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Abstract

The advent of quantum computing has challenged classical conceptions of

which problems are efficiently solvable in our physical world. This raises

the general question of what broad relationships exist between physical

principles and computation. The current thesis explores this question

within the operationally-defined framework of generalised probabilistic

theories. In particular, we investigate the limits on computational power

imposed by simple physical principles. At present, the best known up-

per bound on the power of quantum computers is that BQP ⊆ AWPP,

where AWPP is a classical complexity class contained in PP. We define

a circuit-based model of computation in the above mentioned operational

framework and show that in theories where local measurements suffice for

tomography, efficient computations are also contained in AWPP. More-

over, we explicitly construct a theory in which the class of efficiently solv-

able problems exactly equals AWPP, showing this containment to be

tight. We also investigate how simple physical principles bound the power

of computational paradigms which combine computation and communica-

tion in a non-trivial fashion, such as interactive proof systems. Addition-

ally, we show how some of the essential components of computational algo-

rithms arise from certain natural physical principles. We use these results

to investigate the relationship between interference behaviour and com-

putational power, demonstrating that non-trivial interference behaviour

is a general resource for post-classical computation. We then investigate

whether post-quantum interference is a resource for post-quantum compu-

tation. Sorkin has defined a hierarchy of possible post-quantum interfer-

ence behaviours where, informally, the order in the hierarchy corresponds

to the number of paths that have an irreducible interaction in a multi-slit

experiment. In quantum theory, at most pairs of paths can ever inter-

act in a fundamental way. We consider how Grover’s speed-up depends

on the order of interference in a theory, and show that, surprisingly, the

quadratic lower bound holds regardless of the order of interference.
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Introduction

Since the discovery of quantum theory in the early twentieth century, its predictions

have been an affront to our classically honed sensibilities. From superposition and

interference to entanglement, steering, and non-locality, quantum theory boasts a

litany of classically counter-intuitive features. Many physicists have found these fea-

tures hard to stomach, as demonstrated by Einstein’s infamous dismissal of steering

as “spooky action-at-a-distance1” [2] and Feynman’s description [3] of interference

as “impossible, absolutely impossible, to explain in any classical way”. However,

the advent of quantum information science in the 1980’s brought with it a major

conceptual breakthrough which caused a radical shift in physicists perceptions of

these seemingly paradoxical features: Quantum theory appears to offer dramatic ad-

vantages [1, 4] for various information-processing tasks—computation in particular

[1, 4, 38, 64, 63, 80, 81, 82, 83, 84, 134, 149, 150].

The realisation that interference [4, 84] and entanglement [81] are resources for

post-classical information processing provides a novel understanding of these seem-

ingly paradoxical quantum features. This raises the general question of what broad

relationships exist between natural physical principles2 and computation. For in-

stance, what limits on computation are imposed by physical principles? Can the

general structure of computational algorithms be seen to arise from physical prin-

ciples alone? Understanding what general relationships hold may further deepen

our understanding of quantum theory. Moreover, systematically investigating such

relationships could illuminate the infamous [85, 86, 87] source of the quantum com-

putational “speed-up”.

Such questions are similar in spirit to recent attempts at characterising the set

of quantum correlations solely from simple physical principles, such as information

causality [77] and local orthogonality [76]. These principles, while not fully capturing

1Or “spukhafte fernwirkung” in the original German [2].
2An example would be the no-signalling principle. Later in this section we informally introduce

the principles we will be studying in this thesis, with the formal defintions provided in chapter 1.
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the exact quantum boundary [75], have deepened our understanding of quantum cor-

relations and have even led to the development of Device-Independent Cryptography

[10]. Hence, while investigating such connections has foundational interest, it has also

been shown to have practical implications.

In recent years, one approach to uncovering the origin of the quantum “speed-up”

has been to ask how computational power changes as features of quantum theory are

altered. Beginning with the work of Abrams and Lloyd, it was shown that suppli-

menting quantum theory with exotic transformations can result in the trivial solution

to computationally hard problems [12]. Unfortunately, changing various aspects of

quantum theory in a ad-hoc manner does not, in general, lead to a consistent physical

theory. This has even motivated the belief that quantum theory is an “island” within

the space of all possible theories; alter quantum mechanics and we obtain dramatic

consequences [65]. We thus require an abstract framework in which to study the

power of computation, where quantum and classical computation are special cases.

In this thesis we investigate computation in the operational-defined framework

of generalised probabilistic theories [15, 17, 19]. Informally, a theory in this frame-

work specifies a set of laboratory devices that can be connected together in different

ways and assigns probabilities to different experimental outcomes. Theories within

this framework can be described that are different from classical or quantum theory,

but which nonetheless make good operational sense and allow one to systematically

investigate the connections between physical principles and information-theoretic ad-

vantages. This framework suggests a natural model of computation, analogous to

the classical and quantum circuit models, which we shall use to rigorously investi-

gate the connections between physical principles and computational power. From

bounding the class of problems a general theory can efficiently solve to deriving the

general structure of computational algorithms from physical principles, we shall ex-

plore the multifaceted relationship between computation and physical principles in

this framework from many different perspectives.

In chapter 1 we introduce the framework of generalised probabilistic theories and

discuss five natural physical principles which we shall connect to computation over

the course of this thesis: causality (roughly, probabilities for present experiments

cannot depend on future measurement choices), tomographic locality (local measure-

ments suffice for tomography), purification (information can never be destroyed, only

discarded), purity preservation (composition preserves information) and strong sym-

metry (the existence of non-trivial reversible dynamics). We also provide examples of

concrete theories, distinct from classical and quantum theory, which illustrate the fact

2



that the above physical principles are logically independent; generalised probabilistic

theories can be specified that satisfy any subset of the five principles above3. More-

over, the existence of such alternate theories allows for a rigorous investigation of the

structural or information-theoretic consequences of different physical principles.

In chapter 2, we introduce a circuit-based model of computation in the generalised

probabilistic theory framework and use it to rigorously define the class of problems

a specific theory can solve efficiently. With this definition in hand, we begin to

explore the limits on efficient computation imposed by certain physical principles. At

present, the best upper bound known for the power of quantum computation is that

BQP ⊆ AWPP, where AWPP is a classical complexity class known to be included

in PP, hence PSPACE. This was first proved by Fortnow and Rogers in [45].

See appendix A for a review of all computational complexity classes discussed in this

thesis. What is the minimal set of physical principles under which the above inclusion

holds for efficient computation in a specific generalised probabilistic theory? We show

that given only an assumption of tomographic locality, efficient computations are

contained in AWPP. This inclusion still holds even without assuming the principle

of causality. Following Aaronson, we extend the computational model by allowing

post-selection of measurement outcomes. Aaronson showed that the corresponding

quantum complexity class, PostBQP, is equal to PP. Given only the assumption of

tomographic locality, the inclusion in PP still holds for post-selected computation in

general theories. Hence in a world with post-selection, quantum theory is optimal for

computation in the space of all operational theories. We also consider whether one

can define computational oracles and obtain relativised complexity results for general

theories. The results presented in this chapter first appeared in [93] and constitute

joint work with J. Barrett.

In chapter 3 we investigate whether the bound derived in chapter 2 on efficient

computation in tomographically local theories is tight. We provide complexity-

theoretic arguments which suggest that this is unlikely. However, by slightly mod-

ifying4 the definition of what constitutes a generalised probabilistic theory, one can

construct a theory within this altered framework—satisfying both tomographic local-

ity and causality—in which the class of efficiently solvable problems exactly equals

AWPP. Hence AWPP, despite having a slightly involved definition in terms of “gap

functions” for non-deterministic Turing machines (see chapter 2), can be thought of

3With the exception of causality and purification, see chapter 1.
4Instead of assigning probabilities to any experiment composed of laboratory devices, a theory

in the modified framework only assigns probabilities to certain allowed experiments, see chapter 3
for a rigorous discussion.
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much more intuitively as the class of problems efficiently solvable by tomographically

local physical theories. The theory constructed in this chapter has the maximum

computational power consistent with tomographic locality. In a sense, one can think

of it as the analogue of a PR-box—which exhibits the strongest non-local correlations

consistent with the no-signalling principle—for computation. The main result of this

chapter is joint work with J. Barrett, N. de Beaudrap, and M. J. Hoban and will

appear in [94].

In chapter 4 we investigate how simple physical principles bound the power of two

different computational paradigms which combine computation and communication

in a non-trivial fashion: computation with advice and interactive proof systems. We

show that the existence of non-trivial dynamics in a theory, which is guaranteed if

the theory satisfies the principle of strong symmetry, implies a bound on the power of

computation with advice. Moreover, we provide an explicit example of a theory with

no non-trivial dynamics in which the power of computation with advice is unbounded.

Finally, as was the case for efficient computation in chapter 2, we show that the power

of simple interactive proof systems in theories satisfying tomographic locality satisfies

the best bound known in the quantum case. These results first appeared in [66, 67]

and are joint work with M. J. Hoban.

As we have seen over the last few paragraphs, chapters 2 to 4 use the language

of complexity classes to derive general bounds on the power of computation in gen-

eralised probabilistic theories. However, much of quantum computing is concerned

not so much with the high-level view offered by complexity classes, but instead with

the construction of concrete algorithms to solve specific problems. Over the course

of chapters 5, 6, and 7, we shall investigate both the structure of computational

algorithms in generalised probabilistic theories and whether certain algorithmic ad-

vantages are directly related to physical principles.

Quantum interference between computational paths has been posited [84] as a key

resource behind the computational “speed-ups” offered by many quantum algorithms,

such as Grover’s search algorithm [149]. However, as first noted by Rafael Sorkin

[124, 125], there is a limit to quantum interference—at most pairs of paths can ever

interact in a fundamental way. Sorkin has defined a hierarchy of possible ‘higher-order’

interference behaviours—currently under experimental investigation [131, 132, 153]—

where classical theory is at the first level of the hierarchy and quantum theory belongs

to the second. Informally, the order in the hierarchy corresponds to the number of

paths that have an irreducible interaction in a multi-slit experiment. Could more

interference imply more computational power?

4



Chapter 5 provides an overview of the literature on higher-order interference. It

also investigates two proposed extensions of quantum theory from the point of view of

their interference behaviour: the theory of Density Cubes proposed by Dakić, Paterek

and Brukner, which has been shown to exhibit third-order interference in a three slit

experiment, and the Quartic Quantum Theory of Życzkowski. This investigation

clarifies the impact of these two generalised theories to ongoing experimental tests for

higher-order interference, and explores potential information-theoretic consequences

of post-quantum interference in this concrete setting. This investigation first appeared

in [88] and is joint work with J. H. Selby.

In chapter 6 we show that some of the essential machinery of quantum computation—

namely reversible controlled transformations and the phase kick-back mechanism—

exist in any operationally-defined theory which satisfies the principles of causality,

purification, purity preservation, and strong symmetry. We use these results to in-

vestigate the relationship between interference behaviour and computational power,

demonstrating that non-trivial interference behaviour is a general resource for post-

classical computation. In proving the above, we connect post-quantum interference

to the existence of post-quantum particle types, potentially providing a novel experi-

mental test for higher-order interference. We also introduce a framework that relates

higher-order interference to phase transformations in operationally-defined theories.

Finally, we show that reversible controlled transformations in theories satisfying the

above principles give rise to computational oracles which solve the subroutine prob-

lem of Bennett et al. from [44]. That is, in theories satisfying causality, purification,

purity preservation, and strong symmetry we have that BGPBGP = BGP. The

results in this chapter first appeared in [89] and is joint work with J. H. Selby.

In chapter 7 we consider how Grover’s speed-up depends on the order of interfer-

ence in a generalised theory. We consider theories satisfying causality, purification,

purity preservation, and strong symmetry, which, as we mentioned in the previous

paragraph, are sufficient for the existence of reversible controlled transformations and

hence well-defined search oracles. Given these principles, we prove that a theory at

level h in Sorkin’s hierarchy requires Ω(
√
N/h) queries to solve the search problem.

Thus, at least from the point of view of the search problem, post-quantum interference

does not imply a computational speed-up over quantum theory. Moreover, one can

view this result as a derivation of the quadratic lower bound to the search problem

from physical principles, the computational analogue of deriving Cirel’son’s bound [6]

from simple physical principles. This result constitutes joint work with J. H. Selby

and first appeared in [90].
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Finally, in the summary and further work section, we discuss possible practical

implications of the above results. In particular, we argue that these results lay the

groundwork for developing protocols to verify delegated computation which are secure

against adversaries with the ability to perform post-quantum dynamics. This bears a

strong resemblence to the construction of quantum key distribution protocols which

are secure against adversaries with the ability to generate post-quantum correlations

[10]. Such protocols would provide a way to verify delegated computations whose

correctness is derived directly from simple physical principles, similar to cryptographic

schemes whose security rests solely on the no-signalling principle [10].
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Chapter 1

Generalised probabilistic theories

Quantum theory is a strange beast; its predictions have been verified to unprece-

dented accuracy, yet the standard quantum formalism—in which quantum states are

represented by positive operators1 acting on an underlying complex Hilbert space—is

as abstract as its predictions are accurate. Despite being universally accepted among

physicists as a tool for calculating the probabilities of possible experimental outcomes,

the standard language of complex Hilbert spaces lacks direct physical or operational

significance. As Asher Peres [24] famously put it: “Quantum phenomena do not occur

in a Hilbert space. They occur in a laboratory”.

The history of physics is replete with similar examples. For instance, when the

Lorentz transformations were first discovered by FitzGerald and Lorentz [25], they

were somewhat ad hoc and rather abstract. However, they were soon seen to arise in a

natural manner from Einstein’s two principles of special relativity: the laws of physics

are invariant in all inertial reference frames, and the speed of light in a vacuum is a

constant for all observers, regardless of the source. Before he could state his principles,

Einstein first had to introduce an operational framework, based on clocks and rods,

in order to define the notion of a reference frame. Quantum theory is ad hoc and

abstract in the same manner as the Lorentz transformations were before Einstein

and special relativity. An approach to better understanding quantum theory then

suggests itself: can an operational framework be devised—akin to Einstein’s clocks

and rods—from which quantum theory could be seen to naturally arise from simple

physical principles? The formalism of generalised probabilistic theories [15, 16, 18, 19],

which has been gaining much interest in recent years, provides such a framework.

The fundamental goal of any physical theory is to provide a consistent account of

experimental data. This constitutes the core idea underlying the framework of gener-

1Or, more accurately, positive semi-definite operators
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Fig. 1.1: Connections between certain physical devices

alised probabilistic theories, where the primitive notions are operational2 in nature.

Informally, a theory in this framework specifies a set of laboratory devices that can

be connected together in different ways, as schematically illustrated in Fig. 1.1, and

assigns probabilities to different experimental outcomes. Using this framework, many

authors have derived the entire structure of quantum theory from simple physical

principles [16, 18, 19, 20, 21, 22, 72] in a manner akin to Einstein’s derivation of the

Lorentz transformations from two easily stated physical principles.

A remarkable feature of this operational framework is that it provides examples of

theories which differ from quantum theory, yet still make good operational sense. An

obvious example is classical probability theory, which can be used to calculate prob-

abilities for classicial situations such as tossing a coin, or conducting an experiemnt

in the regime of Newtonian physics. More exotic examples include Spekkens’ toy the-

ory [123, 126] and a construction colloquially known as “Boxworld” [17, 29], which

achieves the largest possible violation of the CHSH inequality [71] consistent with the

no-signalling principle.

The existence of such alternate theories allows for an investigation of the struc-

tural, or information-theoretic, properties of theories where different physical prin-

ciples may hold. Such an investigation could provide a deep understanding of the

connections between physical principles and information-theoretic advantages in a

theory-independent manner. For instance, instead of asking such questions as “does

quantum interference imply an advantage for quantum computation”, one can now

ask: “does the existence of interference in any physical theory imply post-classical

computation?”. While models such as the toy theory and boxworld might not corre-

2Note that operationalism as a philosophical viewpoint, in which one asserts that there is no
reality beyond laboratory device settings and outcomes, is not being espoused here. One should
merely view the approach taken here as an operational methodology aimed at gaining insight into
certain structural properties of physical theories.
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spond to descriptions of our physical world, they nevertheless make good operational

sense and allow one to systematically investigate the connections between physical

principles and information-theoretic advantages [17, 15].

Much progress has already been made in understanding the connections between

physical principles and some information-theoretic tasks, such as cryptography and

communication complexity problems. It is now known that the degree of non-locality

in a theory is related to its ability to solve communication complexity problems [5] and

to its ability to perform super-dense coding, teleportation and entanglement swapping

[7]. Teleportation and no-broadcasting are now better understood than they were

when investigated solely from the viewpoint of quantum theory [8, 9, 15]. Moreover,

cryptographic protocols have been developed whose security relies not on aspects of

the quantum formalism, but on general physical principles. The above forms part of

the broader research program of generalised probabilistic theories, which, in the words

of Barnum, Müller, and Ududec [72], aims to “analyse the structure of physics—that

is, the way that the different parts of physics fit together—by rigorously assessing the

consequences of changing some of its parts”.

We will work in the circuit framework for generalised probabilistic theories de-

veloped by Hardy in [19] and Chiribella, D’Ariano, and Perinotti in [15, 16]. The

circuit framework takes inspiration from the categorical approach to quantum theoy,

introduced by Abramsky and Coecke [141, 140], in that it heavily emphasises com-

positionality. In this manner it is different to the convex sets approach to generalised

probabilistic theories presented in [17, 18]—although both are similar in spirit. The

presentation of generalised probabilisitc theories given in this chapter is most similar

to that of Chiribella et al., see [23] for another review of the framework.

The basic framework of generalised probabilistic theories will be presented over the

course of section 1.1 and 1.2. Section 1.3 provides rigorous definitions of the physical

principles we will be concerned with in this thesis. Finally, section 1.4 provides

detailed examples of theories in this framework.

1.1 Devices and circuits

The idea of a generalised probabilistic theory is that a set of physical, or laboratory,

devices is specified, which can be connected together in different ways, such that the

theory assigns probabilities for different outcomes of said devices. As depicted in

Fig. 1.1, each physical device comes attached with input ports, output ports, and a

classical pointer. Whenever a device is used in an experiment the classical pointer ends

9



up in one of a number of positions, indicating a specific outcome has occurred. Input

and output ports are typed, with types given by labels A,B,C . . . . As discussed

in more detail below, physical devices can be composed both sequentially and in

parallel, and when composed sequentially, types must match: the output ports of the

first device must have the same types as the corresponding input ports of the second.

Suppose that for a particular device, the classical outcome r takes values in a

set X. We shall assume throughout that |X| is finite. A device E , with specified

input and output types, then defines a set of events, one for each classical outcome,

{Er}r∈X . With an input port of type A and an output port of type B, for example,

the device can be represented diagrammatically as

{Er}r∈XA B

and a specific event as

ErA B

A device is deterministic if its outcome set X is the singleton set.

Although devices, with input and output ports, and a pointer, form the primitives

of the operational theory, it is also useful to introduce a notion of physical system. A

system may be thought of as passing between the output port of a device, and the

input port of the next, and has the same type as the ports. In other words, in the

diagrams above and below, systems correspond to wires. Given two systems of types

A and B, we can form a composite system of type AB. Operationally, a device with

input system AB corresponds to a physical device with a set of input ports labelled

by A and a disjoint set of input ports labelled by B.

A device with no input ports corresponds to preparing a system—more precisely,

such a device corresponds to a set of preparations, with the classical pointer indexing

which preparation actually occurs. Such a device can be represented diagrammatically

as:

{Er} A

A device with no output ports corresponds to a measurement (that destroys or dis-

cards the system), with the classical pointer indexing the measurement outcome.

Diagrammatically, such a device can be written:

{Er}A

10



Both device and events can be composed in sequence and in parallel. If {Er1}r1∈X1

is a device from system A to B and {Ur2}r2∈X2 is a device from system B to C,

then their sequential composition is a device from A to C with outcomes (r1, r2) ∈
X1 ×X2 and events {Ur2 ◦ Er1}(r1,r2)∈X1×X2 . Similarly, if {Er1}r1∈X1 is a device from

system A to B and {Ur2}r2∈X2 is a device from system C to D, then their parallel

composition is a device from the composite system AC to the composite system BD

with outcomes (r1, r2) ∈ X1 ×X2 and events {Ur2 ⊗ Er1}(r1,r2)∈X1×X2 . Note that the

symbol ⊗—which schematically denotes parallel composition—may not correspond

to the standard vector space tensor product3. Sequential and parallel composition

satisfy (
Ur3 ⊗ Er4

)
◦
(
Fr1 ⊗Kr2

)
=
(
Ur3 ◦ Fr1

)
⊗
(
Er4 ◦ Kr2

)
for every Ur3 , Er4 ,Fr1 ,Kr2 with the property that the output of Fr1 (respectively,

Kr2) matches the input of Ur3 (respectively, Er4). A generalised probabilistic theory

specifies a set of devices, closed under sequential and parallel composition.

A circuit in a generalised probabilistic theory corresponds to a number of devices,

connected in sequence and in parallel, such that there are no unconnected ports (i.e.,

no dangling input or output wires), and no cycles. For example:

{Fr2}
{Er1}

C

A B {Gr3}

A specific outcome of the above circuit corresponds to a particular classical outcome

for each of the tests, i.e., to a collection of events, connected in sequence and in

parallel:

Fr2
Er1

C

A B Gr3 (1.1)

In the following, we shall use the term circuit fragment to denote a number of devices,

connected in sequence and in parallel, such that there are some unconnected ports

but adding in a device with ports whose type matches the unconnected ports results

in a closed circuit.

3In theories satisfying tomographic locality, which shall be defined in section 1.3.1, the symbol
⊗ does indeed correspond to the standard vector space tensor product.
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1.2 Probabilistic structure

So far we have described the operational part of a generalised probabilistic theory,

but not the probabilistic part. In addition to specifying a set of devices, hence sets

of circuits and circuit outcomes, a probabilistic theory should assign probabilities to

circuit outcomes. In a generalised probabilistic theory, every outcome of a circuit is

assigned a probability P (r1r2 . . . rn), understood as the joint probability of outcomes

r1, . . . , rn for the individual devices occurring on a single run. The joint probabilities

satisfy
∑

r1r2...rn
P (r1r2 . . . rn) = 1. A further constraint is that probabilities for un-

connected, i.e. independent, circuits factorise. This means that for events Er1r2...rm
and Fs1s2...sn , each of which corresponds to the outcome of a closed circuit, proba-

bilities assigned to the composite events Er1r2...rm ⊗Fs1s2...sn , and Er1r2...rm ◦ Fs1s2...sn ,

each satisfy P (r1 . . . rm, s1 . . . sn) = P (r1 . . . rm)P (s1 . . . sn). The operational content

of this assertion is that the probabilities of the outcomes in any circuit depend only

on the tests and connections given, and not on external tests and events4.

