re-
construction

Control-flow
Graph

Loop Bound
Analysis

Value
Analysis

Control-flow
Analysis

Annotated
CFG

Basic Block
Timing Info

Micro-
architectural

Analysis

Global Bound
Analysis

Legend:

Data

Phase

Fig. 2. Main components of a timing-analysis framework and their interaction

8 R. Wilhelm et al.

3. Loop bound analysis [16,17] identifies loops in the program and tries to de-
termine bounds on the number of loop iterations; information indispensable
to bound the execution time. Problems are the analysis of arithmetic on loop
counters and loop exit conditions, as well as dependencies in nested loops.

4. Control-flow analysis [16,18] narrows down the set of possible paths through
the program by eliminating infeasible paths or by determining correlations
between the number of executions of different blocks using the results of
value analysis. These constraints will tighten the obtained timing bounds.

5. Micro-architectural analysis [19,20,21] determines bounds on the execution
time of basic blocks by performing an abstract interpretation of the pro-
gram, combining analyses of the processor’s pipeline, caches, and specula-
tion. Static cache analyses determine safe approximations to the contents of
caches at each program point. Pipeline analysis analyzes how instructions
pass through the pipeline accounting for occupancy of shared resources like
queues, functional units, etc.

6. Global bounds analysis [22,23] finally determines bounds on the execution
times for the whole program by implicit path enumeration using an integer
linear program (ILP). Bounds of the execution times of basic blocks are
combined to compute longest paths through the program. The control flow
is modeled by Kirchhoff’s law. Loop bounds and infeasible paths are modeled
by additional constraints. The target function weights each basic block with
its time bound. A solution of the ILP maximizes the sum of those weights
and corresponds to an upper bound on the execution times.

The commercially available tool aiT by AbsInt, cf. http://www.absint.de/
wcet.htm implements this architecture. It is used in the aeronautics and auto-
motive industries and has been successfully used to determine precise bounds on
execution times of real-time programs [21,5,24,13]. The European Airworthiness
Authorities have validated it for the certification of several avionics subsystems
of the Airbus A380.

3 Cache Analysis

The goal of a static cache analysis is to statically predict the cache behavior
of a program on a set of inputs with a possibly unknown initial cache state.
As the cache behavior may vary from input to input and from one initial state
to another, it may not be possible to safely classify each memory access in the
program as a cache hit or a cache miss. A cache analysis is therefore forced
to approximate the cache behavior in a conservative way if it shall be used to
provide guarantees on the execution time of a task.

To obtain tight bounds on the execution time it is essential to use a precise
cache analysis. Each excluded cache miss improves the provable upper bound
on the worst-case execution time roughly by the cache miss penalty. Conversely,
each guaranteed cache miss improves the provable lower bound on the best-case
execution time.

Static Timing Analysis for Hard Real-Time Systems 9

WCET and BCET analyses need a classification of individual memory ac-
cesses in the program as cache hits or misses. For most architectures, it is not
sufficient to determine upper and lower bounds on the number of misses for the
execution of the entire program because caches interact with other architectural
components such as pipelines. For instance, a cache reload may overlap with a
pipeline stall. To precisely take such effects into account, a timing analysis needs
to know where and when the cache misses happen.

One may compute may and must cache information in static cache analysis:
may and must caches at a program point are upper and lower approximations,
respectively, to the contents of all concrete caches that will occur whenever
program execution reaches this program point. The must cache at a program
point is a set of memory blocks that are definitely in each concrete cache at
that point. The may cache is a set of memory blocks that may be in a concrete
cache whenever program execution reaches that program point. We call the two
analyses may and must cache analyses.

Must cache information is used to derive safe information about cache hits;
in other words it is used to exclude the timing accident “cache miss”. The com-
plement of the may cache information is used to safely predict cache misses.

3.1 Influence of the Cache Replacement Policy

Caches have a particularly strong influence on both the variation of execution
times due to the initial hardware state and on the precision of static WCET
analyses. A cache’s behavior is controlled by its replacement policy. In [9], we
investigate the influence of the cache replacement policy on

– the amount of inherent uncertainty in static cache analysis, i.e. cache misses
that cannot be excluded statically but never happen during execution

– the maximal variation in cache performance due to the initial cache state
– the construction of static cache analyses, analyses that statically classify

memory references as cache hits or misses

The following subsections explain the three problems in more detail and sketch
our approaches and contributions.

Predictability Metrics—Limits on the Precision of Cache Analyses.
Usually there is some uncertainty about the cache contents, i.e. the may and
must caches do not coincide; there are memory blocks which can neither be
guaranteed to be in the cache nor not to be in it. The greater the uncertainty
in the must cache, the worse the upper bound on the WCET. Similarly, greater
uncertainty in the may cache entails a less precise lower bound on the BCET.

There are several reasons for uncertainty about cache contents:

– Static cache analyses usually cannot make any assumptions about the initial
cache contents. Cache contents on entry depend on previously executed tasks.
Even assuming an empty cache may not be conservative [25].

