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Abstract

We introduce a partial order on classical and quantum
states which reveals that these sets are actually domains:
Directed complete partially ordered sets with an intrinsic
notion of approximation. The operational significance of
the orders involved conclusively establishes that physical
information has a natural domain theoretic structure.

In the same way that the order on a domain provides a
rigorous qualitative definition of information, a special type
of mapping on a domain called a measurement provides a
formal account of the intuitive notion ‘information content.’
Not only is physical information domain theoretic, but so
too is physical entropy: Shannon entropy is a measurement
on the domain of classical states; von Neumann entropy is
a measurement on the domain of quantum states.

These results yield a foundation for problem solving in
computer science, quantum information and physics.

1. Introduction

One of the great lessons of the differential and integral
calculus is that we can conquer the infinite, and in particular,
the continuous, by means of the discrete. An infinite sum
may be understood as a limit of finite sums, the area beneath
a curve as the limit of areas of approximating rectangles, the
line tangent to a curve at a point is the limit of the secant
lines joining points nearby.

The philosophy espoused is unambiguous: Theidealcan
be realized as alimit of thepartial; the abstract, as a limit of
the concrete; the continuous, a limit of the discrete, and so
on. And this powerful ideology, as it arises in the context of
recursive functionals, is part of what the axioms of domain
theory are intended to capture. But even in Scott’s prelude
to the subject, it is difficult to keep the imagination from
wandering beyond computation [18]:

“Maybe it would be better to talk aboutinformation;
thus,x ⊑ y means thatx andy want to approximate

the same entity, buty gives more information about it.
This means we have to allowincompleteentities, like
x, containing onlypartial information.”

In its purest interpretation, domain theory is a branch of
mathematics which offers an exclusively qualitative account
of information: A proposal for how we might find informa-
tion structured in a universe where all things arise as a limit
of the partial.

We prove that the density operator formulation of quan-
tum mechanics [20] is an instance of domain theory: Its
partial elements are the mixed states, its total or idealized el-
ements are the pure states. To do so, we first order classical
states recursively in terms of Bayesian state update, which
corresponds to the process by which an observer looks for
an object and updates his knowledge accordingly. This or-
der on classical states, called theBayesian order,combined
with the predictions made by quantum mechanics about the
measuring of certain observables, then enables us to natu-
rally derive thespectral orderon quantum states.

We then consider a few applications of these domains.
The first is to physics, where we derive the logics of
Birkhoff and von Neumann [2],P{1, . . . , n} andL

n, in a
purely order theoretic manner. This is an exciting result
given thatLn is the core of the axiomatic approach to quan-
tum mechanics [12, 17]. The second is to domain theory,
where we provide additional evidence that the domain the-
oretic notionmeasurement[13] can provide science with
a formal mathematical definition of ‘information content’:
Shannon entropy is a measurement on the domain of clas-
sical states, von Neumann entropy is a measurement on the
domain of quantum states. Next we turn to quantum entan-
glement. Using an idea from the measurement formalism in
domain theory, we show how more abstract measures of en-
tanglement – “qualitative measures of entanglement” – can
be used to precisely clarify the sense in which one state is
more entangled than another. Last, we use the Bayesian or-
der to calculate the complexity of Grover’s algorithm [10],
and to identify crucial qualitative properties it has that one
must know about before implementing it experimentally.



All proofs of all theorems in sections 1–6 can be found
in the research report [5]; section 7 is from [15].

2. Classical states

Definition 2.1 Let n ≥ 2. Theclassical statesare

∆n :=

{

x ∈ [0, 1]n :

n
∑

i=1

xi = 1

}

.

A classical statex ∈ ∆n is pure whenxi = 1 for some
i ∈ {1, . . . , n}; we denote such a state byei.

Pure states{ei}i are the actual states a system can be in,
while general mixed statesx andy are epistemic entities. If
we knowx and by some means determine that outcomei is
not possible, our knowledge improves to

pi(x) =
1

1 − xi
(x1, . . . , x̂i, . . . , xn+1) ∈ ∆n,

wherepi(x) is obtained by first removingxi from x and
then renormalizing. The partial mappings which result,

pi : ∆n+1 ⇀ ∆n

with dom(pi) = ∆n+1 \ {ei}, are called theBayesian pro-
jections and lead one directly to the following relation on
classical states.