We can now formally define a generalised probabilistic theory.

Definition 1.1 (Generalised probabilistic theory). A generalised probabilistic theory

G is specified by a collection of devices which are closed under parallel and sequential

composition, such that each closed circuit corresponds to a collection {pi}i∈Z where

pi ∈ [0, 1],
∑

i pi = 1, and Z is the set of all outcomes of the closed circuit. Moreover,

probabilities for independent circuits factorise.

The introduction of probabilities into the theory induces linear structure that will

be crucial in what follows. Consider two events F0 and F1, whose input and output

ports have matching types. Suppose that for every closed circuit, and every outcome

of the circuit, replacing F0 with F1 does not change the probability of the outcome.

In this case, F0 and F1 are equivalent. Pictorially, if

F0

E

C

A B G =
F1

E

C

A B G

for all preparation events E of system AC, measurement events of system BC, and for

all systems C, then event F0 is equivalent to event F1. The events F0 and F1 may be

easily distinguished operationally by the fact that the corresponding physical devices

look quite different, but there is no distinction between F0 and F1 from the point

4See page 25 of [19] for a nice discussion of this point
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of view of the probabilistic predictions of the theory. We refer to the equivalence

classes of events formed in this way as transformations. The following will mostly be

concerned with transformations, rather than the underlying primitive events. Trans-

formations with no input ports we will sometimes call states, and transformations

with no output ports, effects. For system types A and B, the sets of transformations

from A to B, states on A, and effects on B are denoted Transf(A,B), St(A), and

Eff(B) respectively. Note that equivalence classes can be composed together in se-

quence and parallel in the obvious manner. A transformation T is said to be reversible

if there exists a transformation T ′ in the theory such that T ◦ T ′ = I = T ′ ◦ T, where

I is the identity transformation for the theory.

It is convenient to use the ‘Dirac-like’ notation |σr)A, where r indexes outcomes

of the classical pointer, to represent a state of system type A, and A(λr| to represent

an effect on system type A. If the state |σr1)A is followed by the effect A(λr2 |, the

joint probability of obtaining outcome r1 for the preparation and outcome r2 for the

measurement is given by

A(λr2 |σr1)A := P (r1, r2).

In the following, we shall sometimes drop the input/output type label. A state |σr1)A
can be identified with a function σ̂r1 from effects on A into probabilities as follows:

σ̂r1 : A(λr2| 7→ A(λr2|σr1)A.

Since one can take real linear combinations of such functions, i.e. ĥ =
∑

i αiσ̂
i
r, where

αi ∈ R, the set of states St(A) can be extended to (or be seen to generate) a real

vector space, which we denote VA. It is clear by construction that the states span this

vector space. In quantum theory, for example, states are positive operators, which

span the real vector space VA of Hermitian operators. Note that St(A) is a subset

of VA, but is not in general a subspace. Similarly, an effect A(λr2| can be identified

with a function λ̂r2 from preparation events to probabilities:

λ̂r2 : |σr1)A 7→ A(λr2|σr1)A,

and the set of effects Eff(A) can be extended to a real vector space VA, where the

vectors are again real linear combinations of the functions identified with the effects:

ĝ =
∑

i βiλ̂
i
r. Again note that, by construction, the effects span this vector space. By

construction, vectors in VA act on vectors in VA by linear extension as follows:

ĝ(ĥ) :=
∑
ij

αiβjλ̂
j
m

(
σ̂r

i
)

=
∑
ij

αiβj(λ
j
m|σir). (1.2)
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A more general kind of transformation, from (possibly composite) system type A

to (possibly composite) system type B, defines a function into probabilities, where

the domain is now circuit fragments with the property that there are unconnected

input and output ports, such that adding in a transformation of this type results in

a closed circuit. Pictorially, a transformation F between systems A and B can be

identified with a function F̂ from appropriate circuits fragments into probabilities:

F̂ : E

C

A B G 7−→
F

E

C

A B G ∈ [0, 1]

Again, this means that the set of transformations Transf(A,B) can be extended to

a real vector space denoted VA
B , again spanned by the set of transformations, and

that a function Ĥ =
∑
γiF̂ i acts on appropriate circuit fragments as:

Ĥ
E

C

A B G :=
∑

i γi
F i

E

C

A B G

Every transformation T from system A to system B induces a map T̂C from VAC

to VBC, for all systems C, defined by

|σr)AC ∈ St(AC) 7→ (T ⊗ IC)|σr)AC ∈ St(BC),

where (T ⊗ IC)|σr)AC is the state of type BC, corresponding to composition of T

with |σr)AC , with IC understood as an identity transformation (or the absence of any

transformation) on system C. We will now show that the probabilistic structure,

together with the definition of the vector spaces VAC and VBC, implies that T̂C must

be a linear map, for all systems C. Given some ĥ =
∑

i αiσ̂
i ∈ VAC, the new function

defined by T̂C ĥ acts as:

T

ĥ G =
∑

i αi
T

σi G

where the equality follows from the conjunction of equation 1.2 with the fact that

BC(G|(T ⊗IC)—via compositionality—is an allowed effect, represented by the dashed
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box above. Moreover, this is true for any appropriately typed circuit fragment. Thus

T̂C is a linear map:

T̂C ĥ = T̂C

(
n∑
i

αiσ̂i

)
=
∑
i

αi (T ⊗ IC) |σi)AC .

Henceforth, we shall drop the distinction between a transformation T ⊗ IC and the

linear map corresponding to it, T̂C . Throughout the thesis, we adopt the following

assumption:

Finite tomography. For each set Transf(A,B), there exist a finite and minimal

set of appropriately typed circuit outcome fragments {fi}ni=1 such that if

fi (T ) = fi

(∑
k

γkFk
)
∀i = 1, . . . , n,

for any T ∈ Transf(A,B) and any real linear combination of transformations from

Transf(A,B),
∑

k γkFk ∈ VA
B , then T =

∑
k γkFk as vectors in VA

B .

In the above, minimality corresponds to the fact that no fj is a linear combination

of any of the remaining fi for 6= j. Operationally, this corresponds to the fact that

the possible measurement probabilities for fj cannot be computed by knowing the

measurement probabilities for the remaining fi.

Operationally, finite tomography means that the state of every system (in general,

each transformation between two systems) can be identified from the statistics of a

finite number of finite-outcome measurements (in general, circuit fragments). The

above statement is in fact slightly more general than this; it says that if one cannot

distinguish a state (in general, transformation) from a specific linear combination of

states (in general, transformations) with any fiducial measurement, then one cannot

distinguish them with any measurement.

Finite tomography implies that, for every pair of system types A and B, and

every transformation from A to B, VA
B is finite dimensional, with dimension equal

to the number fiducial measurements, as will be shown below. As a consequence, the

vector space generated by effects on a system can be regarded as dual to the space

of states, and vice versa: VA = (VA)∗ and VA = (VA)∗. In previous discussions

of generalised probabilistic theories [15, 16], the finite dimensionality of these vector

spaces was merely assumed from the outset. Our intent with finite tomography was

to determine the operational content of this assertion. We will show, by providing

an explicit example at the end of this section, that the requirement of distinguishing
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states from linear combinations of states in the statement of finite tomography is

essential to deriving the finite dimensionality of the above vector spaces.

We now prove that finite tomography implies the finite dimensionality of vec-

tor spaces generated by transformations in the theory. Choose a set of n trans-

formations {T i}i with the property that they are linearly independent vectors in

VA
B . That is, for any T i, there does not exist any real coefficients λj such that

fk(T
i) = fk

(∑
j 6=i λjT

j
)

=
∑

j 6=i λjfk(T
j) for all fk. As every vector space (even in-

finite dimensional ones) has a basis, and transformations span the entire vector space

by construction, linearly independent transformations must exist. Moreover, at least

n linearly independent transformations must exists due to the minimality of the fi’s.

As transformations span VA
B , we only need show that every transformation can be

written as a real linear combination of the n T i’s. To characterise a transformation,

we need only know its action on the fiducial set {fi}ni=1. All we need to show is that,

for a transformation F , there exists a unique solution {αi} to the following set of

equations:

f1 (F) = f1

(
n∑
i

αiT
i

)
=

n∑
i

αif1

(
T i
)

·

·

fn (F) = fn

(
n∑
i

αiT
i

)
=

n∑
i

αifn
(
T i
)

which can be rewritten as follows:f1 (F)
...

fn (F)

 =

f1 (T 1) · · · f1 (T n)
...

...
...

fn (T 1) · · · fn (T n)


α1

...
αn


The above linear equations have a unique solution if the n × n matrix is invertible.

This is equivalent to the columns of the matrix being linearly independent, i.e. to∑n
i λifk(T

i) = 0, for all k = 1, . . . , n, implying λi = 0 for all i. By linearity we

can rearrange this as follows fk(T
i) = −fk

(∑
j 6=i λjT

j
)

= −
∑

j 6=i λjfk(T
j). Finite

tomography, in conjunction with a little rearranging, then implies
∑n

i λiT
i = 0. As

{T i} where chosen to be linearly independent, the required result follows.

An essential ingredient in the above proof was the fact that finite tomography

guarantees the fiducial set is sufficient to distinguish5 any two vectors from VA
B . In

5Indeed, given any two vectors, v, w, from VA
B , they can always be written as v =

∑
i αiT

i and
w =

∑
i βiT

i for transformations {T i} and real numbers {αi}, {βi}. If one has fk(v) = fk(w) for
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other words, the fiducial set is separating for the vector space VA
B . It is interesting

to wonder whether the full statement of finite tomography is needed for this, or if it

is sufficient for the fiducial set to only separate Transf(A,B) in order to separate

the vector space generated by Transf(A,B). If this were the case, we could derive

the finite dimensionality of the vector space generated by Transf(A,B) from the

requirement that the fiducial set distinguishes transformations, and nothing more.

We now provide an example showing that, in general, separating a spanning set

is insufficient to separate the entire vector space it spans. Hence, the full statement

of tomographic locality is required to ensure the finite dimensionality of the vector

spaces considered above. Consider the following three linearly independent vectors

which span R3:

σ1 =

 1
1

1/2

 , σ2 =

0
1
0

 , σ3 =

0
0
1

 .

The following set of two vectors from the dual space:

e1 =
(
0 1 0

)
, e2 =

(
0 0 1

)
are sufficient to distinguish any of the above three vectors. For example e2 distin-

guishes σ1 from σ2, as e2(σ1) = e2 · σ1 = 1/2 6= 0 = e2 · σ2 = e2(σ2), with · denoting

the standard inner product on R3. Yet they are insufficient to distinguish σ1 from

the vector σ2 + 1
2
σ3.

In other works on generalised probabilistic theories, it is quite often assumed that

the sets Transf(A,B), St(A), and Eff(B) are convex subsets of the corresponding

vector spaces, the idea being that probabilistic mixtures of allowed transformations

should also be allowed transformations. This work, however, doesn’t need this as-

sumption: the main constraints on sets of transformations, states and effects are

closure under sequential and parallel composition. This (potential) lack of convexity

is the reason fiducial measurements were required to distinguish not only states, but

linear combinations of states.

Indeed, in the convex sets approach to generalised probabilistic theories [17, 18],

fiducial circuit fragments are only required to distinguish allowed transformations in

the theory. This is due to the fact that—in the convex sets approach—convex com-

binations of transformations are allowed transformations in the theory. Moroever,

all k from the fiducial set, one can use linearity of the fk’s and rearrange to arrive at fk(T i) =

fk

(∑
i
βi

αi
T i −

∑
j 6=i

αj

αi
T j
)

. From this finite tomography implies v = w.
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distinguishing convex combinations can be extended to distinguishing linear combi-

nations (see appendix 1 of [18]). Hence, distinguishing transformations in the convex

sets framework is equivalent to distinguishing transformations from linear combina-

tions of transformations in the circuit framework.

1.3 Physical principles

We now introduce the physical principles which will play a role in subsequent chapters.

A physical principle is any statement that can be made with only operational notions,

such as preparations, outcome, experiment, etcetera.

1.3.1 Tomographic locality

Recall from section 1.2 that every transformation Ts from A to B induces a linear

map from VA to VB, defined by

|σr)A ∈ St(A) 7→ Ts|σr)A ∈ St(B), (1.3)

where Ts|σr)A is the state of type B, corresponding to composition of Ts with |σr)A.

Without further assumptions, however, this map is in general not sufficient to specify

the transformation Ts. To see this, consider the situation in which the transformation

Ts is applied to one half of a bipartite state |σ)AC . The composition defines a bipartite

state of type BC, which can be schematically represented |σ′)BC = (Ts ⊗ IC)|σ)AC .

The action of Ts on bipartite states of type AC induces a linear map from VAC to

VBC. In general, however, there need be no simple relationship between this map,

and the above map from VA to VB. Indeed, there need not be any simple relationship

between the vector space VAC and the vector spaces for the individual systems, VA

and VC. For each possible system type C, this structure is ultimately specified by

the theory, via the assignments of probabilities to circuit outcomes6.

The representation of transformations in a generalised probabilistic theory is

greatly simplified by the assumption of tomographic locality. Roughly, a theory sat-

isfies tomographic locality if every transformation can be fully characterized by local

process tomography. More formally, consider transformations T 1
s1

and T 2
s2

, both of

6The operational content of finite tomography is that there does at least exist a finite set of
system types C, such that specification of the action of Ts⊗IC on VAC for each of the system types
in this finite set is sufficient to characterise Ts.
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which have input type A1 · · ·Am and output type B1 · · ·Bn. Consider circuit out-

comes of the form

T isi

σ1
r1

Am
σmrm

A1......

B1

Bn

......

λ1
t1

λntn

(1.4)

with corresponding probability P i(r1 . . . rm, t1 . . . tn, si), where i ∈ {1, 2}. Tomo-

graphic locality states that for all transformations T 1
s1

and T 2
s2

with matching input

and output types, if

P 1(r1 . . . rm, t1 . . . tn, s1) = P 2(r1 . . . rm, t1 . . . tn, s2) ∀|σ1
r1

), . . . , |σnrm), (λ1
t1
|, . . . , (λntn|

then

T 1
s1

= T 2
s2
.

The circuit outcome fragment into which Ts was inserted in diagram 1.4—which

corresponded to attaching a state to each input port and an effect to each output

port—will be referred to as a local circuit fragment. The full statement of tomographic

locality is slightly more general than what was discussed above; it says that, similar

to the case of finite tomography, if one cannot distinguish a transformation from a

specific linear combination of transformations by inserting them into any local circuit

fragment, then one cannot distinguish them with any circuit fragment.

Principle 1. Tomographic locality: If, for any transformation T ∈ Transf(A,B)

and any real linear combination of transformations
∑

k γkFk, one has

l (T ) = l

(∑
k

γkFk
)

=
∑
k

γkl
(
Fk
)

for all local circuit outcome fragments l, then T =
∑

k γkFk.

In the convex sets approach to generalised probabilistic theories [17, 18], the prin-

ciple of tomographic locality is stated slightly differently. There, local circuit frag-

ments are only required to distinguish allowed transformations in the theory. This is

due to the fact that—in the convex sets approach—convex combinations of transfor-

mations are allowed transformations in the theory. Moroever, distinguishing convex

combinations can be extended to distinguishing linear combinations (see appendix

1 of [18]). The (potential) lack of convexity in the circuit framework is the reason
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local circuit fragments are required to distinguish not only transformations, but linear

combinations of transformations.

Violation of tomographic locality corresponds to the existence of global degrees of

freedom that are not accessible to local measurements. A consequence of tomographic

locality is that for a transformation with input type AB and output type CD, the

corresponding real vector space has the form [17, 15, 16],

VAB
CD
∼= VA ⊗VB ⊗VC ⊗VD, (1.5)

where ⊗ here denotes the ordinary vector space tensor product (as opposed to the

symbolic ⊗ used previously to denote parallel composition). In particular, for a

bipartite state of type AC, the corresponding vector space VAC
∼= VA ⊗VC. This

follows from the fact that local circuit outcome fragments are separating7 for the

vector space VAB
CD and thus—due to finite tomography implying each vector space is

finite dimensional—local circuit outcome fragments are spanning for the space dual

to VAB
CD (which in the case of states is just the vector space of effects) and thus the

dual space decomposes as a tensor product. By finite dimensionality it follows that

the original vector space also decomposes as a tensor product.

Furthermore, a transformation Ts ∈ Transf(A,B) is completely specified by its

action on St(A), hence Ts can be identified with the linear map defined by equa-

tion 1.3. When Ts acts on part of a bipartite state of type AC, the induced linear

map VAC → VBC is given by Ts ⊗ IC , where again, the symbol ⊗ represents the

ordinary vector space tensor product, and IC is now the identity operator on the

vector space VC.

The formulation of tomographic locality in [15], referred to as local distinguisha-

bility by those authors, states that only transformations need be distinguished by

local circuit fragments and does not ask for the ability to distinguish transformations

from linear combinations of transformations. They then infer from this weaker notion

of tomographic locality that, as local circuit fragments separate the set of transfor-

mations, they separate the vector space generated by that set. But, as we illustrated

with an example at the end of section 1.2, separating a spanning set is in general in-

sufficient to separate the vector space they span. Hence we have introduced a slightly

more general version of tomographic locality here that ensures a vector space tensor

product structure.

7Recall the difference between separating for the spanning set versus separating for vector space
spanned by that set discussed at the end of section 1.2.
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Fixing a basis for each system type, a transformation T with input AB and output

CD can be written as a matrix

T =
∑
i,j,k,l

Mij,kl

(
αAi ⊗ αBj ⊗ αCk ⊗ αDl

)
,

where Mij,kl ∈ R, {αAi }, {αBj } are bases for VA and VB respectively, and {αCl },
{αDm} are bases for VC and VD respectively. The probability associated with a

circuit outcome, e.g., of the form of diagram (1.1), can be written

M3
r3
· (M2

r2
⊗ IC) ·M1

r1
,

where M1
r1

(a column vector) is the matrix form of the transformation corresponding

to the event Er1 , M2
r2

corresponds to Fr2 , M3
r3

(a row vector) corresponds to Gr3 , and

· is the standard inner product on finite dimensional real vector spaces.

1.3.2 Causality

A nice feature of the Pavia-Hardy framework we have described is that a basic as-

sumption of causality is not implicit, but can be articulated explicitly and theories

considered that do not satisfy this assumption. A generalised probabilistic theory is

said to be causal if:

Principle 2. Causality: The marginal probability of a preparation event is inde-

pendent of the choice of which measurement follows the preparation.

More formally, if {|σr)}r∈X ⊂ St(A) are the states corresponding to a preparation

test, consider the probability of outcome r, given that a subsequent measurement E
corresponds to a set of effects {(λj|}j∈Y :

P (r|E) :=
∑
j∈Y

(λj|σr).

The theory is causal if for any system type A, any preparation test with outcome i,

and any pair of measurements, E and F , with input type A,

P (r|E) = P (r|F), ∀r.

If circuits are thought of as having a temporal order, with tests later in the se-

quence occurring at a later time than tests earlier in the sequence, then the assump-

tion of causality captures the intuitive notion of no signalling from the future. It

was shown in [15] that a generalised probabilistic theory is causal if and only if for
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every system type A, there is a unique deterministic effect A(u|. In this case, a mea-

surement, with corresponding effects {(λj|}j∈Y , satisfies
∑

j (λj| = (u|. A state |σ)

is normalised if and only if (u|σ) = 1. The unique deterministic effect provides a

unique notion of marginalisation for multi-partite states. As the parallel composition

of two single outcome tests is a single-outcome test, the effect A(u| ⊗B (u| is deter-

ministic for system AB. Hence, as causality implies the deterministic effect for any

given system must be unique, we have A(u| ⊗B (u| =AB (u| for any systems A and B.

Diagrammatically, we will denote the unique deterministic effect (u| as follows:

:= u

The causality assumption also implies [15] a no-signalling principle for the states

of the theory. That is, in a causal theory, if a test is performed on the A part of a

composite system of type AB, then it is not possible to get information about which

test was performed by only performing a test on the B part. (For an interesting

extension of this idea to arbitrary causal networks, corresponding to circuits in the

Pavia-Hardy framework, see [28].)

Although the idea of no-signalling from the future seems intuitive, there is nothing

obviously pathological about generalised probabilistic theories that do not satisfy the

causality assumption, as long as one does not try to define adaptive circuits, wherein a

choice of later test can depend on an earlier outcome. Indeed, there is nothing about

the framework as it stands that forces an interpretation of the circuits described

previously as a sequence of tests applied in a temporal order which matches the order

of tests in the circuit. Perhaps an entire closed circuit is set up in advance, and the

pointers attain their final resting positions together, when a “go” button is pressed.

An example of a non-causal theory will be presented in section 1.4 of this chapter.

1.3.3 Purification and purity preservation

Before we can define purification and purity preservation, we need the notion of a

pure transformation. Towards this end, consider the following. We say the laboratory

device {Uj}j∈Y , where j indexes the positions of the classical pointer, is a coarse-

graining of the device {Ei}i∈X if there is a disjoint partition {Xj}j∈Y of X such that

Uj =
∑

i∈Xj Ei. That is, coarse-graining arises when some outcomes of a laboratory

device are joined together. The device {Ei}i∈X is said to refine the device {Uj}j∈Y .

A transformation T is said to be pure if and only if, for any test {Uj}j∈Y containing

T , and any test refining {Uj}j∈Y , {Ei}i∈X say, one has Ei = piT for any Ei appearing
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in T =
∑

i∈Xj Ei, where {pi}i is a probability distribution. A pure8 transformation is

a process about which we have maximal information.

In particular, a state is pure if it does not arise as a coarse-graining of other states;

a pure state is one for which we have as much information as possible. A state is

mixed if it is not pure and it is completely mixed if any other state refines it. That is,

|c) is completely mixed if for any other state |ρ), there exists a non-zero probability

p such that p|ρ) refines |c).
We can now introduce the purification principle.

