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“I daresay you haven’t had much practice. When I was

your age, I always did it for half-an-hour a day. Why,

sometimes I’ve believed as many as six impossible

things before breakfast.”

– �e White �een 1

“When you are a Bear of Very Li�le Brain, and you

�ink of �ings, you �nd sometimes that a �ing

which seemed very �ingish inside you is quite

di�erent when it gets out into the open and has other

people looking at it.”

– Pooh Bear 2

1�rough the Looking Glass, Lewis Carroll

2�e House at Pooh Corner, A. A. Milne
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Abstract

�antum theory describes our universe incredibly successfully. To our classic-

ally-inclined brains, however, it is a bizarre description that requires a re-

imagining of what fundamental reality, or “ontology”, could look like. �is

thesis examines di�erent ontological features in light of the success of quantum

theory, what it requires, and what it rules out. While these investigations

are primarily foundational, they also have relevance to quantum information,

quantum communication, and experiments on quantum systems.

�e way that quantum theory describes the state of a system is one of its

most unintuitive features. It is natural, therefore, to ask whether a similarly

strange description of states is required on an ontological level. �is thesis

proves that almost all quantum superposition states for d > 3 dimensions

must be real—that is, present in the ontology in a well-de�ned sense. �is

is a strong requirement which prevents intuitive explanations of the many

quantum phenomena which are based on superpositions. A new theorem

is also presented showing that quantum theory is incompatible with macro-

realist ontologies, where certain physical quantities must always have de�nite

values. �is improves on the Legge�-Garg argument, which also aims to

prove incompatibility with macro-realism but contains loopholes. Variations

on both of these results that are error-tolerant (and therefore amenable to

experimentation) are presented, as well as numerous related theorems showing

that the ontology of quantum states must be somewhat similar to the quantum

states themselves in various speci�c ways. Extending these same methods to

quantum communication, a simple proof is found showing that an exponential

number of classical bits are required to communicate a linear number of qubits.

�at is, classical systems are exponentially bad at storing quantum data.

Causal in�uences are another part of ontology where quantum theory de-

mands a revision of our classical notions. �is follows from the outcomes of

Bell experiments, as rigorously shown in recent analyses. Here, the task of con-

structing a native quantum framework for reasoning about causal in�uences



is tackled. �is is done by �rst analysing the simple example of a common

cause, from which a quantum version of Reichenbach’s principle is identi�ed.

�is quantum principle relies on an identi�cation of quantum conditional

independence which can be de�ned in four ways, each naturally generalising

a corresponding de�nition for classical conditional independence. Not only

does this allow one to reason about common causes in a quantum experiments,

but it can also be generalised to a full framework of quantum causal models

(mirroring how classical causal models generalise Reichenbach’s principle).

�is new de�nition of quantum causal models is illustrated by examples and

strengthened by it’s foundation on a robust quantum Reichenbach’s principle.

An unusual, but surprisingly fruitful, se�ing for considering quantum ontology

is found by considering time travel to the past. �is provides a testbed for

di�erent ontological concepts in quantum theory and new ways to compare

classical and quantum frameworks. It is especially useful for comparing com-

putational properties. In particular, time travel introduces non-linearity to

quantum theory, which brings (sometimes implicit) ontological assumptions

to the fore while introducing strange new abilities. Here, a model for quantum

time travel is presented which arguably has fewer objectionable features than

previous a�empts, while remaining similarly well-motivated. �is model is

discussed and compared with previous quantum models, as well as with the

classical case.

Together, these threads of investigation develop a be�er understanding of how

quantum theory a�ects possible ontologies and how ontological prejudices

in�uence quantum theory.
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Notation

Most of the notation used in this thesis is based on standard usage in quantum foundations

or physics in general. In order to streamline the text, some of the most common notation

used is summarised here. If the reader comes across an unfamiliar symbol in the text, this

should be their �rst port of call for a de�nition.

�e symbol
def

= is used to indicate that the expression is a de�nition of the item on the

le�. Read “is de�ned as being equal to”.

For logarithms, log is used for the base-two logarithm (as in information theory), while

ln is used for base-e natural logarithms.

Quantum Systems and States

�antum systems will normally be given capital Latin le�ers, such as A.

• HA is the Hilbert space (bounded inner-product complex vector space) corresponding

to system A.

• dA
def

= dimHA is the dimension of the system A.

• 1A is the identity operator onHA.

• H∗A = (HA)∗ is the dual Hilbert space toHA, with dimension dA∗ = dA and identity

1A∗ .

• P(HA)
def

= {|ψ〉 ∈ HA : ‖ψ‖ = 1, |ψ〉 ∼= eiθ|ψ〉, ∀θ ∈ R} is the set of pure physical
states in A, viz. unit vectors in HA where vectors equal up to a global phase are

considered equivalent.

• D(HA) is the set of normalised density operators (i.e. mixed states) of A, viz. positive

Hermitian trace-one operators ρ onHA.

• A superposition state with respect to some given orthonormal basis B of H is any

|ψ〉 ∈ P(H) such that |ψ〉 6∈ B.
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• AB, whereA andB are each distinct quantum systems, is the bipartite contemporary

system comprised of the two with Hilbert spaceHA ⊗HB .

• If a state for a multipartite system AB is given by, e.g, ρAB , then the same symbol

with omi�ed indices indicates a partial trace of that state, such as ρA = TrB ρAB .

• Products of states that do not share all of their subsystems are taken to implicitly

include identities on those systems, e.g. ρAρB
def

= (ρA⊗1B)(1A⊗ρB) and ρABρBC
def

=

(ρAB ⊗ 1C)(1A ⊗ ρBC).

• A measurement M of a quantum system consists of a set of outcomes E ∈M which

can be obtained when the measurement is performed.

• A basis measurement M = B = {|i〉}i is a measurement where the outcomes are

pure states |i〉 which form an orthonormal basis B for the Hilbert space of system.

�e probability of obtaining outcome |i〉 when the system is in state ρ is 〈i|ρ|i〉.

• A POVM measurement M = {Ei}i is a measurement where the outcomes are

Hermitian positive de�nite operators on the Hilbert space that form a partition of

unity

∑
iEi = 1. �e probability to obtain outcome Ei when the system is in state

ρ is Tr (ρEi).

• A von Neumann measurement M = {Ei}i is a POVM measurement where all out-

comes are projectors EiEj = δijEi. If all operators are one-dimensional projectors

then this is equivalent to a basis measurement.

• A quantum channel from A to B, EB|A, is a completely-positive trace-preserving

(CPTP) map from states in D(HA) to states in D(HB).

• A quantum instrument from A to B, {EkB|A}k, is a set of completely-positive trace-

non-increasing maps from states in D(HA) to sub-normalised density operators

onHB . Each map is labelled by a classical outcome k and they sum to a quantum

channel. �ese represent general operations on a quantum system that include

transformations and measurements. �e interpretation is that one such map is

applied and the corresponding outcome observed, with probabilities given by the

trace of the corresponding output state. �e channel obtained by summing the maps

outputs the proper mixed state obtained by ignoring this classical outcome.

• S|ψ〉 is the set of stabiliser unitaries for the pure state |ψ〉 ∈ P(H). �at is, S|ψ〉
def

=

{U onH : U |ψ〉 = |ψ〉}. In other words, S|ψ〉 is the stabiliser subgroup of the

unitary group overH with respect to |ψ〉.
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Quantum Circuit Diagrams

A standard box-and-wire notation for quantum circuits will be used, speci�cally with the

following conventions.

• Circuits proceed from bo�om to top.

• Wires represent systems and may or may not be labelled with the appropriate symbol

or Hilbert space.

• Boxes represent unitary or CPTP evolutions from (the tensor product of) input

systems (below) to output systems (above) and are labelled with the appropriate

operation.

• Semi-circles represent state preparations of the outgoing systems (above) and are

labelled with the appropriate state.

• �e unitary CNOT gate is illustrated as where the solid dot is on the control

system and the ⊕ is on the target system.

• �e unitary SWAP gate may be illustrated as .

Ontological Models and Overlap Measures

Ontological models are de�ned in Sec. 2.1.1 with the notation summarised here for conve-

nience.

• Λ is the set of ontic states λ ∈ Λ.

• Σ is the sigma-algebra such that (Λ,Σ) is a measurable space—the ontic state space.

• ∆P is the set of preparation measures µ ∈ ∆P for a preparation P .

• ∆|ψ〉 is therefore the set of preparation measures for all preparation methods that

produce quantum state |ψ〉 if the system is a quantum system.

• µ ∈ ∆P gives the probability µ(Ω) for the resulting ontic state being in Ω ∈ Σ for

some preparation method of P .

• ΓT is the set of stochastic maps γ ∈ ΓT for a transformation T of the system.

• ΓU is therefore the set of stochastic maps for all transformation methods correspond-

ing to a unitary U if the system is a quantum system.

ix



• γ ∈ ΓT gives the probability γ(Ω|λ) for the resulting ontic state being in Ω ∈ Σ

given that some method for T was applied to a system in ontic state λ ∈ Λ.

• µ
γ
 ν indicates that if a system is prepared according to µ and then a transformation

is applied according to γ, then ν is the preparation measure that describes that

composite process, Eq. (2.2).

• ΞM is the set of response functions PM ∈ ΞM for a measurement M .

• If M = {|i〉}i is a basis measurement then ΞM is therefore the set of response

functions for all methods of performing the measurement M on a quantum system.

• PM ∈ ΞM gives the probability PM(E |λ) that the outcome E ∈ M is obtained

given that some method for measuring M was performed on a system in ontic state

λ ∈ Λ.

• Similarly, PM(E |µ)
def

=
∫

Λ
dµ(λ)PM(E |λ) is the probability of obtaining outcome

E ∈ M given that some method for measuring M was performed on a system

prepared according to µ.

• $(· | ·) is the asymmetric overlap as de�ned and explained in Sec. 2.2 [AMG16, All16,

Bal14, LM13, Mar12].

• ω(·, ·) is the symmetric overlap as de�ned and explained in Sec. 2.4.3 [AMG16, All16,

BCLM14, Bra14, Lei14b, Lei14a, Mar12].

• $ε(· | ·) for some ε ∈ [0, 1) is the ε-asymmetric overlap as de�ned and explained in

Sec. 3.4.1. 0-asymmetric overlap is the normal asymmetric overlap.

• k̄ is a mapping from measurable functions g : Λ→ [0, 1] to measurable sets over Λ.

k̄(g)
def

= ker(1− g) ∈ Σ as de�ned in Def. 2.1.

• k̄ε, for ε ∈ [0, 1) generalises k̄ as de�ned in Def. 3.1.

Classical Random Variables

Classical random variables are normally given capital Latin le�ers, such as X . Values that

the variable can take are normally given by the corresponding lower-case Latin le�er, such

as x. Random variables are assumed to be discrete unless otherwise indicated.
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• P(X = x) is the probability that random variable X has value x. P(X) is the

probability distribution for X . Alternatively, P(x)
def

= P(X = x) is used as shorthand

where there is no ambiguity in doing so.

• P(X, Y ) is the joint probability distribution for random variablesX andY . P(X, Y =

y) is the distribution of probabilities that X = x ∧ Y = y for all possible x.

• P(X|Y ) is the conditional probability distribution for X given that Y takes any

given value.

Entropies and Information

Classical Shannon entropies are usually denoted with H . �antum von Neumann entropies
are usually denoted with S. Recall that log is used for base-two logarithms. �e de�nitions

here assume that all random variables are discrete and all quantum systems are �nite-

dimensional.

Note that the de�nitions of quantum entropies can all be applied to both quantum

systems and quantum states, depending on context.

• H(X) is the classical entropy of a classical random variable, de�ned H(X)
def

=

−
∑

x P(x) logP(x).

• H(X, Y ) is the classical joint entropy, de�nedH(X, Y )
def

= −
∑

x,y P(x, y) logP(x, y).

• H(X|Y )
def

= H(X, Y )−H(Y ) is the classical conditional entropy.

• I(X : Y )
def

= H(X) +H(Y )−H(X, Y ) is the classical mutual information.

• I(X : Y |Z)
def

= H(X,Z)+H(Y, Z)−H(Z)−H(X, Y, Z) = H(X|Z)−H(X|Y, Z)

is the classical conditional mutual information.

• S(ρ) is the quantum entropy of a state ρ (equivalently, of a quantum system in state

ρ), de�ned S(ρ) = −Tr (ρ log ρ).

• S(A) is the entropy of a quantum system A, de�ned S(ρA) where ρA is the state of

A.

• S(AB) is the quantum joint entropy of bipartite system AB, de�ned S(ρAB) where

ρAB is the state of AB.

• S(A|B)
def

= S(AB)− S(A) is the quantum conditional entropy.
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• I(A : B)
def

= S(A) + S(B)− S(AB) is the quantum mutual information.

• I(A : B|C)
def

= S(AC) + S(BC)− S(C)− S(ABC) = S(A|C)− S(A|BC) is the

quantum conditional mutual information.

• �antum and classical mutual informations, despite using the same symbol, can be

told apart by the types of system on which they act.
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1
Introduction

“… So it will be di�cult. But the di�culty, really, is psychological and exists

in the perpetual torment that results from your saying to yourself “But how

can it be like that?” Which really is a re�ection of an uncontrolled, but I say

u�erly vain, desire to see it in terms of some analogy with something familiar.

I will not describe it in terms of an analogy with something familiar. I’ll simply

describe it.

…

So that’s the way to look at the lecture—is not to try to understand—well,

you have to understand the English, of course. But in any sense in terms of

something else. And don’t keep saying to yourself, if you can possibly avoid

it, “But how can it be like that?” Because you’ll get down the drain. You’ll get

down into a blind alley in which nobody has yet escaped. Nobody knows how

it can be like that.” [Fey64]

�ese words of Richard Feynman, delivered to the audience of a public lecture on

quantum theory in 1964, contain both a warning and an invitation. You must not get lost

down a blind alley trying to understand quantum theory. But nobody knows how it can

be like this; which, to a theorist, is an invitation if ever there was one.

More than ��y years later, it is still true that nobody knows how or why nature is

successfully described by quantum theory. Some would certainly claim that they do, but

unfortunately such people generally disagree with one another [SBKW10, BH95, FMS14,
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DE10]
1
. However, the study of quantum theory, especially in responding to Feynman’s

challenge, has changed signi�cantly. �antum foundations has bloomed into its own

sub-�eld on the borders of physics, philosophy, mathematics, information science, and

computer science. �e most productive insights from this �eld have not come from

stumbling into the alley, but by carefully peering in and trying and make out its main

contours.

�is thesis contributes to that e�ort while concentrating on quantum ontology. In

foundations of quantum theory, ontology refers to any potential “actual state of a�airs” or

fundamental description, essentially the reality of the physical system. What does quantum

theory require or suggest about the behaviour of physics on the most fundamental level?

Does the success of quantum theory require certain ways of understanding the actual

state of a�airs of a system, or does it rule out others? Rather than a�empting to give a

comprehensive account of an exact quantum ontology, such questions can be carefully

drawn out in speci�c ways, revealing the important features of any plausible or actual

ontology.

It is helpful to note that quantum theory can fruitfully be considered as a framework
rather than a theory as such

2
, a framework being understood as a low-level set of rules that

theories built from that framework must respect. �e classical framework, for example,

might be expressed as the facts that: systems occupy exactly one state from a space at

any given point, joint states of multiple systems are found by taking the Cartesian prod-

uct, transformations can move systems between states in such a way that probability is

conserved, etc. Out of this framework, speci�c theories such as Maxwellian electromag-

netism, statistical mechanics, and Newtonian orbital mechanics can be built. Similarly, the

quantum framework can be understood as the Hilbert space structure of system states,

the unitary/CPTP (completely-positive trace-preserving) nature of transformations, the

Born rule for measurement outcomes etc. and out of this, theories such as quantum optics

and the standard model can be built. �is distinction between framework and theory goes

a long way to explaining why quantum theories are uniquely di�cult for us to under-

stand compared to any other physical theory: they are all predicated on an unfamiliar

non-classical framework. It also allows for easier comparisons between quantum and clas-

sical predictions in general by concentrating on what is allowed by these general abstract

frameworks, rather than ge�ing lost in the exact physics of speci�c systems. However,

1
Of course, this is not to say that none of these people are correct, but it certainly shows that most are

likely to be incorrect.

2
I have heard this point being made by various people, but have been unable to �nd a citation for it. �is

is therefore presented with apologies to anybody who may lay claim to its conception.
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“quantum theory” will continue to be the term used throughout this thesis since “quantum

framework” is clunky and “quantum mechanics” is no more speci�c.

�e mother of the modern approach to quantum ontology is Bell’s theorem [Bel66],

developed in response to controversy over hidden variables arguments in quantum theory

in general and the EPR argument [EPR35] in particular. �is approach starts by precisely

de�ning an ontological feature of interest in a way that is independent of either the

quantum or classical frameworks. In the case of Bell’s theorem, this generic property has

come to be known as “Bell locality” [Shi13]. �e content of the theorem is to show, using

as few assumptions as possible, that this property can be violated in quantum theories

and, ultimately, in quantum experiments. �e conclusion: quantum theory does not admit

ontologies with this property. �e key to the extraordinary success of Bell’s theorem is in

keeping all assumptions to a bare minimum.

Since Bell, many others have followed this broad outline when investigating quantum

ontology and other foundational issues. Highlights include the Kochen-Specker theorem

[KS67, Hel13], the Legge�-Garg inequality [LG85], and the PBR theorem [PBR12]. �e

most immediately impressive results are o�en no-go theorems, proving that quantum theory

precludes certain ontological features (as in Bell’s theorem). However, there has also been

good progress in �nding formal examples of quantum ontologies which are compatible

with quantum theory and do have other interesting ontological features, for example in

Refs. [LJBR12, ABCL13, KS67, HR07]. In these ways, certain major features and limitations

required of a plausible quantum ontology can be carefully discerned.

In these discussions, a dichotomy is o�en drawn between ontic and epistemic features

or explanations. An epistemic feature is an artefact of a particular agent’s description of a

physical system, subject to their (o�en incomplete) knowledge of it. �is is in contrast

to ontic features, which are considered objective states of a�airs. Most o�en, epistemic

explanations make use of probability distributions (or, more generally, probability measures)

representing the agent’s (imperfect) knowledge. Note, however, that while this is consistent

with their use in quantum foundations, philosophers may use the terms “ontic” and

“epistemic” somewhat di�erently.

�antum theory is unrivalled in its experimental success, having never faced an incom-

patible experimental result. �is is certainly impressive, but much more understandable

when quantum theory is understood as a framework rather than a theory—comparisons

to Maxwellian electromagnetism, for instance, are unfair. �is has lead to theorists of-

ten taking quantum predictions (in the broad sense of the quantum framework) to be

generically correct and any incompatibility with them to be damning. However, in science

experimental results should still reign supreme. Any theoretical result should be seen as
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preliminary until it can be subject to experimental veri�cation. �at said, it is common

for a strict theoretical incompatibility between quantum theory and some ontology to be

found before that result can be extended to something amenable to experiment.

�is thesis further characterises necessary or plausible quantum ontologies in three

ways. In the �rst, the subject is ontology of quantum states. �is is the most common

se�ing for results in quantum ontology, as the states of quantum systems are what most

obviously di�ers compared to classical systems. In the second, the focus is on quantum

causality. �is is a much more recent subject in the study of quantum theory, but certainly

of no less importance than the ontology of quantum states for understanding the reality

of quantum systems. �ird, a rather di�erent approach is taken by considering quantum

theory supplemented with time travel to the past, as this gives interesting alternative

perspectives on many of the problems of quantum ontology.

1.1 “Ontology”, “Epistemic”, and “Causality”

Before proceeding, some comments are necessary on the use of terms like “ontology”,

“epistemic”, and “causality” in this thesis. �ese terms have all been inherited from phi-

losophy, in particular metaphysics. However, this thesis is in the tradition of quantum

foundations which, as a �eld, tends to use these terms somewhat di�erently (and rather

more loosely) than its more philosophical cousins.

For the avoidance of doubt, therefore, it will be useful to quickly outline what the

intended meanings of such words are in this thesis. �ese are not philosophically robust

de�nitions, nor are they meant to be, as the intended audience is primarily physicists.

By “ontology”, what is meant is all or part of some actual or conceivable �nal and

fundamental description of reality. �at is, supposing that there is an objective reality, this

is described by the ontology. Not everybody will agree that such a thing needs to exist, of

course. As noted above, “epistemic” describes a feature that is part of an agent’s subjective

knowledge about a system and may o�en take the form of probability distributions (or

measures) over ontic features. By “causality”, what is meant is the study of causal relations

where one event or physical value has some actual in�uence on the occurrence of another,

as distinct from mere correlations.

�ere are vast philosophical literatures on each of these topics, none of which can be

e�ectively engaged with here. It is, however, hoped that the contents of this thesis may

be able to inform some work in these philosophical �elds. So the intention here is not to

ignore the valuable philosophical work of these areas at all, but simply to note that they

must unfortunately lie well beyond the scope of this thesis.
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An inevitability of working in these areas of quantum foundations is some philosophic-

ally-charged language. Despite this, all of the results presented here should be fairly

philosophically-neutral. �at is, they should be valuable to people of most common

philosophical leanings. On the simplest level, this is because the results are mathematical in

nature. For example, the results in Chaps. 2, 3, based on the ontological models framework

[Sec. 2.1.1], are very general regardless of philosophy, since they apply to any potential

underlying physical theory that can be cast as an ontological model—a very large class of

theories indeed.

1.2 Thesis Overview

�is thesis is about ontology in quantum theory. More speci�cally, about obtaining a be�er

understanding of the types of ontology that are plausible given the apparent correctness

of quantum theory. �is is done by carefully obtaining precise results about the nature of

quantum ontology under well-de�ned assumptions. �e study of the ontology of quantum

states is relatively mature and so this thesis can build on that work to prove some very

speci�c statements. In particular: that almost all superposition states must be real (in a

well-de�ned sense); that quantum theory is incompatible with most types of macro-realism;

and that under reasonable assumptions any conceivable overlap between many quantum

states on an ontological level must be small if not zero. States are not, however, the only

feature of ontology. A newer �eld of study is that of causes in quantum theory. �is

thesis constructs an expressive framework for this study by building on the speci�c, but

important, example of a complete common cause. Since causes are typically considered to

be ontological features, this framework provides a new se�ing for discussing ontology in

quantum causality. While it is much less typical to consider time travel to the past to be real,

it remains a possibility and, even beyond that possibility, time travel to the past provides an

interesting playground in which to test and compare ideas in quantum ontology. �is thesis

therefore does so by comparing di�erent models of quantum time travel and constructing

a novel one that addresses their shortcomings. Combining these approaches to quantum

ontology, a fuller and more nuanced understanding can be achieved.

In Chap. 2, the ontology of quantum states is studied. A�er discussing how di�erent

ontologies are classi�ed, the current state of theorems both ruling out and demonstrating

the possibilities of various classes of ontology is discussed. �is discussion identi�es

two main shortcomings common to many such theorems, to be addressed by new results

presented later in the chapter. First, is proved that almost all superpositions must be real (in

a well-de�ned sense) for any ontology of a quantum system of dimension d > 3. �e same
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techniques used are then applied to proving that no quantum states can be ψ-epistemic
[Sec. 2.4.1] and that in large-dimensional quantum systems, many quantum states must be

close to ontologically distinct. �e e�ect of these results is to show that potential epistemic

uncertainty over the exact ontological state of a quantum system is unlikely to have much

power for explaining any features of quantum theory. However, all of these new results

assume that quantum predictions are exactly correct and are therefore not immediately

relevant to experiments, so a proof-of-concept result for error-tolerant extensions is also

given. Finally, it is shown how these foundational techniques can be applied to problems

in quantum information theory. In particular, it is shown that exponentially many classical

resources are required to simulate a quantum channel. Similar results have appeared in

the literature before, but the method used here has some key advantages. For instance, it

is a signi�cantly simpler proof than previous results and it can also be easily extended to

generate potentially be�er bounds from new classical error-correction codes in the future.

In Chap. 3, the focus remains within the ontology of quantum states, but shi�s slightly

to study macro-realism. Macro-realism is a particular ontological property that is most

commonly associated with the Legge�-Garg inequalities and corresponding no-go theorem.

A�er introducing macro-realism in detail, the Legge�-Garg argument is brie�y reviewed

and some loopholes in it are identi�ed. �at is, the Legge�-Garg argument can only

show that quantum theory is incompatible with one of three types of macro-realism. �is

is followed by a new result showing that quantum systems of d > 3 dimensions are

incompatible with two of those three types of macro-realism, improving on the Legge�-

Garg argument by using the methods of Chap. 2. Since both this result and the result

showing that superpositions are real are intolerant to experimental error, these results

are then brought together and given error-tolerant variations. �e main conclusions of

Chaps. 2, 3 are then discussed in terms of their impact and potential for further work.

Large parts of chapters 2, 3 are based on Refs. [All16, AMG16]. In particular, results of

Secs. 3.1–3.3 are the result of collaboration with Owen Maroney and Stefano Gogioso. �e

communication work in Sec. 2.5 is joint work with Jonathan Barre�.

In Chap. 4 quantum causality is studied. A�er introducing the topic and its primary

motivations the �rst major problem for quantum causality is identi�ed. �at is, the

problem of �nding a satisfactory version of Reichenbach’s principle for a quantum universe

[Sec. 4.1.2]. An appropriate quantum Reichenbach’s principle is then carefully justi�ed

by developing a notion of quantum conditional independence. �is quantum conditional

independence has four de�nitions which are proved to be equivalent. Each de�nition

naturally generalises a corresponding de�nition for classical conditional independence,

lending strength to the proposed quantum Reichenbach’s principle that results. �ese
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new de�nitions are then illustrated with some examples and generalised from conditional

independence of two systems to conditional independence of k ≥ 2 systems.

Chapter 5 extends this approach to quantum causality to the general case of causal

models. Classically, causal models form a general framework based on Reichenbach’s

principle that allows systematic study of causal relationships. �ese classical causal

models are brie�y introduced before being used to motivate an analogous generalisation

to quantum causal models. A proposed de�nition of these quantum causal models is then

given that generalises quantum Reichenbach’s principle from Chap. 4 in a sensible way.

Some examples then illustrate this new framework, including that of Bell’s theorem. �e

constructions of Chaps. 4, 5 are then discussed and compared to alternative approaches

to formalising the study of quantum causality. In particular, it is noted that the solid

foundation provided by the quantum Reichenbach’s principle places con�dence in the

robustness of the approach taken here.

�e results of Chaps. 4, 5 �rst appeared in Ref. [ABH
+

17] and are the result of joint

work with Jonathan Barre�, Dominic Horsman, Ciarán Lee, and Robert Spekkens.

A somewhat di�erent approach is taken in Chap. 6. �ere, quantum ontology is studied

through the lens of possible time travel to the past. �e most common way to motivate

this is through noting that closed timelike curves (CTCs) permi�ed by general relativity

would allow for such time travel. A�er motivating the approach, previous a�empts to

model quantum time travel using quantum circuits are brie�y covered. �ere are two

such models, called D-CTCs and P-CTCs [Sec. 6.3]. Between them, they highlight the

interactions between ontology and possible non-linear extensions of quantum theory. In

particular, that non-linearity added to quantum theory forces one to be more speci�c about

ontology to consistently describe a system. Both the successes and shortcomings of D- and

P-CTCs are then used to construct two classes of new models for time travel in quantum

theory. From these classes, one model—dubbed T-CTCs—is fully �eshed out and compared

to D- and P-CTCs at length. �ese �ndings are then discussed, with particular a�ention

paid to the roles of non-linearity and ontological understanding in the models.

Finally, Chap. 7 summarises the results of the thesis and lays them out in the context

of the further work that they suggest. In particular, the possibilities for combining the

approaches to quantum ontology taken in this thesis will be discussed.

Some notational conventions used throughout this thesis have been summarised start-

ing on page vii. As is common in modern literature on quantum foundations, the focus

will be on �nite-dimensional quantum systems so �nite-dimensional Hilbert spaces may

o�en be assumed.
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2
Ontology of Quantum States and

Superpositions

2.1 Theorising About State Ontology

When considering the ontology of quantum systems the usual questions centre on the

ontology of quantum states. �estions such as: What properties must the ontological states

of the system have, or not have? How can the structure of the space of these ontological

states relate to preparations of quantum states? and How similar must this ontological

state space be to the quantum state spaces, P(H) and D(H)?

Many physicists would, for example, be much more comfortable if quantum phe-

nomena could be explained with a concise and elegant realist ontology for states. Some

certainly believe that existing explicit realist interpretations—such as Bohmian mechanics

[BH95, Boh52a, Boh52b, Bro09] or Evere�ian interpretations [DG73, SBKW10]—achieve

this, but such opinions are hardly uncontroversial [SBKW10, Gol16]. But even regardless

of one’s view on interpretations, it is interesting to consider whether certain ontological

features can be ruled out a priori as being incompatible with the predictions of quantum

theory. Moreover, there has also been considerable cross-pollination between founda-

tional ontology results and information-theoretic results [Mon12, BHK05, PJO15, LPZ
+

16,

Mon13, Mon15, Mon16b, Lei14a], as discussed in Sec. 2.5.

Some of these questions will be addressed and answered in this chapter. In doing so, the

results will fall into a tradition of “ontology theorems” in quantum foundations [Lei14a].
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In particular, this chapter will concentrate on the ontology of quantum superposition

states, proving that almost all quantum superpositions must be “real” in a well-de�ned

sense [Sec. 2.3]. �e techniques used to prove this main result will then be adapted for two

purposes. First, to address some common shortcomings of many of the current ontology

theorems [Sec. 2.4]. Second, to provide a simple way to exponentially bound the classical

resources required to simulate a quantum channel [Sec. 2.5].

�is chapter will also lay much of the groundwork for Chap. 3, where the general

question of quantum state ontology is applied speci�cally to the case of macro-realism.

�e methods of this chapter and the next are all based on the mathematical framework

of ontological models. Because of this, before introducing the relevant background it will be

prudent to �rst introduce this framework in Sec. 2.1.1. �is framework itself is independent

of quantum theory, however since the focus here is exclusively on quantum systems it will

normally be assumed that ontological models exactly reproduce quantum predictions. As

well as this, it will be assumed that all quantum systems are �nite-dimensional, with the

in�nite-dimensional case being discussed brie�y in Sec. 3.5.

Most of the material in this chapter and the next overlaps with that published in

Refs. [All16, AMG16], with the notable exceptions of Secs. 2.5, 3.4.

2.1.1 The Ontological Models Framework

Debates about the ontology of quantum states are at least as old as quantum theory itself.

In more recent years, this subject has bene�ted from a standardisation of de�nitions and

concepts into the ontological models framework [HR07, HS10, Lei14a]. �e framework of

ontological models has been expressly developed to make discussions about ontology in

physics precise and is the natural arena for such discussions. It will therefore be useful

to lay down the mathematics of this framework before discussing the motivations and

history behind the work in this chapter as it will enable a much easier and more precise

discussion.

An ontological model is exactly that: a bare-bones model for the underlying ontology

of some physical system. Since the ontological models framework is so sparse, very many

conceivable ontologies can be understood as ontological models. �e system may also

be correctly described by some other, higher, theory (or framework of theories)—such as

Newtonian mechanics or quantum theory—in which case the possible ontological models

considered should be constrained to reproduce the predictions of that theory. By combining

these constraints with the very general framework of ontological models, interesting and

general conclusions can be drawn about the nature of the ontology. It is important to
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note that, while ontological models are normally used to discuss quantum ontology, the

framework itself is entirely independent from quantum theory.

In this section the framework of ontological models will be de�ned and introduced.

First on its own and then as applied to quantum theory in both the absence and presence

of possible experimental error. �is account of ontological models is based on the one

given in Ref. [Lei14a].

�e framework of ontological models relies on just two core assumptions: (1) that

the system of interest has some ontic state λ representing the entirety of the actual state

of a�airs of the system and (2) that standard probability theory may be applied to these

states. �at is, at any given time the entire ontology of a system is given by its ontic state.

Together, these bring us to consider the ontology of some physical system as represented

by some measurable space (Λ,Σ) of ontic states λ ∈ Λ which the system might occupy

(Σ being a sigma algebra of measurable subsets of Λ). �e requirement that ontic states

occupy a measurable space simply guarantees that sensible probabilities can be de�ned

over them.

In the lab, a system can be prepared, transformed, and measured in certain ways. Each

of these operational processes needs to be describable in the ontological model for it to be

capable of describing the system.

Preparation must result in the system ending up in some ontic state λ, though the exact

state need not be known. �us, each use of an operational preparation P gives rise to

some preparation measure µ over Λ which is a probability measure (µ(∅) = 0, µ(Λ) = 1).

For every measurable subset Ω ∈ Σ, µ(Ω) gives the probability that the resulting λ is in Ω.

�e set of all such preparation measures for some P is ∆P . Note how the measure can

vary between uses of the same preparation.

Similarly, an operational transformation T of the system will generally change the

ontic state from λ′ ∈ Λ to a new λ ∈ Λ. Recalling that the ontic state λ′ represents the

entirety of the actual state of a�airs before the transformation, then the �nal state can

only depend on λ′ (and not the preparation method or any previous ontic states, except as

mediated through λ′). �e transformations must therefore be described as stochastic maps
γ on Λ. A stochastic map consists of a probability measure γ(·|λ′) for each initial ontic

state, such that for any measurable Ω ∈ Σ, γ(Ω |λ′) is the probability that the �nal λ lies

in Ω given that the initial state was λ′ 1
. �e set of all stochastic maps corresponding to

some T is ΓT .

1
�ese stochastic maps, viewed as a set of functions γ(Ω |·) : Λ→ [0, 1] (one for each Ω ∈ Σ), must be

measurable functions. �at is, for any measurable set S ⊆ [0, 1] and any γ(Ω |λ′), then {λ′ ∈ Λ : γ(Ω |λ′) ∈
S} ⊆ Λ is a measurable set.
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Figure 2.1: Illustration of the basic prepare-transform-measure procedure in an ontological

model. �e box represents the entire ontic state space Λ, while shaded regions represent the

ontic states that can be prepared by the indicated preparation measures. Some preparation

P is performed, resulting in an ontic state according to µ ∈ ∆P . Some transformation T is

performed, resulting in some stochastic map γ ∈ ΓT , e�ectively transforming µ to ν as in

Eq. (2.2). Finally, some measurement M is made, resulting in some outcome E according

to probabilities given by Eq. (2.1).

Finally, a measurement M may give rise to some outcome E. Again, which outcome

is obtained can only depend on the current ontic state λ′. �erefore a measurement M

gives rise to a conditional probability distribution
2 PM(E |λ′), sometimes called a response

function. �e set of all such response functions corresponding toM is ΞM . For this thesis it

is only necessary to consider measurements that have countable sets of possible outcomes

E.

Pu�ing these parts together: given a system where a preparation P is performed

followed by some transformation T and some measurement M then the ontological model

for that system must have some preparation measure µ ∈ ∆P , stochastic map γ ∈ ΓT ,

and conditional probability distribution PM ∈ ΞM such that the probability of obtaining

outcome E is

PM(E | ν) =

∫
Λ

dν(λ)PM(E |λ) (2.1)

where

ν(Ω)
def

=

∫
Λ

dµ(λ) γ(Ω |λ) (2.2)

is the e�ective preparation measure obtained by preparation P followed by transformation

T . �is is schematically illustrated in Fig. 2.1.

Note that ontological models must be closed under transformations. �at is, for any

preparation µ and transformation γ in the model then the preparation ν de�ned by Eq. (2.2)

2
�ese probability distributions, viewed as functions Λ→ [0, 1], must also be measurable functions.
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must also exist in the model (since a preparation followed by a transformation is itself a

type of preparation).

It is useful to think of stochastic maps acting on preparation measures as an emergent

property of them acting on the underlying ontic state space. If an ontic state is sampled

from µ and then transformed via γ the e�ect is the same as sampling from the measure ν

de�ned by Eq. (2.2). Rather that having to say this in such a cumbersome way, the notation

µ
γ
 ν will be used to express the same thing and may be read “µ transforms to ν under

γ”. �e full de�nition of this notation is, however, via Eq. (2.2) as above.

Summarising, an ontological model for some physical system:

1. de�nes a measurable space (Λ,Σ) of ontic states for the system;

2. for each possible transformation T de�nes a set of stochastic maps γ ∈ ΓT from Λ

to itself;

3. for each possible preparation P de�nes a set of preparation measures µ ∈ ∆P over

Λ, ensuring closure under the actions of the stochastic maps as in Eq. (2.2);

4. for each possible measurement M de�nes a set of response functions PM ∈ ΞM over

the outcomes given λ ∈ Λ;

and then produces probabilities for measurement outcomes via Eqs. (2.1, 2.2).

It should be noted that ontological models are usually presented using probability

distributions rather than the more mathematically involved measures used here. However,

as noted in Ref. [Lei14a], this simpli�cation precludes many reasonable ontological models,

including the archetypal Beltrame�i-Bugajski model [BB95] (see also Sec. 2.1.2). �e more

accurate approach is taken here both for the accuracy itself and to serve as a resource of

how to construct proofs in measure-theoretic ontological models as such proofs are rarely

seen in the literature.

�e above de�nition for ontological models per se does not have much useful structure.

�e power is found when the probabilities given by Eqs. (2.1, 2.2) are constrained to match

those given by other theories known to accurately describe the system (such as quantum

theory) or by experiments. To this end, consider applying ontological models to systems

accurately described by quantum theory.

An ontological model is de�ned by some ontic state space (Λ,Σ) as well as the relevant

preparation measures, stochastic maps, and conditional probability distributions. For a

quantum system these must include at least the following. For each state |ψ〉 ∈ P(H) there

must be a set ∆|ψ〉 of preparation measures µ|ψ〉—potentially at least one for each distinct
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experimental procedure for preparing |ψ〉. Similarly, for each unitary operatorU onH there

is a set ΓU of stochastic maps γU and for each basis measurementM = {|i〉}di=0 there is a set

ΞM of conditional probability distributions PM—again, potentially at least one stochastic

map/probability distribution for each experimental procedure for transforming/measuring.

Since the quantum system is accurately described by quantum theory, the ontological

model must also reproduce the predictions of quantum theory. �at is, for any |ψ〉 ∈ P(H),

µ ∈ ∆|ψ〉, U, γ ∈ ΓU , basis M , and PM ∈ ΞM it is required that

|〈i|U |ψ〉|2 =

∫
Λ

dν(λ)PM(|i〉 |λ), ∀|i〉 ∈M (2.3)

where µ
γ
 ν is de�ned as in Eq. (2.2). Note also that ν ∈ ∆U |ψ〉 since preparing the

quantum state |ψ〉 (via any ontological preparation µ ∈ ∆|ψ〉) followed by performing the

quantum transformation U (via any γ ∈ ΓU ) is simply a way to prepare the quantum state

U |ψ〉.
So Eq. (2.3) must hold when quantum theory is known to accurately describe the

system. What of the case where quantum theory only approximately describes the system?

Suppose, for instance, that the probabilities predicted by quantum theory are accurate

to within ±ε for some given ε ∈ (0, 1]. It follows that the ontological model need only

reproduce these approximate predictions, so Eq. (2.3) is replaced by

|〈i|U |ψ〉|2 + ε ≥
∫

Λ

dν(λ)PM(|i〉 |λ) ≥ |〈i|U |ψ〉|2 − ε, ∀|i〉 ∈M (2.4)

where, again, ν ∈ ∆U |ψ〉 is de�ned as in Eq. (2.2).

�is mathematical framework forms the foundation of many modern results in the

ontology of quantum states. It may be seen as a successor to, and extension of, the hidden
variables models used historically [HR07, and references therein]. Recall that, unless

otherwise stated, quantum predictions are assumed to be exactly accurate throughout

this chapter and Chap. 3. In other words, Eq. (2.3) will be assumed on top of the bare

ontological models framework unless otherwise stated.

2.1.2 The Desire for Simpler Ontologies

Given the de�nitions and mathematical background of the ontological models framework,

it is now time to consider the motivation behind wanting a relatively simple ontology for

quantum states. Whether or not you believe it to be possible, this motivation is quite easy

to understand.

�e simplest way to capture textbook quantum theory in an ontological model is to:

have the pure quantum states be the ontic states Λ ∼= P(H), have the pure state preparation
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measures give unit probability to the corresponding ontic state, and have transformations

and measurements act on Λ exactly as they do on P(H) in textbook quantum theory. �is

transliteration of quantum theory to an ontological model is called the Beltrame�i-Bugajski
model [BB95, HR07, Lei14a].

�e Beltrame�i-Bugajski model is o�en seen as an una�ractive ontology for several

reasons. It requires an uncountable ontic state space for any non-trivial system, even when

there are only two distinguishable preparations. It also forces one to talk about ontology

globally, due to entanglement. Finally, it contains a lot of redundancy: the properties of

the quantum state |ψ〉 = α|0〉+ β|1〉 are entirely inherited from properties of |0〉 and |1〉,
it therefore seems ontologically extravagant to describe |ψ〉 entirely separately from |0〉
and |1〉 on an ontological level.

So how does one respond to this easy, but rather ugly, understanding of state ontol-

ogy? One way is to simply accept that the ontology of quantum states is just like this

or to argue that it is not as ugly as it might seem. �at view might lead one towards

Evere�ian interpretations of quantum theory, for example. Another is to deny the need for

a realist ontology of quantum states altogether—a position variously called “anti-realist”,

“neo-Copenhagen”, and “instrumentalist” [Lei14a]—a route with its own conceptual and

philosophical hurdles. A third way (and the one of most interest in this thesis) is to seek a

more elegant realist ontology that might underlie quantum theory.

�is third approach is sometimes called that of the “epistemic realist” and naturally

leads to using ontological models because of their extreme generality for realist ontologies.

By using the fact that preparing some quantum state may leave some uncertainty over the

ontic state (the preparation measure can give non-zero probability to a large number of

ontic states), the epistemic realist can hope to explain many features of quantum systems as

arising from this “ontological uncertainty”. �ese features include the indistinguishability

of non-orthogonal states, no-cloning, stochasticity of measurement outcomes, and the

exponential increase in state complexity with increasing system size [Spe07].

In particular, the epistemic realist can hope to use the fact that both quantum states and

ontological model preparations can “overlap”. Two quantum states in P(H) overlap by an

amount quanti�ed by the Born rule (equivalently, their inner product). �e corresponding

ontic overlap occurs when preparations for di�erent quantum states can prepare some of

the same ontic states.

A typical motivation given for the epistemic realist view is that such ontic overlaps

might naturally explain the indistinguishability of non-orthogonal quantum states [Spe07,

BCLM14, Lei14b]. If two non-orthogonal quantum states have �nite ontic overlap, then

sometimes they will prepare the same ontic states and, since the ontic state describes
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Λ

Figure 2.2: Illustration of the epistemic realist explanation for indistinguishability of non-

orthogonal quantum states. Suppose that µ ∈ ∆|ψ〉 and ν ∈ ∆|φ〉 are preparation measures

over ontic state space Λ for non-orthogonal quantum states |ψ〉 and |φ〉. If they overlap,

as shown, there are ontic states such as the λ ∈ Λ illustrated that may be prepared by

both. In this case, there is no way to distinguish which preparation, µ or ν, was performed,

naturally explaining why there is no way to perfectly distinguish between |ψ〉 and |φ〉.

the entire ontology of the system, there is no way to tell them apart. By looking at the

probability of this occurring, the ability of ontic overlaps to account for indistinguishability

can be quanti�ed [Sec. 2.2.2]. �is is illustrated in Fig. 2.2. More thorough discussions of

the way that epistemic realist explanations can explain puzzles in quantum foundations

can be found in Refs. [Spe07, Spe14].

�e epistemic realist perspective on the foundations of quantum theory is not only

philosophically a�ractive but also appears to be tenable. �ere are theories that explain

the quantum state in an epistemically realist manner that reproduce interesting and large

subsets of quantum theory including many characteristically quantum features [Spe14,

Spe07, BRS12, JL15]. �ere are also several explicit ontological models exactly describing

whole isolated quantum systems that make very good use of ontological uncertainty,

though only in d = 2 dimensions as discussed below.

A particularly powerful result for the epistemic realist would be to �nd an explana-

tion of certain quantum superposition states as statistical e�ects due to ontic overlap.

Superpositions are behind quantum interference, the uncertainty principle, wave-particle

duality, entanglement, Bell non-locality [Bel87], and the probable increased computational

power of quantum theory [JL03]. Perhaps most alarmingly, superpositions give rise to the

measurement problem, so captivatingly illustrated by the “Schrödinger’s cat” thought ex-

periment [Gib87]. Explaining superpositions with ontological uncertainty would therefore

go a long way to explaining these features of quantum theory.

In quantum theory, if |ψ〉 is a superposition over, say, |0〉 and |1〉 then all of the

properties of |ψ〉 are inherited directly from |0〉 and |1〉, mediated by the amplitudes of the
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superposition. �is is in a very similar way to how a probability distribution over classical

states inherits all of its properties from the underlying classical states, mediated by the

probabilities. �is situation would naturally be explained if the superposition |ψ〉 was

just a statistical e�ect over the ontic states corresponding to |0〉 and |1〉, exactly as ontic

overlap could explain indistinguishability. A full mathematical treatment of this intuition

is deferred until Sec. 2.3.1.

If the epistemic realist programme is successful in �nding an elegant underlying

ontology that naturally explains any of these quantum features, it will become a very

a�ractive proposition indeed. �e primary problem for the epistemic realist is that no

such ontological model has yet been found. Rather, the epistemic realist sits between the

success of models that partially reconstruct quantum theory [Spe14, Spe07, BRS12, JL15]

and the ontology theorems that constrain their ability to reconstruct the rest, discussed in

Sec. 2.1.4.

2.1.3 Classifying Ontologies

In order to e�ectively discuss the types of ontological models are or are not compatible

with quantum theory, it is necessary to identify some classes of ontological models worth

discussing. By �nding examples of ontological models in some classes compatible with

quantum theory and proving the impossibility of such models in other classes, a clearer

prognosis for the epistemic realist perspective emerges. �e main classi�cations from

the literature used in this chapter are: ψ-ontic, ψ-epistemic, maximally ψ-epistemic, and

various contextualities.

An ontological model for a quantum system is ψ-ontic if and only if each ontic state can

only be prepared by a single quantum state. �at is, if one were able to see the ontology of

the system directly, there would be no ambiguity as to which quantum state was prepared.

�e Beltrame�i-Bugajski model is trivially ψ-ontic, as the ontic states are the quantum

states, but it is possible to consider others (including Bohmian mechanics) which are

ψ-ontic but quantum state preparations can result in more than one ontic state.

�e opposite of ψ-ontic is ψ-epistemic. �at is, an ontological model is ψ-epistemic if

and only if it is not ψ-ontic. A ψ-epistemic model is something of a minimum requirement

for the epistemic realist since ψ-ontic models leave no room for explaining anything

other than indeterminism by ontological uncertainty. If there were a theorem proving

that all ontological models that reproduce quantum statistics must be ψ-ontic then the

epistemic realist programme would certainly be dead. However, no such theorem can exist

as there are ontological models for every �nite dimension which are both ψ-epistemic and

compatible with quantum theory [LJBR12, ABCL13].

17



So ψ-ontic delineates one extreme of the spectrum of conceivable ontological models.

�e other end is marked by maximally ψ-epistemic models. Recall that both quantum

states and ontological model preparations can overlap. An ontological model is maximally

ψ-epistemic if and only if the ontic overlap entirely accounts for the Born rule overlap

[Mar12, LM13, Lei14b, Bal14]. As will become clear in Sec. 2.4.1, it is impossible for ontic

overlaps to be any larger than this, hence such models are “maximally” ψ-epistemic.

A maximally ψ-epistemic ontology would be ideal for the epistemic realist, as the large

amount of ontological uncertainty between quantum states would allow for powerful

explanations [Lei14a, Mar12, LM13, Lei14b, Bal14]. Such ontological models do exist in

d = 2 dimensions, such as the Kochen-Specker model [KS67, HR07], but no such model

can exist for d > 2, as discussed in Sec. 2.1.4.

�ese three notions—ψ-ontic, ψ-epistemic, and maximally ψ-epistemic—form a coarse

�rst-order classi�cation of the ontological models of interest to the epistemic realist. Precise

de�nitions of each will be deferred until Sec. 2.4.1 once the appropriate mathematical

background has been covered. While this classi�cation is far from nuanced, it serves as an

excellent starting point to discuss �ner distinctions within the class of ψ-epistemic models.

For example, the concepts behind the ψ-epistemic/ontic dichotomy can also be used to

discuss the reality of quantum superpositions. Consider the example of Schrödinger’s cat.

Schrödinger’s cat is set up to be in a superposition of |dead〉 and |alive〉 quantum states.

�e epistemic realist (and probably the cat) would ideally prefer the ontic state of the cat

to only ever be one of “dead” or “alive” (viz., only in ontic states accessible when preparing

either the |dead〉 or |alive〉 quantum states). In that case, the cat’s apparent quantum

superposition would be epistemic—there would be nothing “real” about the superposition

state not already captured by |dead〉 and |alive〉. Conversely, if there are ontic states which

can only obtain when the cat is in a quantum superposition (and never when the cat

is in either quantum |dead〉 or |alive〉 states), then the superposition is unambiguously

ontic: there are ontological features which correspond to that superposition but not to

non-superpositions, so that superposition is real. Precise mathematical de�nitions will be

deferred until Sec. 2.3.1.

It is not yet known to what degree epistemic superpositions are compatible with

quantum theory. Some of the epistemic realist theories reproducing subsets of quantum

theory noted above do include epistemic superpositions. �e question of the reality of

superpositions in quantum theory is, therefore, very much open.

Obviously quantum superpositions are di�erent from proper mixtures of basis states.

�e question here is rather whether quantum superpositions can be understood as distri-
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butions over some subset of underlying ontic states, where each such ontic state is also

accessible by preparing some basis state.

A neat toy example is found in Spekkens’ toy theory [Spe07], where the “toy-bit”

reproduces a subset of qubit behaviour. A toy bit consists of four ontic states, a, b, c, d, and

four possible preparations, |0), |1), |+), |−), which are analogous to the correspondingly

named qubit states. Each preparation corresponds to a uniform probabilistic distribution

over exactly two ontic states: |0) is a distribution over a and b; |1) a distribution over c

and d; |+) over a, c; and |−) over b, d. Full details of how these states behave and how

they reproduce qubit phenomena are described in Ref. [Spe07]. For the purposes here, it

su�ces to note that all ontic states corresponding to the superposition states |+) and |−)

are also ontic states corresponding to either |0) or |1)—this toy-bit has nothing on the

ontological level which can be identi�ed as a superposition. �e toy theory superpositions

are epistemic. Toy models such as this therefore lend credibility to the idea that quantum

superpositions themselves might, in a similar way, fail to have an ontological basis.

Finally, it is common to identify ontological models with various features collectively

referred to as “contextuality” [Spe05, HR07, LM13]. Contextuality was �rst introduced

with what is now known as “Kochen-Specker contextuality” [KS67, Hel13]. However,

Ref. [Spe05] showed how contextuality can be more broadly be thought of in terms of

operational equivalence. Loosely, contextuality refers to when operationally indistinguish-

able situations are described di�erently in the ontological model. �ere are various types

of contextuality of interest in various situations (including Kochen-Specker contextuality)

but the only one necessary for this thesis is preparation contextuality. Roughly, a model

is preparation contextual if it contains separate descriptions for preparations that are

operationally equivalent. �at is, the ontology depends on the “context” of the preparation

in a way that is not operationally discernible. A precise mathematical de�nition will be

given in Sec. 2.4.1.

Contextuality of any kind is traditionally thought of as undesirable for the epistemic

realist but it is certainly not fatal. It has even been argued that contextuality should be

expected in an appropriate epistemic realist theory [Bal14].

While the classi�cations introduced here are relatively coarse, they are good starting

points for identifying more subtle classi�cations, some of which will be discussed in

Sec. 2.4. Before ge�ing there though, it is appropriate �rst to review the main results in

the literature concerning the classi�cations already introduced.
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2.1.4 Previous Ontology Theorems

As noted above, there is a tradition of “ontology theorems” in quantum foundations.