Definition 2.2 Forx, y ∈ ∆n+1,

x ⊑ y ≡ (∀i)(x, y ∈ dom(pi) ⇒ pi(x) ⊑ pi(y)). (1)

Forx, y ∈ ∆2,

x ⊑ y ≡ (y1 ≤ x1 ≤ 1/2) or (1/2 ≤ x1 ≤ y1) . (2)

The relation⊑ on∆n is called theBayesian order.

To motivate (1), ifx ⊑ y, then observerx knows less
than observery. If something transpires which enables each
observer to rule out exactlyei as a possible state of the sys-
tem, then the first now knowspi(x), while the second knows
pi(y). But since each observer’s knowledge has increased
by the same amount, the first muststill know less than the
second:pi(x) ⊑ pi(y).

The order on two states (2) is derived from the graph of
Shannon entropyµ on∆2 (left) as follows:
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The pictures above yield a canonical order on∆2:

Theorem 2.3 There is a unique partial order on∆2 which
has⊥ := (1/2, 1/2) and satisfies the mixing law

x ⊑ y andp ∈ [0, 1] ⇒ x ⊑ (1 − p)x+ py ⊑ y .

It is the Bayesian order on classical two states.

The set ofmaximal elementsin a posetD is written
max(D). The least elementin a poset is denoted⊥, when
it exists. Adomainis adcpo(directed complete partial or-
der) with a notion of approximation. Here we are intention-
ally vague about ‘approximation’ since we will not explic-
itly make use of the idea until later; the details of this, as
well as a more in depth derivation of the order, are in [5].

Theorem 2.4 (∆n,⊑) is a domain with maximal elements

max(∆n) = {ei : 1 ≤ i ≤ n}

and least element⊥ := (1/n, . . . , 1/n).

The Bayesian order can also be described in a more
direct manner, thesymmetric characterization.Let S(n)
denote the group of permutations on{1, . . . , n} and
Λn := {x ∈ ∆n : (∀i < n)xi ≥ xi+1} denote the collec-
tion of monotoneclassical states.

Theorem 2.5 For x, y ∈ ∆n, we havex ⊑ y iff there is a
permutationσ ∈ S(n) such thatx · σ, y · σ ∈ Λn and

(x · σ)i(y · σ)i+1 ≤ (x · σ)i+1(y · σ)i

for all i with 1 ≤ i < n.

Thus, the Bayesian order is order isomorphic ton! many
copies ofΛn identified along their common boundaries.
This fact, together with the pictures of↑ x at representa-
tive statesx in Figure 1, will give the reader a good feel for
the geometric nature of the Bayesian order.

Figure 1. Pictures of ↑x for x ∈ ∆3.



3. Quantum states

Let Hn denote ann-dimensional complex Hilbert space
with specified inner product〈·|·〉.

Definition 3.1 A quantum stateis a density operator
ρ : Hn → Hn, i.e., a self-adjoint, positive, linear operator
with tr(ρ) = 1. The quantum states onHn are denotedΩn.

Definition 3.2 A quantum stateρ onHn is pure if

spec(ρ) ⊆ {0, 1}.

The set of pure states is denotedΣn. They are in bijective
correspondence with the one dimensional subspaces ofHn.

Classical states are distributions on the set of pure states
max(∆n). By Gleason’s theorem [8], an analogous result
holds for quantum states: Density operators encode distri-
butions on the set of pure statesΣn.

Definition 3.3 A quantum observableis a self-adjoint lin-
ear operatore : Hn → Hn.

An observable of a physical system is anything about it
that we can measure. For example,energyis an observable.
Observables in quantum mechanics are represented mathe-
matically by self-adjoint operators. Time, on the other hand,
does nothave a representation as an operator in quantum
mechanics; whether or not it is an observable is a topic well
beyond this paper.