Principle 3. Purification: Given a state |σ)A there exists a system B and a pure

state |ψ)AB on AB such that |σ)A is the marginalisation of |ψ)AB:

ψ A

B

= σ
A

Moreover, the purification |ψ)AB is unique up to reversible transformations on the

purifying system, B. That is, if two states |ψ)AB and |ψ̃)AB purify |σ)A

ψ A

B

= ψ̃
A

B

then there exists a reversible transformation T on system B such that

ψ A

B

= ψ̃
A

B B
T

Purification can be thought of as saying that information can never be destroyed

only discarded. Or alternatively, that—at some level—information is fundamentally

conserved. Indeed, it states that any uncertainty or “mixedness” in a state is due

to lack of knowledge of a suitable purifying system, or “environment”. Purification

is a strong principle and has many consequences. It implies that St(B) is transitive

8This definition of purity may be slightly misleading. Indeed, one might expect the identity
transformation in classical probability theory to be pure, but this is not the case as I =

∑
i Pi,

where Pi are rank one projectors and {Pi}i forms a test. See [23, page 16] for a more in depth
discussion on this point. Despite this, the notion of a pure state provided by this definition is indeed
the correct notion one would expect.
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for any system B. That is, given any two pure states from St(B), there exists a re-

versible transformation in the theory that maps one to the other. Indeed, every pure

state on system B is a purification of any state on the trivial system, i.e. no system,

and hence, by the uniqueness of purification up to reversible transformations on the

purifying system, any two two pure states are connected by a reversible transforma-

tion. Purification—in conjunction with non-determinism9—also implies the existence

of entangled, i.e. non-separable10, states and a probabilistic protocol for teleporta-

tion and entanglement swapping [15]. Purification also implies the existence of a

completely mixed state for any system [15], corresponding to the state left invariant

by all reversible transformations on that system.

Principle 4. Purity Preservation: Composition preserves purity. That is, se-

quential and parallel compositions of any pure transformations result in a pure trans-

formation.

Informally, purity preservation implies that if one has maximal knowledge about

individual transformations, then one also have maximal knowledge about their com-

posite. The above principles will play an important role in chapters 6 and 7.

1.3.4 Strong symmetry

States {|σi)}ni=1 are perfectly distinguishable if there exists a measurement, correspond-

ing to effects {(ei|}ni=1, such that (ei|σj) = δij for all i, j. Note that such an n-tuple

of states can reliably encode an n-level classical system. Hence, sets of pure and per-

fectly distinguishable states can in some sense be thought of as perfect information

carriers.

Principle 5. Strong symmetry: A theory satisfies strong symmetry if for any two

n-tuples of pure and perfectly distinguishable states {|ρ1), . . . , |ρn)}, and {|σ1), . . . , |σn)},
there exists a reversible transformation T such that T |ρi) = |σi) for i = 1, . . . , n.

Informally, strong symmetry can be thought of as saying that all information

carriers of the same size are equivalent. Or, put differently, information is independent

of the encoding media. The principle of strong symmetry implies the existence of non-

trivial dynamics in any theory satisfying it. In chapter 4, we will mainly be concerned

with two special cases of the above principle:

9i.e. the existence of measurement outcomes which occur with probability not equal to 0 or 1.
10A state is separable if it can be written as a convex combination of product states.
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1. Permutability: A general theory satisfies Permutability if for any n-tuple of

pure and perfectly distinguishable states and any permutation π of this n-tuple

{|ρ1), . . . , |ρn)} & {|ρπ(1)), . . . , |ρπ(n))},

there exists a reversible transformation T such that T |ρi) = |ρπ(i)) for i =

1, . . . , n.

2. Bit-symmetry: A theory satisfies bit-symmetry if for any two 2-tuples of pure

and perfectly distinguishable states {|ρ1), |ρ2)}, {|σ1), |σ2)}, there exists a re-

versible transformation T such that T |ρi) = |σi) for i = 1, 2.

Permutability is the special case of principle 5 where one of the sets of pure and

perfectly distinguishable states is a permutation of the other. Bit-symmetry is the

n = 2 case of principle 5.

1.4 Examples

The physical principles introduced in section 1.3 are, with the exception of causality

and purification, all logically independent: generalised probabilistic theories satisfying

any subset (including the empty subset) can be defined. We now provide examples

of theories in this framework and discuss which principles are satisfied and violated

in each case. Some interesting examples of generalised probabilistic theories that will

not be discussed here are Spekkens toy model [123] and theories in which the set of

states of a single system correspond to Euclidean hyperballs of dimension n [32, 100]

(the n = 3 case of such theories corresponds to the Bloch ball of quantum theory).

1.4.1 Quantum theory

Finite-dimensional quantum theory provides a specific example of a theory that can

be described in this framework. A system is associated with a complex Hilbert space,

with the type of the system given by the dimension of the Hilbert space. States and

effects are associated with positive operators, and transformations are associated with

trace non-increasing completely positive maps. A test with no input ports corresponds

to what is sometimes called a ‘random source of quantum states’, and is associated

with positive operators {ρr} such that
∑

r Tr(ρr) = 1. When the test is performed,

the probability that the classical pointer takes position r is given by Tr(ρr), and

the quantum state that is prepared, conditioned on the pointer reading being r,
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is the normalised operator ρr/Tr(ρr). A test with no output ports is associated

with a positive operator-valued measurement, that is a set of positive operators {Ei}
satisfying

∑
iEi = I. A test with both input and output ports is associated with a

quantum instrument, that is a set of trace non-increasing completely positive maps,

one for each value of the pointer reading r, that sum to a trace-preserving map. Given

these associations, the standard rules of quantum theory allow the probability to be

calculated for any circuit outcome.

Tomographic locality: For a system of type A, the vector space VA is the real

vector space of Hermitian operators, spanned by the density matrices. It is well known

that quantum theory satisfies the assumption of tomographic locality. This follows

from the way in which systems combine to form composite systems: a joint state is a

positive operator acting on the tensor product of the Hilbert spaces associated with

the individual systems. One can then check that the real vector spaces of Hermitian

operators satisfy VAB
∼= VA ⊗VB.

Causality: Quantum theory satisfies the causality assumption, as the probability

of an event cannot depend on the choice of a measurement that is subsequently

performed on the system. For a system associated with Hilbert space H, the unique

deterministic effect, guaranteed to exist in a theory satisfying causality, is simply the

identity operator I on H. Indeed, recall from the above discussion that
∑

iEi = I for

any positive operator-valued measurement {Ei}.
Purificiation: Quantum theory also satisfies the purification principle. Indeed,

every mixed state on a finite dimensional system
∑

i pi|i〉〈i| can be purified to a state

|ψ〉〈ψ|, where |ψ〉 =
∑

i

√
pi|i〉|i〉, by the introduction of a suitable extra system.

Moreover, any other purification |ψ̃〉 must satisfy |ψ〉 = (I⊗ U) |ψ̃〉 with U a uni-

tary transformation. Purification is standardly referred to by mathematicians as the

Gelfand-Naimark-Segal construction [26, 27].

Purity preservation: In quantum theory, pure transformations correspond to

completely positive maps with a single Kraus operator, that is a completely positive

map E with E(·) = E · E†. Clearly the sequential or parallel composition of pure

quantum maps is also a completely positive map with only a single Kraus operator,

i.e. FE(·) = (FE) · (FE)† and F ⊗E(·) = (F ⊗E) · (F ⊗E)†. Hence quantum theory

satisfies purity preservation.

Strong symmetry: Lastly, quantum theory also satisfies strong symmetry. The

simplest example of this is the Hadamard transformation. Given the two sets of

pure and perfectly distinguishable states, {|0〉〈0|, |1〉〈1|} and {|+〉〈+|, |−〉〈−|}, the
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Hadamard transformation is a unitary transformation H which satisfies H|0〉〈0|H† =

|+〉〈+| and H|1〉〈1|H† = |−〉〈−|.

1.4.2 Classical probability theory

The classical theory of finite dimensional probability distributions and stochastic

processes is also an example of a specific theory in this framework. A system is

associated with a real vector space with the type corresponding to the dimension of

said vector space, which can be thought of as the number of discrete outcomes of

some test on that system. A system of size n contains n pure states corresponding to

vectors

|si) =


0
...
1
...
0


with a 1 in entry i and a zero everywhere else. Mixed states are convex combinations

of pure states

|p) =
∑
i

pi|si) =


p1
...
pi
...
pn

 .

Pure effects (ej| are represented by vectors dual to the pure states, i.e. (ej|si) = δij.

This implies the pure states {|si)} form a perfectly distinguishable set. Arbitrary

effects correspond to sums—or coarse-graining’s—of pure effects, under the constraint

that the sum of all effects in a measurement must equal the unique deterministic

effect (u| =
(
1 1 · · · 1

)
. Transformations in the theory correspond to stochastic

matrices, that is square matrices where the entries all lie in the interval [0, 1] and

the columns all sum to one. The pure transformations are compositions of rank one

projectors and permutation matrices.

Classical theory can be thought of as a limiting case of quantum theory where

each density operator is diagonal in the same basis. Classical theory can thus be seen

to satisfy tomographic locality, causality, purity preservation, and strong symmetry11.

Classical theory does not, however, satisfy the purification principle. Indeed, as was

remarked in section 1.3, purification implies the existence of pure entangled states,

11As classical theory only has one set of pure and perfectly distinguishable states, {si}, strong
symmetry is equivalent to permutability in this context.
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which immediately rules out classical theory. In fact, there is only one manner in

which a causal theory without entangled states can satisfy the purification principle:

the theory must not contain mixed states. This necessarily implies the theory is

deterministic, i.e. the probabilities of any measurement must be either 0 or 1.

An interesting consequence of the purification principle—in conjunction with causal-

ity and tomographic locality [15]—is that one can always model an irreversible process

as a reversible evolution of the system along with an environment which can always

be taken to be in a pure state. Interestingly, classical probability theory satisfies a

similar dilation result: a stochastic process can be simulated in a certain manner by a

reversible process. The price for such a simulation is that one needs an external source

of randomness, which is provided by the environment. That is, in classical theory,

one can’t in general take the environment to be in a pure state. This constitutes one

of the central differences between quantum and classical theory.

1.4.3 Real Hilbert space quantum theory

Quantum theory defined over real, rather than complex, Hilbert spaces supplies an

example of a theory that does not satisfy tomographic locality. In real quantum

theory, states and effects correspond to real symmetric matrices (which satisfy the

same set of constraints as the quantum case discussed above), and transformations

to completely positive maps that preserve the set of real symmetric matrices.

We will now provide an example of two distinct transformations between two

2-dimensional systems (sometimes referred to as rebit’s [30]), which cannot be lo-

cally distinguished in the theory and so provides a violation of tomographic locality.

Consider

T1(ρ) =
1

2
ρ+

1

2
Y ρY, and T2(ρ) =

1

2
I · Tr(ρ),

where Y =

(
0 −i
i 0

)
is the Pauli Y matrix and T2 is a measure and prepare transfor-

mation that traces out the input state and prepares the maximally mixed state, 1
2
I.

Clearly the transformation Y · Y is allowed in the theory as :

Y ρY =

(
0 −i
i 0

)(
a b
b 1− a

)(
0 −i
i 0

)
=

(
1− a −b
−b a

)
, ∀a, b ∈ R.

It is easy to see that T1(ρ) = T2(ρ) for all real symmetric matrices ρ with trace one.

Hence, one cannot distinguish these two transformations by inputting a single rebit

and performing a single measurement on the output state. To distinguish T1 from T2,

28



one has to evaluate them on one half of the Bell state |φ+〉〈φ+| and perform a joint

measurement of the two output systems. That is, one has

T1 ⊗ I
(
|φ+〉〈φ+|

)
=

1

2
|φ+〉〈φ+|+ 1

2
|ψ−〉〈ψ−|, & T2 ⊗ I

(
|φ+〉〈φ+|

)
=

1

4
I⊗ I.

Performing the two-outcome measurement {|φ+〉〈φ+|+|ψ−〉〈ψ−|, |φ−〉〈φ−|+|ψ+〉〈ψ+|},
where |φ±〉 = (|00〉 ± |11〉) /

√
2 and |ψ±〉 = (|01〉 ± |10〉) /

√
2, distinguishes these two

states. Note that as

(T1 ⊗ I − T2 ⊗ I)
(
|φ+〉〈φ+|

)
=

1

4

(
0 −1
1 0

)
⊗
(

0 −1
1 0

)
(1.6)

we have Tr ((T1 ⊗ I − T2 ⊗ I) (E ⊗ F )) = 0 for all real symmetric matrices E,F .

Hence one cannot distinguish these two states with local measurements. Moreover,

one can think of equation 1.6 as a global degree of freedom not acessable to local

observers. It was shown by Hardy and Wooters in [31] that one only ever needs to

perform joint measurements between at most two subsystems to distinguish any two

states in real quantum theory.

1.4.4 PR boxes, Boxworld, and polygon theories

We now present an example of a theory distinct from any quantum or classical theory,

which satisfies tomographic locality, causality, and purity preservation, but which

violates the purification principle and strong symmetry. This theory is known as

“Boxworld” [17, 7] and allows for arbitrarily strong nonlocal correlations, such as the

PR box correlations of Popescu and Rohrlich [29] which maximally violate the CHSH

inequality.

For the simplest non-trivial single system A in Boxworld, there are two choices of

binary-outcome measurements, {A(xa|} for x, a ∈ {0, 1}. Here x is the bit denoting

the two possible choices of measurement and a is the bit denoting the two possible

outcomes of the chosen measurement, i.e the two measurements on system A are

{A(00|,A (01|} and {A(10|,A (11|}. There are four possible pure states that can be pre-

pared on system A, which will be denoted by |z, w)A, with z, w ∈ {0, 1}. For measure-

ment {A(00|,A (01|} they satisfy (0b|z, w) = δbw and for measurement {A(10|,A (11|}
they satisfy (1b|z, w) = δbz. States and measurements in this theory can produce

correlations associated with the so-called Popescu-Rohrlich non-local box [29]. That

is, for a bipartite system AB, there exist states |ρPR)AB such that

(xa|(yb|ρPR)AB =

{
1
2
, if a⊕ b = xy,

0, otherwise
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|0, 0)A

|0, 1)A |1, 1)A

|1, 0)A

St(A)

Fig. 1.2: State space of a single Boxworld system

where ⊕ represents addition modulo 2. The set of states St(A) ⊂ R2 contains all

convex combinations of the four pure states |xa)A and has a nice geometric manifes-

tation as a square, where each vertex is associated with a pure state. This is depicted

in Fig. 1.2 above. Reversible transformations for this single system correspond to the

symmetry group of the above square.

It has been shown [7] that in Boxworld there is no teleportation, entanglement

swapping, or dense coding. As discussed in section 1.3, the purification principle im-

plies the existence of teleportation and entanglement swapping protocols. Hence

Boxworld cannot satisfy purification. Moreover, Boxworld does not satisfy Bit-

symmetry. Indeed, consider the two sets of pure and perfectly distinguishable states

{|0, 0)A, |0, 1)A}—distinguished by measurement {A(00|,A (01|}—and {|0, 0)A, |1, 1)A}—
distinguished by measurement {A(10|,A (11|}. As there is no symmetry of the square

which takes |0, 1)A to |1, 1)A while leaving |0, 0)A invariant, bit-symmetry cannot be

satisfied. However, Boxworld does satisfy permutability as can be seen from the

geometry of Fig. 1.2.

The particular manifestation of the set of states of a simple single system in

Boxworld, depicted in Fig. 1.2, has motivated the introduction of theories in which the

set of states of single systems correspond to regular polygons with n vertices [33, 34]

(the case of n = 4 is the set of states in Boxworld depicted in Fig. 1.2). It was shown

in [33] that polygon theories in which n is even violate the CHSH inequality more than

T’sirelson’s bound, but theories in which n is odd cannot violate T’sirelson’s bound.

Interestingly, as n → ∞ the maximal violation of the CHSH inequality converges to

the T’sirelson bound in both the even and odd cases. Theories with an even number

of vertices do not satisfy the principle of strong symmetry, but theories with an odd

number of vertices do satisfy strong symmetry [49].
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1.4.5 A non-causal theory

An explicit theory that does not satisfy causality—first presented in [35]—will now be

constructed and discussed. Systems are denoted schematically as n . m, where n,m

are positive integers. Let Γn denote the set of all non-negative integers less than n,

that is Γn := {0, . . . , n− 1}. The set of states of system n .m is indexed by functions

f : X → Γm, where X ⊆ Γn. That is, St(n .m) := {|αf,X) | f : X → Γm and X ⊆
Γn}. One can coarse-grain states corresponding to disjoint subsets X, Y ⊆ Γn (i.e.

X ∩ Y = ∅) as follows: |αf,X) + |αg,Y ) := |αh,Z), where Z = X ∪ Y , h|X = f and

h|Y = g. Pure states thus correspond to |αf,{i}), where f : {i} → Γm. We shall

denote pure states as |αj,i), where f(i) = j. All states in St(n .m) thus arise as

coarse-graining’s of pure states, and deterministic states correspond to states |αf,Γn).

We can now define the pure effects (ak,l| by (ak,l|αj,i) = δk,jδl,i. One might expect

that the entire set Eff(n .m) can be built up by coarse-graining over the pure effects,

as was the case for states. This turns out not to be the case. Indeed, consider

the coarse-graining (ak,l| + (ak′,l′|, with k 6= k′ and l 6= l′, and apply it to the state

|αf,{l,l′}) where f(l) = k and f(l′) = k′. One has
(
(ak,l|+(ak′,l′|

)
|αf,{l,l′}) = (ak,l|αk,l)+

(ak′,l′|αk′,l′) = 2, which clearly isn’t allowed in any generalised probabilistic theory.

Despite this, one can build up Eff(n .m) via certain allowed coarse-gaining’s of

pure effects [35]. Indeed, it was shown12 in [35] that Eff(n .m) := {(aE,l| | E ⊆
Γm and l ∈ Γn}, hence every effect (aE,l| arises as a coarse-graining of pure effects∑

k(ak,l|, with ∪k{k} = E. One can verify that (aE,l|αf,X) = χX(l)χE(f(l)), where

χS is the indicator function for the set S. Hence when applying the effect (aE,l| to

the state |αf,X), one is essentially checking whether l is in the set X and f(l) is in

the set E.

Deterministic effects correspond to the elements (el| := (aΓm,l|, note that there

are n of them—one for each l ∈ Γn. Recall that the causality principle implies each

system has a unique deterministic effect. Hence, this theory violates causality. We

now present an explicit situation in which the ‘acausality’ of this theory is manifest.

Consider the system 2 . 2 and the preparation test P = {|α0,0), |α1,1)}, which we

could have written as {|αId,{i})}i=0,1 with Id the identity function. Consider the two

measurements E = {(a0,0|, (a1,0|} and F = {(a0,1|, (a1,1|}. The ability to prepare the

state |α0,0) will now be seen to depend on the choice of which measurement “follows”

12The authors of [35] were only interested in constructing a deterministic theory, i.e. a theory
in which the probabilities of measurement outcomes are either 0 or 1. One could however take the
convex closure of the sets of states and effects if one wanted to introduce some randomness.
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P : E or F . Indeed,

Pr(0, 0|E) =
1∑

k=0

(ak,0|α0,0) = 1 6= 0 =
1∑

k=0

(ak,1|α0,0) = Pr(0, 0|F).

Hence the constructed theory violates causality.

Composite systems are defined as (n .m) (n′ .m′) := x . y, with x = n · n′ and

y = m·m′. The pure states from St(x . y) are built by taking the parallel composition

of the pure states from St(n .m) and St(n′ .m′), where now Γx = Γn × Γn′ and

Γy = Γm × Γm′ . The full set of states is then built by considering coarse-graining’s

of the pure states. It was shown in [35] that these composites satisfy tomographic

locality. Lastly, the lack of a unique deterministic effect implies there is no unique

way to marginalise over composite states. This fact directly leads to the ability to

transmit signals instantaneously, see [35] for the details.
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Chapter 2

Computation in generalised
probabilistic theories

As discussed in the introduction, one of the major conceptual breakthroughs in physics

over the past thirty years has been the realisation that quantum theory appears to

offer dramatic advantages [1] for various information-processing tasks and compu-

tation in particular [64, 63, 1, 80, 81, 82, 83, 84, 38, 134, 149, 150]. This raises

the general question of what relationships exist between physical principles, which a

theory like quantum theory may or may not satisfy, and information theoretic advan-

tages. As was discussed at the start of chapter 1, much progress has already been

made in understanding the connections between physical principles and some tasks,

such as cryptography and communication complexity problems. By comparison, rel-

atively little has been learned about the connections between physical principles and

computation.

It was shown in [11, 95, 96] that Boxworld has no non-trivial reversible dynam-

ics and, hence, any reversible computation in Boxworld can be efficiently simulated

on a classical computer. Aside from this result, most previous investigations into

computation beyond the usual quantum formalism have focused on non-standard

theories involving modifications of quantum theory. These theories often appear to

have immense computational power and entail unreasonable physical consequences.

For example, non-linear quantum theory appears to be able to solve1 NP-complete

problems in polynomial time [12], as does quantum theory in the presence of closed

timelike curves [13, 59]. Aaronson has considered other modifications of quantum

theory, such as a hidden variable model in which the history of hidden states can be

read out by the observer [14], and—together with collaborators in [146]—a model in

1See appendix A for a rigorous definiton of the class NP
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which one is given the ability to perform certain (unphysical) non-collapsing mea-

surements. Both of these models have been shown to entail computational speed-ups

over the usual quantum formalism. Lastly, Bao et al. [147] have investigated com-

putation in modifications of quantum theory suggested by the black hole information

loss paradox and have shown the ability to signal faster than light in such theories

is intimately linked to a speed-up over standard quantum theory in searching an

unstructured database.

In this chapter, we begin our investigation into computation in the framework of

generalised probabilistic theories, which we introduced in chapter 1. As discussed

previously, theories within this framework can be described that are different from

classical or quantum theories, but which nonetheless make good operational sense

and do not involve peculiarities like closed timelike curves. This framework suggests a

natural model of computation, analogous to the classical and quantum circuit models,

which we shall describe in section 2.1.

The strongest known non-relativised upper bound for the power of quantum

computation—first proved by Fortnow and Rogers in [45]—is that the class BQP

of problems efficiently solvable by a quantum computer is contained in the classical

complexity class AWPP. This means that a quantum computer cannot solve any

problem outside of AWPP, but it is unknown whether it can solve every problem

contained in this class. The class AWPP has a slightly obscure definition, but is well

known to be contained in PP, hence PSPACE. See appendix A for the definitions

of all complexity classes mentioned in this thesis. Section 2.2 shows that the same

result holds for any theory that satisfies the principle of tomographic locality, intro-

duced in section 1.3 of chapter 1. That is, if the complexity class of problems that

can be efficiently solved by a specific theory G is denoted schematically BGP, then

for tomographically local theories, BGP ⊆ AWPP. Once suitable definitions are in

place, the proof is essentially the same as the proof for the quantum case: the idea

is that this proof can be cast in a theory-independent manner, and be seen to follow

from a very minimal set of assumptions on the structure of a physical theory. In fact,

the containment BGP ⊆ AWPP still holds even in the absence of the principle of

causality, also introduced in chapter 1.

