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Abstract the same entity, buj gives more information about it.
This means we have to alloincompleteentities, like
We introduce a partial order on classical and quantum , containing onlypartial information.”

states which reveals that these sets are actually domains;, s purest interpretation, domain theory is a branch of

Directed complete partially ordered sets with an intrinsic - 5thematics which offers an exclusively qualitative ac¢oun
notion of approximation. Tr_le operatloqal significance _of of information: A proposal for how we might find informa-
the orders involved conclusively establishes that physica (o structured in a universe where all things arise as a limit
information has a natural domain theoretic structure. of the partial.

) In the same way th‘f‘t 'the oro!er ona .domaln prgwdes a  Wwe prove that the density operator formulation of quan-
rlgorous.quahtatlve deflpltlon of information, aspema,b_ty tum mechanics [20] is an instance of domain theory: Its
of mapping on a domain called & measurement provides aptia| elements are the mixed states, its total or idedte
formal account of the intuitive notion ‘information contént. ements are the pure states. To do so, we first order classical
Not only is physical |n.format|on domain theoretic, but SO gates recursively in terms of Bayesian state update, which
too is physical entropy: Shannon entropy is a measuremeniqrehonds to the process by which an observer looks for
on the domain of classical states; von Neumann entropy is 5, object and updates his knowledge accordingly. This or-

ameasurement on the domain of quantumstates. ~ ger o classical states, called BBayesian ordecombined
These results yield a foundation for problem solving in \ith the predictions made by quantum mechanics about the
computer science, quantum information and physics. measuring of certain observables, then enables us to natu-

rally derive thespectral orderon quantum states.
) We then consider a few applications of these domains.
1. Introduction The first is to physics, where we derive the logics of
Birkhoff and von Neumann [2]P{1,...,n} andL™, in a

One of the great lessons of the differential and integral purely order theoretic manner. This is an exciting result
calculusis that we can conquer the infinite, and in particular given thafL" is the core of the axiomatic approach to quan-
the COﬂtinUOUS, by means of the discrete. An infinite sum tum mechanics []_2' 17] The second is to domain theory’
may be understood as alimit of finite sums, the area beneatiwhere we provide additional evidence that the domain the-
acurve as the limit of areas of approximating rectangles, th oretic notionmeasuremenil3] can provide science with
line tangent to a curve at a point is the limit of the secant g formal mathematical definition of ‘information content’:
lines joining points nearby. Shannon entropy is a measurement on the domain of clas-

The philosophy espoused is unambiguous: iflealcan  sjcal states, von Neumann entropy is a measurement on the
be realized as bmit of thepartial; the abstract, as a limit of domain of quantum states. Next we turn to quantum entan-
the concrete; the COﬂtinUOUS, a limit of the discrete, and SOg|ement_ Using an idea from the measurement formalism in
on. And this powerful ideology, as it arises in the context of domain theory, we show how more abstract measures of en-
recursive functionals, is part of what the axioms of domain tanglement — “qualitative measures of entanglement” — can
theory are intended to capture. But even in Scott’s preludepe used to precisely clarify the sense in which one state is
to the subject, it is difficult to keep the imagination from more entangled than another. Last, we use the Bayesian or-
wandering beyond computation [18]: der to calculate the complexity of Grover’s algorithm [10],

“Maybe it would be better to talk aboimformation; and to identify crucial qualitative properties it has thato
thus,z C y means that: andy want to approximate must know about before implementing it experimentally.



All proofs of all theorems in sections 1-6 can be found
in the research report [5]; section 7 is from [15]

2. Classical states

Definition 2.1 Letn > 2. Theclassical statesre

A" = {xe [0,1]":&%21}.

A classical stater € A" is purewhenz; = 1 for some
1 € {1,...,n}; we denote such a state by.

Pure statege; }; are the actual states a system can be in,
while general mixed statesandy are epistemic entities. If
we knowz and by some means determine that outcoise
not possible, our knowledge improves to

1
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pi(x) (X1, oy &y sy Tpg1) € A"

wherep;(z) is obtained by first removing; from = and
then renormalizing. The partial mappings which result,

P An+l AP

with dom(p;) = A™*1\ {e;}, are called th®ayesian pro-
jections and lead one directly to the following relation on
classical states.