Now, if we have the operatore representing the energy
observable of a system (for instance), then its set of eigen-
valuesspec(e), called thespectrumof e, consists of the
actual energy values a system may assume. If our knowl-
edge about the state of the system is represented by den-
sity operatorρ, then quantum mechanics predicts the prob-
ability that a measurement of observablee yields the value
λ ∈ spec(e). It is

pr(ρ→ eλ) := tr(pλ
e · ρ),

wherepλ
e is the projection corresponding to eigenvalueλ

andeλ is its associated eigenspace in thespectral represen-
tationof e.

Definition 3.4 Let e be an observable onHn with
spec(e) = {1, . . . , n}. For a quantum stateρ onΩn,

spec(ρ|e) := (pr(ρ→ e1), . . . ,pr(ρ → en)) ∈ ∆n.

For the rest of the paper, we assume that all observables
e havespec(e) = {1, . . . , n}. For our purposes it is enough
to assume|spec(e)| = n; the set{1, . . . , n} is chosen for
the sake of aesthetics. Intuitively, then,e is an experiment
on a system which yields one ofn different outcomes; if

our a priori knowledge about the state of the system isρ,
then our knowledge about what the result of experimente
will be is spec(ρ|e). Thus,spec(ρ|e) determines our ability
to predictthe result of the experimente.

So what does it mean to say that we have more informa-
tion about the system when we haveσ ∈ Ωn than when we
haveρ ∈ Ωn? It could mean that there is an experimente
which (a) serves as a physical realization of the knowledge
each state imparts to us, and (b) that we have a better chance
of predicting the result ofe from stateσ than we do from
stateρ. Formally, (a) means thatspec(ρ) = Im(spec(ρ|e))
andspec(σ) = Im(spec(σ|e)), which is equivalent to re-
quiring [ρ, e] = 0 and[σ, e] = 0, where[a, b] = ab − ba is
the commutator of operators.

Definition 3.5 Let n ≥ 2. For quantum statesρ, σ ∈ Ωn,
we haveρ ⊑ σ iff there is an observablee : Hn → Hn such
that[ρ, e] = [σ, e] = 0 andspec(ρ|e) ⊑ spec(σ|e) in ∆n.

This is called thespectral orderon quantum states.

Theorem 3.6 (Ωn,⊑) is a domain with maximal elements

max(Ωn) = Σn

and least element⊥ = I/n, whereI is the identity matrix.

There is one case where the spectral order can be de-
scribed in an elementary manner.

Example 3.7 As is well-known, the2×2 density operators
can be represented as points on the unit ball inR

3 :

Ω2 ≃ {(x, y, z) ∈ R
3 : x2 + y2 + z2 ≤ 1}.

For example, the origin(0, 0, 0) corresponds to the com-
pletely mixed stateI/2, while the points on the surface of
the sphere describe the pure states. The order onΩ2 then
amounts to the following:x ⊑ y iff the line from the origin
⊥ to y passes throughx.

Like the Bayesian order on∆n, the spectral order onΩn

can also be characterized in terms of symmetries and pro-
jections. In its symmetric formulation,unitary operatorson
Hn take the place of permutations on{1, . . . , n}, while the
projective formulation of(Ωn,⊑) shows that each classical
projectionpi : ∆n+1 ⇀ ∆n is actually the restriction of a
special quantum projectionΩn+1 ⇀ Ωk with k = n.

4. The logics of Birkhoff and von Neumann

The logics of Birkhoff and von Neumann [2, 6] consist
of the propositions one can make about a physical system.
Each proposition takes the form “The value of observable
e is contained inE ⊆ spec(e).” For classical systems, the



logic is P{1, . . . , n}, while for quantum systems it isLn,
the lattice of (closed) subspaces ofHn. In each case, impli-
cation of propositions is captured by inclusion, and a fun-
damental distinction between classical and quantum – that
there are pairs of quantum observables whose exact values
cannot be simultaneously measured at a single moment in
time – finds lattice theoretic expression:P{1, . . . , n} is dis-
tributive;Ln is not.

We now establish the relevance of the domains∆n and
Ωn to theoretical physics: The classical and quantum logics
can bederivedfrom the Bayesian and spectral orders using
thesameorder theoretic technique.

Definition 4.1 An elementx of a dcpoD is irreducible
when

∧

(↑x ∩ max(D)) = x

The set of irreducible elements inD is written Ir(D).