It was suggested in [17] that, in some sense, quantum theory achieves an optimal

balance between its set of states and its dynamics, and that this balance implies that

quantum theory is powerful for computation by comparison with most theories in

the space of operational theories. Although the status of this suggestion is unknown,

it turns out to be exactly correct in the context of a world allowing post-selection

34



of measurement outcomes. Aaronson showed that the class of problems efficiently

solvable by a quantum computer with the ability to post-select measurement outcomes

is equal to the class PP [65]. Section 2.3 extends the idea of computation with post-

selection to general theories, and shows that given tomographic locality, problems

efficiently solvable by any theory with post-selection are contained in PP. In other

words: any problem efficiently solvable in a tomographically local theory with post-

selection, is also efficiently solvable by a quantum computer with post-selection.

Finally, oracles play a special role in quantum computation, forming the basis of

most known computational speed-ups over classical computation. Section 2.4 dis-

cusses the problem of defining a sensible notion of oracle in the general framework,

which reduces to the standard definition in quantum theory. This problem may not

have a solution that is completely general, hence we introduce here instead a notion

of “classical oracle” that can be defined in any theory that satisfies the causality prin-

ciple. There then exists a classical oracle such that relative to this oracle, NP is not

contained in BGP for any theory G satisfying tomographic locality and causality.

However, we do show in chapter 6 that such oracles exist in any theory satisfying

sufficient physical principles.

The proofs of all theorems in this chapter will be presented in section 2.5.

2.1 The computational model

2.1.1 Uniform circuits

In chapter 1 we saw that in a generalised probabilistic theory, one can draw circuits

representing the connections of physical devices in an experiment, and the specific

events that took place in said experiment. These circuits provide a natural model of

computation, based on the classical and quantum circuit models. However, a good

notion of efficient computation needs a definition of a uniform family of circuits in a

generalised probabilistic theory.

In the standard, classical or quantum, circuit model, a circuit family {Cn} =

{C1, C2, . . . } consists of a sequence of circuits, each indexed by a positive integer n,

denoting the input system size, where Cn is the circuit corresponding to a problem

instance of size n. In a poly-size circuit family, the number of gates in Cn is bounded

by a polynomial in n, and the circuit family is uniform if a Turing machine can output

a description of Cn in time bounded by a polynomial in n.
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In a generalised probabilistic theory, there is no reason to assume that a circuit

must have the form of a number of gates2 acting on some input, where the input

preparation encodes the problem instance—recall that in this chapter we are not

necessarily assuming the principle of causality, in which case a circuit does not have

a preferred direction. Instead, we allow the entire circuit to encode the problem

instance, defining a circuit family as a set {Cx} such that each circuit is indexed by a

classical string x = x1x2 . . . xn. A circuit family is poly-size if the number of gates is

bounded by a polynomial in |x|. For a particular generalised probabilistic theory it

might not be the case that bipartite and single system transformations together are

universal for computation, as they are in classical and quantum computation. Hence

for any k, l, a circuit might involve gates with k input systems and l output systems.

In general, it might be the case that no finite gate set is universal for computation.

Nonetheless, we will impose as a requirement of uniformity that any uniform circuit

family is associated with a finite gate set3, such that each circuit in the family is

built from elements of that set. It follows that the number of distinct system types

appearing in a uniform circuit family is also finite.

A further requirement for a circuit family to be uniform takes the form of a con-

straint on the entries of the matrices representing the transformations that appear in

the finite gate set—otherwise, it may be possible to smuggle hard to compute quanti-

ties into the computation. There must exist some fixed choice of basis of VA for each

system A, such that a Turing machine can efficiently compute approximations to the

entries of the matrices relative to these bases. We require that for any matrix entry

(M)ij, and any ε, a Turing machine can output a rational number, within ε of (M)ij,

in time bounded by a polynomial in log(1
ε
). We may motivate this by recalling that

gates correspond to operational devices; an experimenter with access to devices gov-

erned by some generalised probabilistic theory may only be able to characterise them

tomographically to finite precision—and the features of a probabilistic theory should

not be sensitive to precision issues which are inaccessible to experiment. Indeed, it

makes sense to assume that an experimenter with access to devices governed by some

theory cannot align, or employ, them with arbitrary accuracy.

Finally, for a circuit family {Cx} to be uniform, there must be a Turing machine

that, acting on input x, outputs a classical description of Cx in time bounded by a

polynomial in |x|.
2When discussing computation, the terms ‘device’ and ‘gate’ will be used interchangeably
3One might instead consider a uniformity condition where the number of permitted gates grows

with circuit size, as in [58, §3.3 A]; however, we do not consider such a condition here.
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The notion of a poly-size uniform circuit family {Cx} can be summarised as fol-

lows:

1. The number of gates in the circuit Cx is bounded by a polynomial in |x|.

2. There is a finite gate set G, such that each circuit in the family is built from

elements of G.

3. For each type of system, there is a fixed choice of basis, relative to which

transformations are associated with matrices. Given the matrix M representing

(a particular outcome of) a gate in G, a Turing machine can output a matrix M̃

with rational entries, such that |(M−M̃)ij| ≤ ε, in time polynomial in log(1/ε).

4. There is a Turing machine that, acting on input x = x1x2 . . . xn, outputs a

classical description of Cx in time bounded by a polynomial in |x|.

Note that the notion of uniformity presented in this section is also required to

define and discuss efficient classical and quantum computation, see [60] for an in-

depth discussion of this point.

2.1.2 Acceptance criterion

Now that we have defined a uniform family of circuits, we need to discuss the accep-

tance criterion. In quantum computation it is known that performing intermediate

measurements during the computation does not increase the computational power.

So, without loss of generality, all measurements can be postponed until the end of

the computation. A quantum computer can be defined to accept an input string x

if the outcome of a computational basis measurement on the first outcome qubit is

|0〉. In a general theory however, it need not be the case that all measurements can

be postponed until the end of the computation without loss of generality, hence the

acceptance criterion should reflect this.

The way in which a generalised probabilistic theory solves a problem might be

imagined as follows. First, given the input string x, the circuit Cx is designed and

built by composing gates from the fixed finite gate set sequentially and in parallel

according to the description. An example of such a circuit is depicted schematically

below.
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Once the circuit is built, the computation can be run. At the end of a run, each gate

has a classical outcome associated with it, where the theory defines a joint probability

for these outcomes. For the example above, the joint probability is given by

P (r1, . . . , r8) = (χr8|(λr7|
(
T 6
r6
⊗ T 5

r5

)
T 4
r4

(
T 3
r3
⊗ IC

)
|ρr2)|σr1).

Denoting the string of observed outcomes by z = r1 . . . r8, the final output of the

computation will be given by a function of the observed outcomes a(z) ∈ {0, 1},
where there must exist a Turing machine that computes a in time polynomial in the

length of the input |x|. The probability that a computation accepts the input string

x is therefore given by

Px(accept) =
∑

z|a(z)=0

P (z),

where the sum ranges over all possible outcome strings of the circuit Cx.

2.1.3 Efficient computation

The class of problems that can be solved efficiently in a generalised probabilistic

theory can be defined as follows.

Definition 2.1. For a generalised probabilistic theory G, a language L is in the class

BGP if there exists a poly-sized uniform family of circuits in G, and an efficient

acceptance criterion, such that

1. x ∈ L is accepted with probability at least 2
3
.

2. x /∈ L is accepted with probability at most 1
3
.

As ever, the choice of the constant 2/3 is arbitrary. Any fixed constant k,

1/2 < k < 1 would serve equally well4. Indeed, note that each uniform circuit

(with an efficient acceptance condition) defines a random variable that maps circuit

outcomes to the set {accept, reject} and so one can regard multiple repetitions of

a computation as a collection of i.i.d. random variables (independence follows from

the definition of the probabilistic structure given in chapter 1; specifically that the

sequential or parallel composition of two events corresponding to outcomes of closed

circuits define independent probability distributions). This fact is independent of the

form of a particular theory and so holds true for all theories in the framework. Taking

4As indeed would any constant bounded away from 1/2 by an inverse polynomial in the size of
the input.
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this fact in conjunction with the definition of BGP and applying the Chernoff bound

provides the required result. See [1, p.154] for more discussion of the quantum case.

For a specified G, the class BGP is the natural analogue of BPP for probabilistic

classical computation, and BQP for quantum computation. Indeed, BGP reduces to

BPP or BQP in the case that the theory G is in fact the classical or quantum theory.

See, e.g., [36] for a proof that quantum circuits with mixed states and completely

positive maps are equivalent in computational power to standard quantum circuits

with pure states and unitary transformations.

Note that the way in which the acceptance criterion is defined implies that P ⊆
BGP, for (almost) every generalised probabilistic theory G. This is a consequence

of the fact that the final output is a function a(z) of the string of observed events

z, and the only constraint on a is that it can be efficiently computed by a Turing

machine. Degenerate cases provide exceptions to this—consider, e.g., any theory

such that all transformations are deterministic, i.e., the outcome set of any circuit

is the singleton set. One could remove these degenerate cases by generalising the

acceptance function a(.) so that it depend on both the outcome string z and the

input string x. Of course, the fact that P ⊆ BGP does not have much to do with the

intrinsic computational power of a generalised probabilistic theory, but is an artefact

of the acceptance criterion—it might be interesting to weaken this criterion so that

computation in theories intrinsically weaker than classical can be explored.

2.2 Upper bounds on computational power

Using the above definitions of uniform circuit families, and acceptance of an input, the

following upper bound on the computational power of any generalised probabilistic

theory can be obtained. The main assumption—in addition to those involved in

uniformity—is that tomographic locality holds. Note that the result does not require

the causality assumption.

Theorem 2.2. For any generalised probabilistic theory G satisfying tomographic lo-

cality

BGP ⊆ AWPP ⊆ PP ⊆ PSPACE.

Here, PSPACE consists of those problems that, roughly speaking, can be solved

by a classical computer using a polynomial amount of memory. PP stands for Prob-

abilistic Polynomial time, which roughly speaking, contains those problems that can

be solved by a probabilistic classical computer that must get the answer right with
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probability > 1/2. The probability does not need to be bounded away from 1/2,

indeed may be greater than 1/2 only by an exponentially small amount, hence PP

contains problems that are not thought to be efficiently solvable by a classical ran-

dom computer. See appendix A for the formal definitions of all complexity classes

discussed in this thesis. AWPP stands for Almost-Wide Probabilistic Polynomial

time, and it is known that AWPP ⊆ PP [45]. The best known upper bound for

the class of efficient quantum computations, shown by Fortnow and Rogers in [45],

similarly states that BQP ⊆ AWPP.

To define the class AWPP, the notion of a GapP function must be introduced.

Given a polynomial-time non-deterministic Turing machine M and input string x,

denote by Macc(x) the number of accepting computation paths of M given input

x, and by Mrej(x) the number of rejecting computation paths of M given x. A

function f : {0, 1}∗ → Z is a GapP function if there exists a polynomial-time non-

deterministic Turing machine M such that f(x) = Macc(x) −Mrej(x) for all input

strings x. The class AWPP can be defined as follows [53].

Definition 2.3. The class AWPP consists of those languages L such that there

exists a GapP function f , and a polynomial r such that

1. If x ∈ L then 2/3 ≤ f(x)/2r(|x|) ≤ 1,

2. if x /∈ L then 0 ≤ f(x)/2r(|x|) ≤ 1/3.

Once the appropriate definitions for generalised probabilistic theories are in place,

the proof of Theorem 2.2 is a fairly straightforward extension of similar proofs for the

quantum case, and is presented in subsection 2.5.2.

Although formal proofs are relegated to section 2.5, it is useful to sketch the

proof that BGP ⊆ PSPACE in order to provide intuition about how the physical

principles underlying generalised probabilistic theories lead to computational bounds.

Sketch proof. Consider a general circuit CT , with q(|T |) gates. Tensoring these gates

with identity transformations on systems on which they do not act, and padding

them with rows and columns of zeros, results in a sequence of square matrices

M rq ,q, . . . ,M r1,1, where M rn,n is the matrix representing the rth
n outcome of the nth

gate. This can be done in such a way that the probability for outcome z = r1 . . . rq,

is given by

bTM rq ,q · · ·M r2,2M r1,1b =
∑

{i1,...,iq−1}

M
rq ,q
1iq−1
· · ·M r2,2

i2i1
M r1,1

i11
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where b is the vector b = (1, 0, . . . , 0) and bT is its transpose. The output probability

is a sum of exponentially many terms, but each term is a product of polynomially

many numbers, each of which can be efficiently calculated. So a classical Turing

machine can calculate each term in the sum, one after the next, keeping a running

total. This requires only polynomial-sized memory.

This proof relies on the ability to decompose the acceptance probability of the

computation in a form reminiscent of a (discrete) Feynman path integral. This is a

consequence of the fact that transformations in a generalised probabilistic theory are

linear, and thus have a matrix representation. It is pertinent then to recall where

this linearity comes from. When we introduced generalised probabilistic theories in

chapter 1, we associated states (respectively, effects) with functions taking effects

(respectively, states) to probabilities. As one can take linear combinations of such

functions, this induces a linear structure on the set of states (respectively, effects).

Thus the linear structure of generalised probabilistic theories arises from the require-

ment that a physical theory should be able to give probabilistic predictions about the

occurrence of possible outcomes.

Aside from linearity, a further requirement of the proof is the ability to compute

efficiently the entries in the matrices representing the transformations applied in par-

allel in a specific circuit. Recall from section 1.3.1 in chapter 1 that, in a theory

satisfying tomographic locality, a transformation E ∈ Transf(A,B) is completely

specified by its action on St(A), and so the matrix representing transformations ap-

plied in parallel can be easily calculated by taking the tensor product of the matrices

representing each individual transformation. This is not the case in a theory without

tomographic locality, where the tensor product structure may not hold. If a trans-

formation from A to B acts on one half of a system AC, there may be no simple

way to relate the linear map St(AC)→ St(BC) to the action of the transformation

when it is applied to a system A on its own, or indeed to a joint system AC′. There

may therefore be no efficient way of computing matrix elements corresponding to a

transformation considered as part of a circuit of arbitrary size.

Recall from chapter 1 that one can think of a violation of tomographic locality as

corresponding to the existence of “global degrees of freedom” not accessible to local

measurements. As the uniformity condition only imposes constraints on the matrices

associated to gates from the finite gate set G, if there doesn’t exist an efficient proce-

dure for computing the matrices associated to the parallel compositions of gates from

G one could in principle encode answers to computationally hard problems in these
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global degrees of freedom. While tomographic locality implies such an efficient proce-

dure it may not be the simplest principle which does so. An interesting direction for

future work might be to weaken the assumption of tomographic locality such that the

results of theorem 2.2 still go through. Real Hilbert space quantum theory, discussed

at the end of chapter 1, provides an example of a theory without tomographic locality

for which the above bounds hold, since there is an efficient way of calculating relevant

matrix entries.

2.3 Post-selection and generalised probabilisitic the-

ories

In [65] Aaronson introduced the notion of post-selected quantum circuits. These are

quantum circuits which, in addition to having a specified qubit, on which a compu-

tational basis measurement will be made to provide the outcome, have an additional

qubit on which a measurement can be performed such that we can post-select on

the outcome. Instead of sampling the measurement result r directly from the com-

putational outcome qubit according to the distribution P (r), only those runs of the

computation are counted for which a measurement on the post-selected qubit yields

the outcome s = 0. The outcome distribution for the computation is taken to be the

conditional distribution P (r|s = 0). An extra technical condition is needed, which

is that there exists a constant D and polynomial w such that P (S = 0) ≥ 1/Dw(|x|),

i.e., we can only post-select on at most exponentially-unlikely outcomes5.

Definition 2.4. A language L is in the class PostBQP if there is a polynomially-

sized uniform quantum circuit family, where each circuit has a computational outcome

qubit and a post-selected qubit, such that when computational basis measurements are

performed on these qubits, with respective outcomes r and s,

• There exists a constant D and polynomial w such that P (s = 0) ≥ 1/Dw(|x|)

• If x ∈ L then P (r = 0|s = 0) ≥ 2
3

• If x /∈ L then P (r = 0|s = 0) ≤ 1
3

Aaronson showed in [65] that PostBQP = PP. Combining this with Theorem 2.2

gives

5This extra condition was missing from Aaronson’s original paper on PostBQP, but is needed
for the definition of PostBQP to be independent of a choice of quantum gate set; see Section 2.5
of [37]. We thank Scott Aaronson for some very interesting discussions concerning this point.
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Theorem 2.5. For any generalised probabilistic theory G,

BGP ⊆ PostBQP.

Roughly speaking, a post-selecting quantum computer can simulate computation

in any other theory satisfying tomographic locality. One can also define a notion of

generalised circuits with post-selection on at most exponentially-unlikely outcomes.

These are poly-sized uniform circuits in a generalised probabilistic theory, where the

probability of acceptance is conditioned on the circuit outcome z lying in a (polytime

computable) subset of all possible values of z. More formally:

Definition 2.6. A language L is in the class PostBGP if there is a poly-sized

uniform circuit family in that theory and an efficient acceptance condition, such that

1. There exists a constant D and polynomial w such that P (z ∈ S) ≥ 1/Dw(|x|)

2. If x ∈ L then Px(accept|z ∈ S) ≥ 2
3

3. If x /∈ L then Px(accept|z ∈ S) ≤ 1
3

where z is the circuit outcome, S is a subset of all possible circuit outcomes and z ∈ S
can be checked by a Turing machine in time polynomial in |x|.

Given the above definition, one can now state the following theorem.

Theorem 2.7. For any generalised probabilistic theory G,

PostBGP ⊆ PP.

The proof is in section 2.7. Combining this with Aaronson’s result yields:

Corollary 2.8. For any generalised probabilistic theory G,

PostBGP ⊆ PostBQP.

So, in a world in which we can post-select on at most exponentially-unlikely events,

quantum theory is optimal for computation in the space of all tomographically local

theories. Note that the class of problems efficiently solvable on a probabilistic classical

computer with the power of post-selection is unlikely to be as large as PP: it was

shown in [38] that if this class, denoted BPPpath, is equal to PP, then the polynomial

hierarchy collapses to the third level.

It was suggested in [17] (see also [49]) that quantum theory in some sense achieves

an optimal balance between the sets of available states and dynamics, in such a way
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that quantum theory is optimal, or at least powerful, for computation relative to the

class of generalised probabilistic theories. It is interesting to ask whether Corollary 2.8

can be seen as evidence in favour of this idea. The following considerations show that

caution is needed. Consider, for example, the class IQP [38], of restricted quantum

computations where the only gates allowed in a circuit are diagonal in the {|+〉, |−〉}
basis. Clearly IQP ⊆ BQP, but it is unlikely that BQP ⊆ IQP. However, it

was shown in [38] that PostIQP = PP = PostBQP. So, while PostBQP ⊆
PostIQP, it is not believed to be the case that BQP ⊆ IQP. Alternatively, consider

the class of restricted quantum computations DQCk, discussed in [39], known as

the one clean qubit model, where the inputs to each circuit are restricted to be one

pure qubit with as many maximally mixed qubits as desired. At the end of the

computation, k qubits are measured in the computational basis. Clearly, DQCk ⊆
BQP, but again, DQCk is not believed to be universal for quantum computation.6

It was shown in [39] that PostDQCk = PP = PostBQP for k ≥ 3. So, while

PostBQP ⊆ PostDQCk, under reasonable assumptions [40] it is not the case that

BQP ⊆ DQCk. Other examples demonstrating the same results are Boson Sampling

[63], and any efficient computation generated by a two-qubit commuting Hamiltonian

which generates entanglement [48].

2.4 Oracles

In classical computation, an oracle is a total function O : N → {0, 1}. A number

x is said to be in an oracle O if O(x) = 1, hence oracles can decide membership in

a language. Let C and B be complexity classes, then CB denotes the class C with

an oracle for B. Informally, we can think of CB as the class of languages decided

by a computation which is subject to the restrictions and acceptance criteria of C,

but allowing an extra kind of computational step: an oracle for any desired language

L ∈ B that may be queried at any stage in the course of the computation, with

each such query counting as a single computational step. That is, bit strings may be

generated at any stage of the computation and presented to the oracle, which in a

single step, returns the information of whether the bit string is in L or not. Given

two complexity classes, C1 and C2, we say the relation7 C1 = C2 holds relative to the

oracle B, if CB
1 = CB

2 . Such a result is referred to as a relativised separation result.

6In fact, under reasonable assumptions, DQCk is provably not universal for quantum computa-
tion [40].

7The = can be replaced with 6=, ⊆ or ⊇ equally well.
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Oracles play a special role in quantum computation, forming the basis of most

known computational speed ups over classical computation [1]. In quantum compu-

tation, oracle queries are represented by a family {Rn} of quantum gates, one for

each query length. Each Rn is a unitary transformation acting on n+1 qubits, whose

effect on the computational basis is given by

Rn|x, a〉 = |x, a⊕ A(x)〉

for all x ∈ {0, 1}m and a ∈ {0, 1}, where A is some Boolean function that represents

the specific oracle under consideration. One could also consider more general oracles

that, when queried, apply some general unitary transformation to the query state,

but here, we only consider oracles that compute Boolean functions. In the state

vector formalism of quantum theory, the action of a unitary oracle is defined on a

maximal set of pure and perfectly distinguishable states, namely the computational

basis. Linearly extending this to all states in the Hilbert space uniquely defines the

action of the oracle on any state.

As pointed out to us by Howard Barnum [42], the situation for generalised proba-

bilistic theories is more subtle. Consider, for example, the density matrix formulation

of quantum theory, and suppose that oracle queries correspond to a family of trace-

preserving completely-positive maps {En}. Analogously to the state vector formalism,

define the action of the oracle on a maximal set of pure and perfectly distinguishable

states {ρi}Ni=1, where each ρi is a density matrix, by

En
(
ρx ⊗ ρa

)
= ρx ⊗ ρa⊕A(x), (2.1)

where ρx = ρx1 ⊗ · · · ⊗ ρxn and A is the function computed by the oracle. Note that

ρx ⊗ ρa → ρx ⊗ ρa⊕A(x) ⇐⇒ |x, a〉 → eiφ(x,a)|x, a⊕ A(x)〉,

where a = 1, . . . , N and eiφ(x,a) is some phase factor that depends on the query state.

Now, in addition to being able to compute the function A, a quantum computer with

access to the oracle may also acquire information about the function φ, which may

be hard to compute [43]. The usual definition of a quantum oracle therefore prevents

‘sneaking in information’ through phase factors.

