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Abstract

It is our aim to convince the physicist, and more specific the quantum
physicist and/or informatician, that category theory should become a part
of their daily practice. The reason for this is not that category theory is
a better way of doing mathematics, but that monoidal categories consti-
tute the actual algebra of practicing physics. We will not provide rigorous
definitions or anything resembling a coherent mathematical theory, but we
will take the reader for a journey introducing concepts which are part of
category theory in a manner that the physicist will recognize them.

1 Why?

Why would a physicist care about category theory, why would he want to know
about it, why would he want to show off with it? There could be many rea-
sons. For example, you might find John Baez’s webside one of the coolest in the
world. Or you might be fascinated by Chris Isham’s and Lee Smolin’s ideas on
the use of topos theory in Quantum Gravity. Also the connections between knot
theory, braided categories, and sophisticated mathematical physics such as quan-
tum groups and topological quantum field theory might lure you. Or, if you are
also into pure mathematics, you might just appreciate category theory due to
its incredible unifying power of mathematical structures and constructions. But
there is a far more on-the-nose reason which is never mentioned. Namely,

a category is the exact mathematical structure of practicing physics!

What do I mean here by a practicing physics? Consider a physical system of type
A (e.g. a qubit, or two qubits, or an electron, or classical measurement data) and
perform an operation f on it (e.g. perform a measurement on it) which results
in a system possibly of a different type B (e.g. the system together with classical
data which encodes the measurement outcome, or, just classical data in the case
that the measurement destroyed the system). So typically we have

A
f - B
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where A is the initial type of the system, B is the resulting type, and f is the
operation. One can perform an operation

B
g - C

after f since the resulting type B of f is also the initial type of g, and we write
g ◦ f for the consecutive application of these two operations. Clearly we have
(h◦g)◦f = h◦ (g ◦f) since putting the brackets merely adds the superficial data
of conceiving two operations as one. If we further set

A
1A - A

for the operation ‘doing nothing on a system of type A’ we have

1B ◦ f = f ◦ 1A = f .

Hence we have a category ! (a concept introduced by Samuel Eilenberg and Saun-
ders Mac Lane in 1945 in [15]) When we also want to be able to conceive two
systems A and B as one whole which we will denote byA ⊗ B, and hence also
need to consider the compound operations

A⊗B
f ⊗ g- C ⊗D

inherited from the operations on the individual systems, then we pass from or-
dinary categories to a particular case of the 2-dimensional variant of categories
called monoidal categories. (a concept introduced by Jean Benabou in 1963 in
[8]) We will define these monoidal categories in Section 5.

2 What?

The (almost) formally precise definition of a category is the following:

Definition. A category C consists of:

• objects A,B,C, . . . ,

• morphisms f, g, h, . . . ∈ C(A,B) for each pair A,B ,

• composition of each f ∈C(A,B) with each g ∈C(B,C) resulting
in g ◦ f ∈C(A,C) and this composition is such that

(h ◦ g) ◦ f = h ◦ (g ◦ f) ,

• identity morphisms 1A ∈ C(A,A) for all A which satisfy

f ◦ 1A = 1B ◦ f = f .
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For the same operational reasons as discussed above (and which extend to the
far more compelling case of monoidal categories as we shall see below), category
theory could be expected to play an important role in other fields where oper-
ations/processes play a central role e.g. Programing (programs as morphisms)
and Logic & Proof Theory (proofs as morphisms), and indeed, in the theoretical
counterparts to these fields category theory has become quite common practice
cf. the many available textbooks and even undergraduate courses [1].

LOGIC & PROOF THEORY PROGRAMMING PHYSICS
Propositions Data Types Physical System

Proofs Programs Physical Operation

Unfortunately, the standard existing literature on category theory (e.g. [24])
might not be suitable for the audience we want to address in this draft. Category
theory literature typically addresses the (broadminded & modern) pure mathe-
matician and as a consequence the presentations are tailored towards them. The
typical examples are various categories of mathematical structures and the main
focus is on their similarities in terms of mathematical practice. This tendency
started with the paper which marked the official birth of category theory [15]
in which Samuel Eilenberg and Saunders Mac Lane observe that the collection
of mathematical objects of some given kind/type, when equipped with the maps
between them, deserves to be studied in its own right as a mathematical struc-
ture since this study entails unification of constructions arising from different
mathematical fields such as geometry, algebra, topology, algebraic topology etc.

But sometimes going into the area of pure mathematics can be useful exactly
to avoid doing to much mathematics. Indeed, an amazing thing of the particular
kind of category theory that we need here is that it formally justifies its own
formal absence, in the sense that at an highly abstract level you can prove that
proofs of equational statements in the abstract algebra are equivalent to merely
drawing and manipulating some intuitive pictures [18, 28]. Look for example
to how quite sophisticated quantum mechanical calculations can be simplified
thanks to category theory in Kindergarten Quantum Mechanics [13].

3 Where?

They truly are everywhere! But that’s exactly where people start to get con-
fused. (if you are not up for a storm of data just skip this section and go to
the next one) We consider some examples from mathematics. A group G is a
category with a single object in which every morphism is an isomorphism:
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Definition. A morphism f : A→ B is an isomorphism (iso) if it has an
inverse i.e. there exists f−1 : B → A such that

f−1 ◦ f = 1A and f ◦ f−1 = 1B .