The order dual of a poset(D,⊑D) is writtenD∗; its or-
der isx ⊑ y ⇔ y ⊑D x.

Theorem 4.2 For n ≥ 2, the classical lattices arise as

Ir(∆n)∗ ≃ P{1, . . . , n} \ {∅},

and the quantum lattices arise as

Ir(Ωn)∗ ≃ L
n \ {0}.

It is worth pointing out that these logics consist exactly
of the states traced out by the motion of a searching pro-
cess on each of the respective domains. To illustrate, let
p+

i : ∆n → ∆n for 1 ≤ i ≤ n denote the result of first ap-
plying the Bayesian projectionpi to a state, and then rein-
serting a zero in place of the element removed. Now, be-
ginning with⊥ ∈ ∆n, apply one of thep+

i . This projects
away a single outcome from⊥, leaving us with a new state.
For the new state obtained, project away another single out-
come; aftern − 1 iterations, this process terminates with a
pure stateei, and all the intermediate states comprise a path
from⊥ to ei. Now imagine all the possible paths from⊥ to
a pure state which arise in this manner. This set of states is
exactlyIr(∆n). (See Figure 2).

The logicL
n is the canonical order theoretic structure

corresponding to quantum mechanics in terms of only pure
states. We are tempted to claim therefore that(Ωn,⊑) has
a special place in physics: As a canonical order theoretic
structure corresponding to quantum mechanics in terms of
density operators. And if this idea proves to be correct, it
means that(Ωn,⊑) offers a more complete picture of phys-
ical reality than doesLn, due to the fact that the density
operator formulation offers a more complete picture than
simply working with pure states.

Figure 2. The irreducibles of ∆3 and ∆4 with
their corresponding Hasse diagrams.

5. Entropy

A few of the ideas that the study of measurement [13] has
led to include an informatic derivative, new fixed point the-
orems, the derivation of distance from content, techniques
for treating continuous and discrete processes and data in a
unified manner, a ‘first order’ view of recursion based on
solving renee equationsϕ = δ + ϕ ◦ r uniquely which
establishes surprising connections between order and com-
putability, and various approaches to complexity.

The original idea was that if a domain gave a formal
account of ‘information,’ then a measurement on a do-
main should give a formal account of ‘information content.’
There is a stark difference between the view of information
content taken in the study of measurement, and utterances
of this phrase made elsewhere; it is this: Information con-
tent is a structural relationship between two classes of ob-
jects which, generally speaking, arises when one class may
be viewed as a simplification of the other. The process by
which a member of one class is simplified and thereby ‘re-
duced’ to an element of the the other is what we mean by
‘the measurement process’ in domain theory [14].

One of the classes may well be a subset of real numbers,
but the ‘structural relationship’ underlying content should
not be forgotten. Later we will use exactly this principle as
the basis for a new approach to the study of entanglement.
But right now, let us get to the point of this section: The for-
mal notion of information content studied in measurement
is broad enough in scope to capture Shannon’s idea from in-
formation theory, as well as von Neumann’s conception of
entropy from quantum mechanics.



Definition 5.1 A Scott continuous mapµ : D → E be-
tween dcpo’s is said tomeasure the content ofx ∈ D if

x ∈ U ⇒ (∃ε ∈ σE)x ∈ µε(x) ⊆ U,

wheneverU ∈ σD is Scott open and

µε(x) := µ−1(ε)∩ ↓x

are the elementsε close tox in content. The mapµ mea-
suresX if it measures the content of eachx ∈ X .

Definition 5.2 A measurementis a Scott continuous
map µ : D → E between dcpo’s that measures
kerµ := {x ∈ D : µx ∈ max(E)}.

The caseE = [0,∞)∗ is especially important. Thenµ is
a measurement iff for allx ∈ D with µx = 0,

x ∈ U ⇒ (∃ε > 0)x ∈ µε(x) ⊆ U,

wheneverU ⊆ D is Scott open. The elementsε close to
x ∈ kerµ are then given by

µε(x) := {y ∈ D : y ⊑ x & |µx− µy| < ε},

where for anumberε > 0 andx ∈ kerµ, we writeµε(x)
for µ[0,ε)(x). In this case,µxmeasures theuncertaintyin x.
Thus, an object with measure zero ought to have no uncer-
tainty, which means it should be maximal.