In generalised probabilistic theories (with sufficient distinguishable states), it is

easy to produce a definition of an oracle similar to that of equation 2.1. But for a

system type A, a maximal set of pure and perfectly distinguishable states does not

in general span the vector space VA. Hence the action of an oracle on such a set
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of states will not, in general, uniquely define its action on an arbitrary state in the

state space. It is then not clear what extra condition must be placed on the oracle,

first to define its action on arbitrary input states, and second to prevent non-trivial

information being obtained through its action on non-basis input states (perhaps via

a generalised notion of phase [130]).

Rather than attempt to solve this problem here (we show in chapter 6 that theories

satisfying a certain number of physical principles do admit well-defined computational

oracles, which reduce to the standard notion in the case of quantum theory), we will

instead consider a notion of “classical oracle” that can be defined in any generalised

probabilistic theory that satisfies the causality assumption of Section 1.3.2. The

causality assumption allows the construction of adaptive circuits without paradox

(see [15] for a more thorough discussion of the causality assumption, adaptive circuits,

and conditioned transformations). In an adaptive circuit, the choice of which test to

perform can depend on the outcomes r1, . . . , rk of previous tests in the circuit. An

oracle A : N → {0, 1} defines an extra gate that can be used in a computation in

addition to those of the finite gate set, but with input and output that are classical

wires, rather than being typed as with the gates intrinsic to the theory. The input

to the oracle is a function f(r1, . . . , rk) of the outcomes of tests that appear in the

circuit prior to the use of the oracle. The design of that portion of the circuit that is

subsequent to the oracle can depend on the output A(f) of the oracle. An oracle can

be used in this way an unlimited number of times in a circuit, with each use counting

as one gate. The uniformity condition must be extended, so that for each use of the

oracle in a circuit, the input f(r1, . . . , rk), and the design of the circuit subsequent to

the oracle, are computable in poly-time by a Turing machine with access to an oracle

for A. The acceptance criterion can also be extended so that for a circuit outcome z,

the function a(z) is computable in poly-time by a Turing machine with access to an

oracle for A.

Definition 2.9. For each causal generalised probabilistic theory G, a language L is

in the class BGPA
cl if there exists a poly-size uniform family of circuits with access

to the classical oracle A, and an efficient acceptance condition, such that

• x ∈ L is accepted with probability at least 2
3
.

• x /∈ L is accepted with probability at most 1
3

We can use the notion of classical oracle to obtain the following relativised sepa-

ration result.
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Theorem 2.10. There exists a classical oracle A such that for any causal generalised

probabilistic theory G, NPA * BGPA
cl .

The proof is in section 2.5.4. This generalises the results of [45] from quantum

theory to causal generalised probabilistic theories that satisfy tomographic locality.

The result proved in section 2.5.4 is actually stronger: there exists a classical oracle A

such that for any causal generalised probabilistic theory G that satisfies tomographic

locality, the polynomial time hierarchy is infinite and BGPA
cl ⊆ PA. The oracle in

question is the same oracle that was used by Fortnow and Rogers in [45].

2.5 Proofs of the theorems

The proofs of each theorem presented in this chapter are provided in this section.

Before we can give the proofs however, we must first discuss approximate circuit

families.

2.5.1 Approximate circuit families

Consider a poly-size uniform circuit family {Cx}, defined over a finite gate set G.

Each gate in G corresponds to some finite set of transformations, one for each classical

outcome of the gate. From the uniformity condition, the entries of the matrices repre-

senting these transformations can be calculated to accuracy ε in time poly(log(1/ε)).

With ε(|x|) a function of the input size, consider a family {C̃x} of approximations to

the original circuits, where matrix elements are replaced by rational numbers within

ε(|x|) of the original matrix elements. Call {C̃x} an ε(|x|)-approximation to {Cx}.
The following result shows that {C̃x} can simulate {Cx}, to an accuracy dependent

on ε(|x|).

Proposition 2.11. Let {Cx} be a uniform circuit family, with the number of gates

in Cx bounded by a polynomial q(|x|). Let {C̃x} be an ε(|x|)-approximation to {Cx},
with ε(|x|) ≤ 1. If the circuit CT ∈ {Cx} gives an outcome sequence z with probability

P (z), then the circuit C̃T ∈ {C̃x} gives outcome sequence z with amplitude P̃ (z) such

that

|P (z)− P̃ (z)| ≤ Dq(|T |)−1q(|T |)ε(|T |)N,

where N and D are constants depending on the gate set G.

The word amplitude here should not be confused with the complex amplitudes

of quantum theory. It is used for the real-valued quantity which approximates an
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outcome probability for the original circuit family, and is used rather than the term

probability, because this quantity can be (slightly) less than 0 or (slightly) greater

than 1. (The approximating circuit family is a mathematical construction that need

not correspond precisely to a valid circuit family in the theory.) This proposition

will be useful in the main proofs, since if {Cx} is a circuit family that decides some

language L in BGP, it follows that a 1
12q(|x|)Dq(|x|)−1N

-approximation to {Cx} will

accept a string x ∈ L with amplitude at least 7/12, and will accept a string x /∈ L
with amplitude at most 5/12, hence the success amplitude is still bounded away

from 1/2. The uniformity condition ensures that such an ε(|x|)-approximation can

be constructed in time polynomial in |x|.
In order to prove the proposition, two lemmas will be helpful.

Lemma 2.12. Let M be a real n×m matrix such that for each entry, mij, we have

that |mij| ≤ ε, for ε > 0. Then

‖M‖op ≤ nmε,

where ‖.‖op is the operator norm.

Proof. Let Mi be the ith row of M . Then

|Mi|E =

√√√√ m∑
j=1

m2
ij ≤

m∑
j=1

|mij| ≤ εm,

where |.|E is the Euclidean norm, hence

|Mv|E ≤
n∑
i=1

|Miv| ≤
n∑
i=1

εm = nmε,

for |v| = 1, where the second inequality follows from the Cauchy-Schwarz inequality.

Thus ‖M‖op ≤ nmε.

Lemma 2.13. Let {Mi}Ti=1 and {M̃i}Ti=1 be two sets of matrices. Then the T -fold

product of these matrices satisfies

‖MT . . .M1 − M̃T . . . M̃1‖op ≤ DT−1

T∑
i=1

‖Mi − M̃i‖op,

where D = max{‖M1‖op, . . . , ‖MT‖op, ‖M̃1‖op, . . . , ‖M̃T‖op}.
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Proof. Consider the case of T = 2. With |v| = 1,

|
(
M2M1 − M̃2M̃1

)
v|E

= |
(
M2M1 − M̃2M1

)
v +

(
M̃2M1 − M̃2M̃1

)
v|E

≤ |
(
M2 − M̃2

)
M1v|E + |M̃2

(
M1 − M̃1

)
v|E

≤ ‖M2 − M̃2‖op‖M1‖op + ‖M̃2‖op‖M1 − M̃1‖op.

Thus

‖M2M1 − M̃2M̃1‖op ≤ D‖M1 − M̃1‖op +D‖M2 − M̃2‖op

The result follows from induction on T .

We can now prove Proposition 2.11.

Proof. A particular outcome sequence of the circuit CT ∈ {Cx} corresponds to a

sequence of matrices Gr1,1, . . . ,Grq ,q, where Gri,i represents the rith outcome of the ith

gate in CT . Note that states and effects are included in this sequence. Tensoring these

gates with identity transformations on systems on which they do not act and padding

the corresponding matrices with rows and columns of zeros results in a sequence of

square matrices M rq ,q, . . . ,M r1,1 such that

P (z) = P (r1, . . . , rq) = bT .M rq ,q . . .M r1,1.b,

where b is the vector (1, 0, . . . , 0) and bT is its transpose. Similarly for G̃r1,1, . . . , G̃rq ,q,
so that

P̃ (z) = P̃ (r1, . . . , rq) = bT .M̃ rq ,q . . . M̃ r1,1.b.

Note that ‖M ri,i‖op ≤ ‖Gri,i‖op and ‖M̃ ri,i‖op ≤ ‖G̃ri,i‖op, for all i. Therefore,

|P (z)− P̃ (z)| = |bT
(
M rq ,q . . .M r1,1 − M̃ rq ,q . . . M̃ r1,1

)
b|

≤ |bT |E|
(
M rq ,q . . .M r1,1 − M̃ rq ,q . . . M̃ r1,1

)
b|E

≤ D′q(|T |)−1

q∑
n=1

‖M rn,n − M̃ rn,n‖op ≤ D′q(|T |)−1q(|T |)Nε(|T |),

where if nimi is the size of the matrix Gri,i, then

N = max{nqmq, . . . , n1m1},

and

D′ = max{‖Gr1,1‖op, . . . , ‖Grq ,q‖op, ‖G̃r1,1‖op, . . . , ‖G̃rq ,q‖op}.
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Note that, as circuits are built from finite gate sets, N is a constant. The first

inequality follows from the Cauchy-Schwarz inequality, the second from that fact

that |bT | = 1 and lemma 2.13, the third from lemma 2.12, the fact that the sum

has q(|T |) entries and the fact that, as C̃T is an ε-approximation of CT , the matrix

M ri,i − M̃ ri,i has entries satisfying |mij − m̃ij| ≤ ε.

The reverse triangle inequality gives

‖G̃ri,i‖op − ‖Gri,i‖op ≤ ‖G̃ri,i − Gri,i‖op ≤ Nε(|T |).

With ε(|T |) ≤ 1, and

D′′ = max{‖Gr1,1‖op, . . . , ‖Grq ,q‖op},

we have D′ ≤ D ≡ D′′ +N , which completes the proof.

2.5.2 Proof of Theorem 2.2

One method of proving Theorem 2.2 is to use GapP functions. GapP functions were

first studied in the context of quantum computation by Fortnow and Rogers in [45],

where, among other things, they showed that BQP ⊆ AWPP. A good discussion

on GapP functions can be found in Watrous’s survey of quantum complexity theory

[52]. Proofs in this section are modifications and generalisations of proofs presented

in [45, 52, 41].

Given a polynomial-time non-deterministic Turing machine M and input string

x, denote by Macc(x) the number of accepting computation paths of M given input

x, and by Mrej(x) the number of rejecting computation paths of M given x. A

function f : {0, 1}∗ → Z is a GapP function if there exists a polynomial-time non-

deterministic Turing machine M such that f(x) = Macc(x) −Mrej(x) for all input

strings x.

Many complexity classes can be described in terms of GapP functions. For ex-

ample the class PP can be defined as those languages L such that, for some GapP

function f and any input string x, if x ∈ L then f(x) > 0 but if x /∈ L then f(x) ≤ 0.

A useful class of GapP functions is provided by the following theorem.

Theorem 2.14. Any function f : {0, 1}∗ → Z that can be computed in poly-time by

a Turing machine is a GapP function.
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For a proof, see [41, p.237].

The notation 〈x, y〉 denotes the pairing function [45]: that is, a poly-time com-

putable function that maps the pair of strings x and y bijectively to the set of fi-

nite length strings {0, 1}∗ such that, given 〈x, y〉, both x and y can be extracted in

poly-time. The following proposition gives slight generalisations of standard closure

properties of GapP functions.

Proposition 2.15. For a polynomial q and GapP function f , let h : {0, 1}∗ → Z be

defined for all x ∈ {0, 1}∗ by

h(x) =
∑

|y|≤q(|x|)
y∈Lx

f(〈x, y〉),

where Lx is some set (that may depend on x) with the property that membership of y

in Lx can be determined in time polynomial in |x|. Then h is a GapP function.

Now let g : {0, 1}∗ → Z be defined for all x ∈ {0, 1}∗ by

g(x) =
∏

1≤i≤q(|x|)
i∈Lx

f(〈x, i〉),

where the symbol i appearing as the second argument on the pairing is a binary en-

coding of i and Lx is some set with the property that membership of i in Lx can be

determined in time polynomial in |x|. Then g is also a GapP function.

Proof. We will prove the first statement only as the second statement follows from

a similar generalisation of a standard argument. Let f(x) = Macc(x) −Mrej(x) for

some non-deterministic poly-time Turing machine, M . Let N be a non-deterministic

poly-time Turing machine that, on input x ∈ {0, 1}∗, guesses a string y of length

≤ q(|x|), decides whether y is in Lx, and

• if y ∈ Lx, simulates M on input 〈x, y〉.

• if y /∈ Lx, guesses a bit b and accepts if and only if b = 0.

N runs in poly-time, and for every x ∈ {0, 1}∗, Nacc(x)−Nrej(x) = h(x), hence h is

a GapP function.

For the rest of this section, assume that the pairing function is used whenever

a function has two or more arguments. GapP functions are intimately related to

computation in generalised probabilistic theories, as the following result shows.
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Theorem 2.16. Let {Cx} be a poly-size uniform family of circuits in a generalised

probabilistic theory. Then for any polynomial w and constant D, there exists a func-

tion ε(|x|) ≤ 1/Dw(|x|), and an ε(|x|)-approximation {C̃x} to {Cx}, such that the

amplitude for acceptance8 of a circuit C̃T ∈ {C̃x} is given by

P̃T (accept) =
f(T )

2p(|T |)
,

where f is a GapP function and p(|T |) is a polynomial in the size of the input string.

Proof. It follows from the uniformity condition that for any polynomial w, there is

an ε(|x|)-approximation {C̃x} to {Cx}, with ε(|x|) ≤ 1/Dw(|x|), such that the entries

in the matrices representing gates in the circuit C̃T ∈ {C̃x} have rational entries, and

can be computed in time polynomial in |T |. Furthermore, the rational entries can

be taken to have the form c/2d, with c ∈ Z, d ∈ N, and d a polynomial function

of |T |. Padding circuits with identity gates if necessary, assume that the number of

gates in the circuit C̃T is given by a polynomial function q(|T |). A particular outcome

of the circuit corresponds to matrices G̃r1,1, . . . , G̃rq ,q, where G̃ri,i represents the rith

outcome of the ith gate in C̃T . States and effects are included in this sequence.

By tensoring these gates with identity transformations on systems on which they

do not act and padding the corresponding matrices with rows and columns of zeros,

we can obtain a sequence of square matrices M̃r1,1, . . . ,M̃rq ,q, such that (i) rows and

columns of these matrices are indexed by bit strings of length y(|T |), with y(|T |) a

polynomial function, and (ii) the amplitude of outcome z = r1, . . . , rq is given by

bT .M̃rq ,q · · · M̃r1,1 .b,

where b is the vector (1, 0, . . . , 0) and bT is its transpose. Note that for each M̃ri,i,

the matrix 2dM̃ri,i has integer entries.

Consider the function h : {0, 1}∗ → Z given by

h(T, r1, . . . , rq, n, i0, . . . , iq) = M rn,n
inin−1

,

where i0, . . . , iq are bit strings of length y(|T |), and M rn,n
inin−1

is the inin−1 entry of the

matrix 2dM̃rn,n . By the uniformity condition, these matrix entries can be calculated

in polynomial time by a Turing machine, so by Theorem 2.14, h is a GapP function.

8Note that, as {C̃x} is a mathematical construction, it need not correspond to a valid circuit
family in the theory and so cannot be said to accept or reject an input string. However, for ease of
notation, we will say an approximating circuit ‘accepts’ an input string if a(z) = 0 where z is the
outcome sequence of that approximating circuit, and ‘rejects’ the input string otherwise.
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The amplitude for outcome z = r1 . . . rq is given by

P̃ (z) =
1

2dq

∑
{i1,...,iq−1}

M
rq ,q
1iq−1

. . .M r2,2
i2i1

M r1,1
i11

=
1

2dq

∑
{i1,...,iq−1}

∏
1≤n≤q

h(T, r1, . . . , rq, n, i0 = 1, i1, . . . , iq−1, iq = 1)

=
1

2dq

∑
{i1,...,iq−1}

g(T, r1, . . . , rq, i1, . . . , iq−1),

=
f ′(T, z)

2dq
,

where g is a GapP function by Proposition 2.15, hence f ′ is a GapP function by

another application of Proposition 2.15.

The amplitude for the circuit C̃T to accept is given by

P̃T (accept) =
∑
a(z)=0

P̃T (z) =
∑
a(z)=0

f ′(T, z)

2dq
,

where a(z) is the function that determines if z is an accepting or rejecting outcome.

By the uniformity condition, a(z) can be calculated in polynomial time by a Turing

machine, hence Proposition 2.15 gives

P̃T (accept) =
f(T )

2p(|T |)
,

where f is a GapP function and d(|T |)q(|T |) = p(|T |) is a polynomial that takes

values in N.

Recall that the class AWPP (Almost Wide Probabilistic Polynomial time) can

be defined [53] as follows.

Definition 2.17. The class AWPP consists of those languages L such that there

exists a GapP function f , and a polynomial r such that

• If x ∈ L then 2/3 ≤ f(x)/2r(|x|) ≤ 1,

• if x /∈ L then 0 ≤ f(x)/2r(|x|) ≤ 1/3.

The 1/3 − 2/3 separation can be replaced by any constant, positive, separation

[53].

Theorem 2.18. For any generalised probabilistic theory G, BGP ⊆ AWPP.
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Proof. If a language L ∈ BGP, then there is a poly-size uniform circuit family {Cx}
such that Px(accept) ≥ 2/3 if x ∈ L, and Px(accept) ≤ 1/3 if x /∈ L. Assume that for

all x, 1/10 ≤ Px(accept) ≤ 9/10.9 By Theorem 2.16, there is an ε(|x|)-approximation

to {Cx} such that the amplitudes determined by the approximating family satisfy

P̃x(accept) =
f(x)

2p(|x|)
,

with f a GapP function. Furthermore, for any polynomial w, ε(|x|) can be chosen

so that ε(|x|) ≤ 1/Dw(|x|). Hence by Proposition 2.11, ε(|x|) can be chosen small

enough that P̃x(accept) ≥ 7/12 if x ∈ L and P̃x(accept) ≤ 5/12 if x /∈ L, and for all

x, 0 ≤ P̃x(accept) ≤ 1. Taking p(|x|) to be the function r(|x|) in definition 2.3 and

noting that 5/12− 7/12 is a constant, positive, separation, gives the result.

It is well known that AWPP ⊆ PP ⊆ PSPACE (see, for example, [55] and

references therein).

2.5.3 Proof of Theorem 2.7

An alternate definition of the class PP can be stated [56, 53] as follows.

Definition 2.19. The class PP consists of those languages L such that there exist

GapP functions f and h so that for all x

• If x ∈ L then 2/3 ≤ f(x)/h(x) ≤ 1,

• if x /∈ L then 0 ≤ f(x)/h(x) ≤ 1/3.

The 1/3 − 2/3 separation can be replaced by any constant, positive, separation

[53].

In order to prove Theorem 2.7, consider a uniform family of circuits {Cx} in the

generalised probabilistic theory G. Let ST be a subset of the possible outcomes of the

circuit CT , with respect to which post-selection is defined, so that PT (accept|ST ) ≥
2/3 for T ∈ L and ≤ 1/3 for T /∈ L. As in the proof of Theorem 2.2, assume that

9This can be ensured, if necessary, by considering the circuit CT to be carried out in parallel with
a biased coin toss. With probability 1/5, the coin is tails, in which case the output of the circuit
is ignored, and acceptance/rejection are returned with probability 1/2 each. Taken together, these
circuits and coin tosses define a modified circuit family {C ′x}, and in the following, approximating
circuit families can be assumed to be defined relative to {C ′x}.
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these probabilities are also bounded away from 0 and 1 so that for all T , 1/10 ≤
PT (accept|ST ) ≤ 9/10.10

By Theorem 2.16, there is an ε(|x|)-approximation to {Cx} such that, in the

approximating family, the joint amplitude to accept the computation and have an

outcome from the set ST is

P̃T (accept, ST ) =
f(T )

2p(|T |)
,

with f a GapP function. Similarly,

P̃T (ST ) =
g(T )

2q(|T |)
,

with g a GapP function and q a polynomial. Furthermore, for any polynomial w and

constant D, ε(|x|) can be chosen so that ε(|x|) ≤ 1/Dw(|x|). Hence by Proposition 2.11

and the fact that we are post-selecting on at most exponentially-unlikely outcomes,

ε(|x|) can be chosen small enough that for the approximating circuit family, P̃T (ST ) >

0. This means that for the approximating circuit family, the conditional

P̃T (accept|ST ) =
P̃T (accept, ST )

P̃T (ST )
,

is well defined. Furthermore, ε(|x|) can be chosen small enough that P̃T (accept|ST ) ≥
7/12 if x ∈ L, P̃T (accept|ST ) ≤ 5/12 if x /∈ L, and using the assumption that the

original circuit family probabilities are bounded away from 0 and 1, the approximating

amplitudes satisfy 0 ≤ P̃T (accept|ST ) ≤ 1.

Now,

P̃T (accept|ST ) =
2q(|T |)f(T )

2p(|T |)g(T )
=
l(T )

h(T )
,

where h(T ) = 2p(|T |)g(T ) and l(x) = 2q(|T |)f(T ) are GapP functions. This follows

from Theorem 2.14, Proposition 2.15, and the fact that both p and q are polynomials

taking values in N. The result follows.

2.5.4 Proof of Theorem 2.10

Denote by PH the polynomial time hierarchy: the union of an infinite hierarchy of

classes Σk, ∆k and Πk for k ∈ N, where Σ0 = ∆0 = Π0 = P and Σk+1 = NPΣk ,

10This can be done, as before, by the introduction of a biased coin parallel to the circuit. If
the circuit outcome is in ST and the coin is heads, then accept or reject, depending on the circuit
outcome. If the outcome is in ST and the coin is tails then accept or reject with probability 1/2
each.
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∆k+1 = PΣk and Πk+1 = coNPΣk . The polynomial time hierarchy is a natural way

of classifying the complexity of problems beyond the class NP. It is a strongly held

belief in computer science that NP includes non-polynomial-time problems.

Theorem 2.10 is a corollary of two results, the first of which is due to [55] and

[57]:

Theorem 2.20. There exists an oracle A such that PA = AWPPA and the polyno-

mial time hierarchy is infinite.

The second is that Theorem 2.18 relativizes.

Theorem 2.21. For any classical oracle A we have that BGPA
cl ⊆ AWPPA for any

causal G.

Proof. Given the uniformity condition for circuit families with an oracle, entries in

the matrices representing gates in a circuit are all computable in polynomial time

by a Turing machine with access to the oracle A. Thus the proof of Theorem 2.16

goes through essentially unchanged, except that in this case the conclusion is that

the acceptance amplitude is

P̃x(accept) =
f(x)

2p(|x|)
,

where p(|x|) is a polynomial function of the size of the input and f is a GapPA

function. A GapPA function is defined in a similar fashion to a GapP function, ex-

cept instead of counting the difference between the number of accepting and rejecting

paths for any input into a non-deterministic Turing machine, GapPA functions count

the difference between the number of accepting and rejecting paths for any input into

a non-deterministic Turing machine with access to the oracle A.