�ese are typically no-go theorems, proving that certain classes of ontological models can

never be compatible with the predictions of quantum theory. �e most famous ontology

theorem is Bell’s theorem [Bel87], which primarily concentrates on locality. However, the

ontological models framework as de�ned here—and in much of the recent literature—avoids

talking about composition of local systems, preferring to concentrate on single systems

where issues of locality and composition do not arise. �e primary reason for this is the

PBR theorem.

�e PBR theorem [PBR12] proves that all ontological models for d > 2 must be ψ-ontic

if they satisfy the preparation independence postulate (PIP). �e PIP is a reasonable extra

restriction on the structure of ontological models for multipartite systems that is not

present in the bare ontological models framework. �e PBR theorem is therefore a very

powerful blow to the epistemic realist. However, it does problematically depend on the

PIP, which has been challenged [Man16, ESSV13, Hal11, SF14, Wal13] (especially as being

similar to Bell locality, which is already ruled out by Bell’s theorem) and without it the

PBR theorem is impotent. It is for this reason that recent work has avoided the PIP and

related issues by looking only at single systems in order to seek more conclusive ontology

results. �is will be the perspective taken here.

While ψ-epistemic models are not possible in multipartite systems with the PIP, they

are possible for single systems without the PIP. As noted above, explicit ψ-epistemic models

have been presented for every �nite dimension in Refs. [LJBR12, ABCL13].

�e obvious next question is whether maximally ψ-epistemic models are possible

without the PIP? In d = 2 dimensions they are, as shown explicitly by the Kochen-Specker

model [KS67, HR07]. However, they are not possible for d > 2. �ere are several disparate

ways of proving this [HR07, Bal14, LM13, Mar12, BCLM14, Bra14, Lei14b]. One of these

proofs even existed before the idea of “maximally ψ-epistemic” [HR07, Bal14]. Reference

[LM13] proved that “maximally ψ-epistemic” implies Kochen-Specker contextuality and is

therefore ruled out by the Kochen-Specker theorem [KS67, Hel13]. �e majority of these

theorems, however, prove their results by bounding ontic overlaps to be less than maximal

for d > 2 [Mar12, BCLM14, Bra14, Lei14b, Bal14]. As a result these theorems are able to

rule out more than simply maximally ψ-epistemic models; each also rules out some subset

of non-maximally ψ-epistemic models, depending on the exact bound found. In particular,

the stated aim is o�en to show that certain ontic overlaps must be small and therefore,

whilst ψ-epistemic ontologies are possible, using them to explain the indistinguishability
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of quantum states is implausible. �e overlap bounds derived each also tend to zero in

some limit, suggesting negligible ontic overlap in those limits (o�en in large dimensions).

�ese overlap bound ontology theorems are of most interest to this chapter. As nu-

merical inequalities their conclusions can be more nuanced in ruling out a range of

ontological models. �ey are also likely to be more amenable to experimental investigation

[NMS
+

15, RDB
+

15, Kne16]. �is contrasts especially with results based on the Kochen-

Specker theorem, which has �nite-precision loopholes [Mey99, Ken99, CK00, BK04].

�e above is not an exhaustive list, nor a thorough discussion, of the current state of

ontology theorems. Only those directly relevant to the approach taken in this chapter

were included. �e majority of other overlap theorems, including Refs. [CR13, CR12, CR11,

CR16, Har04, Mon08, Har13, PPM13, ABCL13], are more specialised, o�en making extra

assumptions on top of the ontological models formalism. Several are reviewed at length

in Ref. [Lei14a]. However, no previous result has yet tackled the ontology of quantum

superposition states directly.

Before discussing some shortcomings of these results, it is worth noting that one

will o�en hear that ontological models for quantum systems must be preparation con-

textual [Spe05, LM13, Lei14a]. However, such results only rule out preparation non-

contextuality for mixed quantum states—viz. they prove that there must exist mixed quan-

tum states where the ontological description of the preparation can vary. Preparation non-

contextuality for pure quantum states is certainly possible [LJBR12, ABCL13, Lei14a] and

o�en assumed without question. �is is likely because the contextuality/non-contextuality

distinction for pure state preparations is o�en irrelevant [Lei14a]. However, as will be

seen in Sec. 2.4, this will not be the case here and discussion of pure state preparation

contextuality will be required.

2.1.5 Limitations and Loopholes

Of the ontology theorems mentioned in Sec. 2.1.4, those which bound ontic overlaps for

d > 2 are probably the greatest threat to the epistemic realist view. References [Mar12,

BCLM14, Bra14, Lei14b, Bal14] each prove a bound of this type: a set of quantum states is

constructed and an inequality on ontological overlaps is proved to hold for at least one

pair from the set, bounding their ontic overlaps to be less than the corresponding Born

rule overlap. Trivially, this implies that the ontological model for the system cannot be

maximally ψ-epistemic. �e authors further argue that when these upper bounds become

small (typically in large dimensions) then explaining indistinguishability of quantum states

by ontological uncertainty becomes implausible. Indeed, if the epistemic realist is hoping

to use the ontic overlap to explain quantum features, then it seems unlikely that a very
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small overlap could have much explanatory power. All of these theorems, however, share

at least the following two shortcomings.

First, the proofs are non-constructive proofs of existence. �at is, they conclude that

there is some pair of quantum states with a small ontic overlap, but no guarantee is made as

to which pair. �is may not seem problematic, but consider the following. If a theorem only

requires that I incorporate at least one pair of quantum states with small ontic overlap, then

I am not prevented from postulating a model where exactly one pair has small ontic overlap,

but all other pairs overlap maximally. Such a model would be indistinguishable from a

maximally ψ-epistemic model, since the probability of encountering exactly that pair of

quantum states is zero. Such theorems, as stated, are therefore very weak restrictions on

the types of ontological model that are compatible with quantum theory.

�e above is a caricature of the loophole and by examining the proofs of the theorems in

Refs. [Mar12, BCLM14, Bra14, Lei14b, Bal14] it seems possible to use the unitary symmetry

of quantum theory to extend them and obtain conclusions that require more pairs of

quantum state to have less-than-maximal ontic overlap. However, this has not been done

rigorously so the loophole remains, making them much weaker than they seem at face value.

Even if such improvements were made, they would still not guarantee that any particular

pair of quantum states has less-than-maximal overlap, which may leave signi�cant room

for the epistemic realist to explain quantum experiments using ontological uncertainty

simply by assuming that the quantum states used in the experiment do have large ontic

overlap.

�e second shortcoming is less of a loophole and more of a limitation. �e overlap

bounds proved in Refs. [Mar12, BCLM14, Bra14, Lei14b, Bal14] each approach zero in some

limit (usually as d → ∞). However, as noted in Ref. [Lei14a] as one approaches these

limits, the sets of states considered also approach orthogonality. Orthogonal quantum

states are perfectly distinguishable and therefore trivially must have zero ontic overlap.

�is casts doubt on these results having any meaning at all in those limits where they at

�rst appear to be most powerful. Even being close to the limit makes the results seem less

impressive, it is easier to believe that quantum states that are close to orthogonality have

very small ontic overlap than those that are nearly collinear.

�ese theorems are therefore less powerful than they initially may seem and far from

conclusive. In particular, it would be much more convincing to have a theorem that could

identify particular pairs of quantum states which have bounded ontic overlap and/or a

theorem that identi�ed ontic overlaps approaching zero for quantum states with �xed

inner product.
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2.1.6 Chapter Overview

In this chapter the epistemic realist view of quantum states will be interrogated, with a

particular focus on the ontology of superpositions.

In Sec. 2.2 the asymmetric overlap and anti-distinguishable quantum states will be

introduced. �is is necessary mathematical groundwork for the results that follow. �is

will include proving several lemmas at a level of rigour that has not yet been achieved in

the literature.

Section 2.3 will discuss the ontology of quantum superposition states. A theorem will

be presented showing that for a d > 3 dimensional quantum system, almost all quantum

superpositions with respect to any given orthonormal basis must be ontic. �at is, the

epistemic realist must include superpositions in their ontology explicitly.

�e techniques used will then be adapted in Sec. 2.4 to address the shortcomings of cur-

rent ontology theorems noted in Sec. 2.1.5. In particular, theorems will be proved bounding

ontic overlap for large numbers of speci�c pairs of quantum states and demonstrating

bounds that approach zero overlap in the large-d limit, even while the quantum states have

�xed inner product. In order to adapt the method of the previous theorem, a very mild

form of preparation non-contextuality will be assumed, which will be defended as a natural

assumption in Sec. 2.4.4. �e feasibility of extending these results to be error-tolerant will

be tackled in Sec. 2.4.3.

It is fairly common for ontology theorems to inspire results in quantum information

and communication. In Sec. 2.5 this example will be followed and a simple method for

exponentially bounding the ability of classical systems to simulate quantum communication

will be demonstrated.

Chapter 3 will continue directly from this work, applying the same techniques to

the problem of “macro-realism” in quantum theory. As a result, Sec. 3.4 will present an

error-tolerant variant theorem that can rule out epistemic superpositions. �is result

will have to be logically weaker than the theorem presented in this chapter to gain error

tolerance. �e results of both chapters will then be discussed together in Sec. 3.5.

2.2 The Asymmetric Overlap

As discussed in Sec. 2.1.4, many ontology theorems proceed by bounding the ontic overlap

between quantum states. When a quantum state is prepared, some ontic states can obtain

and some cannot. Loosely speaking, the ontic overlap between two quantum states is made

up of those ontic states that can obtain by preparing either. To precisely discuss and derive

ontology theorems, it is necessary to quantify this notion in some way.
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In quantum theory, the overlap between any pair of |ψ〉, |φ〉 ∈ P(H) is quanti�ed by

the Born rule probability |〈φ|ψ〉|2. �at is, for a system prepared in state |ψ〉 the probability

for it to behave (for all intents and purposes) like it was prepared in state |φ〉 is |〈φ|ψ〉|2.

Adapting this logic to an ontological model for the quantum system, consider the

probability that a system prepared according to measure µ behaves like it was prepared

according to ν. �at is, the probability that the ontic state obtained from µ could also have

been obtained from ν. �is quantity is called the asymmetric overlap and is mathematically

de�ned [Bal14, LM13, Mar12]

$(ν |µ)
def

= inf{µ(Ω) : Ω ∈ Σ, ν(Ω) = 1}, (2.5)

recalling that the in�mum of a subset of real numbers is the greatest lower bound of

that set. �is is because a preparation of ν has unit probability of producing a λ from

each measurable subset Ω ⊆ Λ that satis�es ν(Ω) = 1. �erefore minimising µ(Ω) with

respect to Ω gives the desired probability. �e notation used here deliberately borrows

from conditional probabilities and $(ν |µ) may be read “asymmetric overlap with ν given
a preparation of µ”.

It is convenient to slightly overload the terminology and notation and de�ne the

asymmetric overlap for more general quantities. First, de�ne the asymmetric overlap

between a preparation measure µ and some quantum state |φ〉 as the probability that

preparing µ will produce a λ obtainable by preparing |φ〉. �is corresponds to

$(|φ〉 |µ)
def

= inf
{
µ(Ω) : Ω ∈ Σ, ν(Ω) = 1, ∀ν ∈ ∆|φ〉

}
. (2.6)

�e next useful generalisation is the asymmetric overlap of some preparation measure

µ with two quantum states |0〉, |φ〉. �is can be thought of as the union of the overlaps

expressed by $(|φ〉 |µ) and $(|0〉 |µ) and is mathematically de�ned as

$(|0〉, |φ〉 |µ)
def

= inf
{
µ(Ω) : Ω ∈ Σ, ν(Ω) = χ(Ω) = 1, ∀ν ∈ ∆|φ〉, χ ∈ ∆|0〉

}
. (2.7)

So $(|0〉, |φ〉 |µ) is the probability that sampling from µ produces a λ obtainable by

preparing either |0〉 or |φ〉.
Finally, this can be extended to the asymmetric overlap of µ with a set of quantum

states S ⊆ P(H) given preparation of µ in the obvious way

$(S |µ)
def

= inf
{
µ(Ω) : Ω ∈ Σ, ν(Ω) = 1, ∀ν ∈ ∆|φ〉, ∀|φ〉 ∈ S

}
. (2.8)

Clearly, the asymmetric overlap is not the only sensible way to quantify ontic overlaps.

Its main advantages are a natural motivation and ontological interpretation and it will be
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used extensively in what follows. Another popular choice is the symmetric overlap, which

will be used brie�y in Sec. 2.4.3.

�e remainder of this section will �esh out the asymmetric overlap’s properties. �is

will unfortunately be somewhat dry and mathematical but, once in place, will signi�cantly

reduce the complexity of the proofs later in the chapter.

2.2.1 Properties of the Asymmetric Overlap

Many of the properties of the asymmetric overlap derived here will not greatly surprise

those familiar with using ontological models. However, they have not yet been achieved

at this level of rigour using the measure-theoretic approach to ontological models, necessi-

tating full proofs.

While this rigour is important, it can o�en obscure the more intuitive reasons that the

results hold. To o�set this, most proofs presented below will start with a rough-but-intuitive

argument followed by the more cumbersome-but-correct measure theory.

It is convenient to begin with the following de�nition to simplify the notation for the

rest of this section.

De�nition 2.1. For any measurable function g : Λ→ [0, 1] let

k̄(g)
def

= ker(1− g) = {λ ∈ Λ : g(λ) = 1} ∈ Σ. (2.9)

Next, this technical lemma forms the basis of proofs of many of the following properties.

Lemma 2.1. Given any measurable function f : Λ → [0, 1] and preparation measure ν
satisfying

∫
Λ

dν(λ)f(λ) = 1, then ν(k̄(f)) = 1.

Proof. Roughly, this lemma simply a�rms that if the average f(λ) according to ν is unity,

then the probability that f(λ) = 1 according to ν is also unity.

If

∫
Λ

dν(λ) f(λ) = 1 then

1 =

∫
k̄(f)

dν(λ) f(λ) +

∫
Λ\k̄(f)

dν(λ) f(λ) (2.10)

= ν(ker f̄) +

∫
Λ\k̄(f)

dν(λ) f(λ) (2.11)

since if λ ∈ k̄(f) then f(λ) = 1.

Suppose that the the second term in Eq. (2.11) is non-zero. Since f(λ) < 1 for all

λ ∈ Λ \ k̄(f), then

∫
Λ\k̄(f)

dν(λ) f(λ) < ν(Λ \ k̄(f)). �is further implies

ν(k̄(f)) + ν(Λ \ k̄(f)) > 1 (2.12)

ν(Λ) > 1 (2.13)
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which is a contradiction as ν(Λ) = 1 by de�nition. �erefore the second term in Eq. (2.11)

must be zero and Eq. (2.11) implies 1 = ν(k̄(f)) as desired.

Having established this technical background, the following shows a fundamental

property of the asymmetric overlap: it is upper-bounded by the Born rule probability.

Lemma 2.2. For any pair of pure quantum states |ψ〉, |φ〉 ∈ P(H) and for any preparation
µ ∈ ∆|ψ〉, then

$(|φ〉 |µ) ≤ |〈φ|ψ〉|2. (2.14)

From this it immediately follows that $(ν |µ) ≤ |〈φ|ψ〉|2 for every ν ∈ ∆|φ〉.

Proof. Roughly, this holds because almost all ontic states obtained by preparing |φ〉 must

also return |φ〉 in any measurement where that is an option. |〈φ|ψ〉|2 is the probability of

ge�ing outcome |φ〉 when |ψ〉 has been prepared. �is must therefore occur at least as

o�en as obtaining an ontic state accessible by |φ〉 when preparing |ψ〉. �is will now be

properly proved.

Consider preparing |φ〉 via any ν ∈ ∆|φ〉 and then performing some quantum measure-

ment Mφ 3 |φ〉. Since the ontological model reproduces quantum probabilities [Eq. (2.3)]

then ∫
Λ

dν(λ)PMφ
(|φ〉 |λ) = 1. (2.15)

Le�ing g(λ)
def

= PMφ
(|φ〉 |λ), Lem. 2.1 shows that ν(k̄(g)) = 1 for every ν ∈ ∆|φ〉.

Now consider preparing |ψ〉 via any µ ∈ ∆|ψ〉 and then measuring with the same Mφ.

By Eq. (2.3)

|〈φ|ψ〉|2 =

∫
Λ

dµ(λ) g(λ) ≥
∫
k̄(g)

dµ(λ) g(λ) = µ(k̄(g)). (2.16)

having used that g(λ ∈ k̄(g)) = 1 in the �nal step. Recalling that ν(k̄(g)) = 1 for every

ν ∈ ∆|φ〉, then $(|φ〉 |µ) ≤ µ(k̄(g)) by de�nition. Combining these inequalities gives the

desired general result. Applying these inequalities to any particular ν ∈ ∆|φ〉 gives the

speci�c case $(ν |µ) ≤ |〈φ|ψ〉|2.

�e next property demonstrates that the asymmetric overlap is non-increasing under

transformations.

Lemma 2.3. Let unitary U satisfy U |0〉 = |φ〉 and µ′
γ
 µ for some γ ∈ ΓU , then

$(|φ〉 |µ) ≥ $(|0〉 |µ′). (2.17)
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Proof. Roughly, this is because ontic states preparable by µ′ will be mapped onto ontic

states preparable by µ by γ (since preparing µ′ then applying γ is equivalent to preparing

µ). Similarly, γ maps ontic states preparable by |0〉 onto ontic states preparable by |φ〉.
�us, ontic states in the overlap of µ′ and |0〉 will be mapped onto the overlap of µ and

|φ〉, implying that the overlap as measured by $ cannot decrease under the action of γ.

It su�ces to prove that for any measurable Ω ∈ Σ satisfying ν(Ω) = 1,∀ν ∈ ∆|φ〉

there exists some measurable Ω′ ∈ Σ such that χ(Ω′) = 1,∀χ ∈ ∆|0〉 and µ(Ω) ≥ µ′(Ω′).

For any χ ∈ ∆|0〉 there is some ν ∈ ∆|φ〉 such that χ
γ
 ν. So for any such Ω Eq. (2.3)

gives

1 = ν(Ω) =

∫
Λ

dχ(λ) γ(Ω |λ). (2.18)

Le�ing g(λ)
def

= γ(Ω |λ) then by Lem. 2.1 this implies χ(k̄(g)) = 1 for all χ ∈ ∆|0〉.

�erefore Ω′
def

= k̄(g) is a valid choice of Ω′.

Similarly, therefore

µ(Ω) =

∫
Λ

dµ′(λ) γ(Ω |λ) =

∫
Λ

dµ′(λ) g(λ) ≥
∫

Ω′
dµ′(λ) g(λ) = µ′(Ω′) (2.19)

recalling that g(λ ∈ k̄(g)) = 1 by de�nition.

�e following property is perhaps the easiest to both understand and prove. It relates

arbitrary multipartite overlaps, Eq. (2.8), to the underlying individual overlaps.

Lemma 2.4. For any �nite set S ⊂ P(H) of quantum states and any preparation measure µ∑
|i〉∈S

$(|i〉 |µ) ≥ $(S |µ). (2.20)

Proof. �e overlap $(S |µ) is the probability of a disjunction of events and each $(|i〉 |µ)

is a probability of one of those events. �e result is therefore a simple application of Boole’s

inequality.

�is last property relates tripartite asymmetric overlaps to certain quantum measure-

ments. It is a li�le arbitrary, but will be repeatedly used in the theorems that follow and is

therefore useful to prove separately here.

Lemma 2.5. Consider quantum states |ψ〉, |φ〉, |0〉 and orthonormal basis B ⊃ {|a〉, |b〉}.
Suppose that, when wri�en as superpositions over B, |ψ〉 and |φ〉 only have common support
on |a〉 and |b〉 (viz. they are orthogonal except for components in the linear subspace spanned
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by |a〉, |b〉). Similarly, suppose that |ψ〉 and |0〉 only have common support on |a〉 and |b〉.
�en for every µ ∈ ∆|ψ〉

$(|φ〉, |0〉 |µ) ≤ PB(|a〉 ∨ |b〉 | |ψ〉) (2.21)

for some basis measurement in B.

Proof. �e gist of the proof is that if ontic state λ is accessible by preparing two quantum

states then it may only return measurement results that are compatible with both prepara-

tions. So if λ is accessible by preparing both |ψ〉 and |φ〉, then it may only return |a〉 or |b〉
in the measurement of B. Similarly, if λ is accessible by preparing both |ψ〉 and |0〉, then it

may only return |a〉 or |b〉 for a similar measurement. �us, if one of these λs is obtained

in a preparation of |ψ〉 then the measurement result is necessarily either |a〉 or |b〉. �is

will now be fully �eshed out.

Consider a measurement MB of the basis B and let f(λ)
def

= PB(|a〉 |λ) + PB(|b〉 |λ).

Let A ⊂ B be the set of remaining basis states on which |φ〉 has support (i.e. |φ〉 is

a superposition over |a〉, |b〉, and A) and de�ne gφ(λ)
def

= PB(A |λ). Similarly de�ne

g0(λ)
def

= PB(B |λ) for B ⊂ B the remaining basis states over which |0〉 has support.

By these de�nitions, the following quantum probabilities are known for any ν ∈ ∆|φ〉

and χ ∈ ∆|0〉 by Eq. (2.3) ∫
Λ

dν(λ) (f(λ) + gφ(λ)) = 1, (2.22)∫
Λ

dχ(λ) (f(λ) + g0(λ)) = 1. (2.23)

�erefore by Lem. 2.1 it follows that ν(k̄(f + gφ)) = χ(k̄(f + g0)) = 1. Since k̄(f + gφ) ⊆
k̄(f + gφ + g0) ⊇ k̄(f + g0) it follows that Ω

def

= k̄(f + gφ + g0) is a measurable subset of Λ

for which ν(Ω) = χ(Ω) = 1, ∀ν ∈ ∆|φ〉, χ ∈ ∆|0〉.

�e desired quantum probability is given by

PB(|a〉, |b〉 | |ψ〉) =

∫
Λ

dµ(λ) f(λ). (2.24)

Since |a〉 and |b〉 are the only basis states where |ψ〉 and |φ〉 have common support, then∫
Λ

dµ(λ)gφ(λ) = 0. Similarly,

∫
Λ

dµ(λ)g0(λ) = 0 and so it follows that

PB(|a〉, |b〉 | |ψ〉) =

∫
Λ

dµ(λ) (f(λ) + gφ(λ) + g0(λ)) (2.25)

≥
∫
k̄(f+gφ+g0)

dµ(λ) (f(λ) + gφ(λ) + g0(λ)) (2.26)

= µ (k̄(f + gφ + g0)) = µ(Ω). (2.27)

Since, by de�nition µ(Ω) upper bounds $(|φ〉, |0〉 |µ) this completes the proof.
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�is does not quite conclude the properties of the asymmetric overlap required for

this chapter. Before continuing to the main result it will be necessary to consider how

asymmetric overlaps interact with so-called anti-distinguishable quantum states.

2.2.2 Anti-distinguishability

�antum states are perfectly distinguishable—that is, there is a measurement telling them

apart with certainty—if and only if they are mutually orthogonal. Distinguishable states

must be also ontologically distinct in order to satisfy Eq. (2.1): if the preparation measures

non-trivially overlapped, then any ontic states in that overlap would fail to return any
consistent outcome in a distinguishing measurement. �is makes distinguishable states

too restrictive to be very helpful in ontology theorems. �e opposite and more subtle

concept of anti-distinguishability is much more useful in discussions of ontic overlaps
3
.

A �nite set of quantum states {|ψ〉, |φ〉, ...} ⊂ P(H) is anti-distinguishable if and only

if there exists a measurement M = {E¬ψ, E¬φ, ...} such that

〈ψ|E¬ψ|ψ〉 = 〈φ|E¬φ|φ〉 = ... = 0, (2.28)

i.e. the measurement can tell, with certainty, one state from the set that was not prepared.

�is is the “opposite” to distinguishable since for distinguishable sets there is a measurement

that can tell, with certainty, one state which was prepared. It has been proved
4

that if some

inner products a = |〈φ|ψ〉|2, b = |〈0|ψ〉|2, c = |〈0|φ〉|2 satisfy

a+ b+ c < 1, (1− a− b− c)2 ≥ 4abc, (2.29)

then the triple {|ψ〉, |φ〉, |0〉} must be anti-distinguishable by a projective measurement.

For the purposes of ontological models, the main utility of anti-distinguishable sets is

that they exclude intersections of certain overlaps. �is can also be viewed in relation to

Lem. 2.4: anti-distinguishable triples guarantee that Eq. (2.20) holds with equality. �is

will now be proved, together with a rough-but-intuitive argument.

Lemma 2.6. For any anti-distinguishable triple of quantum states {|ψ〉, |φ〉, |0〉} Lem. 2.4
holds with equality, that is for all µ ∈ ∆|ψ〉

$(|0〉, |φ〉 |µ) = $(|0〉 |µ) +$(|φ〉 |µ). (2.30)

3
Anti-distinguishability was introduced in Ref. [CFS02a] under the name “PP-incompatibility” and was

given the more informative name of anti-distinguishability in Ref. [Lei14a].

4
�is result was proved in Ref. [CFS02a] but Ref. [BCLM14] points out and corrects a typographical error

in their result (the original had the second inequality as a strict inequality, which is incorrect).
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Proof. Roughly speaking, this result is fairly easy to see. Probabilities $(|φ〉 |µ) and

$(|0〉 |µ) correspond to the events of preparing |ψ〉 via µ and ge�ing an ontic state

compatible with preparing |φ〉 and |0〉 respectively. Suppose that these events are not

mutually exclusive, viz. suppose thatµ can prepare an ontic state compatible with preparing

both |φ〉 and |0〉 at the same time. Such an ontic state would not be able to return a consistent

outcome for the anti-distinguishing measurement: being compatible with preparations of

all three states rules out all measurement outcomes. �is is a contradiction, so the events

must indeed be mutually exclusive and therefore the probabilities sum to the probability

of their disjunction, which is exactly what Eq. (2.30) requires. �is will now be rigorously

proved.

Recall that {|ψ〉, |φ〉, |0〉} is an anti-distinguishable triple if and only if there is some

quantum measurement M with three outcomes E¬ψ, E¬φ, E¬0 such that the outcome

of ge�ing E¬ψ from a system prepared in state |ψ〉 is zero and similarly for the other

state/outcome pairs. By Eq. (2.3) it therefore follows that for all µ ∈ ∆|ψ〉, ν ∈ ∆|φ〉, χ ∈
∆|0〉 ∫

Λ

dµ(λ)PM(E¬ψ|λ) = 0, (2.31)∫
Λ

dν(λ)PM(E¬φ|λ) = 0, (2.32)∫
Λ

dχ(λ)PM(E¬0|λ) = 0. (2.33)

To prove that Lem. 2.4 holds with equality it su�ces to show that given any Ω ∈ Σ

for which ν(Ω) = χ(Ω) = 1 for all ν ∈ ∆|φ〉, χ ∈ ∆|0〉, there exists some Ω′,Ω′′ ∈ Σ for

which ν(Ω′) = χ(Ω′′) = 1 for all ν ∈ ∆|φ〉, χ ∈ ∆|0〉 and

µ(Ω) ≥ µ(Ω′) + µ(Ω′′). (2.34)

�is, together with Lem. 2.4 itself, would prove the desired result since the right-hand side

bounds $(|φ〉 |µ) +$(|0〉 |µ) from above.

To prove that Eq. (2.34) holds de�ne the following measurable functions from Λ to

[0, 1]

gψ(λ)
def

= PM(E¬φ|λ) + PM(E¬0|λ), (2.35)

gφ(λ)
def

= PM(E¬ψ|λ) + PM(E¬0|λ), (2.36)

g0(λ)
def

= PM(E¬ψ|λ) + PM(E¬φ|λ). (2.37)

Using the fact that, for any λ ∈ Λ, the sum of probabilities of outcomes for any measure-

ment must be unity it follows that PM(E¬ψ|λ) = 1− gψ(λ) and similarly for |φ〉 and |0〉.
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�erefore Eqs. (2.31, 2.32, 2.33) are equivalent to∫
Λ

dµ(λ) gψ(λ) = 1, (2.38)∫
Λ

dν(λ) gφ(λ) = 1, (2.39)∫
Λ

dχ(λ) g0(λ) = 1. (2.40)

By Lem. 2.1 it immediately follows that ν(k̄(gφ)) = χ(k̄(g0)) = 1 where, recall, ν and χ

are arbitrary measures from ∆|φ〉 and ∆|0〉 respectively.

With these de�nitions, consider µ(Ω) for any Ω ∈ Σ satisfying ν(Ω) = χ(Ω) = 1 for

all ν ∈ ∆|φ〉, χ ∈ ∆|0〉.

µ(Ω) =

∫
Ω

dµ(λ) (2.41)

=

∫
Ω

dµ(λ)
(
gφ(λ) + g0(λ)− PM(E¬ψ|λ)

)
(2.42)

follows by de�nition of gφ,0. �e last term vanishes by Eq. (2.31), so

µ(Ω) =

∫
Ω

dµ(λ) gφ(λ) +

∫
Ω

dµ(λ) g0(λ). (2.43)

By restricting the domain of integration

µ(Ω) ≥
∫

Ω∩k̄(gφ)

dµ(λ) gφ(λ) +

∫
Ω∩k̄(g0)

dµ(λ) g0(λ) (2.44)

= µ (Ω ∩ k̄(gφ)) + µ (Ω ∩ k̄(g0)) (2.45)

recalling that ∀λ ∈ k̄(gφ), gφ(λ) = 1 (and similarly for g0). Note that as both Ω and

k̄(gφ) are measure-one according to any ν ∈ ∆|φ〉, it follows that their intersection also

satis�es ν (Ω ∩ k̄(gφ)) = 1. Similarly, χ (Ω ∩ k̄(g0)) = 1. �us what has been proved is

that given any Ω ∈ Σ such that ν(Ω) = χ(Ω) = 1 for all ν ∈ ∆|φ〉, χ ∈ ∆|0〉 there exist

measurable sets Ω′
def

= Ω ∩ k̄(gφ) and Ω′′
def

= Ω ∩ k̄(g0) satisfying ν(Ω′) = χ(Ω′′) = 1 for all

ν ∈ ∆|φ〉, χ ∈ ∆|0〉 and

µ(Ω) ≥ µ(Ω′) + µ(Ω′′). (2.46)

�is is exactly what was to be proved.

Together, Lems. 2.2–2.6 form the mathematical sca�olding necessary to prove the main

results of this chapter that follow.
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2.3 Must Superpositions be Real?

With the technical background of asymmetric overlaps and anti-distinguishable sets it is

now possible to properly address the main question of this chapter. Is it possible to have an

ontology for quantum systems where superpositions are simply statistical e�ects—where

they are not real?

2.3.1 Distinguishing Ontic Superpositions

In order to even precisely formulate this question, one �rst needs to carefully de�ne what

is meant by “real” superpositions. �is was touched on in Sec. 2.1.3 but will now be done

precisely.

Before even ge�ing to the ontology, it is important to note that superpositions are

de�ned with respect to some orthonormal basis. To be exact, |ψ〉 ∈ P(H) is a superposition
with respect to orthonormal basis B if and only if |ψ〉 has non-zero inner product with more

than one state in B. �is is equivalent to saying that |ψ〉 6∈ B.

Now, suppose that Bob believes superpositions with respect to some particular basis

B are just a statistical e�ect. �at is, he believes that superpositions have no ontology of

their own but are emergent e�ects from the statistics. In terms of ontological models, this

means that an ontic state obtained by preparing |ψ〉 6∈ B cannot be independent of B. �at

is, Bob believes that there is no new ontology required to describe |ψ〉 that was not already

present when describing B. In this case, he is compelled to say that whenever he prepares

|ψ〉 the probability of ge�ing an ontic state obtainable by preparing some state from B is

unity:

$(B |µ) = 1, ∀µ ∈ ∆|ψ〉. (2.47)

To be consistent with the language of Sec. 2.1.3, call |ψ〉 an epistemic superposition with
respect to B if and only if Eq. (2.47) holds. Conversely, if Eq. (2.47) is violated then there is

a �nite probability that preparing |ψ〉 results in novel ontic states not accounted for by B.

�erefore call |ψ〉 an ontic superposition with respect to B if and only if it is not epistemic.

2.3.2 Almost All Superpositions are Real

Superpositions epistemic with respect to some basis would have considerable explanatory

power. Any seemingly bizarre quantum e�ect based on using such a superposition would

have a neat underlying explanation in terms of the ontology of basis states. So, are such

things possible?
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Perhaps unfortunately, no. Indeed, the no-go result proved below is just about the

strongest rejection of epistemic superpositions one could think of. It is relatively easy, for

example, to prove that “not every quantum superposition is epistemic”. What is proved in

the following two theorems is the much stronger statement that almost every superposition

with respect to any given orthonormal basis is ontic.

�is result is presented in two theorems. �e �rst contains the main technical argument.

�eorem 2.1. Consider a d > 3 dimensional quantum system and any orthonormal basis
B ofH. For any |ψ〉 ∈ P(H) such that there is a |0〉 ∈ B satisfying |〈0|ψ〉|2 ∈ (0, 1

2
), then

there exists some other |i〉 ∈ B and µ ∈ ∆|ψ〉 such that

$(|i〉 |µ) 6= |〈i|ψ〉|2. (2.48)

Proof. �e proof proceeds by contradiction. To that end, assume that

$(|j〉 |µ) = |〈j|ψ〉|2, ∀|j〉 ∈ B, ∀µ ∈ ∆|ψ〉. (2.49)

Consider |0〉 ∈ B as described in the theorem’s statement. By choosing the global phase

of |ψ〉 appropriately, another orthonormal basis B′ = {|0〉}∪{|i′〉}d−1
i=1 can be de�ned such

that

|ψ〉 = α|0〉+ β|1′〉+ τ |2′〉, (2.50)

where α ∈ (0, 1√
2
) and β

def

=
√

2α2
. Note that α = 〈0|φ〉 can be taken to be real and positive

without loss of generality, as states in P(H) are equivalent up to global phase factors. �is

is always possible since |α|2 + |β|2 = α2(1 + 2α2) < 1 for every such α. With respect to

the same B′ de�ne

|φ〉 def

= δ|0〉+ η|1′〉+ κ|3′〉, (2.51)

where δ
def

= 1− 2α2
and η

def

=
√

2α. �is is always possible since |δ|2 + |η|2 = (1− 2α2)2 +

2α2 < 1 for all α and thus an appropriate κ always exists.

�e above construction has been chosen such that

• |〈0|ψ〉|2 = α2 = |〈φ|ψ〉|2 so that there exists a unitary operator U for which

U |0〉 = |φ〉 and U |ψ〉 = |ψ〉; and

• the inner products |〈0|ψ〉|2, |〈φ|ψ〉|2, |〈0|φ〉|2 satisfy Eq. (2.29) and, therefore, the

triple {|ψ〉, |φ〉, |0〉} is anti-distinguishable.
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Choose any preparation measure µ′ ∈ ∆|ψ〉 and any stochastic map γ ∈ ΓU . Let

µ ∈ ∆U |ψ〉 = ∆|ψ〉 be the preparation measure such that µ′
γ
 µ. �en

$(|φ〉, |0〉 |µ) = $(|φ〉 |µ) +$(|0〉 |µ) (2.52)

≥ $(|0〉 |µ′) +$(|0〉 |µ) (2.53)

= 2|〈0|ψ〉|2 = 2α2
(2.54)

where the �rst line follows from anti-distinguishability and Lem. 2.6, the second from

Lem. 2.3, and the third from Eq. (2.49).

Now consider that in any basis measurementM ofB′, |0〉 and |1′〉 are the only outcomes

compatible with preparations of either both |ψ〉 & |φ〉 or both |ψ〉 & |0〉. So by Lem. 2.5,

PM(|0〉∨|1′〉 | |ψ〉) ≥ $(|0〉, |φ〉 |µ). �erefore, in order to reproduce quantum predictions

and satisfy Eq. (2.3),

$(|0〉, |φ〉 |µ) ≤ |〈0|φ〉|2 + |〈1′|ψ〉|2 = α2 + 2α4. (2.55)

Combining Eqs. (2.54, 2.55) one �nds α ≥ 1√
2
. �is is a contradiction, since α ∈ (0, 1√

2
)

by construction. �erefore, Eq. (2.49) must be false, implying that there exists some |i〉 ∈ B
for which $(|i〉 |µ) 6= |〈i|ψ〉|2 for some µ ∈ ∆|ψ〉.

�eorem 2.1 is the central idea that allows the no-go proof for epistemic superpositions.

Comparing it to Lem. 2.2, �m. 2.1 states that the ontic overlap between |i〉 ∈ B and

|ψ〉 6∈ B cannot be maximal. �at is, like many of the results discussed in Sec. 2.1.4, this is

a bound on ontic overlaps at heart.

Using �m. 2.1 the main result of this chapter can be proved fairly easily.

�eorem 2.2. Consider a quantum system of dimension d > 3 and de�ne superpositions
with respect to any orthonormal basis B. Almost all quantum superposition states |ψ〉 6∈ B
are ontic.

Proof. Let |ψ〉 6∈ B be any superposition state with respect to B, such that ∃|0〉 ∈ B for

which |〈0|ψ〉|2 ∈ (0, 1
2
). By �m 2.1 it follows that $(|i〉 |µ) 6= |〈i|ψ〉|2 for some |i〉 ∈ B

and some µ ∈ ∆|ψ〉 and further by Lem. 2.2 that $(|i〉 |µ) < |〈i|ψ〉|2. Using this, with

Lem. 2.2 again, also gives∑
|j〉∈B

$(|j〉 |µ) <
∑
|j〉6=|i〉

|〈j|ψ〉|2 + |〈i|ψ〉|2 = 1. (2.56)

Finally, note that Lem. 2.4 requires that $(B |µ) ≤
∑
|j〉∈B$(|j〉 |µ) and therefore it

is found that

$(B |µ) < 1. (2.57)
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�is directly contradicts Eq. (2.47) and therefore shows that |ψ〉 is an ontic superposition

with respect to B. However, |ψ〉 could be any superposition so long as |〈0|ψ〉|2 ∈ (0, 1
2
)

for some |0〉 ∈ B. �is is true for all that are not exact 50 : 50 superpositions over two

states of B. Indeed, it is true of almost all states in P(H). �is completes the proof.

�is is a powerful result. It applies to any superposition state over any basis, so long as

it is not an exact 50 : 50 superposition and d > 3. It therefore shows that quantum theory

is grossly logically incompatible with epistemic superpositions.

�is is the primary result of this chapter. In the sections that follow, it will be seen

how variations on this theorem form other strong restrictions on the character of ontology

of quantum systems, as well as how they powerfully constrain the ability of classical

resources to simulate quantum channels.

2.4 Must any Specific States be Real?

2.4.1 State-Specific Ontology

�e primary categories of realist ontologies for quantum systems were brie�y introduced

in Sec. 2.1.3. �ese are: ψ-ontic, ψ-epistemic, and maximally ψ-epistemic (a small subset

of ψ-epistemic). Now with the machinery of asymmetric overlaps, these can be de�ned

formally.

ψ-ontic ontological models were introduced by saying that the ontic state uniquely

identi�es the quantum state that was prepared—there is no ontic overlap. Clearly, this

means that when preparing any |ψ〉 there is zero probability of ge�ing an ontic state

obtainable by preparing any other |φ〉 6= |ψ〉. In the language of asymmetric overlaps,

ψ-ontic models can therefore be precisely de�ned as those satisfying

$(ν |µ) = 0, ∀ν ∈ ∆|φ〉, µ ∈ ∆|ψ〉, |ψ〉 6= |φ〉, (2.58)

or equivalently $(|φ〉 |µ) = 0 for all µ ∈ ∆|ψ〉 and |ψ〉 6= |φ〉. Since ψ-epistemic models

are precisely those which are not ψ-ontic, this also mathematically de�nes ψ-epistemic

models.

Maximally ψ-epistemic models can be formalised similarly. Section 2.1.3 introduced

maximally ψ-epistemic models as those where the ontic overlap accounts for all of the

Born rule overlap. As noted in Sec. 2.2, the Born rule overlap |〈φ|ψ〉|2 measures the proba-

bility that |ψ〉 will act like |φ〉 and the asymmetric overlap does the same for ontological

preparations. Clearly then, a model is maximally ψ-epistemic if and only if

$(ν |µ) = |〈φ|ψ〉|2, ∀µ ∈ ∆|ψ〉, ν ∈ ∆|φ〉. (2.59)
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By Lem. 2.2, this means that all asymmetric overlaps must be maximal, hence the name.

In Secs. 2.1.3–2.1.5 it was discussed how these mark the extremes of possible ontological

models for quantum systems. On the face of it, one might expect some ψ-epistemic

ontological model (such as in Ref. [BCLM14]) to exist, since Eq. (2.58) is such a strong

condition. Similarly, it is relatively easy to rule out all maximally ψ-epistemic models

for d > 2 since Eq. (2.59) is so restrictive. �e ontology theorems that bound overlaps—

discussed in Secs. 2.1.4, 2.1.5—a�empt to bridge the gap between these extremes by deriving

quantitative bounds on overlap measures like the asymmetric overlap. But di�erent papers

o�en use di�erent measures and they all su�er from shortcomings discussed in Sec. 2.1.5.

Another way to reach a more nuanced discussion is to apply the ontic/epistemic

dichotomy not just to the ontological models as a whole, but to the quantum states

themselves too. �at is, a quantum state |ψ〉 is ψ-ontic if and only if it has no ontic overlap

with any other quantum state |φ〉 6= |ψ〉: $(|φ〉 |µ) = 0 for all µ ∈ ∆|ψ〉. Correspondingly,

|ψ〉 is ψ-epistemic if and only if it is not ψ-ontic. Clearly, these are much more �ne-grained

requirements than the equivalents for the entire ontological model.

A speci�c state can similarly be de�ned as maximally ψ-epistemic in two ways. First,

|ψ〉 is maximally ψ-epistemic with respect to |φ〉 if and only if $(ν |µ) = |〈φ|ψ〉|2 for

all ν ∈ ∆|φ〉 and µ ∈ ∆|ψ〉. �is is very �ne-grained, identifying exactly which pair of

quantum states overlap maximally. Second, |ψ〉 is maximally ψ-epistemic in the ontological
model if and only if it is maximally ψ-epistemic with respect to all states in P(H). �is is

clearly less �ne-grained, identifying a point between a maximally ψ-epistemic model and

a state that is maximally ψ-epistemic with respect to only one other.

Contextuality was also brie�y introduced in Sec. 2.1.3. Reference [Spe05] shows how

many types of contextuality can be precisely de�ned using the ontological models frame-

work. For this thesis, only preparation contextuality needs to be considered in detail.

Preparation contextual models are those that describe operationally equivalent prepara-

tions di�erently. �erefore, for a quantum system, preparation non-contextuality requires

that all preparations for the same quantum state |ψ〉 (all of which are operationally equiva-

lent) are described with the same preparation measure; i.e. every ∆|ψ〉 is a singleton. Recall

that preparation non-contextuality is o�en simply (and implicitly) assumed for pure states,

while preparation contextuality is necessary for mixed states [Sec. 2.1.4].

Similarly to the ψ-ontic models, the de�nition of preparation non-contextual models is

very strong but can be used as a starting point for more subtle forms of contextuality. For

example, one can consider preparations that are (non)-contextual with respect to certain

sets of preparations. One such form of preparation contextuality is pure state preparation
(non)-contextuality with respect to stabiliser unitaries of some given state |ψ〉.
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For any quantum state |ψ〉 ∈ P(H), the set of stabiliser unitaries, S|ψ〉, is formed of

those U on H which leave |ψ〉 una�ected: U |ψ〉 = |ψ〉. �at is, S|ψ〉 is the stabiliser

subgroup of the unitary group with respect to |ψ〉.
Preparations of |ψ〉 are non-contextual with respect to stabiliser unitaries of |ψ〉 if and

only if preparations that di�er only by the action of a U ∈ S|ψ〉 are identical. In other

words, µ
γ
 µ for every µ ∈ ∆|ψ〉 and γ ∈ ΓU . �erefore, to be preparation non-contextual

with respect to stabiliser unitaries simply requires that these unitaries cannot a�ect the

distribution over Λ for a preparation of |ψ〉. �is may seem an oddly speci�c thing to

assume. However Sec. 2.4.4 will argue that it is quite a natural assumption. Moreover, pure

state preparation non-contextuality is o�en assumed wholesale without question and this

is a much weaker assumption.

�ese de�nitions start to �ll in the ψ-epistemic gulf between ψ-ontic models and

maximally ψ-epistemic models. Using them as waypoints facilitates a cleaner discussion

of exactly which types of ψ-epistemic models are and are not possible. In particular, the

theorems that follow will use them to address the shortcomings discussed in Sec. 2.1.5.

2.4.2 No States Can Be ψ-Epistemic

�e �rst shortcoming of previous ontology theorems, as noted in Sec. 2.1.5, is that they only

prove the existence of a single pair of quantum states that are not maximally ψ-epistemic,

without being able to identify those states. Even if the theorems were extended to prove

that more than one pair is not maximally ψ-epistemic, they would still not identify which

states fail to be maximally ψ-epistemic. �is is a loophole for the epistemic realist, who

can still postulate ontological models where the vast majority of states of interest are

maximally ψ-epistemic without violating these theorems.

�e following theorem addresses this loophole directly. By making the additional

assumption of preparation non-contextuality with respect to stabiliser unitaries it proves

that any given |ψ〉 ∈ P(H) is not maximally ψ-epistemic with respect to very many other

states. In particular, no individual state can be maximally ψ-epistemic at all.

�eorem 2.3. Consider a d > 3 dimensional quantum system and any pair of quantum
states |ψ〉, |0〉 ∈ P(H) that satisfy |〈0|ψ〉|2 ∈ (0, 1

2
). Assume that preparations of |ψ〉

are non-contextual with respect to stabiliser unitaries of |ψ〉. For any preparation measure
µ ∈ ∆|ψ〉, the asymmetric overlap is bounded by

$(|0〉 |µ) ≤ |〈0|ψ〉|2
(

1

2
+ |〈0|ψ〉|2

)
< |〈0|ψ〉|2. (2.60)
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In particular, this implies that the asymmetric overlap $(|0〉 |µ) is strictly less than maximal.
�erefore |ψ〉 is not maximally ψ-epistemic with respect to |0〉 for any such pair of states in
d > 3 dimensions satisfying |〈0|ψ〉|2 ∈ (0, 1

2
).

�e proof closely follows that of �m. 2.1 though it must be proved separately due to

the di�erence in assumptions. �e full proof can be found in Appendix A. An immediate

corollary is that no quantum state |ψ〉 ∈ P(H) can be ψ-epistemic for d > 3.

�e epistemic realist must therefore either accept preparation contextuality with respect

to stabiliser unitaries, or accept that reality is a long way from being maximallyψ-epistemic.

�e extra non-contextuality assumption is very mild. As noted above, it is much weaker

than general pure-state preparation contextuality, which is very o�en assumed. Moreover,

Sec. 2.4.4 will argue that it is a natural assumption for any minimally realistic ontological

model.

�eorem 2.3 improves upon the previous results in as far as ruling out maximally

ψ-epistemic ontologies and closing loopholes for ontologies that are close to maximally

ψ-epistemic. However, as a bound on the ontic overlap, Eq. (2.60) is rather weak. �e next

theorem aims instead to establish a restrictive quantitative bound on ontic overlaps by a

similar method.

�eorem 2.4. Consider a d > 3 dimensional quantum system and any pair |ψ〉, |0〉 ∈ P(H)

that satisfy α def

= |〈0|ψ〉| ∈ (0, 1
4
). Assume that preparations of |ψ〉 are non-contextual with

respect to stabiliser unitaries of |ψ〉. For any preparation measure µ ∈ ∆|ψ〉, the asymmetric
overlap must satisfy

$(|0〉 |µ) ≤ α2

(
1 + 2α

d− 2

)
(2.61)

lim
d→∞

$(|0〉 |µ) = 0 (2.62)

and so becomes arbitrarily small as d increases even as α is held constant.

�e proof strategy here is similar to that of �m. 2.3 but modi�ed to make use of the

higher available dimensions. It can also be found in Appendix A. Note that this modi�cation

necessarily weakens the bound compared to �m. 2.3 in low dimensions.

While the 1/d scaling of Eq. (2.61) is relatively weak compared to previous overlap

bounds (some of which scale exponentially [Lei14b, Bra14]), �m. 2.4 overcomes both

limitations noted in Sec. 2.1.5. First, �m. 2.4 bounds the overlap for many speci�c pairs of

quantum states, just like �m. 2.3. Second, as the dimension increases, the bound tightens

even while the inner products of the states remains constant. In particular then, this

implies that in large-dimensional systems many speci�c pairs of states can only barely

overlap at all.
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2.4.3 Towards Error-Tolerance and Experiments

�us far, it has been assumed that quantum statistics must be exactly reproduced by a

valid ontological model [Eq. (2.3)]. However, it is impossible to exactly verify this. At

most, experiments can demonstrate that quantum probabilities hold to within some �nite

additive error ε ∈ (0, 1], as in Eq. (2.4). It is therefore necessary to consider error-tolerant
versions of the above theorems.

Unfortunately, the asymmetric overlap is an error-intolerant quantity. �at is, for any

quantum system there is an ontological model that satis�es Eq. (2.4) for any given ε ∈ (0, 1]

but for which every asymmetric overlap is unity.

One can construct such an approximate model by modifying the Beltrame�i-Bugajski

model [BB95] (that is, quantum theory re-phrased as an ontological model, Sec. 2.1.2). Sim-

ply adjust the preparation measures so that each has probability ε of preparing a completely

random state (according to, for example, the Haar measure [ZS01]) and probability 1− ε
of acting as usual. �us, the model will di�er from quantum predictions with probability

at most ε. However, now every preparation measure can prepare any state with �nite

probability, so the asymmetric overlaps are all unity.

�ere is an alternative overlap measure, the symmetric overlap ω(|ψ〉, |φ〉) [Mar12,

BCLM14, Lei14b, Bra14, Lei14a], that does not have this problem—it is robust to small

errors. �e symmetric overlap is based on distinguishability of measures.

Suppose you are given some λ ∈ Λ obtained by sampling from either µ or ν (each with

equal a priori probability). Consider using the optimal strategy to guess which of µ, ν was

used. �e symmetric overlap of the measures µ and ν is de�ned as twice the probability of

guessing incorrectly (and therefore takes values in [0, 1]). �is is known to correspond to

[Mar12, BCLM14, Lei14a]

ω(µ, ν)
def

= inf {µ(Ω) + ν(Λ \ Ω) : Ω ∈ Σ} . (2.63)

As the names suggest, ω(µ, ν) is necessarily symmetric in its arguments and $(ν |µ) is

not.

Just as with the asymmetric overlap, it is useful to slightly overload the notation and

de�ne the symmetric overlap of the states |ψ〉 and |φ〉 as

ω(|ψ〉, |φ〉) def

= sup
µ∈∆|ψ〉,ν∈∆|φ〉

ω(µ, ν). (2.64)

�antum theory provides an upper bound on the symmetric overlap, since any quantum

procedure for distinguishing |ψ〉, |φ〉 is also a method for distinguishing µ ∈ ∆|ψ〉, ν ∈
∆|φ〉 in an ontological model. As

1
2

(
1−

√
1− |〈φ|ψ〉|2

)
is the minimum average error
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probability when distinguishing |ψ〉, |φ〉 within quantum theory
5

it follows that ω(µ, ν) ≤
1−

√
1− |〈φ|ψ〉|2 for every µ ∈ ∆|ψ〉, ν ∈ ∆|φ〉 and so

ω(|ψ〉, |φ〉) ≤ 1−
√

1− |〈φ|ψ〉|2. (2.65)

�is is analogous to Lem. 2.2 for the asymmetric overlap.

With this new machinery, �m. 2.4 can be modi�ed to bound the symmetric overlap

while only assuming that quantum probabilities are reproduced to within some �nite

additive error.