10 R. Wilhelm et al.

– At control-flow joins, analysis information about different paths needs to be
safely combined. Intuitively, one must take the intersection of the incoming
must information and the union of the incoming may information. A mem-
ory block can only be in the must cache if it is in the must caches of all
predecessor control-flow nodes, correspondingly for may caches.

– In data-cache analysis, the value analysis may not be able to exactly de-
termine the address of a memory reference. Then the cache analysis must
conservatively account for all possible addresses.

– Preempting tasks may change the cache state in an unpredictable way at
preemption points [26].

Since information about the cache state may thus be unknown or lost, it is
important to recover information quickly to be able to classify memory references
safely as cache hits or misses. This is possible for most caches. However, the speed
of this recovery greatly depends on the cache replacement policy. It influences
how much uncertainty about cache hits and misses remains. Thus, the speed of
recovery is an indicator of timing predictability.

The two metrics, evict and fill, in-evict
fill

[dex]
[fde]

[gfd]
[hgf][fec]

[gfe]
[fed]

Fig. 3. Initially different cache sets
converge when accessing a sequence
〈a, b, c, d, e, f, g, h, . . .〉 of pairwise different
memory blocks

dicate how quickly knowledge about
cache hits and misses can be (re-)ob-
tained under a particular replacement
policy [8]. They mark a limit on the
precision that any cache analysis can
achieve, be it by abstract interpreta-
tion or any other sound method. Fig-
ure 3 illustrates the two metrics. evict
tells us at which point we can safely
predict that some memory blocks are
no more in the cache, i.e. they are in
the complement of may information.
Any memory block not contained in
the last evict accesses cannot be in

the cache set. The greater evict, the longer it takes to gain may information.
fill accesses are required to converge to one completely determined cache set.
At this point, complete may and must information is obtained, which allows to
precisely classify each memory access as a hit or a miss. The two metrics mark a
limit on any cache analysis: no analysis can infer any may information (complete
must information) given an unknown cache-set state and less than evict (fill)
memory accesses.

Under the two metrics, LRU is optimal, i.e. may- and must -information can
be obtained in the least possible number of memory accesses. PLRU, MRU, and
FIFO, perform considerably worse. Compared to an 8-way LRU, it takes more
than twice as many accesses to regain complete must -information for equally-
sized PLRU, MRU, and FIFO caches. As a consequence, it is impossible to
construct cache analyses for PLRU, MRU, and FIFO that are as precise as
known LRU analyses.

Static Timing Analysis for Hard Real-Time Systems 11

Relative Competitiveness of Replacement Policies. Developing cache an-
alyses—analyses that statically determine whether a memory access associated
with an instruction will always be a hit or a miss—is a difficult problem. Precise
and efficient analyses have been developed for set-associative caches that employ
the least-recently-used (LRU) replacement policy [21,27,28,29]. Other commonly
used policies, like first-in-first-out (FIFO) or Pseudo-LRU(PLRU) are more
difficult to analyze [8].

Relative competitive analyses yield upper (lower) bounds on the number of
misses (hits) of a policy P relative to the number of misses (hits) of another
policy Q. For example, a competitive analysis may find out that policy P will
incur at most 30% more misses than policy Q and at most 20% less hits in the
execution of any task.

The following approach determines safe bounds on the number of cache hits
and misses by a task T under FIFO(k), PLRU(l)1, or any another replacement
policy [9]:

1. Determine competitiveness of the desired policy P relative to a policy Q for
which a cache analysis exists, like LRU.

2. Perform cache analysis of task T for policy Q to obtain a cache-performance
prediction, i.e. upper (lower) bounds on the number of misses (hits) by Q.

3. Calculate upper (lower) bounds on the number of misses (hits) for P using
the cache analysis results for Q and the competitiveness results of P relative
to Q.

Step 1 has to be performed only once for each pair of replacement policies.
A limitation of this approach is that it only produces upper (lower) bounds on

the number of misses (hits) for the whole program execution. It does not reveal
at which program points the misses (hits) will happen, something many timing
analyses need. Relative competitiveness results can also be used to obtain sound
may and must cache analyses, i.e. analyses that can classify individual accesses
as hits or misses. Relative competitive ratios can be computed automatically for
a pair of policies [30]2.

One of our results is that for any associativity k and any workload, FIFO(k)
generates at least half the number of hits that LRU(k) generates. Another result
is that may cache analyses for LRU can be safely used as may cache analyses
for MRU and FIFO of other associativities.

Sensitivity of Replacement Policies. The sensitivity of a cache replacement
policy expresses to what extent the initial state of the cache may influence the
number of cache hits and misses during program execution [9]. Analysis results
demonstrate that the initial state of the cache can have a strong impact on
the number of cache hits and misses during program execution if FIFO, MRU,
or PLRU replacement is used. A simple model of execution time demonstrates
the impact of cache sensitivity on measured execution times. It shows that un-
derestimating the number of misses as strongly as possible for FIFO, MRU,
1 k and l denote the respective associativities of FIFO(k) and PLRU(l).
2 See http://rw4.cs.uni-sb.de/∼reineke/relacs for a corresponding applet.