AWPPA can be defined with respect to GapPA functions by just replacing every

mention of GapP functions with GapPA functions in Definition 2.3. Thus the proof

that BGPA
cl ⊆ AWPPA, for any causal GPT and oracle A, goes through exactly

the same as the proof of Theorem 2.18.

Hence we obtain

Theorem 2.22. There exists a classical oracle A relative to which BGPA
cl ⊆ PA,

for all causal G, and the polynomial time hierarchy is infinite.

This implies that there exists a classical oracle relative to which NP is not con-

tained in BGP, for any causal theory G satisfying tomographic locality. This gener-

alises the results of [45] from quantum theory to general theories.

56



2.6 Discussion and conclusion

In this chapter we have begun an investigation into the relationship between compu-

tation and physical principles. Using the circuit framework approach to generalised

probabilistic theories, we investigated the computational power of theories formulated

in operational terms, along with the role played by simple physical principles. We

started by defining a rigorous model of computation which allowed for the defini-

tion of the complexity class of problems efficiently solvable by a specific theory. The

strongest known inclusion for the quantum case, BQP ⊆ AWPP—which implies

BQP ⊆ PP ⊆ PSPACE—was shown to still hold in any theory satisfying tomo-

graphic locality. It is notable that this includes even those theories that violate the

causality principle. One possible interpretation of this is that we should in principle

be able to derive stronger upper bounds for the quantum class BQP as this result

illuminates the fact that the “quantum” proof of this upper bound does not exploit

any of the structure unique to quantum theory. Combining these results with a result

of Aaronson’s, it follows that any problem efficiently solvable in a theory satisfy-

ing tomographic locality can also be solved efficiently by a post-selecting quantum

computer. In fact, one can say something stronger: any problem efficiently solvable

with post-selection in a theory satisfying tomographic locality can also be solved ef-

ficiently by a post-selecting quantum computer. Roughly speaking, then, in a world

with post-selection, quantum theory is optimal for computation in the space of all

tomographically local theories.

We discussed the problem of defining a computational oracle for an arbitrary

theory. In general, this problem may have no general solution if it is required that

the definition of an oracle reduce to the standard definition in the quantum case.

Nonetheless, a notion of “classical oracle” was defined in any theory that satisfies

the causality principle, and for such theories there exists a classical oracle relative to

which NP is not contained in BGP. However, we show in chapter 6 that there is

an interesting subclass of theories—satisfying causality, purification, purity preserva-

tion, and strong symmetry—for which a notion of oracle can be defined that admits

‘superposition’ of inputs, and reduces to the standard definition in the quantum case.

In such theories, the solution of the ‘subroutine problem’ of [44] might serve as an

interesting computational principle that could rule out certain theories, potentially

providing a new principle from which quantum theory can be derived. We discuss

this point further in chapter 6.
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It would be interesting to determine whether violation of the causality principle

can confer extra computational power. An initial thought is that there could exist a

non-causal theory that can efficiently solve NP-complete problems. Given that the

inclusion BGP ⊆ AWPP holds even for non-causal—but tomographically local—

theories, this can only be the case if NP is contained in AWPP. At present, this is

unknown, and establishing the question either way would constitute a major advance

in complexity theory [46, 53]. This is due to the fact that, intuitively, the inclusion

NP ⊆ AWPP implies one has very strong control over the possible number of

accepting computations of NP machines [46, 53]. Nevertheless, it would be interesting

if a violation of causality enabled the efficient solution of other problems, thought to

be hard for quantum computers, but known to be in AWPP.

Moreoever, although the main results of this chapter do not require the causality

principle, we have nonetheless been considering circuits in which gates appear in

a fixed structure. It would be interesting to investigate the computational power

of theories in which there is no such definite structure. Frameworks for describing

situations with indefinite causal structure have been defined with the aim of discussing

aspects of quantum gravity [50, 51]. Some preliminary remarks on the computational

power of such theories were given in [61]. A specific query complexity problem that

can be solved with fewer queries on a quantum computer in which the gates do not

appear in a fixed order than on a standard quantum computer was presented in [62].

An open question is to establish tighter bounds on the power of general theories.

Even with tomographic locality assumed, there is a lot of freedom in the construction

of a generalised theory. Is there an explicit construction that solves a hard problem,

that is, a problem at least thought to be hard for quantum computers? Even better,

can we describe a complexity class, potentially larger than BQP, and an explicit

construction of a general theory G, such that this class is contained in BGP? This

question is the main focus of the next chapter.
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Chapter 3

The computational landscape of
generalised theories

In chapter 2, we defined and studied a circuit based model of computation in the

operationally-defined framework of generalised probabilistic theories. One of the

main results of that chapter was to show that, for any theory satisfying tomographic

locality—whether or not causality is satisfied—computational problems that can be

solved efficiently are contained in the classical complexity class AWPP, a fact first

proved in the quantum case by Fortnow and Rogers [45]. A natural question then

arises: does there exist a tomographically local theory G such that BGP = AWPP?

Such a theory could be used as a “foil” to deepen our understanding of the limi-

tations of quantum computers, in much the same way as PR boxes deepened our

understanding of quantum non-locality.

In section 3.2 of this chapter, we present a complexity-theoretic argument which

suggests that such a possibility may be unlikely. We show that if

PromiseBGP = PromiseAWPP

for a tomographically local theory G, then one necessarily has NP ⊆ AWPP. Here,

PromiseBGP and PromiseAWPP are promise versions of the classes BGP and

AWPP, meaning that they contain promise rather than decision1 problems. Promise

problems only demand a solution in the situation where the problem input satisfies a

certain condition, known as the promise. While PromiseBGP = PromiseAWPP

may hold independently of whether BGP = AWPP holds, these statements are at

least conceptually related. Intuitively, if one of these statements appears unlikely,

the other one should also be considered unlikely—although to a lesser degree. As

discussed at the end of chapter 2, it is believed unlikely [53, 46] that NP is contained

1An example of such a problem is deciding whether some bit string is in a particular language.
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in AWPP. This can, in some sense, be taken as evidence against the existence of a

theory whose computational power (in the promise problem setting) exactly equals

PromiseAWPP. Which, as briefly argued above, may constitute evidence (albeit of

a much weaker variety) against the existence of a theory whose computational power

exactly equals AWPP.

In this chapter we present a slight relaxation of the standard definition of gener-

alised probabilistic theories, which was originally introduced in chapter 1, and show

that—despite all of the above—one can construct a theory within this altered frame-

work, satisfying both tomographic locality and causality, in which the class of effi-

ciently solvable problems exactly equals AWPP, but such that this result does not

immediately imply NP ⊆ AWPP. Hence AWPP, despite having a slightly in-

volved definition in terms of gap functions for non-deterministic Turing machines,

can be thought of much more intuitively as the class of problems efficiently solvable

by tomographically local physical theories.

In the standard definition of a generalised theory—presented in chapter 1—a the-

ory specifies a set of laboratory devices from which one can construct closed circuits

by composing devices in sequence and parallel, and assigns a probability distribution

over the outcomes of each closed circuit. Moreover, the set of devices—and device

outcomes—is closed under sequential and parallel composition. For the purposes of

this chapter, we refer to such theories as “free” generalised probabilistic theories.

In the modified definition of a generalised probabilistic theory, which shall be intro-

duced in section 3.1, a theory specifies a set of devices, a set of allowed closed circuits

which can be built from those devices, and assigns a probability distribution over

the outcomes of allowed closed circuits. Note that this modified definition is slightly

more general than the one introduced in chapter 1 as it only assigns a probability

distribution to the set of allowed closed circuits which are specified by the theory.

However, our definition is not unmotivated if one takes the viewpoint that a physical

theory corresponds both to a consistent account of experimental data and to which

experiments are implementable in principle.

Note that the modified definition of generalised probabilistic theories will only be

important for this chapter. In all other chapters—unless explicitly stated otherwise—

the standard framework introduced in chapter 1 is used.
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3.1 The modified framework

In this section the weakened definition of generalised probabilistic theories will be

presented. We start by recalling some of the key terminology of chapter 1 and then

provide a rigorous definition of a theory within this new framework, all the while

highlighting the differences (and similarities) to the standard definition presented

in chapter 1. We show how to formulate finite tomography, local tomography, and

causality in this new framework, and demonstrate that—despite the weakened con-

straints on what constitutes a theory—in all theories satisfying both finite and local

tomography each set of transformations still gives rise to a finite dimensional vec-

tor space structure in which parallel composition corresponds to the standard vector

space tensor product. Note again that the modified definition of generalised proba-

bilistic theories will only be important for this chapter. In all other chapters—unless

explicitly stated otherwise—the standard framework introduced in chapter 1 is used.

As discussed in chapter 1, a laboratory device comes equipped with input ports,

output ports, and a classical pointer. When a device is used in an experiment, the

pointer comes to rest in one of a number of positions, indicating that a particular

outcome has occurred. Input and output ports are typed, with types given by la-

bels A,B,C, . . . . Closed circuits are built by composing2 devices in sequence and in

parallel.

More formally, a theory specifies:

1. A set of devices.

2. An allowed set of closed circuits built by composing those devices in sequence

and parallel.

3. An assignment of a probability distribution over the outcomes of each allowed

closed circuit, such that each closed circuit corresponds to a collection {pi}i∈Z
were Z is the outcome set of the circuit, pi ∈ [0, 1] and

∑
i pi = 1.

All of the above must satisfy the following two constraints: (i) the set of closed

circuits is closed under parallel composition, and (ii) if a circuit consists of two, or

more, separate closed circuits in parallel, then the overall probability for a particular

fixed outcome on each closed circuit factors over the constituent closed circuits (as

was the case in chapter 1). Note that in a specific theory, the set of devices may not

2The definition of sequential and parallel composition employed here is the same as the one
presented in chapter 1.
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be closed under sequential and parallel composition. Only those compositions which

result in closed circuits allowed in the theory are possible.

To each device E there corresponds a set CE of complement circuits, that is, appro-

priately typed circuit fragments into which one can insert E to get a correctly typed

closed circuit, denoted C(E) for each C ∈ CE . Note that C(E) may not be an allowed

closed circuit in the theory, hence CE is the set of mathematically conceivable—

correctly typed—closed circuits built with G. If C(E) is an allowed closed circuit in

the theory, denote by Cm(Ek) the probability of observing outcome m on the fragment

C and outcome k on the device E when the closed circuit C(E) is constructed. If C(E)

is not allowed by the theory, then all closed circuit outcomes Cm(Gk) are assigned the

value ‘u’ for “undefined”. Two device outcomes are operationally equivalent from the

point of view of a fixed complement circuit outcome if either both are defined and

give the same probability, or both of the closed circuit outcomes are undefined.

Equivalence classes of preparation outcomes defined in this way will be called

states and equivalence classes of measurement outcomes will be called effects. Equiv-

alence classes of general device outcomes, where the devices have both a non-zero

number of input ports and a non-zero number of output ports, are called transfor-

mations. As in chapter 1, the set of transformations with input port of type A and

output port of type B is denoted Transf(A,B), the set of states with output port

of type B is denoted St(B) and the set of effects of input port of type A is denoted

Eff(A).

Finite tomography. For each set Transf(A,B), there exist a finite and mini-

mal set of appropriately typed circuit outcome fragments {fi}ni=1 such that: (i) all

closed circuits that can be built with them are allowed in the theory, and (ii) for

any T ∈ Transf(A,B) and any real linear combination of transformations from

Transf(A,B),
∑

k γkFk, if

fi(T ) = fi

(∑
k

γkFk
)
, ∀i = 1, . . . , n,

then we have T =
∑

k γkFk.

We now show that any theory which satisfies the principle of finite tomography

admits a finite vector space for each type. Indeed, note that each transformation

T defines a function T̃ from the set of complement circuits CT to [0, 1] ∪ {u}. It

is assumed in the definition of finite tomography that any closed circuit built with

the fi’s is allowed in the theory. Hence each transformation T of the correct type
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defines a function T̂ from the set {fi}ni=1 to [0, 1] ⊂ R, satisfying T̂ = T̃ |{fi}. We

shall now use this fact to extend the function T̃ to a fully defined function from CT

to the real numbers, i.e. a function which no longer takes the value ‘u’. Choose a

set of n transformations {T i}i with the property that for any T i, there does not exist

any real coefficients λj such that fk(T
i) = fk

(∑
j 6=i λjT

j
)

=
∑

j 6=i λjfk(T
j) for all

fk. That is, no real linear combination of any n− 1 equals the remaining one. Note

that, as discussed in chapter 1, such a set must exist due to the minimality of the fi’s.

Now, for any compliment circuit outcome C, if C(T i) = u for any i, then assign it an

arbitrary (but fixed once the choice is made) real value. In this manner, we extend

the partially defined real-valued function T̂ i to a totally defined real-valued function

T̂ i
′

such that C(T̂ i
′
) = C(T̂ i) whenever C(T̂ i) 6= u, and C(T̂ i

′
) takes the newly

assigned real number whenever C(T i) = u. One can take real linear combinations of

such functions ĥ =
∑

i λiT̂
i
′
whose action on complement circuits is defined via linear

extension C(ĥ) :=
∑

i λiC(T̂ i). By taking the linear span of {T i}, one generates a

finite dimensional real vector space. Note that, by construction, the vectors {T i} are

linearly independent in this vector space. Using the argument from section 1.2 of

chapter 1, it follows that for each transformation T there exists a set of real numbers

{αi} such that T =
∑

i αiT
i. Hence, the set of transformations Transf(A,B) belongs

to this vector space. Moreover, we have shown that each transformation T gives rise

to a function from appropriately typed circuit fragments to the real numbers.

As depicted in diagram 1.4 from chapter 1, a circuit outcome fragment which

corresponds to attaching a state to each input port and an effect to each output port

of a transformation which, when inserted into the circuit outcome fragment forms a

closed circuit, will be referred to as local circuit fragments.

Tomographic locality. If, for any transformation T ∈ Transf(A,B) and any real

linear combination of transformations
∑

k γkFk,

l(T ) = l

(∑
k

γkFk
)

=
∑
k

γkl
(
Fk
)

for all local circuit outcome fragments l, then we have that T =
∑

k γkFk.

A consequence of tomographic locality is that for a transformation with input

type AB and output type CD, the corresponding real vector space decomposes into

a tensor product of vector spaces as in equation 1.5 from chapter 1. This follows from

the fact that local circuit outcome fragments are separating (recall the difference be-

tween separating for the spanning set versus separating for vector space spanned by
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that set discussed in chapter 1) for the vector space generated by the set of transfor-

mations. Furthermore, a transformation T ∈ Transf(A,B) is completely specified

by its action on St(A), hence T can be identified with a unique linear map acting on

the vector space generated by the set of states.

Causality. For each type there exists a unique deterministic effect U , with the prop-

erty that any closed circuit built with U is allowed in the theory, such that
∑

r er = U

for all appropriately typed measurements {er}r.

Mathematically, causality is equivalent to the statement: “Probabilities of present

experiments are independent of future measurement choices”.

The standard definition of a theory presented in chapter 1—which we refer to here

as a free theory—is presented below.

Free theory. A free theory is specified by a collection of devices which are closed

under parallel and sequential composition, such that each closed circuit corresponds

to a collection {pi}i∈Z where Z is the outcome set of the circuit, pi ∈ [0, 1] and∑
i pi = 1. Moreover, probabilities for independent circuits factorise.

It is clear that free theories are a special case of the more general theories con-

sidered in this chapter. As devices in free theories are closed under both parallel and

sequential composition, any closed circuit built with these devices is allowed in the

theory.

Note that theorem 2.2 from chapter 2, which proved AWPP upper bounded the

class of problems efficiently solvable in any tomographically local (free) theory, can

be straightforwardly shown to hold for the non-free theories satisfying tomographic

locality introduced here.

3.2 Evidence against free theories achieving the

upper bound

We now present a complexity-theoretic argument which can, in some sense, be con-

sidered weak evidence (recall the discussion at the start of this chapter) against the

existence of a free theory whose computational power exactly equals AWPP.

Theorem 3.1. If there exists a tomographically local free theory G satisfying

PromiseBGP = PromiseAWPP,

then one necessarily has

NP ⊆ AWPP.
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As discussed at the start of this chapter, PromiseBGP and PromiseAWPP

are promise versions of the classes BGP and AWPP, meaning that they contain

promise rather than decision problems. An example of a decision problem is deciding

whether a certain bit string is contained in a particular language. A promise problem

is a generalisation of a decision problem where the input is promised to belong to a

subset of all possible inputs. Unlike decision problems, the accepting instances (the

inputs for which an algorithm must accept) and the rejecting instances do not exhaust

the set of all inputs. There may be inputs which are neither accepting or rejecting. If

such an input is given to an algorithm for a certain promise problem, no requirements

are placed on the output, i.e. the algorithm is allowed to output anything.

Proof. Firstly, it is known that the Unique Satisfiability Problem (the problem of

deciding whether a given Boolean formula has exactly one satisfying truth assignment,

or no satisfying assignment at all, promised that one of these is the case) is contained

in PromiseAWPP [54]. The Valiant-Vazirani theorem [47] says that if one has an

efficient algorithm for solving the Unique Satisfaction Problem in conjunction with the

ability to probabilistically amplify polynomially-unlikely events, then one can solve

any problem in NP. More formally, the Valiant-Vazirani theorem says the standard

Boolean Satisfiability Problem can be randomly reduced to the Unique Satisfiability

Problem. Now, if PromiseBGP = PromiseAWPP then the Unique Satisfaction

Problem is in PromiseBGP. That is, there exists an algorithm (i.e. a specific circuit

family) in G which, when given inputs satisfying the promise, outputs a solution to

the Unique Satisfaction Problem. On inputs which do not satisfy the promise, no

requirements are made on the output. However, a crucial point is that, as devices in

free theories are closed under composition, the output of the algorithm will always

result in sensible probabilities regardless of the input. One is therefore free (no pun

intended) to amplify the acceptance probability by running the algorithm many times

and taking a majority answer. Hence, by Valiant-Vazirani it follows that NP ⊆ BGP,

which using theorem 2.2 from chapter 2 gives NP ⊆ AWPP.

See section 3.5 of the current chapter for a discussion on why the Valiant-Vazirani

theorem alone is not sufficient to imply NP ⊆ AWPP.
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3.3 Achieving the upper bound with a non-free

theory

The main result of this chapter is—despite theorem 3.1—the construction of a non-

free theory, satisfying causality, finite tomography, and tomographic locality, that has

exactly the computational power of the class AWPP. See section 3.5 of the current

chapter for a discussion on why the following theorem does not imply NP ⊆ AWPP.

Theorem 3.2. There exists a non-free theory G, satisfying causality, finite tomog-

raphy and tomographic locality, such that

BGP = AWPP.

The class AWPP contains problems for which an efficient quantum solution is

unknown. Notable among these is the Graph Isomorphism problem, which asks for

an efficient procedure to determine if two given graphs are equivalent. It is unknown

whether a quantum computer can solve the Graph Isomorphism problem, and so our

result provides a theory which can act as a “foil” to deepen our understanding of the

limitations of quantum computers. Moreover, as discussed in the previous section,

the promise version of AWPP contains the Unique Satisfaction Problem, which asks

if a given Boolean formula has either a single satisfying assignment, or no satisfying

assignment at all—promised one of these two cases is true. This is a very important

problem and is closely related to many NP-complete problems [47].

We now provide an intuitive sketch of this construction, but defer the formal defini-

tions and proofs to section 3.4. The proof starts by introducing a quasi-probabilistic

model of computation, taking the form a Turing Machine with quasi-probabilistic

transition weights with the constraint that the total weight of transitions from a

given state must sum to +1. We refer to this model as an Affine Turing Machine.

We show that the class of problems which can be efficiently solved with bounded er-

ror in this model perfectly captures the class AWPP. As illustrated schematically in

Fig. 3.1, we then construct uniform poly-size circuits, in which the gates are certain

affine transformations, that can simulate—and be simulated by—this affine Turing

Machine, and hence AWPP. This construction results in a collection of closed circuits

which correspond to the probability that the final result of the affine Turing Machine

is “accept” or “reject” on inputs of different lengths. In the section 3.4 we prove that

these closed circuits correspond to closed circuits in a causal, tomographically local

(and tomographically finite) non-free theory. Thus completing the proof of theorem

3.2.
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Fig. 3.1: Simulation of an affine Turing machine by an affine circuit

3.4 Proof of theorem 3.2

3.4.1 Affine Turing Machines

We define an Affine Turing Machine (AffTM) to be a non-deterministic Turing Ma-

chine, in which every transition has an associated real-valued (possibly negative)

weight. We require that for each symbol being read, the total weight of transitions

from a given (non-halting) state is +1. We also require that transition weights are

rational.

We interpret AffTMs as a model of quasi-probabilistic computation, as follows.

Given an AffTM M which halts in all paths in a finite number of steps, the acceptance

weight αM(x) of that AffTM on an input x is the total weight of the accepting paths

on input x. An AffTM M is proper if 0 ≤ αM(x) ≤ 1 for all inputs, and that it

decides a language L with bounded error if furthermore 2
3
≤ αM(x) ≤ 1 for x ∈ L,

and 0 ≤ αM(x) ≤ 1
3

for x /∈ L.

An AffTM is efficient if the number of computational steps it takes in any com-

putational path on any input x is bounded by some polynomial in |x|. The first step

towards Theorem 3.2 is to establish the following:

Lemma 3.3. The class of languages decided by some efficient AffTM is equal to

AWPP.

The proof of this result is contained in following two sections.
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3.4.2 Solving AWPP problems with an affine Turing machine

For such a language L ⊆ {0, 1}∗, let g be a GapP function3 satisfying the definition

of AWPP ( i.e. definition 2.3 from chapter 2).

Also let N be the non-deterministic Turing machine whose accepting/rejecting

branches determine the GapP function g, and T be the polynomial bounding the

number of computational steps of N on its input. By standard results [55], we may

require that N have the same number of non-deterministic transitions at each step,

which we denote by N ≥ 1, and that all computational branches of N have the same

length on input x. We suppose that each transition of N is associated with some

label ` ∈ {1, 2, . . . , N}: the computational branches of N are then in one-to-one

correspondence with sequences {1, 2, . . . , N}T (|x|). We may then consider an AffTM

M which simulates N, in the following sense:

1. M first makes a sequence of T (|x|) non-deterministic transitions in which it

writes symbols β1, β2, . . . , βT (|x|) ∈ {0, 1, 2, . . . , N} on the tape, constructing a

string β ∈ {0, 1, 2, . . . , N}T (|x|). The weights of these transitions are +1 for each

choice βt 6= 0, and (1−N) for each choice βt = 0, so that the transition weights

sum to +1.