Definition 2.2 Forz,y € A"+,

x Ty = (Vi)(z,y € dom(p;) = pi(z) Cpi(y)). (1)
Forz,y € A2,
zCy=(pn <z <1/2)or(l/2<z1 <y1). (2)

The relationC on A" is called theBayesian order.

To motivate (1), ifz C y, then observer: knows less
than observey. If something transpires which enables each
observer to rule out exacth; as a possible state of the sys-
tem, then the first now knows (z), while the second knows

pi(y). But since each observer’s knowledge has increased

by the same amount, the first mwssill know less than the
secondp;(z) & pi(y).

The order on two states (2) is derived from the graph of
Shannon entropy on A2 (left) as follows:

(1,0) (1,0) (1,0) (1,0)
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The pictures above yield a canonical ordersf

Theorem 2.3 There is a unique partial order or\2 which
hasl := (1/2,1/2) and satisfies the mixing law

rCyandpe(0,1] = xC(1-plz+pyCy.
It is the Bayesian order on classical two states.

The set ofmaximal elementin a posetD is written
max(D). Theleast elemenin a poset is denoted, when
it exists. Adomainis adcpo(directed complete partial or-
der) with a notion of approximation. Here we are intention-
ally vague about ‘approximation’ since we will not explic-
itly make use of the idea until later; the details of this, as
well as a more in depth derivation of the order, are in [5].

Theorem 2.4 (A", C) is a domain with maximal elements
max(A") ={e; : 1 <i<n}
and least element := (1/n,...,1/n).

The Bayesian order can also be described in a more
direct manner, theymmetric characterizationLet S(n)
denote the group of permutations ofi,...,n} and
A" :={x e A™: (Vi <n)xz; > x;41} denote the collec-
tion of monotonelassical states.

Theorem 2.5 For z,y € A™, we haver C y iff there is a
permutations € S(n) suchthat - o,y - 0 € A™ and

(x-0)i(y-0)iv1 < (- 0)it1(y - o)

forall swith1l <7 < n.

Thus, the Bayesian order is order isomorphietonany
copies of A™ identified along their common boundaries.
This fact, together with the pictures ¢fz at representa-
tive statese in Figure 1, will give the reader a good feel for
the geometric nature of the Bayesian order.

Figure 1. Pictures of Tz for = € A3,



3. Quantum states

Let H™ denote am-dimensional complex Hilbert space
with specified inner produgt|-).

Definition 3.1 A quantum stateis a density operator
p:H" — H", i.e., a self-adjoint, positive, linear operator
with tr(p) = 1. The quantum states @™ are denoted”.

Definition 3.2 A quantum state onH" is pureif
spec(p) C {0,1}.

The set of pure states is denotgd. They are in bijective
correspondence with the one dimensional subspack$ of

our a priori knowledge about the state of the system, is
then our knowledge about what the result of experineent
will be is spec(ple). Thus,spec(p|e) determines our ability
to predictthe result of the experimeant

So what does it mean to say that we have more informa-
tion about the system when we haves 2™ than when we
havep € Q™? It could mean that there is an experiment
which (a) serves as a physical realization of the knowledge
each state imparts to us, and (b) that we have a better chance
of predicting the result of from states than we do from
statep. Formally, (a) means thapec(p) = Im(spec(ple))
andspec(o) = Im(spec(o|e)), which is equivalent to re-
quiring [p, e] = 0 and[o, ¢] = 0, where[a, b] = ab — ba is
the commutator of operators.

Classical states are distributions on the set of pure stated?€finition 3.5 Letn > 2. For quantum states, o € Q",

max(A™). By Gleason’s theorem [8], an analogous result

we havep C ¢ iff there is an observable: H™ — H"™ such

holds for quantum states: Density operators encode distri-that[p, €] = [0, ] = 0 andspec(ple) E spec(ale) in A™.

butions on the set of pure states.

Definition 3.3 A quantum observablis a self-adjoint lin-
ear operatoe : H™ — H™.

An observable of a physical system is anything about it

that we can measure. For exampeergyis an observable.