12 R. Wilhelm et al.

q1 = [⊥,⊥,⊥,⊥]
a−→
M

[a,⊥,⊥,⊥]
a−→
H

[a,⊥,⊥,⊥]
b−→
M

[b, a,⊥,⊥]
c−→
M

[c, b, a,⊥] = q′1

q2 = [a, x, b, c]
a−→
H

[a, x, b, c]
a−→
H

[a, x, b, c]
b−→
H

[a, x, b, c]
c−→
H

[a, x, b, c] = q′2

q3 = [x, y, z, a]
a−→
H

[x, y, z, a]
a−→
H

[x, y, z, a]
b−→
M

[b, x, y, z]
c−→
M

[c, b, x, y] = q′3

q4 = [x, y, b, z]
a−→
M

[a, x, y, b]
a−→
H

[a, x, y, b]
b−→
H

[a, x, y, b]
c−→
M

[c, a, x, y] = q′4

Fig. 4. Dependency of FIFO cache set contents on the initial state

and PLRU may yield worst-case-execution-time estimates that are dramatically
wrong. Further analysis revealed that the “empty cache is worst-case initial
state” assumption [2] is wrong for FIFO, MRU, and PLRU.

3.2 FIFO Cache Analysis

Precise and efficient analyses have been developed for the least-recently-used
(LRU) replacement policy [21,27,28,29]. Generally, research in the field of em-
bedded real-time systems assumes LRU replacement. In practice however, other
policies like first-in first-out (FIFO) or pseudo-LRU (PLRU) are also com-
monly used. In [31], we discuss challenges in FIFO cache analysis. We identify a
generic policy-independent framework for cache analysis that couples may- and
must-analyses by means of domain cooperation. The main contribution is a more
precise may-analysis for FIFO. It not only increases the number of predicted
misses, but also—due to the domain cooperation—the number of predicted hits.
We instantiate the framework with a canonical must-analysis and three different
may-analyses, including the new one, and compare the resulting three analyses
to the collecting semantics.

To see the difficulty inherent in FIFO, consider the examples in Figure 4.
The access sequence s = 〈a, a, b, c〉 is carried out on different cache sets qi of
associativity 4. Although only 3 different memory blocks {a, b, c} are accessed,
some of the resulting cache sets q′i do not contain all of the accessed blocks. In
contrast, a k-way cache set with LRU replacement always consists of the k most-
recently-used memory blocks, e.g. {a, b, c} would be cached after carrying out
s, independently of the initial state. This makes analysis of FIFO considerably
more difficult than analysis of LRU.

To generalize, consider a FIFO cache set with unknown contents. After ob-
serving a memory access to a block a, trivial must-information is available: One
knows that a must be cached, but the position of a within the cache set is
unknown. For example the access to a could be a hit to the second position:

[?, ?, ?, ?] a−−−→hit [?, a, ?, ?] b−−−→hit [?, a, ?, b]

[?, ?, ?, ?] a−−−→hit [?, ?, ?, a] b−−−→miss [b, ?, ?, ?]

However, as in the second case, the access to a could also be a hit on the first-
in (i.e., rightmost) position. Hence, a second access to a different block b may

Static Timing Analysis for Hard Real-Time Systems 13

already evict the first accessed block a. Thus, without additional information
about the accesses it is not possible to infer that two or more blocks are cached,
i.e. one can only derive must information of poor quality.

However, there are means to gain more precise information: If one can classify
the access to a as a miss for example, then the second access to a different block
b cannot evict a because one knows that a was inserted at the last-in position.

[?, ?, ?, ?] a−−−→miss [a, ?, ?, ?] b−−−→miss [b, a, ?, ?]

On a more abstract level, what this actually means is that may-information can
be used to obtain precise must-information. To do so however, one needs to
realize information flow between may- and must-analyses. This gives rise to the
policy-independent cache-analysis framework explained below that can couple
different analyses to improve analysis precision.

Must- and May-analyses for FIFO. Here, we only describe the ideas behind
the abstract domains and kindly refer the interested reader to [31] for details.
The must-analysis borrows basic ideas from LRU-analysis [21]. For each memory
block b, it infers an upper bound on the number of cache misses since the last in-
sertion of b into the cache set. If the bound for b is smaller than the associativity,
cache hits can be soundly predicted for b. Analogously, to predict cache misses,
the may-analysis infers lower bounds on the number of cache misses to prove
eviction. By distinguishing between hits and misses and taking into account the
order in which they happen, we improve the may-analysis, thereby increasing the
number of predicted cache misses. Through the cooperation of the two analyses
in the generic framework, this also improves the precision of the must-analysis.

Cache Analysis Framework. As motivated above, for FIFO there needs to
be some information flow between may- and must-analyses to obtain precise in-
formation. Indeed, this is not restricted to FIFO and can be generalized: This
section presents a policy-independent cache analysis framework, in which any
number of independent cache analyses can cooperate. The goal is to obtain in-
formation that is more precise than the best information obtained by any of the
individual analyses. The only prerequisite is that the individual analyses imple-
ment a very small interface. Given correct analyses, the framework realizes the
cooperation between these and guarantees correctness of the resulting analysis.