�eorem 2.5. Consider the assumptions of �m. 2.4, but only assume that the ontological
model reproduces quantum probabilities to within ±ε for some ε ∈ (0, 1], as in Eq. (2.4). �e
symmetric overlap must satisfy

ω(|0〉, |ψ〉) ≤ α2

(
1 + 2α

d− 2

)
+

(3d2 − 7d)

2(d− 2)
ε. (2.66)

�is bound is tighter than Eq. (2.65) for d > 5 and su�ciently small ε.

�e proof strategy of �m. 2.4 is closely related to the properties of the asymmetric

overlap. Since �m. 2.5 adapts this method to the symmetric overlap, the �t between method

and overlap measure is much less comfortable. �is also makes the proof itself—provided

in Appendix B—unfortunately long, ugly
6
, and resulting in a looser bound [Eq. (2.66)] than

its asymmetric counterpart Eq. (2.61).

�e signi�cance of �m. 2.5 is twofold. First, it allows many of the same conclusions

as �m. 2.4 but in a context with �nite error: it demonstrates that many speci�c pairs of

quantum states cannot be maximally ψ-epistemic and must have small ontic overlap in the

large-d limit (without those states approaching orthogonality) for su�ciently small error.

Being error-tolerant, it opens this conclusion up to experimental investigation. Second,

it is as a �rst-step and proof-of-concept for error-tolerance for �ms. 2.2, 2.3. It does

not immediately imply that almost all superpositions are real, but by demonstrating how

�m. 2.4’s arguments can be made robust against small error it suggests that error-tolerant

versions of the other theorems of this chapter should also be possible. It also proves that

no pure state can be individually maximally ψ-epistemic in an error-tolerant way.

Even so, an error-tolerant version of �m. 2.2 would require the de�nition of “ontic

superposition” to be modi�ed, since it is currently de�ned in terms of the asymmetric

5
By using the Helstrom measurement [WDN

+
12, BCLM14].

6
It should be noted that the proof in Appendix B uses the simpler non-measure-theoretic version of

ontological models in order to keep it as short and legible as possible, the measure-theoretic version would

be even longer and uglier.
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overlap. �is is tackled in Sec. 3.4.1, where such a re-de�nition is provided and error-

tolerant variations on �ms. 2.2, 3.1 are presented.

�eorem 2.5 is probably most valuable as a proof-of-concept for experimental appli-

cability rather than forming the basis of a concrete experimental proposal itself. �e

mismatch between the proof strategy and the symmetric overlap probably makes the result

very non-optimal. For example, take the case where α = 0.245 and d = 6. �is makes

the bound of Eq. (2.66) ≈ 0.0224 + 8.25ε, while the bound of Eq. (2.65) ≈ 0.0305. In this

case, Eq. (2.66) is an improved bound for ε . 0.0009. Such experimental accuracy does not

seem completely infeasible with current technology [RDB
+

15], but this is nevertheless a

challenging experiment to simply improve on the easy bound of Eq. (2.65). Of course, as d

increases precise experiments become more challenging, meaning that the error term of

Eq. (2.66) is likely to increase super-linearly with d.

2.4.4 Justifying Preparation Contextuality for Stabiliser
Unitaries

�eorems 2.3–2.5 all assume that preparations are non-contextual with respect to stabiliser

unitaries for given states, as de�ned in Sec. 2.4.1. �is is an extra assumption beyond the

bare ontological models framework. Can such an assumption be justi�ed? What follows is

a heuristic argument aiming to do exactly that.

�e ontological models framework combines postulated fundamental objective on-

tology with operational notions. �e fundamental ontology is re�ected in the idea that

ontic states represent actual states of a�airs, independently of any other theories an ob-

server might use to describe the same system. On the other hand, the only way to reason

about this largely-unspeci�ed ontological level is operationally: how does it respond to

preparations, transformations, and measurements that can actually be performed?

An assumption of non-contextuality is an assumption about these operational bridges

between our capabilities and the ontology. With this perspective, extra assumptions of

non-contextuality can be justi�ed by arguing that they are part of any sensible operational

understanding of ontological models.

Any speci�c operational method for preparing some state |ψ〉 ∈ P(H) may be thought

of as a black box which the system is fed into. When the system is fed out of the box, it

is promised that the box has prepared the system in state |ψ〉 according to some speci�c

method. In terms of ontological models, the preparation method corresponds to a measure

µ ∈ ∆|ψ〉 and any such method µ can be considered in terms of such a box.

Suppose you design some experiment which involves preparing |ψ〉 via a method corre-

sponding to µ. Scientists implementing that experiment would acquire the corresponding
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black box to be sure that the method is indeed used. Once prepared, the system will need

to be presented to other pieces of apparatus. However, there will always be variation in

how the system is treated between preparation and the action of any other apparatus, any

amount of motion or passage of time or other (seemingly innocuous) treatment amounts to

applying some unitary U to the system. Each scientist will, no doubt, be careful to ensure

that the system is not disturbed from its preparation state, so it can be safely assumed

that any such U is a stabiliser unitary U ∈ S|ψ〉. However, the point remains that some

unknown U ∈ S|ψ〉 is inevitably applied to the system a�er preparation via µ, and this can

never be perfectly accounted for.

�erefore, to analyse the result of the experiment, you have to allow for some unknown

U ∈ S|ψ〉 to by applied (via some unknown γ ∈ ΓU ) a�er preparation of |ψ〉 via µ. As a

result, on this minimally realistic operational level, an arbitrary preparation distribution

µ can never be prepared unscathed; you have to account for the inevitable, unknown,

subsequent stabiliser unitary. It is therefore prudent to have the e�ective preparation

measure that you use to describe the experiment be one that is non-contextual with respect

to such transformations, allowing the experiment to still be analysed despite the application

of an unknown U ∈ S|ψ〉.
One must be careful to only consider operational features that are not, even in principle,

impossible to reliably perform. Since the sets of preparation measures for any given quan-

tum states are, in the end, operational in character, one may safely restrict to preparation

measures that satisfy certain sensible realistic requirements. �e above heuristic argu-

ment aims to establish pure state preparation non-contextuality with respect to stabiliser

unitaries as such a realistic requirement. It is, however, only a heuristic argument and

is not rigorous. In particular, no strong reason has been given for including all stabiliser

unitaries.

2.5 Communication Bounds from Ontology Results

Foundational ontology results o�en suggest broader implications in many areas. �e most

obvious example is, of course, Bell’s theorem, which has found applications across all areas

of quantum theory as well as inspiring many related results is disparate places [BZ02, BZ17].

Not all foundations results can claim quite such outstanding success, of course. Most

commonly they can �nd applications in quantum information, particularly with relation to

communications tasks [Mon12, BHK05, PJO15, LPZ
+

16, Mon13, Mon15, Mon16b, Lei14a].

In this section that pa�ern will be repeated, with the techniques used above to �nd ontology

results applied to a communication task in quantum information.
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c                    C                 ∈

r                   R                 ∈

|ψ⟩ M E

Figure 2.3: Schematic representation of the �nite communication (FC) protocol for simu-

lating a quantum channel with classical resources. Alice recieves a description of quantum

state |ψ〉 and Bob recieves a description of quantum measurementM . �ey share a random

value r from a set of possibilitiesR. Alice sends a classical message c ∈ C to Bob through

a noiseless channel, who then outputs measurement outcome E ∈M based on c and r.

2.5.1 Relating Ontology and Communication

�e framework of ontological models has a very natural links to communication tasks in

quantum information [PJO15, Mon15]. Indeed, in certain cases direct parallels are known

between ontological models and communication protocols [Mon12]. When seeking to

apply the techniques of new ontology results to quantum information, communication

tasks are therefore a natural place to start.

One of the simplest communication tasks with links to ontological models is the �nite
communication (FC) protocol where Alice and Bob simulate a noiseless nq-qubit quantum

channel with a �nite nc-bit noiseless classical channel. In this task, Alice is given a

description of some quantum state |ψ〉 from a d-dimensional system and Bob is given a

description of a quantum measurement M on the same system. �e task is for Bob to

output some outcomes E ∈M with probabilities compatible with quantum theory over

many runs, with possibly di�erent |ψ〉 and M each time.

Clearly, this task can be achieved with one-way communication from Alice to Bob using

a noiseless quantum channel of enough qubits nq—Alice sends |ψ〉 to Bob, who simply

measures it. To simulate this with classical resources, Alice and Bob are given access to a

shared random value r ∈ R (taking a new value each run according to some probability

measure %(r)) and noiseless channel with which Alice can send classical messages c ∈ C
to Bob from a �nite set |C| <∞. �e question is: what quantities of classical resources |C|
and |R| are required for exact simulation of the nq-qubit quantum channel? Equivalently,

how many classical bits nc ≥ log |C|, nr ≥ log |R| are required to simulate a given number

of qubits nq ≥ log d? �is protocol is schematically illustrated in Fig. 2.3.

It is easy to see that such a protocol implies a basic ontological model for the same
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quantum system. �e ontic state space is Λ = C × R with ontic states λ = (c, r).

If Alice sends message c with probability given by P(c | |ψ〉, r) then the corresponding

preparation measure for |ψ〉 is µ|ψ〉(λ) = P(c | |ψ〉, r)%(r). If Bob outputs measurement

outcomeE ∈M with probabilityP(E | c, r) then this is exactly the corresponding response

function PM(E |λ). �is ontological model is missing a description of transformations,

which could be provided by extending the FC protocol to include another agent who

performs a transformation, but such an extension will not be required here.

A couple of properties of FC protocols can be stated immediately. First, the excess

baggage theorem requires ontological models (even those missing transformations) to

have in�nite ontic state spaces in order to exactly reproduce quantum predictions [Har04].

�erefore, there must be an in�nite amount of shared random data |R| ≥ ∞ for any such

protocol. As a result, the focus is normally on how many classical bits nc ≥ log |C| are

required to exactly simulate an nq-qubit quantum system given arbitrary shared random

dataR. �is approach to FC protocols will be used here.

Given this simpli�cation, one can always assume that all randomness in the protocol

comes from the shared random data. �at is, any FC protocol for nq qubits with nc bits

where Alice and Bob can act stochastically implies the existence of an equivalent FC

protocol for the same nq and nc where Alice and Bob act deterministically given |ψ〉, M ,

and r ∈ R. �is is because Alice and Bob can simply obtain any required randomness

from r, asR is arbitrarily large.

Alice’s task can therefore be quite simple in an FC protocol. She simply assigns quantum

states to classical messages c ∈ C based on r in a deterministic way. Her strategy becomes

that of an in�nite look-up table. Bob’s strategy can be similarly described.

Such simulation tasks are not just interesting from a foundational view, but are also

important in quantum information [BCMW10]. Considering distributed computing, for

example, it is useful to know what sort of advantages quantum channels can o�er over

classical channels. More generally, an optimal classical FC protocol would provide a natural

measure of the power of quantum channels [Mon11].

�e best known example of an FC protocol is from Ref. [TB03]. �ere, an explicit

FC protocol is given that simulates a nq = 1 qubit channel with subsequent projective

measurement using exactly nc = 2 bits of classical communication (of course, with in�nite

shared random data). However, no similarly general protocols are known for any quantum

dimension d > 2. Some partial protocols are known to exist—such as in Ref. [Mon13],

which demonstrates how to construct an FC protocol for arbitrary d if Bob can only perform

two-outcome projective measurements—but it is not known whether such a protocol is

possible for arbitrary projective (or, more generally POVM measurements) even for d = 3.
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What is known, however, are certain lower-bounds for the required nc as nq increases.

�ese will be brie�y reviewed in the next section, before a new bound is given with a

simple proof based on the results from earlier in the chapter.

2.5.2 A Simple Exponential Bound

Several lower-bounds on the classical bits nc required to simulate an nq-qubit quantum

channel are known. �ese require nc to scale exponentially with nq and may therefore be

seen as “anti-Holevo” results: while the Holevo bound states that a nq-qubit quantum state

can store at most nq classical bits, these results e�ectively show that to store nq qubits one

requires at least O(2nq) classical bits
7
.

�e �rst example is from Ref. [BCT99], following the work of Ref. [BCW98], where it

was proved that nc ≥ c2nq classical bits are required to exactly simulate nq qubits for some

constant c ≈ 0.01. �is was improved in Ref. [Mon11], where the same asymptotic lower

bound was obtained with c = 0.293 and a postulated improvement (based on a plausible

but unproved conjecture) was presented for a 2nq − 1 lower bound.

Taking a somewhat di�erent approach, Ref. [Mon16a] proved an O(2nq) asymptotic

lower bound. �is has the key advantage of bounding approximate, as well as exact,

simulations and also applying to two-way classical communication between Alice and Bob.

No precise constant factors for the bound are given, however.

�e following theorem shows how the methods used to prove the ontology results

in this chapter can also provide a comparable lower bound for the exact FC protocol. A

key advantage of this theorem is its simplicity. Even a cursory glance at Refs. [BCT99,

Mon11, Mon16a] will show that their proofs are o�en very mathematically involved. It is

comparatively simple to prove the following exponential bound.

�eorem 2.6. For any n ∈ Z+, there is a quantum system of nq = O(log n) qubits such
that any FC protocol exactly simulating an nq-qubit channel requires at least nc classical bits
of communication bounded by

nc ≥ 2nq+O(1) − 1. (2.67)

Proof. �is results follows quickly by borrowing a result from the study of quantum

�ngerprinting [BCWW01]. In quantum �ngerprinting, the aim is to relate n-bit classical

bit strings to quantum states that have bounded Born rule overlap in such a way that n

scales exponentially in the number of qubits required.

7
�is observation is taken from Ref. [Mon16a], where the “anti-Holevo” moniker is a�ributed to Tony

Short.
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�e exact result required here is from Ref. [BCWW01, �m. 2]. �is establishes that,

for any n ∈ Z+
there is a set of N

def

= 2n quantum states F = {|Fx〉}x of nq = log n+O(1)

qubits such that |〈Fx|Fy〉|2 ≤ 1
4

whenever x 6= y. It is simple to see that these Born

rule overlaps ensure that every triple {|Fx〉, |Fy〉, |Fz〉} of unequal states from this set is

anti-distinguishable by Eq. (2.29).

Consider an FC protocol for this system of log n+O(1) qubits. For any value r ∈ R,

Alice can assign a maximum of two states from F to each message c ∈ C. If she were

to assign three states from F to the same message c ∈ C then Bob would not be able to

correctly simulate the corresponding anti-distinguishable measurement. �erefore, the

number of messages required for the protocol must be |C| ≥ N/2.

Since N = 2n is a power of two, the number of required classical bits is nc ≥ log |C| =
n− 1. It therefore immediately follows that nc ≥ 2nq+O(1) − 1.

It is clear that this bound comes from an easily-understood property of quantum

states. �at is, there exist sets of quantum states with bounded Born-rule overlaps that are

exponential in the Hilbert space dimension (that is, F from the theorem). It is this fact

that directly prevents storing quantum states in a small number of classical bits even with

shared random data.

�is proof also has methodological advantages over the previous bounds found in

Refs. [BCT99, Mon11, Mon16a], which will now be discussed.

2.5.3 Generating Further Bounds

�e proof of �m. 2.6 is very easy to understand compared to its peers, while giving a

comparable bound. But more than this, careful examination of the proof reveals a general

method for deriving such bounds from classical error correction codes. �is suggests that

the proof of �m. 2.6 may be more important than the result itself, as simply by �nding

appropriate classical codes this proof will generate more precise bounds.

As noted above, the key component in the proof is a set F of quantum states such

that N = |F| is exponential in the Hilbert space dimension d and yet all pairs of states

from F have bounded inner product. Existence of an appropriate such set was taken from

quantum �ngerprinting, speci�cally Ref. [BCWW01, �m. 2].

�is points to the �rst way this proof can generate more bounds. If one �nds such a

quantum �ngerprinting set F where Born-rule overlaps are bounded ≤ 1
4

and with good

scaling of N with d then this yields a bound exactly as in �m. 2.6. I am, however, unaware

of any be�er sets for this purpose than those used above.
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�e second way that the proof can generate more bounds is perhaps more interesting.

Existence of the F used in �m. 2.6 is known due the existence of certain classical error-

correction codes. Speci�cally, any code E : {0, 1}n → {0, 1}m with m = O(n) such that

the Hamming distance between unequal code words is greater than m/4 yields a quantum

�ngerprinting set F with the properties required by �m. 2.6. �e states of this set are in

a (d = m)-dimensional Hilbert space and of the form

1√
m

m∑
α=1

(−1)Eα(x)|α〉, ∀x ∈ {0, 1}n (2.68)

where {|α〉}α is an arbitrary orthonormal basis of the system and Eα(x) is the αth bit of

the code word E(x) [BCWW01]. Clearly, there are 2n = O(2m) = O(2d) states in this set

and they can be veri�ed to have Born rule overlap ≤ 1
4
.

Any classical error correcting code of this form (or a su�ciently similar form) will gener-

ate an exponential communication bound via the proof of �m. 2.6. Reference [BCWW01]

notes an existence proof for such codes, but speci�c examples would give speci�c numerical

FC protocol bounds.

�is means that �m. 2.6 has the potential to address one of the shortcomings of

previous exponential bounds for FC protocols. �at is, those bounds are not particularly

useful in low-dimensional se�ings. For example, the nc ≥ 0.293× 2nq bound only starts

to exceed the trivial bound of nc ≥ nq at d = 2nq = 16 dimensions. Such low-dimensional

cases are important for potential experiments, where it is currently unfeasible to test very

large-dimensional systems.

So although �m. 2.6 does not currently provide an exact bound in any dimension, by

�nding appropriate classical error-correction codes exact bounds will immediately follow.

�is is in marked contrast to the proofs of existing bounds. In Ref. [Mon16a] only an

asymptotic bound is given without a precise form, while in Refs. [BCT99, Mon11] the

proofs do not appear to admit easy modi�cation to provide tighter bounds.

2.6 Summary

�is chapter tackled the ontology of quantum states directly. By considering what types

of realist ontologies are possible, one is naturally led to using the ontological models

framework, introduced in Sec. 2.1.1. Broadly, there are two types of realist ontology for

quantum states: those where the ontology is similar to the description in quantum theory

and those where ontological uncertainty enables potentially more elegant ontologies. �e

second type is preferred by the “epistemic realist” [Sec. 2.1.2] and raises the question as
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to what exactly can be gained through ontological uncertainty in terms of elegance and

explanatory power.

�e family of results that a�empt to answer these questions are known as “ontology

theorems” [Sec. 2.1.4]. Due to the restrictions from Bell’s theorem and the PBR theorem,

modern ontology theorems typically aim to apply to any single-system ontological model,

without specifying how individuals combine into multipartite systems. Within this scope,

ψ-epistemic models that reproduce quantum theory have been exhibited but maximally

ψ-epistemic models have been proved to be impossible for d > 2 dimensions. �is leaves

the question as to exactly how close to maximally ψ-epistemic ontological models can get

before they need to violate quantum predictions. �e “overlap theorems” [Sec. 2.1.4] that

aim to restrict epistemic ontological models severely all share some shortcomings which

appear to leave the epistemic realist plenty of room to consider ontologies that are close to

maximally ψ-epistemic, though not exactly [Sec. 2.1.5].

One aspect of quantum state ontology that had not been considered in detail is the

ontology of superposition states. Since quantum superpositions inherit all of their prop-

erties from their underlying basis states, it is natural to ask whether their ontology can

similarly only depend on ontic states accessible to the basis. �is question was considered

in detail in Sec. 2.3, where �m. 2.2 proves that, for d > 3, almost every superposition is

necessarily ontic. �at is, any epistemic realist account of quantum theory must include

ontic features corresponding to superposition states and the unfortunate cat cannot be put

out of its misery.

By adapting the methods of �m. 2.2, it was possible to obtain more general overlap

ontology theorems in Sec. 2.4. By making a very mild extra non-contextuality assumption,

�ms. 2.3, 2.4 were proved—between them addressing the shortcomings of other overlap

theorems noted in Sec. 2.1.5. In making explicit use of an assumption beyond the bare

ontological models framework, they are technically weaker results than some previous

ontology theorems. However, the assumption is weak and also arguably natural [Sec. 2.4.4].

In particular, it is much weaker than an assumption that is very o�en implicitly made.

Between them, �ms. 2.3, 2.4 prove that quantum theory is incompatible with very many

pairs of states being maximally ψ-epistemic (in particular, any given quantum state cannot

be individually maximally ψ-epistemic) and that in large-dimensional systems many pairs

of states cannot have any substantial ontic overlap at all.

�eorems 2.2–2.4 were all based on the asymmetric overlap, introduced in detail in

Sec. 2.2. �is way of quantifying ontic overlaps is easily understood and has a clear

motivation, but is unfortunately intolerant to error. �e problem of how to adapt these

results to be robust to experimental error was therefore considered in Sec. 2.4.3 and
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�m. 2.5, which adapts the methods of �m. 2.4 to apply instead to the error-tolerant

symmetric overlap. �e resulting bound is somewhat weaker, due to the mismatch between

methodology and overlap measure, but gains error tolerance. It still, however, rules out

any given quantum state from being maximally ψ-epistemic in d > 5 dimensions and

provides a bound on ontic overlaps that approaches zero in large dimensions without the

quantum states needing to approach orthogonality (for small enough error).

O�en, new results in the foundations of quantum theory can be used to obtain parallel

results in quantum information. In Sec. 2.5, the question of how the methods used in

this chapter might a�ect communication abilities was considered. �e result, �m. 2.6,

was a simple argument proving that an exponentially large classical channel is required

to perfectly simulate a quantum channel, even when arbitrary pre-shared random data

is available. While this result does not yet improve on the best known such bounds

[Mon16a, Mon11] (asymptotically, they are equivalent), it does provide a general recipe

from which these bounds can be generated, given appropriate classical error-correction

channels.

�is chapter proved some powerful restrictions on the types of ontological model that

can reproduce quantum predictions, paying particular a�ention to the reality of quantum

superpositions. In the next, these ideas will be applied to the concept of macro-realism,

which will also lead to an error tolerant variation on �m. 2.2 in Sec. 3.4. A full discussion

of the meaning and impact of these results will therefore be deferred until Sec. 3.5.
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3
Ontology and Macro-realism

Chapter 2 began to address the ontology of quantum states using ontological models. �e

aim was to derive ontology theorems in the tradition of Bell and PBR—exactly the task

the ontological models framework was designed for (being a re�nement of Bell’s original

approach to “hidden variable” models). �is chapter will use those same methods to tackle

the issue of macro-realism, which (despite the name) is not normally considered using

ontological models. �e main result of this will be a no-go theorem for macro-realism in

quantum theory that closes loopholes in the original approach due to Legge� and Garg.

3.1 The Meaning of Macro-realism

�e concept of macro-realism was introduced to the study of quantum theory by Legge�

& Garg alongside their eponymous inequalities [LG85]. �e Legge�-Garg inequalities
(LGIs) are inequalities on observed measurement statistics that are derived by assuming a

particular form of macro-realism and can be violated by measurements on quantum systems.

�e purpose of the LGIs is therefore to prove that quantum theory and macro-realism

are incompatible. However, since its introduction the exact meaning of “macro-realism”

has been the subject of debate [Bal87, LG87, Leg88, Leg02a, Leg02b, KB13, MT17]. �e

purpose of this section is to clarify the meaning of macro-realism, though for the sake of

brevity some details will have to be omi�ed. A more thorough account can be found in

Ref. [MT17].
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3.1.1 Introducing Macro-realism

Macro-realism is an ontological position. Loosely, macro-realism is the philosophical

requirement that certain “macroscopic” quantities always possess de�nite values. As such,

macro-realism is a great candidate for analysis with ontological models.

By using ontological models it is possible to illuminate and classify various de�nitions

of macro-realism precisely (Sec. 3.2.2, following Ref. [MT17]). �is analysis will reveal

some fundamental loopholes in the Legge�-Garg argument for the incompatibility of

quantum theory and macro-realism [Sec. 3.2.4]. In particular, it will show that violation

of the LGIs serves only to rule out one sub-category of macro-realist models and that

there are other macro-realist models of quantum theory which are compatible with the

LGIs. �ese loopholes are not experimental but logical; the only way to close them is to

fundamentally change the argument.

�e main result of this chapter is a stronger theorem for the incompatibility between

quantum theory and macro-realism [Sec. 3.3]. �is theorem closes a loophole in the Legge�-

Garg argument by establishing that quantum theory is incompatible with a larger subset

of macro-realist models. It does not prove incompatibility of quantum theory with all
macro-realist models since that is impossible due to existing counter-examples [Sec. 3.2.4].

�e theorem proceeds in a very di�erent manner than the Legge�-Garg argument and

is related to �m. 2.2. It thereby circumvents many of the controversies of the original

Legge�-Garg approach.

Macro-realism is of interest to experimentalists as well as theorists. �ere has been

a surge of recent work on experimental veri�cation of LGI violation [WKZ
+

17, KKY
+

16,

HM16, ZHLG15, GCKGM
+

12] and in particular on noise-tolerance and closing experimen-

tal loopholes. At face value, the main theorem presented in Sec. 3.3 will not be suitable for

experimental investigation, but Sec. 3.4 will follow one route to error-tolerance for experi-

ments. �is will also enable an error-tolerant variation of �m. 2.2. Further discussion of

the experimental relevance of these results will be deferred until Sec. 3.5.

It should be noted that mathematically there is no meaning to the stipulation that

macro-realism is about “macroscopic” quantities, as opposed to other physical quantities

that aren’t “macroscopic”. Philosophically, however, it is easy to understand the desire

for macro-realism applying to “macroscopic” quantities. �e types of physical quantity

that humans experience are all considered macroscopic and they certainly appear to

possess de�nite values. On the other hand, it is much easier to imagine that microscopic

quantities that aren’t directly observed behave in radically di�erent ways. So while there is

nothing in the structure of quantum theory to pick-out “macroscopic” versus “microscopic”,
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the motivation for considering macro-realism does come from considering macroscopic

quantities, hence the name.

3.1.2 Defining Macro-realism

Exactly what is meant by “macro-realism” has been a subject of contention ever since

its introduction alongside the LGIs. �is controversy has fed into more recent work on

understanding the violation of the LGIs [CK15, CK16, Bac15]. In Ref. [MT17], uses of the

term “macro-realism” are analysed and the concept is illuminated using ontological models.

One result of that paper is that the “macro-realism” intended by Legge� and Garg, as well

as many subsequent authors, can be made precise in a reasonable way with the de�nition:

“A macroscopically observable property with two or more distinguishable

values available to it will at all times determinately possess one or other of

those values.” [MT17]

�roughout this chapter, “distinguishable” will be taken to mean “in principle perfectly

distinguishable by a single measurement in the noiseless case”. Note that macro-realism is

de�ned with respect to some speci�c property Q. A macro-realist model generally will be

macro-realist for some properties and not others. �is property will have values {q} and

to be “observable” must correspond to at least one measurement MQ with corresponding

outcomes Eq which faithfully reveals the underlying macro-realist value q.

Reference [MT17] �eshes out this de�nition using ontological models and as a result de-

scribes three sub-categories of macro-realism. In order to discuss these it will be necessary

to �rst de�ne an operational eigenstate in ontological models.

An operational eigenstate Qq of any value q of an observable property Q is a set of

preparation procedures {Pq}. �is set is de�ned so that immediately following any Pq

with any measurement of the quantity Q will result in the outcome Eq with certainty. In

other words, an operational eigenstate is simply an extension of the concept of a quantum

eigenstate to ontological models: the preparations which, when appropriately measured,

always return a particular value of a particular property. Note that if two values q, q′ have

operational eigenstates then they can sensibly be called “distinguishable”, since any system

prepared in a corresponding operational eigenstate can be identi�ed to have one value

and not the other with certainty.
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3.2 The Leggett-Garg Inequalities

�e LGIs are inequalities on the outcomes of certain experiments. �e aim of the Legge�-

Garg argument is to derive them by assuming macro-realism so that if measurements in

quantum theory violate these inequalities then quantum theory must be incompatible with

macro-realism. �antum theory certainly predicts measurements that violate the LGIs

and so must be incompatible with at least one of the assumptions needed to derive them.

Whether or not the Legge�-Garg argument proves the incompatibility of quantum theory

and macro-realism therefore rests on exactly what assumptions are required to derive the

LGIs.

3.2.1 Outline of the Argument

�e Legge�-Garg argument has a similar structure to Bell’s theorem and the LGIs them-

selves also bear striking resemblance to some Bell inequalities. Operationally, however,

the approaches of Bell and Legge�-Garg are quite di�erent. �e LGIs only require a single

system that is measured several times in sequence. A thorough and complete discussion of

LGI derivations is inappropriate here. What follows is rather a sketch su�cient to give

context to the remarks later in the chapter. A more extensive discussion can be found in,

e.g., Refs. [MT17, ELN14].

Consider measuring a two-valued property Q for a system at three times t1 < t2 < t3

in sequence. Label the outcome values Q
[123]
1,2,3 ∈ {−1,+1} for the �rst, second, and third

measurements respectively. �e superscript [123] labels this as an experiment where

measurements are performed at all three times. On any run of this experiment, it is simple

to verify that Q
[123]
1 Q

[123]
2 + Q

[123]
1 Q

[123]
3 + Q

[123]
2 Q

[123]
3 can only equal −1 or 3. Clearly,

taking the average over many runs gives

− 1 ≤ 〈Q[123]
1 Q

[123]
2 〉+ 〈Q[123]

1 Q
[123]
3 〉+ 〈Q[123]

2 Q
[123]
3 〉 ≤ 3. (3.1)

Now assume that Q is a macro-realist quantity. �is means that Q always has some

value, whether or not it is measured. �e same argument can therefore also be run where

no measurements are actually made. Le�ing Q∗1,2,3 be the underlying values of Q in an

experiment where no measurements are made, then Q∗1Q
∗
2 +Q∗1Q

∗
3 +Q∗2Q

∗
3 can only equal

−1 or 3.

Since the underlying macro-realist values of Q can always be revealed faithfully by a

measurement, it follows that Q∗1 = Q
[123]
1 . However, it does not immediately follow that

Q∗2 = Q
[123]
2 , while it does follow thatQ∗2 = Q

[23]
2 (i.e., where no measurement is performed

at t1). �e reason for this is simple, the very act of measuring at t1 could change the

54



underlying value of Q at t2 compared to not having measured at t1. Similar comments

hold for t3. �e underlying value of Q revealed by a measurement will generally depend

on whether any measurements have occurred before.

So consider a �nal assumption: non-invasive measurability. Suppose that measurements

of Q do not a�ect subsequent underlying values of Q. Now it follows, for example, that

Q∗2 = Q
[12]
2 since the measurement, or not, at t1 has been assumed not to a�ect the

underlying value at t2 revealed by Q
[12]
2 . With this non-invasive measurability, one obtains

the LGIs

− 1 ≤ 〈Q[12]
1 Q

[12]
2 〉+ 〈Q[13]

1 Q
[13]
3 〉+ 〈Q[23]

2 Q
[23]
3 〉 ≤ 3. (3.2)

To recap: the LGIs of Eq. (3.2) are inequalities on the outcomes of three di�erent types

of experiments labelled [12], [13], and [23]. For experiment [13], measurements of Q are

made at t1 and t3 only and similarly for [12] and [23]. Equation (3.2) has been derived

by assuming both macro-realism and non-invasive measurability of Q. �ere are many

quantum experiments of this form that can violate Eq. (3.2) [LG85] so quantum theory

must be incompatible with either macro-realism or non-invasive measurability for Q.

�at non-invasive measurability is required to derive LGIs has been known since their

introduction [LG85]. Some go so far as to include non-invasive measurability as part

of their de�nition of macro-realism to avoid having to deal with it explicitly, relegating

de�nitions like that in Sec. 3.1.2 to “macro-realism per se”. �e �nal part of the Legge�-Garg

argument has always been to contend that this non-invasive measurability is a necessary

consequence of macro-realism.

While this concludes the sketch of the traditional Legge�-Garg argument, the problem

of deriving non-invasive measurability from macro-realism will be returned to in Sec. 3.2.4.

3.2.2 Sub-classes of Macro-realism

To clearly discuss exactly what is ruled out by the Legge�-Garg argument—and how it

might be improved—it is necessary to understand three sub-categories of macro-realism.

�ese were identi�ed in Ref. [MT17] by considering the de�nition of Sec. 3.1.2 in terms

of ontological models for the system. �e resulting sub-categories are then categories of

ontological models with particular properties.

�e three sub-categories of macro-realism for some quantity Q are:

1. Operational eigenstate mixture macro-realism (EMMR) – �e only preparations in

the model are operational eigenstates of Q or statistical mixtures of operational

eigenstates. �at is, every preparation measure can be wri�en in the form ν =∑
q

∑
i cq,iµq,i where each µq,i is a preparation measure for an operational eigenstate
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for q and {cq,i} are positive reals summing to unity. Note that this means the space of

ontic states Λ need only include ontic states accessible by preparing some operational

eigenstate of Q, as no other ontic states can ever be prepared.

2. Operational eigenstate support macro-realism (ESMR) – Like EMMR, every ontic state

λ ∈ Λ is accessible by preparing some operational eigenstate but, unlike EMMR,

there are preparation measures in the model that are not statistical mixtures of

operational eigenstate preparations for Q. �at is, if Ω ∈ Σ satis�es µq(Ω) = 1 for

every operational eigenstate preparation µq of Q, then every preparation measure ν

in the model also satis�es ν(Ω) = 1. Moreover, the model has at least one preparation

measure not in the mixture form required by EMMR. In other words, if you’re certain

to prepare an ontic state from some subset Ω when preparing operational eigenstates,

then you’re also certain to prepare an ontic state from Ω from any other preparation

measure in the model.

3. Supra eigenstate support macro-realism (SSMR) – Every ontic state λ in the model will

produce some speci�c value qλ of Q when a measurement of Q is made, but some

of those ontic states are not accessible by preparing any operational eigenstates of

Q. �at is, for every λ ∈ Λ there is some value qλ of Q such that PM(Eqλ |λ) = 1

whenever Q is measured. Moreover, there exists some Ω ∈ Σ and preparation

measure ν such that ν(Ω) > 0 while µq(Ω) = 0 for every operational eigenstate

preparation measure µq.

To help unpack these de�nitions, they are illustrated in Fig. 3.1.

In each of these cases, every ontic stateλ (up to possible measure-zero sets of exceptions)

is associated with a speci�c value qλ ofQ, such that it can be sensibly said that λ “possesses”

qλ. �is is why they are all considered types of macro-realism. Consider this for each case

in turn.

In an EMMR model, every preparation can be read as a probabilistic choice between

operational eigenstate preparations. Depending on which preparation is chosen, the

resulting ontic state λ therefore “possesses” the value q for the operational eigenstate.

In an ESMR model, every ontic state λ can be prepared by an operational eigenstate of

exactly one value of Q (up to measure-zero sets of exceptions). Similarly, therefore, each

ontic state “possesses” the corresponding value of Q.

In SSMR models the link between each λ and the corresponding qλ is explicit. Each λ

“possesses” the value qλ for which PM(Eqλ |λ) = 1, as required by the de�nition. �at is, λ

“possesses” the value which it must return with certainty in any appropriate measurement.
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Figure 3.1: Illustration of the three sub-categories of macro-realism as de�ned in the text.

In each case the large square represents the whole ontic state space Λ, the four smaller

squares indicate those subspaces of ontic states associated with each value q0..3 of some

quantity Q, and the shaded regions represent those ontic states accessible by preparing

some select preparation measures. Only a few preparation measures are shown while

more would exist in a real model, in particular measures have been le� out of the q2 and

q3 boxes to avoid over-clu�ering the �gures.

(a) illustrates EMMR, where the squares for each qi contain all ontic states preparable via

some operational eigenstate preparation µqi,j and all other allowed preparation measures

are simply statistical mixtures of these, e.g. ν = 1
3

(µq0,0 + µq0,1 + µq1,0) is permissible.

(b) illustrates ESMR, where the state space is exactly as in EMMR, but now more general

preparation measures, such as the ν illustrated, are permi�ed.

(c) illustrates SSMR, where now every λ in the box for qi must produce outcome qi in any

appropriate measurement of Q, but the operational eigenstates no longer �ll these boxes.

�at is, there are ontic states that lie outside the preparations for operational eigenstates.

General preparation measures over the boxes, like ν, are still permi�ed.
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Note that these three sub-categories of macro-realism are de�ned such that they are

mutually exclusive, but they still have a natural hierarchy to them. ESMR can be seen as a

less restrictive variation on EMMR, since you can make an EMMR model into an ESMR

model simply by including a single preparation measure that is not a statistical mixture of

operational eigenstate preparations (the ontic state space and everything else can remain

unchanged). Similarly, SSMR can be seen as a less restrictive variation on ESMR. In ESMR,

every ontic state λ can be obtained by preparing an operational eigenstate preparation for

a value of Q. By de�nition of operational eigenstate it follows that a measurement of Q

will therefore return some speci�c value for each ontic state (up to measure-zero sets of

exceptions), which is the primary requirement on the ontic states for SSMR.

3.2.3 Macro-realism for Quantum Systems

Just like ontological models, the concept of macro-realism is—and always should be—

logically independent of quantum theory. So far this section has presented macro-realism

in this general way. In order to proceed to a precise discussion of the loopholes in the

Legge�-Garg argument, it is now necessary to bring macro-realism, ontological models,

and quantum theory together.

To do this, consider what can count as a “macroscopically observable” quantity Q. To

be observable Q must correspond to some quantum measurement MQ. �erefore, there is

some orthonormal basis BQ so that for each value q of Q the corresponding outcome of

MQ is a state in BQ. In order to make sense of the de�nitions Q must also have operational

eigenstates for each value q of Q. Fortunately this is straightforward in quantum theory:

the states in BQ are exactly the operational eigenstates of Q. Moreover, because the

elements of BQ are orthogonal it follows that preparations corresponding to di�erent

values q, q′ of Q are distinguishable.

So in quantum theory, macro-realism for quantity Q simply means that there is a basis

BQ each element of which is an (operational) eigenstate of Q. �is is gained simply by

applying the de�nition of macro-realism from Sec. 3.1.2 to quantum theory, the three

di�erent sub-categories of macro-realism noted in Sec. 3.2.2 correspondingly de�ne three

possible sub-categories of macro-realism in quantum theory.

3.2.4 Loopholes in the Leggett-Garg Argument

�e aim of the LGIs has always been to rule out macro-realist ontologies for quantum

theory, where the inequalities are violated. However, in light of the above precise de�nition

of macro-realism some loopholes in the argument can be identi�ed. �ese loopholes all
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have to do with the a�empt to derive non-invasive measurability from macro-realism as

noted in Sec. 3.2.1.

�e �rst loophole is that violation of the LGIs cannot rule out SSMR models of quantum

systems. Indeed, no argument that rests on compatibility with quantum predictions can

completely rule out SSMR models since there exists a well-known SSMR model for quantum

systems that reproduces all quantum predictions: Bohmian mechanics [Boh52a, Boh52b,

Bro09].

To see that Bohmian mechanics implies an SSMR ontological model consider, for

example, the Bohmian description of a single spinless point particle in three-dimensional

space (the argument for more general systems is analogous). Bohmian mechanics has the

ontic state as a pair λ = (~r, |ψ〉) ∈ R3×P(H) where ~r is the actual position of the particle

and |ψ〉 is the quantum state (or “pilot wave”). Note that the quantum state is part of the

ontology here. �e “macroscopically observable property” is the position of the particle, ~r,

and any sharp measurement of position will reveal the true value of ~r with certainty. �us,

for any ontic state λ there is some value of the macroscopically observable property (that

is, ~r) which is obtained with certainty from any appropriate measurement. �us, Bohmian

mechanics provides an SSMR ontological model.

�e second loophole is that LGI violation is unable to rule out ESMR ontological

models. �is also has a counter-example in the form of the Kochen-Specker model for the

qubit [KS67], which is an ontological model satisfying ESMR
1
. �e Kochen-Specker model

exactly reproduces quantum predictions for d = 2 dimensional systems. As the LGIs can

be wri�en in d = 2 the Kochen-Specker model must therefore violate them.

�e key point is why these counter-examples evade the Legge�-Garg argument. As

discussed in Sec. 3.2.1, to derive the LGIs one needs to assume non-invasive measurability.

If it is not possible to derive or demonstrate non-invasive measurability as a consequence

of some type of macro-realism, then it is not possible to derive the LGIs from that type

of macro-realism and the Legge�-Garg argument does not apply. It turns out that there

is no way to do this by assuming either SSMR or ESMR and therefore Legge�-Garg

arguments generically have loopholes for these types of macro-realism [MT17]. Bohmian

mechanics and the Kochen-Specker model are both examples: they contain measurement

disturbance that violates the non-invasive measurability assumption, while still satisfying

SSMR and ESMR respectively. So the crux is that both SSMR and ESMR models can include

measurements that don’t disturb the distribution over Λ if the system is prepared in an

1
Strictly speaking, the Kochen-Specker model was not de�ned with a post-measurement update rule and

so cannot deal with sequences of measurements (and therefore Legge�-Garg experiments). However, it is

simple to append the obvious update rule “prepare a new state corresponding to the measurement outcome”

and this �xes the issue.
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operational eigenstate, but still disturb the distribution over Λ for systems prepared in

other ways.

On the other hand, EMMR requires that all preparations are statistical mixtures of

operational eigenstates. If one can demonstrate experimentally that operational eigenstates

are not disturbed by some measurement, then no preparations can be disturbed by that

measurement in an EMMR model. It is this which prevents EMMR models from violating

the LGIs. A more extensive discussion of this point can be found in Ref. [MT17].

Recent experiments [KKY
+

16, HM16] following Ref. [WM12] have sought to address

the “clumsiness” loophole in the Legge�-Garg argument by dropping the assumption of

non-invasive measurability, replacing it with control experiments that experimentally

serve the same purpose. �ese approaches follow the Legge�-Garg argument quite closely

and show that the disturbance on a general preparation cannot be explained in terms of

the disturbances on a statistical mixture of operational eigenstates. As a result, they are

still only capable of ruling out EMMR models, as noted in Ref. [KKY
+

16].

So the Legge�-Garg proof only rules out EMMR macro-realism and leaves loopholes for

SSMR and ESMR. Moreover, the loophole for SSMR models cannot be fully plugged by any

proof because Bohmian mechanics exists as a counter-example. Similarly, the loophole for

ESMR cannot be fully plugged in d = 2 dimensions since the Kochen-Specker model exists

as a counter-example. �is leaves a clear question: can the ESMR loophole can be closed

by another theorem for any d > 2? Answering this question requires a di�erent approach

to the Legge�-Garg argument, one that doesn’t use any assumptions about measurement

disturbance.

3.3 A Stronger Theorem Against Macro-realism

�e Legge�-Garg argument, in its usual form, does not make use of anything like ontolog-

ical models. Macro-realism is, however, an ontological position. �e success of ontological

models in investigating other such positions (such as excess baggage, locality, and ψ-

ontology) suggests that it may also be useful when investigating macro-realism. Moreover,

the three sub-categories of macro-realism of Sec. 3.2.2 were identi�ed in Ref. [MT17] by

using an ontological model approach. �erefore, this section will take the ontological

techniques developed in Chap. 2 and apply them to macro-realism to obtain a no-go result

in quantum theory that is stronger than the traditional Legge�-Garg argument.
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3.3.1 Theorem

As discussed in Sec. 3.2.4, the Legge�-Garg argument can rule out EMMR macro-realist

models for quantitiesQwith n > 1 distinguishable values. �e following theorem improves

on this by ruling out both EMMR and ESMR macro-realist models for n > 3.

�eorem 3.1. �antum theory is incompatible with ESMR or EMMR macro-realist models
for quantities Q with n > 3 distinguishable values.

Proof. In ESMR and EMMR ontological models, every ontic state in the model can be

obtained through preparing some operational eigenstate of Q. From this it follows that,

when preparing any quantum state |ψ〉 through any µ ∈ ∆|ψ〉, the probability of ge�ing an

ontic state the could have been prepared by preparing a state inBQ is unity. Mathematically,

$(BQ |µ) = 1. Comparing this to Eq. (2.47) it is seen that every |ψ〉 6∈ BQ must therefore

be an epistemic superposition over BQ.

Clearly, if Q has n > 3 distinguishable values then d = |BQ| > 3. So by using �m. 2.2,

one reaches a contradiction.

�e assumptions that went in to reaching this contradiction were:

(a) the ontology satis�es ESMR or EMMR;

(b) the “macroscopically observable quantity” Q has n > 3 distinguishable values;

(c) the states preparations and measurements used in the proof of �m. 2.2 are possible;

and

(d) the ontological model reproduces quantum measurement predictions, as in Eq. (2.3).

Assumptions (a–b) are about the underlying ontological model, whereas assumptions (c–d)

are implications of standard quantum theory. �e conclusion must therefore be that both

ESMR and EMMR ontologies for n > 3 are impossible, or quantum theory is incorrect.

Since the Legge�-Garg argument is only able to prove incompatibility between EMMR

and quantum theory, this is a strict improvement for n > 3.

3.3.2 Relation to Other Ontology Results

�e proof of this stronger no-go theorem directly used �m. 2.2 to get its result. Some

comments are therefore in order about the exact relationship between �ms. 2.2, 3.1.

�e obvious di�erence between the two is in the quanti�ers. To prove �m. 2.2 a

contradiction is required for almost all superposition states. Comparing this to the proof
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of �m. 3.1, one sees that the la�er only requires a contradiction for a single superposition

state. From this point of view, �m. 3.1 is weaker than �m. 2.2 which is why the la�er

is used to prove the former rather than the other way around. Indeed, once it has been

established that ESMR/EMMR ontologies imply epistemic superpositions, it is almost a

corollary.

Clearly, the two theorems, in their current forms, are ge�ing at a similar point. It

even appears that ESMR/EMMR macro-realism might be simply be subsumed under the

banner of epistemic superpositions. But there are also divergences. Foremost of these is

that “macro-realism” can (and should) be de�ned independently from quantum theory (as

in Secs. 3.1.2–3.2.2) while the very quantum notion of “superpositions” is required to even

talk about “epistemic superpositions”. �e two concepts are of very di�erent character.

�is di�erence in character becomes very important when considering extensions

beyond �ms. 2.2, 3.1, especially to statements amenable to experimental tests. Both

results in their current forms concentrate on properties of pure states. �is is entirely

natural for �m. 2.2, since superpositions are pure states. But as macro-realism is de�ned

independently from quantum theory, it would be appropriate to extend �m. 3.1 using

mixed state preparations and more general quantum measurements. More discussion on

possible appropriate extensions to each of the theorems will be in Sec. 3.5.

Neither of these theorems are intended to be �nal, but rather starting points that point

to new lines of research. �e most obvious next direction is establishing error-tolerant

variations that allow for experimental investigation. One method for doing this will follow

in the next section.

3.4 An Error-Tolerant Argument

�eorems 2.2, 3.1 are the main results of their respective chapters. However, both proofs

rely on requiring ontological models to exactly reproduce quantum theory, that is Eq. (2.3).

�is means that, in their current form, neither is amenable to experimental investigation.

�ere is always noise and error in experimental results. Experimental results against

ESMR/EMMR or epistemic superpositions would carry much more weight, so it is prudent

to seek error-tolerant variations of these theorems.

In Sec. 2.4.3 an error-tolerant variation on �m. 2.4 was presented and used as a proof-

of-concept for error-tolerance of the other theorems of Chap. 2. �is is a valuable result

(and provides scope for experimental tests in its own right) but by too closely following

the same proof strategy it does not address the core hurdle to error tolerance for the main

results.
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As noted in Sec. 2.4.3, the primary reason that these results are not error-tolerant is that

they are based on the asymmetric overlap, which becomes useless when there is �nite error

in reproducing quantum statistics. Worse, the mathematical formalisation of “epistemic

superposition”, Eq. (2.47), is the key fact used in proofs of both �ms. 2.2 and 3.1 and is

itself in terms of the asymmetric overlap. �us, to properly �nd error-tolerant variations

on �ms. 2.2 and 3.1, this formalisation needs to be generalised to be error-tolerant.

3.4.1 Error-Tolerance and the ε-Asymmetric Overlap

In order to generalise the formalisation of epistemic superpositions and ESMR/EMMR

macro-realism, it is necessary to �rst generalise the asymmetric overlap.

Consider the de�nitions of the asymmetric overlap in Eqs. (2.5, 2.6, 2.8). Each de�nition

extremises over measurable subsets Ω ∈ Σ that satisfy ν(Ω) = 1 for some preparation

measure(s) ν. �is condition can be relaxed by considering ε-typical subsets. For any

ε ∈ [0, 1), Ω ∈ Σ is ε-typical for preparation measure ν if and only if ν(Ω) > 1− ε. �at

is, the probability of ν preparing an ontic state outside any given ε-typical subset Ω is

ε. Despite the name, a given ε-typical subset Ω does not identify the ontic states inside

it as typical as such, but rather it identi�es the ontic states outside it as atypical (where

(a)typicality is quanti�ed by ε).

ε-typical subsets can be used to generalise the asymmetric overlap$ to the ε-asymmetric
overlap $ε, de�ned for preparation measures as

$ε(ν |µ)
def

= inf{µ(Ω) : Ω ∈ Σ, ν(Ω) > 1− ε}. (3.3)

�at is, $ε(ν |µ) is a lower bound probability that µ will produce an ontic state that is in

some ε-typical subset for ν. Clearly, by taking ε = 0 the 0-typical asymmetric overlap is

the asymmetric overlap of Eq. (2.5).

How should$ε be interpreted? Recalling that all ontic states outside an ε-typical subset

Ω are atypical for ν, one sees that 1− µ(Ω) is a probability that µ will produce an ontic

state that is de�nitely atypical for ν. �erefore, 1−$ε(ν |µ) is the upper bound probability

that µ will produce an ontic state that is de�nitely atypical for ν. �is double-negative

interpretation of the ε-asymmetric overlap is the precise one, but is also clumsy. In e�ect,

it says that $ε(ν |µ) is the probability that µ will produce an ontic state that is typical for

ν (where typicality is quanti�ed by ε). However, the nature of measure theory means that

this must be understood as a double-negative.

When describing a quantum system, Eq. (2.6) de�nes the ordinary asymmetric overlap

with a quantum state. �e same can be done for the ε-asymmetric overlap:

$ε(|φ〉 |µ)
def

= inf{µ(Ω) : Ω ∈ Σ, ν(Ω) > 1− ε, ∀ν ∈ ∆|φ〉}. (3.4)
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Finally, the de�nition can also be extended to overlapping with a set of quantum states

S ⊆ P(H), as in Eq. (2.8),

$ε(S |µ)
def

= inf
{
µ(Ω) : Ω ∈ Σ, ν(Ω) > 1− ε, ∀ν ∈ ∆|φ〉, ∀|φ〉 ∈ S

}
. (3.5)

Now de�ned, the ε-asymmetric overlap can be used to identify an error-tolerant for-

malisation of epistemic superpositions.

As discussed in Sec. 2.3.1, an epistemic superposition is one that is just a statistical e�ect,

one where the ontology is all accounted for by the underlying basis. �at is, somebody

who believes |ψ〉 is an epistemic superposition over B should believe that any ontic state

obtained by preparing |ψ〉 could also be obtained by preparing some state from B. In the

case of �nite error this is clearly an inconsequential belief as there is always some �nite

probability of preparing any outlandish ontic state in any preparation. An appropriate

modi�ed belief would be that any preparation of |ψ〉 will, with high probability, produce

an ontic state that is typical for at least one state in B. �at is, the vast majority of the time

the resulting ontic state will be one that can typically be obtained by at least one state in

B. Mathematically, this can be characterised with the ε-asymmetric overlap:

$η(B |µ) > 1− τ, ∀µ ∈ ∆|ψ〉 (3.6)

for small values η and τ which quantify the strength of the belief. Clearly, taking τ = η = 0

this reduces to the noiseless case of Eq. (2.47).