2. In branches with one or more symbols βt = 0, M transitions deterministically

with weight +1 to a state reject. All other branches of M have weight +1

and record a string β ∈ {1, 2, . . . , N}T (|x|) indexing some computational branch

of N. In these branches, M simulates the computational branch of N whose

transitions are indexed by β.

3. For any branch in which the simulation of N rejects, M makes a non-deterministic

transition to a state dampen with weight −1, and to the reject state with

weight +2. For the branches in which the simulation of N accepts, M transitions

deterministically to dampen with weight +1.

4. From the state dampen, M makes a sequence of p(|x|) non-deterministic transi-

tions with weight 1
2
, in which it writes bits δ1, δ2, . . . , δp(|x|) on the tape, thereby

sampling a string δ ∈ {0, 1}p(|x|) uniformly at random. If δ = 11 · · · 1, M tran-

sitions to an accept state; in all other branches it transitions to the reject

state.

3Recall from chapter 2 that a GapP function is a function g : {0, 1}∗ → Z which computes the
difference between the number of accepting and rejecting branches of some non-deterministic Turing
machine N
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By the construction of the branch weights, M is an AffTM; and as the number of

transitions that M makes is O(T +p), it is efficient. By construction, the total weight

of the branches which transition to the dampen state is g(x); sampling the string

δ ∈ {0, 1}p(|x|) and rejecting unless δ = 11 · · · 1 ensures that the acceptance weight is

αM(x) = g(x)/2p(|x|). By hypothesis, this is bounded between 0 and 1, is at least 2
3

if

x ∈ L, and is at most 1
3

otherwise. Thus M decides L with bounded error.

3.4.3 Simulating an Affine Turing Machine in AWPP

Suppose that M is a proper and efficient AffTM which has transitions with rational

weights. Let N be the common denominator of the transition weights of Q, T ∈
O(poly(n)) the running time of M on an input of length n, and m > 0 be an integer

such that 2m ≥ NT and 2m ≥
(
|u|N)T for all transition weights u of M; it follows

that m ∈ O(T ). We may obtain an AWPP algorithm to approximately simulate

M, as follows. We define a non-deterministic machine N, which simulates M in the

following sense.

1. The machine N reserves some space on the tape to represent some weight Ω ∈ Q
for each branch. We call this the recorded weight of the branch.

2. Consider a transition made by M, with weight u = U/N . To simulate this

transition, the machine N replaces the recorded weight Ω with Ω′ := UΩ, and

then then simulates the actions (writing of symbols and movement of the tape

head) performed by M in the original transition.

3. Once N has simulated the final transition of M, it non-deterministically samples

bits a, b, c0, c1, . . . , cm−1 ∈ {0, 1}. If a = 1, we negate Ω if and only if the

simulated branch is one in which A rejects.

4. N determines whether to accept or reject, treating cm−1cm−2 · · · c1c0 as the

binary expansion of an integer 0 ≤ C < 2m, as follows.

• If C ≥ |Ω|, we reject if b = 0, and accept if b = 1.

• If 0 ≤ C < |Ω|, we reject if Ω < 0, and accept if Ω > 0.

Consider the GapP function f(x) of the machine N. From Step 4, it is clear that

if C ≥ |Ω| in any particular branch, N accepts and rejects with equal measure,

contributing nothing to f(x). The significance of the contribution of any simulated

branch of M is then in proportion to its recorded weight in N, which in absolute value
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is 2NT times its weight in M (arising from the systemic failure to divide the recorded

weight by N at each of the T transitions, and from the two values of b). Let α+(x) be

the total weight of those accepting branches of M with positive weight, α−(x) be the

total (absolute value of) the weight of accepting branches with negative weight; and

similarly for ρ+(x) and ρ−(x) for rejecting branches of positive and negative weight.

Then α(x) := α+(x)− α−(x) is the acceptance weight and ρ(x) := ρ+(x)− ρ−(x) is

the rejection weight of M on input x. We decompose f(x) = f0(x) + f1(x), where

f0(x) is the contribution to the gap from branches in which a = 0, and f1(x) is the

contribution to the gap from branches in which a = 1. We then have

f0(x) = 2NT
[
α+(x) + ρ+(x)− α−(x)− ρ−(x)

]
= 2NT ,

as α(x) + ρ(x) = 1. In the branches where a = 1, the sign of the contribution from

rejecting branches is negated, so that

f1(x) = 2NT
[
α+(x)− ρ+(x)− α−(x) + ρ−(x)

]
= 2NT

[
2α(x)− 1

]
,

again using α(x)+ρ(x) = 1. Thus, we have f(x) = 4NTα(x). Let g(x) = 4NT : as M

is proper, then either 0 ≤ f(x)/g(x) ≤ 1
3

or 2
3
≤ f(x)/g(x) ≤ 1. Thus, if M decides

any problem with bounded error N is an AWPP algorithm for the same problem.

3.4.4 Constructing affine circuits

The next step towards Theorem 3.2 is to construct a family of circuits that can simu-

late an arbitrary AffTM. The final step will then be to show that the collection of all

such circuit families is available in a specific non-free theory that satisfies tomographic

locality and causality.

The construction of the circuits is based on that used by Yao in [79] to construct

quantum circuits that simulate a quantum Turing Machine (and also on that of [91, 92]

for circuits that simulate a probabilistic Turing machine). Let M, as before, be a

proper and efficient AffTM with alphabet Σ, set of states Q and transition amplitudes

δ(q, a, τ, q′, a′) ∈ Q with τ ∈ {←, ◦,→}; the symbols ←, → and ◦ are interpreted as

the tape head of the AffTM moving to the left, moving to the right, and remaining

stationary. Here δ is the transition weight of M to change to state q′, print a′ on the

tape and move according to τ , if the machine is currently in state q and reading a. The

condition on the weights in order for M to be an AffTM is:
∑

τ,q′,a′ δ(q, a, τ, q
′, a′) = 1

for all q ∈ Q, a ∈ Σ.
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Denote the configuration of the AffTM at a specific step along one branch of the

computation by the real vector

|s0, q0, a0, · · · , si, qi, a, · · · , s2t, q2t, a2t),

where the index i denotes the ith cell of the tape and t is the run time of the AffTM

(there are 2t+1 cells, numbered from 0 to 2t, instead of from −t to t). Here si takes on

value 0 when the head is not at cell i, value 1 when it is at cell i and the transition step

has not occurred and value 2 when the head has just moved according to a transition

and is now at cell i. Note that we can represent si with two bits. The label qi denotes

the internal state of the machine at cell i, so qi ∈ Q
⋃
{∅} and it should be noted that

qi = ∅ if and only if si = 0. The label ai denotes the alphabet character printed on

cell i, i.e. ai ∈ Σ. It is clear that l bits, where l = 2 + dlog(|Q| + 1)e + dlog(|Σ|)e,
are required to represent the information at each cell. One can thus think of these

vectors as being in one-to-one correspondence with elements in {0, 1}(2t+1)l.

The transitions made along any one branch are represented by a sequence of these

vectors. As the configuration of the AffTM at any stage of the computation is an affine

combination of vectors of this form, the full transition step of the AffTM corresponds

to an affine combination of such sequences.

We will now construct a uniform family of affine circuits that simulate this AffTM.

Here, an affine circuit refers to an acyclic circuit consisting of a polynomial number

of gates representing affine transformations acting on real vectors. We demand that

(once a basis for the real vector space has been fixed) the matrices corresponding

to these affine transformations have entries that can be computed efficiently, i.e. in

poly-time, by an ordinary Turing Machine. We also demand that the description of

the circuit can be computed in efficiently.

A specific affine circuit in this family will correspond to the concatenation of t

identical sub-circuits, which we denote by B. Each sub-circuit B performs one step of

the simulation. To construct these circuits, each tape cell of the AffTM is associated

with a number of wires in a circuit. There are l wires, each associated with one bit,

where l = 2 + dlog(|Q| + 1)e + dlog(|Σ|)e: the first two wires corresponds to the

label si (recall si is represented by two bits); the next dlog(|Q|+ 1)e wires encode the

classical bit-string describing an element of Q
⋃
∅; the final dlog(|Σ|)e wires encode

the classical bit-string description of an element of Σ.

The construction of B will now be described. The basic building block of B is a

gate G with 3l input wires and 3l output wires. B is built by cascading 2t− 1 units

of G, each sifting right by l wires, and at the end, adding a circuit I whose purpose
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Fig. 3.2: Depiction of sub-circuit B.

is to change all si with value 2 to 1 and value 1 to 2. It is clear that I is an affine

transformation and can be built using O(t) gates whose function is to implement the

change in si for a specific i. We denote the ith instance of G as Gi. See Fig. 3.2 for

a pictorial representation of B.

The intuitive idea behind this construction is as follows. The 3l inputs to G should

be thought of as describing the contents of three consecutive cells of the AffTM,

including the information about the position of the head. We want G to transform

the contents of these cells if the head is at the middle cell and the transition step has

not occurred (i.e. si = 1 with i being the middle cell) according to how the AffTM

would transform the contents. Thus we design G to act as follows:

1. For all v = |si−1, qi−1, ai−1, si, qi, ai, si+1, qi+1, ai+1) with si 6= 1, we have G(v) =

v,

2. For v′ = |0, ∅, ai−1, 1, qi, ai, 0, ∅, ai+1) we have

G(v′) =
∑
q′,a′

δ(qi, ai,←, q′, a′)|2, q′, ai−1, 0, ∅, a′, 0, ∅, ai+1)

+
∑
q′,a′

δ(qi, ai, ◦, q′, a′)|0, ∅, ai−1, 2, q
′, a′, 0, ∅, ai+1)

+
∑
q′,a′

δ(qi, ai,→, q′, a′)|0, ∅, ai−1, 0, ∅, a′, 2, q′, ai+1).

We can think of G as a controlled affine transformation that does does nothing if

the input has si 6= 1 and performs the transition step of the AffTM otherwise. Note

72



that some linear combination of vectors with si 6= 1 can lead to the same output as

when G is applied to a vector with si = 1. Thus in general G is not reversible, but

this is not a problem as affine transformations are not reversible in general.

Note that as the configuration of the AffTM is an affine combination of vectors

in one-to-one correspondence with elements in {0, 1}(2t+1)l, and, as we have defined

the action of G (when tensored with the identity on cells on which it dos not act) on

all such vectors, extending linearly uniquely defines G’s action on all configurations

of the AffTM.

Informally, B functions as follows: the cascading G’s can be thought of as scanning

over the contents of the AffTM’s tape until the current position of the head is found

and then implementing the transition step of the simulated machine. The circuit I

then flips the value of si in so that the next simulation step can be performed. Thus

B simulates one step of the AffTM and so, as the run time of the simulated machine

is t, by concatenating t instances of B, the affine circuit can simulate each step of the

AffTM. Recall that the configuration of a proper AffTM machine at step t is such that

the sum of the weights of the accepting paths is positive. This ensures that the sum

of the weights of the rejecting paths is also positive, as the accepting and rejecting

weights must sum to one. Thus, the output of the circuit is a convex combination

of the real vectors corresponding to the accepting and rejecting configuration. The

probability to accept is then just the factor in front of the real vector corresponding

to the accepting configuration.

In the next section, a slight variation on the above simulation will prove useful.

The new simulation algorithm is the same as original discussed above except that,

when the internal state of an AffTM enters into an accepting or rejecting state, the

head of the AffTM will move to the first cell on the tape before halting. This ensures

that in the convex combination of vectors output from the circuit, the state in the

first cell will tell us whether the computation accepts or rejects, i.e. q0 = Acc. or

q0 = Rej.

3.4.5 A tomographically local theory

The construction in the preceding section resulted in a collection of closed circuits

which correspond to the probability that the AffTM accepts or rejects given a specific

input. Based on this, can we view these closed circuits as closed circuits in some

causal and tomographically local non-free theory? As discussed in section 3.1, the

correspondence between probabilities and closed circuits in a physical theory gives

rise to a real vector space structure for the states, effects, and transformations. One
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must ensure that these emergent vector spaces have the structure one would expect

given that the states, effects and transformations in the theory should correspond

to the real vectors and matrices involved in the construction of the affine circuits.

Both structures must match if we want to ensure the uniformity condition of the

affine circuits and the fact that gates compose in parallel via the vector space tensor

product, carries over to general theory. Moreover, these two structures must match

in order for full tomography of the states and transformations to be possible within

the theory.

For example, the vector

|s0, q0, a0, s1, q1, a1, · · · , s2t, q2t, a2t)

lives in a 2(2t+1)l dimensional vector space, but, from the point of view of the physical

theory, the state corresponding to this vector lives in a two dimensional vector space;

there are only two state preparations, those that lead to an accepting or rejecting

output. In order to ensure the vector space dimensions match correctly, we introduce

‘noisy’ measurements consisting of ‘noisy’ effects that can be applied to single systems

and which wash out any possible negative or super-normalised weights arising in the

measurement process. First, we must introduce types for each system.

Recall that, at any specific step along one branch of the computation, the contents

of cell i of the AffTM tape is described by a bit string ci ∈ {0, 1}l, and these strings

are in one-to-one correspondence with real vectors |ci). In order to consider these

vectors as states in our theory, they must be assigned system types. We will denote

the system associated to the vector |ci) as TAi , where T counts the number of steps

the AffTM has undergone. Thus the system type associated with the state describing

the contents of the ith cell after T steps in one specific branch is |ci)TAi . We have

that 0 ≤ T ≤ t, for t being the run time of the AffTM. We can think of the label T

as specifying the ‘vertical’ position of the tree representing the AffTM computation

and Ai as specifying the position along the tape.

Consider the following state of system 1Ai , |ci)1Ai
, that is the state associated with

the input to the AffTM computation. We demand that effects dual to these states

satisfy 1Ai
(di|ci)1Ai

= δcidi , for ci, di ∈ {0, 1}l. Given the construction of the real

vectors from the section that constructed the affine circuits, the state corresponding

to the entire contents of the tape at the very start of the AffTM computation cor-

responds to |b)1A =
⊗2t+1

i=1 |ci)1Ai
, for b ∈ {0, 1}(2t+1)l. Here, for simplicity, we are

only considering an input of fixed size. The effects acting on these states are then

1A(e| =
⊗2t+1

i=1 1Ai
(di|, for di varying over bit strings from {0, 1}l. We define the set of
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states of system 1A as the convex closure of the states described above and similarly

for the effects.

To discuss systems of type TA, for 1 < T < t, we need to discuss the transfor-

mations defined by the gates Gi and I. We introduce types on the input and output

ports of gate G and gate I (recall that I consists of O(t) single system transforma-

tions) in such a way as to ensure the G’s and I can only be composed to yield the

circuit fragment B, as depicted in FIG. 3.2. There will be t versions of B, each with a

different input and output type. For example, B
(T+1)A
TA

is a transformation that takes

a system of type TA to a system of type (T + 1)A.

States of system TA are of the form

BT+1A
TA

· · ·B2A
1A
|b)1A

Now effects of the form TA(e|, for e ∈ {0, 1}(2t+1)l, cannot be allowed effects on system

TA as, due to the fact that the AffTM is allowed assign negative weights to certain

transitions, TA(e|BT+1A
TA

· · ·B2A
1A
|b)1A can in principle be negative. We now show how

one can alter these vectors – by adding some ‘noise’ – in such a way as to ensure

that the negative or super-normalised weights get washed out during the measure-

ment process. Before we introduce noisy measurements, note that the following is an

allowed effect on system TA, which we call the unit effect and define by

TA(U | =
∑

e∈{0,1}(2t+1)l

TA(e|.

Note that the expression

TA(U |BT+1A
TA

· · ·B2A
1A
|b)1A = 1

follows from the fact that the amplitudes of a specific AffTM transition step sum to

one.

We construct effects for the ‘noisy’ measurements, so that wherever they occur in

the circuit, the measurement statistics do not reveal the negative coefficients suggested

by our representation of the transformations. Assuming that we decompose the types

into bit-strings, it suffices to define two effects (a0|ν = (0|Dν and (a1|ν = (1|Dν ,

in terms of some stochastic 2 × 2 operator Dν which provides a veil of propriety :

that is, such that for any primitive gate G on k bits included in the theory, all of

the coefficients of the matrix (D⊗kν )G are in the interval [0, 1]. Our strategy is to

construct Dν = 1−pν
2

[
1 1
1 1

]
+ pνI2, where I2 is the 2 × 2 identity matrix, so that the

effect of Dν is to decrease the bias of any distribution on a single bit, and to determine
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how small pν must be to ensure that Dν provides a veil of propriety. By ‘bias’ here we

mean the difference between the two weights described by the inner products: (i|x),

for i = 0, 1, where |x) is some state on system ν. If the bias is in the interval [0, 1],

then the weights form a probability distribution and we can consider {(a0|, (a1|} to

be a well-defined measurement acting on system ν. This motivates measuring the

“maximum bias per bit” of each gate G, consisting of

max
u

∣∣2α− 1
∣∣1/k

taken over all coefficients α of a k-bit gate G. An improper transition weight will be

represented by biases-per-bit greater than 1.

The largest “improper” transition weight in the AffTM construction for AWPP

algorithm is the transition weight (1−N) associated with non-deterministically select-

ing a symbol βt = 0 in a branching string, where N is the largest number of transitions

of some NTM realising the AWPP algorithm. As the symbol βt ∈ {0, 1, . . . , N} re-

quires at least log2(N + 2) bits to express, the bias-per-bit of these transitions are

at most (2N − 3)1/log2(N+2) = 2ln(2N−3)/ln(N+2). For N > 1, we may bound this from

above by 3. The other improper weights in the construction are either −1 or +2, each

having a maximum bias of 3 (or a maximum bias-per-bit of 31/k for k-bit gates with

−1 or +2 as coefficients). We may then take 3 as an upper bound on the bias-per-bit

of the gates in the affine circuit. To construct the noisy measurements, it suffices to

choose pν = 1
3
, which ensures that the maximum bias-per-bit of the gates (D⊗kν )G as

at most 1.

For system tA the measurement corresponding to the AffTM accepting or rejecting

its input, which consists of two effects, is allowed. To define this measurement we first

add a subscript to the vectors corresponding to bit strings in {0, 1}(2t+1)l, denoting

the state of the AffTM machine in that configuration and we denote the subset of the

set of states Q corresponding to the ‘accepting’ states by Qacc. Consider the following

two vectors:

1. tA(eacc| =
∑

q∈Qacc tA
(eq|, and;

2. tA(erej| =
∑

q∈Q/Qacc tA
(eq|.

Recall that the configuration of the AffTM machine at step t is such that the sum of

the amplitudes of the accepting paths is positive. This ensures that the sum of the

amplitudes of the rejecting paths is also positive, as they must sum to one. Hence,

the above two vectors define valid effects. Note also that tA(eacc| +tA (erej| =tA (U |.
This fact implies that the theory we are constructing is causal.
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The conjunction of the accept/reject measurement provides a new measurement

that can be performed on systems of type TA, for 1 ≤ T < t. This new measurement

corresponds to constructing the remainder of the circuit, by applying an appropriate

number of gates G, and then performing the accept/reject measurement.

If we change the simulation algorithm of the AffTM slightly – as was briefly re-

marked upon at the end of the preceding section – we can ensure that the accept/reject

measurement is not a joint measurement across all systems, but a single system mea-

surement (composed with unit effects on all other systems). This implies that joint

measurements across two identical copies of the same circuit are well-defined in our

theory. The new simulation algorithm is the same as before except that when the

internal state of an AffTM enters into an accepting or rejecting state, the head of the

AffTM will move to the first cell on the tape before halting. This ensures we need

only apply the accept/reject measurement to a single system tA1 , in conjunction with

unit effects on all other systems.

In summary:

1. System type 1A:

(a) States: All convex combinations of |b)1A =
⊗2t+1

i=1 |ci)1Ai
, i.e. b ∈ {0, 1}(2t+1)l.

(b) Effects: Sums of effects 1A(e| =
⊗2t+1

i=1 TAi
(di|, i.e. e ∈ {0, 1}(2t+1)l, with

the property that 1Ai
(di|ci)1Ai

= δcidi , for all i = 1, . . . , 2t + 1, the ef-

fect corresponding to constructing the rest of the circuit and applying the

accept/reject effect and the unit effect 1A(U | =
∑

e∈{0,1}(2t+1)l 1A(e|.

2. System type TA, for 1 < T < t:

(a) States: All convex combinations of BT+1A
TA

· · ·B2A
1A
|b)1A , for 1 < T < t.

(b) Effects: Unit effect TA(U |, ‘noisy’ effects and the effect corresponding to

constructing the rest of the circuit and applying the accept/reject effect.

3. System type tA:

(a) States: All convex combinations of BtA
t−1A
· · ·B2A

1A
|b)1A

(b) Effects: tA(eacc|, tA(erej|, ‘noisy’ effects and the unit effect tA(U |.

The allowed closed circuits in the theory are those corresponding to the family

of closed circuits which simulate AWPP and those formed by applying the local

noisy measurements to the allowed individual states and gates in the theory. The

latter set of closed circuits ensures one can perform full tomography of the states
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and transformations and thus ensure that each transformation in the theory has

the same matrix representation as the gate from the affine circuit it corresponds to.

This implies, among other things, that our theory satisfies tomographic locality as

transformations in the affine circuits compose in parallel via the vector space tensor

product. We have thus constructed a causal and tomographically local non-free theory

(which satisfies finite tomography), completing the proof of theorem 3.2.

3.5 Discussion

One might wonder why the existence of a non-free theory satisfying BGP = AWPP

does not immeadiately imply NP ⊆ AWPP. Recall that the Valiant-Vazirani theo-

rem [47] says that if one has both an efficient algorithm for solving the Unique Sat-

isfaction Problem and the ability to probabilistically amplify polynomially-unlikely

events, then one can solve any problem in NP. A crucial point in all of this is that

the Unique Satisfaction Problem is a promise problem. That is, given the promise

that the input is a Boolean formula with either a unique satisfying assignment or no

satisfying assignment at all, then there exists an algorithm which outputs which of

the two it was and satisfies the conditions of an AWPP computation on these inputs.

When applying the Valiant-Vazirani procedure it may happen that an input to this

algorithm does not satisfy such a promise. This was not an issue for free theories, as

we saw in theorem 3.1. In a non-free theory however, it may not be the case that

for every possible input—which may not satisfy the promise—the composite of the

algorithm with that input is allowed in the theory. In the language of Affine Turing

machines, if the input doesn’t satisfy the promise, the output may not be proper, i.e.

it may reveal the negative weights, and hence we cannot apply the Valiant-Vazirani

theorem.

The distinction introduced in this chapter between free and non-free theories ap-

pears to be important for the study of computation in generalised probabilistic theo-

ries. The crucial distinction between free and non-free theories is that transformations

in free theories are closed under composition, implying a bound on the set of states.