A ‘group without inverses’ is called a monoid and is by definition a category in
which there is only one object. Also each partially ordered set P is a category
with the elements of this poset as objects, and whenever a ≤ b we take P (a, b) to
be a singleton, otherwise we take it to be empty. Closedness under composition
is guaranteed by transitivity and the identities are provided by reflexivity. Hence
a poset is an example of a category with only few morphisms. A preordered
set (i.e. ‘partial order without anti-symmetry’) can be defined as a category in
which there is at most one arrow from an object to another one. Still in category
theoretic terms, a poset is bounded if it has a terminal and an initial object:

Definition. An object > is terminal if C(A,>) is a singleton for all A.
An object ⊥ is initial if C(⊥, A) is a singleton for all A.

It is lattice if it has products and coproducts, categorical concepts which we will
define further below. But on the other hand, we also have the category Group
which has groups as objects and group homomorphisms as morphisms, and we
can also consider the category Poset which has posets as objects and order-
preserving maps as morphisms. This are two examples of categories with mathe-
matical structure of some kind as objects, and corresponding structure preserving
maps as morphisms. Other examples of this sort are topological spaces and con-
tinuous maps (Top), vector spaces over K and linear maps (VecK), categories
and categorical-structure-preserving maps called functors (Cat), etc.

4 Quantum?

We can also consider two distinct categories which both have sets as objects,
but one with functions as morphisms denoted by Set and one with relations
as morphisms denoted by Rel. While you might think that since both have
sets as objects they are quite similar, nothing is less true! As a matter of fact,
Rel much more resembles the category of finite dimensional Hilbert spaces and
linear maps FdHilb than it resembles Set, and here things really start to get
interesting. For example, category theory is able to detect the fact that both
vector spaces and relations admit a matrix calculus, respectively over the field K
and over the semiring of booleans B.1 While technically this involves some more

1A semiring is a ring in ‘without additive inverses’. For a matrix calculus it indeed suffices
to be able to add and to multiply scalars, while no substraction is needed.
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sophisticated concepts, we are already able to show that both Rel and FdHilb
admit a notion of superposition while Set doesn’t. We expose this through the
categorical notion of element i.e. a notion of element which exposes itself at
the level of morphisms. First note that for any set X we have a bijection, i.e.,
categorically, an isomorphism

X × {∗} ' X ,

where {∗} is just some singleton set, so we can expect {∗} to play a special role
both in Set and Rel. Similarly, in finite dimensional Hilbert spaces we have

H ⊗ C ' H ,

so we expect the one-dimensional Hilbert space C to play a special role in FdHilb.
And indeed, in Set we can define X’s elements as the functions

fx : {∗} → X :: ∗ 7→ x

since in this way each element x ∈ X arises as f(∗) for the function fx : ∗ 7→ x.
Analogously in FdHilb we define H′s elements as linear maps

f|ψ〉 : C → H :: 1 7→ |ψ〉

since by linearity f|ψ〉(1) = |ψ〉 determines the linear map f|ψ〉 completely. By
analogy in Rel X’s elements are relations

{∗} R- X ,

but since relations are ‘multi-valued’ this means that the elements do not corre-
spond with the elements of X but with the subsets Y ⊆ X, and one can think of
these subsets as superpositions of the singletons. Indeed, setting

Yi := X iff i ∈ Y and Yi := ∅ iff i 6∈ Y ,

both in FdHilb and Rel we can decompose elements over some notion of bases
respectively as

|ψ〉 =
∑
i∈X

ψi · | i 〉 Y =
⋃
i∈X

Yi ∩ {i} .

Hence the sum becomes a union and the C-valued coefficients become Boolean-
valued since {∅, X} ' B, the Booleans. In other words, we can think of the subsets
of a set, i.e. the elements in Rel, as being embedded in some vector space:
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Very crucial in all this is the fact that we considered the cartesian product × in
Rel and the tensor product ⊗ in FdHilb, while both categories allow to combine
their objects in many different other ways (e.g. the direct sum of Hilbert spaces).
This shows that it is essential to consider these additional operations as a genuine
part of the structure, introducing monoidal structure.

5 Which?

The key feature we have seen so far of a category are:

• The structure lives in the space of operations (vs. state space),

• Types enable to distinguish different kinds of systems,

• Composition/application is the primitive ingredient.

We are still missing something crucial. While not officially part of the basic
definition of a category, for any ‘operational’ situation as discussed in Section
1 it is natural to have, besides (temporal) sequential composition, some notion
of parallel composition which allows one to consider two distinct entities as one
whole (e.g. the tensor product in quantum mechanics). In abstract category-
theoretic terms this means introducing a second dimension.

Definition. A symmetric monoidal category is a category with a sym-
metric monoidal tensor, that is, an assignment both for pairs of objects
and pairs morphisms

(A,B) 7→ A⊗B

(A
f- B , C

g- D) 7→ A⊗ C
f ⊗ g- B ⊗D

which is bifunctorioral, and comes together with left & right unit natural
isos, a symmetry natural iso and an associativity natural iso.
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So it remains to explain what bifunctoriality and those natural isos stand for.
To this means we depict morphisms (i.e. physical processes) as square boxes,

and we label the inputs and outputs of these boxes by types which tell on which
kind of system these boxes act cf. one qubit, n-qubits, classical data etc. Se-
quential composition (in time) is depicted by connecting matching outputs and
inputs of these boxes by lines, and parallel composition (cf. tensor) by locat-
ing boxes side by side. E.g. 1A : A → A, f : A → B, g ◦ f for g : B → C,
1A ⊗ 1B : A ⊗ B → A ⊗ B, f ⊗ 1C , f ⊗ g for f : B → D and g : C → E, and
(f ⊗ g) ◦ h for h : A→ B ⊗ C respectively depict as:

f
B

A

g
C

f
D

C

g
f
B

A

C

B

f
B

A

A

h
B

E

A B f
D

C

g
E

A

We now show that the requirements ‘bifunctoriality’ and ‘existence and naturality
for some special isomorphisms’ with respect to the operation ‘combining systems’
are physically so evidently true that they almost seem redundant. (but as we will
see further they do have major implications)