Lemma 5.3 If µ is a measurement, thenkerµ ⊆ max(D).

The converse is not true, and there are many important
cases (like powerdomains [16]), where the applicability of
measurement is greatly heightened by the fact thatkerµ
need not consist ofall maximal elements. However, in this
paper, we are only interested in the casekerµ = max(D),
so from here on weassumethat this is part of the definition
of measurement.

Theorem 5.4 Shannon entropy

µx = −
n

∑

i=1

xi log xi

is a measurement of type∆n → [0,∞)∗.

A more subtle example of a measurement on classical
states is the retractionr : ∆n → Λn which rearranges the
probabilities in a classical state into descending order. We
will apply it in our study of entanglement later on.

Theorem 5.5 von Neumann entropy

σρ = −tr(ρ log ρ)

is a measurement of typeΩn → [0,∞)∗.

Another natural measurement onΩn is the map
q : Ωn → Λn which assigns to a quantum state its spectrum
rearranged into descending order. It can be thought of as an
important link between classical and quantum information
theory.

By combining the quantitative and qualitative aspects of
information, we obtain a highly effective method for solv-
ing a wide range of problems in the sciences. As an exam-
ple, consider the problem ofrigorously proving the state-
ment “there is more information in the quantum than in the
classical.”

The first step is to think carefully about why we say that
the classical is contained in the quantum; one reason is that
for any observablee, we have an isomorphism

Ωn|e = {ρ ∈ Ωn : [ρ, e] = 0} ≃ ∆n

between the spectral and Bayesian orders. That is, each
classical state can be assigned to a quantum state in such
a way thatinformation is conserved:

conservation of information
=

(qualitative conservation) + (quantitative conservation)
=

(order embedding) + (preservation of entropy).

This realization, that both the qualitativeand the quantita-
tive characteristics of information are preserved in passing
from the classical to the quantum, solves the problem.

Theorem 5.6 Letn ≥ 2. Then

(i) There is an order embeddingφ : ∆n → Ωn with
σ ◦ φ = µ.

(ii) For any m ≥ 2, there is no order embedding
φ : Ωn → ∆m with µ ◦ φ = σ.

Part (ii) is true for any pair of measurementsµ andσ. The
proof is fun: If (ii) is false, thenφ restricts to an injection
of max(Ωn) into max(∆n), usingkerµ ⊆ max(∆n) and
kerσ = max(Ωn). But no such injection can actually exist:
max(Ωn) is infinite,max(∆n) is not.

6 Semantics of entanglement

Let (ψi) be a base ofHn. Each pure states ∈ Σn, be-
ing a one dimensional subspace ofHn, can be written as
a (normalized) vector

∑

i ciψi ∈ s. If we want to work
with qubits, the casen = 2, we fix a computational ba-
sis{|0〉, |1〉}; in general, forqunits(n > 2), we fix a basis
{|0〉, . . . , |n − 1〉}. Recall that a compound quantum sys-
tem is described in the tensor productHn⊗ . . .⊗Hm of the



Hilbert spaces that describe the subsystems. Thus, a pure
state of a compound quantum system has the form

Ψ =
∑

i...j

ci...jψi ⊗ . . .⊗ ψj

since(ψi ⊗ . . .⊗ ψj) is a base ofHn ⊗ . . .⊗Hm (by def-
inition). For two qubits,{|00〉, |01〉, |10〉, |11〉} is a natural
base, where we have abbreviated|i〉 ⊗ |i〉 ≡ |i〉|j〉 ≡ |ij〉.
The tensor product allows one to capture a kind of intrinsic
interaction between subsystems calledquantum entangle-
ment. In particular:Quantum entanglement is the essential
feature in quantum communication schemes and quantum
cryptographic protocols that distinguishes them from their
classical counterparts.Concrete examples can be found in
[3]. Below we illustrate by means of a series of examples
how the results of this paper can be applied to the study
of entanglement (from these examples it will be clear that
the technique is generally applicable.) More details can be
found in [5].