The framework constructs a cache analysis (A, CA , UA , JA), with abstract
domain A, classification function CA , abstract transformer UA , and join function
JA , given any number of cache analyses (Ai, CAi

, UAi
, JAi

) for the same concrete
cache set type QPk

. The domain of the constructed analysis is the cartesian
product

A := A1 × . . . × An

To classify a cache access to some memory block b ∈ B, the classification function,
CA : A×B → {hit, miss}�, combines the classifications of all individual analyses:

CA((a1, . . . , an) , b) :=
�

i

CAi
(ai, b) (1)

14 R. Wilhelm et al.

(a1, a2) (a′
1, a

′
2)

QPk QPk

γ1 γ2

UPk

α1 α2

(a) Best abstract transformer would
correspond to αj(UPk (

T

i γi(ai), b))
for all j.

(a1, a2) (a′
1, a

′
2)

QPk QPk

γ1

CA((a1, a2), b) = M

γM(b) = {q ∈ QPk | b �∈ q}

UPk

α1

(b) Abstract transformer using reduction
by classification corresponds to

αi(UPk (γi(ai) ∩ γCA (a,b)(b), b)) for all i.

Fig. 5. Information flow between analyses by update reduction

Since each individual analysis is sound, these classifications cannot contradict
each other, i.e. their meet (�) is always defined.

In abstract interpretation, the term reduction refers to the process of refining
information encoded in a domain by other, external, information. For an exam-
ple, consider value analysis using the Interval - and Parity-domain: Assume the
interval domain infers n ∈ [2, 4] and the parity domain provides isOdd(n). Then,
using the latter, one can reduce the interval to n ∈ [3, 3].

However, in abstract domains for cache analysis, information expressible in
one domain is not necessarily expressible in another one: The syntactical struc-
ture of constraints in domain A1 does not allow to encode information provided
by constraints of domain A2. For example, a must-analysis maintains upper
bounds on the number of cache misses while a may-analysis maintains lower
bounds on that number. In such a case, a reduction on the abstract states would
be ineffective.

Nonetheless, it is possible to use the information provided by other abstract
domains to reduce the abstract transformers. First, consider the two extremes:
On the one hand, the independent update of all Ai, and on the other hand a
best abstract transformer. In an independent update of an Ai no information of
the other domains is used. In a best abstract transformer, which is depicted in
Figure 5(a), all information of the other domains is used: It would correspond
to taking the intersection of all concretizations (sets of cache sets), updating
them in the concrete, and then abstracting to the domains again. However,
best abstract transformers counteract the wish to implement and prove correct
individual domains independently and mostly are computationally expensive,
anyway.

The update reduction of our framework lies in between these two extremes:
The reduced abstract transformers are more precise than independent updates.
And the information exchange is abstract enough such that it can be realized
without knowledge about the participating domains, i.e. domains can be plugged
in without changing the update functions of other domains. The update reduc-
tion of the framework uses the classification of the current access. Figure 5 shows
this at hand of the domain A1. Assume that some domain Ai can classify the

Static Timing Analysis for Hard Real-Time Systems 15

access to block b as a miss, e.g. CA2
(a2, b) = M. Then the overall classification,

which depends on all individual classifications, will be CA((a1, a2), b) = M, too.
With this information, one can further restrict the concretization γA1

(a1) to
cache sets that additionally do not contain the accessed block {q ∈ QPk

| b �∈ q}.
Using this additional information, one can define abstract transformers that are
more precise than independent ones.

In an implementation, the update reduction amounts to refine the update
functions of each domain by an additional parameter to pass the classification
of the current access. Hence, the update function UA : A ×B → A is defined as:

UA((a1, . . . , an) , b) :=
(
UA1

(a1, b, cl), . . . , UAn
(an, b, cl)

)
, (2)

where cl := CA((a1, . . . , an) , b).
Finally, the join function JA is simply defined component-wise.

3.3 Context Switch Costs

Previous timing analyses assume tasks running to completion, i.e. assuming
non-preemptive execution. Some task sets, however, are only schedulable pre-
emptively. For such systems, we also need to bound the context-switch costs
in addition to the WCET. In case of preemption, cache memories may suffer
interferences between memory accesses of the preempted and of the preempting
task. These interferences lead to some additional reloads, which are referred to
as cache-related preemption delay (CRPD). This CRPD constitutes the major
part of the context switch costs.

Upper bounds on the CRPD are usually computed using the concept of useful
cache blocks (UCB). Memory blocks are considered useful at a program point
if they may be in cache before the program point and may be reused after it.
When a preemption occurs at that point the number of additional cache-misses
is bounded by the number of useful cache blocks. However, some cache accesses
are taken into account as misses as part of the WCET bound anyway. These
accesses do not have to be accounted for a second time as part of the CRPD
bound [26].