Bifunctoriality. In the graphical language bifunctoriality stands for:

f

g f

g
=

Bifunctoriality has a very clear conceptual interpretation: If we apply an oper-
ation f to one system and an operation g to another system, then the order in
which we apply them doesn’t matter. Hence bifunctoriality expresses some no-
tion of locality but still allows for the quantum type of non-locality. The above
pictorial equation can also be written down in term of a commutative diagram:

A1⊗A2
f ⊗ 1A2- B1⊗A2

A1⊗B2

1A1 ⊗ g

?

f ⊗ 1B2

- B1⊗B2

1B1 ⊗ g

?

which expresses that both paths yield the same result. Actually, taking on a
relativistic spirit, (1⊗ g)◦ (f ⊗1) = (f ⊗1)◦ (1⊗ g) expresses that what is at the
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left and at the right of the tensor does not temporally compare (cf. are space-like
separated) so we can denote them both without any harm by f ⊗ g, and hence
assume the slightly more general condition

(g1 ⊗ g2) ◦ (f1 ⊗ f2) = (g1 ◦ f1)⊗ (g2 ◦ f2)

from which it easily follows that

(1⊗ g) ◦ (f ⊗ 1) = (1 ◦ f)⊗ (g ◦ 1) = (f ◦ 1)⊗ (1 ◦ g) = (f ⊗ 1) ◦ (1⊗ g) .

This stronger condition was already implicitly present in the picture calculus
since the latter explicitly ignores the brackets:

f

gg

f

1

21

2

i.e. it doesn’t matter if we either first consider the sequential composition or the
parallel composition. We read this as: since f1 is causally before g1 and f2 is
causally before g2, the pair (f1, f2) is causally before (g1, g2) and vice versa, but
we do not assume any a priori space-like correlations ‘along the tensor’. Finally
in addition to the above we also require

1A ⊗ 1B = 1A⊗B

for the tensor, which is again self-evident from an operational perspective.

Symmetry and associativity natural isomorphisms. One can think of
natural isomorphisms as ‘explicitly witnessed’ canonical isomorphisms. This is
best seen through an example. Consider the following picture:

g

f g
=

f

which, in operational terms, expresses that if we swap the location of two systems
then we also have to swap the operations we intend to apply on them in order to
get the same result. Diagrammatically it corresponds to commutation of:

A1 ⊗A2
f ⊗ g- B1 ⊗B2

A2 ⊗A1

σA1,A2

?

g ⊗ f
- B2 ⊗B1

σB1,B2

?
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and we call the family of isomorphisms {σA,B : A⊗B → B⊗A} which stands for
‘swapping the systems’ a natural isomorphism. Hence this idea of the existence
of morphisms witnessing the fact that two objects are isomorphic is again highly
operational. Given two expressions Λ(−, . . . ,−) and Ξ(−, . . . ,−) using the bi-
functor (−⊗−), a (restricted2) formal notion of natural isomorphism generalizes
in terms of the existence of a family{

ξA1,...,An
: Λ(A1, . . . , An) → Ξ(A1, . . . , An)

}
for which we have commutation of:

Λ(A1, . . . , An)
Λ(f1, . . . , fn)- Λ(B1, . . . , Bn)

Ξ(A1, . . . , An)

ξA1,...,An

?

Ξ(f1, . . . , fn)
- Ξ(B1, . . . , Bn)

ξB1,...,Bn

?

(1)

Analogously to ‘swapping’, we can consider a notion of associating systems to
each other e.g. being in the possession of the same agent or being located ‘not to
far from each other’. The corresponding natural isomorphism which re-associates
systems should obviously satisfy:

(A1 ⊗A2)⊗A3
(f ⊗ g)⊗ h- (B1 ⊗B2)⊗B3

A1 ⊗ (A2 ⊗A3)

αA1,A2,A3

?

f ⊗ (g ⊗ h)
- B1 ⊗ (B2 ⊗B3)

αB1,B2,B3

?

that is, in a picture,

f g
=

h

f g h

When abandoning the spatial interpretation of associativity, naturality is still
implicitly present in the pictures due to the implicit absence of brackets in:

f g h

2We will present a much more general notion of natural isomorphism/transformation below
ones we have the general notion of morphism of categories at our disposal.
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i.e. it makes no difference if we either want to conceive the first two systems or
the last two systems as one whole. One can of course always choose to have

(A1 ⊗A2)⊗A3 = A1 ⊗ (A2 ⊗A3) with αA1,A2,A3 := 1A1⊗A2⊗A3

but in many cases it is very useful to have a non-trivial witness. An example
of this is the analysis of quantum teleportation in [2] were it stands for Alice
sending a qubit to Bob in the teleportation protocol i.e. ‘association’ stands for
‘spatial colocation’:

�� ��A B

Alice ����C

Bob
αA,B,C-

����A

Alice �� ��B C

Bob

Unit object and unit natural isomorphisms. Physical operations can de-
stroy a system e.g. measurement of the position of a photon. On the other hand,
one can conceive a preparation procedure as the creation of a system from an
unspecified source. Therefore it is useful to have an object standing for no system,
preparation or state then being of the type I → A and destruction being of the
type A → I — in Dirac’s notation [14] these respectively are the so-called kets
and bras. Clearly, since I stands for ‘no system’ we have

A⊗ I ' A ' I⊗A

and these left & right unit natural isomorphisms obviously should satisfy:

A
f - B A

f - B

I⊗A

λA

?