Example 6.1 Measures of entanglement of bipartite quan-
tum systems.According to Schmidt’s biorthogonal decom-
position theorem, any bipartite state

Ψ =
∑

ij

cijψi ⊗ ψj ∈ Hn ⊗Hn

can be rewritten as

Ψ =
∑

i

ciψ
S
i ⊗ φS

i

with (ψS
i ) and(φS

i ) orthonormal bases and the(ci) positive
real coefficients (which as a set are uniquely defined). In
particular we have

∑

i c
2
i = 1 due to normalization ofΨ,

so everyΨ ∈ Hn ⊗ Hn defines a unique classical state
c := (c2i ). We can thenqualitatively measure entanglement
using the dcpoΛn as

Ent : Hn ⊗Hn → Λn : Ψ 7→ r(c).

Every measurementµ : Λn → [0, 1]∗ then gives rise to a
quantitative measure of entanglement

µ · Ent : Hn ⊗Hn → [0, 1]∗ .

Forµ Shannon entropy we find the usual quantitative mea-
sure of entanglement for bipartite quantum systems.

As an example, the state

S =
1√
2
(|00〉 + |11〉) ∈ H3 ⊗H3.

has essentially a qubit nature, that is, we can express the
state by only using a subbase ofH3 that contains two vec-
tors. For1/3 < q < 1 the states

Tq := q(|00〉) +
1 − q

2
(|11〉 + |22〉) ∈ H3 ⊗H3

exhibit genuine qutrit entanglement. We obtain

Ent(S) = r

(

1

2
,
1

2
, 0

)

& Ent(Tq) = r

(

q,
1 − q

2
,
1 − q

2

)

.

The statesΨ ∈ H3 ⊗ H3 for which we haveEnt(S) ⊑
Ent(Ψ) are those such thatEnt(Ψ) = r (q, 1 − q, 0) for
0 ≤ q ≤ 1/2, that is, convex combinations ofS and the
minimally entangled state inH3⊗H3 (the pure tensor|00〉)
which provides a top

⊤ := Ent(|00〉) .

The statesΨ ∈ H3 ⊗ H3 for which we haveEnt(Ψ) ⊑
Ent(S) are convex combinations ofS and the maximally
entangled state inH3 ⊗H3, which provides a bottom

⊥ := Ent

(

1√
3
(|00〉 + |11〉 + |22〉)

)

.

Graphically we have
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We can further refine our qualitative representation of en-
tanglement for bipartite states using the order on quantum
states. The quantitative valuationµ · Ent with µ Shannon
entropy can also be defined as the von Neumann entropy of
one of the quantum statesρ1(Ψ) orρ2(Ψ) for Ψ ∈ Hn⊗Hn

that arise as partial traces, that is, the states of the subsys-
tems. In fact, it is exactly the entanglement that causes a
lack of knowledge about the actual pure state of the subsys-
tems.

Example 6.2 Qualitative entanglement of multipartite
quantum systems.In Example 6.1 we measured entangle-
ment of bipartite quantum systems using unicity of the coef-
ficients in the Schmidt biorthogonal decomposition. How-
ever, there does not exist a similar construction for arbitrary
multipartite sytems. In particular, until now, there was not
even a satisfactory notion of maximal entanglement e.g. see
[19]. When considering three partite qubit states for the
Greenberger-Horn-Zeilinger state [9]

GHZ :=
1√
2
(|000〉 + |111〉)



and theW-state [7]

W :=
1√
3
(|100〉 + |010〉+ |001〉)

there are conflicting arguments about which one is maxi-
mally entangled. The general favorite, however, isGHZ,
especially in view of its maximal violation of certain types
of inequalities that are characteristic for entanglement.The
solution lies in the specification of context with respect to
which one measures entanglement. Define

Ent
Ω : Hn ⊗ . . .⊗Hn → Ωn × . . .× Ωn

: Ψ 7→
(

ρ1(Ψ), . . . , ρm(Ψ)
)

whereρi(Ψ) arises by tracing over all systems except the
ith. We can do this for example by considering the Schmidt
decomposition forHn⊗(Hn ⊗ . . .⊗Hn) where the single
Hilbert space encodes theith system.