A similar argument can be made for ESMR/EMMR macro-realism for a quantity Q,

generalising the proof of �m. 3.1. �e ESMR/EMMR macro-realist believes that every

ontic state preparable by any |ψ〉 ∈ P(H) can also be obtained by preparing a state from a

basis BQ. In the case of �nite error this is a trivial belief, since there’s a �nite probability

of preparing any ontic state from any quantum state. A reasonable macro-realist would

therefore rather believe that when preparing any |ψ〉 there’s a high probability that the

ontic state obtained will be typical for at least one state in BQ. Mathematically, this implies

Eq. (3.6) again, with B = BQ.

3.4.2 Properties of the ε-Asymmetric Overlap

Just as with the asymmetric overlap, it will be necessary to prove some properties of the

ε-asymmetric overlap before proceeding to the main theorem. �e properties here are

mostly generalisations of those proved in Sec. 2.2.1. �e reader may �nd it easier to �rst

read the theorem in the next section, referring back here only when the properties are

referenced.

For notational convenience, it is useful to generalise Def. 2.1 in the following way.
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De�nition 3.1. For any measurable function g : Λ→ [0, 1] let

k̄ε(g)
def

= {λ ∈ Λ : g(λ) ≥ 1− ε} ∈ Σ (3.7)

for any ε ∈ [0, 1).

Next, this lemma generalises Lem. 2.1 and will similarly provide a link between integrals

over a measure and measurable subsets.

Lemma 3.1. Given any measurable function f : Λ → [0, 1] and preparation measure ν
satisfying

∫
Λ

dν(λ)f(λ) ≥ 1− δ then

ν(k̄κ(f)) > 1− δ

κ
(3.8)

for any 0 ≤ δ ≤ κ ≤ 1.

Proof. For any κ ∈ [0, 1) then by assumption

1− δ ≤
∫
k̄κ(f)

dν(λ) f(λ) +

∫
Λ\k̄κ(f)

dν(λ) f(λ). (3.9)

Considering the �rst term, clearly

∫
k̄κ(f)

dν(λ) f(λ) ≤ ν(k̄κ(f)) as f(λ) ≤ 1. For the

second term, note f(λ) < 1− κ when λ ∈ Λ \ k̄κ(f), giving

1− δ < ν(k̄κ(f)) + (1− κ)ν(Λ \ k̄κ(f)) (3.10)

which, recalling ν(Λ) = 1, implies the desired result.

�is �rst property does not have an analogue for the asymmetric overlap. It simply

notes that some ε-asymmetric overlaps are more restrictive than others (depending on the

values of ε).

Lemma 3.2. For any set S of quantum states and any preparation measure µ,

$p(S |µ) ≥ $q(S |µ) (3.11)

for any 0 ≤ p ≤ q < 1.

Proof. For any Ωp that is p-typical for S then

νi(Ωp) > 1− p ≥ 1− q, ∀νi ∈ ∆|i〉, ∀|i〉 ∈ S (3.12)

so Ωp is also q-typical for S and by de�nition $p(S |µ) ≥ $q(S |µ).
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With this technical background, the following property generalises Lem. 2.2, showing

how measurement probabilities simply bound the ε-asymmetric overlap.

Lemma 3.3. For any state |φ〉 ∈ P(H) and measurement M with |φ〉 as an outcome, if
PM(|φ〉 | ν) ≥ 1− σ for some σ ∈ [0, 1) and all ν ∈ ∆|φ〉 then

$η(|φ〉 |µ) ≤ PM(|φ〉 |µ)

1− σ/η
, ∀η ∈ (σ, 1) (3.13)

for any preparation measure µ, where PM(|φ〉 |µ) is obtained from the ontological model via
Eq. (2.1).

Proof. For some η ∈ (σ, 1), let Ω
def

= k̄σ/η(PM(|φ〉 |λ)). For all ν ∈ ∆|φ〉,

1− σ ≤ PM(|0〉 | ν) =

∫
Λ

dν(λ)PM(|φ〉 |λ) (3.14)

implies that ν(Ω) > 1− η by Lem. 3.1. �erefore, Ω is η-typical for |φ〉, giving

$η(|φ〉 |µ) ≤ µ(Ω) (3.15)

≤
∫

Ω
dµ(λ)P(|φ〉 |λ)

1− σ/η
(3.16)

≤ PM(|φ〉 |µ)

1− σ/η
. (3.17)

�e second line follows as PM(|φ〉 |λ) ≥ (1− σ/η) for λ ∈ Ω and the third by expanding

the range of integration.

Lemma 2.3 establishes how the asymmetric overlap changes under a unitary transfor-

mation, this next lemma does the same for the ε-asymmetric overlap.

Lemma 3.4. Let unitary U satisfy U |0〉 = |φ〉 and µ′
γ
 µ for some γ ∈ ΓU , then

$ε(|φ〉 |µ) ≥
(

1− ε

δ

)
$δ(|0〉 |µ′) (3.18)

for any 0 ≤ ε ≤ δ < 1.

Proof. Since $ε is de�ned as a greatest lower bound, it su�ces to prove that for every

ε-typical Ω ∈ Σ for |φ〉 there exists a δ-typical Ω′ ∈ Σ for |0〉 such that

µ(Ω) ≥
(

1− ε

δ

)
µ′(Ω′). (3.19)

For any χ ∈ ∆|0〉, consider the ν ∈ ∆|φ〉 such that χ
γ
 ν. �en for any ε-typical Ω ∈ Σ

for |φ〉 it follows that

1− ε < ν(Ω) =

∫
Λ

dχ(λ) γ(Ω |λ). (3.20)
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�erefore, by Lem. 3.1, χ(k̄κ(γ(Ω |λ))) > 1− ε
κ

for any κ ∈ [ε, 1]. Recalling that χ ∈ ∆|0〉

is arbitrary, this means that Ω′
def

= k̄κ(γ(Ω |λ)) is (ε/κ)-typical for |0〉.
Considering then µ(Ω),

µ(Ω) =

∫
Λ

dµ′(λ) γ(Ω |λ) ≥
∫

Ω′
dµ′(λ) γ(Ω |λ) (3.21)

≥ (1− κ)µ′(Ω′) (3.22)

having noted that γ(Ω |λ) ≥ (1− κ) for λ ∈ Ω′. Le�ing δ
def

= ε/κ completes the proof.

�is next property generalises Lem. 2.4 by providing a relationship between the overlap

with a set of quantum states and the individual overlaps with each state.

Lemma 3.5. For any �nite set S ⊂ P(H) of quantum states, any preparation measure µ,
and any η ∈ (0, 1) ∑

|i〉∈S

$η(|i〉 |µ) ≥ $η(S |µ). (3.23)

Proof. For each |i〉 ∈ S let Ωi ∈ Σ be an η-typical subset for |i〉. Consider Ω
def

= ∪|i〉∈SΩi

which must also be η-typical for each |i〉 ∈ S as νi(Ω) ≥ νi(Ωi). �erefore by de�nition

$η(S |µ) ≤ µ(Ω). By Boole’s inequality,

$η(S |µ) ≤ µ(Ω) ≤
∑
|i〉

µ(Ωi) (3.24)

from which the result follows by recalling that all Ωi are arbitrary η-typical subsets.

Finally, in Sec. 2.2.2 anti-distinguishable sets of quantum states were de�ned. Lemma 2.6

then showed how anti-distinguishable triples a�ect asymmetric overlaps. In the following

lemma, the corresponding statement is proved for the ε-asymmetric overlap and approxi-
mately anti-distinguishable sets (that is, the “anti-distinguishing” measurement must be

accurate to within ±ε).

Lemma 3.6. Consider a quantum measurement M = {E¬ψ, E¬φ, E¬0} such that for some
ε ∈ [0, 1) ∫

Λ

dµ(λ)PM(E¬ψ |λ) ≤ ε, ∀µ ∈ ∆|ψ〉 (3.25)

and similarly for |φ〉 and |0〉. �en for any µ ∈ ∆|ψ〉 and κ ∈ (2ε, 1),

$ε/κ(|0〉, |φ〉 |µ) ≥ (1− κ)
(
$2ε/κ(|0〉 |µ) +$2ε/κ(|φ〉 |µ)

)
− ε. (3.26)
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Proof. Since $ε is de�ned as a greatest lower bound, it su�ces to prove that for every

Ω ∈ Σ that is (ε/κ)-typical for both |0〉 and |φ〉 there exists Ω′ ∈ Σ that is (2ε/κ)-typical

for |φ〉 and Ω′′ that is (2ε/κ)-typical for |0〉 such that

µ(Ω) ≥ (1− κ) (µ(Ω′) + µ(Ω′′))− ε. (3.27)

Start by de�ning the measurable function gφ(λ)
def

= PM(E¬ψ|λ) + PM(E¬0|λ). De�ne

g0 similarly.

By assumption,

∫
Λ

dν(λ) gφ(λ) ≥ 1 − ε for all ν ∈ ∆|φ〉 so, by Lem. 3.1, k̄κ(gφ) is

(ε/κ)-typical for |φ〉. Similarly, k̄κ(g0) is (ε/κ)-typical for |0〉.
So consider any Ω ∈ Σ that is (ε/κ)-typical for both |φ〉 and |0〉. For every ν ∈ ∆|φ〉

then

ν(Ω ∩ k̄κ(gφ)) ≥ ν(Ω) + ν(k̄κ(gφ))− 1 > 1− 2ε

κ
. (3.28)

�erefore Ω′
def

= Ω∩ k̄κ(gφ) is (2ε/κ)-typical for |φ〉. By a similar argument Ω′′
def

= Ω∩ k̄κ(g0)

is (2ε/κ)-typical for |0〉.
Finally, it therefore follows that

µ(Ω) =

∫
Ω

dµ(λ) (gφ(λ) + g0(λ)− PM(E¬ψ |λ)) (3.29)

≥
∫

Ω′
dµ(λ) gφ(λ) +

∫
Ω′′

dµ(λ) g0(λ)− ε (3.30)

≥ (1− κ) (µ(Ω′) + µ(Ω′′))− ε. (3.31)

�e second line follows from the upper bound on

∫
Λ

dµ(λ)PM(E¬ψ|λ) and by restricting

the range of the other integrals. �e third line follows by noting that gφ and g0 are

lower-bounded in Ω′ and Ω′′ respectively. �is completes the proof.

3.4.3 Error-Tolerant Results

With the technical background of ε-asymmetric overlaps, the proof of �m. 2.1 can be

adapted to obtain an error-tolerant variant. Since the proofs of �m. 2.2 and �m. 3.1 use

�m. 2.1, this will provide an error-tolerant argument against both epistemic superpositions

and ESMR/EMMR macro-realism in quantum theory.

�eorem 3.2. Consider a d > 3 dimensional quantum system described by some ontological
model. Assume one can experimentally demonstrate quantum probabilities to within some
±ε ∈ (0, 1] as in Eq. (2.4). Let B be any orthonormal basis ofH and |ψ〉 ∈ P(H) be any pure
state such that |〈0|ψ〉| = α ∈ (0, 1√

2
) for some |0〉 ∈ B. For any choices of 0 < τ ≤ η < 1

16

there exist choices of ε > 0 such that

$η(B |µ) ≤ 1− τ (3.32)
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for some µ ∈ ∆|ψ〉, for a �nite range of α ∈ (0, 1√
2
).

Proof. �e proof proceeds by contradiction. To this end, assume that

$η(B |µ) > 1− τ (3.33)

for all µ ∈ ∆|ψ〉 where 0 < τ ≤ η < 1
16

.

Consider the construction of |ψ〉, |φ〉, |0〉, B′ 3 |0〉, and U used in the proof of �m. 2.1

[Eqs. (2.50, 2.51)]. Let MA = {E¬ψ, E¬φ, E¬0} be a quantum anti-distinguishing measure-

ment for {|ψ〉, |φ〉, |0〉} (i.e. the measurement that would be anti-distinguishing in the

absence of error), M be a basis measurement for B, and let M ′
be a basis measurement for

B′. Recall that 〈0|ψ〉 = α ∈ (0, 1√
2
).

�e assumption that quantum probabilities are reproduced to within ±ε variously

implies the following.

PMA
(E¬ψ |µ) ≤ ε, ∀µ ∈ ∆|ψ〉 (3.34)

PMA
(E¬φ | ν) ≤ ε, ∀ν ∈ ∆|φ〉 (3.35)

PMA
(E¬0 |χ) ≤ ε, ∀χ ∈ ∆|0〉 (3.36)

PM ′(|0〉 ∨ |1′〉 |χ) ≥ 1− ε, ∀χ ∈ ∆|0〉 (3.37)

PM ′(|0〉 ∨ |1′〉 ∨ |3′〉 | ν) ≥ 1− ε, ∀ν ∈ ∆|φ〉 (3.38)

PM ′(|3′〉 |µ) ≤ ε, ∀µ ∈ ∆|ψ〉 (3.39)

PM(|i〉 |χi) ≥ 1− ε, ∀χi ∈ ∆|i〉, ∀|i〉 ∈ B (3.40)

Now proceed to derive the contradiction. Choosing any µ ∈ ∆|ψ〉, Lem. 3.6 implies that

$ε/κ(|0〉, |φ〉 |µ) ≥ (1− κ)
(
$2ε/κ(|φ〉 |µ) +$2ε/κ(|0〉 |µ)

)
− ε (3.41)

for any κ ∈ (2ε, 1). Let δ ∈ [2ε/κ, 1), then Lem. 3.2 gives$2ε/κ(|0〉 |µ) ≥ $δ(|0〉 |µ). �is,

together with Lem. 3.4, gives

$ε/κ(|0〉, |φ〉 |µ) ≥ (1− κ)

((
1− 2ε

κδ

)
$δ(|0〉 |µ′) +$δ(|0〉 |µ)

)
− ε (3.42)

where µ′
γ
 µ for some choice of γ ∈ ΓU . Note that for the �rst term to contribute

non-trivially, it is required that δ > 2ε/κ.

�e next step is to relate the $δ terms on the right hand side to their quantum proba-

bilities. For any µ̄ ∈ ∆|ψ〉, Lem. 3.5 and Eq. (3.33) imply∑
|i〉∈B

$η(|i〉 | µ̄) ≥ $η(B | µ̄) > 1− τ. (3.43)
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Using Lem. 3.3 and recalling that |0〉 ∈ B this further implies that

$η(|0〉 | µ̄) > 1− τ −
∑
|i〉6=|0〉 PM(|i〉 | µ̄)

1− ε/η
(3.44)

so long as η > ε. Lastly, noting that α2 − ε ≤ PM(|0〉 | µ̄) = 1−
∑
|i〉6=|0〉 PM(|i〉 | µ̄) gives

$η(|0〉 | µ̄) >
α2 − ε− τ − ε

η
(1− τ)

1− ε/η
(3.45)

for all µ̄ ∈ ∆|ψ〉. In particular, this holds both when µ̄ = µ and µ̄ = µ′ from Eq. (3.42).

�e �nal step before pu�ing everything together is to relate the bipartite (ε/κ)-

asymmetric overlap (le� hand side of Eq. (3.42)) to a corresponding quantum measurement

probability. Let f(λ)
def

= PM ′(|0〉 |λ) + PM ′(|1′〉 |λ) and g(λ)
def

= PM ′(|3′〉 |λ). From the

above measurement probabilities, Lem. 3.1 gives that

χ(k̄κ(f)) > 1− ε
κ
, ∀χ ∈ ∆|0〉 (3.46)

ν(k̄κ(f + g)) > 1− ε
κ
, ∀ν ∈ ∆|φ〉 (3.47)

since it is already required that κ > 2ε > ε. Because k̄κ(f) ⊆ k̄κ(f + g) it follows that

Ω
def

= k̄κ(f + g) is a measurable subset of Λ which is (ε/κ)-typical for both |φ〉 and |0〉.
Consider then

PM ′(|0〉 ∨ |1′〉 |µ) =

∫
Λ

dµ(λ)f(λ). (3.48)

By Eq. (3.39) it follows that

∫
Λ

dµ(λ) g(λ) ≤ ε so

PM ′(|0〉 ∨ |1′〉 |µ) ≥
∫

Λ

dµ(λ) (f(λ) + g(λ))− ε (3.49)

≥
∫

Ω

dµ(λ) (f(λ) + g(λ))− ε (3.50)

≥ (1− σ)µ(Ω)− ε (3.51)

≥ (1− σ)$ε/κ(|φ〉, |0〉 |µ)− ε. (3.52)

Where the �nal line follows as Ω is (ε/κ)-typical for both |φ〉 and |0〉. Using that quantum

probabilities are reproduced to within ±ε and noting the construction of Eq. (2.50) gives

α2(1 + 2α2) + 2ε ≥ (1− κ)$ε/κ(|0〉, |φ〉 |µ). (3.53)

Combining Eqs. (3.41, 3.45, 3.53) shows that the assumption-towards-contradiction

Eq. (3.33) implies

α2(1 + 2α2) + ε(3− κ) >
2(1− κ)2(1− ε

κη
)

1− ε/η

(
α2 − ε− τ − ε

η
(1− τ)

)
(3.54)
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where δ = η has been taken. Recall that the derivation of this inequality required that

η > 2ε/κ and η > ε, and that κ > 2ε is chosen.

To obtain a contradiction and complete the proof, it must be demonstrated that the

inequality of Eq. (3.54) is violated for appropriate choices of parameters. �is is much

easier if one �rst simpli�es Eq. (3.54).

To simplify, �rst assume that η ≥ τ , so that Eq. (3.33) implies $η(B |µ) > 1 − η.

�erefore, Eq. (3.54) holds with τ = η. Another simplifying assumption comes by taking

κ =
√
ε. Under these assumptions, Eq. (3.54) becomes

α2(1 + 2α2) + κ2(3− κ) >
2(1− κ)2(η − κ)

η − κ2

(
α2 − η − κ2

η

)
(3.55)

where η > 2κ, η > κ2
and κ < 1

2
.

Observe that for any �xed value of η, a value of ε = κ2
may be chosen to be arbitrarily

small. In the limit of ε→ 0 the inequality becomes

α2(2α2 − 1) + 2η > 0, (3.56)

which is violated by a �nite range of α2 ∈ (0, 1
2
) for every value of η ∈ (0, 1

16
).

Consider turning this logic around. For any value of η ∈ (0, 1
16

), if one assumes Eq. (3.33)

with η ≥ τ then there exists a value of ε > 0 such that one can reach a contradiction by

violating Eq. (3.54). �is completes the proof.

As stated, �m. 3.2 is somewhat formal and opaque. A li�le unpacking is required to

see how it provides error-tolerant statements against both epistemic superpositions and

ESMR/EMMR macro-realism.

First, consider Bob who believes that some superposition |ψ〉 ∈ P(H) should be

epistemic with respect to some orthonormal basis B 63 |ψ〉 of a d > 3 dimensional system.

As discussed in Sec. 3.4.1, Bob should be compelled to make a statement along the lines of:

“any preparation of |ψ〉 will produce an ontic state that is η-typical for at least one state in

B with probability at least 1− τ”. �e values of η and τ are le� up to Bob and quantify

exactly how macro-realist his belief is (relative to the noise in available experiments), but

they should be small if |ψ〉 is to be approximately epistemic. In summary, Bob believes that

$η(B |µ) > 1− τ, ∀µ ∈ ∆|ψ〉. (3.57)

Alice, who has access to a lab, can contradict Bob’s belief in the following way. Suppose

that 0 < τ ≤ η < 1
16

and Alice can demonstrate that quantum probabilities are correct

to within ±ε ∈ (0, 1). By �m. 3.2 then for su�ciently small ε there is some continuous

regionRε ⊂ (0, 1) such that Bob is contradicted if |〈0|ψ〉|2 ∈ Rε for any |0〉 ∈ B.
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In fact, given speci�c values for η, τ , and α, Alice can probably do be�er. Looking

at the proof of �m. 3.2, Alice simply needs to �nd an appropriate ε such that Eq. (3.54)

can be violated (with valid choices for the other parameters in the inequality) and then

demonstrate that quantum probabilities hold to within ±ε. Note that, in this more general

case, Alice doesn’t necessarily have to assume that τ ≤ η.

So why bother with the �rst, less general, statement if violation of Eq. (3.54) is the

more powerful result? Simply put, it is not clear a priori that Eq. (3.54) can be violated for

reasonable choices of the parameters. �e �rst statement serves to demonstrate that the

contradiction is possible, while the second is strictly more general.

�eorem 3.2 can be used in a similar way to rule out ESMR or EMMR ontologies in an

error-tolerant way.

Consider Clare, who believes in ESMR or EMMR macro-realism for some quantity Q of

a quantum system with n > 3 distinguishable values. Similarly to Bob—and as discussed

in Sec. 3.4.1—Clare should be compelled to say “any preparation of any |ψ〉 ∈ P(H) will

produce an ontic state that is η-typical for at least one operational eigenstate of Q with

probability at least 1− τ .” As with Bob, the exact values of η and τ are up to Clare, but

should be small if Clare seriously believes in ESMR/EMMR macro-realism.

As noted in Sec. 3.2.3, the operational eigenstates of Q in a quantum system form an

orthonormal basis BQ. �is means that Alice believes that

$η(BQ |µ) > 1− τ, ∀µ ∈ ∆|ψ〉, ∀|ψ〉 ∈ P(H). (3.58)

It is clear that Alice can contradict Clare’s belief in a similar way to how she contradicted

Bob. Speci�cally, if 0 < τ ≤ η < 1
16

then there is an ε ∈ (0, 1) such that if Alice can

demonstrate that quantum probabilities hold to within ±ε then Clare is proved wrong

by �m. 3.2. More generally given τ and η, if Alice can violate Eq. (3.54) for any valid

values of α, κ, and ε, then demonstrating that quantum probabilities hold to within ±ε
will contradict Clare.

Note that, since Clare must believe Eq. (3.58) for all pure states |ψ〉 ∈ P(H), it is easier

for Alice to contradict Clare than Bob, whose choice of |ψ〉 is arbitrary.

In this way, �m. 3.2 can be used as the basis for error-tolerant variations on both

�m. 2.2 and �m. 3.1. �is has been achieved by generalising the asymmetric overlap to the

ε-asymmetric overlap in a natural way by using ε-typical subsets. �e proof (while rather

involved) is still arguably much simpler than that of �m. 2.5, which established an error-

tolerant version of �m. 2.4 by using the symmetric overlap. �is is because the asymmetric

overlap has much more in common with the ε-asymmetric overlap than the symmetric

overlap, so the proof strategy can more more easily adapted. �e main disadvantage of
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working with the ε-asymmetric overlap is a proliferation of free parameters, so rather than

ge�ing a clean contradiction, one �nds an inequality Eq. (3.54) with �ve parameters which

must be violated to obtain a contradiction. �e proof of �m. 3.2 demonstrates that this is

possible at least in some regime—speci�cally, when 0 < τ ≤ η < 1
16

for some ranges of ε

and α—but violations of Eq. (3.54) may also be possible outside of that regime.

3.5 Summary and Discussion

�is chapter addressed the incompatibility of macro-realism and quantum theory by using

ontological models and building on the work and techniques of Chap. 2. A�er a quick

summary of this chapter, the results and outstanding questions from these two chapters

will be discussed below.

�e exact meaning of “macro-realism” has always been somewhat controversial. It was

therefore appropriate to start by discussing what macro-realism means and identifying

an appropriate speci�c de�nition in Sec. 3.1. �e history of macro-realism is inseparable

from the Legge�-Garg inequalities and their use in the Legge�-Garg argument for the

incompatibility of quantum theory and macro-realism. �is argument was outlined brie�y

in Sec. 3.2.1, with a focus on the assumptions required to derive the inequalities.

�e de�nition of macro-realism used in Sec. 3.1.2 is from Ref. [MT17], where the history

of “macro-realism” is analysed and the de�nition clari�ed using ontological models. �is

ontological model analysis led to the identi�cation of three sub-categories of macro-realism

presented in Sec. 3.2.2: EMMR, ESMR, and SSMR. By applying these de�nitions to quantum

theory, one �nds fundamental loopholes in the Legge�-Garg argument. In particular,

Legge�-Garg is only able to prove incompatibility of EMMR models with quantum theory,

leaving loopholes for ESMR and SSMR as discussed in Sec. 3.2.4. Moreover, the existence of

counter-examples in the form of Bohmian mechanics and the Kochen-Specker model show

that no theorem can rule out all SSMR models or all ESMR models for d = 2 dimensions

respectively.

Papers on the Legge�-Garg argument, including those addressing the clumsiness

loophole [WM12, KKY
+

16, HM16], have concentrated on d = 2 dimensional systems. As

a result of closely following the Legge�-Garg assumptions, they are still unable to rule out

any models outside of EMMR.

With this background, Sec. 3.3 proceeded to apply the methods of Chap. 2 to macro-

realism, obtaining �m. 3.1 as the main result of this chapter. �is proved the incom-

patibility of quantum theory with all ESMR and EMMR models for observables with
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n > 3 distinguishable values—a result which is therefore stronger than the Legge�-Garg

argument.

Finally, Sec. 3.4 approached the problem of �nding error-tolerant variations of �ms. 2.2,

3.1 with a view towards experimental investigations. Any such variation requires a gener-

alisation of the mathematical formalisations of epistemic superpositions and ESMR/EMMR

macro-realism. �is was done by introducing the ε-asymmetric overlap: a generalisation

of the asymmetric overlap that is error-tolerant. �is enabled a proof of �m. 3.2, which

can be used to obtain error-tolerant variations of both �m. 2.2 and �m. 3.1.

Between �m. 3.1 and the Legge�-Garg argument, the only possibilities for macro-

realism compatible with quantum theory that remain are SSMR models (such as Bohmian

mechanics) or ESMR models for d = 2, 3 dimensions (such as the Kochen-Specker model).

One clear question for further investigation is whether it is possible to rule out any

subsets of these remaining models. For example, Bohmian mechanics is a ψ-ontic theory

and it may therefore be possible prove the incompatibility of quantum theory and all

SSMR ontologies that aren’t ψ-ontic. �is, together with the result presented here, would

essentially say that to be macro-realist you must have an ontology consisting of the full

quantum state plus extra information. Many would consider this a very strong argument

against macro-realism.

�eorems 2.2–2.4 paint a similarly grim outlook for the epistemic realist, especially one

who seeks to explain any superposition-based phenomena using ontological uncertainty. In

particular, �m. 2.2 proves that, for d > 3, almost all superpositions de�ned with respect to

any given basis B must be real. �erefore, any epistemic realist account of quantum theory

must include ontic features corresponding to superposition states and the unfortunate cat

cannot be put out of its misery. �eorems 2.3, 2.4 then proceed to provide new bound on

ontic overlaps for largely arbitrary pairs of quantum states. In particular from �m. 2.3 one

can conclude that almost no quantum states can be ψ-epistemic. From �m. 2.4, one can

conclude that in any moderately large system a large number of pairs of non-orthogonal

states cannot overlap signi�cantly, making it unlikely that such overlaps can satisfactorily

explain quantum features. �ese are both much stronger statements than previous results

in the same vein have been able to achieve, circumventing the shortcomings noted in

Sec. 3.2.4. However, it should be noted that �ms. 2.3, 2.4 do depend on an extra assumption,

though one that is mild.

�e next stage for all of these results will be to develop experimental tests, which

require detailed error-tolerant analyses. �eorem 2.5 begins to develop such an analysis

based on �m. 2.4. An experiment based on this would require demonstration of small

errors in probabilities for a wide range of measurements on a d > 5 dimensional system.
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�e error-tolerant variations on �ms. 2.2, 3.1 provided by �m. 3.2 also open the

door for experimental investigation. While this variation uses the ε-asymmetric overlap,

there are potentially other routes to error-tolerant variations, including one currently in

development [HM17]. �is demonstrates how �ms. 2.2, 3.1 are just the �rst steps towards

new ways of investigating epistemic superpositions and macro-realism respectively.

It is interesting to note that experiments based on this result will be an entirely new

avenue for tests of macro-realism. Experimental tests based on the Legge�-Garg argument

will always have certain features and di�culties in common (such as the clumsiness

loophole brie�y mentioned in section 3.2.4). However, since the approach of this chapter is

so di�erent in character one can expect the resulting experiments to be similarly di�erent,

hopefully avoiding many of the di�culties common to Legge�-Garg while requiring

challenging new high-precision tests of quantum theory in d > 3 Hilbert spaces.

One should note that in this chapter the “macro” quantity Q was taken to correspond

to a measurement in basis BQ in the quantum case. A more general approach might allow

Q to correspond to a POVM measurement instead. �at is, for each value q of Q there

would be some POVM element Eq and the operational eigenstates |ψ〉 of q would be those

satisfying 〈ψ|Eq|ψ〉 = 1. It does not seem unlikely that the results presented here could

be fairly directly extended to such a case and this would be another interesting avenue

for further work. Such an extension would likely add signi�cant complexity to the proofs

without changing the fundamental ideas, however.

Extensions of �m. 3.1 along these lines would likely start to further separate out

the work on macro-realism from that on epistemic superpositions. As noted in Sec. 3.3.2,

superpositions are pure states, so extensions looking for new results there will likely stay

within the realm of pure-state quantum theory. �is is in contrast to macro-realism, which

is de�ned independently from quantum theory, so extensions in that direction may well

lead to mixed quantum theory and POVM measurements.

�e methods used for the foundational results of Chap. 2 were also adapted to prove

communication bounds in quantum information in Sec. 2.5. �e result was �m. 2.6

which provides a bound on the ability for classical resources to perfectly simulate quantum

channels which asymptotically matches the best known results from the literature [Mon16a,

Mon11, BCT99] while using a substantially simpler argument. In particular, it was proved

that at least 2nq+O(1) − 1 bits of classical communication is required for the simulation

of a noiseless nq-qubit quantum channel, even when using arbitrary shared random data.

Beyond its simplicity, the proof of �m. 2.6 has two key advantages over other proofs for

similar bounds. First, it identi�es an underlying reason for the result: it is a consequence
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of the existence of exponentially large sets of quantum states that have small mutual Born-

rule overlaps. Second, the proof identi�es a general strategy for deriving such bounds. If

one found di�erent sets of �ngerprinting states and/or classical error-correction codes one

could simply re-run the proof to potentially produce more powerful results [Sec. 2.5.3].

It is worth noting that �m. 2.6 was developed independently from the exponential

bound for the same problem presented in Ref. [Mon16a] and preceded the publication of that

bound. However, as it stands the bound of Ref. [Mon16a] has two advantages over �m. 2.6.

First, it applies to approximate simulations as well as perfect simulations of quantum

channels. Second, it also bounds simulations using two-way classical communication. �e

problem of extending the proof of �m. 2.6 to apply to approximate simulations is a topic

of ongoing research which is currently unready for publication but remains very promising

nonetheless. Simulations using two-way communication are less related to ontological

models and therefore of less relevance to this thesis, but it is an interesting open problem

as to whether the techniques of �m. 2.6 could also be applied to this more general se�ing.

As a �nal note on �m. 2.6, one can understand the simplicity and power of the

proof as coming from the combination of two facts. First, the existence of exponentially

large sets of quantum states with bounded Born-rule overlap discussed above. Second,

the property of anti-distinguishability and its implications for ontological models and

simulations [Sec. 2.2.2]. �e result is the existence of exponentially large sets of quantum

states such that all triple subsets are anti-distinguishable. It seems likely that this fact

can be fruitfully used to prove results in many areas of quantum information, potentially

including quantum cryptography and quantum algorithms.

Finally, it has been assumed throughout Chaps. 2, 3 that all quantum systems are

�nite-dimensional for clarity. If such extensions are needed, it should not be conceptually

di�cult to extend any of these results to the in�nite case. In particular, �m. 2.4 strongly

suggests that in the in�nite case one would �nd zero overlap between many pairs of

quantum states, which would be a very powerful restriction on many types of ontological

models.
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4
Quantum Conditional Independence

and Quantum Common Causes

4.1 The Need for Quantum Conditional
Independence

�e ontology of quantum theory is normally discussed in terms of quantum states, as

in Chaps. 2, 3. However, scientists also typically consider causal in�uences to be real. If

quantum theory challenges our notions of ontology of the states of systems, then it is

natural to ask how it might also challenge our causal notions. �e simplest scenario where

this becomes apparent is in the case of complete common causes and in the related concept

of conditional independence. �is chapter analyses these fully in a quantum universe.

Much of the work presented here has been published in Ref. [ABH
+

17].

4.1.1 The Reality of Causal Influences

It is quite typical to think of causal in�uences as being “real” (without wishing to go into

speci�cs as to what that might mean). Indeed, it is common to hear that the business of

science is primarily to discover what these real causal in�uences are [Pea09, SGS01]. In

particular, the whole science of causal discovery algorithms is predicated on the idea that

there exist objective causes that can be discovered. If even the possibility of ontological

causal in�uences is taken seriously in a quantum universe, then there needs to be a

framework in which to discuss quantum causal in�uences.

77



It is important, especially for this chapter and the next, to distinguish causal notions

from probabilistic or statistical ones. Causation is about in�uences between events, while

probability and statistics describe if and how o�en events (or combinations of events)

occur.

Reichenbach’s principle [Rei56] might be viewed as a cornerstone of causal reasoning. It

is o�en paraphrased as “no correlation without causation”. �us providing a link between

the probabilistic/statistical idea of “correlation” and that of causation. Reichenbach’s

principle is so well ingrained in both everyday and scienti�c thought that it is rarely

speci�cally discussed outside of philosophy.

To illustrate, if the dog barks every time the post arrives people naturally assume that

it is the arrival of the post (the sound it makes, the smell of the deliverer, etc.) that causes

the dog to bark, rather than a mere coincidence. Similarly, if every time the cat runs away

the dog is scolded it is likely that both events are caused by the dog barking rather than

either a coincidence or one event being a cause for the other. More seriously, without

some general commitment to Reichenbach’s principle (or something su�ciently similar)

it would be impossible to regard two experiments as independent due to a lack of causal

mechanism between them. �is would be catastrophic for science in general.

So Reichenbach’s principle calls for causal links between any correlated events A and

B. What are these links? �ey must be at least one of the following: A is a cause for B,

B is a cause for A, or there is some common cause for both A and B. �e last of these is

the most interesting. Reichenbach’s principle requires a quantitative restriction on the

probabilities if the link is solely via a common cause: conditional independence. A full

statement and discussion of Reichenbach’s principle is deferred until Sec. 4.2.

4.1.2 Causation in Bell Experiments

Despite the central role of causal explanations in science and life, certain quantum experi-

ments seem to elude such explanations. �e best known of these are Bell experiments—viz.
experiments of the type seen in Bell’s theorem [Bel66]. In such experiments, Alice prepares

a pair of systems that are distributed to Bob and Clare who perform independent measure-

ments on those systems. �ese experiments are purposefully constructed to suggest the

only reasonable causal link between the measurement outcomes of Bob and Clare is via a

common cause (presumably involving Alice). Bell’s theorem proceeds to show that certain

quantum experiments of this form can produce statistics which violate Reichenbach’s

principle for any conceivable common cause. �e �ndings of Bell’s theorem have been

thoroughly experimentally veri�ed [HBD
+

15, SMSC
+

15, GVW
+

15].
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Bell’s theorem is most o�en discussed in terms of non-locality, however recent inter-

pretations have put its causal implications front-and-centre [WS15, CL14, HLP14, PB15].

In particular, Ref. [WS15] considers the statistics observed in Bell experiments in terms

of classical causal models. It is shown that no classical causal model—even those with

exotic properties such as retrocausality and superluminal signalling—can account for these

statistics without undesirable �ne tuning. Fine tuning is typically considered enough to

rule out a proposed causal explanation [Pea09]. Note that, at least from a causal perspective,

this is strictly stronger than Bell’s theorem. Bell’s theorem assumes that all causal links

except common causes are ruled out by the experimental structure, while in Ref. [WS15]

all causal structures are considered.

�e conclusion must be that quantum theory demands a revision of our ideas of

causality—either to allow and explain �ne tuning or to revise what is permi�ed as a common

cause. At very least, Bell experiments demand a causal explanation. It has been suggested

[CL14, WS15] that an appropriate revision could preserve a form of Reichenbach’s principle

while rejecting �ne tuning.

In this chapter, such a revised quantum Reichenbach’s principle is motivated and

presented. Speci�cally, this chapter mostly deals with the case where quantum systems

B and C are in the causal future of system A. �e aim is to characterise the quantum

channels from A to BC that can occur when A is a complete common cause for B

and C . Since Reichenbach’s principle uses conditional independence to characterise

common causes [Sec. 4.2], this is done by generalising to a natural quantum conditional

independence. Because of this limited scope, the quantum conditional independence thus

de�ned only needs to make sense when A is in the causal past of BC . Compare this

with classical conditional independence, which can hold between random variables with

any causal relationships. �antum conditional independence can be de�ned in several

equivalent ways, each of which naturally generalises a corresponding expression for

classical conditional independence. Moreover, both quantum conditional independence

and quantum Reichenbach presented here reduce to the classical cases in appropriate

limits. �ese properties strongly suggest that the de�nitions here are the correct way of

generalising these classical concepts to natural quantum analogues.

�e equivalence of four ways to de�ne quantum conditional independence will be

proved in Sec. 4.3.4. A generalisation to channels from A to k > 2 outputs will then be

given in Sec. 4.3.7.

Of course, there is much more to the classical Reichenbach’s principle and classical

conditional independence than channels from A to BC . Indeed, there is a whole frame-

work of classical causal models that generalises these concepts. �e problem of making
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the corresponding generalisations for quantum Reichenbach’s principle and quantum

conditional independence will be tackled in Chap. 5.

For clarity of presentation in this chapter and the next, all random variables and graphs

will be taken to be �nite and all quantum systems �nite-dimensional. It is not anticipated

that any conceptual changes would be needed to extend the results to the in�nite cases.

4.1.3 Metaphysically-Neutral Quantum Conditional
Independence

Naturally, the subject ma�er of this chapter and the next involves some discussion of

metaphysical concepts. However, the results themselves can be viewed somewhat inde-

pendently from the metaphysics. Indeed, an aim in writing these chapters is to make them

as metaphysically-neutral as the results allow.

As in the rest of this thesis, it is suspected that the results presented here can inform

discussions of causation and ontology in metaphysics, but this thesis does not pretend to

contain those discussions. In particular, no metaphysical positions need to be subscribed

to in order to derive and understand the results presented here.

For example, the above discussion used the assumption that causal in�uences are

fundamentally real to motivate the work in this chapter. However, it is likely that a

philosopher who argues against this position would still �nd value in the de�nition of

quantum conditional independence and quantum common cause derived here. Even for

that philosopher, Bell’s theorem provides strong reasons for quantum common causes.

In short, the metaphysical content of this chapter and the next (while necessary) is

always secondary to the physical and mathematical content.

4.2 Classical Conditional Independence and
Reichenbach’s Principle

4.2.1 Reichenbach’s Principle in Two Parts

Reichenbach’s principle [Rei56] can be usefully thought of as comprising two parts (as

identi�ed in Ref. [CL14]). �e �rst, the qualitative part, is the claim “no correlation

without causation” most usually associated with Reichenbach. �is is supplemented by

the quantitative part which characterises common causes and provides the link to the

probabilistic notion of conditional independence.
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In full, the qualitative part of Reichenbach’s principle is: if two physical variables Y

and Z are statistically dependent, then there should be a causal explanation of this fact

such that at least one of the following is true:

(a) Y is a cause of Z ;

(b) Z is a cause of Y ; or

(c) there is a third variable X which is a common cause of both Y and Z .

�ese causal in�uences may be indirect (mediated by other variables) and each of these

cases may be true many times over (multiple chains of causation or multiple common

causes). If none of these causal in�uences exist, then Y and Z are ancestrally independent:
they have no causal ancestor in common. In this way, an alternative phrasing for the

qualitative part is: ancestral independence of Y and Z implies statistical independence

P(Y, Z) = P(Y )P(Z).

�e quantitative part of Reichenbach’s principle applies to the case where X and Y

share a common cause but neither is a direct cause of the other (that is, only case (c) from

the qualitative part is true). X is called the complete common cause for Y and Z when X

is the union of all common causes and there is no cause (direct or indirect) from Y to Z

or vice versa. �e quantitative part states that in such a case Y and Z are conditionally

independent given their complete common cause X , that is

P(Y, Z|X) = P(Y |X)P(Z|X). (4.1)

Note that Reichenbach’s principle therefore forms a two-way link between causal and

statistical notions. First, if a statistical condition is met (statistical dependence), then at

least one causal condition must be met (the qualitative part). Second, in the case of a

particular causal condition being met (simple common cause), a further statistical condition

must be met for consistency (conditional independence).

4.2.2 Justifying the Quantitative Part

Unsurprisingly, justi�cation for Reichenbach’s principle is a delicate problem in philosophy.

Basic questions from across the metaphysics of causation and probability play into this

issue. Nonetheless, it is useful to present one way to justify the quantitative part given the

qualitative part, as this can then be used to motivate its quantum counterpart. Really, this

“justi�cation” is just for illustrative and motivational purposes. It will involve temporarily

making a quite strong metaphysical assumption. However, Reichenbach’s principle (and

its quantum generalisation in Sec. 4.3) stand apart from such assumptions.
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Z

X

Y

Figure 4.1: A causal structure represented as a directed acyclic graph depicting that X is

the complete common cause of Y and Z .

For the sake of de�niteness, suppose the position of a determinist is taken. So un-

certainty is understood as arising from ignorance about deterministic dynamics or from

initial conditions. �e task is to use this assumption and the qualitative part of Reichen-

bach’s principle to show that if X is the complete common cause for Y and Z then

P(Y, Z|X) = P(Y |X)P(Z|X).

A classical channel describing the in�uence of random variable X on Y is given by a

probability distribution P(Y |X). �e determinist will always view this as the result of a

deterministic function f : X × Λ→ Y for some unknown variable Λ. Any such channel

can always be dilated in this way.

De�nition 4.1. A classical deterministic dilation of a classical channel P(Y |X) is given
by some function f : X × Λ→ Y for random variable Λ taking values λ with probability
distribution P(Λ) such that

P(Y |X = x) =
∑
λ

P(λ)δ(Y, f(x, λ)) (4.2)

where δ(Y, y′) = 1 for Y = y′ and 0 otherwise.

Consider the case where X is a complete common cause for Y and Z , illustrated in

Fig. 4.1. Let f = (fY , fZ) be a classical dilation of P(Y, Z|X) for functions fY : Λ×X → Y

and fZ : X × Λ → Z . Since X is a complete common cause, Λ must split into a pair

of variables Λ = ΛY × ΛZ such that ΛY only in�uences Y and ΛZ only in�uences Z .

If Λ were not of this form then it would be a new common cause for Y and Z which is

not screened through X , violating the assumption that X is a complete common cause.

�erefore, the dilation takes the form of fY : ΛY ×X → Y and fZ : X × ΛZ → Z such

that

P(Y, Z|X = x) =
∑
λY ,λZ

P(λY , λZ)δ(Y, fY (λY , x))δ(Z, fZ(x, λZ)) (4.3)

as illustrated in Fig. 4.2.
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X

Y

ΛY ΛZ

Figure 4.2: �e causal structure of Fig. 4.1, expanded so that Y and Z each has a latent

variable as a causal parent in addition to X so that both Y and Z can be made to depend

functionally on their parents.

Using the qualitative part of Reichenbach’s principle, ancestral independence of ΛY

and ΛZ implies their statistical independence P(ΛY ,ΛZ) = P(ΛY )P(ΛZ). Equation (4.3)

then immediately implies P(Y, Z|X) = P(Y |X)P(Z|X).

A well-known converse statement is also worth noting: any classical channelP(Y, Z|X)

satisfying P(Y, Z|X) = P(Y |X)P(Z|X) admits a deterministic dilation where X is the

complete common cause of Y and Z [Pea09].

�is completes the illustrative justi�cation for the quantitative part of Reichenbach’s

principle. Note that the mathematics of classical deterministic dilations is independent of

the metaphysical assumptions. In fact, just by acknowledging the logical possibility of a

deterministic dilation of P(Y, Z|X) one can say the following.

De�nition 4.2. A classical channelP(Y, Z|X) is compatible withX being the deterministic

common cause for Y and Z if and only if there is a deterministic dilation of the channel of
the form

P(Y, Z|X = x) =
∑
λY ,λZ

P(λY )P(λZ)δ(Y, fY (λY , x))δ(Z, fZ(x, λZ)). (4.4)

With this de�nition, the following can immediately be stated.

�eorem 4.1. Given a classical channel P(Y, Z|X), the following are equivalent:

1. P(Y, Z|X) is compatible with X being the deterministic common cause for Y and Z .

2. P(Y, Z|X) = P(Y |X)P(Z|X).

�at (1)⇒ (2) follows immediately from Eq. (4.4). �at (2)⇒ (1) is proved in Ref. [Pea09],

as noted above.

�e reverse implication, (2) ⇒ (1), shows that common cause is a possible causal

explanation of conditional independence. It is important to note that common cause is

only one possible causal explanation, not the only causal explanation. However, in the case

where Y and Z are in the causal future of X the other causal explanations will involve
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�ne tuning, suggesting that a complete common cause explanation is probably the best

explanation.

�eorem 4.1 can be read in two ways: as a summary of the justi�cation presented

above, or simply as a pair of equivalent de�nitions for conditional independence. �e

reading depends on how condition (1) is understood. If condition (1) is taken as a causal

statement, then �m. 4.1 summarises the above justi�cation. However, if condition (1) is

taken as simply a formal probabilistic statement it can be read as a de�nition of conditional

independence.

4.3 Quantum Conditional Independence and
Quantum Reichenbach

Having thoroughly introduced Reichenbach’s principle classically, these ideas can be used

to motivate a natural quantum generalisation. Before proceeding to the results some useful

notation for quantum channels should be introduced.

4.3.1 The Choi-Jamiołkowski Isomorphism

A quantum channel from system A to B is normally given as a completely positive

trace preserving (CPTP) map from density operators on A to density operators on B,

wri�en as EB|A : D(HA)→ D(HB). Alternatively, the same channel can equivalently be

expressed as a density operator inD(HB⊗HA) using the Choi-Jamiołkowski isomorphism

[Jam72, Cho75]. �ere are several variations on the exact mathematical conventions of

this isomorphism [LS13, Lei11], though morally they’re more-or-less interchangeable. �e

notation convention used in this chapter and the next is

ρB|A
def

=
∑
i,j

EB|A (|i〉A〈j|)⊗ |i〉A∗〈j| (4.5)

where {|i〉A}i is some orthonormal basis forHA and {|i〉A∗}i is the dual basis in the dual

spaceHA∗ . Strictly, ρB|A is therefore an operator onHB ⊗HA∗ in this particular version

of the isomorphism. �is choice of de�nition has two key advantages over the alternatives:

ρB|A is a positive operator and the same regardless of the choice of basis used to de�ne it.

Note also that it is normalised such that TrB ρB|A = 1A∗ and Tr ρB|A = dA.

As ρB|A is an equivalent way to express the channel EB|A, it follows that there must

be a way to express ρB = EB|A(ρA) in terms of ρB|A and ρA. �is is done by de�ning the

linking operator
τ id
A

def

=
∑
i,j

|i〉A∗〈j| ⊗ |i〉A〈j| (4.6)
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on HA∗ ⊗HA where, again, {|i〉A}i is an arbitrary orthonormal basis and {|i〉A∗}i is its

dual. �is will also be an important operator for general quantum causal models [Sec. 5.3.3].

Using this, it is easy to verify that

ρB = EB|A(ρA) = TrA∗A
(
ρB|Aτ

id
A ρA

)
. (4.7)

Note the similarities between ρB|A for a quantum channel and P(Y |X) for a classical

channel [LS13]. In particular, note that in a classical decohering limit where the quantum

systems and channels are all diagonal in some particular choices of bases, then the main

diagonal of ρB|A is exactlyP(Y |X) and all expressions reduce to their classical counterparts.

As in the rest of the thesis, a density operator wri�en with missing system subscripts

indicates the partial trace over those systems. So, for example, given a channel from AB to

CD, ρCD|·
def

= TrAB ρCD|AB and, by de�nition, ρ·|AB = 1AB . It will also o�en be convenient

to renormalise a channel ρB|A to unity. �is is wri�en with a caret, ρ̂B|A
def

= ρB|A/dA.

4.3.2 Justifying Quantum Reichenbach

�is subsection follows the classical example of Sec. 4.2.2 to develop a natural quantum

version of Reichenbach’s principle via a de�nition for quantum conditional independence.

Following the example of Ref. [CL14], the qualitative part of Reichenbach’s principle

can be applied to quantum theory almost unchanged: if quantum systems B and C are

correlated then this implies a causal connection of at least one of the three forms listed

in Sec. 4.2.1. �e only di�erence is to clarify that “correlated” here means that there

exist independent bipartite measurements on B and C that have correlated statistics.

Alternatively, this can be phrased as: ancestral independence of B and C implies no

correlated local statistics.

�e challenge, as noted in Sec. 4.1.2, is to identify quantum conditional independence in

the A→ BC scenario and use it to de�ne a quantum quantitative part for Reichenbach’s

principle. �at is, if A is a complete common cause for B and C , as illustrated in Fig. 4.3,

what restrictions should hold for the channel ρBC|A, corresponding to P(Y, Z|X) =

P(Y |X)P(Z|X)?

It may be tempting to �rst seek a quantum analogue of the joint distribution P(X, Y, Z).

However, textbook quantum theory does not provide such an analogue when some systems

are causally dependent on others and there are serious reasons to believe that such an

analogue might be impossible [HHP
+

16]. �is is the reason for concentrating on the

channels P(Y, Z|X) and ρBC|A and seeking conditions that apply to them directly.

In Sec. 4.2.2 a justi�cation of the quantitative part of Reichenbach’s principle from the

qualitative part was given by temporarily assuming that classical dynamics is fundamentally
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Figure 4.3: A causal structure depicting three quantum systems with A the complete

common cause of B and C .

deterministic. Suppose, by analogy, that quantum dynamics is taken to be fundamentally

unitary. What characterisation of ρBC|A in Fig. 4.3 follows from that? Just as in Sec. 4.2.2,

this is a temporary assumption in order to motivate the �nal result, which will stand apart

from it.

It is well known that any quantum channel ρB|A (equivalently, EB|A) can be viewed as

arising from underlying unitary dynamics via the Stinespring dilation [NC00].

De�nition 4.3. A unitary dilation of a quantum channel EB|A is given by some unitary U
onHB ⊗HF

∼= HA ⊗HL for some ancillary system L in state ρL such that

EB|A(·) = TrF
(
U(· ⊗ ρL)U †

)
, (4.8)

where F is some system of dimension dF = dAdL/dB .

Applying this to the common cause situation of Fig. 4.3 gives

ρBC|A = TrFLL∗
(
ρUBFC|ALτ

id
L ρL

)
(4.9)

where ρUBFC|AL is the Choi-Jamiołkowski operator for the unitary and τL is de�ned in

Eq. (4.6). Note that F is required so that the input and output dimensions match, but is

unimportant and will normally be traced out.

Classically, in Sec. 4.2.2, it was argued that the ancilla variable Λ must split into two

independent variables to preserve X as a complete common cause. �is implicitly uses

the obvious idea that if a deterministic causal relationship f : X × X̄ → Y cannot be

equivalently wri�en as some other function f ′ : X → Y , then X̄ must have a causal

in�uence on Y . How could it not? Its value non-trivially a�ects Y .

In unitary quantum theory the corresponding condition is slightly less obvious, but

can be made precise as follows.

De�nition 4.4. For a unitary channel ρBB̄|AĀ, system Ā has no causal in�uence on system
B if and only if the marginal output state at B is independent of any extra operations applied
to the input Ā system before applying ρBB̄|AĀ.
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Figure 4.4: �e causal structure of Fig. 4.3, dilated so that B and C each has a latent system

as a causal parent in addition toA. B and C (together with F , not shown) depend unitarily

on their parents LB , A, and LC .

�is de�nition captures the idea that interventions on Ā (including preparing some

speci�c input state) cannot a�ect the local output at B and therefore is a sensible notion

for “no causal in�uence”. Similar properties of unitary channels have been studied before

in di�erent contexts, in particular in Ref. [SW05] under the guise of “non-signalling” and

in Refs. [BGNP01, ESW02] for “semi-causal” unitaries. An equivalent de�nition, more

directly useful to the treatment here, is that Ā has no causal in�uence on B if and only if

the partial trace of the channel satis�es
1 ρB|AĀ = ρB|A ⊗ 1Ā∗ .