1I ⊗ f
- I⊗B

λB

?
A⊗ I

ρA

?

f ⊗ 1I

- B ⊗ I

ρB

?

(2)

i.e. introducing nothing should not alter the effect of an operation. In other words,
the left & right unit natural isomorphisms allow us to introduce or discard such
an extra object at any time. Such an object also comes with a notion of scalar
i.e. a morphism of type s : I → I. In particular do these scalars arise when
post-composing a state with a costate i.e. when we have a bra-ket

π ◦ ψ : I
ψ- A

π- I .

As we will see below in Section 6, having such a ‘no system’-object has much
more striking consequences than one would expect at first. We also introduce
a graphical symbol for states or elements ψ : I → A (which are now formally
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defined in the presence of a symmetric monoidal tensor), for costates π : A→ I,
and for scalars s : I → I, of which π ◦ ψ is an example:

ψ
A

A

π
ψ

A
π

π ψo

=

s

The above naturality diagram now boils down to:

=ψ

ψf

f

which rewrites as a diagram as:

A
f - B

C ⊗A

(ψ ⊗ 1A) ◦ λA

?

1C ⊗ f
- C ⊗B

(ψ ⊗ 1B) ◦ λB

?

and is obtained by pasting diagram (2) with bifunctoriality:

A
f - B

I⊗A

λA

?

1I ⊗ f
- I⊗B

λB

?

Bifunct.

C ⊗A

ψ ⊗ 1A

?

1C ⊗ f
- C ⊗B

ψ ⊗ 1B

?

Typical examples of symmetric monoidal categories are (Set,×) and (Rel,×)
with {∗} as unit object and (FdHilb,⊗) with C as unit object — which we al-
ready implicitly referred to when discussing the similarities between their respec-
tive elements. But there is for example also (FdHilb,⊕) with the 0-dimensional
vector space as unit object and (Set,+) and (Rel,+) (where + is the ‘disjoint
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union’) with the empty set as unit object. Again (FdHilb,⊕) and (Rel,+) are
very similar categorically, but still quite different from (Set,+).

Bases independency. For the particular case of vector spaces over some field
K, setting Ai = Bi := Vi and taking f, g, ... to be a change of bases for the
corresponding vector space, the general naturality diagram (1) exactly expresses
base independency. Hence in the context of vector spaces natural concepts are
always bases independent concepts.

Coherence. We want the different natural isomorphisms introduced above to
coexist peacefully and for that reason we need to require some coherence condi-
tions e.g. σI,A ◦ λA = ρA and λI = ρI. We will not spell them out explicitly here.
The general theory of coherence in categories is highly non-trivial as a branch
of developing category theory (as opposed to using category theory). The reason
we mention these coherence conditions here is that the axiomatic algebra of cat-
egorical quantumness (see Section 11), somewhat surprisingly, first appeared in
the context of coherence theory [20, 21].

Braided categories. One coherence condition for a symmetric monoidal ten-
sor is σ−1

A,B = σB,A i.e. σB,A ◦ σA,B = 1A⊗B , which depicts as:

=

In braided monoidal categories this is not true anymore, giving rise to braided
structure for σB,A ◦ σA,B :

We refer to the web pages by John Baez and the books by Louis Kauffman for
prose on this body of mathematics research.

6 How much?

So far nothing quantitative seems to have been going on here. Not true! Given a
category C we will call ΣA := C(I, A) the state space of systemA and S := C(I, A)
the scalar monoid. The scalar monoid in (FdHilb,⊗) is isomorphic to C since
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any linear map s : C → C is by linearity completely determined by the image of
1 ∈ C. Those in (Rel,×) are the Booleans, since there are two relations from a
singleton to itself, the identity and the empty relation. A remarkable result is that
the scalar monoid is always commutative [21] — the big diagram below is indeed
a proof, which uses bifunctoriality, left & right unit naturality and λI = ρI:

I � '
I⊗ I ====== I⊗ I ====== I⊗ I

' - I

I

t

?
� '

I⊗ I

1I ⊗ t

?
I⊗ I

s⊗ 1I

? ' - I

s

?

I

s

?
�

'
I⊗ I

s⊗ 1I

?
====== I⊗ I

s⊗ t

?
====== I⊗ I

1I ⊗ t

?

'
- I

t

?

This is quite a surprising result. From the very evident operationally motivated
assumptions on compoundness we obtain something as strong as a requirement of
commutation. This for example implies that if we would want to vary quantum
theory by changing the underlying field of the vector space we need to stay
commutative, excluding quaternionic quantum mechanics [16]. But there is much
more. The left-hand-side of the above diagram expresses

s ◦ t = I
'- I⊗ I

s⊗ t- I⊗ I
'- I .

We generalize this and define scalar multiplication as

s • f := A
'- A⊗ I

f ⊗ s- B ⊗ I
'- B

given a scalar s and any morphism f . We think of s•− as being a (probablilistic)
weight which is attributed to the operation f . One can prove that (e.g. [12])

(s • f) ◦ (t • g) = (s ◦ t) • (f ◦ g) and (s • f)⊗ (t • g) = (s ◦ t) • (f ⊗ g)

i.e. diamonds can move around freely in ‘time’ and ‘space’:

f fs

s

f

s

= =
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One can also show that states and costates satisfy a similar property (e.g. [12])

ψ ◦ π = A
'- I⊗A

ψ ⊗ π- B ⊗ I
'- B

what results in:

ψ
B

A
π

ψ
B

A
π

=

Conclusively, at the very basic level of monoidal categories we get a quantitative
notion of value for free, encoded as scalars (provided the scalar monoid itself is
non-trivial), and which arises when a state meets a costate, that is, in Dirac’s
terminology, when a ket meets a bra.