We then obtain for the above examples that

Ent
Ω(GHZ) =

((

1/2 0
0 1/2

)

,

(

1/2 0
0 1/2

)

,

(

1/2 0
0 1/2

))

since

GHZ =
1√
2
(|0〉|00〉 + |1〉|11〉)

with respect to the1st component and

Ent
Ω(W) =

((

2/3 0
0 1/3

)

,

(

2/3 0
0 1/3

)

,

(

2/3 0
0 1/3

))

since eg.

W :=

√
2√
3
|0〉

( 1√
2

(|10〉 + |01〉)
)

+
1√
3
|1〉|00〉

so it follows that

Ent
Ω(GHZ) ❁ Ent

Ω(W) .

Writing only the part ofΩ2 containing the relevant pure
states |0〉 and |1〉, i.e., a copy of∆2, our picture of
Ent

Ω(GHZ) is

❚
❚
❚❚✔

✔
✔✔

|0〉 |1〉

π1

(

Ent
Ω(GHZ)

)

•

❚
❚
❚❚✔

✔
✔✔

|0〉 |1〉

π2

(

Ent
Ω(GHZ)

)

•

❚
❚
❚❚✔

✔
✔✔

|0〉 |1〉

π3

(

Ent
Ω(GHZ)

)

•

while for Ent
Ω(W) we have

❚
❚
❚❚✔

✔
✔✔

|0〉 |1〉

π1

(

Ent
Ω(W)

)

•
❚
❚
❚❚✔

✔
✔✔

|0〉 |1〉

π2

(

Ent
Ω(W)

)

•
❚
❚
❚❚✔

✔
✔✔

|0〉 |1〉

π3

(

Ent
Ω(W)

)

•

whereπ1, π2 andπ3 represent the components ofEnt
Ω.

Thus, with respect toEntΩ and the spectral order onΩn,
GHZ is indeed the maximally entangled state.

These examples are worth giving some thought to. They
use domains as a clarifying device. If we say, “this state is
more entangled than that state,” it has to be with respect to
a qualitative measure of entanglement, call itEnt, and with
respect to an order on the codomain ofEnt. The pragmatic
effect of this is that it allows for coherent arguing about
which of two states is more entangled. The trouble with
using numbers to measure entanglement is that numbers al-
ways compare, so one always gets an answer to the ques-
tion ‘which state is more entangled?’ And that’s only good
if you have a genuine understanding of the process used to
generate the number. Thesemantics of entanglementis thus
motivated.

7 Grover’s algorithm

The ideas and results of this section were first introduced
in [15]. Grover’s algorithm [10] for searching is the only
known quantum algorithm whose complexity isprovably
better than its classical counterpart. We will now use the
Bayesian order to analyze this algorithm. Here are some
crucial things the approach yields:

(a) The complexity of the algorithm,

(b) A qualitative property the algorithm possesses called
antimonotonicity. Without knowledge of this aspect,
an experimental implementation would almost cer-
tainly fail (for reasons that will be clear later).

(c) An explanation of the algorithm as being an attempt to
calculate a classical proposition.

Grover’s algorithm searches a listL of lengthn (a power
of two) for an elementk known to occur inL preciselym
times withn > m ≥ 1. The register begins in the pure state

|ψ〉 =
1√
n

n
∑

i=1

|i〉

and afterj iterations of the Grover operatorG

Gj |ψ〉 =
sin(2jθ + θ)√

m

∑

L(i)=k

|i〉+
cos(2jθ + θ)√

n−m

∑

L(i) 6=k

|i〉

wheresin2 θ = m/n. The probability that a measurement
yieldsi afterj iterations is

sin2(2jθ + θ)/m if L(i) = k

and
cos2(2jθ + θ)/(n−m) if L(i) 6= k.