Observables in quantum mechanics are represented mathe-

matically by self-adjoint operators. Time, on the otherdyan

This is called thespectral orderon quantum states.
Theorem 3.6 (2™, C) is a domain with maximal elements
max(Q") = X"
and least element = I /n, where! is the identity matrix.

There is one case where the spectral order can be de-

does nothave a representation as an operator in quantumscriped in an elementary manner.

mechanics; whether or not it is an observable is a topic well

beyond this paper.
Now, if we have the operatar representing the energy

Example 3.7 As is well-known, the2 x 2 density operators
can be represented as points on the unit baitin

observable of a system (for instance), then its set of eigen-

valuesspec(e), called thespectrumof e, consists of the

Q2 ~ {(2,y,2) €ER3 22 + ¢y + 22 < 1}.

actual energy values a system may assume. If our knowl-

edge about the state of the system is represented by de
sity operatomp, then quantum mechanics predicts the prob-
ability that a measurement of observablgelds the value

A € spec(e). Itis

pr(p — ex) = tr(p? - p);

wherep? is the projection corresponding to eigenvalie
ande, is its associated eigenspace in fipectral represen-
tation of e.

Definition 3.4 Let ¢ be an observable orH™ with
spec(e) = {1,...,n}. For a quantum stateon ",

spec(ple) := (pr(p — e1),...,pr(p — en)) € A™

nFor example, the origir0, 0,0) corresponds to the com-

pletely mixed statd /2, while the points on the surface of
the sphere describe the pure states. The ordé%then
amounts to the followingx C y iff the line from the origin
1 toy passes through.

Like the Bayesian order oA™, the spectral order on”
can also be characterized in terms of symmetries and pro-
jections. In its symmetric formulatiompitary operatorson
H™ take the place of permutations éb, . .., n}, while the
projective formulation of 2™, C) shows that each classical
projectionp; : A"*1 — A" is actually the restriction of a
special quantum projectian™ ! — QF with k = n.

4. The logics of Birkhoff and von Neumann

For the rest of the paper, we assume that all observables

e havespec(e) = {1, ...,n}. For our purposes it is enough
to assumespec(e)| = n; the set{1,...,n} is chosen for
the sake of aesthetics. Intuitively, thenis an experiment
on a system which yields one of different outcomes; if

The logics of Birkhoff and von Neumann [2, 6] consist
of the propositions one can make about a physical system.
Each proposition takes the form “The value of observable
e is contained inE C spec(e).” For classical systems, the



logic is P{1,...,n}, while for quantum systems it 5",
the lattice of (closed) subspacesio?. In each case, impli-
cation of propositions is captured by inclusion, and a fun-
damental distinction between classical and quantum — that
there are pairs of quantum observables whose exact values
cannot be simultaneously measured at a single moment in T
time —finds lattice theoretic expressidn{1, ..., n} is dis-
tributive; L™ is not.
We now establish the relevance of the domakisand
Q" to theoretical physics: The classical and quantum logics NS
can bederivedfrom the Bayesian and spectral orders using =
thesameorder theoretic technique.

»
»

Definition 4.1 An elementx of a dcpoD is irreducible
when v

/\(Txﬂmax(D)) =z v

The set of irreducible elements in is written Ir(D). Figure 2. The irreducibles of A% and A* with
their corresponding Hasse diagrams.
The order dual of a pos¢D, = p) is written D*; its or-
derisxCy< yCp .

Theorem 4.2 For n > 2, the classical lattices arise as 5. Entropy

Ir(A™)* ~P{1,...,n}\ {0},

and the quantum lattices arise as

A few of the ideas that the study of measurement[13] has
led to include an informatic derivative, new fixed point the-
orems, the derivation of distance from content, techniques

H(Q")* ~ 1"\ {0}. for treating continuous and discrete processes and data in a
unified manner, a ‘first order’ view of recursion based on