7 Key categorical concepts

The above introduced notions of bifunctoriality and natural iso are instances
of the key categorical concepts called functor and natural transformation. In
Eilenberg-Mac Lane functors were introduced as morphisms between categories
while natural transformations were introduced as morphisms between functors.

Definition. A functor F : C → D is a ‘structure preserving map of
categories’ i.e. it maps an object A to an object FA, and a morphism
A

f- B to a morphism FA
Ff- FB, and satisfies

F (g ◦ f) = Fg ◦ Ff and F (1A) = 1FA .

Given a category define a new category C × C which has pairs (A,B) as ob-
jects, pairs (f, g) as morphisms, pairs (1A, 1B) as identities and with composition
pairwise defined. Hence a functor F : C×C → C satisfies

F (g1 ◦ f1, g2 ◦ f2) = F (g1 ⊗ g2) ◦ (f1 ⊗ f2) .

Setting F (−,−) := − ⊗ − it follows that a tensor is indeed a functor, by bi-
functoriality. Another example is a group homomorphism which turns out to be
a functor of groups since functoriality implies preservation of inverses:

a−1 · a = e = a · a−1 ⇒ F (a−1 · a) = Fe = F (a · a−1)
⇒ F (a−1) · Fa = e = Fa · F (a−1)
⇒ (Fa)−1 = F (a−1) .
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This is the case because an inverse is a categorical property.

Definition. Given two functors F,G : C → D a natural transformation
ξ : F ⇒ G is a family {ξA : FA → GA}A of morphisms in D such that
for all morphisms f : A→ B in C we have commutation of

FA
Ff- FB

GA

ξA

?

Gf
- GB

ξB

?

The symmetry isomorphism is indeed a special case of this definition for

F : C×C → C ::
{

(A,B) 7→ A⊗B
(f, g) 7→ f ⊗ g

G : C×C → C ::
{

(A,B) 7→ B ⊗A
(f, g) 7→ g ⊗ f

While this general definition might be non-intuitive, there are some conceptually
highly significant examples of it. A natural diagonal expresses the process of
copying. It consists of the family {∆A : A→ A⊗A}A which again for operational
reasons obviously has to satisfy

A
f - B

A⊗A

∆A

?

f ⊗ f
- B ⊗B

∆B

?

As a consequence, due to the no-cloning theorem for quantum mechanics [30] we
can expect that in FdHilb we cannot have a natural diagonal. We can define a
map H → H ⊗H :: |i〉 7→ |i〉 ⊗ |i〉, but since this map depends on the choice of
bases, it cannot be natural. Explicitly, the following diagram does not commute:

C
1 7→ |0〉+ |1〉 - C⊕ C

C ' C⊗ C

1 7→ 1⊗ 1

?

1⊗ 1 7→ (|0〉+ |1〉)⊗ (|0〉+ |1〉)
- (C⊕ C)⊗ (C⊕ C)

|0〉 7→ |0〉 ⊗ |0〉
|1〉 7→ |1〉 ⊗ |1〉

?
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since via one path we obtain the Bell-state

1 7→ |0〉 ⊗ |0〉+ |1〉 ⊗ |1〉

while via the other path we obtain a disentangled state

1 7→ (|0〉+ |1〉)⊗ (|0〉+ |1〉) .

Exactly the same phenomenon happens in Rel. Recall that a relation between
two sets X and Y is a subset R ⊆ X × Y consisting of the pairs which satisfy
the relation. Hence the diagonal function

X → X ×X :: x 7→ (x, x)

can be written as a relation as

{(x, (x, x)) | x ∈ X} .

But this relation is not natural since we have non-commutation of:

{∗}
{(∗, 0), (∗, 1)} - {0, 1}

{(∗, ∗)}

{(∗, (∗, ∗))}

?

{(∗, 0), (∗, 1)} × {(∗, 0), (∗, 1)}
- {0, 1} × {0, 1}

{(0, (0, 0)), (1, (1, 1))}

?

since via one path we have

{(∗, (0, 0)), (∗, (1, 1))}

while the other path yields

{(∗, (0, 0)), (∗, (0, 1)), (∗, (1, 0)), (∗, (1, 1))} .

On the other hand, this example does not carry over to Set since we use relations
which are properly multi-valued. In fact, in Set we do have a natural diagonal:

X
x 7→ f(x) - Y

X ×X

x 7→ (x, x)

?

(x, x) 7→ (f(x), f(x))
- Y × Y

f(x) 7→ (f(x), f(x))

?

and this is a consequence of the high-level fact that in Set the cartesian product
is a true product in the categorical sense.

16



Definition. A product of two objects A and B is a triple consisting of
an object and a pair of operations called projections

(A uB , p1 : A uB → A , p2 : A uB → B)

which are such that for every pair operations f : C → A and g : C → B
there exists a unique operation h such that we have commutation of:

C

A �
p1

�

f

A uB

h

?

p2

- B

g

-

The uniqueness of h : C → A uB is usually referred to as the universal property
of the product. But we can reformulate this definition in a manner which gives
it a more direct operational significance in terms of pairing and unpairing meta-
operations.