A memory block m is called a definitely-cached UCB (DC-UCB) at program
point P if (a) m must be cached before the preemption point and (b) m may be
reused at program point Q, which may be reached from P , and must be cached
along the path to its reuse. Using the notion of definitely-cached UCB, one
computes the number of additional cache misses due to preemption that are not
already taken into account as a miss by the timing analysis. This number does not
bound the CRPD, but the part of the CRPD that is not already included in the
WCET bound. Hence, the global bound on WCET+CRPD can be significantly
improved.

The DC-UCB analysis uses information computed by a preceding cache anal-
ysis. In the following, we denote instruction j of basic block i as Bj

i and use
Access(Bj

i) to denote the memory block accessed by instruction Bj
i .

To determine the set of definitely-cached UCBs, we use a backward program
analysis over the control flow graph. A memory block m is added to the set of

16 R. Wilhelm et al.

DC-UCBs of instruction Bj
i , if m is element of the must cache at Bj

i (computed
by a preceding cache analysis) and if instruction Bj

i accesses m. The domain of
our analysis is the powerset domain of the set of memory blocks M : D = 2M

The following two equations determine the data-flow value before (DC-UCBin)
and after (DC-UCBout) instruction Bj

i :

DC-UCBin(Bj
i) = gen(Bj

i) ∪ (DC-UCBout(B
j
i) \ kill(Bj

i)) (3)

DC-UCBout(B
j
i) =

⋃

successorBl
k

DC-UCBin(Bl
k) (4)

where the gen/kill sets are defined as follows:

gen(Bj
i) =

{{Access(Bj
i)} if Access(Bj

i) ∈ Must Cache(Bj
i)

∅ otherwise
(5)

kill(Bj
i) = M \ Must Cache(Bj

i) (6)

Equation (4) combines the flow information of all successors of instruction Bj
i .

Equation (3) represents the update of the flow information due to the execution
of the instruction. First, all memory blocks not contained in the must cache at
Bj

i are removed from the set of DC-UCBs (6)—only a memory block that is
element of the must cache all along the way to its reuse is considered useful by
our definition. Then, the accessed memory block of instruction Bj

i is added in
case it is contained in the must cache at the instruction (5).

Using these equations, the set of UCBs can be computed via fixed-point itera-
tion (see [15]). The initial values at instruction Bj

i are defined by DC-UCBin(Bj
i)

= gen(Bj
i) and DC-UCBout(B

j
i) = ∅.

The analysis obtains a set of memory blocks at each program point P access
that might cause an additional miss upon access in case of preemption at P .
The program point P with the largest DC-UCB set determines an upper-bound
on the number of additional misses for the whole task. In contrast to the former
UCB analysis, the DC-UCB analysis only takes those misses into account that
are not part of the WCET bound. Evaluation shows that up to 80% of the
accesses to a UCB were also considered to be misses in the WCET analysis. The
DC-UCB analysis omits these UCBs. Hence, the analysis derives much better
bounds on the CRPD when used in the context of timing analysis.

3.4 Heap-Allocating Programs

Static timing analyses rely on high cache predictability in order to achieve precise
bounds on a program’s execution time. Such analyses, however, fail to cope with
programs using dynamic memory allocation. This is due to the unpredictabil-
ity of the cache behavior introduced by the dynamic memory allocators. Using
standard allocators, the cache sets to which a newly allocated memory block is
mapped to are statically unknown. This does not only prohibit a cache analysis

Static Timing Analysis for Hard Real-Time Systems 17

to derive hits or misses for accesses to dynamically allocated objects. It also
forces such analyses to conservatively treat an access to a dynamically allocated
block as an access to all cache sets. In turn, information about the cache de-
rived from an access sequence to statically allocated objects may easily be lost.
Allocators normally traverse some internal structure of free memory blocks in
order to find a suitable block to satisfy an allocation request or reinsert newly
deallocated memory blocks. These statically unpredictable traversals have the
same negative effect on static cache analyses. Additionally, the response times
of allocators can in general not be tightly bounded.

We investigate two approaches to enable precise worst-case execution time
analysis for programs that use dynamic memory allocation.

The first approach automatically transforms the dynamic memory allocation
into a static allocation with comparable memory consumption [32]. Hence, we try
to preserve the main advantage of dynamic memory allocation, namely the reduc-
tion of memory consumption achieved by reusing deallocated memory blocks for
subsequent allocation requests. Ending up with a static allocation allows for using
existing techniques for timing analyses. However, the techniques for transforming
dynamic to static allocation as presented in [32] have limitations. In particular,
the number and sizes of dynamically allocated blocks need to be statically known.
Although this might be reasonable in the hard real-time setting, ongoing research
addresses this problem by investigating a parametric approach to automatically
precompute memory addresses for otherwise dynamically allocated memory.

The second approach replaces the unpredictable dynamic memory allocator
by a predictable dynamic memory allocator [33]. Our predictable memory alloca-
tor takes an additional—possibly automatically generated—argument specifying
the cache set newly allocated memory shall be mapped to. It further gives guar-
antees on the number of cache lines per cache set that may be touched during
(de)allocation. It also features constant response times by managing free blocks
in multi-layered segregated lists.