It is worth pointing out that these logics consist exactly SOIVing renee equations = 6 + ¢ o r uniquely which
of the states traced out by the motion of a searching pro-©Stablishes surprising connections between order and com-
cess on each of the respective domains. To illustrate, letPutability, and various approaches to complexity.
pi : A" — A" for 1 < i < n denote the result of first ap- The original idea was that if a domain gave a formal
plying the Bayesian projectiop; to a state, and then rein- account of ‘information,” then a measurement on a do-
serting a zero in place of the element removed. Now, be- main should give a formal account of ‘information content.’
ginning with L € A™, apply one of th@j. This projects There is a stark difference between the view of information
away a single outcome from, leaving us with a new state. ~ content taken in the study of measurement, and utterances
For the new state obtained, project away another single out-Of this phrase made elsewhere; it is this: Information con-
come; aftem — 1 iterations, this process terminates with a tent is a structural relationship between two classes of ob-
pure stater;, and all the intermediate states comprise a path jects which, generally speaking, arises when one class may

from L to e;. Now imagine all the possible paths framto be viewed as a simplification of the other. The process by
a pure state which arise in this manner. This set of states isvhich a member of one class is simplified and thereby ‘re-
exactlylr(A™). (See Figure 2). duced’ to an element of the the other is what we mean by

The logicL” is the canonical order theoretic structure ‘the measurement process’ in domain theory [14].
corresponding to quantum mechanics in terms of only pure  One of the classes may well be a subset of real numbers,
states. We are tempted to claim therefore tli¥it, C) has but the ‘structural relationship’ underlying content skibu
a special place in physics: As a canonical order theoreticnot be forgotten. Later we will use exactly this principle as
structure corresponding to quantum mechanics in terms ofthe basis for a new approach to the study of entanglement.
density operators. And if this idea proves to be correct, it But right now, let us get to the point of this section: The for-
means thaf)", C) offers a more complete picture of phys- mal notion of information content studied in measurement
ical reality than doed.”, due to the fact that the density is broad enough in scope to capture Shannon’s idea from in-
operator formulation offers a more complete picture than formation theory, as well as von Neumann’s conception of
simply working with pure states. entropy from quantum mechanics.



Definition 5.1 A Scott continuous map : D — F be-
tween dcpo’s is said tmeasure the content afe D if

zeU=(JFe€og)x € p(x) CU,
whenevelU € op is Scott open and
pe(x) == p~t(e)N |z

are the elements close toz in content. The map mea-
suresX if it measures the content of eache X.

Definition 5.2 A measurementis a Scott continuous
map u D — FE between dcpo’s that measures
kerp:={x € D : yxr € max(E)}.

The cas&r = [0, 00)* is especially important. Themis
a measurement iff for alf € D with pz = 0,

xeU=(Fe>0)x € p(x) CU,

whenever/ C D is Scott open. The elemenistlose to
x € ker i are then given by

pe(z) :=={y € D:yCx & |px — py| < e},

where for anumbers > 0 andx € ker u, we write p. ()
for o, (). In this caseu.r measures thencertaintyin .

Another natural measurement oft" is the map
q : 2" — A™ which assigns to a quantum state its spectrum
rearranged into descending order. It can be thought of as an
important link between classical and quantum information
theory.

By combining the quantitative and qualitative aspects of
information, we obtain a highly effective method for solv-
ing a wide range of problems in the sciences. As an exam-
ple, consider the problem afgorously proving the state-
ment “there is more information in the quantum than in the
classical.”

The first step is to think carefully about why we say that
the classical is contained in the quantum; one reason is that
for any observable, we have an isomorphism

Q*e={peQ”:[pe] =0}~ A"

between the spectral and Bayesian orders. That is, each
classical state can be assigned to a quantum state in such
a way thatnformation is conserved

conservation of information
(qualitative conservation) + (quantitative conservagion

(order embedding) + (preservation of entropy).

Thus, an object with measure zero ought to have no uncer-

tainty, which means it should be maximal.

Lemma 5.3 If i is a measurement, théer 1 C max(D).

The converse is not true, and there are many important

cases (like powerdomains [16]), where the applicability of
measurement is greatly heightened by the fact Keaj:
need not consist adll maximal elements. However, in this
paper, we are only interested in the casey = max(D),

so from here on wassumehat this is part of the definition
of measurement.

Theorem 5.4 Shannon entropy
pr = — Zﬂ log x;
=1

is a measurement of typ&™ — [0, co)*.

This realization, that both the qualitatiemd the quantita-
tive characteristics of information are preserved in pagsi
from the classical to the quantum, solves the problem.