To get the answer, we measure the state of the register in
the basis{|i〉 : 1 ≤ i ≤ n}; if we perform this measure-
ment afterj iterations ofG, when the state of the register is
Gj |ψ〉, our knowledge about the result is represented by the
classical state

x(j) =

(

sin2(2jθ + θ)

m
, . . . ,

sin2(2jθ + θ)

m
,

cos2(2jθ + θ)

n − m
, . . . ,

cos2(2jθ + θ)

n − m

)

The crucial step now is toimaginet iterations,

x(t) =

(

sin2(2tθ + θ)

m
, . . . ,

sin2(2tθ + θ)

m
,

cos2(2tθ + θ)

n − m
, . . . ,

cos2(2tθ + θ)

n − m

)

which defines a monotone state fort ∈ dom(x) = [a, b],
a = 0 andb = π/2θ − 1. The image ofx : [a, b] → Λn is
a chain in the Bayesian order, which is simplest to see by
noting that it has the form

x = (f, . . . , f, g, . . . , g)

so thatf(s)g(t) ≤ f(t)g(s) ⇒ x(s) ⊑ x(t); otherwise,
x(t) ⊑ x(s). We can now determine the exact nature of the
motion represented byx with the following observation: If
x : [a, b] → D is a curve on a domainD whose image is a
chain and whose time derivative

ẋv(t) :=
d(v ◦ x)
dt

(t) = lim
s→t

vx(s) − vx(t)

s− t

exists with respect to avariablev (i.e., a strictly monotone
measurementv : D → [0,∞)∗), then

(i) The curvex has an absolute maximum on[a, b]: There
is t∗ ∈ [a, b] such that

x(t∗) =
⊔

t∈[a,b]

x(t),

and

(ii) Either t∗ = a, t∗ = b or ẋv(t∗) = 0.

Part of the power of this simple approach is that we are free
to choose any variable we like. To illustrate, a tempting
choice might be entropyv = µ, but then solvingẋv = 0
means solving the equation

−mḟ(1 + log f) − (n−m)ġ(1 + log g) = 0

and we also have to determine the points whereẋv is un-
defined, the set{t : g(t) = 0}. However, if we use the
variable

v = 1 −
√
x+,

then we only have to solve a single elementary equation

cos(2tθ + θ) = 0

for t, allowing us to conclude that the maximum must occur
at t = a, t = b, or at points in

{t : ẋv(t) = 0} = {b/2}.
The absolute maximum ofx is

x(b/2) = (1/m, . . . , 1/m, 0, . . . , 0)

because for the other points we find a minimum of

x(a) = x(b) = ⊥.
The value of knowing the absolute maximum is that it al-
lows us to calculate the complexity of the algorithm: It is
O(b/2), the amount of time required to move to a state
from which the likelihood of obtaining a correct result by
measurement is maximized. This givesO(

√

n/m) using
θ ≥ sin θ ≥

√

m/n and thenb/2 ≤ (π/4)
√

n/m− 1/2.
From ẋv(t) ≤ 0 on [a, b/2] andẋv(t) ≥ 0 on [b/2, b],

we can also graphx:

✲

✻x

t
•

b/2

This is the ‘antimonotonicity’ of Grover’s algorithm: If
j = b/2 iterations will solve the problem accurately,2j
iterations will mostly unsolve it! This means that our usual
way of reasoning about iterative procedures like numerical
methods, as in “we must do at leastj iterations,” no longer
applies. We must say “do exactlyj iterations; no more, no
less.” As is now clear, precise estimates like these have to be
obtained before going into a laboratory whenever possible.

Finally, we can view Grover’s algorithm as an attempt to
calculate as closely as possible the classical proposition

x(b/2) = (1/m, . . . , 1/m, 0, . . . , 0) ∈ Ir(∆n).

It does so by generatingapproximations

x(t) ≪ x(b/2)

for all t 6= b/2, where≪⊆⊑ is approximation in the sense
of exact domains [5], a generalization of the usual notion
that is equivalent to the way-below relation on continuous
domains [1].

We believe this analysis suggests a special connection
between Grover’s algorithm and the Bayesian order. First,
the sets↓↓x∪{x} – the ones Grover’s algorithm moves along
– are chains in the Bayesian orderprovidedx ∈ Ir(∆n) is
a proposition – and chains are just what we need in order to
do calculus! Then, these very same sets – geometrically, the
lines that join⊥ to a proposition – are all one needs to re-
cover the entire Bayesian order as the result of a systematic
procedure given in [4].



8 Closing remarks

It is worth pointing out that these results improve on
some in the existing physics literature [11]. This is ex-
plained in [15] for those interested.
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