Both approaches rely on precise information about the dynamically allocated
heap objects and data structures arising during program execution. This in-
formation could be obtained by shape analysis [34] or data structure analysis.
However, these analyses are not allocation-site aware, i.e. they only know about
the shape of a data structure and are ignorant of the allocation requests that
created the nodes of that structure. If we want to modify allocation requests,
either by adding an additional cache set argument to a call to malloc or by re-
placing malloc by some function returning a sequence of static addresses, we rely
on this missing information. Our current approach extends the shape analysis
framework via three-valued logic by adding information about allocation sites
to the logical representatives of heap-allocated objects.

4 Symbolic Representation of Pipeline Domains

Microarchitectural analysis explores execution traces of the program with respect
to a pipeline model. In the pipeline model, information about register values is

18 R. Wilhelm et al.

needed to determine addresses of memory accesses and information about cache
content is needed to predict cache hits and misses. To make the analysis com-
putationally feasible, abstractions of register and cache content of the processor
are used. These abstractions may lose information.

Value analysis is invoked prior to microarchitectural analysis. It computes
information about register content, which is later on used in microarchitectural
analysis. For example, for a specific load instruction, value analysis computes
a range of the possible memory addresses that contains the possible values for
all executions that reach the load instruction. Microarchitectural analysis may,
on the other hand, distinguish different traces ending at the load instruction.
However, it uses the less specific approximation of register content from value
analysis and may thus be unable to classify the address.

Further, instead of a more precise and expensive set representation of values,
abstract domains like intervals and congruences are used in value analysis. This
incurs additional loss of information. Similarly, cache analysis employs abstract
domains which also sacrifice precision for efficiency.

Thus, at the level of the pipeline model, the inevitable use of abstraction incurs
uncertainty about memory accesses and cache content. Furthermore, program
inputs are not statically known. The (abstract) pipeline model has to cope with
this lack of information by offering non-deterministic choices. Existence of timing
anomalies forces the pipeline analysis to exhaustively explore all of them. In
certain cases, state explosion can make explicit enumeration of states infeasible
due to memory and computation time constraints [20].

We address the state explosion problem in static timing analysis by storing and
manipulating pipeline states in a more efficient data structure based on Ordered
Binary Decision Diagrams (OBDDs) [35]. Our work is inspired by BDD-based
symbolic model checking [36]. Symbolic model checking has been successfully
applied to components of processors. Its success sparked a general interest in
symbolic representations.

4.1 Symbolic Domain and Analysis

A pipeline model can be regarded as a large, non-deterministic finite state ma-
chine (FSM). Pipeline analysis determines sets of reachable pipeline states by a
fixed-point iteration over the control-flow graph, which involves the computation
of abstract execution traces on the basic block level. WCET bounds for basic
blocks are derived from the lengths of their execution traces.

Sets of pipeline states as well as the transition relation of the model can be
represented implicitly using BDDs. Execution traces are computed by repeated
application of a symbolic image operator to an incoming set of pipeline states.

We account for required program information by translating them into sym-
bolic relations that restrict the non-deterministic choices of the pipeline model.

The resulting symbolic state traversal proceeds in breadth-first search order
where one traversal step corresponds to a particular execution cycle of the pro-
cessor. Savings in memory consumption and running time, compared to explicit-
state analysis, result from the more efficient representation, in particular for

Static Timing Analysis for Hard Real-Time Systems 19

large sets of states with many redundancies, and from completely avoiding the
explicit enumeration of states.

4.2 Optimizations and Performance

To arrive at an efficient symbolic analysis that scales to pipeline models of real-
life processors and industrial-size programs, we incorporate well-known optimiza-
tions from symbolic model checking, e.g. the image computation methods of [37],
and novel domain-specific optimizations that leverage properties of the processor
and the program. The processor-specific optimizations follow the general pattern
of

– reducing representation size of components by omitting information that is
not timing-relevant and

– statically precomputing information.

For example, the prefetch buffer of the Infineon TriCore processor uses 16 bytes
in hardware, while the timing-relevant information can be stored in only 16
bits. For the same processor, conditions for pipeline stalls in case of unresolved
data dependencies can be precomputed by a data flow analysis. The symbolic
representation then requires only one state bit per pipeline to encode such stalls.

Properties of the analyzed program are exploited to achieve an efficient han-
dling of the many 32 bit instruction and data addresses used by pipeline models.
The optimizations are based on two observations:

– Each program typically uses only a small fraction of the address space.
– The computation of execution traces for a single basic block requires only a

bounded amount of information about neighbouring blocks.

Based on the first observation, we compactly enumerate all addresses used in
the program and then encode these addresses using a number of state bits log-
arithmic in the size of the set of used addresses. This significantly reduces the
required number of state bits.

However, the size of the symbolic representation still depends on the size
of the analyzed program. This dependence can be eliminated using the second
observation. For the symbolic computation of abstract execution traces we enu-
merate only the addresses within range of the current basic block. The resulting
incompatible address encoding in pipeline states of different basic blocks can be
translated during the fixed-point iteration using symbolic image computation.