Theorem 5.6 Letn > 2. Then

(i) There is an order embedding : A™ — Q" with
cod=p.

(i) For any m > 2, there is no order embedding
¢: Q" — A™withpoop =o.

Part (i) is true for any pair of measuremeptsindo. The
proof is fun: If (i) is false, thenp restricts to an injection
of max(Q") into max(A™), usingker 4 C max(A™) and
ker o = max(2™). But no such injection can actually exist:
max(Q") is infinite, max(A™) is not.

A more subtle example of a measurement on classical6 Semantics of entanglement

states is the retraction: A™ — A™ which rearranges the
probabilities in a classical state into descending ordez. W
will apply it in our study of entanglement later on.

Theorem 5.5 von Neumann entropy
op = —tr(plogp)

is @ measurement of tyf&* — [0, c0)*.

Let (¢;) be a base o{". Each pure state € ¥", be-
ing a one dimensional subspace7f, can be written as
a (normalized) vectod , ¢;1); € s. If we want to work
with qubits the casen = 2, we fix acomputational ba-
sis{]0), |1)}; in general, forqunits(n > 2), we fix a basis
{]0),...,|n — 1)}. Recall that a compound quantum sys-
tem is described in the tensor prod@étt ® . .. @ H™ of the



Hilbert spaces that describe the subsystems. Thus, a purexhibit genuine qutrit entanglement. We obtain

state of a compound quantum system has the form

v = Z(’zg% ®...0Y;
g

since(y; ® ... ® ;) isabase oH” @ ... @ H™ (by def-
inition). For two qubits{|00), |01), [10),|11)} is a natural
base, where we have abbreviatéds |i) = |i)|j) = |ij).
The tensor product allows one to capture a kind of intrinsic
interaction between subsystems caltpthntum entangle-
ment In particular:Quantum entanglement is the essential

11

Ent(S)zr(— g 14

5 5,0) & Ent(T,) =7 (q7 5

The statest € H3 ® H3 for which we haveEnt(S) C
Ent(T) are those such thdint(¥) = r(q,1 —¢,0) for
0 < ¢ < 1/2, that is, convex combinations &f and the
minimally entangled state i @ H? (the pure tensd00))
which provides a top

T := Ent(|00)).

feature in quantum communication schemes and quantum

cryptographic protocols that distinguishes them from tthei
classical counterpartsConcrete examples can be found in
[3]. Below we illustrate by means of a series of examples

how the results of this paper can be applied to the study

of entanglement (from these examples it will be clear that

the technique is generally applicable.) More details can be

found in [5].

Example 6.1 Measures of entanglement of bipartite quan-
tum systemsAccording to Schmidt’s biorthogonal decom-
position theorem, any bipartite state

‘I’ZZ%‘%‘@%‘ ceH"@H"
ij

can be rewritten as

V=2 cwi e}

with (1»7) and(¢3) orthonormal bases and the ) positive
real coefficients (which as a set are uniquely defined). In
particular we havé ", ¢? = 1 due to normalization of?,

so every¥ € H"™ ® H™ defines a unique classical state
c := (c?). We can themjualitatively measure entanglement
using the dcpa\” as

Ent: H" @ H" — A" : U r(c).

Every measurement : A — [0, 1]* then gives rise to a
guantitative measure of entanglement

p-Ent:H" @ H" —[0,1]".

For . Shannon entropy we find the usual quantitative mea-
sure of entanglement for bipartite quantum systems.
As an example, the state

_
V2

has essentially a qubit nature, that is, we can express th
state by only using a subbase7Zf that contains two vec-
tors. Forl/3 < g < 1 the states

S (J00) + [11)) € H3 @ H>.

T, = q(j00)) + %qm +22)) € HE o MO

The statest € H?* @ H? for which we haveEnt(¥) C
Ent(S) are convex combinations & and the maximally
entangled state ifit®> ® H?, which provides a bottom

€
V3

Graphically we have

L= Ent( (|00>+11>+22>)) .