Just as in Sec. 4.2.2, the assumption that A is a complete common cause for B and C

therefore implies that L must factorise into ancestrally independent LB and LC where

LB has no causal in�uence on C and LC has no causal in�uence on B. It follows that the

unitary channel U (followed by tracing out F ) is of the form illustrated in Fig. 4.4. Using

the qualitative part of Reichenbach’s principle, ancestral independence of LB , A, and LC

implies that the input state to ρUBFC|LBALC factorises as ρLBALC = ρLBρAρLC .

Similarly to the classical case, temporarily assuming that quantum dynamics is unitary

has led to the following suggestion for characterising quantum common cause channels.

De�nition 4.5. A quantum channel ρBC|A is compatible withA being the unitary common

cause for B and C if and only if there is a unitary dilation U of the channel of the form

ρBC|A = TrFLBL∗BLCL∗C
(
ρUBFC|LBALCτ

id
LB
τ id
LC
ρLBρLC

)
(4.10)

where LB has no causal in�uence on C and LC has no causal in�uence on B in U .

Despite the speci�c way it was reached, this is a very natural quantum condition. It

strongly suggests the following quantum analogue of �m. 4.1.

Proposition 4.1. �e following are equivalent:

1
To see this, consider the marginal output at B gained by preceding ρBB̄|AĀ with a channel that discards

the input at Ā and replaces it with 1/dĀ. �is must be the same as the marginal output from the original

channel, so Eq. (4.5) gives the stated result.
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1. ρBC|A is compatible with A being the unitary complete common cause for B and C .

2. ρBC|A = ρB|AρC|A.

�is proposition is proved as part of the more general �m. 4.2 in Sec. 4.3.4. Note that

condition (2) has no ordering ambiguity as Hermiticity guarantees that [ρB|A, ρC|A] = 0.

It is not di�cult to verify that both conditions of Prop. 4.1 reduce to their corresponding

classical statements in any decohering limit (where all states and channels are diagonal in

some choices of “classical” bases).

�at Prop. 4.1 holds [Sec. 4.3.4] and is strongly analogous to �m. 4.1 suggests the

following de�nition for quantum conditional independence (at least where A is in the

causal past of B and C).

De�nition 4.6. For systems A, B, and C related by quantum channel ρBC|A, the outputs
are quantum conditionally independent given the input if and only if ρBC|A = ρB|AρC|A.

Finally, with these de�nitions in hand, it is easy to state the quantitative part of quantum

Reichenbach’s principle: in the case where B and C are correlated due exclusively to some

complete common cause A, then B and C are quantum conditionally independent given A

for the channel ρBC|A. Combined with the qualitative part discussed above, this completes

the de�nition of quantum Reichenbach’s principle.

So in Prop. 4.1, the quantitative part of quantum Reichenbach’s principle is motivated

by the (1)⇒ (2) statement. �e converse, (2)⇒ (1), should be useful for causal inference,

just as in �m. 4.1

�ese de�nitions will form the motivation for most of the work in Chap. 5. For the

remainder of this chapter, these de�nitions will be expanded and applied in various ways.

4.3.3 Alternative Expressions for Quantum Conditional
Independence

�ere are many equivalent ways to de�ne conditional independence of a channelP(Y, Z|X)

classically. Two of these are given in �m. 4.1: there exists a deterministic dilation that fac-

torises between Y and Z ; and P(Y, Z|X) = P(Y |X)P(Z|X). Two other useful de�nitions

are as follows.

�e �rst is that for every input P(X) to the channel, the joint distribution over input

and output values P(Y = y, Z = z|X = x)P(X = x) has vanishing conditional mutual

information I(Y : Z|X) = 0. Equivalently, this need only hold when the input distribution

is uniform P(X = x) = 1/|X|, so that I(Y : Z|X) = 0 on P̂(Y, Z,X)
def

= P(Y, Z|X)/|X|,
where |X| is the cardinality of X .
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�e second de�nition is that P(Y, Z|X) is mathematically equivalent to the channel

obtained by doing the following: (i) copy the input X , (ii) apply channel P(Y |X) to only

one copy of X , (iii) apply channel P(Z|X) to only the other copy.

�at these are both equivalent de�nitions to P(Y, Z|X) = P(Y |X)P(Z|X) are stan-

dard results and easily veri�ed. Mathematically, there is no reason to consider one de�nition

as “more fundamental” than the others (that depends on your philosophical bent). �e

de�nitions used in �m. 4.1 were only given �rst because they are the closest to the

motivational narrative being used. Another approach might have led to presenting other

de�nitions �rst.

Like the conditions of �m. 4.1, these two de�nitions also have natural quantum

counterparts. �ey provide two new ways to de�ne quantum conditional independence

for a channel, equivalent to those in Prop. 4.1. Just as in the classical case, none of these

de�nitions need be considered more fundamental than any other.

Proposition 4.2. �e following are equivalent to the conditions of Prop. 4.1 and to each
other:

3. I(B : C|A) = 0 for the quantum conditional mutual information evaluated on the
(positive, trace-one) operator ρ̂BC|A.

4. �e Hilbert space of A has a decompositionHA =
⊕

iHALi
⊗HARi

for which ρBC|A =∑
i

(
ρB|ALi ⊗ ρC|ARi

)
, where for each i, ρB|ALi is a quantum channel from ALi to B and

ρC|ARi is a channel from ARi to C .

�e proof of this, with Prop. 4.1, is in Sec. 4.3.4. It is easy to verify that condition (3)

reduces to the classical case in a decohering limit when everything diagonalises in some

choice of basis. Recall that ρ̂BC|A is just ρBC|A re-normalised to be trace-one.

Condition (4) deserves signi�cantly more discussion, provided in Secs. 4.3.5, 5.4. For

now, it su�ces to note that any classical channel which copies the input and applies

independent channels to each output will take the form of condition (4) when wri�en

as a quantum channel. It therefore generalises that alternative de�nition of conditional

independence.

4.3.4 Proving Propositions 4.1 and 4.2

Propositions 4.1 and 4.2 are more naturally taken together as a single theorem. All four

conditions given are equally valid ways to de�ne quantum conditional independence for

a channel and combining them into one theorem re�ects this. Proving their equivalence

together also requires fewer steps. �e full theorem is restated here for convenience.
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�eorem 4.2. Given a quantum channel ρBC|A, the following are equivalent:

1. ρBC|A is compatible with A being the unitary complete common cause for B and C .

2. ρBC|A = ρB|AρC|A.

3. I(B : C|A) = 0 for the quantum conditional mutual information evaluated on the
(positive, trace-one) operator ρ̂BC|A.

4. �e Hilbert space of A has a decompositionHA =
⊕

iHALi
⊗HARi

for which ρBC|A =∑
i

(
ρB|ALi ⊗ ρC|ARi

)
, where for each i, ρB|ALi is a quantum channel from ALi to B and

ρC|ARi is a channel from ARi to C .

Each of these conditions is an equivalent de�nition for when B and C are quantum condi-

tionally independent given A in a channel ρBC|A.

�is theorem will now be proved in parts. First, consider the following lemma proved

in Ref. [HJPW04].

Lemma 4.1 [HJPW04, �m. 6]. For any tripartite quantum state ρABC , the quantum condi-
tional mutual information evaluated on that state vanishes I(B : C|A) = 0 if and only if
the Hilbert space of the A system decomposes asHA =

⊕
iHALi

⊗HARi
, such that

ρABC =
∑
i

pi

(
ρBALi ⊗ ρCARi

)
, pi ≥ 0,

∑
i

pi = 1, (4.11)

where for each i, ρBALi is a quantum state on HB ⊗HALi
and ρCARi is a quantum state on

HC ⊗HARi
.

�is provides the �rst �rst part of the proof of �m. 4.2.

Proof: (3)⇔ (4). Applying Lem. 4.1 to ρ̂BC|A immediately proves that (4)⇒ (3) and gets

most of the way to proving (3)⇒ (4). To complete the proof, note that TrBC ρ̂BC|A = 1A/dA.

It follows that each ρ̂B|ALi given by Lem. 4.1 satis�es TrB ρ̂B|ALi = 1ALi
/dALi and similarly for

ρ̂C|ARi . �erefore each ρ̂B|ALi and each ρ̂C|ARi are appropriate quantum channels, completing

the proof.

�e next piece of the proof is perhaps the most involved as it demonstrates that the

unitary dilation implied by condition (1) has the structure required by condition (4).
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Proof: (1)⇒ (4). Let ρUBFC|LBALC be the Choi-Jamiołkowski operator for the unitaryU as in

the Sec. 4.3.2. Note that ρUBC|A 6= ρBC|A in general (the la�er depends on particular choices

for inputs at LB and LC—cf. Def. 4.5). �e proof proceeds by demonstrating that several

conditional mutual informations evaluated on ρ̂UBFC|LBALC
def

= ρUBFC|LBALC/(dLBdAdLC )

vanish.

�e �rst conditional mutual information of ρ̂UBFC|LBALC that vanishes is

I(B : FC|LBALC) = 0. (4.12)

�is follows by expanding in terms of von Neumann entropies

I(B : FC|LBALC) = S(ρ̂UB|LBALC ) + S(ρ̂UFC|LBALC )

− S(ρ̂UBFC|LBALC )− S(ρ̂U·|LBALC ). (4.13)

�e third term is zero, since ρ̂UBFC|LBALC is pure by unitarity. �e �nal term is equal

to log(dLBdAdLC ), since ρ̂U·|LBALC = 1(LBALC)∗/(dLBdAdLC ). Noting also that ρ̂UBFC|· =

1BFC/(dBdFdC), and using the fact that the von Neumann entropy of the partial trace of

a pure state is equal to the von Neumann entropy of the complementary partial trace, one

�nds that the �rst two terms equal log(dFdC) and log dB respectively. Summing these,

Eq. (4.12) follows.

Second

I(LB : LC |A) = 0, (4.14)

which follows immediately from ρ̂U·|LBALC = 1(LBALC)∗/(dLBdAdLC ).

�ird,

I(B : LC |LBA) = 0. (4.15)

As with Eq. (4.12), prove this by expanding

I(B : LC |LBA) = S(ρ̂UB|LBA) + S(ρ̂U·|LBALC )− S(ρ̂UB|LBALC )− S(ρ̂U·|LBA). (4.16)

�e second and fourth terms are entropies of maximally mixed states on their respective

systems, which hence sum to log dLC . Since there is no causal in�uence fromLC toB inU if

follows that ρ̂UB|LBALC = ρ̂UB|LBA⊗1L∗C/dLC . Hence, the third term is S(ρ̂UB|LBA)+ log dLC ,

which gives Eq. (4.15).

Fourth and �nally

I(C : LB|ALC) = 0, (4.17)

which follows symmetrically to Eq. (4.15) by using the assumption that there is no in�uence

from LB to C in U .
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Equations (4.12, 4.14, 4.15, 4.17) can be used to show that ρ̂BC|A satis�es I(B : C|A) = 0.

�is follows from Ref. [LP08, �m. 4.5], which states that quantum conditional mutual

informations on partial traces of a multipartite quantum state satisfy the semi-graphoid
axioms familiar from the classical formalism of causal networks [Pea09]. �erefore, the

semi-graphoid axioms satis�ed in this case are:

[I(X : Y |Z) = 0]⇒ [I(Y : X|Z) = 0] , (4.18)

[I(X : YW |Z) = 0]⇒ [I(X : Y |Z) = 0] , (4.19)

[I(X : YW |Z) = 0]⇒ [I(X : Y |ZW ) = 0] , (4.20)

[I(X : Y |Z) = 0] ∧ [I(X : W |Y Z) = 0]⇒ [I(X : YW |Z) = 0] . (4.21)

By applying Eqs. (4.18–4.21) to Eqs. (4.12, 4.14, 4.15, 4.17) one �nds

[I(B : FC|LBALC) = 0]⇒ [I(B : C|LBALC) = 0] (4.22)

[I(C : LB|ALC) = 0] ∧ [I(B : C|LBALC) = 0]⇒ [I(C : BLB|ALC) = 0] (4.23)

[I(LB : LC |A) = 0] ∧ [I(LC : B|LBA) = 0]⇒ [I(LC : BLB|A) = 0] (4.24)

[I(BLB : LC |A) = 0] ∧ [I(BLB : C|ALC) = 0]⇒ [I(BLB : CLC |A) = 0] (4.25)

�is shows that condition (1) implies I(BLB : CLC |A) = 0, calculated on ρ̂UBC|LBALC .

Using Lem. 4.1 gives

ρ̂UBC|LBALC =
∑
i

pi

(
ρ̂UB|LBALi

⊗ ρ̂UC|ARi LC
)
, (4.26)

for some appropriate decomposition ofH∗A and probability distribution {pi}i. �is decom-

position, with the fact that ρ̂U·|LBALC = 1(LBALC)∗/(dLBdAdLC ), implies

ρUBC|LBALC =
∑
i

(
ρUB|LBALi

⊗ ρUC|ARi LC
)
, (4.27)

where, for each i, the components satisfy TrBρ
U
B|LBALi

= 1(LBA
L
i )∗ and TrCρ

U
C|λCARi

=

I(ARi LC)∗ . De�nition 4.5 shows that the operator ρBC|A is obtained by acting with this

channel on the input states ρLB and ρLC respectively for LB and LC . Finally, therefore

ρBC|A =
∑
i

(
ρB|ALi ⊗ ρC|ARi

)
, (4.28)

where TrBρB|ALi = 1(ALi )∗ and TrCρC|ARi = 1(ARi )∗ , as required.

To prove the converse, that condition (4) implies (1), one can show how to construct

an appropriate unitary dilation.
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Proof: (4)⇒ (1). Each channel ρB|ALi can be dilated to a unitary transformation Vi, with

ancilla input LB in a �xed state ρLB , such that Vi acts on HLB ⊗HALi
. Similarly, ρC|ARi

can be dilated to a unitary transformation Wi, with ancilla LC in a �xed state ρLC , acting

onHARi
⊗HLC . By choosing the dimension of LB large enough, a single system LB and

state ρLB can be used for each value of i and similarly for LC .

For each i, let V ′i be the unitary that acts as Vi ⊗ 1ARi
⊗ 1LC on the subspaceHLB ⊗

HAi ⊗HLC and as zero on each subspaceHLB ⊗HAj ⊗HLC where j 6= i. Similarly, for

each i letW ′
i be the unitary that acts as 1LB⊗1ALi ⊗Wi on the subspaceHLB⊗HAi⊗HLC ,

and as zero on each subspace HLB ⊗ HAj ⊗ HLC for every j 6= i. Using these, de�ne

unitaries

V
def

=
∑
i

V ′i , (4.29)

W
def

=
∑
i

W ′
i . (4.30)

Note that: they commute [V,W ] = 0; V acts as the identity on LC ; and W acts as the

identity on LB .

It can easily be checked that the unitary WV = VW is a unitary dilation for the

channel ρBC|A in the form of condition (4), with ancillae LB and LC . From the form of V

and W it can also be seen that there can be no causal in�uence from LC to B in WV (the

output at B already exists, by the action of V , before W acts on LC at all). Similarly, since

WV = VW , there can be no causal in�uence from LB to C . �e unitary WV is therefore

the unitary dilation required by condition (1).

�ese �nal two pieces complete the proof of �m. 4.2.

Proof: (2)⇒ (3). Assuming a channel ρBC|A = ρB|AρC|A it follows that:

ρBC|A = exp
(
log ρB|A + log ρC|A

)
(4.31)

log ρBC|A = log ρB|A + log ρC|A (4.32)

log ρBC|A + log ρ·|A = log ρB|A + log ρC|A (4.33)

log(d−1
A ρBC|A) + log(d−1

A ρ·|A) = log(d−1
A ρB|A) + log(d−1

A ρC|A). (4.34)

�e �rst line follows because [ρB|A, ρC|A] = 0 (as noted in Sec. 4.3.2); the third because

ρ·|A = 1A∗ and therefore log ρ·|A is the zero matrix; and the �nal line by adding 2 log d−1
A

to both sides. It is proved in Ref. [Rus02] that if ρXY Z is any trace-one density operator,

then log ρXY Z + log ρZ = log ρXZ + log ρY Z is equivalent to I(X : Y |Z) = 0. �erefore,

the conditional mutual information of ρ̂BC|A vanishes.
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Proof: (4)⇒ (2). Condition (4) implies

ρB|A =
∑
i

(
ρB|ALi ⊗ 1(ARi )∗

)
, (4.35)

ρC|A =
∑
j

(
1(ALj )∗ ⊗ ρC|ARj

)
. (4.36)

Taking the product, terms where i 6= j have support on orthogonal subspaces and so

vanish, therefore

ρB|AρC|A =
∑
i,j

(
ρB|ALi ⊗ 1(ARi )∗

)(
1(ALj )∗ ⊗ ρC|ARj

)
=
∑
i

ρB|ALi ⊗ ρC|ARi (4.37)

= ρBC|A. (4.38)

Combining these proof steps, any of the conditions of �m. 4.2 can be seen to imply

any other. Moreover, some of the contents of the proofs are somewhat revealing. For

instance, in the proof for (4)⇒ (1) a speci�c possible structure for the unitary dilation is

revealed, one that makes the no-causal-in�uence properties explicit. Some of the theorems

used from other papers also point to places in the literature concerned with similar ideas

and which may be fruitful places to apply these results.

4.3.5 Circuits for Common Cause Channels

�e de�nitions for quantum conditional independence given in �m. 4.2 can be considered

in the language of quantum circuits. �is is useful both to elucidate their meanings and

for comparison with the corresponding classical de�nitions.

Figure 4.5 illustrates several equivalent ways to view a classical conditionally-independ-

ent channel P(Y, Z|X) (viz. one where X could be a complete common cause). Equality

(1) of that �gure simply repeats that any classical channel can be dilated to a deterministic

channel by a function f and random variable Λ that absorbs all stochasticity. �e other

three equalities are more interesting and may be understood as forming a commuting

diagram, showing two equivalent ways to get from the top le� to bo�om right. �at

is, two di�erent ways of understanding that P(Y, Z|X) is compatible with X being the

deterministic common cause for Y and Z .

Equality (2) of Fig. 4.5 states that if Y and Z are conditionally independent given

X , then the channel P(Y, Z|X) may be achieved by �rst copying X and then applying

separate channels P(Y |X) and P(Z|X) to each copy. �e symbol is used to represent
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P(Y,Z|X)

X

X

Y Z

X

Y Z

f

P( )

(1)

=

=

= =

(4)

(2) (3)

Y Z

P(Y,Z|X)

Y Z

fY

X

Y Z

fZP(Y|X) P(Z|X)

P( Y) P( Z)

Figure 4.5: Circuit representations of a classical channel P(Y, Z|X) where Y and Z are

conditionally independent given X (equivalently, where X could be a complete common

cause for Y and Z). �e symbol represents the classical copy operation. Note that

equalities (1) and (4) do not depend on conditional independence when viewed in isolation,

but they do in the context of the other equalities in the diagram.

the copying operation. Equality (4) mirrors equality (1): the channels P(Y |X) and P(Z|X)

can be individually dilated to functions fY and fZ respectively.

Finally, equality (3) follows as X is a complete common cause for Y and Z . Together,

equalities (1) and (3) illustrate the justi�cation for classical Reichenbach’s principle given

in Sec. 4.2.2.

Mirroring this, Fig. 4.6 illustrates the analogous conditions for quantum conditional

independence of channel ρBC|A. In order to do this some non-standard notation in quantum

circuits has been introduced in order to capture condition (4) of �m. 4.2. �is �gure may

similarly be read as a commuting diagram.

Equality (1) of Fig. 4.6 rea�rms that ρBC|A has a unitary dilation U . �e system being

traced-out (the symbol ) is F from Sec. 4.3.2.

Equality (2) expresses condition (4) of �m. 4.2. In order to do this the symbol
{i}

has

been introduced.
{i}

may be read as re-expressing the Hilbert space of input system A as

a direct sum of factorising spaces HA =
⊕

iHALi
⊗ HARi

. �e output wire {ALi } then

carries the le� factor of each subspace, which is then acted upon by the relevant channel

from {ρB|ALi } (similarly for the other output wire). �is is non-standard for quantum

circuits, where wires normally correspond to a single Hilbert space and adjacent wires

represent the tensor product of Hilbert spaces. Here, wires labelled as {ALi } and {ARi }
only represent a whole Hilbert space when considered together as a pair. �is has the
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Figure 4.6: Circuit representations of a quantum channel ρBC|A where B and C are

conditionally independent given A (equivalently, where A could be a complete common

cause for B and C). �e meaning of the symbol
{i}

is discussed in the text. denotes taking

the partial trace (discarding) of the indicated subsystem.

advantage of allowing factorised channels {ρB|ALi } and {ρC|ARi } to act on separate wires.

�e interpretation of these symbols will be discussed further below.

Equality (4) then applies unitary dilations to each ρB|ALi and ρC|ARi , such that all dilations

(for each i) use a common ancillary input LB and LC respectively.

�ere are two ways to understand equality (3). First, simply as the conjunction of

equalities (1), (2), and (4). Second, as expressing that the unitary U has the no-causal-

in�uence properties demanded by �m. 4.2. �ere is no direct way to express the lack

of causal in�uence in a unitary diagrammatically. However, in the proof of �m. 4.2 the

existence of a unitary dilation of the form shown here is seen to be equivalent to the

existence of a unitary with appropriate no-causal-in�uence properties. So the equalities

(1) and (3) taken together might be viewed as illustrating the justi�cation of quantum

Reichenbach of Sec. 4.3.2 (as in the classical case) but the correspondence is not immediate.

�e introduction of the new symbol
{i}

to quantum circuits should, by rights, be ac-

companied by a thorough description of its meaning. However, in this case it is useful

to leave the meaning somewhat ambiguous. For the purposes of this thesis
{i}

need only

have meaning in the diagrams of Fig. 4.6. �ere are multiple ways to interpret the symbol

such that those diagrams are well-de�ned and it would be premature to pick one above

the others before a more general diagrammatic use of
{i}

has been found.

One interpretation of
{i}

is the passive interpretation: it simply re-interprets the in-
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put Hilbert space as a direct sum of factorising spaces indexed by i, analogously to re-

interpreting a single Hilbert space as a tensor product of two factors. Indeed, when i only

takes one value
{i} is just simple factorisation. In this view,

{i}
is entirely reversible and no

physical operation occurs until the output wires are acted on. As noted above, the output

wires only form a complete Hilbert space when taken together, but allow appropriate sets

of channels to act independently on each factor.

Another valid interpretation of
{i}

is the active interpretation: it represents a von

Neumann measurement on A de�ned by the linear subspaces labelled by i, followed

by a factorisation of the output system depending on the outcome i. �is is clearly a

non-reversible physical operation.

A conditionally independent channel satisfying �m. 4.2 is decohering across the

linear subspaces labelled by i. Under the passive interpretation, this decoherence doesn’t

take hold until the sets of channels {ρB|ALi } and {ρC|ARi } are applied. Under the active

interpretation on the other hand, the decoherence occurs at
{i}

due to the measurement.

�is allows the subsequent channels, ρB|ALi etc., to be ordinary quantum channels, where

the appropriate ones are selected depending on the outcome i.

Both interpretations are compatible with the de�nitions of �m. 4.2. �e passive inter-

pretation might be preferred as a description of channels that satisfy quantum conditional

independence, while the active interpretation gives a concrete way to achieve quantum

conditional independence operationally. Of course, there are other possible interpretations

too.

If
{i}

is only used in Fig. 4.6, why should the interpretation ma�er? Comparing Figs. 4.5

and 4.6 suggests that
{i}

is, in some way, analogous to the classical copy . It represents a

general way for two agents to independently act on a single system A, just as classically

two agents can independently use input X by �rst copying it. �ere is certainly potential

for �eshing out the relationship between
{i}

and more generally.

�e symbol
{i}

is most closely related to condition (4) of �m. 4.2 and both active

and passive interpretations can be applied to that de�nition. Given the above discussion,

condition (4) seems to require channels where Bob and Clare can work independently on a

single input. Importantly, it shows that there are more general ways of achieving this than

simply factorising the quantum input. Condition (4) therefore appears to hint at a general

characterisation of when agents can share a single input while working independently.

4.3.6 Examples

De�nitions 4.5 and 4.6 respectively de�ned common causes and conditional independence

for quantum channels, which were then used to identify a quantum Reichenbach’s principle.
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U

A D

B C(a)

A D

B C(b)

Figure 4.7: (a) A generic unitary transformation from AD to BC . (b) �e corresponding

causal structure, making no assumptions about the properties of U .

It is now time to consider some examples to see how these apply in practice, as well as to

double check that the de�nitions given are reasonable.

4.3.6.1 Generic Unitary Transformations

Consider the circuit of Fig. 4.7(a) where systems A and D unitarily evolve to B and C .

Figure 4.7(b) shows the causal structure one would expect for this basic situation. It would

be very troubling indeed if the de�nition proposed in this chapter forbade AD from being

a complete common cause forB and C (that is, ifB and C were not quantum conditionally

independent given AD).

Fortunately, this is not the case. �e channel ρBC|AD in this example is its own unitary

dilation which trivially satis�es Def. 4.5. Indeed, it is easy to verify directly that the other

conditions of �m. 4.2 are also satis�ed. For example, ρ̂BC|AD is a pure state where AD is

maximally entangled with BC , so I(B : C|A) = 0. �erefore Def. 4.6 and �m. 4.2 pass

the most basic of sanity-checks.

4.3.6.2 Coherent and Incoherent Copies

Perhaps the simplest non-trivial example of a classical common cause is copying a bit.

�at is, the classical channel for binary random variables X, Y, Z ∈ {0, 1}

P(Y, Z|X = x) = δ(Y, x)δ(Z, x) (4.39)

which simply sets both outputs Y and Z to match the input X . Clearly this channel

satis�es classical conditional independence and, perhaps most importantly, it is intuitively

obvious that this should be the case: Y and Z simply take the value of X , so X must

explain all correlations between them.

One quantum generalisation for this classical channel is the incoherent copy channel

for qubits dA = dB = dC = 2

α|0〉A + β|1〉A → |α|2|00〉BC〈00|+ |β|2|11〉BC〈11|. (4.40)
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�is channel reduces to the classical bit-copy in the case where inputs are diagonal in the

{|0〉, |1〉} basis. �e Choi-Jamiołkowski state for this channel is

ρinc
BC|A

def

= |000〉BCA∗〈000|+ |111〉BCA∗〈111|. (4.41)

It is easy to verify that this satis�es all of the conditions of �m. 4.2 and therefore satis�es

quantum conditional independence according to Def. 4.6. �is should be unsurprising, the

incoherent copy is essentially a classical channel which removes any quantum coherence.

�ere is, however, another easy quantum generalisation for the classical bit-copy. �at

is, the coherent copy channel

α|0〉A + β|1〉A → α|00〉BC + β|11〉BC (4.42)

de�ned by Choi-Jamiołkowski operator

ρcoh
BC|A

def

= (|000〉+ |111〉)BCA∗ (〈000|+ 〈111|) . (4.43)

�is channel also reduces to the classical bit-copy in the same diagonal cases. However,

this channel fails to satisfy the conditions of �m. 4.2 and therefore B and C are not

conditionally independent given A. In particular, it is easy to verify that I(B : C|A) = 1

on ρ̂coh
BC|A. A cannot be considered a complete common cause for B and C in the coherent

copy.

�is should seem troubling. Just as in the classical case, B and C take the value of A in

Eq. (4.42), so how can A fail to be a complete common cause? �ere are at least three ways

to understand this apparent discrepancy and see that, far from being a failure of quantum

conditional independence, it is exactly what should hold.

�e �rst is to recall the discussion of Sec. 4.3.5, where it was noted that conditionally

independent channels capture the idea that two agents can “act independently” on a single

input. Classically, this is easy: simply copy the input and give one to each agent. In

quantum theory, this is achieved by using
{i}

in place of the classical copy. �e coherent

copy creates arbitrary entanglement between two qubits from a single qubit. From this

perspective, if Eq. (4.42) satis�ed quantum conditional independence then agents would be

able to create entanglement by acting independently and without communication on a

single qubit. �is would certainly be surprising, perhaps even perverse (for one, it would

smell of remote entanglement preparation [BHL
+

05]), and therefore it is encouraging that

�m. 4.2 rules it out.

�e second is to consider the deterministic/unitary dilations of the channels Eqs. (4.39,

4.42), shown in Figs. 4.8 and 4.9 respectively. Classically, the causal in�uence in a CNOT
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Figure 4.8: (a) Classical deterministic dilation of the bit-copy from X to Y and Z . �e

ancilla Λ is prepared with the value 0 then a CNOT gate is applied, controlled on X . (b)

�e corresponding causal structure of this dilation, note that there is no causal in�uence

from Λ to Y .

|0⟩L A

B C

A

B C

L

(a) (b)

L

Figure 4.9: (a) �antum unitary dilation of the coherent copy from A to BC . (b) �e

corresponding causal structure of this dilation, note the explicit back-action from L to B.

gate is unidirectional, as shown in Fig. 4.8(b). �e value at Λ has no causal in�uence on Y .

However, this is not the case for the quantum CNOT gate, which has a back-action (see

also Ref. [SW12]). �is is re�ected in Fig. 4.9, where L has a causal in�uence on both B

and C and therefore is an additional common cause (preventingA from being the complete

common cause).

�ese diagrams show just one example of a dilation for each channel (though arguably

the most natural), but similar remarks hold for other possible dilations. In particular, it

is not possible to �nd a unitary dilation of Eq. (4.42) where the ancilla does not act as an

additional common cause for B and C .

One might worry that this back-action should not ma�er in the quantum CNOT, since

the ancilla L always takes the state |0〉L. But this does not change the fact that there is

no way to achieve Eq. (4.42) unitarily without introducing an additional common cause.

Moreover, for those who take pure quantum states to represent “maximal but incomplete”

information about the system [CFS02b, Fuc02, Spe07, Lei06, Spe16] a pure quantum state

is not analogous to a classical point distribution
2
.

Finally, the third way to understand why the coherent copy fails to satisfy conditional

independence is via the Bayesian updating procedure discussed in Sec. 5.3.5.2. �e details

of this example are discussed in that section, for now it su�ces to say that ifA is a complete

common cause forB andC , then any knowledge aboutC gained atB should be expressible

2
Indeed, in Spekkens’ Toy Model [Spe07] (a subset of quantum theory which explicitly models quantum

states as maximal but incomplete information and the CNOT as a deterministic map, brie�y discussed in

Sec. 2.1.3) classical conditional independence fails for the coherent copy channel.
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in terms of knowledge about A. Classically, this is always the case for a complete common

cause and Sec. 5.3.5.2 demonstrates the same for quantum causal models. However, this is

not generally possible for the coherent copy: B can (in general) locally learn more about

C than can be expressed via A. �is is a key property of a common cause that fails due to

the entanglement between B and C .

So the quantum incoherent copy can be the result of a common cause, just as the

classical copy channel, while the coherent copy cannot. Reviewing the reasons given

above, the core of this discrepancy seems to come from the strength of entanglement that

the coherent copy can create and how another qubit is necessary for its creation.

4.3.6.3 Bell Experiments

In Sec. 4.1.2, Bell experiments were given as one of the main motivations for quantum

conditional independence. Simply put, Reichenbach’s principle using classical conditional

independence fails in these experiments. It is therefore ��ing to check how the notion of

quantum conditional independence introduced in Sec. 4.3.2 deals with Bell experiments.

A standard Bell experiment is of the following form. Dave prepares a pair of qubits in

the entangled singlet state |Ψ−〉 def

= (|0〉|1〉 − |1〉|0〉) /
√

2 and then gives the whole system

to Alice. Alice then noiselessly distributes the qubits, one to Bob and one to Clare. Bob and

Clare are each prevented from any means of causal in�uence on the other for the whole

experiment (this is normally done by invoking relativistic locality and ensuring they are

spacelike separated). Bob and Clare each independently decide on a choice of measurement

(from a pre-determined set of possibilities) on their qubit which they perform, obtaining

outcomes Br and Cr respectively. �is scenario is illustrated in Fig. 4.10. Note that the

slightly unusual step has been taken here of separating the preparation of |Ψ−〉 (by Dave)

from the distribution of the qubits (by Alice).

�e key result from Ref. [WS15] is that in general there is no classical causal model

(and certainly no classical common cause) that explains the correlations between Br and

Cr without �ne-tuning. A satisfying result would be that Br and Cr are appropriately

quantum conditionally independent, since the experimental set-up seems to demand an

explanation in terms of a common cause from Alice and Dave.

While Br and Cr are experimental outcomes, it is necessary to consider them as

encoded in quantum systems to apply quantum conditional independence as de�ned here.

�at is, the outcomes Br and Cr are just represented as diagonal density operators of

quantum systems in some obvious way.

It immediately follows that B and C are quantum conditionally independent given

A, since the channel ρBC|A that describes Alice distributing the qubits to Bob and Clare
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Dave, D

Figure 4.10: Schematic representation of a Bell experiment as described in the text. �e

measurements of Bob and Clare are chosen by them independently from a set of prede�ned

choices.

is simply the identity channel. So conditional independence follows from Sec. 4.3.6.1.

Since the measurement procedures of Alice and Bob are entirely factorised, it follows

that Br and Cr must also be quantum conditionally independent given A. It is simple to

verify from �m. 4.2 that composing a factorised channel (such as these measurements)

a�er a quantum conditionally independent channel must result in another conditionally

independent channel.

However, if one instead asks whetherB andC (orBr andCr) are quantum conditionally

independent given D, then the answer depends what system Dave starts with to prepare

|Ψ−〉. If, for example, Dave starts with a single qubit, then the composite channel ρBC|D is

a variant of the coherent copy and is therefore not conditionally independent. However, if

Dave starts with a pair of qubits and unitarily evolves them to |Ψ−〉, then the composite

channel ρBC|D is unitary and the channel satis�es conditional independence as above.

Should this be troubling? Not at all. �is analysis shows that statistics from Bell

experiments are quantum conditionally independent because all factorised quantum mea-

surements are quantum conditionally independent, even when made on entangled states.

�is is as it should be, since conditional independence is a property of the channel and not

of the channel-with-input. On the other hand, the cases where B and C (and therefore

Br and Cr) are not quantum conditionally independent given D are those where Dave’s

starting system is too simple to underwrite the correlations. But this also occurs classically:

condition on too simple an ancestor and variables that were conditionally independent are

rendered dependent again. One only expects conditional independence when conditioning

on a complex enough ancestor.
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4.3.7 Generalisation to k Outputs

�eorem 4.2 only considers quantum channels from a single input A to a pair of outputs

BC . It is natural to ask whether a similar set of equivalences hold for channels from

a single input A to an arbitrary �nite set {Bl}kl=1 of k outputs. �is is more than idle

curiosity; it is a �rst step towards generalising to full quantum causal models, de�ned in

Chap. 5.

Consider such a channel ρB1...Bk|A, and let B̄l denote the whole joint output system

excepting only Bl. Rather than starting from scratch, consider the following natural

generalisation of Def. 4.5.

De�nition 4.7. A quantum channel ρB1...Bk|A is compatible with A being the unitary

complete common cause for B1, . . . , Bk if and only if there is

(a) a unitary dilation U of the channel in terms of ancillae L1, . . . , Lk with factorised
initial state ρL1 ⊗ · · · ⊗ ρLk such that

(b) for each l, Ll has no causal in�uence on B̄l.

Beyond being perhaps the easiest generalisation of Def. 4.5, there is not yet any reason

to suppose that this is a good de�nition. Its strength comes from the following theorem,

which generalises �m. 4.2.

�eorem 4.3. Given a quantum channel ρB1...Bk|A, the following are equivalent:

1. ρB1...Bk|A is compatible with A being a complete common cause of B1, . . . , Bk.

2. ρB1...Bk|A = ρB1|A · · · ρBk|A, where [ρBl|A, ρBm|A] = 0 for all l and m.

3. I(Bl : B̄l|A) = 0 for all l when evaluated on the (positive, trace-one) operator ρ̂B1...Bk|A.

4. �e Hilbert space of A has a decomposition HA =
⊕

iHA1
i
⊗ · · · ⊗ HAki

for which

ρB1...Bk|A =
∑

i

(
ρB1|A1

i
⊗ · · · ⊗ ρBk|Aki

)
, where for each i and l, ρB|Ali is a quantum

channel from Ali to Bl.

Each of these conditions is an equivalent de�nition for when B1, . . . , Bk are quantum condi-

tionally independent given A in a channel ρB1...Bk|A.

De�ning quantum conditional independence with these conditions is done by analogy

with the classical and k = 2 cases. Again, each condition is an equally valid de�nition and

there is no particular a priori reason to privilege one above any other. �e whole theorem

reduces to �m. 4.2 if k = 2. �e proof follows very similarly to that of �m. 4.2 and is

presented here in parts.
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Proof: (3)⇒ (2). �e proof proceeds by induction and repeated use of �m. 4.2. To this

end, suppose the result holds for ρB1...Bn|A for some n < k (the inductive hypothesis) and

that I(Bn+1 : B̄n+1|A) = 0 as in condition (3).

By �m. 4.2, this implies that

ρB1...Bn+1|A = ρB1...Bn|AρBn+1|A (4.44)

where [ρB1...Bn , ρBn+1 ] = 0. �e inductive hypothesis implies

ρB1...Bn|A = ρB1|A · · · ρBn|A (4.45)

where the ρBj factors pairwise commute. Together these imply the factorisation of con-

dition (2) for ρB1...Bn+1|A. To show that ρBn+1 commutes with each ρBl , simply note that

ρB1...BnρBn+1 = ρBn+1ρB1...Bn and trace over all Bm6=l. �erefore, using �m. 4.2 as the

base case the result holds for all k ≥ 2 by induction.

Proof: (2)⇒ (3). �is follows immediately from �m. 4.2 by le�ing B = Bl and C = B̄l

for each l.

Proof: (3)⇒ (4). Assume that (3) holds, so that I(Bl : B̄l|A) = 0 for all l. Since quantum

conditional mutual information cannot increase if systems are discarded and is non-

negative [NC00] it follows that

0 = I(B2 : B1, B3, . . . , Bk|A) = I(B2 : B3, . . . , Bk|A). (4.46)

By �m. 4.2, I(B1 : B̄1|A) = 0 implies a decompositionHA =
⊕

iHALi
⊗HARi

such

that

ρB1...Bk|A =
∑
i

ρB1|ALi ⊗ ρB2...Bk|ARi (4.47)

⇒ ρ̂B2...Bk|A =
∑
i

pi
dALi

1ALi
⊗ ρ̂B2...Bk|ARi (4.48)

where pi = dALi dARi /dA form a probability distribution. �e terms in ρ̂B2...Bk|A only have

support on orthogonal subspaces, so [NC00]

S(ρ̂B2...Bk|A) = H({pi}) +
∑
i

pi log dALi +
∑
i

piS(ρ̂B2...Bk|ARi ), (4.49)

S(ρ̂B2|A) = H({pi}) +
∑
i

pi log dALi +
∑
i

piS(ρ̂B2|ARi ), (4.50)

S(ρ̂B3...Bk|A) = H({pi}) +
∑
i

pi log dALi +
∑
i

piS(ρ̂B3...Bk|ARi ), (4.51)

S(ρ̂·|A) = H({pi}) +
∑
i

pi log dALi +
∑
i

piS(ρ̂·|ARi ). (4.52)

104



Substituting into

I(B2 : B3, . . . , Bk|A)
def

= S(ρ̂B2|A) + S(ρ̂B3...Bk|A)− S(ρ̂B2...Bk|A)− S(ρ̂·|A) (4.53)

the H({pi}) terms and the

∑
i pi log dALi terms cancel, leaving

I(B2 : B3, . . . , Bk|A) =
∑
i

piI(B2 : B3, . . . , Bk|ARi ) = 0. (4.54)

�erefore I(B2 : B3 . . . Bk|ARi ) = 0 for each i by non-negativity and �m. 4.2 can be

applied to ρB2...Bk|ARi . Iterating this procedure yields the required decomposition.

Proof: (4)⇒ (3). �is also follows immediately from �m. 4.2 by le�ing B = Bl and

C = B̄l for each l.

Proof: (1)⇒ (4). Assume that condition (1) holds. Note from Def. 4.4 that as there is no

causal in�uence from Ll to B̄l for every l, there is also no causal in�uence from L̄l toBl for

every l. �erefore, by partitioning B1 · · ·Bk into Bl and B̄l and partitioning L1 · · ·Lk into

Ll and L̄l, �m. 4.2 implies that I(Bl : B̄l|A) = 0. �us, since l is arbitrary, this implies

(3) which further implies (4).

Proof: (4)⇒ (1). Follows by a straightforward extension of the corresponding proof in

Sec. 4.3.4.

Together, these steps can be used to show that any condition of �m. 4.3 implies any

other, thus completing the proof.

As well as being interesting in its own right, �m. 4.3 also places further con�dence

in the quantum conditional independence de�ned here being correct. �e fact that the

simplest multipartite generalisation of �m. 4.2 also holds is a testament to the naturalness

of �m. 4.2 and Def. 4.6.

4.4 Summary

�is chapter started to consider the nature of ontological causal in�uences in quantum the-

ory. A natural starting point is Reichenbach’s principle, a cornerstone of causal reasoning

but one that fails in certain quantum experiments. In particular, classical causal models

fail to adequately explain Bell experiments [Bel87, WS15]. Since classical causal models

generalise Reichenbach’s principle, it is sensible to �rst �nd a natural quantum version of

the principle before a�empting to de�ne a full framework of quantum causal models.

Finding a quantum Reichenbach’s principle becomes easier if the original is split into

two parts: qualitative and quantitative [Sec. 4.2.1]. �e qualitative part can be commuted
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to quantum theory with almost no change. �e quantitative part applies speci�cally to the

case of a complete common cause.

One way to derive the classical quantitative part is by assuming fundamentally deter-

ministic dynamics [Sec. 4.2.2]. An analogous procedure was followed to justify a quantum

quantitative part by assuming fundamental unitarity. �is gave rise to Def. 4.6 of quan-

tum conditional independence of B and C given A for a channel ρBC|A. Such quantum

conditional independence gave a natural quantum quantitative part and therefore a full

quantum Reichenbach’s principle [Sec. 4.3.2].

Classical conditional independence can be de�ned in many equivalent ways, each lend-

ing itself to di�erent intuitions. It was then proposed that the same can be said for quantum

conditional independence of a channel (Props. 4.1, 4.2). In �m. 4.2, the four proposed

de�nitions were shown to be equivalent. Each of these is a generalisation of a de�nition

for classical conditional independence and each reduces to the corresponding classical case

when states and channels appropriately decohere into some choice of “classical” bases.

One of these de�nitions, condition (4) of �m. 4.2, is particularly interesting. It identi�es

a particular structure that conditionally independent channels must follow. In Sec. 4.3.5 it

was shown that this structure has an operational interpretation and plays a similar role to

the classical copying map. It appears that this structure generally allows two agents to

“act independently” on a single input.

�eorem 4.3 generalised quantum conditional independence to the case of a channel

with k > 2 outputs. It showed that the easy generalisations of the de�nitions in �m. 4.2

hold in this more general scenario, giving extra con�dence that those de�nitions are

correct.

Some examples were considered in Sec. 4.3.6. A�er verifying that the proposed def-

initions act appropriately in some basic cases, particular a�ention was given to Bell

experiments since they were a key motivation for developing quantum Reichenbach in

the �rst place. It was shown that the outcomes of Bell experiments can be considered to

arise from a quantum common cause, even though Bell’s theorem shows they cannot arise

from a classical common cause [Bel87]. �e conditional independence does depend on

what is chosen to be conditioned on, but this is also the case for any classical conditionally

independent channel.

Having motivated, de�ned, and tested quantum Reichenbach’s principle, the next step

is to follow the classical example and generalise it to a full framework of quantum causal

models. �is will follow in the next chapter. A full discussion of these results, with open

questions for further investigation, is deferred until Sec. 5.4 once the full framework of

quantum causal models has been de�ned.
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5
Quantum Causal Models

5.1 The Need for Quantum Causal Models

�e previous chapter began to consider causal in�uences as an ontological issue in quantum

theory. By looking at the simple scenario of a complete common cause it was discovered

that a signi�cant revision of the classical ways of describing causation was required. Such

a revision was provided for that scenario in the form of a quantum Reichenbach’s principle,

utilising a notion of quantum conditional independence. In this chapter, these discussions

are extended to more general causal scenarios. Much of the work presented in this chapter

has been published in Ref. [ABH
+

17].

5.1.1 The Reality of Causal Influences

Reichenbach’s principle is a powerful link between the probabilistic/statistical notion of

correlation and the notion of a causal in�uence between two events. It supports the idea

that causal in�uences are “real,” even for those (such as probabilistic Bayesians) who prefer

to think of probabilities as purely subjective.

But Reichenbach’s principle only applies to some very simple causal scenarios, with

two events of interest. A natural generalisation of the principle is found in the framework

of classical causal models [Pea09, SGS01], which describes arbitrary causal structures and

their relationship with possible probability distributions. Just as Reichenbach’s principle

can support the reality of causal in�uences in its limited realm of applicability, so do
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classical causal models more generally
1
.

A classical causal model, de�ned fully in Sec. 5.2, comes in two parts. First, the causal
structure simply speci�es what causal in�uences exist between events (or nodes). Simple

causal structures have already been encountered in the previous chapter, e.g. Figs. 4.2,

4.9(b). Second, the probability distribution over these events compatible with the causal

structure. �e framework of classical causal models speci�es which causal structures are

permissible and which distributions are compatible with any given causal structure. Note

the similarity to Reichenbach’s principle. �e qualitative part simply demands the causal

structure take some particular form, while the quantitative part ensures the distribution is

compatible. �is is no accident: Reichenbach’s principle becomes a corollary of the more

general framework of causal models.

5.1.2 Causation in General Quantum Experiments

Given the discussion of the previous chapter, one should expect classical causal models to

be insu�cient for describing general quantum experiments. It has already been noted in

Sec. 4.1.2 that no classical causal model can describe a general Bell experiment without

�ne-tuning. But Bell experiments are speci�cally designed to show that a simple classical

common cause explanation fails. Are there other types of quantum experiments that also

resist explanation by a classical causal model?

Several such experiments have been considered in the literature [GHZ89, BGP10,

HWB11, BRGP12, Fri12, TSCA14]. It should perhaps be unsurprising that many are vari-

ations or generalisations of Bell experiment set-ups. In any case, the general point is

clear: there are many conceivable quantum experiments that resist natural explanation by

classical causal models
2
.

Just as in the case of Bell experiments and Reichenbach’s principle, these experiments

demand a revision of classical ideas of causality (each in their own way). Classical causal

models are simply insu�cient to adequately explain many quantum experiments. A

satisfactory revision would ideally describe all such experiments without �ne tuning,

superluminal in�uences, or other similar undesirable features.

Beyond this, there is another lesson to take from the search for novel Bell-like exper-

iments. Several techniques have been developed for deriving bounds on the observable

1
Another important result in this regard is the de Fine�i theorem [Fin93, DF80, Fin75] (which also has

quantum counterparts [BH13, BL09, CT09, CKMR07, CFS02c]). Amongst other things, this theorem provides

subjective Bayesians justi�cation for behaving as if the results of ancestrally independent trails are due to a

single unknown probability distribution.

2
Here “natural” might mean “in the absence of �ne-tuning” or “in the absence of superluminal causal

in�uences” or similar reasonable restrictions depending on the exact experiment considered.
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statistics from particular classical causal models [LS15, WSF16, Cha16, RBB
+

16]. It has

been noted that, given an analogous framework of quantum causal models, these tech-

niques might be adapted to derive similar bounds for achievable quantum statistics from

causal models with the same causal structures [CLG14, CMG15, CKBG15]. �en, by seeing

where the quantum bounds di�er from the corresponding classical bounds, one could iden-

tify experiments where quantum statistics violate classical causal models. A framework of

quantum causal models would hopefully enable this to be done systematically.

Such a framework of quantum causal models will be presented in Sec. 5.3. �is is found

by generalising quantum Reichenbach as given in the previous chapter, just as classical

causal models generalise Reichenbach’s principle.

�e quantum causal models presented here are entirely natively quantum. �ey are not

classical causal models with quantum additions. �ey do, however, reduce to the classical

case in appropriate decohering limits [Sec. 5.3.4]. �e framework builds on the foundation

of quantum Reichenbach from Chap. 4 and contains it as a special case. �ese features

strengthen the claim that this is an appropriate de�nition of quantum causal models and

speak to a certain degree of robustness.

Use of the framework will be illustrated in Sec. 5.3.5 by examples. �ese include the

case of a confounding common cause and simple Bayesian updating across a common

cause. Finally, Sec. 5.4 will summarise the chapter and discuss the implications from both

this chapter and the previous.

Just as in Chap. 4, all random variables and graphs will be assumed to be �nite. Similarly,

all quantum systems will be assumed to be �nite-dimensional. �is is done for clarity and

no major conceptual changes needed to extend the results to in�nite cases are anticipated.

5.1.3 Previous Approaches to Quantum Causal Models

�is is certainly not the �rst time that moves in the direction of quantum causal models

have been made
3
. �is section will review some of this previous and related work to put

the results of this chapter into their proper context.

An early approach to causality in quantum theory started small, with a pair of quantum

systems B,C acted on by a single quantum operation. �is led to de�ning the proper-

ties “(semi)-causal” and “(semi)-localisable” for such operations, as well as establishing

relationships between these properties [BGNP01, ESW02, PHHH06]. �is was extended

in Ref. [SW05] to the tripartite case BAC with very strong results on the structure of

3
�at is probably the work of Refs. [Tuc95, Tuc12], where transition amplitudes are taken to replace

conditional probabilities from classical causal models.
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“local” unitaries. �ese results are related to the channels with “no causal in�uence” used

in Secs. 4.3.2, 4.3.4.

References [LP08, LS13] made strides towards quantum causal models by viewing

density operator quantum theory as a non-commutative generalisation of probability

theory. �ere, density operators took the role of probability distributions and Choi-

Jamiołkowski operators took the role of conditional distributions. �is is very similar

to the way quantum Reichenbach was approached in the previous chapter. Formally,

there is a certain amount of overlap, with some results from Ref. [LP08] being used in

proofs in Sec. 4.3.4. However, Refs. [LP08, LS13] primarily aimed to develop “causally

neutral” quantum causal models that could be used for Bayesian inference, like classical

causal models. �is is rather di�erent from traditional approaches to quantum theory,

where spacelike and timelike relationships between systems are fundamentally di�erent.

�is focus on quantum-theory-as-probability-theory led to causal models of a di�erent

character and the programme has been hampered by di�culties in de�ning quantum-state-

like objects for timelike separated systems [HHP
+

16].

�e programme of deriving Bell-like bounds in more general causal structures was

mentioned in Sec. 5.1.2. �is inspired independent formulations of quantum causal models

in Ref. [HLP14] and Ref. [Fri16] with the aim of providing frameworks for deriving such

bounds. Both approaches are based on some underlying operational theory: the arrows of

the causal structure are taken to represent systems of that theory while the nodes (events)

represent transformations. �e operational framework of general probabilistic theories
(GPTs, [Har01, Har11, CDP10, CDP11]) is the basis for Ref. [HLP14], while Ref. [Fri16]

applies to theories based on symmetric monoidal categories. Both of these are more general

operational theories that include classical and quantum as special cases. Reference [PB15]

constructs speci�cally quantum causal models compatible with Ref. [Fri16].

Both frameworks provide some uni�cation due to their generality. �ey also prove

some novel results (notably, analogues to d-separation theorems in Refs. [HLP14, PB15]).

However, neither approach is natively quantum. �ey only de�ne conditional independence

between observed classical outcomes, rather than between quantum systems as in �m. 4.2.

In particular, one cannot condition on a quantum node in those frameworks. �e framework

de�ned in this chapter, by contrast, will generalise quantum Reichenbach and will apply

directly to quantum systems just as that principle did.