We enhance the existing framework for static timing analysis with a symbolic
representation of abstract pipeline models. Our prototype implementation is
integrated into the commercial WCET analysis tool aiT and employs the model
of a real-life processor, the Infineon TriCore. The model was developed and
tested within aiT. This enables a meaningful performance comparison between
the two implementations, which produce the same analysis results. Experiments
with a set of industrial benchmarks show that the symbolic domain significantly
improves the scalability of the analysis [10].

20 R. Wilhelm et al.

5 Conclusion and Ongoing Work

Computer architects have, for a long time, optimized processor architectures
for average-case performance. This article has given an overview of the problems
created by ignoring the needs of embedded systems, which often need guarantees
for their worst-case performance. Formal methods have been described for the
derivation of timing guarantees. Two architectural components have received
a detailed treatment, caches and pipelines. Caches have nice abstractions, i.e.
compact abstract domains and efficient abstract update functions. Static analysis
of the cache behavior by abstract interpretation is therefore quite fast. Pipelines
seem to require powerset domains with a huge state space. It has been described
how to use symbolic representations popular in model checking to compactly
represent sets of pipeline states. What is still missing is the interaction between
the abstract-interpretation-based cache analysis and the BDD-based pipeline
analysis. The tools (and the communities behind them) don’t talk to each other.

Several important notions, e.g. predictability, sensitivity, and relative com-
petitiveness have been clarified. Similar notions have to be found for non-cache
like architecture components. Future architectures for use in safety-critical and
time-critical applications should be designed under the design goals, high pre-
dictability of the timing behavior and low sensitivity against small changes of
the execution state.

References

1. Wilhelm, R., et al.: The worst-case execution-time problem—overview of methods
and survey of tools. Trans. on Embedded Computing Sys. 7(3), 1–53 (2008)

2. Petters, S.M.: Worst-Case Execution-Time Estimation for Advanced Processor Ar-
chitectures. PhD thesis, Technische Universität München, Munich, Germany (2002)

3. Bernat, G., Colin, A., Petters, S.M.: WCET analysis of probabilistic hard real-
time systems. In: Proceedings of the 23rd IEEE Real-Time Systems Symposium,
Washington, DC, USA, p. 279. IEEE Computer Society, Los Alamitos (2002)

4. Wenzel, I.: Measurement-Based Timing Analysis of Superscalar Processors. PhD
thesis, Technische Universität Wien, Vienna, Austria (2006)

5. Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling,
H., Thesing, S., Wilhelm, R.: Reliable and precise WCET determination for a
real-life processor. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS,
vol. 2211, pp. 469–485. Springer, Heidelberg (2001)

6. Thiele, L., Wilhelm, R.: Design for timing predictability. Real-Time Sys. 28, 157–
177 (2004)

7. Wilhelm, R., Grund, D., Reineke, J., Schlickling, M., Pister, M., Ferdinand, C.:
Memory hierarchies, pipelines, and buses for future architectures in time-critical
embedded systems. IEEE Transactions on CAD of Integrated Circuits and Sys-
tems 28(7), 966–978 (2009)

8. Reineke, J., Grund, D., Berg, C., Wilhelm, R.: Timing predictability of cache re-
placement policies. Real-Time Sys. 37(2), 99–122 (2007)

9. Reineke, J.: Caches in WCET Analysis. PhD thesis, Saarland University,
Saarbrücken, Germany (2008)

Static Timing Analysis for Hard Real-Time Systems 21

10. Wilhelm, S., Wachter, B.: Symbolic state traversal for WCET analysis. In: Inter-
national Conference on Embedded Software, pp. 137–146 (2009)

11. Wilhelm, R.: Determining bounds on execution times. In: Zurawski, R. (ed.) Hand-
book on Embedded Systems, pp. 14–23. CRC Press, Boca Raton (2005)

12. Reineke, J., Wachter, B., Thesing, S., Wilhelm, R., Polian, I., Eisinger, J., Becker,
B.: A definition and classification of timing anomalies. In: Proceedings of 6th Intl.
Workshop on Worst-Case Execution Time (WCET) Analysis (2006)

13. Heckmann, R., Langenbach, M., Thesing, S., Wilhelm, R.: The influence of proces-
sor architecture on the design and the results of WCET tools. Real-Time Sys. 91(7),
1038–1054 (2003)

14. Theiling, H.: Control-Flow Graphs For Real-Time Systems Analysis. PhD thesis,
Saarland University, Saarbrücken, Germany (2002)

15. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 238–252. ACM Press, New York (1977)

16. Ermedahl, A., Gustafsson, J.: Deriving annotations for tight calculation of execu-
tion time. In: Lengauer, C., Griebl, M., Gorlatch, S. (eds.) Euro-Par 1997. LNCS,
vol. 1300, pp. 1298–1307. Springer, Heidelberg (1997)