1 Ent(S)

Ent(T,)

Ent(S)

L Ent(S)

L

We can further refine our qualitative representation of en-
tanglement for bipartite states using the order on quantum
states. The quantitative valuatipn- Ent with ; Shannon
entropy can also be defined as the von Neumann entropy of
one of the quantum statps(¥) or po (V) for ¥ € H"QH™

that arise as partial traces, that is, the states of the subsy
tems. In fact, it is exactly the entanglement that causes a
lack of knowledge about the actual pure state of the subsys-
tems.

Example 6.2 Qualitative entanglement of multipartite
guantum systemsn Example 6.1 we measured entangle-
ment of bipartite quantum systems using unicity of the coef-
ficients in the Schmidt biorthogonal decomposition. How-
ever, there does not exist a similar construction for aabjtr
multipartite sytems. In particular, until now, there wag no

gvena satisfactory notion of maximal entanglement e.g. see

[19]. When considering three partite qubit states for the
Greenberger-Horn-Zeilinger state [9]

1

GHZ := —(|000) + [111))

Sl

2



and theW-state [7] wherer;, m, andms represent the componentstft*.
Thus, with respect tEnt® and the spectral order air*,

W = %(|100> +(010) + |001)) GHZ is indeed the maximally entangled state.
3

there are conflicting arguments about which one is maxi-
mally entangled. The general favorite, howeverGisZ,
especially in view of its maximal violation of certain types
of inequalities that are characteristic for entanglem&he
solution lies in the specification of context with respect to
which one measures entanglement. Define

These examples are worth giving some thought to. They
use domains as a clarifying device. If we say, “this state is
more entangled than that state,” it has to be with respect to
a qualitative measure of entanglement, calthit., and with
respect to an order on the codomairtaft. The pragmatic
effect of this is that it allows for coherent arguing about
which of two states is more entangled. The trouble with
using numbers to measure entanglement is that numbers al-
ways compare, so one always gets an answer to the ques-
P (p1(9), - o () tion ‘which state is more entangled?’ And that's only good
if you have a genuine understanding of the process used to
generate the number. Teemantics of entanglemdsthus
motivated.

CH . L OH - QY x . x QY

wherep;(¥) arises by tracing over all systems except the
ith. We can do this for example by considering the Schmidt
decomposition foH" ® (H" ® ... ® H") where the single
Hilbert space encodes tlih system.

We then obtain for the above examples that 7 Grover’s algorithm
Ent?(GHZ) = (( FE ) ( EA ) ( EA )) ~ The ideas and results of this section were first introduced
in [15]. Grover’s algorithm [10] for searching is the only
since known quantum algorithm whose complexity psovably
GHZ = i(|0>|00> +11) betterthan its classical counterpart. We will now use the
V2 Bayesian order to analyze this algorithm. Here are some
with respect to theé st component and crucial things the approach yields:

(&) The complexity of the algorithm,

Ent"(W) :<< £ 1/03 )( rs 1/03 )( rs 1/03 ))
(b) A qualitative property the algorithm possesses called
since eg. antimonotonicity. Without knowledge of this aspect,
an experimental implementation would almost cer-

V2 1 tainly fail (for reasons that will be clear later).
W= Y200) (== (10) +101) + —=[1)[00) yiail( )
(c) An explanation of the algorithm as being an attempt to
so it follows that calculate a classical proposition.
EntQ(GHZ) C EntQ(W) . Grover’s algorithm searches a ligtof lengthn (a power

of two) for an elemenk known to occur inL preciselym

Writing only the part ofQ? containing the relevant pure times withn > m > 1. The register begins in the pure state
states|0) and |1), i.e., a copy ofAZ, our picture of

EntQ(GHZ) is ) = 1y 1)
1) 1) v ;
and afterj iterations of the Grover operat6t
, sin(2560 + 6 5(2760 + 0
GIy) = sin(2/6 +6) 3 |Z->+M D)
vm . Vn—m :
n1 (Ent®(GHZ)) 79 (Ent®(GHZ)) w3 (Ent®(GHZ)) L(i)=k L(i)#k
while for Ent®(W) we have wheresin® § = m/n. The probability that a measurement

yieldsi afterj iterations is

1Y) 1Y)
sin?(256 + 0)/m if L(i) =k

cos?(256 + 0)/(n — m) if L(i) # k.