Definition. A product of two objects A and B is a triple consisting of
an object and a pair of operations called projections

(A uB , p1 : A uB → A , p2 : A uB → B)

together with pairing and unpairing operations

[−,−] : C(C,A)×C(C,B) → C(C,A uB)

p1 ◦ − : C(C,A uB) → C(C,A) p2 ◦ − : C(C,A uB) → C(C,B)

which are such that

[p1 ◦ h, p1 ◦ h] = h p1 ◦ [f, g] = f p2 ◦ [f, g] = g .

The three required equalities essentially say that pairing and unpairing are each
other inverse as meta-operations i.e. they allow each operation of type C → A×B
to be transformed in a pair of operations of respective types C → A and C → B
and vice versa. If one has such a product structure than one always has a natural
diagonal and provide a notion of copying. Moreover, also the projections are
natural and can be interpreted as a natural notion of deleting. (cf. the no-deleting
theorem in quantum mechanics [25])
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Proposition. Products yield a monoidal tensor

f u g := [f ◦ p1, g ◦ p2] : A uB → C uD

for f : A→ C and g : B → D and a diagonal

∆A := [1A, 1A] : A→ A uA .

Moreover, projections are natural i.e. we have commutation of:

A uB
f u g- C uD

A

p1

?

f
- C

p1

?

Specifying the idea of pairing and unpairing for states we have that the informa-
tion encoded in any bipartite state

Ψ : I → A⊗B

can be equivalently encoded in the pair

ψ1 = p1 ◦Ψ : I → A and ψ2 = p2 ◦Ψ : I → B

which immediately excludes the possibility of entanglement. Hence, no-cloning
is not a surprise at all in the presence of anything which even remotely behaves
like entanglement. But pairing and unpairing are not the only meaningful meta-
operations of their kind since there exist also the notions of copairing and co-
unpairing, since there is indeed a dual notion to product named coproduct which
is obtained by reversing all the arrows involved. A coproduct of two objects A
and B is a triple consisting of an object and a pair of operations called injections

(A tB , q1 : A→ A tB , q2 : B → A tB)

which are such that for every pair operations f : A → C and g : B → C there
exists a unique operation h such that we have commutation of:

C

A
q1

-

f

-

A tB

h

6

�
q2

B

�

g
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From coproducts we can define a codiagonal

∇A = A tA→ A

analogously as we defined a diagonal given products.

Linear logic. Quantum theory is of course not the only theory in which there
are no natural notions of copying and deleting. E.g. in spoken language we have:

not not 6= not ,

a fact which was well-known to one of the main builders of category theory Jim
Lambek [22]. Both in computing and proof theory, absence of evident availabil-
ity of copying and deleting captures resource sensitivity i.e. it counts how many
times a resource is used. While much of the technical machinery was already
available due to Jim Lambek, Saunders MacLane, Max Kelly and other category
theoreticians, the name and conceptual understanding of linear logic has to be
attributed to Jean-Yves Girard [17], and the full identification in category theo-
retic was provided in [27]. For a useful survey on category theory from the linear
logician’s perspective we refer to [10].

8 Enriched categories

We will not get in detail on this mathematically highly non-trivial subject and
refer the reader for an easy-going introduction to [11]. Here we just want to men-
tion the existence of this particular way of adding more structure to categories,
since we will encounter a simple example of it below. Consider the so-called
Hilbert-Schmidt correspondence for finite dimensional Hilbert spaces i.e. given
two Hilbert spaces H1 and H2 there is a natural isomorphism in FdHilb3

H∗
1 ⊗H2 ' FdHilb(H1,H2) (3)

between the tensor product ofH∗
1 (i.e. the dual ofH1) andH2 and Hilbert space of

linear maps between H1 and H2. In particular do we have that FdHilb(H1,H2)
is itself a Hilbert space. Note also that there exists a linear map

FdHilb(H1,H2)⊗ FdHilb(H2,H3) → FdHilb(H1,H3) :: (f, g) 7→ g ◦ f

due to the universal property of the Hilbert space tensor product i.e. for each
triple H1,H2,H3 there exists a particular morphism in FdHilb which internal-
izes composition of linear maps. Hence we have a situation where the morphism-
sets of a category C are themselves structured as objects in (possibly another)

3Surprisingly enough, in much of the quantum mechanical literature (e.g. [5, 31]) one does
not encounter this natural correspondence but rather an un-natural one namely H1 ⊗ H2 '
FdHilb(H1,H2) which is merely a bijection between sets and which is of course is bases
dependent. The same is the case for many other notions used in the quantum physics literature.
Life could be made so much easier if physicist would learn about the benefits of naturality.
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category (D,⊗) in such a manner that composition in C, i.e.

− ◦ − : C(A,B)×C(B,C) → C(A,C) ,

internalizes in (D,⊗) as an explicit morphism

cA,B,C : C(A,B)⊗C(B,C) → C(A,C) .

Such a category C is called D-enriched or simply a D-category. Each category
is by definition a Set-category. A 2-dimensional category or simply, a 2-category
is defined as a Cat-category. Similarly, a 3-category is a 2-Cat-category, and
a (n + 1)-category is a n-Cat-category, a branch of category which currently
intensively studied, and in particular strongly advertised by John Baez. A par-
ticular fragment FdHilb-enrichment (cf. FdHilb is itself FdHilb-enriched) is
enrichment in commutative monoids CMon i.e. linear maps can be added.