17. Healy, C., Sjödin, M., Rustagi, V., Whalley, D., van Engelen, R.: Supporting timing
analysis by automatic bounding of loop iterations. Real-Time Sys., 129–156 (2000)

18. Stein, I., Martin, F.: Analysis of path exclusion at the machine code level. In:
Proceedings of the 7th Intl. Workshop on Worst-Case Execution-Time Analysis
(2007)

19. Engblom, J.: Processor Pipelines and Static Worst-Case Execution Time Analysis.
PhD thesis, Dept. of Information Technology, Uppsala University (2002)

20. Thesing, S.: Safe and Precise WCET Determinations by Abstract Interpretation of
Pipeline Models. PhD thesis, Saarland University, Saarbrücken, Germany (2004)

21. Ferdinand, C., Wilhelm, R.: Efficient and precise cache behavior prediction for
real-time systems. Real-Time Sys. 17(2-3), 131–181 (1999)

22. Li, Y.T.S., Malik, S.: Performance analysis of embedded software using implicit
path enumeration. In: Proceedings of the 32nd ACM/IEEE Design Automation
Conference, pp. 456–461 (1995)

23. Theiling, H.: ILP-based interprocedural path analysis. In: Sangiovanni-Vincentelli,
A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491, pp. 349–363. Springer,
Heidelberg (2002)

24. Thesing, S., Souyris, J., Heckmann, R., Randimbivololona, F., Langenbach, M.,
Wilhelm, R., Ferdinand, C.: An abstract interpretation-based timing validation of
hard real-time avionics software systems. In: Proceedings of the 2003 Intl. Confer-
ence on Dependable Systems and Networks, pp. 625–632. IEEE Computer Society,
Los Alamitos (2003)

25. Berg, C.: PLRU cache domino effects. In: Mueller, F. (ed.) 6th Intl. Workshop on
Worst-Case Execution Time (WCET) Analysis, Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2006)

26. Altmeyer, S., Burguière, C.: A new notion of useful cache block to improve the
bounds of cache-related preemption delay. In: Proceedings of the 21st Euromicro
Conference on Real-Time Systems, pp. 109–118. IEEE Computer Society Press,
Los Alamitos (2009)

22 R. Wilhelm et al.

27. White, R.T., Healy, C.A., Whalley, D.B., Mueller, F., Harmon, M.G.: Timing anal-
ysis for data caches and set-associative caches. In: Proceedings of the 3rd IEEE
Real-Time Technology and Applications Symposium, Washington, DC, USA, p.
192. IEEE Computer Society, Los Alamitos (1997)

28. Ghosh, S., Martonosi, M., Malik, S.: Precise miss analysis for program transforma-
tions with caches of arbitrary associativity. In: Proceedings of the 8th International
Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 228–239 (1998)

29. Chatterjee, S., Parker, E., Hanlon, P.J., Lebeck, A.R.: Exact analysis of the cache
behavior of nested loops. In: Proceedings of the ACM SIGPLAN 2001 Conference
on Programming Language Design and Implementation, pp. 286–297. ACM Press,
New York (2001)

30. Reineke, J., Grund, D.: Relative competitive analysis of cache replacement policies.
In: Proceedings of the 2008 ACM SIGPLAN-SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems, pp. 51–60. ACM, New York (2008)

31. Grund, D., Reineke, J.: Abstract interpretation of FIFO replacement. In: Palsberg,
J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 120–136. Springer, Heidelberg
(2009)

32. Herter, J., Reineke, J.: Making dynamic memory allocation static to support
WCET analyses. In: Proceedings of 9th Intl. Workshop on Worst-Case Execution
Time (WCET) Analysis (2009)

33. Herter, J., Reineke, J., Wilhelm, R.: CAMA: Cache-aware memory allocation for
WCET analysis. In: Caccamo, M. (ed.) Proceedings Work-In-Progress Session of
the 20th Euromicro Conference on Real-Time Systems, pp. 24–27 (2008)

34. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
Trans. on Programming Languages and Sys. 24(3), 217–298 (2002)

35. Bryant, R.: Graph based algorithms for boolean function manipulation. IEEE
Transactions on Computers (1986)

36. Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, J.: Symbolic model checking:
1020 states and beyond. In: Proceedings of the 5th Annual Symposium on Logic in
Computer Science. IEEE Comp. Soc. Press, Los Alamitos (1990)

37. Ranjan, R., Aziz, A., Brayton, R., Plessier, B., Pixley, C.: Efficient BDD Algo-
rithms for FSM Synthesis and Verification. In: Proceedings of IEEE/ACM Inter-
national Workshop on Logic Synthesis, Lake Tahoe, USA (1995)

	Static Timing Analysis for Hard Real-Time Systems
	Introduction
	The Architectural Challenge—and How to Cope with It
	Timing Anomalies

	A Timing Analysis Framework
	Cache Analysis
	Influence of the Cache Replacement Policy
	FIFO Cache Analysis
	Context Switch Costs
	Heap-Allocating Programs

	Symbolic Representation of Pipeline Domains
	Symbolic Domain and Analysis
	Optimizations and Performance

	Conclusion and Ongoing Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