7r1 Ents2 7r2 Ents2 7r; Ents2



To get the answer, we measure the state of the register irthen we only have to solve a single elementary equation
the basis{|i) : 1 < i < n}; if we perform this measure- 90+ ) — 0

ment after; iterations ofG, when the state of the register is cos(2t0 +0) =

G’|y), our knowledge about the result is represented by thefor ¢, allowing us to conclude that the maximum must occur

classical state att = a,t = b, or at points in
2 . o2 . .
o) = (WD, CERED, {t:.(t) = 0} = {b/2}.
cos?(270 + 0) cos?(2j0 + 0)) The absolute maximum afis
n-m 7 n-—m z(b/2) = (1/m,...,1/m,0,...,0)
The crucial step now is tnaginet iterations, because for the other points we find a minimum of
o) = (sin2(2t0 +0) sin?(2t6 + 0) z(a) = z(b) = L.
m Y m 7 The value of knowing the absolute maximum is that it al-
cos?(2t6 + 0) cos? (2t + 9)) lows us to calculate the complexity of the algorithm: It is
n—-m 7 n-m O(b/2), the amount of time required to move to a state

hich defi i tate foe d ~ ab from which the likelihood of obtaining a correct result by
which defines a monotone state fok dom(z) = [a, b, measurement is maximized. This giv@$,/n/m) using
a = 0 andb = 7/20 — 1. The image ofr : [a,b] — A™ is 0> sing > dtherb/2 < (n/d 1/2
a chain in the Bayesian order, which is simplest to see by stm =V ”i/g an ;2/ - (W/ )\/>no/m _b é ;
noting that it has the form rom,(t) < 0 on[a,b/2] andi,(t) = 0 on[b/2,b],
we can also graph:

xZ(f?"'?f?g?"'?g) z

so thatf(s)g(t) < f(t)g(s) = z(s) T z(¢); otherwise,
z(t) C z(s). We can now determine the exact nature of the

motion represented hy with the following observation: If b/2
z : [a,b] — D is a curve on a domaib whose image is a This is the ‘antimonotonicity’ of Grover's algorithm: If
chain and whose time derivative j = b/2 iterations will solve the problem accurateBy;
iterations will mostly unsolve it! This means that our usual
iy (t) = d(v o z) (t) = lim va(s) — va(t) way of reasoning about iterative procedures like numerical
dt s—t s—1 methods, as in “we must do at legsterations,” no longer

applies. We must say “do exactjfyiterations; no more, no
less.” As is now clear, precise estimates like these have to be
obtained before going into a laboratory whenever possible.

exists with respect to @ariablev (i.e., a strictly monotone
measurement : D — [0, 00)*), then

(i) The curver has an absolute maximum @n b]: There Finally, we can view Grover’s algorithm as an attempt to
ist* € [a, b] such that calculate as closely as possible the classical proposition
b/2)=(1/m,...,1/m,0,...,0) € Ir(A™).
oty = || to) ©(b/2) = (1/m.....1/m.0,....0) € Ir(A")
t€la,b] It does so by generatirgpproximations

z(t) < z(b/2)
forall ¢ # b/2, where< CL is approximation in the sense
of exact domains [5], a generalization of the usual notion

Part of the power of this simple approach is that we are freethat i; equivalent to the way-below relation on continuous
to choose any variable we like. To illustrate, a tempting domains [1].

and

(i) Eithert* =a,t* =borx,(t*) = 0.

choice might be entropy = 1, but then solvingi, = 0 We believe this analysis suggests a spgcial connegtion
means solving the equation between Grover’s algorithm and the Bayesmn order. First,
the setgzU{z} —the ones Grover's algorithm moves along
—mf(l +log f) — (n —m)g(1 +1logg) =0 — are chains in the Bayesian orgeovidedz € Ir(A") is
a proposition — and chains are just what we need in order to
and we also have to determine the points wherds un- do calculus! Then, these very same sets — geometrically, the
defined, the seft : ¢g(t) = 0}. However, if we use the lines that joinL to a proposition — are all one needs to re-
variable cover the entire Bayesian order as the result of a systematic

v=1—Vat, procedure givenin [4].



8 Closing remarks

It is worth pointing out that these results improve on
some in the existing physics literature [11]. This is ex-
plained in [15] for those interested.
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