�e approaches of Refs. [HLP14, Fri16, PB15] demonstrate that there are close links

between quantum causal models and operational formulations of quantum theory. �is is

especially true of those operational formulations that consider relativistic causal structure,

including the causaloid framework [Har09], the multi-time formalism [AV07, APTV09,
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APT14, SGB
+

14], quantum combs [CDP09, Chi12, CDPV13], categorical quantum theory

[CK17, CL13], and process matrices [OCB12, ACB14]. In particular, many of these frame-

works [APTV09, CDP09, OCB12] use a pair of isomorphic Hilbert spaces to represent a

system at a point in spacetime: an “input” system which is received then transformed to

an “output” system. �is has been particularly useful for describing local interventions,
where the transformation from input to output may be freely chosen. �is approach to

interventions will be used in the nodes of quantum causal models later.

A similar interventional approach to nodes in causal models has also been considered

classically [RR13], as noted in Ref. [CS16]. �is was done to describe possible counterfactual

interventions and similar properties make the quantum interventional approach useful

here.

�e previous work that most closely resembles the quantum causal models de�ned

here is Ref. [CS16]. �ere, a de�nition for quantum causal models is given based on the

process matrix formalism [OCB12, ACB14]. As in this chapter, the dual-Hilbert-space

interventional method noted above is used for nodes in the causal structure. Nonetheless,

there are important di�erences between quantum causal models as de�ned here and those

of Ref. [CS16] which will be discussed in Sec. 5.4.

Perhaps the most important way that the quantum causal models de�ned in this chapter

di�er from all previous a�empts is that they are generalised from a quantum Reichenbach’s

principle. As demonstrated in the previous chapter, quantum Reichenbach is robust, general,

and natively quantum. If this is the correct way to generalise Reichenbach’s principle to

quantum systems, then one would expect that its natural generalisation to quantum causal

models would be similarly correct. �e philosophy of this chapter and the previous is also

deliberately neutral and sticks to structures from vanilla quantum theory as far as possible.

�is has been done to allow the results to be as widely applicable as possible.

5.2 Classical Causal Models Generalise
Reichenbach’s Principle

5.2.1 Classical Causal Models in Two Parts

Like Reichenbach’s principle, the framework of classical causal models [Pea09, SGS01]

neatly divides into two parts. First, causal structures between random variables represented

by directed acyclic graphs (DAGs). Second, the Markov condition which de�nes when a

joint distribution over variables is compatible with any given causal structure.
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Causal structures are simply a formal way to express causal relationships between

events represented by random variables. A DAG consists of a set of nodes {Xi}i joined by

arrows (a directed graph), such that it is impossible to travel from any node back to itself

by following arrows (acyclic). It is convenient to use standard genealogical terminology to

describe relationships between these nodes. For any node Xi, Pa(Xi) = Pa(i) is the set

of parent nodes for Xi. Similarly, Ch(Xi) = Ch(i) is the set of children nodes of Xi and

De(Xi) = De(i) is the set of descendants of Xi (which conventionally includes Xi itself).

Finally, Nd(Xi) = Nd(i) is the set of “non-descendants” of Xi, viz. the complement of

De(i).

�e Markov condition speci�es which joint distributions over these variables are

compatible with a given causal structure representing what actually occurred. A joint

distribution P({Xi}i) is said to be Markov for a given DAG if and only if the nodes are

those same random variables and the joint distribution can be wri�en in the form

P({Xi}i) =
∏
i

P(Xi|Pa(i)) (5.1)

(recalling that each P(Xi|Pa(i)) can be calculated from P({Xi}i) once the DAG is known).

�is de�nes the framework of causal models. A speci�c causal model is given by: a set of

random variables {Xi}i representing events, a DAG with nodes of those random variables,

and a set of conditional probability distributions P(Xi|Pa(i)). One could equivalently just

specify a joint distribution that is Markov for the graph, but it is o�en more practical
4

to

give each conditional distribution which guarantees a Markov joint distribution can be

constructed.

�is framework generalises Reichenbach’s principle. If X and Y are ancestrally in-

dependent, then the Markov condition requires that P(Y, Z) = P(Y )P(Z), which is the

qualitative part of Reichenbach’s principle. If there is a complete common cause X for Y

and Z in the causal structure (e.g. Fig. 4.1), then the Markov condition guarantees that

P(Y, Z|X) = P(Y |X)P(Z|X), which is the quantitative part. Moreover, a loose generali-

sation of Reichenbach’s principle for causal models may be stated as: correlations between

variables should have causal explanations in the causal structure.

4
More practical in two ways. First, when constructing a causal model for a given situation the individual

conditional probabilities are o�en simply easier to discover or estimate. Second, it is more economical, as

union of the spaces of di�erent conditional distributions is normally much smaller than the space of joint

distributions (you always get a Markov joint distribution by specifying conditional distributions, but not

every joint distribution is Markov).
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5.2.2 Justifying the Markov Condition

In Sec. 4.2.2, one possible justi�cation for the quantitative part of Reichenbach’s principle

from the qualitative part was presented. �is was done by temporarily assuming funda-

mental determinism for illustrative purposes. A very similar argument can be used to

justify the Markov condition [Eq. (5.1)] from the qualitative part of Reichenbach’s principle.

�is is strictly stronger than the argument in Sec. 4.2.2 since, as seen above, the Markov

condition implies Reichenbach’s principle.

To this end suppose once again that classical dynamics is fundamentally deterministic.

�e task is to prove that if a situation has a causal structure given by some DAG, then the

qualitative part of Reichenbach’s principle requires that the distribution over variables

is Markov for that DAG. �is argument closely mirrors that of Sec. 4.2.2 and so will be

covered quickly.

Just as in Sec. 4.2.2, a determinist will always view the classical maps between nodes

in the causal structure to be the result of deterministic dilations. �at is, for every node

X there must, in reality, also be some latent node Λ that is a cause for X in a more

fundamental causal structure. �is Λ ensures the classical channel that outputs X is the

result of a deterministic dilation with input Pa(X)× Λ. Simply put, any stochasticity in

the original causal model is explained by functions including hidden latent variables in a

more fundamental causal model.

Moreover, each latent variable must be unique to each node and have no parents. If

this were not the case then adding the latent variables would invalidate the original causal

structure by introducing new common cause links. In particular therefore, the latent

variables are ancestrally independent and thus, by the qualitative part of Reichenbach’s

principle, their distributions factorise.

Pu�ing this together, one can say the following.

De�nition 5.1. A joint distribution P({Xi}i) is deterministically compatible with a causal

structure given by DAG G if and only if:

(a) the nodes of G are the variables {Xi} and

(b) there exists causal structureG′ obtained fromG by adding a node Λi and a single arrow
Λi → Xi for each Xi such that

(c) there exist distributions P(Λi) and functions5 fi : Pa(i)× Λi → Xi that form deter-
ministic dilations for each channel P(Xi|Pa(Xi)) derived from the joint distribution.

5
Here Pa(i) is being used to refer to the parents of Xi in G. Of course, in G′

each Λi is a parent for the

corresponding Xi.
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Just as in Sec. 4.2.2, this mathematics is independent from the temporary assumption

of determinism used to reach it. By simply entertaining the logical possibility of a deter-

ministic dilations, the following theorem from Ref. [Pea09] completes the justi�cation of

the Markov condition.

�eorem 5.1 (Ref. [Pea09]). Given a joint distribution P({Xi}i) and a causal structure the
following are equivalent:

1. P({Xi}i) is deterministically compatible with the causal structure.

2. P({Xi}i) is Markov for the causal structure, satisfying Eq. (5.1).

�eorem 5.1 is clearly analogous to �m. 4.1. It also admits similar readings: both as

the justi�cation presented above and as proving that Eq. (5.1) and Def. 5.1 are equivalent

de�nitions of the Markov condition. As in Sec. 4.2.2, this depends on whether condition

(1) is taken as a causal or probabilistic statement respectively.

Once again, this argument is not meant as a complete �rst-principles derivation of

classical causal models. It is instead simply illustrative and helps to motivate the approach

to quantum causal models that follows.

5.3 Quantum Causal Models Generalise Quantum
Reichenbach

In the previous section, it was seen that the framework of classical causal models can

be seen as a generalisation of Reichenbach’s principle to more general causal structures.

Moreover, one way to justify the crucial Markov condition of classical causal models

was shown by assuming fundamental determinism (mirroring the justi�cation of the

quantitative part of Reichenbach’s principle in Sec. 4.2.2).

�is will now be used to motivate a de�nition for quantum causal models. In particular,

quantum causal models should generalise both quantum Reichenbach and classical causal

models. �e de�nition of quantum causal models that follows naturally achieves both of

these things, pu�ing it in a strong position.

5.3.1 Defining Quantum Causal Models

In Secs. 4.2.2, 4.3.2, and 5.2.2 justi�cations were given for Reichenbach’s principle, quantum

Reichenbach, and classical causal models respectively. Each of these proceeded by tem-

porarily assuming either fundamental determinism (in the classical cases) or fundamental

unitarity (in the quantum case).
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It would be neat, therefore, to continue that pa�ern here. �at is, to justify a de�nition

for quantum causal models by assuming fundamental unitarity. Unfortunately, this is

di�cult to do a priori since it is unclear what sort of mathematical object a quantum

analogue for the Markov condition should apply to. For Reichenbach’s principle, the quan-

titative part applies to the classical channel. Correspondingly, for quantum Reichenbach

the quantitative part applies to the quantum channel. For classical causal models, the

Markov condition applies to the joint probability distribution. Here lies the problem. As

already noted, there is no convenient or accepted quantum analogue for a joint probability

distribution for causally-related systems [HHP
+

16].

�e approach taken here, therefore, is to propose a de�nition that most simply gener-

alises quantum Reichenbach to general causal structures. �e resulting de�nition can then

be checked to satisfy other natural criteria.

As with the qualitative part of Reichenbach’s principle, the causal structures from

classical causal models can be commuted to quantum theory with almost no change. �is

is because a causal structure is, mathematically, just a DAG. All that remains is to specify

what the nodes should correspond to.

Mathematically, the nodes of a classical causal structure are taken to be random

variables. Physically, they can be thought of as events/systems in local regions of spacetime

which can take several values/physical states. In quantum theory, the most general way to

describe the same thing is with a quantum instrument applied to a system. �is covers

both the interpretation as an event with outcome value and as a system with a state.

�erefore, each node Ai of a quantum causal structure will correspond to two Hilbert

spaces: an input space Hin
Ai

= Hin
i and an output space Hout

Ai

def

= Hout
i

def

= (Hin
i )∗ which is

its dual. �e fact that the output Hilbert space is the dual to the input Hilbert space is

simply a convenient mathematical convention that will be useful later, morally they can be

thought of as “the same” spaces. �is allows the interpretation that each node A contains

the local laboratory of some agent, who performs some quantum instrument with input

fromHin
i and output toHout

i . It also allows for less general interpretations, such as each

node simply representing the state of some system when the quantum instrument is just

an identity map.

As noted in Sec. 5.1.3, this interventional approach to quantum nodes has been used

many times before in the literature. It is well-known as a general and convenient way

to allow for both agent interventions and measurement outcomes where they might be

needed.

�e �rst part of a quantum causal model is therefore to specify a causal structure as a

DAG and interpret the nodes as pairs of input/output Hilbert spaces as above. To complete
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the causal model, by analogy with a classical causal model, channels between the nodes

are required.

�e simplest way to generalise quantum Reichenbach to these causal structures is

to specify, for each node Ai, a quantum channel ρAi|Pa(i) from

⊗
Aj∈Pa(i)Hout

j to Hin
i

(using the notational convention from Sec. 4.3.1). �en, to ensure that these channels are

compatible, simply require that they commute pairwise. �at is, for all nodes Ai and Aj ,

require [ρAi|Pa(i), ρAj |Pa(j)] = 0. As such, a complete channel from common parents to

their children can be taken to be the product of each of these channels ρAi|Pa(i)ρAj |Pa(j) · · · .
�e fact that each channel commutes with every other ensures that such a product still

de�nes a valid quantum channel via the Choi-Jamiołkowski isomorphism.

It is convenient to wrap all of these channels into a single object. �is can easily be

done by taking their product. �e result is the model state

σ
def

=
∏
i

ρAi|Pa(i) (5.2)

which is an operator on

⊗
i

(
Hin
i ⊗Hout

i

)
where, recall, each factor commutes with every

other.

�is completes the de�nition of a quantum causal model. It consists of a causal structure

with local laboratories for the nodes {Ai}i and a set of channels ρAi|Pa(i) which pairwise

commute. �ese channels together de�ne a model state by Eq. (5.2).

Equivalently, a quantum causal model could be taken as a causal structure together

with a model state σ over

⊗
i

(
Hin
i ⊗Hout

i

)
which is required to satisfy Eq. (5.2). �is way,

Eq. (5.2) is analogous to the Markov condition and is therefore called the quantum Markov
condition.

Crucially, this de�nition generalises quantum Reichenbach. If the causal network is

taken to be a complete common cause from A to BC [Fig. 4.3], then the quantum Markov

condition requires that the channel factorises as ρBC|A = ρB|AρC|A. �is is the reason for

claiming that this de�nition is the simplest to generalise quantum Reichenbach. Moreover,

it also generalises classical causal models, as shall be shown explicitly in Sec. 5.3.4

More work is required to �esh out the meaning of these quantum causal models and

how they should be used, but �rst some remarks should be made about the relationship

between this approach and traditional classical causal models.

5.3.2 Bayesian vs. do-conditionals

Strictly speaking, an important distinction should be made between two types of conditional

in classical causal models, discussed at length in Ref. [Pea09]. �e Bayesian conditional
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is derived from a joint probability distribution by Bayes’ rule P(Y |X)
def

= P(Y,X)/P(X).

�is represents the set of probability distributions that should be assigned to Y given that

X is found to have any given value. �e do-conditional P(Y | do X), on the other hand,

gives the set of probability distributions for Y given that an agent has intervened and set

X to any de�nite value. Rather than following Bayes’ rule, this is found by modifying the

causal model to remove any arrows entering X and se�ing P(X) to the appropriate point

distribution for the speci�cally set value.

A classical channel from X to Y should strictly, therefore, be wri�en P(Y | do X) and

similarly quantum channels ρB|A are more analogous to do- than Bayesian conditionals.

�is relates to the problem with joint states over causal structure in quantum theory

discussed above [HHP
+

16].

Since Bayesian conditionals are derived from a joint distribution, �nding a close quan-

tum analogue for the Bayesian conditional seems di�cult at best (�nding a joint state over

the network is not straightforward). For this reason, no such analogue is given here. Rather,

the quantum Markov condition has been given in terms of quantum channels ρA|Pa(A),

which do not require such a joint state but are more analogous to do-conditionals.

Fortunately, this need not break the analogy between quantum and classical causal

models. If a probability distribution P({Xi}i) is Markov for a causal network, then for

each node P(Xi|Pa(i)) = P(Xi| do Pa(i)) [Pea09]. �at is, the Bayesian conditionals

match the form of the classical channels in the network. �erefore one can equivalently

de�ne classical causal models as causal structures supplemented with do-conditionals

P(Xi| do Pa(i)) for each node. It is this de�nition to which quantum causal models are

more closely analogous.

�ese distinctions have not and will not be used in the bulk of this thesis for brevity.

Reference [CS16] discusses similar issues in the context of its related approach to causal

models.

Of course the other main di�erence between how quantum causal models and classical

causal models have been de�ned here is that quantum causal models use an interventionalist

approach to nodes, as noted in Sec. 5.1.3.

5.3.3 Making Predictions

A quantum causal model would not be much use if it did not give predictions for mea-

surements. Fortunately, once a quantum instrument has been speci�ed at each node joint

probabilities for their outcomes can be found.

For a quantum causal model with nodes {Ai}i, let {Ekii }ki be the quantum instrument

at node Ai, expressed as a set of completely positive maps from Hout
i to itself. Index ki
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labels the classical outcomes of the intervention in that local laboratory. An equivalent

way to de�ne these instruments is with their Choi-Jamiołkowski isomorphic states on

Hout
i ⊗Hin

i

τ kii = τ kiAi
def

=
∑
p,q

Ekii (|p〉out〈q|)⊗ |p〉in〈q| (5.3)

where {|p〉in}p is an arbitrary orthonormal basis on Hin
i and {|p〉out}p its dual basis in

Hout
i .

In the special case where the instrument is the identity (i.e. there is no intervention)

then this state is the linking operator used in Sec. 4.3.1

τ id
i = τ id

Ai

def

=
∑
p,q

|p〉out〈q| ⊗ |p〉in〈q|. (5.4)

With this notation, the joint probability for any set of outcomes {ki}i given choices of

quantum instruments is given by

P({ki}i) = Tr
(
σ
(
τ k11 ⊗ τ k22 ⊗ · · ·

))
. (5.5)

It is easy to verify that this produces the same probabilities as standard quantum theory.

�e linking operator allows one to remove or ignore nodes from a causal network. �is

process is called linking out and corresponds to the classical marginalisation process. For

example, suppose node A is ignored. �is can be represented by linking it out from the

model state

LnA σ
def

= TrAinAout

(
στ id

A

)
. (5.6)

�e linking operation Ln may be thought of as a modi�ed partial trace, which includes

insertion of the linking operator. Doing this produces a new model state which can be

used to obtain outcome probabilities from the other nodes as above.

�ere is no general reason to expect LnA σ to satisfy the quantum Markov condition for

an appropriate causal structure even when σ did for the original causal structure. However,

in the special case where A has no children, then it is easy to verify that LnA σ does satisfy

the quantum Markov condition for the causal structure obtained by removing node A.

5.3.4 Classical Limits

As noted above, it is crucial that any reasonable de�nition of quantum causal networks be

a generalisation of classical causal networks. It shall now be shown that this is the case for

quantum causal models as de�ned in Sec. 5.3.1.

�antum theory describes a classical situation in a decohering limit. �at is, when

there is a choice of orthonormal basis for each system such that all states and channels are
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diagonal with respect to those bases. In such a case, the elements of those bases become the

classical states, the quantum states probability distributions over them, and the channels

become classical channels.

Consider any decohering limit for a quantum causal network and let all of the quantum

instruments be the identity. By taking the product of the model state σ with the linking

operators and tracing out the input spaces of each node, a state diagonal in these bases is

obtained

ς
def

= TrAin
1 A

in
2 ···
(
σ
(
τ id

1 ⊗ τ id
2 ⊗ · · ·

))
. (5.7)

�is is a positive trace-one operator overHout
A1
⊗Hout

A2
⊗ · · · .

�e diagonal entries of ς (in the decohering bases) form a probability distribution over

the decohered classical states of each Hout
Ai

. �e claim is that if σ satis�es the quantum

Markov condition [Eq. (5.2)] in such a classical limit, then the distributions encoded in

ς satisfy the classical Markov condition for the same causal structure. �is will now be

shown.

Suppose σ satis�es Eq. (5.2). By writing σ as a product where each factor ρA|Pa(A)

appears before the corresponding factor for any of its children, then each operator τ id
A can

be commuted through to appear to the immediate right of the corresponding ρA|Pa(A). �e

result is a product with one factor

TrAin

(
ρA|Pa(A)τ

id
A

)
(5.8)

for each node A, in any order where parents appear before children.

Suppose the linking operator is expanded in terms of the decohering basis {|a〉}a for

A, so that Eq. (5.8) takes the form∑
a,b

Ain〈b|ρA|Pa(A)|a〉Ain ⊗ |a〉Aout〈b|. (5.9)

Recalling that ρA|Pa(A) is diagonal in the decohering bases, all terms vanish except where

b = a. Le�ing {|p̄〉}p be the product basis of the decohering bases for each node in Pa(A),

the operator ρA|Pa(A) can be expanded to �nd∑
a,p

{
〈a|EA|Pa(A)

(
|p̄〉Pa(A)in〈p̄|

)
|a〉
}
|a〉Aout〈a| ⊗ |p̄〉Pa(A)out〈p̄|. (5.10)

Here the fact that EA|Pa(A) only produces non-zero output when the input is diagonal in the

{|p̄〉}p basis (due to decoherence in the classical bases) has been used. Finally, note that the

factor in braces is simply the probability that the classical values of Pa(A) represented by

|p̄〉 are mapped by EA|Pa(A) to the classical value |a〉 of A. �at is, 〈a|EA|Pa(A)(|p̄〉〈p̄|)|a〉 =

P(A = a|Pa(A) = p).
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Figure 5.1: Causal structures where B causes C , but they also have additional common

causes. (a) A is the only common cause (though not a complete common cause due to the

arrow from B to C). (b) D is an additional common cause.

�is shows that ς is a product of factors, each diagonal in the product basis of the

decohering bases

ς =
∏
A

{∑
a,p

P(A = a|Pa(A) = p)|a〉Aout〈a| ⊗ |p̄〉Pa(A)out〈p̄|

}
. (5.11)

Each diagonal entry in this basis is a product of conditional probability distributions

P(A = a|Pa(A) = p), which forms a joint distribution for the variables to take values

a, p, . . . etc. �us, the entries are joint distributions over the graph which are Markov for

the graph, as claimed.

In this way, quantum causal models naturally reduce to classical causal models in the

appropriate limit with no interventions.

5.3.5 Examples

�antum causal models have now been de�ned, shown to predict measurement outcomes,

and shown to reproduce classical causal models in the relevant limits. Since quantum causal

models generalise quantum Reichenbach, the examples of Sec. 4.3.6 are also examples for

quantum causal models. What follows are further examples to illustrate the properties of

quantum causal models.

5.3.5.1 Confounding Common Cause

Consider a quantum causal model with causal structure shown in Fig. 5.1(a). Such a model

requires channels ρC|AB , ρB|A and ρA to be speci�ed, which must commute pairwise. �is

produces a model state σ = ρC|ABρB|AρA onHout
C ⊗Hin

C ⊗Hout
B ⊗Hin

B ⊗Hout
A ⊗Hin

A .

First, note some properties of these states. Since A has no parents, its “channel” is from

the trivial system, which is simply a quantum state ρA onHin
A . Some of the commutation
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relations, such as [ρB|A, ρA] = 0, follow immediately, since they only act non-trivially

on di�erent Hilbert spaces. However, the requirement that ρC|BA and ρB|A commute is a

signi�cant restriction, as they both act onHout
A . By �m. 4.2, this requires that there is a

decompositionHout
A =

⊕
iHout

ALi
⊗Hout

ARi
where ρC|BA acts only on the right-hand factor in

each subspace and ρB|A only on the le� hand factors.

�is is very di�erent from classical causal models of the same causal structure. It is easy

to check that any classical distribution P(A,B,C) is Markov for Fig. 5.1(a) interpreted as a

classical causal structure. �ere is no analogue of the strong constraint that [ρC|BA, ρB|A] =

0 puts on the channels possible in a quantum causal network. Classically, both B and C

may depend arbitrarily on A, whereas in a quantum causal network these dependencies

must satisfy a compatibility condition required by commutation.

Figure 5.1(b) shows a variation of this causal network, whereD is an additional common

cause. �is might represent, for example, a system interacting with an environment. A, B,

and C are the system at di�erent times and D is the initial state of the environment. �e

causal arrow from A to C is necessary since information can �ow into the environment

from A and back to the system at C (nodes for the environment at later times have been

omi�ed from the diagram).

Clearly, if nodes A and D are considered together then this is the exact same form as

Fig. 5.1(a). �erefore, the Hilbert spaceHout
A ⊗Hout

D must factorise in linear subspaces as

above, with the le� hand factor going to B and the right hand factor to C . �is does not
imply that each individual space Hout

A and Hout
D must decompose in this way, only that

the tensor product of the two does. Suppose that ρD is �xed in some pure state |0〉〈0| and

consider removing D from the structure (returning to Fig. 5.1(a)). �ere is no reason to

expect that the resulting model state, found by Eq. (5.6), satis�es the quantum Markov

condition for Fig. 5.1(a). �is is because the channels out ofHout
A will not generally have

the required decomposition.

Once again, this is in marked contrast with the case of Fig. 5.1(b) interpreted as a classical
causal structure. Again, there is no restriction on the form of the classical channels out of

A or D (or both together). Moreover, if D is �xed to have some de�nite value and then is

marginalised out of the causal model, the resulting distribution will always be Markov for

Fig. 5.1(a). Of course, it must be, since every distribution over A, B, and C is Markov for

Fig. 5.1(a).

One way to understand this to consider pure quantum states to contain some irreducible

stochasticity. For example, one may prefer to think of them as “maximal but incomplete

information” about a system (see also Sec. 4.3.6.2). In this view, the idea that a pure state

of D could still underwrite correlations between B and C is a natural one.
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Figure 5.2: Causal structures for simple complete common causes in (a) the classical case

and (b) the quantum case.

�ese examples demonstrate a curious thing: that quantum causal models appear to

place more restrictions on the same causal structure than their classical counterparts. Of

course, quantum theory and quantum casual models contain classical theory and classical

causal models respectively, so there is no contradiction. However, this shows that causal

structure tempers some of the extra power of quantum theory in a way that it does not

classically.

5.3.5.2 Simple Bayesian Updating with a Complete Common Cause

Consider again the case of X being a complete classical common cause for Y and Z ,

illustrated in Fig. 5.2(a). Classically, an important property of a complete common cause is

that any knowledge about Z gained at Y is expressible via X . �at is, if an agent learns

something about Y , then the derived knowledge they gain about Z is entirely the result of

derived knowledge they have learned about X . �e new information “follows the arrows”

of the causal model (both backwards then forwards). Indeed, properly formalised, this can

be viewed as another de�nition for classical conditional independence.

Speci�cally, the causal model speci�es channels P(Y |X) and P(Z|X) together with

distribution P(X). Suppose that an agent learns that Y = y. �is allows them to replace the

initial distribution P(X) with P̃(X)
def

= P(X|Y = y). �en passing this new distribution

through the channel P(Z|X) they �nd

P(Z|Y = y) =
∑
x∈X

P(Z|X = x)P̃(X = x). (5.12)

�e result is exactly the same as if the agent had simply calculated P(Z|Y ) from P(Y, Z,X)

using Bayes’ rule. For this procedure to work generally, it is essential that Y and Z are

conditionally independent given X .

�is is a natural and intuitive property of a complete common cause: it underwrites

all correlations and therefore can be used to mediate information gained. It is therefore

desirable, perhaps even essential, for the same procedure to work in quantum causal

models.
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For the corresponding quantum causal model of Fig. 5.2(b), suppose that an agent

makes some measurement at B, obtaining outcome kB . �is corresponds to the operator

τ kBB from a quantum instrument, as in Eq. (5.3). It is well known from standard quantum

theory that the agent can consider the system at C to be in an updated state σC|kB based

on this measurement outcome due to “collapse” upon measurement. So long as A is a

complete quantum common cause for B and C , this can be expressed as the result of a

modi�ed input state ρ̃A being passed into the channel ρBC|A and then marginalising over

B. �is mirrors exactly the classical updating procedure above.

�e updated state at A required to do this is

ρ̃A
def

=
ρA TrBinBout

(
τ kBB ρB|A

)
Tr
(
ρAτ

kB
B ρB|A

) . (5.13)

To verify that this state behaves as required, simply apply the channel ρBC|A = ρB|AρC|A

and trace out the output at Bin
. �e result is equal to (up to normalisation)

σC|kB = TrBout

(
(EkBB ⊗ idC)(EBC|A(ρA))

)
(5.14)

which is exactly the marginal state on C a�er the agent �nds the outcome kB as predicted

by standard quantum theory. In other words, rather than taking the joint state on BC

and measuring B, the agent can �nd the marginal at C a�er measurement by inpu�ing

ρ̃A into the channel ρBC|A. Just as in the classical case, to make this work conditional

independence of the channel ρBC|A was necessary. Also similarly to the classical case, all

that is needed to �nd ρ̃A is the original state on A, the channel ρB|A and the outcome kB .

�e agent can express ρ̃A in complete ignorance of C or the channel to it.

Consider, for example, the coherent copy channel discussed in Sec. 4.3.6.2. �ere it was

seen that this channel, summarised in Eq. (4.42), does not satisfy conditional independence,

which initially seems surprising. However, this updating procedure provides another way

of understanding why it should not.

Suppose the input to the coherent copy [Eq. (4.42)] is |+〉A = (|0〉 + |1〉)/
√

2. �e

output is therefore the Bell state |Φ+〉BC = (|00〉+ |11〉)/
√

2. If a measurement were made

at B and outcome |+〉B obtained then the resulting collapsed marginal at C would become

|+〉C . However, there is no state which can be input to that channel to produce |+〉C as

the marginal output at C . �erefore, ρ̃A doesn’t exist for this channel and measurement.

�is is in violation of the discussion above, where it was seen that every common cause

channel and subsequent measurement can be understood in this way.

�is whole procedure of knowledge “following the arrows” is reminiscent of Bayesian

updating. It is, however, much more limited in scope. �is discussion only directly applies
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to complete common causes. Recall also the disanalogy between quantum causal models

and Bayesian conditionals noted in Sec. 5.3.2.

5.4 Summary and Discussion

�is chapter completes the investigation of ontological causal in�uences in quantum theory

in this thesis. Following the classical example, this has been done by generalising quantum

Reichenbach of Chap. 4 to a full framework of quantum causal models. Since quantum

Reichenbach is well motivated, the resulting framework is placed on a solid foundation.

In order to respect the great success of the theory of classical causal models, any

framework of quantum causal models should also be a generalisation of that theory. To this

end, Sec. 5.2 brie�y outlined the theory of classical causal models and demonstrated one

justi�cation for them, mirroring the justi�cation for Reichenbach’s principle in Sec. 4.2.2.

Just as with Reichenbach’s principle, �nding a quantum generalisation of classical causal

models becomes easier when the original is bisected. �e causal part, causal structures,

can be used in quantum theory with li�le change. All that is needed is a speci�cation

of what the nodes correspond to. �e real challenge is �nding a generalisation of the

probabilistic/statistical part—the Markov condition Eq. (5.1).

To this end, the de�nition of quantum causal models in Sec. 5.3.1 sought to most

simply generalise quantum Reichenbach to general causal networks. Each node in the

causal structure was modelled as a local laboratory, with input system, output system,

and the possibility of some agent who intervenes there. �is allowed the nodes to be

thought of as events, observations, or system states as needed. It also facilitated a quantum

Markov condition that applies to a global model state [Eq. (5.2)] that is largely disconnected,

avoiding the problems with de�ning true joint quantum states over time [HHP
+

16].

To further justify this somewhat speculative de�nition, Sec. 5.3.3 demonstrated how it

can be used to obtain predictions for experiments in line with standard quantum theory.

Further, Sec. 5.3.4 explicitly showed how these quantum causal models generalise classical

causal models. �is was followed by some examples in Sec. 5.3.5, which touch on the power

of quantum causal models for explaining phenomena and highlight some key di�erences

with classical causal models.

As noted in Sec. 5.1.3, this is not the �rst time that a framework of quantum causal

models has been de�ned. �e framework given here, however, has two key advantages

over previous a�empts. First, it is a natively quantum framework. All classical systems

described by the network are quantum systems in some classical decohering limit. �is is

a great strength over frameworks which treat quantum systems as add-ons to classical
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causal models. Here, quantum systems are the only �rst-class citizens. Second, it rests on a

thoroughly motivated quantum Reichenbach’s principle. So, at least in complete common

cause scenarios, the causal models inherit this motivation and have many close analogies

to the classical case.

In particular, the important di�erences between quantum causal models given here

and those of Ref. [CS16] should be noted. Both use a similar set-up, with input and output

spaces at each node with possible interventions between them. �e important di�erence

is in how these nodes can be linked. In Ref. [CS16], the output space from one node

must factorise as a tensor product of spaces for each outgoing causal arrow. �is is much

stronger that the condition here, which requires that output Hilbert spaces must factorise

in linear subspaces (which may be one-dimensional) when they are a complete common cause.

Compare, for example, the causal models of Sec. 5.3.5.1 where this thesis only requires the

combined AD system to factorise in this way, while Ref. [CS16] would require A and D to

individually factorise as simple tensor products.

�e de�nition of quantum Reichenbach provided in Sec. 4.3 rests on a concept of

quantum conditional independence of outputs B and C given input A, which has four

equivalent de�nitions given in �m. 4.2. A corresponding set of de�nitions of conditional

independence of k > 2 outputs given one input are given in �m. 4.3. Consider again each

of these de�ning conditions.

Condition (1) �ts perfectly with the idea that all quantum dynamics is fundamentally

unitary, a popular position known as the “church of the larger Hilbert space”. It de�nes

exactly which unitaries can be considered to act as complete common cause channels

(satisfying conditional independence of outputs given input). In such a view, therefore,

quantum conditional independence provides a strong characterisation of the structure of

ontological transformations. Moreover, this de�nition of conditional independence can be

found just by assuming a larger Hilbert space position, as in Sec. 4.3.2.

Condition (2) is perhaps the most pleasingly simple, but is not directly terribly useful.

Not only is the Choi-Jamiołkowski state ρBC|A a somewhat roundabout description of the

channel, but the product of two such states has no direct physical meaning in general. �e

great exception, of course, is in a decohering classical limit, when it becomes the familiar

condition for classical conditional independence.

Condition (3) is a very direct generalisation of the corresponding classical condition.

To obtain the state ρ̂BC|A as a simple joint quantum state, one can prepare a maximally

entangled input |Φ〉 =
∑

i |i〉A|i〉A for any basis {|i〉}i ofHA and input half of it into the

channel ρBC|A. �e joint output state, including the extraA system, will be mathematically

equal to ρ̂BC|A. �is closely mirrors how one can obtain the corresponding classical
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distribution P̂(Y, Z,X) as discussed in Sec. 4.3.3. Condition (3) also provides an interesting

link to the study of approximate quantum Markov chains [ILW08, FR15, Wil15, STH16,

LW14, JRS
+

15, BLW15, SFR16]. Typically, (approximate) quantum Markov chains are

de�ned for a tripartite joint quantum state with (approximately) vanishing conditional

mutual information. In the approximate case, questions of how characterise quantum states

with small-but-non-zero conditional mutual information are of great importance. Such

results should also be very important for the study of quantum causal models, especially if

one wants to reason about causal structures from imperfect experimental data.

Condition (4) is perhaps the most curious, but is also very persuasive. As discussed

in Sec. 4.3.5, it seems to directly capture the idea that such channels are those allowing

two agents to independently act on a single input. A general procedure for this is to

perform a von Neumann measurement on the input and factorise the resulting state in a

manner that can depend on the measurement result. Equivalently, the channel factorises

into two, potentially di�erently in di�erent linear subspaces. �e factorisation in linear

subspaces is analogous to the classical copy operation, in so far as it allows two agents

to act independently on a single input. �is is an interesting new analogue for the copy

operation. In Sec. 4.3.5, these operations were represented in circuit diagrams with the

new symbol
{i}

.

�e use of
{i}

in circuit diagrams immediately suggests extending circuit formulations of

quantum theory to natively support such structures. In particular, it would be interesting

to see how
{i}

could be incorporated into the diagrammatic reformulation of quantum

theory of Refs. [Coe10, CK17] based on category-theoretical underpinnings.

Perhaps, if an operational formalisation of the concept of two agents “independently”

acting on a single input were found, one could derive condition (4) as a consequence. �is

would provide another strong justi�cation for quantum Reichenbach as de�ned here, as

well as being an interesting result in its own right.

Classical causal networks have become invaluable in the study of statistics. In particular,

the �eld of causal inference [Pea09, SGS01, LS15, WSF16, CLM
+

14], which aims to deduce

properties of the causal structure from uncontrolled statistical data. �is has signi�cant

applications in many areas of science and beyond. �e quantum causal models presented

here should provide the appropriate framework for achieving similar utility for quantum

experiments.

As noted in Sec. 5.1.2, classical causal models have provided techniques for deriving

Bell-like inequalities for more general causal structures [LS15, WSF16, Cha16, RBB
+

16].

�e quantum causal models presented here should therefore prove useful in adapting these

126



techniques to �nding bounds on observables in quantum experiments with the same causal

structures [CLG14, CMG15, CKBG15].

�ere has been much recent interest in the idea of “inde�nite causal structures” in

quantum theory. �at is, considering the possibility of a coherent superposition of di�erent

causal structures [Chi12, OCB12, MRSR16, FB16]. �is may be signi�cant for the project

of unifying quantum and general relativistic theories [Har09]. One might expect the

framework of quantum causal models de�ned here, as well as the understanding of common

causes, to be able to signi�cantly contribute to this conversation.

Finally, there is a notable way in which the development of the quantum causal mod-

els presented in Sec. 5.3.1 could be improved. Section 4.2.2 presented a justi�cation of

Reichenbach’s principle from fundamental determinism and Sec. 5.2.2 did the same for

classical causal models. By way of analogy, Sec. 4.3.2 presented a justi�cation for quantum

Reichenbach from fundamental unitarity, giving the �rst de�nition of quantum conditional

independence. What is missing is the analogous justi�cation of quantum causal models

from fundamental unitarity. �at is, one might reasonably expect a framework of quan-

tum causal models which generalises quantum Reichenbach to be derivable by assuming

that the mappings between nodes are all unitary, supplemented by latent nodes which

satisfy the qualitative part of Reichenbach’s principle. �is has not yet been achieved. �e

interconnected nature of general causal structures makes this more di�cult, since a global

unitary evolution normally assumes a sense of global time. However, it is suspected that

the task is not insurmountable and the result would place quantum causal models on even

�rmer footing.
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6
Causal Loops: Time Travel to the Past

6.1 Closed Timelike Curves and the Ontology of
Time Travel

�is thesis is primarily concerned with the restrictions that quantum theory places on

ontology and causality. �ese topics meet head on when considering the possibility of time

travel to the past in a quantum universe. �antum theory is famously linear but as soon

as time travel is included non-linearities creep in. �is destroys the equivalence between

many ontological interpretations possible in standard quantum theory. Moreover, the lack

of consensus towards quantum ontology means a range of possible models for time travel

should be considered. Most of the work in this chapter has been published in Ref. [All14].

6.1.1 Why Study Time Travel?

�ere are few areas of physics in which one confronts the idea of time travel to the

past. Indeed, from the causal perspective, true causal loops are normally ruled out by

hypothesis (this assumption being built into the use of directed acyclic graphs in causal

models, Chap. 5). When it is discussed, time travel is o�en associated with particular ways

of thinking about quantum theory and quantum �eld theory. One sometimes hears the

view that in quantum teleportation, for example, the teleported information travels back

in time to the point at which entanglement was created, before proceeding forward in time

to the recipient [Pen98, Jos98, Joz04, Tim06]. Another example might be remarks about

antiparticles in quantum �eld theory being akin to particles “travelling backwards in time”.
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�e time travel considered in this chapter is rather di�erent. Here, it will be assumed that

time travel into the past is a possible physical process and the question is asked: how could

or should quantum theory be modi�ed to account for time travel?

�ere are a few ways to motivate this. Perhaps the most common is in relation to

general relativity and closed timelike curves (CTCs), discussed in Sec. 6.1.2. More pertinent

to this thesis are the insights it may give to the relationship between causality and ontology

in quantum theory. In a classical and ostensibly deterministic universe our familiar ideas

of causality and physical ontology are strong and considering time travel to the past

is easy enough to be the subject of many of popular stories. For quantum theory, on

the other hand, there are a wide variety of possible ontological interpretations, none of

which are uncontroversial. As shall be seen, this gives rise to many reasonable models for

quantum time travel. Time travel to the past forces us to consider quantum features such

as indeterminism and inseparability of states in a new light.

�ese conversations are valuable even if time travel to the past is not possible in our

universe. Treated as a thought experiment, time travel can draw particular a�ention to

issues that may be overlooked in other situations. In the words of Deutsch in the original

paper on quantum time travel as approached in this thesis: “It is curious that the analysis

of a physical situation which might well not occur should yield so many insights into

quantum theory” [Deu91].

Taking the opposite perspective, theoretical studies into quantum time travel may yield

a priori restrictions on whether and how such e�ects are logically possible. It is well known

that classical treatments of time travel are prone to paradoxes, but a common feature of

most quantum approaches to time travel is that certain paradoxes can be avoided altogether.

�is may be taken as evidence that time travel to the past is not as nonsensical as our

classically-in�uenced brains might assume. On the other hand, if a very well-motivated

argument is found stating that no sensible account of quantum time travel can be given

this may be taken as evidence that time travel to the past is impossible.

�ere are also computational motivations for studying time travel. One of the main

tools in the complexity theorist’s box is analysing the abilities of di�erent computational

paradigms when given access to powerful additional resources, o�en speci�ed as “oracles”

[AB09]. �is allows the derivation of so-called “relativised” separation results, which

establish relationships between complexity classes given access to certain oracles. �e

situation with time travel to the past need be no di�erent, allowing comparison of di�erent

models of computation when given access to these anachronistic resources. �is is of

particular interest in quantum computation. Most con�rmed computational speed-ups of

quantum computation over classical computation are in tasks which involve an oracle’s
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resources [NC00]. It is therefore interesting to compare the capabilities of quantum and

classical computers with access to di�erent models of time travel.

Finally, by incorporating time travel to the past, one obtains a non-linear exten-

sion to quantum theory [Haw95, And95, FW95, Har94]. Standard quantum theory is

characteristically linear and yet the possibility of non-linear extensions to it remain a

subject of interest, especially with regard to any hypothetical post-quantum physics

[GRW86, Wei89, Gol08, Ken05, Pen98, AW09, Aar05, CMP12]. In this view, quantum time

travel provides an interesting source of reasonable non-linear extensions which can serve

as either examples or counter-examples for how non-linear quantum theory can or must

behave.

6.1.2 Closed Timelike Curves and General Relativity

By far the most common motivation given for studying time travel to the past is that

general relativity allows for closed timelike curves (CTCs). CTCs are features of exotic

spacetimes which allow massive particles to travel to their own past, while heading

apparently forwards in time at all points. As such they give a concrete possible mechanism

for time travel to the past. It has long been known that solutions containing CTCs can

be found to the Einstein �eld equations [Göd49, Bon80, Got91]. Unsurprisingly, there are

doubts that any such solutions could be found in nature [Haw92, MTY88] but it has not

been possible to absolutely preclude them. It is therefore prudent to treat them as real

possibilities and, since our universe is quantum, the problem of quantum theory along

CTCs (that is, quantum time travel to the past) must be addressed.

�e most obvious approach to analysing quantum theory with CTCs is to use quantum

�eld theory and general relativity in curved spacetimes. �is is far from easy, however.

Spacetimes containing CTCs are globally non-hyperbolic and typically contain no Cauchy

surfaces. �is makes them incompatible with standard relativistic quantum �eld theory

and without a well-de�ned initial value problem [BD82, Wal10].

Nonetheless, there is a tradition of a�empts to model quantum time travel using the

path-integral approach to quantum theory [EKT91, BD82, Har94, Pol94]. �e approach

taken in this chapter will, however, be somewhat more abstract. Rather than dealing

directly with curved spacetimes, one can use the quantum circuit approach [Deu91]. �e

result is an abstraction away from the precise time travel mechanism, retaining only the

essential feature that some system is sent into its own past [All14]. �is move has turned

out to be fruitful, giving rise to the two most popular current models of time travel in

quantum theory: D-CTCs (or “Deutschian” CTCs) and P-CTCs (or “post-selection” CTCs).

131



�is general approach to modelling quantum time travel will be detailed in Sec. 6.2

together with a short discussion of the types of paradoxes that time-travel can cause in

the classical case. Section 6.3 will then brie�y outline the models of D- and P-CTCs and

discuss the ontological issues raised, in particular with respect to non-linearity. �e main

results of the chapter will be in Sec. 6.4, where alternatives to the D- and P-CTC models

are found. One of these alternative models, dubbed T-CTCs, will be fully �eshed out and

compared with the established models. Finally, Sec. 6.5 will summarise these results and

discuss their signi�cance for the ontology of quantum theory, time travel, and non-linear

extensions to quantum theory more generally.

6.2 Modelling Time Travel with Quantum Circuits

6.2.1 The Standard Form of Time Travel Circuits

�e quantum circuit approach to time travel is based on a particular form of circuit

introduced in Ref. [Deu91]. �is convenient building block, from which all other circuits

involving time travel can be built, will be called the standard form circuit. It allows di�erent

circuits and models to be easily and concisely speci�ed.

�e quantum circuit model is an abstraction from the precise physical mechanisms that

neatly separates quantum evolution from spatial motion. �antum interactions described

by unitary gates are assumed to only occur in small, freely falling, non-rotating regions of

spacetime so that they obey non-relativistic quantum theory. To include time travel to the

past in such a quantum circuit model is therefore equivalent to saying that the classical

paths quantum systems take between gates are allowed to go back in time. Within this

approach, di�erent models are then de�ned by their behaviour when sending systems

back in time. For clarity, this chapter will only deal with �nite-dimensional Hilbert spaces.

�e standard form circuit, illustrated in Fig. 6.1, contains a single time travel event in a

localised spacetime region and a single unitary quantum interaction U . To simplify the

discussion, it will be assumed that there is some system in the circuit which does not go

back in time
1
. �e chronology violating (CV) system arrives from its own future in the

state τi and a�er the interaction is said to be in the state τf . Meanwhile, the chronology
respecting (CR) system arrives from the unambiguous past in the state ρi and emerges into

the unambiguous future in the state ρf . �erefore, a standard form circuit is completely

1
�is assumption could be dropped, but at the expense of a more �ddly discussion. It also seems reasonable

to expect any model containing non-localised time travel events to be extendible to a model where all are

localised.
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Figure 6.1: Schematic diagram for the standard form circuit described in the text. �e

chronology respecting (CR) and chronology violating (CV) systems are shown entering

the gate labelled by unitary U . Time, when it is unambiguous at least, increases up the

diagram. �e double bars represent the time travel event and may be thought of as two

depictions of the same spacelike hypersurface forming a CTC. �e dashed lines represent

spacelike boundaries of the region in which time travel takes place; CV system is restricted

to that region.

speci�ed by these two systems and U , while a model for quantum theory with time travel

is a general speci�cation of ρf given U and ρi.

In cases where the CV system is initially known to be in a pure state it may be wri�en

as |φ〉 so that τi = |φ〉〈φ|. Similarly, in cases where the CR system input or output states

are known to be pure, they may be wri�en |ψi,f〉 so that ρi,f = |ψi,f〉〈ψi,f |. In Sec. 6.3.3 it

will be seen that ρi can always be puri�ed to some |ψi〉.
A standard assumption used in all circuit models of quantum time travel is that the CR

and CV systems are not initially entangled. �at is, before the action of U they are in the

product state ρi ⊗ τi. [DFI10]. It has been argued that this is an unreasonable assumption

and that prior entanglement should be considered as the CV system contains ρi in its

past [Pol94]. �at possibility will not be considered here because alternative assignment

methods all have undesirable features. �e problem is one of �nding an assignment

procedure that gives a joint state ω on HCR ⊗ HCV given only a state ρi on HCR. �e

procedure assumed here—where ω = ρi ⊗ τi—is the only one for which: ω is always

positive, TrCV ω = ρi, and mixtures are preserved [Ali95].

6.2.2 Time Travel Paradoxes and the Classical Model

In order to de�ne the possible types of paradox in time travel it is useful to leave quantum

theory to one side brie�y and concentrate on classical time travel. Consider a classical

version of the standard form circuit, with classical states ρ̃i,f and τ̃i,f and some classical
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dynamical evolution Ũ replacing their quantum counterparts. Since classically it can be

assumed that there is no fundamental stochasticity, assume that ρ̃i,f and τ̃i,f are both ontic.

�e standard way of introducing time travel into classical theories is to impose a

consistency condition on states that go back in time; that is, τ̃
def

= τ̃i = τ̃f . In other words,

the ontic state that emerges into the past is required to be the same one that le� from the

future. With knowledge of a ρ̃i and Ũ , a consistent τ̃ can be deduced, from which ρ̃f may

be calculated.

Classical time travel to the past may give rise to both dynamical consistency paradoxes

and information paradoxes. �is chapter takes a slightly unconventional view on paradoxes

whereby a computation, which algorithmically produces unambiguous output from an

input, is never paradoxical. So a theory that predicts “absurdly” powerful communication

or computational abilities will not be called paradoxical because of them, even if those

abilities make the theory appear unreasonable or hard to accept. Some “absurd” conclusions

should probably be expected when “absurdity” of time travel has been assumed.

A dynamical consistency paradox is a situation in which a consistent history of events

is not possible [Deu91, LMGP
+

11b, LMGP
+

11a]. �e usual example is the “grandfather

paradox” where a grandchild travels back to kill their infant grandfather. Dynamical

consistency paradoxes occur when a model fails to specify any valid �nal state from some

initial state and evolution. Classically, this is exactly because the consistency condition

cannot be satis�ed
2
. �e only way to avoid these paradoxes in general is to disallow the

interactions that lead to them from the model [All14].

An information paradox is a situation with consistent dynamics but information that

appears from nowhere; viz. the information has not been computed. �e prototypical

example is the “unproved theorem” paradox: a mathematician reads the proof of a theorem

from a book only to travel back in time to author that same book. �e proof has no ultimate

source.

Under these de�nitions, information paradoxes arise if and only if a theory contains a

uniqueness ambiguity: the model speci�es more than one �nal state given some initial state

and evolution, but fails to give probabilities for each possibility. Any other dynamically

consistent evolution is counted as a computation and information paradoxes have been

de�ned as exactly those where an uncomputed output is produced. For example, in the

classical unproved theorem paradox there are many time travelling states τ̃ compatible

with the consistency condition, each producing a di�erent ρ̃f—one τ̃ produces a theorem

2
It is worth noting that, although these paradoxes appear to be possible in classical models of physics,

such situations are quite di�cult, if not impossible, to construct in classical models with continuous state

spaces. Reference [AM13] is a useful introduction to such issues.
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answering P
?

= NP, another answering BPP
?

= BQP, many others where the “theorem” is

nonsense, etc. It should be noted that the equivalence of the uniqueness ambiguity and

information paradoxes is not universally used, but it follows from the de�nitions used

here as described above. Readers preferring di�erent de�nitions may replace each further

instance of “information paradox” with “uniqueness ambiguity” without a�ecting the

meaning.

For example, some authors prefer a wider de�nition of paradox in which time travel

circuits are counted as having information paradoxes when the only consistent evolution

reveals a �xed point of some given function [Deu91, LMGP
+

11c]. Such circuits uniquely

produce solutions to problems that are hard if P 6= NP very rapidly [GJ79]. As such, they

are counted as very powerful computations rather than paradoxes as de�ned here. �is

is not to claim that such processes are necessarily reasonable, but rather to re�ect that

they are qualitatively di�erent from the uniqueness ambiguities equivalent to information

paradoxes as de�ned here. If there is no uniqueness ambiguity then any information

that appears as a result of the time travel circuit is uniquely speci�ed by the structure of,

and input to, the circuit [LMGP
+

11c]. It is therefore reasonable to say that this circuit is

algorithmically computing as instructed.

6.3 Quantum Time Travel Models, Non-linearity, and
Ontology

�e model of D-CTCs, introduced by Deutsch, was the �rst to use the quantum circuit

model to analyse quantum time travel [Deu91]. P-CTCs are a more recent development

which make use of post-selection and ideas from quantum teleportation to construct a very

di�erent model. In this section each will be brie�y introduced and discussed, focussing on

what they suggest about ontology and non-linearity in quantum theory.

6.3.1 Overview of D-CTCs

While not the original line of reasoning, the D-CTC model can be rapidly constructed by

assuming that reduced density operators are ontic states, following Ref. [WB12]. Just as in

the classical model, this imposes a consistency condition τ
def

= τi = τf on the ontic time

travelling states. For a standard form circuit, this implies

τ = G(τ)
def

= TrCR
(
U(ρi ⊗ τ)U †

)
. (6.1)
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Noting that the CR and CV systems have been separated using a partial trace in Eq. (6.1),

this suggests that the �nal state should be given by

ρf = TrCV
(
U(ρi ⊗ τ)U †

)
. (6.2)

�e key di�erence between this and ordinary unitary quantum theory is the implied

map

U (ρi ⊗ τ)U † → ρf ⊗ τ, (6.3)

that replaces the quantum state a�er U with the product of its reduced density operators.

�is de�nes the action of the time travel event in D-CTCs.