9 Logical closure

Categorical enrichment is not the only way to encode the Hilbert-Schmidt corre-
spondence. From eq.(3) and (H1 ⊗H2)∗ ' H∗

1⊗H∗
2 it follows that

FdHilb(H1⊗H2,H2) ' (H∗
1⊗H∗

2)⊗H3 ' H∗
1⊗(H∗

2⊗H3) ' FdHilb(H1,H∗
2⊗H3)

Hence when defining a new connective between Hilbert spaces by setting

H2 ⇒ H3 := H∗
2 ⊗H3 ,

called implication, we obtain

FdHilb(H1⊗H2,H2) ' FdHilb(H1,H2 ⇒ H3)

which is a special case of the general situation of monoidal closure:

C(A⊗B,C) ' C(A,B ⇒ C)

where we now assume (not necesarily being in a self-enriched context) that the
isomorphism is natural in Set.4 This is precisely the deductive content of general
categorical logic, which states that for each proof

• f` : A⊗B → C ‘which deduces from A and B that C is true’

that there is a corresponding proof
4Actually we have an example of a so-called adjunction between the two functors B ⊗ −

and B ⇒ − for each object B of the category. While in many category theory books for
very compelling mathematical reasons adjunction will be put forward as the most important
mathematical concept of the whole of category theory, we unfortunately won’t have the space
here to develop it, and it would deviate us too much from our story line.
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• f` : A→ B ⇒ C ‘which deduces from A that B implies C’

and vice versa. A particular situation of monoidal closure is cartesian closure
where the monoidal tensor is a categorical product i.e. we have

C(A uB,C) ' C(A,B ⇒ C)

— which of course is not the case for (FdHilb,⊗) since as we have seen above
that a product structure prevents the existence of entanglement. The notion
of a topos is an even more (Set,×)-resembling particular case of a cartesian
closed category, so, although some have proposed topos theory to be used in
the foundations of quantum mechanics, one fact is certain: a topos is manifestly
non-quantum. Putting this in more technical terms, in FdHilb we have another
(than cartesian closure) particular case of monoidal closure called ∗-autonomy
[7], which requires that there exists an operation negation denoted by a star and
which is such that we can derive the implication from it by setting

A⇒ B := (A⊗B∗)∗

which logically makes a lot of sense: A implies B when we do not have that A
is true and that not B is true, that is, by the De Morgan law, that A implies B
when we either have that not A is true or that B is true.

Proposition. A symmetric monoidal category which is both cartesian
closed and ∗-autonomous can only be a preordered set.

This translates physically in the fact that if a quantum formalism would be
cartesian closed then the only operation on a system which preserves it is the
identity, which implies that there cannot be any non-trivial notion of unitarity.

But again, FdHilb has even more structure than ∗-autonomy, namely the
fact that (A⊗B)∗ ' A∗ ⊗B∗, which logically is a bit weird, stating that not (A
and B) is equivalent to (not A) and (not B), hence it follows that and is the same
as or.5 This kind of logically degenerate monoidal categories in which the tensor
is self-dual are called compact closed categories and where introduced by Max
Kelly [20], in terms of a much simpler definition than the above one which we will
discuss in the section ‘Categorical quantumness’. Surprisingly, they arise in many
more contexts than one would expect, for example in linguistics [23], in relativity
since cobordism categories turn out to be compact closed [6], in concurrency
theory [4], they also enable to formalize the mathematical notion of a knot, and
of course, they consitute the key to axiomatizing quantum entanglement [2, 3].

5This logical view highly contrasts the Birkhoff-von Neumann proposal in [9] that quantum
logic is a weak logic in which we can do less than classical logic. In fact, we can do more!
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10 Categorical matrix calculus

While till now we have focussed on the tensor product of Hilbert spaces, in this
section we show how the direct sum of Hilbert spaces carries the matrix calculus.
If an object is both terminal and initial we call it a zero-object and in that case
there is a unique zero-maps between any two objects:

A
0A,B - B

0

∃!

-

∃!
-

and these zero-maps are moreover closed under composition:

A
0A,B - B

0B,C - C

0

6

?

-

-

Assume that in addition to this we have a situation of what we roughly describe
as ‘coinciding products and coproducts’, and which we will denote by − ⊕ −.
Since in this case we both have diagonal ∆ and a codiagonal ∇, for each pair
f, g : A→ B we can define the following sum:

f + g := A
∆- A⊕A

f⊕g- A⊕A
∇- A

and by naturality of ∆ and ∇ it moreover follows that

(f1 + f2) ◦ g = (f1 ◦ g) + (f2 ◦ g) f ◦ (g1 + g2) = (f ◦ g1) + (f ◦ g2) .

One verifies that we obtain CMon-enrichment. But we also both have projections
and injections so for each morphism

f : A⊕B → C ⊕D

we can write down a matrix

(fij)ij =

(
p1 ◦ f ◦ q1 p1 ◦ f ◦ q2
p2 ◦ f ◦ q1 p2 ◦ f ◦ q2

)
and it turns out that we obtain a full-blown matrix calculus in which we can add
and multiply in the usual linear-algebraic fashion. The exact notion which cap-
tures the above situation is that of a biproduct. We give two alternative equivalent
definitions.
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Definition. If C has a 0-object, products and coproducts and if all

morphisms with matrix
(

1 0
0 1

)
are isos then C has biproducts.

Definition. If C is CMon-enriched and if there are morphisms

A � p1

q1
- A⊕B

p2 -�
q2

B

with
pi ◦ qj = δij

∑
i
qi ◦ pi = 1A⊕B

then C has biproducts.

Each such biproduct category admits an additive and multiplicative matrix calcu-
lus, and each category with numbers as objects and n×m-matrices in a commu-
tative semiring as morphisms yields a biproduct category. In particular (Rel,+)
and (VectK,⊕) are biproduct categories.

Distributivity. We have now seen that in FdHilb there exist two monoidal
structures, namely the ⊗-structure which captures entanglement, and the ⊕-
structure which provides the matrix calculus. But these two are not at all inde-
pendent since there exists a distributivity natural isomorphism:

(A1 ⊕A2)⊗ C
(f1 ⊕ f2)⊗ g - (B1 ⊕B2)⊗D

(A1 ⊗ C)⊕ (A2 ⊗ C)

DISTA1,A2,C

?

(f1 ⊗ g)⊕ (f2 ⊗ g)
- (B1 ⊗D)⊕ (B2 ⊗D)

DISTB1,B2,D

?

Such a distributity isomorphism is a very useful tool which for example can be
used to encode classical communication between agents [2]:

(I⊕ I)⊗Agent ' (I⊗Agent)⊕ (I⊗Agent) .

However, while the ⊗-structure and ⊕-structure clearly behave very different,
the first is in the case of finite dimensional objects derivable from the second.
Indeed, given a biproduct category BP with an object I such that BP(I, I) is
commutative, define a new category:

• the objects are the natural numbers N ' {I⊕ . . .⊕ I︸ ︷︷ ︸
n

| n ∈ N}
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• the morphism sets are D(n,m)= n×m matrices in BP(I, I)

• the tensor is (I⊕ . . .⊕ I︸ ︷︷ ︸
n

)⊗ (I⊕ . . .⊕ I︸ ︷︷ ︸
m

) := I⊕ . . .⊕ I︸ ︷︷ ︸
n×m

In turns out that we always obtain a compact closed category, something which
can exist independently without the presence of an underlying biproduct struc-
ture. We strongly believe that the essence of quantum mechanics does not lie in
its matrix calculus but in the independent structure of the tensor product. Recall
here that unveiling the underlying axiomatic structure of quantum mechanics was
a quest started by the formalism’s creator John von Neumann [29], initiated in
[9], but did not lead to a satisfactory ending [26]. The main difficulty was the
axiomatization of the tensor product. We believe that the missing ingredient is
the concept of monoidal categories and its underlying operational significance.

11 Categorical quantumness

In [2, 3] Abramsky and myself striped down the tensor product to its bare cat-
egorical bones. The structure which we discovered was a slightly refined version
of Kelly’s compact closure [20] which we called strong compact closure. But the
greatest virtue of this structure is that, as it was the case for monoidal categories,
it can still be captured by a simple graphical calculus, as surveyed in my lecture
notes entitled Kindergarten Quantum Mechanics [13]. What we need to add to
the symmetric monoidal graphical calculus is orientation of the lines connecting
the boxes and an operation adjoint which reverses boxes:

fA A* f
A

A

B

B

†

and, crucially, for each object A a Bell-state ηA : I → A∗ ⊗A, and hence, by the
adjoint, also a Bell-costate η†A : A∗ ⊗A→ I:

A

A

A*

A*

These are subjected to the following sole axiom:
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A

A

A* = A

and if we extend the graphical notation of Bell-(co)states a bit:

A

A

A*

A*

we obtain a far more lucid interpretation for the axiom:

=

which now tells us that we are allowed to yank the black line:

=

It turns out that with this bit of structure we basically capture all the behav-
ioral properties of quantum mechanics, and are even able to define notions such
as inner-product, unitarity, Hilbert-Schmidt inner-product, Hilbert-Schmidt map-
state duality, projection, positivity, measurement, Born-rule (which provides the
probabilities) [2, 3], transposition vs. adjoint, global phase and elimination thereof,
vectorial vs. projective formalism [12], full and partial trace [19], completely posi-
tive maps and Jamiolkowski map-state duality [28].6 Inventing the quantum tele-
portation protocol boils down in this calculus to a trivial application of yanking:

6While Selinger’s notation [28] looks different from ours [13], it is equivalent.
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Alice Bob

=
ψ ψ

Alice Bob Alice Bob

= ψ

In fact, this calculus is a very substantial 2-dimensional extension of Dirac’s
calculus. We invite the reader to continue this journey in [13] and in the more
technical papers [2, 3, 12, 28].

12 Conclusion

The world of monoidal categories provides an extremely powerful starting point
for building physical theories. This is because monoidal categories embody in a
non-compromising fashion the structure of physical processes/interventions. On
the other hand, category theory encompasses important mathematical disciplines
such as group theory, linear algebra and the theory of partial orders. It provides
the appropriate setting to study notions such as deleting and copying of informa-
tion, provides an exact concept of canonicity (e.g. bases independence), is able
to encode computational practice such as matrix calculus and Dirac’s bra-ket
formalism, allows quantum entanglement and quantum mechanics as a whole to
be axiomatized, and there are many more examples of this kind.

One philosophical question remains: how can it be that category hasn’t had
more impact by now in many areas of science — with the exceptions of computer
science semantics and proof theory. We think that it has much to do with the
presentation of the material which makes it essential inaccessible for many, and
this is partly due to the elitism of certain category theoreticians. There is also
the discomforting fact that a vast part of the traditional mathematics community
is allergic to any kind of mathematical practice which is not purely a matter of
problem solving, but rather about conceptualization and structural unification,
and this has prevented category theory to become a part of mathematics edu-
cation — our department at Oxford University is a fortunate exception to this,
providing a category theory course both to computer science an mathematics
students. The development of graphical calculi, their connections with category
theory, and their important applications in Fields Medal awarding regions of
mathematical practice has the potential to break this deadlock.
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