Between them, Eqs. (6.1, 6.2) de�ne the D-CTC model of time travel. Given ρi and U ,

one can solve Eq. (6.1) to get τ and then calculate ρf . Equation (6.2) takes the role of an

equation of motion and is clearly both non-linear and non-unitary in general.

�e �rst thing to note is that a solution τ for Eq. (6.1) always exists. �is follows from

Schauder’s �xed point theorem which guarantees that every trace-preserving quantum

channel, such as G, has at least one �xed point [Sch30, Tyc35, Zei85]. �erefore dynamical

consistency paradoxes cannot arise in the D-CTC model
3
. On the other hand, solutions for

τ are not always unique. �erefore, D-CTCs have the same uniqueness ambiguity present

in classical time travel and hence information paradoxes.

To avoid uniqueness ambiguities the maximum entropy rule has been suggested [Deu91],

stating that one should choose the unique τ with maximum von Neumann entropy. How-

ever, this is not universally accepted as part of the D-CTC model and alternative principles

do exist [Pol94, DFI10]. Interestingly, these ambiguities vanish in the presence of arbitrary

non-zero noise. Suppose one incorporates a noise channel N applied to the CV system

so that Eq. (6.1) becomes τ = N (G(τ)). As a noisy channel, N (G(·)) should be strictly
contractive (that is, trace distance should always decrease under its action) [Rag02] and

therefore have a unique �xed point
4

[NC00].

�us, D-CTCs are free from dynamical consistency paradoxes but can have information

paradoxes (which vanish under arbitrarily small noise). �e non-linearity of the model

enables them to have the following abilities, beyond those of ordinary quantum circuits.

�ey can solve any problem in PSPACE in polynomial time and are therefore likely to

be vastly more powerful even than quantum computers [AW09]. D-CTCs are also capable

of producing discontinuous mappings from ρi to ρf , which means that (for all practical

purposes) the model loses predictive power near these discontinuities.

3
A direct proof of this can be found in Ref. [Deu91]

4
�is argument resolves a conjecture from Ref. [All14].
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Figure 6.2: Schematic illustration of the protocol de�ning the action of P-CTCs as described

in the text. In standard teleportation, Alice and Bob share entangled systems A and B and

Alice can teleport a state to Bob by performing a joint measurement with A and obtaining

the outcome |Φ〉. �is situation di�ers from that of standard teleportation in two ways.

First, the system that Alice teleports is the same asB, just at a later time. Second, that Alice

can get the outcome |Φ〉 by postselection with certainty and so no classical communication

to Bob is required to complete the teleportation.

Given any �nite set of pure states (which are not necessarily orthogonal), there is a

D-CTC circuit that can render them distinguishable with a single measurement [BW12]. In

this way, D-CTCs can violate the Holevo bound [BHW09, Hol73]. Given this distinguishing

ability, it is perhaps unsurprising that D-CTC circuits are also capable of cloning arbitrary

quantum states [AMRM12, BWW13] (though, of course, entanglement is not cloned as

this is forbidden by monogamy [CKW00]).

6.3.2 Overview of P-CTCs

�e P-CTC model is due to Svetlichny [Sve09] (inspired by diagrammatic approaches to

quantum theory [CK17]) and Lloyd et al. [LMGP
+

11b, LMGP
+

11a] (based on the unpub-

lished work of Benne� and Schumacher [BS05] and inspired by Ref. [HM04]). Reference

[BW12] contains an accessible introduction. It is de�ned by ignoring the precise mechanism

behind the time travel and postulating only that the e�ect is mathematically equivalent

to teleportation into the past, achieved by the following unphysical operational protocol

schematically illustrated in Fig. 6.2.

Prepare two copies of the CV system, A and B, in the maximally entangled state

|Φ〉 ∝
∑

i |i〉B|i〉A, where {|i〉}i is any orthonormal basis of the CV system. Let B interact

with the CR system as in the standard form circuit and then perform a joint measurement on

B andAwhich contains outcome |Φ〉. �e unphysical step is to postselect this measurement

on the outcome |Φ〉. �is is equivalent to simply projecting the tripartite system of CR, B,

and A onto 〈Φ| and then renormalising the resulting state. Comparing this to the standard
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quantum teleportation protocol, the e�ect is to “teleport” the �nal state of B back onto

the B system in the past. �is protocol may be simulated in the laboratory by manual

postselection of measurement outcomes [Sve09, LMGP
+

11b].

If the CR system is initially in the pure state |ψi〉 then the e�ect of this protocol is (up

to renormalisation)

BA〈Φ|UCR,B|ψi〉|Φ〉BA ∝
∑
i

B〈i|UCR,B|i〉B|ψi〉

∝ TrCV(U) |ψi〉. (6.4)

Generalising this result to mixed input ρi and including the renormalisation, the general

action of a P-CTC becomes

ρf =
PρiP

†

Tr(PρiP †)
, P

def

= TrCV(U). (6.5)

�e map of Eq. (6.5) completely speci�es the action of a P-CTC standard form circuit. So

having obtained this result, one can take Eq. (6.5) as the de�nition of the P-CTC model

and take the above unphysical protocol simply as an argument showing that the model is

equivalent to teleporting the �nal state of the CV system into the past. �is equation of

motion is both non-linear and non-unitary in general.

Since Eq. (6.5) maps each ρi onto a speci�c ρf without ambiguity, P-CTCs cannot

su�er uniqueness ambiguities and so are not vulnerable to information paradoxes. On

the other hand, the P operators de�ned in Eq. (6.5) can act as PρiP
† = 0 on some input

states ρi. �ese cases are dynamical consistency paradoxes as no consistent outcome can

be obtained from these inputs and interactions. However, such dynamical consistency

paradoxes vanish under arbitrary non-zero noise [All14]. Note how P-CTCs generically

su�er from dynamical consistency paradoxes, while D-CTCs do not, but D-CTCs su�er

from information paradoxes, while P-CTCs do not, and in both cases the paradoxes vanish

under the action of any �nite noise.

As with the D-CTC model, the non-linearity of this model permits various super-

quantum abilities. P-CTC circuits can solve any problem in PP in polynomial time

[LMGP
+

11a], making them likely much more powerful than quantum computers but

likely much less powerful than D-CTCs. �is follows because P-CTCs and quantum theory

with postselection are computationally equivalent [BW12, Aar05]. Unlike D-CTCs, P-CTCs

can never produce discontinuous evolutions because of the more mild form of non-linearity,

as shown in Sec. 6.3.3.

�ere are P-CTC circuits that can render any �nite set of linearly independent pure

states distinguishable with a single measurement [BHW09]. Note that, while still able to
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distinguish non-orthogonal quantum states with certainty, this is much less powerful than

distinguishing with D-CTCs, as linear independence is required (in particular, the Holevo

bound cannot be violated in this way). P-CTCs are also capable of generically deleting

arbitrary quantum states, something impossible in standard linear quantum theory [PB00].

6.3.3 The Problems of Non-linearity

Even from this brief overview, it should be clear that the non-linearity of D-CTCs and

P-CTCs causes some striking departures from standard linear quantum theory. Central

features, including no-cloning and indistinguishability of non-orthogonal states, are broken

due to the non-linearity and non-unitarity of Eqs. (6.2, 6.5). However, the abilities of both

models are still bounded and it is sensible to consider how and why these two models

di�er.

�ere are di�erent types of non-linear maps one can consider applying to quantum

states. Generally, non-linearity occurs due to input state appearing at quadratic or higher

orders in an equation of motion, as in D-CTCs. A special case of non-linearity is renormali-
sation non-linearity, where the equation of motion is linear except for a scalar factor which

simply normalises the �nal state. P-CTCs are renormalisation non-linear since Eq. (6.5)

would be entirely linear were it not for the renormalising denominator. A non-linear

equation may be called polynomial non-linear if it is not renormalisation non-linear.

�is distinction facilitates a more general discussion of di�erent non-linear theories

and their features. For example, renormalisation non-linear equations cannot lead to

the discontinuous state evolutions possible with D-CTCs. It is simple to verify that if

ρf (ρi) = L(ρi)/Tr(L(ρi)) is a renormalisation non-linear equation of motion (that is, if L

is linear in this equation) then

lim
ε→0

ρf (ρi + εσ) = ρf (ρi) (6.6)

for any σ so the mapping is always continuous.

�ere are also di�erent types of mixed quantum states that can be identi�ed. Typically,

one encounters proper mixtures—epistemic mixtures due to the observer’s ignorance of

the actual quantum state—and improper mixtures—the way to describe only part of an

entangled system. Both of these are described using density operators and in standard

quantum theory two mixtures described by the same density operator behave identically

regardless of the type.

�e operational equivalence of di�erent types of mixture directly facilitates the op-

erational equivalence of many interpretations and ontologies for quantum theory. For

139



example, Evere�ian ontologies have only a single global quantum state that is hyper-

entangled and evolves deterministically, implying an absence of proper mixtures in favour

of improper mixtures
5
. A GRW-style collapse theory [GRW86] would, on the other hand,

allow both types of mixture and speci�cally have many fewer improper mixtures.

In any extension to quantum theory with non-linearity, however, it is not valid to

describe proper mixtures using density operators. �is follows because, for a non-linear

evolution E acting on some ensemble of states and corresponding probabilities {(ρj, pj)}j ,
applying E to the initial density operator is not generally the same as the density operator

obtained by applying E to each individual state in the ensemble:

E

(∑
j

pjρj

)
6=
∑
j

pjE(ρj). (6.7)

On the other hand, density operators are the correct way to describe improper mixtures

under non-linear evolution. By examining the derivation of reduced density operators, as

given in [NC00] for example, it is easily seen that linearity of operations is not assumed at

any point.

A third distinct type of mixed state becomes particularly evident when discussing time

travel models [Deu91, BW12]. �ese are true mixtures: mixtures that are not entangled

to any reference system and yet would still be described as mixed by an observer with

maximum knowledge. �ese arise naturally in the model of D-CTCs, where it is possible

for a mixed output to be produced from a pure state. Moreover, the CV state τ in D-CTCs

will generally be mixed and cannot be puri�ed, so must also be a true mixture [PCA11].

However, both improper and true mixtures may still be validly described by density

operators in a non-linear theory (unlike proper mixtures). It therefore follows that non-

linear theories do not treat true and improper mixtures di�erently. So whilst models of

time travel may introduce true mixtures conceptually, they do not a�ect the way in which

calculations are performed. As such the puri�cation theorem still holds for ρi and one may

always assume that ρi = |ψi〉〈ψi| by simply extending U to act on the puri�cation ancilla

as the identity.

5
Of course, any Evere�ian observer could still choose to be ignorant, but this does not give rise to mixed

states in the same way. To be clear, consider how proper mixtures arise in objective collapse models. An

observer O sets up a measurement M on a system S, but chooses (by not looking, or what have you) to

remain ignorant of the outcome of M . In an objective collapse model, O now knows (assuming su�cient

understanding of S, M , and quantum theory) that the state of the universe has now collapsed into one of

multiple possible states with corresponding probabilities; this ensemble forms a proper mixture which O
uses to describe S a�er M . In an Evere�ian model, however, O now knows that the universal state has

evolved into some macroscopic superposition, the only uncertainty is about which branch of this O is in.

For more on this see, for example, Ref. [Alb10, especially §3.2].
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�e di�erent ontologies implied by proper, improper, and true mixtures must be

carefully borne in mind when dealing with non-linear models, such as those of time travel.

Insu�cient clarity on this point caused signi�cant controversy over the capabilities of

D-CTCs, the so-called “linearity trap” [BLSS09, RM10, CM10, CMP12, BW12, Pie13]. �e

solution is to not only specify the density operator of a mixture in a non-linear model, but

also specify the ontology of the mixture so that the correct treatment can be used [All14].

Moreover, since all non-linear evolutions treat proper and improper mixtures di�erently

in general then if the di�erence is observable the result is an entanglement detector : a device

capable of telling whether or not a system is entangled with another. In any interpretation

that involves instantaneous disentanglement by measurement then an entanglement

detector necessarily facilitates superluminal signalling [Pie13, §3.1.3]. D-CTCs and P-CTCs

therefore both lead to superluminal signalling with such an interpretation.

Instantaneous disentanglement is not a necessary feature of quantum measurement,

however. �ere are many ontologies that do not require instantaneous disentanglement.

Moreover, one can construct alternative models of quantum measurement that prevent

superluminal signalling in non-linear theories by construction without subscribing to a

particular interpretation [CD02, Ken05]. So whilst non-linearity does not necessarily lead

to signalling, it may do depending on the ontology [Pie13, §3].

6.3.4 The Role of Ontology

Any non-linear extension to quantum theory (and, in particular, models of time travel)

raises ontological problems compared to standard quantum theory. �e clearest examples

are in the di�erences that non-linearity introduces between proper and improper mixtures.

As discussed in Sec. 6.3.3, this essentially means that density operators cannot be used to

describe proper mixtures in a non-linear model.

Traditionally, the only di�erences between the types of mixture in quantum theory have

been ones of interpretation and preferred ontology. Non-linearity breaks this long-standing

equivalence of di�erent interpretations. For example, with non-linearity Evere�ian quan-

tum theory need not produce the same predictions as Bohmian quantum theory simply

because they di�er ontologically. �erefore, if a method of time-travel to the past were

discovered (a real CTC, for example) then in principle it could be used to experimentally

distinguish between certain ontological interpretations.

�ere is a wrinkle in this argument, however, that points towards the other role of

ontology in models of time travel. �at is, there are at least two models of time travel in

quantum theory each of which is somewhat well-motivated: D-CTCs and P-CTCs. �ey are

only “somewhat” well-motivated as neither comes with a solid �rst-principles argument
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deriving the model, they are instead developed using plausibility arguments. A clear idea

of a quantum ontology will play a key role in selecting the correct model for time travel.

Compare this to the classical case. An uncontroversial model for classical time travel

to the past was brie�y outlined in Sec. 6.2.2. Why was this model used and why is it not

controversial? Because, as far as physics is concerned, there is broad consensus on the

essential features of classical ontology. Classical physics suggests that systems have a local

ontology that describes their entire state at any point, so it is easy to simply transport this

local ontology back in time when required.

As an aside, it is interesting to note that in Ref. [AW09] a curiously di�erent model of

classical time travel was used. In that paper, it was claimed that the computational power

of D-CTCs is equivalent to a classical computer equipped with time travel abilities (both

being PSPACE). However, this is only true if one takes the unusual position of requiring

that classical time travel imposes a consistency condition on probability distributions rather

than ontic states, as in Sec. 6.2.2. In this way, Ref. [AW09] avoids dynamical consistency

paradoxes normally associated with classical time travel
6
.

To illustrate how ontology in�uences the plausibility of di�erent time travel models,

consider D-CTCs. When �rst introduced, the suggested interpretation of D-CTCs was in

an Evere�ian ontology where the CV system heading back in time enters a di�erent branch

or “world” of the quantum state [Deu91]. �is is not an ontological assumption from which

the model is derived, but rather a suggested interpretation that makes a certain amount

of sense of the model and was likely in�uenced by Deutsch’s pre-existing preference

for that interpretation
7
. On the other hand, D-CTCs can be analysed from an epistemic

realist perspective on quantum state ontology—see Sec. 2.1.2—and found to be inconsistent

[WB12]. �e conclusion is clear: someone, like Deutsch, who prefers Evere�ian ontology

can consistently choose the D-CTC model (though they are not necessarily forced to) while

an epistemic realist cannot. Moreover, as in Sec. 6.3.1, one can try to justify D-CTCs by

assuming that reduced mixtures are ontic states and therefore suitable candidates for a

classical-like consistency condition, but taking this ontological route seriously requires a

careful justi�cation of the very unusual quantum ontology that results.

Interestingly, P-CTCs were introduced without any suggested ontological basis at

all. In fact, one of the papers that introduced the model preferred to call it “e�ective

6
Another way to look at this oddity is to note that, since classical theory is a subset of quantum theory,

P-CTCs should be able to model classical time travel but P-CTCs only have the computational power of PP.

If classical time travel has the power of PSPACE this would seem to suggest PP = PSPACE which would

be a hugely surprising result (of course, this is not implied mathematically, but merely illustrates the odd

model of classical time travel assumed).

7
In Ref. [Deu91] he repeatedly refers to Evere�ian quantum theory as “unmodi�ed” quantum theory.
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quantum time travel” that one might simulate in a lab using manual postselection [Sve09].

�e primary motivation is that quantum teleportation creates a quantum communication

channel and that the (unphysical) protocol described in Sec. 6.3.2 modi�es this channel to

communicate with the past. Despite this, there are still ontological arguments to be made

for and against P-CTCs. For example, P-CTCs have been shown to be compatible with

one model for quantum time travel that takes the path-integral approach, rather than the

circuit approach used here [Pol94]. On the other hand, the P-CTC model fails to specify

a state for the system that travels back in time analogous to τ in D-CTCs. It is therefore

unclear how to answer questions like “what is the state of the CR and CV system just a�er

applying U?” with P-CTCs, for example. �is may not be necessary for some mechanisms

of time travel, but it would certainly be bizarre if there were not a well-de�ned state for a

system traversing a CTC.

It is a strength of the abstract quantum circuit-based approach that it can easily isolate

these ontological concerns. In particular, it facilitates direct comparisons between the

classical and quantum cases which then suggests two core features of quantum theory

that contribute to the ontological ambiguity found in quantum time travel. First, the

stochasticity found in quantum theory is normally thought to be irreducible, while classical

physics is normally taken to be fundamentally deterministic. Classically, this allows one

to unproblematically consider the state of the CV system to be in a de�nite ontic state,

even if the precise state is not known. Second, quantum states of the CV and CR systems

are generally non-separable, whereas classically there is always a well-de�ned concept of

the state of the CV system separate from the CR system. Classically, this allows the CV

system to be extracted from the future and transplanted to the past easily, while quantum

mechanically some non-trivial operation is required to separate the two. With D-CTCs

this is a partial trace, while with P-CTCs it is a projection. Without these two features,

de�ning an uncontroversial quantum model for time travel would likely be as easy as it is

classically.

On the other hand, the circuit approach also introduces some further ambiguities as a

result of being somewhat divorced from the precise physical mechanisms. In particular,

one prominent ambiguity might be called the dynamical ambiguity [All14]. In a D-CTC

circuit, for example, Eq. (6.3) speci�es a non-trivial dynamical change but it is not clear

exactly when this should occur. �ere is a similar ambiguity in P-CTCs: there is a physical

change that has no well-de�ned location. �ese ambiguities are related to how, in quantum

circuits, one can slide gates along wires freely without changing the overall e�ect of the

circuit and is probably therefore a fundamental ambiguity for this circuit approach. While

a li�le inelegant, this ambiguity need not be of particular concern, however, because it is
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entirely unobservable in both models (the predictions are the same regardless of where

Eq. (6.3) is placed, for example).

So ontology can and should inform one’s approach to quantum time travel. Likewise,

theorising about quantum ontology can highlight certain ontological issues such as non-

separability in quantum theory and whether it can make sense to discuss a fundamentally

di�erent sort of evolution on one part of a system (CV) from the other (CR). �ere is also

one further link between the studies of quantum time travel and ontology: models of

quantum time travel might directly in�uence the development of ontologies for quantum

theory. Suppose, for example, that a physical CTC were discovered. Experiments on it

could reveal a particular model of quantum time travel to be correct which should then, in

turn, suggest some quantum ontologies as more plausible than others (e.g. D-CTCs may

suggest Evere�ian ontology and rule out many epistemic realist ontologies). It may even

possible for this to happen entirely theoretically: if an exceptionally well-motivated and

natural model for quantum time travel were developed, then this would probably also

provide clues towards natural ontologies for quantum theory.

6.4 Alternative Time Travel Models

�e discussion of D-CTC and P-CTC models in the previous section makes three things

clear. First, there can be more than one reasonable way to extend quantum theory to

include time travel to the past. Second, there are several reasons to dislike either of these

models, depending on one’s philosophical bent. �ird, the ontological and interpretational

foundations of each are far from certain but, if one thing is known, they de�nitely di�er.

�ese points raise some questions. What other reasonable models of quantum theory

with time travel might exist? How might they compare to these existing examples? What

ontological implications would they suggest? �ese questions will be tackled in this section.

Before developing some new theories, it will be useful to �rst review some background on

integrating over quantum states.

6.4.1 Integrating over Quantum States

Consider any d-dimensional quantum system with Hilbert spaceH. For any scalar function

J : H → C one can consider the integral over the pure states

J =

∫
P(H)

d[φ]J (φ), (6.8)

where the integration measure d[φ] is yet to be de�ned. Conveniently, there exists a unique

natural measure overP(H) that is invariant under unitary transformations given by taking
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a random unitary matrix distributed according to the Haar measure on the group U(d)

[ZS01]. One way to write this is in the Hurwitz parametrisation [BZ06, ZS01, Hur97]

de�ned with respect to some orthonormal basis {|α〉}d−1
α=0 ofH, such that any pure state

|φ〉 takes the form

|φ〉 =
1∏

β=d−1

sin θβ|0〉 +
d−2∑
α=1

eiϕα cos θα

α+1∏
β=d−1

sin θβ|α〉 + eiϕd−1 cos θd−1|d − 1〉, (6.9)

for some parameters θα ∈ [0, π/2] andϕα ∈ [0, 2π). In this parametrisation, the integration

measure takes the form

d[φ(θα, ϕα)] =
d−1∏
α=1

cos θα(sin θα)2α−1 dθα dϕα. (6.10)

�is is then a natural measure for integrating over pure quantum states that is unique up

to a multiplicative constant.

�is natural measure is invariant under unitary operations, so that under |φ〉 → U |φ〉
the measure transforms as d[φ] → d[Uφ] = d[φ]. It may be useful to observe that the

Hurwitz parametrisation is a generalisation of the Bloch sphere parametrisation o�en used

for qubits H = C2
where the measure is, up to a scalar, the rotationally-invariant area

measure on a sphere:

|φ〉 = sin θ|0〉+ eiϕ cos θ|1〉, (6.11)

d[φ] ∝ sin(2θ) d(2θ) dϕ. (6.12)

Integrals over mixed quantum states can be considered similarly. For some scalar

function J : D(H)→ C, consider the integral over the density operators onH,

J =

∫
D(H)

d[τ ]J (τ), (6.13)

for some integration measure d[τ ]. Unlike P(H), there is no unique natural measure on

D(H) [BZ06] and so one must be chosen, along with a useful way to parametrise τ . �e

result is that there is no unique natural way to de�ne J ; it will depend on the choice of

measure used.

6.4.2 Desiderata

When considering how new models of quantum theory with time travel might be developed,

it is useful to �rst consider how it might be desirable for such a theory to behave. A list

of possible desirable features follows. Of course, all desiderata are linked to various

philosophical prejudices, but there is still utility in considering them.
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1. �e model should have sound physical motivation and an ontological interpretation.

2. �e model should be compatible with standard quantum theory, at least in so far as

current experiments are concerned. In the case of CTCs it should reproduce quantum

theory locally along the CTC, as well as in spacetime regions far from the CTC. It

is also expected to be locally approximately consistent with special relativity and

relativistic causal structure. Speci�cally, it should not allow superluminal signalling.

3. �e model should not allow dynamical inconsistencies. In other words, it should not

have disallowed evolutions that lead to dynamical consistency paradoxes for any U

or ρi.

4. �e model should specify ρf uniquely given U and ρi. If multiple possible output

states are considered, then probabilities for each of these should be speci�ed. In

other words, it should not have uniqueness ambiguities that lead to information

paradoxes (Sec. 6.2.2).

5. �e model should specify a state τ that travels back in time; this should either be

uniquely speci�ed or an ensemble of possibilities with corresponding probabilities

should be uniquely speci�ed.

6. Given a pure ρi, prejudice might require either or both of ρf and τ to also be pure.

7. �e model should not be able to distinguish non-orthogonal states in a single mea-

surement, neither should it be able to clone arbitrary quantum states.

Feature (1) is the most subtle and subjective of these but arguably the most important.

It was discussed to some extent in Sec. 6.3.4 for D- and P-CTCs.

D-CTCs have feature (2) so long as ontological assumptions regarding collapse are

made that rule out superluminal signalling. P-CTCs only have feature (2) in the presence

of �nite noise, and even then similar assumptions about collapse are required to rule out

signalling. However, as noted in Sec. 6.3.3, adding any non-linear evolution to quantum

theory opens up the possibility of signalling in this way.

Feature (3) is not in the D-CTC model but is in the P-CTC model, while feature (4) is

de�nitely in P-CTCs but is only in D-CTCs by adding an extra postulate or in the presence

of noise, as noted in Sec. 6.3.1.

Neither the D-CTC nor P-CTC models have feature (5). P-CTCs do not specify any

τ , while D-CTCs specify τ but not necessarily uniquely. Feature (6) is perhaps the least
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compelling feature listed and is one that neither D-CTCs nor P-CTCs have. Feature (7) is

also not one respected by either P-CTCs or D-CTCs.

Of course, it would be ambitious to ask for a model that satis�es all these desiderata.

Notably, the standard way of introducing time travel into classical mechanics does not

satisfy features (2), (3), (4), or (5). However, they do form a helpful guide for where one

might start looking for new time travel models.

6.4.3 Some Alternative Models

�e above desiderata can be used to guide the construction of new models of time travel in

quantum theory. In this section two overlapping classes of new models will be considered:

weighted D-CTCs and transition probability models. An example of the la�er, dubbed T-CTCs,
will be fully �eshed out in Sec. 6.4.5.

Weighted D-CTCs represent an extension of the model of D-CTCs. �ese are described

by parametrising the convex subset of density operators τα allowed by the consistency

condition Eq. (6.2) with α and then assigning a weight wα ≥ 0 to each of these valid CV

states. �is weighted mixture is then used to calculate τ =
∫

dαwατα/
∫

dαwα. �e

D-CTC protocol can then be used with this uniquely determined choice of τ .

Clearly, this describes a whole class of models based on how the parametrisation is done

and which integration measure is chosen. For example, one could weight all possibilities

equally wα = 1, giving a uniform weighted D-CTC model. In terms of the desiderata,

this theory would gain features (4) and (5) at least, possibly at the expense of feature (1)

depending on the details and motivation of the model. Such a model is essentially that of

D-CTCs, with an alternative to the maximum entropy rule.

Transition probability models make use of some useful intuition from standard quantum

theory. It is common to say that the probability of an initial state |I〉 to transition into a

�nal state |F 〉 under the unitary transformation V is given by the transition probability

|〈F |V |I〉|2. More precisely, what is meant is that |〈F |V |I〉|2 is the Born rule probability

of �nding the system in state |F 〉 if one were to measure the system to see if it is in

state |F 〉 a�er the transformation. As an example of this useful way of thinking, consider

starting with a bipartite system, initially in state |ψi〉|φ〉, and act upon it with the unitary

U ; the “probability of �nding the second system in |φ〉” a�er the transformation is p(φ) =

‖〈φ|U |ψi〉|φ〉‖2
.

�e transition probability can be generalised to apply to to mixed states ρ and τ . One

way to do this is to use the Hilbert-Schmidt inner product Tr(ρτ), which is the probability

for ρ to be found in an eigenstate of the proper mixture τ and for τ to be a realisation of

that same eigenstate, averaged over all eigenstates of τ . Another option is the square of
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the �delity, the interpretation of which involves considering ρ as an improper mixture

on which a measurement is performed by projective measurement of the larger puri�ed

system [Uhl11]. Both of these options reduce to the transition probability in the case of

both states being pure. �e use of any mixed state transition probability must be motivated

by its operational meaning in context. For the remainder of this chapter it will be assumed

that the appropriate generalisation of transition probability to mixed states is the Hilbert-

Schmidt inner product, so that the probability for a bipartite system initially in the state

ρi ⊗ τ to have the second system found in the state τ a�er some unitary transformation U

is given by
8 p(τ) = Tr

(
τU(ρi ⊗ τ)U †

)
.

Transition probability models are obtained by applying these ideas to time travel. �e

choices that need to be made to be de�ne a speci�c model include: whether pure or mixed

CV states are used, which |φ〉 or τ are to be considered, and how ρf should be separated

from the CV system.

One example of a transition probability model is also a weighted D-CTC model. �is

is obtained by choosing the weights of a weighted D-CTC model to be the transition

probabilities wα = p(τα) = Tr(τ 2
α), giving the equation of motion

ρf =

∫
dαTr (τ 2

α) TrCV
(
U(ρi ⊗ τα)U †

)∫
dαTr (τ 2

α)
. (6.14)

Another collection of transition probability models is found by integrating over all

possible initial CV states, weighted by the corresponding transition probability, and so

τi = Z−1

∫
P(HCV)

d[φ] p(φ)|φ〉〈φ| (6.15)

is used if pure CV states are considered, or similarly with an integral over D(HCV) if

mixed CV states are considered. Z > 0 normalises the state τi and p(φ) is the transition

probability as described above. �ere are two options for then isolating ρf : either take

the partial trace as with D-CTCs or use the same partial projection used to calculate the

transition probability. �e �rst of these, using pure CV states, gives a model with the

equation of motion

ρf = Z−1

∫
d[φ] p(φ) TrCV

(
U(|ψi〉〈ψi| ⊗ |φ〉〈φ|)U †

)
, (6.16)

which is one of various models on this theme.

8
One curiosity of using this generalisation of transition probability is that the probability for ρ to transition

to ρ under unitary 1 is strictly less than unity for mixed ρ. �is is simply a re�ection of the fact that mixed

states can be viewed as epistemic states over the pure states.
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Another such transition probability model is the model of T-CTCs, which is the model

found by integrating over all pure CV states, weighted by transition probability, but using

the partial projection to �nd ρf . T-CTCs will be developed fully in Sec. 6.4.5, complete

with a discussion of their physical motivation and ontological implications. Some of the

other theories that are variations on this theme will be brie�y considered in Sec. 6.4.5.6.

6.4.4 The Uniqueness Ambiguity and Epistemic Reasoning

Before proceeding to detail the model of T-CTCs, some remarks are in order about the

uniqueness ambiguity. In Sec. 6.2.2 this ambiguity was introduced as a necessary and

su�cient condition for a model to su�er information paradoxes, as de�ned in that section.

�e argument hinges on the idea that if the �nal state is uniquely determined by the initial

state and dynamics, then what has occurred can be regarded as a (possibly very powerful)

computation and is therefore not paradoxical according to that de�nition.

�e argument still holds if the unique �nal state is an epistemic state (that is, a proba-

bility distribution over ontic states), so long as the probabilities in the epistemic state are

determined by the physics rather than purely epistemic principles. If the probabilities are

physically determined then any new information obtained can be viewed as being due to a

probabilistic computation. For any particular �nal state to be likely, the physics must not

only establish that �nal state as a possibility, but also that the corresponding probability is

su�ciently high. Models for probabilistic computation are well-established and certainly

not paradoxical.

Compare this to D-CTCs without either noise or the maximum entropy rule. In

Sec. 6.3.1 it was claimed that D-CTCs su�er from the uniqueness ambiguity and therefore

information paradoxes. �is is di�erent from a probabilistic computation since D-CTCs

assign no probabilities to the possible �nal states; they are merely le� as possibilities.

�erefore, as far as the de�nitions in Sec. 6.2.2 go, information paradoxes are still

avoided if uniqueness ambiguity is avoided; viz., when a unique physically determined

epistemic state is speci�ed. It is for this reason that requirements (4) and (5) of Sec. 6.4.2

allow for uniquely speci�ed epistemic states.

For example, suppose a time travel circuit is designed to produce previously unknown

theorems. If this circuit produces unique theorems with certainty from the input, then, as

discussed in Sec. 6.2.2, this is a type of computation: a novel automated theorem prover.

Similarly, if the circuit produces one of a selection of possible theorems from the input,

each with a given probability, then the circuit is performing a (possibly novel) probabilistic

computation. On the other hand, if a model allows for a circuit that could produce one of
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a range of possible theorems but has no way of giving a probability for each, then that is

an information paradox.

6.4.5 T-CTCs

�e model of T-CTCs may be motivated as follows. Consider a CR observer watching a

standard form time travel circuit evolve and suppose that the primitive states of quantum

theory are pure states. Because of this, and the puri�cation theorem, take ρi = |ψi〉〈ψi| to
be pure.

�is observer watches a CV system emerge from the future in some unknown pure state

|φ〉. �is is then observed to interact with a CR system, initially in state |ψi〉, via unitary U .

�e CV system then proceeds to head back in time. At this point, the observer may judge

whether any given |φ〉 is a consistent initial CV state. If someone were to have measured

the CV system immediately before it travelled back in time, then the probability of their

�nding that any given |φ〉 is a consistent initial state would be p(φ) = ‖〈φ|U |ψi〉|φ〉‖2
.

So for any pair |φ1〉 and |φ2〉, the former would be found to be consistent p(φ1)/p(φ2)

times more o�en than the la�er. It therefore seems reasonable to conclude that |φ1〉
is p(φ1)/p(φ2) times more likely to have been the initial state than |φ2〉. �e observer

therefore considers τi as a proper mixture over all |φ〉 ∈ P(HCV), each weighted by p(φ),

Eq. (6.15). On the other hand, consistency demands that if |φ〉 was the initial CV state,

then on heading back in time the CV system must be found to be in the same state again.

So the observer can describe the �nal state of the CR system in each case by the partial

projection 〈φ|U |ψi〉|φ〉/ ‖〈φ|U |ψi〉|φ〉‖2
consistent with this being the case. �e resulting

�nal state for the CR system is, therefore,

ρf = Z−1

∫
d[φ]Uφ|ψi〉〈ψi|U †φ, (6.17)

Uφ
def

= 〈φ|U |φ〉, (6.18)

Z
def

=

∫
d[φ] 〈ψi|U †φUφ|ψi〉, (6.19)

where the operator Uφ acts only onHCR and the constant Z > 0 is de�ned to normalise

ρf .

Equations (6.17–6.19) de�ne the behaviour of the model of T-CTCs. �e CR input state

|ψi〉 was assumed to be pure, but these equations can equally be applied to mixed input

states by simply replacing instances of |ψi〉〈ψi| with ρi.

�is is not intended as a derivation, but a motivational explanation for T-CTCs akin to

those given for D-CTCs and P-CTCs. As with those models, T-CTCs are de�ned by the

Eqs. (6.17–6.19) rather than by any particular interpretation. One might even use a similar
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argument to motivate other models, including some of the other transition probability

models mentioned in Sec. 6.4.3.

Several features of T-CTC immediately follow from Eqs. (6.17–6.19). First, it is a non-

unitary and non-linear model. Second, it is only renormalisation non-linear and as such

it only gives rise to continuous evolutions, as discussed in Sec. 6.3.3. �ird, there is no

ambiguity in the equation of motion (6.17), so there is no uniqueness ambiguity and no

information paradoxes. Before proceeding to consider what other features T-CTCs may

have, it will �rst be useful to re-write Eq. (6.17) in a simpler form.

6.4.5.1 Simplification of the T-CTC Equation of Motion

�e equation of motion (6.17) for T-CTCs in its current form is rather opaque. In order to

more easily calculate with the model it is useful to perform the integration in generality

and thereby simplify this equation.

Let {|α〉}d−1
i=0 be an orthonormal basis for the d-dimensional CV system and expand

the unitary U in the Kronecker product form in this basis U =
∑

α,β Aαβ ⊗ |α〉〈β|, where

Aαβ are operators on the CR system. In this form, the equation of motion is

ρf = Z−1
∑
α,β,γ,δ

Iαβ,γδAαβ|ψi〉〈ψi|A†γδ, (6.20)

having de�ned the integrals

Iαβ,γδ =

∫
d[φ] 〈φ|α〉〈β|φ〉〈φ|δ〉〈γ|φ〉. (6.21)

Now consider expanding both d[φ] and |φ〉 in the Hurwitz parametrisation [Eqs. (6.9,

6.10)] with respect to the same basis. Since, for each α, dϕα factorises out of the measure,

any integrand in which the only ϕα-dependence is an integer power of eiϕα will integrate

to zero. Considering the integrals in Eq. (6.21), every integrand will have such a phase

factor unless at least one of the two following conditions is met: α = β and γ = δ, or

α = γ and β = δ. In these cases, all phase factors will cancel out and the phase integrals

will not come to zero. Discarding these zero integrals in Eq. (6.20) it is, therefore, found

that

ρf = Z−1

(∑
α 6=β

Iαβ,αβAαβ|ψi〉〈ψi|A†αβ +
∑
α 6=β

Iαα,ββAαα|ψi〉〈ψi|A†ββ

+
∑
α

Iαα,ααAαα|ψi〉〈ψi|A†αα

)
. (6.22)
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By unitary invariance of the integration measure one may rotate |φ〉 in each of these

integrals so that only the |d− 1〉 and |d− 2〉 components contribute. �erefore, for α 6= β,

Iαβ,αβ and Iαα,ββ are both equal to∫
d[φ] |〈φ|d− 1〉|2|〈φ|d− 2〉|2

= (2π)d−1

(∫ d−3∏
γ=1

dθγ cos θγ(sin θγ)
2γ−1

)

×
∫

dθd−1 dθd−2 cos3 θd−1 cos3 θd−2 sin2d−1 θd−1 sin2d−5 θd−2, (6.23)

where in the �nal line the integrand has been expanded out in the Hurwitz parametrisation.

Similarly

Iαα,αα =

∫
d[φ] |〈φ|d− 1〉|4

= (2π)d−1

(∫ d−3∏
γ=1

dθγ cos θγ(sin θγ)
2γ−1

)

×
∫

dθd−1 dθd−2 cos5 θd−1 cos θd−2 sin2d−3 θd−1 sin2d−5 θd−2. (6.24)

By evaluating the �nal lines of Eqs. (6.23, 6.24) it is seen that, for α 6= β, the ratio

Iαα,αα/Iαβ,αβ = 2. From Eq. (6.22) one therefore �nds

ρf ∝
∑
α,β

(
Aαβ|ψi〉〈ψi|A†αβ + Aαα|ψi〉〈ψi|A†ββ

)
. (6.25)

Finally, note the following identities, which may readily be veri�ed by expanding the

traces: P
def

= TrCV U =
∑

αAαα and

∑
α,β Aαβ|ψi〉〈ψi|A

†
αβ = TrCV

(
U (|ψi〉〈ψi| ⊗ 1)U †

)
.

Using these, and introducing a normalising scalar z > 0 (which is generally di�erent from

Z used before), the �nal form of the equation of motion becomes

ρf = z−1

(
P |ψi〉〈ψi|P † + dTrCV

(
U

(
|ψi〉〈ψi| ⊗

1

d

)
U †
))

. (6.26)

Equation (6.26) is in a much more revealing form than Eq. (6.17). It shows that the

T-CTC equation of motion is a weighted mixture of the corresponding P-CTC equation of

motion (6.5) with an ordinary quantum channel. �is gives the impression that T-CTCs

are akin to noisy P-CTCs. Like Eq. (6.17), this simpli�ed equation of motion can equally be

applied to mixed CR input states ρi.
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6.4.5.2 The P Operator

�e operator P in Eq. (6.26) is the same as used in P-CTCs in Eq. (6.5). It is the partial

trace of a unitary operator and is therefore not generally unitary itself. For instance, for

a general P there can be states |φ〉 in P(H) for which P |φ〉 = 0, which would not be

possible if P were unitary.

So P does not generally preserve state norms, but the e�ect of P on state norms is still

bounded. Consider P acting on a vector |ψ〉 and let {|α〉}d−1
α=0 be any orthonormal basis on

the d-dimensional CV system. Using the triangle inequality and unitarity one can bound

‖P |ψ〉‖ as follows

‖P |ψ〉‖ ≤
∑
α

‖〈α|U |ψ〉|α〉‖ ≤
∑
α

‖U |ψ〉|α〉‖ = d ‖ψ‖ . (6.27)

Moreover, this bound can be achieved as demonstrated in Ref. [BW17] and is therefore the

tightest possible general bound.

6.4.5.3 Paradoxes

It has already been noted that T-CTCs have no uniqueness ambiguities and therefore no

information paradoxes. With the simpli�ed equation of motion (6.26) to hand it is now

easy to see that T-CTCs are also always dynamically consistent. Even though it is possible

for P |ψi〉 = 0, the second term of Eq. (6.26) will always give a non-zero density operator.

�erefore, T-CTCs contain neither type of paradox identi�ed in Sec. 6.2.2. Unlike P-CTCs

and D-CTCs, no noise or extra rule is required to avoid these paradoxes.

An example is instructive. Consider the following toy model of an unproved theo-

rem paradox as a standard form time travel circuit, introduced in Ref. [LMGP
+

11b] and

illustrated in Fig. 6.3. �e CR system is a pair of qubits, M and B representing the math-

ematician and book respectively, initially in state |0〉B|0〉M . �e CV system is a single

qubit representing the mathematician heading back in time. �e unitary U consists of

a pair of CNOT gates representing the writing and reading of the book with a swap for

when the mathematician swaps places with their time-travelling self, as illustrated. Clearly,

by extending this toy model to use N qubits for each of M , B, and CV it would allow a

theorem to be encoded in an N -bit string.

For this circuit the P operator is

P = |0〉B〈0|⊗|0〉M〈0|+ |0〉B〈1|⊗|1〉M〈1|+ |1〉B〈1|⊗|0〉M〈1|+ |1〉B〈0|⊗|1〉M〈0| (6.28)

and therefore P |00〉BM = |00〉BM + |11〉BM . To get the second term of Eq. (6.26), note

that TrCV
(
U(|00〉BM〈00| ⊗ 1)U †

)
= |00〉BM〈00|+ |11〉BM〈11|. �e output the unproved
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MB

time

Figure 6.3: Toy model of an unproved theorem paradox as a standard form circuit from

Ref. [LMGP
+

11b]. �e two CR qubits are labelled B for the book and M for the math-

ematician. �e unitary gates illustrated represent, from bo�om to top, the book being

wri�en with a CNOT, the book being read with a CNOT, and the mathematician swapping

places with their future self.

theorem T-CTC circuit is therefore

ρf =
1

2
|00〉BM〈00|+ 1

4
|00〉BM〈11|+ 1

4
|11〉BM〈00|+ 1

2
|11〉BM〈11|. (6.29)

�is result may also be veri�ed, with rather more e�ort, directly from the integral expres-

sion Eq. (6.17).

Compare this to the cases of D-CTCs and P-CTCs. For D-CTCs, any state diagonal in

the computational basis will satisfy Eq. (6.1) for this circuit. �e result is a one-parameter

continuous family of consistent evolutions representing any probabilistic mixture of possi-

ble “theorems” along the CV system. Notably, since the D-CTC description is diagonal it is

entirely classical, except the consistency condition requires consistency on probability dis-

tributions over the theorems rather than the theorems themselves
9
. For P-CTCs, Eq. (6.28)

gives |ψf〉 = 1√
2

(|0〉B|0〉M + |1〉B|1〉M) as the circuit’s output, so one obtains an equal

superposition over all possible “theorems”.

6.4.5.4 Computation

Some basic facts about the computational abilities of T-CTCs can be read straight from

Eq. (6.26). �e second term could be realised in ordinary quantum theory and so is limited

to the power of BQP, while the �rst term is the P-CTC equation of motion (6.5). It follows

immediately that P-CTCs can therefore trivially simulate T-CTCs, so clearly T-CTCs cannot

e�ciently solve any problems that are not contained within PP. �is shows that P-CTCs

are at least as computationally powerful as T-CTCs.

9C.f. the unusual model for classical time travel used in Ref. [AW09], discussed in Sec. 6.3.4
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Moreover, the form of Eq. (6.26) suggests that T-CTCs may be less powerful than

P-CTCs. �is is because, for a T-CTC, ρf is only a pure state if either P |ψi〉 = 0 or if

the two terms in Eq. (6.26) are equal. So every T-CTC algorithm that outputs a pure

state is achievable on an ordinary quantum computer in exactly the same way. Any

potential algorithm for a T-CTC-equipped computer that makes computational use of the

extra power of �rst term in Eq. (6.26) would therefore have to output mixed states. �is

observation also prevents T-CTCs from being able to perform an arbitrary postselected

quantum measurement, since many postselected measurement outcomes are pure states.

�erefore, one could not prove that T-CTCs have the power of PP using the same method

used for P-CTCs [LMGP
+

11a].

Despite this, it has recently been shown that T-CTCs can e�ciently simulate any

P-CTC circuit to arbitrary precision [BW17] (that is, the undesired “error term” can be

made exponentially small with a linear number of CV qubits). �is does not invalidate

the above comments, which demonstrate that T-CTCs cannot perfectly simulate P-CTCs.

�is approximate simulation is, however, enough to show that T-CTCs do indeed have the

computational power of PP.

6.4.5.5 Mixed States and Non-linearity

In Sec. 6.3.3 it was noted that both improper and true mixtures are validly described with

density operators in non-linear extensions of quantum theory and that the puri�cation still

holds so ρi = |ψi〉〈ψi| may always be assumed. �is remains true in the model of T-CTCs.

It also remains true that proper mixtures are not validly described by density operators

and that non-linearity of T-CTCs allows for the possibility of creating an entanglement

detector and thereby signalling, exactly as with D-CTCs and P-CTCs.

Another consequence of non-linearity is that both D-CTCs and P-CTCs are capable of

distinguishing non-orthogonal states in a single measurement. However, this is not the

case with T-CTCs as shall now be shown.

Consider the problem of distinguishing between two states ρ and σ. �e probability

of success when using a single optimal measurement is given by
1
2

(1 +D(ρ, σ)), where

D(ρ, σ)
def

= 1
2

Tr |ρ− σ| is the trace distance between the states [FG99]. �erefore, ρ and σ

are perfectly distinguishable in a single measurement if and only if D(ρ, σ) = 1.

Another measure of distinguishability of quantum states is the the �delity between ρ

and σ, de�ned as [NC00]

F (ρ, σ)
def

= Tr
√
ρ1/2σρ1/2. (6.30)

In the case of pure states |a〉 and |b〉, the Fidelity takes on the particularly simple form

F (|a〉, |b〉) = |〈a|b〉|.
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Suppose one wishes to distinguish quantum states using a T-CTC. Only pure state

inputs need be considered, so what is required is a bound on the distinguishability of the

output states of some T-CTC circuit, ρaf and ρbf , for which the input states were |a〉 and |b〉,
respectively. Note �rst that trace distance is bounded by �delity [NC00]

D(ρaf , ρ
b
f ) ≤

√
1− F (ρaf , ρ

b
f )

2. (6.31)

It is then useful to separate the terms of ρa,bf seen in Eq. (6.26). �erefore, write ρψf =

(1− λψ)σψ + λψτψ, where τψ
def

= Tr
(
U(|ψ〉〈ψ| ⊗ 1

d
)U †
)

and

λψ
def

=
d

d+ ‖P |ψ〉‖2 ≥
1

d+ 1
(6.32)

where this inequality is a result of Eq. (6.27). Using strong concavity and monotonicity of

�delity under quantum operations [NC00] it is seen that

F (ρaf , ρ
b
f ) ≥

√
λaλbF (τa, τ b)

≥
√
λaλbF (|a〉, |b〉) ≥ 1

d+ 1
|〈a|b〉|. (6.33)

Finally, observe that by Eqs. (6.31–6.33)

D(ρaf , ρ
b
f ) ≤

√
1− |〈a|b〉|

2

(d+ 1)2
≤ 1, (6.34)

with equality to unity only possible if 〈a|b〉 = 0.

�is proves that the output states of a T-CTC circuit are only perfectly distinguishable

from one another in a single measurement if the input states were. However, as proved in

Ref. [BW17], T-CTCs can approximately simulate P-CTCs to arbitrary precision e�ciently.

It therefore follows that while T-CTCs cannot perfectly distinguish non-orthogonal quan-

tum states, they can distinguish any set of linearly independent non-orthogonal states to

arbitrary precision by simulating the corresponding P-CTC circuit.

It is comparatively very simple to observe that T-CTCs are incapable of cloning pure

states. A pure state cloning machine always outputs a pure state. Since any T-CTC

outpu�ing a pure state can be simulated exactly by an ordinary quantum operation, then

the no-cloning theorem for T-CTCs is simply a result of the no-cloning theorem in ordinary

quantum theory. In exactly the same way, it also immediately follows that T-CTCs are

incapable of deleting arbitrary pure states. However, the question as to whether mixed

states can be broadcast [BCF
+

96] is le� open.
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6.4.5.6 Relation to Other Alternatives

Before discussing these results, it should be noted that some of the results proved for

T-CTCs above can be easily modi�ed to apply to some of the closely related models

introduced in Sec. 6.4.3.

First, consider the modi�cation to T-CTCs where, instead of integrating over pure CV

states, mixed CV states are integrated over. �is represents a class of models since there is

no unique natural choice for the integration measure, but it is still possible to deduce some

general properties. �ese models are only renormalisation non-linear and so continuity

follows immediately. It is also possible to show that these models always de�ne a unique

non-zero ρf for every ρi and U , so that the models su�er neither dynamical consistency

nor information paradoxes
10

.

Now consider the modi�cation to T-CTCs expressed in Eq. (6.16), where, instead of

separating CV and CR systems by a projection, they are separated by a partial trace. �is

model always de�nes a unique non-zero
11 ρf , thus avoiding both dynamical consistency

and information paradoxes. It is not, however, renormalisation non-linear but polynomial

non-linear.

�ere are, of course, further variations which could be considered. For example, one

could use an alternative generalisation of transition probability for mixed states, as noted

in Sec. 6.4.3. �e purpose of this discussion is to show that whilst T-CTCs were focussed

on above, the other theories mentioned in Sec. 6.4.3 also have reasonable properties and

may be worthy of further development.

6.5 Summary and Discussion

�is chapter approached ontology and causality in quantum theory from an unusual angle.

By assuming that time travel to the past is possible, one is confronted with an interesting

cross-section of problems from ontology and causality. In particular, one is drawn towards

non-linear extensions of quantum theory which cast light on certain ontological issues in

quantum theory.

Having discussed the various motivations for studying quantum time travel in Sec. 6.1,

this chapter followed the tradition of circuit-based approaches to time travel to the past.

10
�e proof that ρf is non-zero follows by showing that the integrand is positive semi-de�nite and that

there exist some τ for which the integrand is non-zero. Importantly, an appropriate assumption would be

needed about the positivity of the chosen measure.

11
�e proof that ρf is always non-zero follows similarly to the previous case, by proving that the integrand

is always positive semi-de�nite and there always exist CV states |φ〉 for which both the integrand and d[φ]
are non-zero.
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�is is a convenient abstract approach that can be summarised using standard form circuits

introduced in Sec. 6.2.1. Of course, time travel to the past always raises the possibility of

paradoxes, which were systematically introduced in Sec. 6.2.2 in the context of classical

time travel.

Following this, previous work on quantum time travel in the circuit approach was

outlined, focussing on the model of D-CTCs in Sec. 6.3.1 and the model of P-CTCs in

Sec. 6.3.2. �e roles of non-linearity and ontology in these models were discussed in

Secs. 6.3.3, 6.3.4 where it was noted that not only do one’s ontological preferences in�uence

time travel models, but that the types of reasonable non-linear extensions to quantum

theory may hint at approaches to quantum ontology.

�e main results of this chapter were in Sec. 6.4. �e strengths and shortcomings of

D- and P-CTCs were used to identify two classes of new quantum time travel models. In

particular, the model of T-CTCs was developed in full and its properties were derived.

Non-linear extensions of quantum theory are subtle since the long-standing plurality of

co-existing interpretations is broken. When considering time travel this manifests itself in

at least two ways. �e �rst is in the development and motivation of various possible models:

ontological bias will a�ect decisions made. �e second is in using those models: mixed

states with ontological di�erences but the same density operator may behave di�erently, as

discussed in Sec. 6.3.3. Neither of these issues arise when considering time travel classically,

since ontology is generally clear and non-linear evolutions are commonplace.

�is uniquely quantum issue has both positive and negative e�ects on the resulting

models. �e way in which quantum theory works allows models of time travel that do

not su�er from the paradoxes that are present classically, but which generally break some

of the central structure of quantum theory. Distinguishability of non-orthogonal states,

state cloning/deleting, and the spectre of superluminal signalling all present themselves. It

also appears that computational power is greatly increased even beyond that of quantum

computers.

�e existing models of quantum time travel are not without their shortcomings. Most

troubling is that both D-CTCs and P-CTCs su�er from paradoxes (of the information and

dynamical consistency types respectively). While both can be eliminated by arbitrarily

small noise, the models themselves remain paradoxical. �e two classes of new models

presented in Sec. 6.4.3 were designed to avoid these paradoxes and hopefully also satisfy

many of the other desiderata laid out in Sec. 6.4.2.

Of the new models, that of T-CTCs was selected primarily due to its physical motivation.

To illustrate the strength of the physical story told in Sec. 6.4.5, consider applying the same

reasoning in a classical context.
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A CR observer watching a classical time travel circuit sees a CV system in an unknown

ontic state τ̃i emerge from the future, interact with a CR system in a known state, and then

disappear back to the past in the ontic state τ̃f . For each τ̃i, the observer knows that when

it heads back in time it must be found to be in the same state. Whilst in quantum theory

the probability of �nding a system in a given state is given by the transition probability,

the corresponding probability classically is either unity or zero: Either τ̃i = τ̃f or τ̃i 6= τ̃f .

So when the CR observer takes a probability distribution over all possible CV states τ̃i, the

only states to which non-zero probabilities are assigned are precisely those states for which

τ̃i = τ̃f a�er the interaction. What is missing from this account is a way of specifying the

relative probabilities assigned to each CV state. One might choose to use the principle of

indi�erence and weight each possibility equally, but this is not necessary.

A very similar argument could be used to argue in favour of D-CTCs, for example, by

demanding exact equality of reduced density operators rather than consistency via the

transition probability. In this case, using the principle of indi�erence would lead to a result

that is equivalent to the uniform weighted D-CTCs mentioned in Sec. 6.4.3. However, by

accepting the interpretation of transition probabilities and supposing that only pure states

are primitive, T-CTCs do have a clear physical motivation.

Of course, this was never meant to be a cast-iron argument for T-CTCs and there is a

certain amount of vagueness in the description given in Sec. 6.4.5. Similar interpretational

vagueness is found with both D-CTCs and P-CTCs and should be expected when a�empting

to extend quantum theory (which lacks consensus on interpretation) to a non-linear regime

that is so alien to it.

�ese arguments for the classical model and uniform weighted D-CTCs di�er from the

argument for T-CTCs in an important respect. �e probabilities assigned to the di�erent

possible histories with T-CTCs are physically determined: they are proportional to the

transition probabilities. On the other hand, in the above discussion of the classical model

and D-CTCs using the same narrative there is no physical assignment of probabilities. �e

use of principle of indi�erence is an epistemic move, not a physical one.

Consider the desirable features listed in Sec. 6.4.2 in the light of the model of T-CTCs.

�e above argument aims to satisfy feature (1) at least as far as with D- or P-CTCs. As with

D- and P-CTCs, feature (2) is satis�ed so long as an appropriate ontology of measurement

is chosen [Sec. 6.3.3]. Features (3), (4), and (5) are satis�ed without condition, as discussed

in Sec. 6.4.5.3. Feature (6) is potentially partially satis�ed, in that both τ and ρf might be

considered ontologically pure, but since a proper mixture is taken over so many possibilities,

the mathematical form of either is very rarely pure. In Sec. 6.4.5.5 it is shown that feature
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(7) is satis�ed strictly speaking, although if one allows for arbitrarily small error then it is

violated.

Does this mean that T-CTCs are a be�er model for quantum theory with time travel

or, more speci�cally, for quantum theory in the presence of CTCs? Not necessarily. �e

physical motivation for T-CTCs is far from a “�rst principles” argument and there is still

the question as to how, and when, the state projection occurs. However, both D-CTCs and

P-CTCs have incomplete physical motivations and both leave questions as to exactly how,

and when, a proposed physical change occurs—all three models share the unobservable

dynamical ambiguity.

What has been comprehensively shown is that there is a whole landscape of other

theories out there. �e quantum circuit approach to quantum theory with time travel may

be very a�ractive in that it abstracts away from kno�y problems with spacetime geometry

or any other exact mechanism for time travel, but it is perhaps too general for the problem

at hand. In order to identify a more robustly physical solution to quantum theory with

time travel it may be necessary to use a di�erent approach, such as path integral or �eld

theoretic ideas. Alternatively, by very carefully commi�ing to a speci�c ontology for

quantum theory it may be possible to identify the corresponding theory of time travel.

When non-linearity is present vagueness on this point is problematic.
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7
Conclusions and Further Work

�is thesis has considered the possibilities and impossibilities for ontologies of quantum

systems in three broad ways. First, by taking a rather traditional approach to the ontology

of quantum states. Second, by considering how to properly analyse causality in quantum

systems. �ird, by considering how one might account for time travel to the past in a

quantum universe and how this interacts with possible ontologies. �e conclusions for

each will now be discussed in turn, together with what they suggest in terms of further

work.

7.1 State Ontology and Macro-realism

�e limitations that quantum theory places on the ontology of states and the possibility of

macro-realist ontologies were discussed in Chaps. 2 and 3 respectively. In the �rst instance,

these chapters were concerned with which ontological features can or cannot be compatible

with quantum theory, with extensions concerning compatibility with experiments being

developed later.

�e primary result of Chap. 2 was �m. 2.2 which proved that almost every quantum

superposition state must be ontic in d > 3 dimensions (equivalently, they cannot be

epistemic). �e conclusion for any prospective epistemic realist must be that even though

a superposition inherits all of its properties and dynamics from underlying basis states,

one cannot use this fact to construct a simpler ontology where the superposition also

inherits its ontic states from underlying basis states. Note that the theorem gives almost
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the strongest version of this statement possible, holding for almost every superposition

with respect to any given orthonormal basis.

To illustrate, consider Bohmian mechanics of a single particle and its implied ontology

where ontic states are of the form λ = (~r, |ψ〉), as described in Sec. 3.2.4. Here, the position

basis of the particle plays a special role, with its “true value” being represented by the

position vector ~r. A less extravagant variation on this ontology might aim to make use

of this special role and have other quantum states inherit their ontology from the ontic

states of the position basis. However, �m. 2.2 shows that this can never be achieved—

superpositions will always require novel ontic states not accessible to the underlying basis

in order to be compatible with quantum theory.

One avenue for developing on this result is to consider ontic independence more gen-

erally. By analogy with linear independence in geometry, one might de�ne a quantum

state |ψ〉 to have ontic independence with respect to some set of other quantum states if it

can access ontic states not covered by preparations of that set. In this language, �m. 2.2

requires almost all quantum states to have ontic independence with respect to any given

basis to be compatible with quantum theory in d > 3 dimensions. It would be interesting

to see if more powerful ontic independence results could be proved, showing that certain

quantum states necessarily have ontic independence with respect to other sets that aren’t

necessarily bases.

�e techniques of �m. 2.2 then formed the basis of the rest of the results in Chaps. 2,

3. One of the primary motivations for epistemic realist ontologies with ontic overlaps is

to explain the indistinguishability of non-orthogonal quantum states in terms of these

overlaps. Much like how Ref. [BCLM14] proved that such overlaps cannot fully explain

all indistinguishabilities (by a failure of being maximally ψ-epistemic), �m. 2.3 proved

that the indistinguishability between any pair of quantum states cannot be fully explained

in this way (for d > 3 dimensions). Moreover, it was proved that no individual quantum

state can be maximally ψ-epistemic at all. By considering the e�ect of higher dimensions,

this was adapted in �m. 2.4 to prove that many pairs of identi�able quantum states have

necessarily small ontic overlap in large dimensions. In particular, as dimension d→∞
the ontic overlap between many such pairs must approach zero, while maintaining �nite

Born rule overlap.

�ese conclusions make it very di�cult for the epistemic realist to use ontic overlaps to

explain indistinguishability in particular, but also any other phenomena that might seem

to naturally gel with ontic overlaps, such as no-cloning for example. �e situation becomes

very di�cult in large-dimensional systems, where the ontic overlaps between any pair of

quantum states satisfying |〈φ〉|ψ〉|2 < 1
4

must be very small (by �m. 2.4). Importantly,
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these results apply to many identi�able pairs of quantum states, viz. you give me a pair

of quantum states and I can tell you whether the results apply to that pair in particular.

�is closes an important loophole common to previous similar theorems [Mar12, BCLM14,

Bra14, Lei14b, Bal14], which only proved the existence of pairs of quantum states with

bounded overlaps. �eorem 2.4 also addressed another shortcoming of those previous

theorems, in that its limiting case applies to states with �nite Born rule overlap, not states

that approach orthogonality (as discussed in Sec. 2.1.4).

�ese results improve on the current state of no-go theorems for epistemic realist

ontologies in several ways, but there are plenty of opportunities for further improvement.

Perhaps the ultimate aim for such results would be a proof that any ontological model for

a quantum system must be sometimes ψ-ontic [Lei14a]. An ontological model is sometimes

ψ-ontic if for each quantum state there is some �nite-measure set of ontic states that can

only be obtained by preparing that particular quantum state—i.e. each quantum state

keeps a region of the ontic state space to itself. �is is very similar to ψ-ontic, but is not

ruled out by the existence of ψ-epistemic ontological models [LJBR12, ABCL13]. Perhaps

the greatest advantage to such a proof would be that it implies several other important

foundational results, including Bell’s theorem, and therefore could act to unify those results

[Lei14a].

Chapter 3 shi�ed focus to macro-realism—another possible property of quantum state

ontology. �e main result was �m. 3.1, which used �m. 2.2 to prove that two of three

types of macro-realism, ESMR and EMMR, are incompatible with quantum theory in

d > 3 dimensions. �is is more powerful than the Legge�-Garg argument, which is only

able to rule out EMMR, while both leave the possibility of a third type of macro-realism,

SSMR. Since Bohmian mechanics reproduces quantum predictions and satis�es SSMR, then

no theorem can prove that quantum theory is incompatible with every SSMR ontology.

However, Bohmian mechanics is ψ-ontic (a very restrictive condition) and it therefore

may still be possible for further work to prove that quantum theory is incompatible with

all ψ-epistemic (opposite of ψ-ontic) SSMR ontologies. More generally, it would be good

for further work to clarify whether any signi�cant subset of SSMR ontologies is also

incompatible with quantum theory.

�ese main results are all unfortunately intolerant to error. �at is, the proofs do

not directly generalise to the case where quantum probabilities are only assumed to be

approximately correct. �e core reason for error-intolerance is that they are all based on

the asymmetric overlap, a quantity that loses meaning in the presence of �nite error. To

address this, �m. 2.5 adapted the proof �m. 2.4 to use the alternative symmetric overlap,

resulting in a somewhat weaker yet crucially error-tolerant result. �e conclusion is that
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an appropriate set of experiments that reproduce quantum predictions to within some

small ±ε could in principle be used to experimentally bound the ontic overlap between an

appropriate speci�c pair of quantum states.

However, �m. 2.5 is something of a proof-of-concept result, as the proof is not very

well matched to the symmetric overlap and the resulting error term does not scale very

well. An alternative approach was taken in Sec. 3.4 where the ε-asymmetric overlap was

introduced as an error-tolerant generalisation of the asymmetric overlap. �is was used

to prove �m. 3.2, which can be used to state error-tolerant variations on �ms. 2.2, 3.1.

Similarly, the conclusion is that appropriate sets of experiments could be used to rule out

epistemic superpositions and ESMR/EMMR macro-realism to within given precisions.

Both of these error-tolerant results show the way for further experimental work in this

area. However in order to achieve that, a more thorough analysis of the exact measurements

needed for each would be required. �e introduction of the ε-asymmetric overlap also

suggests that other results using the asymmetric overlap could be made error-tolerant

and amenable to experimental investigation in this way, including overlap results already

present in the literature [Bal14, LM13, Mar12]. An experimental refutation of ESMR macro-

realist ontologies would be particularly useful, as approaches based on the Legge�-Garg

argument are incapable of achieving this.

Section 2.5 applied these methods to information theory and classical simulations

of quantum channels in particular. �e result was �m. 2.6, proving that to perfectly

simulate an nq-qubit noiseless quantum channel with one-way classical communication a

noiseless classical channel of at least 2nq+O(1)− 1 bits is needed, even when the sender and

receiver have access to arbitrarily large shared random data. �is may be seen as a kind of

“anti-Holevo” bound [Sec. 2.5.2], since while the Holevo bound requires nc qubits to store

nc classical bits this requires O(2nq) classical bits to store nq qubits. �e bound proved in

�m. 2.6 asymptotically matches the best known bounds for the same simulation but, as

noted in Sec. 2.5.3, has three key advantages. First, it is much simpler to prove. Second,

because of its simplicity it may be easily seen as a result of a certain property of quantum

states. Most importantly, third, the proof method can be reused to produce potentially

be�er bounds, given a certain class of classical error-correction codes.

Clearly then, a good avenue for further work is �nding examples of classical error-

correcting codes to give be�er and more explicit bounds via �m. 2.6. In particular, an

explicit family of such codes would produce a bound of the form c2nq − 1 for some speci�c

c. If c > 0.293, this bound would exceed the best known speci�c bound [Mon11].

More generally, �m. 2.6 demonstrates the power of a fact that, to my knowledge,

has not been utilised in quantum information before. �at is, the existence of sets of
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quantum states exponentially large in dimension where every triple from that set is anti-

distinguishable. Given the three-way incompatibility displayed by anti-distinguishable

triples, it seems likely that this fact may become useful in the study of quantum cryptogra-

phy.

Recall from Sec. 2.1.4 that the current generation of ontology theorems concentrate

on single systems to avoid the issues raised by Bell’s theorem and the PBR theorem in

multipartite environments. In particular, the preparation independence postulate (PIP) is

assumed in the PBR theorem, which uses it to prove that all compatible ontological models

are ψ-ontic. It may be interesting to revisit some of these multipartite issues in light of the

quantum causal models of Chap. 5. Bell locality and the PIP are both conditions on the way

that the ontologies of multiple quantum systems can combine into a global ontology, while

causal models naturally describe how local independent systems can interact in general,

so it seems likely that some properties of the causal models framework might in�uence

how one treats multiple systems in ontological models.

7.2 Quantum Causality

�e appropriate way to describe and analyse causality in quantum theory was the subject

of Chaps. 4, 5. In Chap. 4, a de�nition for quantum conditional independence was given

and motivated, enabling a de�nition for a quantum Reichenbach’s principle and a charac-

terisation of quantum common causes. �ese were used in Chap. 5 to motivate and give a

corresponding de�nition for full quantum causal models, capable of describing any acyclic

causal scenario.

�antum conditional independence has four equivalent de�nitions, enumerated in

�m. 4.2. �e particular strength of this quantum conditional independence comes from the

fact that each of these de�nitions is a natural generalisation of a corresponding de�nition

for classical conditional independence. While the �rst of these (conditions (1) and (2)) were

obtained in Sec. 4.3.2 by assuming fundamentally unitary dynamics, there are many other

ways of obtaining the same quantum conditional independence from di�erent classical

starting points. For example, an information-theoretic approach may obtain condition (3) as

the �rst de�nition of quantum conditional independence. Regardless of one’s philosophical

predisposition, however, the fact that so many natural de�nitions are equivalent gives

them all strength.

Condition (4) of �m. 4.2 is of particular interest. In Sec. 4.3.5, it was informally argued

that channels satisfying this condition can represent two agents acting independently on a

single input system. An important contribution would be to formalise this concept. �at is,
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from a principled (perhaps operational) de�nition of what it means to “act independently”

on a common input, prove that all channels that do so are of the form required by condition

(4). �is would provide another good way of justifying quantum conditional independence

via condition (4). Assuming this is possible, it would establish channels of this form as very

important generalisations of factorised quantum channels, potentially having important

uses in quantum information, quantum theory in relativistic causal se�ings, and beyond.

In Sec. 4.3.5, a new symbol,
{i}

, was added to quantum circuit diagrams to concisely

depict channels satisfying condition (4). �ere is much potential for formalising the role

of
{i}

in quantum circuits, as well as other diagrammatic formulations of quantum theory

[CK17, CDP10, CDP11, CDP16, Har01, Har11]. �is would be especially useful given a full

characterisation of these channels as discussed above. Moreover, simply deriving rules for

how diagrams involving
{i}

can be manipulated could greatly simplify many calculations

in quantum causal models.

�antum conditional independence characterises channels where the input can act

as a complete common cause for the outputs. �is enables a de�nition of quantum Re-

ichenbach’s principle. Classically, the framework of causal models may be seen as a

generalisation of Reichenbach’s principle. By way of analogy, Sec. 5.3 proposed a de�nition

of quantum causal models that most simply generalises quantum Reichenbach and then

illustrated its utility with examples.

However, as noted in Sec. 5.3.1, it would be be�er to justify these causal models by an

argument from fundamental unitarity, mirroring the justi�cation for quantum conditional

independence given in Sec. 4.3.2. Filling this gap is an important piece of further work,

one that would no doubt bene�t from a more thorough understanding of the behaviour of

{i}
. Not only that, it would be of particular relevance to those who believe that quantum

dynamics is fundamentally unitary just as the argument in Sec. 4.3.2 is.

In quantum causal models, the process of “linking out” nodes was introduced in

Sec. 5.3.3 as the quantum causal model analogue of marginalising over nodes in a classical

causal model—that is, the mathematical procedure corresponding to ignoring that node.

As a �rst step to being able to derive more properties of quantum causal models, including

in applications to speci�c experiments, it would be very useful to investigate the properties

of this linking out operation. In particular, a general speci�cation for how linking out

a�ects the model state, the causal structure, and the relationship between them should

be found. One simple case is for linking out a leaf node (that is, a node with no children),

where it is easy to check that the resulting model state is simply obtained by removing the

factor corresponding to that node from Eq. (5.2). A corresponding speci�cation for linking

out a general node would be more di�cult to �nd, but potentially much more useful.
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Beyond these opportunities for further work on the formalism of quantum causal

models itself, there are also many ways in which they might be used and extended.

An important use case for quantum causal models is in the analysis of experiments.

Since the output of experiments is, generally speaking, statistical data, a �rst step in this

direction would be a thorough analysis of what characterises statistics obtained from

quantum experiments with certain causal structures. Given a set of experimental data, it is

known how to easily check whether a certain variable could represent a complete common

cause of another pair of variables, for example. Developing similar techniques based on

quantum causal models would go a long way towards bringing them to experimental

relevance.

Another use case for quantum causal models is in bringing a causal understanding

to certain “paradoxes” or other puzzling thought experiments in quantum foundations.

For example, the extended Wigner’s friend “paradox” [Wig67, Deu85, Bru17, FR16] has

a branched causal structure and a foundational analysis of it may bene�t from a causal

understanding facilitated by quantum causal models, since the exact disanalogy between

the classical and quantum cases remains somewhat unclear [FR16, BHW16].

One powerful way to extend the quantum causal models framework would be to

�nd a d-separation theorem, or something similar [Pea09, SGS01, HLP14]. Classically,

d-separation is a graphical criterion that applies to causal structures and the d-separation

theorem establishes it as both sound and complete for conditional independence in a

Markov causal model. �is is one of the foundational results in the study of causal models

and the basis of many causal discovery algorithms [Pea09, SGS01]. If a similar enough

theorem were found for quantum causal models, then it may be possible to use some of

these algorithms already derived in the classical se�ing with minimal changes. Techniques

used in Ref. [HLP14] to prove a d-separation theorem for their version of quantum causal

models could be useful for developing such an extension.

Finally, it is interesting to consider whether the techniques of Chaps. 4, 5 could be used

as a template for developing formulations of causal models in frameworks for beyond-

quantum physical theories. One example is the general probabilistic theory (GPT) framework

[Har01, Har11, CDP10, CDP11], which is a general way to discuss a wide landscape of

theories including classical and quantum. Such a GPT causal model formalism would not

only be useful for the study of GPTs themselves, but also could potentially unify quantum

and classical causal models. As noted in Sec. 5.1.3, Refs. [HLP14, Fri16] present alternative

formulations of quantum causal models (inequivalent to that presented here) that apply to

broader frameworks in this way and may be useful resources for this e�ort.
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7.3 Time Travel and CTCs

�e �nal approach to ontology in quantum theory taken in this thesis was in Chap. 6,

which considered time travel to the past in a quantum universe. �is was done by taking

the quantum circuit approach, which has yielded the models of D-CTCs and P-CTCs. A�er

reviewing this previous work in Sec. 6.3, the signi�cance of ontology and non-linearity in

these models was discussed in Secs. 6.3.3, 6.3.4. �is led to the identi�cation of two classes

of new models for quantum time travel in Sec. 6.4.3: weighted D-CTCs and transition

probability CTCs. From these, a speci�c transition probability model called T-CTCs was

selected, thoroughly investigated, and compared to the previous models.

Both P-CTCs and T-CTCs make use of an operator P
def

= TrCV (U) which is the partial

trace of a unitary operator [Eq. (6.5)]. Any further work that develops a fuller understanding

of the properties of such operators would be in a good place to quickly identify further

properties of P-CTCs and T-CTCs. �e only general property of such operators so far

proved is a tight upper bound on the action of P on vector norms [Sec. 6.4.5.2].

�e original paper on D-CTCs discussed how the second law of thermodynamics

remains respected in that model (except within the chronology violating region) [Deu91].

No such analysis has yet appeared for either the P-CTC or T-CTC models. �is analysis

would be interesting for further comparing the properties of these models and may have a

bearing on their relative plausibilities.

Of the opportunities for further work based into the properties of D-, P-, and T-CTCs,

perhaps the most intriguing is using them to clarify the relationships between non-linearity,

computation, and distinguishability of quantum states. In particular, a well-known result

in Ref. [AL98] claims that “virtually any” non-linear extension to quantum theory is

able to solve NP-complete and #P problems in polynomial time; however, the method

used in the proof of that result does not apply to the non-linear evolutions provided by

T-CTCs. While T-CTCs can solve any PP ⊇ NP problem in polynomial time and does

therefore not provide a counter-example, it does call for a more thorough analysis of this

claim. Reference [Aar13, Chap. 9] suggests, in a conversational manner, that deterministic

distinguishability of states is a necessary consequence of non-linearity. However, it has

already been established that T-CTCs, while generally non-linear, cannot distinguish non-

orthogonal quantum states in a single shot with certainty. In general, results such as

these demonstrate a close relationship between non-linearity, computational power, and

distinguishability of non-orthogonal states, but one that is not yet fully understood. It is

clear that non-linearity is necessary for the la�er two, but further study of time travel

models may help to clarify the degree to which it is also su�cient.
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Beyond these open questions for the study of D-, P-, and T-CTCs, this also suggests

fruitful further work for the study of time travel beyond these models.

Perhaps the most obvious avenue for work beyond these models is to identify other

particular weighted D-CTCs or transition probability CTCs that may warrant further

investigation. A few of these are noted in Secs. 6.4.3, 6.4.5.6 but none other than T-

CTCs have received a full treatment. �is would be especially interesting if a convincing

ontological argument could be given for a particular model.

In Sec. 6.3.4, intrinsic stochasticity and non-separability were identi�ed as features of

quantum theory that make it particularly di�cult to �nd an ontologically sound model of

time travel, compared to the classical context. �e precise roles of these features could

be clari�ed by starting with a generic classical model with time travel and incrementally

adding stochastic and non-separable features. By starting from the ontologically uncon-

troversial classical se�ing, this could reveal concrete suggestions of how to consistently

model quantum time travel. A complementary task would be to develop a model of time

travel for Spekkens’ toy model [Spe07] (since that is a toy model for quantum theory that

has an explicit ontology) and use it as an inspiration for time travel models in quantum

theory.

�e analysis of computation in the presence of time travel has potentially interesting

implications for computation in generalised probabilistic theories (GPTs) [LB15, BBHL17].

Since the GPT framework is designed to characterise an exceedingly large class of theories

that might be applicable to physics, it seems likely that D-, P-, and T-CTC models should be

expressible as GPTs. Expressing them in this way should help with comparisons between

them, to classical theories, and to standard quantum theory. In particular, a general

framework of computation in GPTs is developed in Ref. [LB15] using several plausible

assumptions, including those of “tomographic locality” and a “uniformity condition”.

�ere it was proved that no GPT computation in that framework is capable of solving

problems outside AWPP ⊆ PP in polynomial time. �is is puzzling in light of the known

results about D-CTCs, which are capable of solving all problems in PSPACE in polynomial

time, since it is believed that PSPACE is strictly larger than PP [AB09] (and therefore

also AWPP). �is puzzle reveals a tension between the model of GPT computation of

Ref. [LB15] and the model of computation used in Ref. [AW09] to prove that D-CTCs have

the computational power of PSPACE.

By explicitly expressing D-, P-, and T-CTCs as GPTs it should be possible to compare

them to the assumptions of Ref. [LB15]. Doing this would certainty clarify the discrepancy

between the results of Ref. [AW09] and Ref. [LB15] and may even suggest ways in which

they might be improved. A priori, D-, P-, and T-CTCs seem like they should all de�ne
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plausible enough GPTs which have similarly plausible notions of computation. �erefore,

it would be interesting to see, especially in the case of D-CTCs, whether the assumptions

used in Ref. [LB15] hold for these theories, and whether any subtleties are brought to light.

In particular, it is not obvious whether the GPTs corresponding to D-, P-, or T-CTCs would

be either tomographically local or satisfy the uniformity condition. In general, the study

of GPTs could bene�t from some more fully worked-out examples and time travel models

could bene�t from some new se�ings in which to examine them.

Finally, the framework of quantum causal models developed in Chap. 5 could perhaps

also be of use for in the study of quantum time travel. �e stipulation of time travel to the

past is, a�er all, a causal one. �is will not be as simple as writing a causal model for a

CTC, since causal models rule out such causal loops by �at. However, certain intuitions

and understandings from causal models, including the characterisation of channels acting

independently on a single system, may be useful in trying to understand smaller parts of

the time travel process.

7.4 To Conclude

It is undoubtedly ambitious to a�empt to describe what “fundamental reality” can and

cannot be like. �e way to even partially achieve this, while not losing your head or

embarrassing yourself too much, is to be careful and precise with your statements and

arguments. �is makes concluding a bothersome business, as substantial statements tend

to need so many caveats and conditions you might as well just re-state the theorems.

Perhaps it is best then to simply say this. If you want real states of a�airs respecting

probability, then you probably need to accept a certain similarity to quantum states

(including superpositions). If you want to correctly describe causal in�uences, then you

need to understand quantum conditional independence and all that it implies. If you want

to make sense of time travel to the past, then there are many ontological choices to be

made and a wide variety of models to explore. If you want to know what quantum theory

means for ontology, then there is plenty more work to be done.
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Appendix A
Proofs of Theorems 2.3 and 2.4

Restated �eorem 2.3. Consider a d > 3 dimensional quantum system and any pair of
quantum states |ψ〉, |0〉 ∈ P(H) that satisfy |〈0|ψ〉|2 ∈ (0, 1

2
). Assume that preparations of

|ψ〉 are non-contextual with respect to stabiliser unitaries of |ψ〉. For any preparation measure
µ ∈ ∆|ψ〉, the asymmetric overlap is bounded by

$(|0〉 |µ) ≤ |〈0|ψ〉|2
(

1

2
+ |〈0|ψ〉|2

)
< |〈0|ψ〉|2. (A.1)

In particular, this implies that the asymmetric overlap $(|0〉 |µ) is strictly less than maximal.
�erefore |ψ〉 is not maximally ψ-epistemic with respect to |0〉 for any such pair of states in
d > 3 dimensions satisfying |〈0|ψ〉|2 ∈ (0, 1

2
).

Proof. De�ne an orthonormal basis B that contains |0〉 such that

|ψ〉 = α|0〉+ β|1〉+ τ |2〉, (A.2)

where α ∈ (0, 1√
2
) and β

def

=
√

2α2
. �is is always possible since a choice of global phase

for |0〉 can ensure α ∈ R+
and since |α|2 + |β|2 = α2(1 + 2α2) < 1 for every such α. With

respect to the same B de�ne

|φ〉 def

= δ|0〉+ η|1〉+ κ|3〉, (A.3)

where δ
def

= 1− 2α2
and η

def

=
√

2α. �is is always possible since |δ|2 + |η|2 = (1− 2α2)2 +

2α2 < 1 for all α and thus an appropriate κ always exists.

�e above construction has been chosen such that
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• |〈0|ψ〉|2 = α2 = |〈φ|ψ〉|2 so that there exists a stabiliser unitary U ∈ S|ψ〉 for which

U |0〉 = |φ〉; and

• the inner products |〈0|ψ〉|2, |〈φ|ψ〉|2, |〈0|φ〉|2 satisfy Eq. (2.29) and, therefore, the

triple {|ψ〉, |φ〉, |0〉} is anti-distinguishable.

For any preparation measure µ ∈ ∆|ψ〉 consider $(|0〉 |µ). For the unitary U , this

satis�es $(|φ〉 |µ′) ≥ $(|0〉 |µ) by Lem. 2.3, where µ
γ
 µ′ for some γ ∈ ΓU . Moreover,

the assumption of non-contextuality with respect to stabiliser unitaries of |ψ〉 gives µ = µ′

and so

$(|φ〉 |µ) ≥ $(|0〉 |µ). (A.4)

Consider a preparation of the state |ψ〉 via µ followed by a basis measurement M in

the B basis. Since |0〉 and |1〉 are the only outcomes compatible with preparations of both

|ψ〉 and either |0〉 or |φ〉, then by Lem. 2.5 PM(|0〉 ∨ |1〉 | |ψ〉) ≥ $(|0〉, |φ〉 |µ). Further,

the anti-distinguishability of {|ψ〉, |φ〉, |0〉} and Lem. 2.6 gives

PM(|0〉 ∨ |1〉 | |ψ〉) ≥ $(|0〉, |φ〉 |µ) = $(|0〉 |µ) +$(|φ〉 |µ) (A.5)

≥ 2$(|0〉 |µ) (A.6)

where the �nal line comes from Eq. (A.4).

In order to reproduce quantum predictions and satisfy Eq. (2.3)

PM(|0〉 ∨ |1〉 | |ψ〉) = |〈0|ψ〉|2 + |〈1|ψ〉|2 = α2 + 2α4. (A.7)

Combining this with Eq. (A.6), one obtains

$(|0〉 |µ) ≤ α2

(
1

2
+ α2

)
, (A.8)

which is the desired result.

Restated �eorem 2.4. Consider a d > 3 dimensional quantum system and any pair
|ψ〉, |0〉 ∈ P(H) that satisfy α def

= |〈0|ψ〉| ∈ (0, 1
4
). Assume that preparations of |ψ〉 are non-

contextual with respect to stabiliser unitaries of |ψ〉. For any preparation measure µ ∈ ∆|ψ〉,
the asymmetric overlap must satisfy

$(|0〉 |µ) ≤ α2

(
1 + 2α

d− 2

)
(A.9)

lim
d→∞

$(|0〉 |µ) = 0 (A.10)

and so becomes arbitrarily small as d increases even as α is held constant.
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Proof of �m. 2.4. �e proof strategy closely follows that of �m. 2.3, but modi�ed to take

advantage of higher dimensions.

Any such |ψ〉 may be wri�en

|ψ〉 = α|0〉+ β|1〉+ τ |2〉, (A.11)

where β =
√

2α
3
2 in some orthonormal basis B containing |0〉. �is is because the global

phase of |0〉 may be chosen to keep α ∈ R+
and since the above can always be normalised

by an appropriate τ .

De�ne a set of states {|φi〉}d−1
i=3 with respect to the same basis B such that

|φi〉
def

= δ|0〉+ η|1〉+ κ|i〉, (A.12)

with δ
def

= 1− 2α2
and η

def

=
√

2α
3
2 . Again, this is possible since an appropriate κ can always

be found to normalise each |φi〉. Note how the de�nitions of β and η are di�erent from the

construction used in the proof of �m. 2.3.

It is easy to verify, using Eq. (2.29), that the triples {|0〉, |ψ〉, |φi〉} and {|ψ〉, |φi〉, |φj〉}
are anti-distinguishable for all i 6= j. Moreover, |〈φi|ψ〉|2 = α2 = |〈0|ψ〉|2 for all i, so

there exist stabiliser unitaries {Ui}d−1
i=3 ⊂ S|ψ〉 for which Ui|0〉 = |φi〉. By assumption of

non-contextuality with respect to stabiliser unitaries of |ψ〉, µ remains unchanged by any

action of any Ui: µ
γ
 µ for any γ ∈ ΓUi . �erefore, by Lem. 2.3

$(|φi〉 |µ) ≥ $(|0〉 |µ) ∀i. (A.13)

Consider a preparation of the state |ψ〉 via µ followed by a basis measurement M

in the B basis. Since |0〉 and |1〉 are the only outcomes compatible with preparations of

both |ψ〉 and any state from {|0〉} ∪ {|φi〉}i, then by an easy generalisation
1

of Lem. 2.5

PM(|0〉 ∨ |1〉 | |ψ〉) ≥ $(|0〉, |φ3〉, . . . , |φd−1〉 |µ). Further, using that {|ψ〉, |0〉, |φi〉} and

{|ψ〉, |φi〉, |φj〉} are anti-distinguishable for all i 6= j, a similar generalisation
2

of Lem. 2.6

1
In Lem. 2.5, it is shown that P(|0〉 ∨ |1〉 | |ψ〉) ≥ $(|0〉, |φi〉 |µ), for example. By following the same

proof through using the whole set {|0〉} ∪ {|φi〉}i, one obtains this more general result. Intuitively, they are

ge�ing at the same idea, since any of the quantum states in this set can only return outcomes |0〉 or |1〉 in a

measurement of B.

2
Intuitively, this is easy to see. Anti-distinguishability of a triple, roughly, requires that no ontic state can

be prepared by all three quantum states by Lem. 2.6. �ere are no true regions of “tripartite overlap”. So if all

triples are anti-distinguishable, then there can be no tripartite overlap regions in the ontic state space, nor

any regions with more-than-two quantum states overlapping, giving the result quoted in the text. �e full

proof of this simply generalises from that of Lem. 2.6, but becomes very long without introducing any new

ideas and so has been omi�ed.
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gives that

PM(|0〉 ∨ |1〉 | |ψ〉) ≥ $(|0〉, |φ3〉, . . . , |φd−1〉 |µ) (A.14)

= $(|0〉 |µ) +
d−1∑
i=3

$(|φi〉 |µ) (A.15)

≥ (d− 2)$(|0〉 |µ). (A.16)

�e third line follows from Eq. (A.13).

In order to reproduce quantum predictions and satisfy Eq. (2.3)

PM(|0〉 ∨ |1〉 | |ψ〉) = |〈0|ψ〉|2 + |〈1|ψ〉|2 = α2 + 2α3. (A.17)

Combining this with Eq. (A.16), one obtains

$(|0〉 |µ) ≤ α

(
1 + 2α

d− 2

)
, (A.18)

which is the desired result.
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Appendix B
Proof of Theorem 2.5

�e proof presented here uses the simpler non-measure-theoretic version of ontological

models that is o�en seen in the literature. �is is the same as the version of ontological

models de�ned in Sec. 2.1.1 except rather than preparation measures, preparation distribu-
tions are used. �is change has been made in order to make the proof shorter and easier to

read. �ere should be no conceptual hurdles to extending this proof to the more general

ontological models by using the methods of other proofs in the thesis, the hurdles are

simply practical.

To be speci�c, in this appendix it is assumed that there is some canonical measure

dλ over Λ so that for preparation measure µ, dµ(λ) = µ(λ) dλ is the probability that an

ontic state is prepared from some in�nitesimal neighbourhood of λ. Sets ∆|ψ〉 contain

these preparation distributions just as they held preparation measures. Other than this,

the notation and treatment of ontological models remains the same.

Proof. �is proof uses the the assumptions, notation, and constructions from �m. 2.4 and

its proof in Appendix A, except this time it is only assumed that the ontological model

reproduces quantum probabilities to within some additive error ε ∈ (0, 1], as in Eq. (2.4). It

will also be necessary to de�ne the tripartite symmetric overlap between three probability

distributions µ, ν, χ [Lei14a]

ω(µ, ν, χ)
def

=

∫
Λ

dλ min{µ(λ), ν(λ), χ(λ)}. (B.1)

Consider any pair of preparation distributions µ ∈ ∆|ψ〉, ν ∈ ∆|0〉. From the proof of

�m. 2.4 in Appendix A it is known that there exist Ui ∈ S|ψ〉 such that Ui|0〉 = |φi〉. For
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each Ui pick any corresponding stochastic map γi ∈ ΓUi . By assumption, preparations

of |ψ〉 are non-contextual with respect to stabiliser unitaries so each γi maps µ to itself,

µ
γi µ. Each γi de�nes some χi ∈ ∆|φi〉 such that ν

γi χi. For notational convenience, let

|φ0〉
def

= |0〉 and χ0
def

= ν then de�ne the index sets Ĩ
def

= {3, ..., d− 1} and I
def

= {0} ∪ Ĩ .

Recall that ω is de�ned as twice the probability of making a mistake when a�empting to

distinguish between measures when using the optimal strategy. Clearly, if some stochastic

map γ acts as µ
γ
 µ′ and ν

γ
 ν ′, then any way of distinguishing µ′ and ν ′ is also a way

to distinguish µ and ν. �erefore, symmetric overlaps cannot decrease under the action

of stochastic maps, just as with asymmetric overlaps in Lem. 2.3. In terms of the above

de�nitions, this therefore implies

ω(µ, χi) ≥ ω(µ, ν), ∀i ∈ Ĩ . (B.2)

Consider a preparation of |ψ〉 via µ, followed by a measurement M in the basis B.

Similarly to �m. 2.4, the aim is to boundω(µ, ν) by considering the probability of obtaining

either of the measurement outcomes |0〉 or |1〉, given by Eq. (2.4) as

PM(|0〉 ∨ |1〉 |µ) ≤ α2 + β2 + ε. (B.3)

�e trick is to do this in such a way that all possible errors are accounted for.

In order to link this quantum probability to symmetric overlaps, consider the following

subsets of Λ.

• For each i ∈ I consider Ωi
def

= {λ ∈ Λ : 0 < µ(λ) ≤ χi(λ)}. Roughly, Ωi is the

region of the overlap between µ and χi for which µ is smaller than χi.

• For each i ∈ I consider Θi
def

= {λ ∈ Λ : 0 < χi(λ) < µ(λ); ∀j < i, χj(λ) ≤
χi(λ); ∀j > i, 0 < χj(λ) < χi(λ)}. Roughly, this is the region of the overlap

between µ and χi for which χi is greater than all other χj 6=i, but smaller than µ.

• For each i < j ∈ I consider Θj
i

def

= {λ ∈ Λ : 0 < χi(λ) ≤ χj(λ); χi(λ) < µ(λ)}.
Roughly, this is the region of the tripartite overlap of µ, χi, χj in which χi is the

minimum of the three.

• Similarly, for each i > j ∈ I consider Θj
i

def

= {λ ∈ Λ : 0 < χi(λ) < χj(λ); χi(λ) <

µ(λ)}.

• For every unequal pair i, j ∈ I , let Ωij = Ωi ∩ Ωj .
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Note that these sets are de�ned to be disjoint, for i 6= j: Θi∩Ωj = Θi∩Θj = Θi∩Θj
i = ∅.

�e point of these subsets is the way in which they relate to symmetric overlaps. From

the de�nitions of symmetric overlaps it is not di�cult to verify that

ω(µ, χi) =

∫
Ωi

dλµ(λ) +

∫
Θi∪[∪j 6=iΘji ]

dλχi(λ) (B.4)

ω(µ, χi, χj 6=i) =

∫
Ωij

dλµ(λ) +

∫
Θji

dλχi(λ) +

∫
Θij

dλχj(λ). (B.5)

Proceed by separating the probability Eq. (B.3) according to subsets in which λ may

obtain. �e sets Ωi collectively capture everywhere in Λ where µ is not the maximum of

the measures, while Θi collectively capture everywhere that µ is the maximum. So, using

a Bonferroni inequality [RS11]

PM(|0〉 ∨ |1〉 |µ) ≥
∑
i∈I

PM(|0〉 ∨ |1〉, λ ∈ Ωi |µ)

+
∑
i∈I

PM(|0〉 ∨ |1〉, λ ∈ Θi |µ)

−
∑
i,j<i

PM(|0〉 ∨ |1〉, λ ∈ Ωij |µ), (B.6)

≥
∑
i∈I

PM(|0〉 ∨ |1〉, λ ∈ Ωi |µ)

+
∑
i∈I

PM(|0〉 ∨ |1〉, λ ∈ Θi |µ)

−
∑
i,j<i

∫
Ωij

dλµ(λ). (B.7)

�e �nal line follows simply because PM(|0〉 ∨ |1〉, λ ∈ Ωij|µ) ≤ PM(λ ∈ Ωij|µ) =∫
Ωij

dλµ(λ).

For the i = 0 term in the �rst line of Eq. (B.7), de�ne the function ξ(λ)
def

= 1−PM(|0〉 |λ)

so that

PM(|0〉 ∨ |1〉, λ ∈ Ω0 |µ) =

∫
Ω0

dλµ(λ) {PM(|0〉 |λ) + PM(|1〉 |λ)} (B.8)

≥
∫

Ω0

dλµ(λ)PM(|0〉 |λ) (B.9)

=

∫
Ω0

dλµ(λ)−
∫

Ω0

dλµ(λ)ξ(λ) (B.10)

≥
∫

Ω0

dλµ(λ)−
∫

Ω0

dλ ν(λ)ξ(λ). (B.11)
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�is can be simpli�ed by noting that, for any Ω ⊆ Λ,∫
Ω

dν(λ)ξ(λ) =

∫
Ω

dλ ν(λ)−
∫

Λ

dλ ν(λ)PM(|0〉 |λ) (B.12)

+

∫
Λ\Ω

dλ ν(λ)PM(|0〉 |λ)

≤
∫

Ω

dλ ν(λ)− 1 + ε+

∫
Λ\Ω

dλ ν(λ) (B.13)

= ε (B.14)

so that

PM(|0〉 ∨ |1〉, λ ∈ Ω0 |µ) ≥
∫

Ω0

dλµ(λ)− ε. (B.15)

�e i ∈ Ĩ terms of the �rst line of Eq. (B.7) simplify in a similar way. De�ne ζi(λ)
def

=

1− PM(|0〉|λ)− PM(|1〉|λ)− PM(|i〉|λ) so that

PM(|0〉 ∨ |1〉, λ ∈ Ωi |µ) =

∫
Ωi

dλµ(λ) {PM(|0〉 |λ) + PM(|1〉 |λ)} (B.16)

=

∫
Ωi

dλµ(λ) −
∫

Ωi

dλµ(λ) {ζi(λ) + PM(|i〉 |λ)} (B.17)

≥
∫

Ωi

dλµ(λ)−
∫

Ωi

dλχi(λ)ζi(λ)− ε (B.18)

≥
∫

Ωi

dλµ(λ)− 2ε. (B.19)

Together, Eqs. (B.7, B.15, B.19) produce

PM(|0〉 ∨ |1〉 |µ) ≥
∑
i∈I

∫
Ωi

dλµ(λ)−
∑
i,j<i

∫
Ωij

dλµ(λ)− (2d− 5)ε

+
∑
i∈I

PM(|0〉 ∨ |1〉, λ ∈ Θi |µ). (B.20)

�e i = 0 term of the second line of Eq. (B.20) can be bounded as follows

PM(|0〉 ∨ |1〉, λ ∈ Θ0 |µ) ≥
∫

Θ0

dλµ(λ)PM(|0〉 |λ) (B.21)

≥
∫

Θ0

dλ ν(λ)PM(|0〉 |λ) (B.22)

=

∫
Λ

dλ ν(λ)PM(|0〉 |λ) −
∫

Λ\Θ0

dλ ν(λ)PM(|0〉 |λ) (B.23)

≥ 1− ε−
∫

Λ\Θ0

dλ ν(λ) =

∫
Θ0

dλ ν(λ)− ε. (B.24)
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�e i ∈ Ĩ terms of the second line of Eq. (B.20) can be similarly bounded

PM(|0〉 ∨ |1〉, λ ∈ Θi |µ) =

∫
Θi

dλµ(λ)
{
PM(|0〉 |λ) + PM(|1〉 |λ)

+PM(|i〉 |λ)
}
−
∫

Θi

dλµ(λ)PM(|i〉 |λ) (B.25)

≥
∫

Θi

dλχi(λ)
{
PM(|0〉 |λ) + PM(|1〉 |λ)

+PM(|i〉 |λ)
}
− ε (B.26)

≥ (1− ε)−
∫

Λ\Θi
dλχi(λ)− ε (B.27)

=

∫
Θi

dλχi(λ)− 2ε. (B.28)

So now combining Eqs. (B.20, B.24, B.28) it is found that

PM(|0〉 ∨ |1〉 |µ) ≥
∑
i∈I

{∫
Ωi

dλµ(λ) +

∫
Θi

dλχi(λ)

}
−
∑
i,j<i

∫
Ωij

dλµ(λ)− 2(2d− 5)ε. (B.29)

Equation (B.29) can be further reduced by adding any negative quantity. In particular,

consider Boole’s inequality∑
i∈I

∫
∪j 6=iΘji

dλχi(λ)−
∑
i,j 6=i

∫
Θji

dλχi(λ) ≤ 0. (B.30)

�erefore, Eq. (B.29) reduces to

PM(|0〉 ∨ |1〉 |µ) ≥
∑
i∈I

{∫
Ωi

dλµ(λ) +

∫
Θi∪[∪j 6=iΘji ]

dλχi (λ)

}

−
∑
i,j<i

∫
Ωij

dλµ(λ)−
∑
i,j 6=i

∫
Θji

dλχi(λ)

−2(2d− 5)ε. (B.31)

�is can be further simpli�ed by noting∑
i,j 6=i

∫
Θji

dλχi(λ) =
∑
i,j<i

∫
Θji

dλχi(λ) +
∑
i,j>i

∫
Θji

dλχi(λ) (B.32)

=
∑
i,j<i

∫
Θji

dλχi(λ) +
∑
j,i<j

∫
Θji

dλχi(λ) (B.33)

=
∑
i,j<i

{∫
Θji

dλχi(λ) +

∫
Θij

dλχj(λ)

}
, (B.34)
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so that Eq. (B.31) becomes

PM(|0〉 ∨ |1〉 |µ) ≥
∑
i∈I

ω(µ, χi)−
∑
i,j<i

ω(µ, χi, χj)− 2(2d− 5)ε (B.35)

having used Eqs. (B.4, B.5).

As a �nal step, consider how the tripartite symmetric overlaps are bounded by ε. Con-

sider the measurement M ′ = {E¬ψ, E¬i, E¬j} which anti-distinguishes {|ψ〉, |φi〉, |φj〉},
so that ∫

Λ

dµ(λ)PM ′(E¬ψ |λ) ≤ ε, (B.36)∫
Λ

dχi(λ)PM ′(E¬i |λ) ≤ ε, (B.37)∫
Λ

dχj(λ)PM ′(E¬j |λ) ≤ ε. (B.38)

Conservation of probability requires that

PM ′(E¬ψ |λ) + PM ′(E¬i |λ) + PM ′(E¬j |λ) = 1 (B.39)

for all λ ∈ Λ. Consider the tripartite symmetric overlap, Eqs. (B.1, B.5), for µ, χi, χj . �en

ω(µ, χi, χj) =

∫
Λ

dλ min{µ(λ), χi(λ), χj(λ)}
[
PM ′(E¬ψ |λ) + PM ′(E¬i |λ)

+PM ′(E¬j |λ)
]

(B.40)

≤
∫

Λ

dµ(λ)PM ′(E¬ψ |λ) +

∫
Λ

dχi(λ)PM ′(E¬i |λ)

+

∫
Λ

dχj(λ)PM ′(E¬j |λ) (B.41)

≤ 3ε. (B.42)

Applying Eq. (B.42) to Eq. (B.35), one �nds that

PM(|0〉 ∨ |1〉 |µ) ≥
∑
i∈I

ω(µ, χi)−
3

2
(d− 3)(d− 2)ε− 2(2d− 5)ε (B.43)

≥ (d− 2)ω(µ, ν)− 1

2
(3d2 − 7d− 2)ε (B.44)

having used Eq. (B.2). Combining Eqs. (B.3, B.44) one obtains an upper bound on ω(µ, ν)

for any µ ∈ ∆|ψ〉, ν ∈ ∆|0〉, which must be greater than or equal to the least upper bound,

Eq. (2.64), �nally giving

ω(|ψ〉, |0〉) ≤ α2

(
1 + 2α

d− 2

)
+

(3d2 − 7d)

2(d− 2)
ε. (B.45)

�is completes the proof.
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A note is in order about the tightness of this bound, assuming arbitrarily small ε. At

d = 4, this bound cannot improve upon that of Eq. (2.65) for any α ∈ (0, 1
4
). At d = 5,

an improvement is possible for some values of α. It is only for d > 5 that this bound

is capable of improving upon Eq. (2.65) for all values of α ∈ (0, 1
4
). �is is because the

theorem extends the methods of �ms. 2.2, 2.4 (which are closely linked to the asymmetric

overlap) to the symmetric overlap.

Clearly the error model used here is very simplistic: it has been assumed that some

ε > 0 can be used to bound the deviation of all probabilities from the quantum predictions.

Another source of possible error is in the use of stabiliser unitaries for |ψ〉. To obtain

Eq. (B.44) one uses Eq. (B.2) which requires that the χi are obtained from µ by a transfor-

mation implementing a stabiliser unitary. Any experiment would also have to engage with

the problem of how to account for errors in the implementation of the stabiliser unitary.

However, an argument along the lines of Sec. 2.4.4 might also help here.

It may be possible to improve on the error term above by more carefully using higher

Bonferroni inequalities than the one used in Eq. (B.6) above. Considering quadpartite and

higher-order overlaps (rather than stopping at the tripartite overlap, as done here) may

give an improvement in the error term, possibly improving the scaling with d.
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Nonlinear Bell Inequalities Tailored for �antum Networks. Physical Review

Le�ers 116(1), 010403 (2016). arXiv:1506.07380 [quant-ph]

[RDB
+

15] M. Ringbauer, B. Du�us, C. Branciard, E. G. Cavalcanti, A. G. White, and

A. Fedrizzi, Measurements on the Reality of the Wavefunction. Nature Physics

11, 249–254 (2015). arXiv:1412.6213 [quant-ph]

[Rei56] H. Reichenbach, �e Direction of Time. University of California Press, Berke-

ley (1956)

[RM10] T. C. Ralph and C. R. Myers, Information Flow of �antum States Interact-
ing with Closed Timelike Curves. Physical Review A 82(6), 062330 (2010).

arXiv:1003.1987 [quant-ph]

202

http://arxiv.org/abs/quant-ph/0505110
http://arxiv.org/abs/1401.0167
http://arxiv.org/abs/1407.8217
http://arxiv.org/abs/gr-qc/9310027
http://arxiv.org/abs/gr-qc/9310027
http://arxiv.org/abs/1211.1179
http://arxiv.org/abs/quant-ph/0105141
http://arxiv.org/abs/1506.07380
http://arxiv.org/abs/1412.6213
http://arxiv.org/abs/1003.1987


[RR13] T. S. Richardson and J. M. Robins, Single World Intervention Graphs (SWIGs):
A Uni�cation of the Counterfactual and Graphical Approaches to Causality.

Center for the Statistics and the Social Sciences, University of Washington

Series. Working Paper 128 (2013)

[RS11] V. K. Rohatgi and A. K. M. E. Saleh, An Introduction to Probability and
Statistics, vol. 910 of Wiley Series in Probability and Statistics. Second ed.,

John Wiley & Sons (2011)

[Rus02] M. B. Ruskai, Inequalities for �antum Entropy: A Review with Condi-
tions for Equality. Journal of Mathematical Physics 43(9), 4358–4375 (2002).

arXiv:quant-ph/0205064 [quant-ph]

[SBKW10] S. Saunders, J. Barre�, A. Kent, and D. Wallace, eds., Many Worlds?: Evere�,
�antum �eory, & Reality. Oxford University Press, Oxford (2010)

[Sch30] J. Schauder, Der Fixpunktsatz in Funktionalrämen. Sudia Mathematica 2, 171
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