This need not be the case in non-free theories. Could a quantum computer exploit

this fact and efficiently simulate computation in all tomographically local free theo-

ries? If such a conjecture was borne out, it could shed light on which physical and

structural features give rise to the quantum computational speed-up.

Recently, methods have been proposed that make use of quasi-probability distri-

butions to classically estimate the output of a quantum computer [70]. These classical
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estimates converge on the true quantum output probabilities in a time quantified by

the “negativity” of the quasi-probability distribution. The larger the negativity, the

harder it is for a classical computer to estimate the output probability of a quantum

computer. As we have provided an interpretation of the class AWPP in terms of

quasi-probabilities, it would be interesting to determine if quantum algorithms can be

constructed that estimate the output probability of this quasi-probabilistic computa-

tional model. In analogy with the classical estimation algorithms of [70] the quantum

algorithms may converge to the true output probability at a rate governed by the

negativity of the quasi-probability distribution. Determining how hard it is for a

quantum computer to simulate AWPP would provide a way to determining if quan-

tum theory is powerful for computation in the landscape of generalised probabilistic

theories.

An interesting feature of the theory constructed in this chapter is that it satis-

fies the principle of causality. The main result of chapter 2 was that for any theory

satisfying tomographic locality, whether or not causality is satisfied, efficiently solv-

able computational problems are contained in AWPP. Taken together, these results

show that computational circuits in any non-causal theory can always be efficiently

simulated by circuits in a causal theory. Hence, in the landscape of general theories,

“acausality” does not appear to be a resource for computation.

Theorem 3.2 is reminiscent of a result encountered when quantum correlations

are viewed in the context of the set of non-signalling theories [71]. This set consists

of theories satisfying the no-signalling principle, ranked according to the strength of

their correlations—quantified by the degree of violation of certain Bell Inequalities

[71]. Quantum theory is ranked above classical theory, but Boxworld4, which has the

strongest correlations consistent with the no-signalling principle, is ranked above all

other non-signalling theories. In the current chapter, we considered the set of theories

satisfying tomographic locality and ranked them according to the power of their effi-

cient computation. Classical theory is ranked below quantum theory (corresponding

to the fact that quantum computers can efficiently simulate classical ones), but we

showed there exists a theory with the strongest possible computational power and so

is ranked above all other tomographically local theories, including quantum theory.

In a sense, one can think of the theory constructed in this chapter as the analogue of

a PR box for computation. This situation is illustrated schematically in Fig. 3.3

Moreover, Refs. [68, 69] have shown that methods employing quasi-probability dis-

tributions can simulate arbitrary non-signalling correlations. The quasi-probabilistic

4See chapter 1 for a discussion on Boxworld
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Fig. 3.3: The lefthand side schematically depicts the set of non-signalling theories,
ranked in increasing order (from the center of the figure) of Bell inequlaity violation.
The righthand side schematically depicts the set of all tomographically local theo-
ries, ranked in increasing order (from bottom to top) of the power of their efficient
computation.

model of computation introduced here to construct a theory with maximal computa-

tional power bears an intriguing resemblance to these approaches, providing another

similarity between the set of all non-signalling correlations and the computational

landscape of general theories.

Interestingly, van Dam has shown [5] that communication complexity tasks in

Boxworld can be solved trivially. Hence, quantum theory’s computational and infor-

mation processing capabilities appear to be sub-optimal in the broad landscape of

generalised probabilistic theories. Studying situations that combine both computa-

tion and communication complexity in a non-trivial fashion may provide reasons why

quantum theory is restricted in such a manner. In the next chapter, we use tools from

the field of computational complexity, namely computation with advice and simple

interactive proof systems, to investigate such situations.

Many attempts at providing reasonable physical principles that uniquely charac-

terise the set of quantum correlations as a subset of the set of all non-signalling cor-

relations have been made [77, 74, 76]. These principles, while not fully capturing the

exact quantum boundary [75], have deepened our understanding of quantum correla-

tions and provided connections between physical principles and information-theoretic
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advantages. Insights garnered from these connections have also lead to the develop-

ment of Device-Independent Cryptography. So while investigating such connections

has foundational interest, it has also been shown to have practical implications.

It seems prudent to ask the analogous question for the set of tomographically local

theories: can the class of efficient quantum computation be characterised by some set

of simple physical principles? That is, what is the minimal set of physical principles

which perfectly captures the (top) boundary of the green region in Fig. 3.3. Such a

characterisation would deepen our understanding of quantum computation and may

also be of practical relevance; if one uncovers the necessary and sufficient physical

requirements for universal quantum computation one could design algorithms that

optimally take advantage of them. One approach to such a characterisation would

be to find the minimal set of physical principles sufficient to derive the quadratic

lower-bound to the search problem [44], which is saturated in the quantum case by

Grover’s algorithm. Any set of physical principles which derive it could be argued to

capture some of the essence of quantum computation. This question will be the main

focus of chapter 7.

Note again that the modified definition of generalised probabilistic theories pre-

sented in this chapter will not be used in subsequent chapters. In all other chapters—

unless explicitly stated otherwise—the standard framework introduced in chapter 1

is used.
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Chapter 4

Bounding the power of proofs and
advice

In chapter 2, we showed that the class of problems a specific tomographically lo-

cal generalised probabilistic theory can solve efficiently is contained in the classical

complexity class AWPP. Moreover, in chapter 3, we explicitly constructed a non-

free theory—satisfying both tomographic locality and causality—that can solve all

problems in AWPP efficiently.

In section 3.5 of the previous chapter, it was noted that this situation is reminiscent

of the one encountered when quantum correlations are viewed in the context of the

set of non-signalling theories. Indeed, it was suggested that one could, in a sense,

think of the theory constructed in the previous chapter as the analogue of a PR

box for computation. The theory colloquially known as Boxworld, which exhibits

PR box correlations and was discussed in chapter 1, was shown by van Dam [5] to

be able to trivially solve any communication complexity task. This is due to the

strength and complexity of the correlations present in Boxworld states. Quantum

theory’s information processing capabilities thus appear to be sub-optimal in the

broad landscape of operational theories. Why then did Nature choose our universe

to be quantum mechanical?

Taking a closer look at Boxworld reveals an intriguing partial answer to this

question: reversible transformations in Boxworld are trivial—a fact first shown in [11]

and strengthened in [95, 96]—and so any reversible computation in this theory can be

easily simulated on a classical computer. Similarly, the non-free theory constructed

in chapter 3 that achieves the maximal computation power appears to have sacrificed

all other information processing capabilities. Indeed, the only non-trivial thing the
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theory seems to be abe to do is simulate AWPP computations1. These examples hint

at the possible existence of a “trade-off”, first suggested in [17], between the power

of computation in a theory—that is, the richness of its dynamics—and its prowess in

communication complexity tasks—that is, the amount of “useful” information that

can be stored and extracted from its states. Could quantum theory be a “Goldilocks”

theory that, in some sense, achieves the ideal trade-off in this regard? While it

may not be the most powerful theory with respect to computation or communication

complexity when considered separately, perhaps it has the optimal balance between

powerful computation and powerful communication complexity.

We use the potential existence of such a trade-off as motivation to investigate sit-

uations in which both computation and communication complexity appear in a non-

trivial manner in generalised probabilistic theories. In this chapter we investigate how

simple physical principles bound the power of two different computational paradigms

which combine computation and communication in a non-trivial fashion: computa-

tion with advice and interactive proof systems. Determining how computation and

communication power vary as quantum theory is replaced by other operationally-

defined theories may reveal some of the key physical features required for powerful

computation and communication and is an interesting question independent of the

motivation provided above.

4.0.1 Overview of the results

Computation with advice considers the situation where an efficient computer is sup-

plemented with extra information, or advice, which, in classical computation, takes

the form of a bit string and, in quantum computation, takes the form of a quantum

state. The usefulness of this computational paradigm is that no uniformity2 con-

straints are placed on the string or state embodying the advice—as is usually the

case when one considers efficient computation—and one can thus attempt to encode

solutions to hard problems in the advice. Aaronson was among3 the first to study and

set bounds on the power of quantum computation with (quantum) advice [102]. His

primary motivation was a desire to investigate the question “How many classical bits

can ‘really’ be encoded into n qubits?” from a complexity theoretic point of view.

1This is not to say that any theory with the computational ability of AWPP would suffer from
the same condition

2As defined in chapter 2.
3Quantum computation with advice was first defined and studied in [101]
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Aaronson noted [102] that quantum advice is quite closely related to quantum one-

way communication4, since one can think of an advice state as a one-way message sent

to an algorithm by a benevolent “advisor”. The class of decision problems which can

be efficiently solved on a quantum computer with access to a quantum advice state is

denoted BQP/qpoly, and Aaronson has shown [102] that BQP/qpoly ⊆ PP/poly.

Based on the relation between quantum advice and quantum one-way communication,

the size of the class BQP/qpoly can, in some sense, be thought of as a measure of

prowess in communication tasks, or, intuitively speaking, as a measure of how much

‘useful’ information can be stored in a quantum state.

If the computational power of a general theory can be considered a measure of

the richness of its dynamics, then the increase in computational power when supple-

mented with advice can be thought of—à la Aaronson in the previous discussion—as

a measure of the information that can be stored in its states. In section 4.1 we pro-

vide rigorous definitions of the class of decision problems that can be solved in a

specific generalised probabilistic theory when provided with a trusted advice state

from that theory—which we call BGP/gpoly for a particular theory G. We show

that in Boxworld, the class BGP/gpoly contains all decision problems and so is opti-

mally powerful. Despite this, section 4.2 shows that theories with a certain amount of

non-trivial reversible dynamics satisfy the same upper bound on the power of compu-

tation with advice as quantum theory. In particular, for theories G with non-trivial

revsersible dynamics we show that BGP/gpoly ⊆ PP/poly. Boxword has no non-

trivial reversible dynamics [11, 95, 96], and our result shows that when a theory has

non-trivial reversible dynamics there is a limit on its prowess in certain communica-

tion tasks—as quantified by the size of the class BGP/gpoly. In a certain sense,

one can view this result as a conceptual illumination of the conjecture concerning the

existence of a trade-off between states and dynamics in physical theories, although it

by no means establishes such a conjecture.

A key point in the above discussion is that one trusts the advice provider. That

is, one trusts that the received advice contains the information the provider claims

it does. In reality the provider could be malevolent and out to deceive the receiver.

4Quantum one-way communication can be described as follows: Alice has an n-bit string x, Bob
has an m-bit string y, and together they wish to evaluate f(x, y) where f : {0, 1}n×{0, 1}m → {0, 1}
is a Boolean function. After examining her input x = x1 . . . xn, Alice can send a single quantum
message ρx to Bob, whereupon Bob, after examining his input y = y1 . . . ym, can choose some basis
in which to measure ρx. He must then output a claimed value for f(x, y). We are interested in how
long Alice’s message needs to be, for Bob to succeed with high probability on any x, y pair.
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If one cannot trust the provider, a computer must be used to check—or verify—

that the provided advice is correct and this verification process requires non-trivial

dynamics to implement. Thus, by learning how computational complexity changes as

the amount of trust we have in the provider is varied, we enter into a regime where

both prowess in communication tasks and computational power—corresponding to

the existence of non-trivial dynamics—are simultaneously tested.

Within theoretical computer science, untrusted advice has been formally referred

to as proofs and has a long history within computational complexity. For example,

the famous class NP can be described as a proof system between an efficient, deter-

ministic, classical computer, or verifier, and an all-powerful prover where the prover

gives polynomially-sized proofs to the verifier. Here the verifier wishes to check if

this proof is the correct solution to a particular problem. See appendix A for a rig-

orous definiton of the class NP. In quantum computing, a natural analogue of NP

is the complexity class denoted QMA, for Quantum Merlin-Arthur. The question

of what useful problems a quantum computer can solve when given a non-uniform

quantum state as a proof from an untrusted source has led to surprising and beautiful

connections between quantum computation and condensed matter physics [104].

In section 4.1, we give a rigorous definition of the class of problems for which a

verifier with an efficient computer from a specific theory can solve when given proof

states from that theory—which we call GMA for a particular theory G. We show,

in section 4.3, that there exists a universal upper bound on GMA for all causal and

tomographically local theories. In particular, we show that GMA ⊆ PP for all G

satisfying tomographic locality and causality. Note that Boxworld is an example of

such a theory. Some results concerning the connection between trusted advice and

proof verification in general theories are given in section 4.4.

4.1 Proofs and advice

In this section we provide generalisations of the definitions of classical (quantum)

computing with advice and a type of classical (quantum) interactive proof system

to the framework of general operational theories. For an overview of the classical

and quantum definitions, see appendix B and C respectively. As with the definition

of BGP in chapter 2, unless otherwise stated, the constants (2
3
, 1

3
) can be chosen

arbitrarily as long as they are bounded away from 1
2

by some constant, or alternatively

by some inverse polynomial in the size of the problem.
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4.1.1 Definitions for general theories

Circuits from a uniform circuit family {Cx} in some general theory are indexed by

the string x that encodes the decision problem the theory is attempting to solve. In

defining the class of efficient computation in a theory, the family {Cx} is taken to

consist of closed circuits from that theory. This will not be the case when advice and

proofs are involved; in this paradigm, one is given both the problem instance x and

a proof or advice state, so the constructed circuit Cx must have open system ports

into which this state can be plugged. Henceforth we will assume that uniform circuit

families consist of collections of circuits with a number of open input ports, which can

grow as a polynomial in |x|, which we call the auxiliary register. Note that the choice

of finite gate set determines the possible system types of the auxiliary register. Given

this convention, we can define efficient computation with trusted advice in a specific

general theory. Note in the following that we are assuming the causality principle.

Definition 4.1. For a general theory G, a language L ⊆ {0, 1}n is in the class

BGP/gpoly if there exists a poly-sized uniform family of circuits {Cx} in G, a set

of (possibly non-uniform) states {σn}n≥1 on a composite system of size d(n) for some

polynomial d : N→ N, and an efficient acceptance criterion, such that for all strings5

x ∈ {0, 1}n:

1. If x ∈ L then Cx accepts with probability at least 2/3 given σn as input to the

auxiliary register.

2. If x /∈ L then Cx accepts with probability at most 1/3 given σn as input to the

auxiliary register.

Here by “composite system of size d(n)”, we mean that the number of systems, or

open ports, of the auxiliary register—into which the advice state is input—increases

as d(n), for d a polynomial in the input size. Since, as mentioned in section 2.1.2 of

chapter 2, there an efficient, deterministic, classical computer deciding acceptance,

and each state σn has a classical pointer associated with it, classical advice can always

be encoded into these pointers (of which there can be polynomially many in any poly-

size circuit). Therefore, we can always give the lower bound P/poly ⊆ BGP/poly ⊆
BGP/gpoly, where the suffix /poly denotes classical advice.

Definition 4.2. For a general theory G, a language L ⊆ {0, 1}n is in the class

GMA if there exists a poly-sized uniform family of circuits {Cx} in G, a polynomial

d : N→ N and an efficient acceptance criterion, such that for all strings x ∈ {0, 1}n:

5i.e. strings x of length n, |x| = n.
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1. If x ∈ L then there exists a (possibly non-uniform) proof state σ on a composite

system of size d(n) such that Cx accepts with probability at least 2/3 given σ as

input to the auxiliary register.

2. If x /∈ L then Cx accepts with probability at most 1/3 given σ as input to the

auxiliary system, for all states σ.

As was stated at the start of this section, see appendix B and C for an overview of

the classical and quantum definitions of computation with advice, and proof verifica-

tion. Informally, for the specific case of quantum theory, the G in the nomenclature

should be replaced with Q and /gpoly is replaced with /qpoly.

The existential quantifiers in the above definition of GMA rigorously capture the

notion of a circuit having to “verify” the proof. Note also that advice states can only

depend on the size of the input whereas proofs can, in general, be dependent on the

inputs themselves. The amplification procedure of [107] that achieves exponential

separation for the acceptance and rejection probabilities in QMA, at the expense of

a polynomial increase in the size of the witness state, can be adapted in a straight-

forward fashion to provide a similar amplification procedure for GMA, for arbitrary

G. Note that BGP ⊆ GMA follows straightforwardly from the definitions. Also,

via the same arguments given to lower bound the class BGP/gpoly, we can always

give the lower bound NP ⊆ GMA.

It was proved in [107] that QMA ⊆ PP, and this was improved in [99] to

QMA ⊆ A0PP, (see also [106]). Aaronson and Drucker [103] have shown the fol-

lowing remarkable relation between these two classes:

BQP/qpoly ⊆ QMA/poly.

This says that one can always replace (poly-size) quantum advice by (poly-size) clas-

sical advice, together with a (poly-size) quantum proof6. Intuitively, this relation can

be summed up as follows: one can always simulate an arbitrary quantum state ρ on

all small circuits, using a different state ρ̃ that is easy to recognize7. In section 4.3

we investigate whether this relation holds for general theories.

6Note that advice can encode solutions to even undecidable problems, any upper bound on an
advice class will be another advice class.

7One can even take ρ̃ to be the ground state of a local Hamiltonian [103].
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4.1.2 Example: Boxworld

We now look at Boxworld with respect to our definitions of proofs and advice in

general physical theories. Recall the definition of Boxworld from section 1.4.4 of

chapter 1.

The 2-level PR box correlations discussed in chapter 1 can be extended to n-

partite systems, where now for the jth party, xj ∈ {0, 1} and aj ∈ {0, 1} are the

choice of measurement and its outcome respectively. There exists a state |ρf ) and

effects {j(xj, aj|} for all j parties that produce the probabilities [108, 82]

(x1, a1|(x2, a2|...(xn, an|ρf ) =

{
1

2n−1 , if
⊕n

j=1 aj = f(x),

0, otherwise

where
⊕

represents summation modulo 2 and f : {0, 1}n → {0, 1} is any Boolean

function from the bit-string x with elements xj. Therefore, if the state |ρf ) is prepared

and local measurements described by effects (xj, aj| made, a classical computer can

compute the parity of all outcomes aj and so we deterministically obtain the evalu-

ation of Boolean function f(x). This relatively straightforward observation gives us

the following result.

Theorem 4.3. There exists a generalised probabilistic theory G satisfying causality

and tomographic locality, in which BGP/gpoly = ALL, where ALL is the class of

all decision problems.

Proof. Clearly BGP/gpoly ⊆ ALL is trivially true for Boxworld. The states |ρf )
can be used as advice states and, as all decision problems can be represented by

Boolean functions, it follows that ALL ⊆ BGP/gpoly.

Note as the above proof only requires the ability to prepare and measure states, it

still goes through if we only restrict to reversible dynamics. If one considers the class

GMA for Boxworld with only reversible transformations then we have GMA ⊆MA

since all reversible dynamics are trivial in this theory and can thus be simulated

classically [11, 95, 96]. By trivial, we mean that the circuits in Boxworld only consist

of making the local “fiducial” measurements {j(xj, aj|} on a state and performing

classical post-processing on the outcomes. This process can be simulated by the

prover giving the verifier the classical string of measurement outcomes similar to the

approach of Lemma 2 in [97]. That is, while poly-size advice states in Boxworld can

encode any Boolean function, the theory lacks the required reversible dynamics to

efficiently verify this function is encoded in the state if the prover cannot be trusted.
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4.2 Consequences of non-trivial dynamics for com-

putation

In part 4.2.1 of this section, we show the existence of non-trivial dynamics implies that

computation in that theory is at least as powerful as probabilistic classical compu-

tation: BPP ⊆ BGP. Hence non-trivial dynamics imply non-trivial computational

power. Furthermore in part 4.2.2, we show the existence of non-trivial dynamics im-

plies a bound on the amount of “useful” information—quantified by the size of the

class BGP/gpoly—that can be stored in general states.

4.2.1 Powerful computation from non-trivial dynamics

Definition 4.4. A theory is said to be non-classical if, for at least one n-tuple of

pure and perfectly distinguishable states {|σi)}Ni=1, there exists a pure state |y) such

that (ei|y) = pi for 0 < pi < 1 for all i, where {(ei|}Ni=1 is the measurement that

distinguishes the {|σi)}Ni=1.

Before we present our result, we wish to emphasize that the result is highlighting

the intrinsic computational power in a theory. As previously mentioned, in our

framework we already have a classical computer that processes experimental data

and, if a circuit in a theory G can produce random numbers, we can easily achieve

the complexity class BPP. By talking about intrinsic computational power, we

imagine reducing the power of our classical computer to perform extremely simple,

non-universal classical computation. For example, the classical computer deciding

the output of the computation could only output the (classical) pointer position of

one of the measurement devices. Our result then shows that theories with a certain

amount of non-trivial dynamics still decide any problem in BPP.

Theorem 4.5. Let G be a causal, non-classical theory with at least two pure and

distinguishable states that satisfies Permutability (as defined in section 1.3.4 of chap-

ter 1.). Then

BPP ⊆ BGP.

Proof. For BPP ⊆ BGP, it is sufficient to show two things: that transformations

of the general theory can simulate the action of any reversible Boolean function

f : {0, 1}n → {0, 1}n, and that it is possible to prepare a source of random bits.

First, bit strings x = x1 . . . xn can be represented by perfectly distinguishable pure

states |x) = |x1) ⊗ · · · ⊗ |xn). Then, the first condition follows from Permutability:
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since {|f(0 . . . 0)), . . . , |f(1 . . . 1))} is a permutation of the tuple of pure and perfectly

distinguishable states {|0 . . . 0), . . . , |1 . . . 1)}, there must exist a reversible transfor-

mation Tf such that Tf |x) = |f(x)).

For the second condition it suffices if there are circuits that can generate random

bits. Consider the two pure and perfectly distinguishable states |0) and |1). Let

{(e0|, (e1|} be a measurement that distinguishes them, that is (ei|j) = δij, for i, j =

0, 1. Non-classicality implies that there exists some pure state |y) /∈ {|0), |1)} such

that (e0|y) = p and (e1|y) = 1 − p, with 0 < p < 1. Probabilities of 1/2 can be

generated by preparing two copies of |y), implementing the measurement on each in

parallel and assigning a value y = 0 or 1 to the outcomes 01 and 10 respectively8.

4.2.2 Bounds on computation with advice in physical theo-
ries

Recall that a state is mixed if it is not pure and it is completely mixed if any other

state refines it. That is, |c) is completely mixed if for any other state |ρ), there exists

a non-zero probability p such that p|ρ) refines |c). Intuitively, one should be able

to efficiently prepare a completely mixed state on a computer in any general theory.

This follows because the completely mixed state can be prepared by performing any

uniform state preparation and “forgetting” the outcome. Henceforth we shall assume

that the completely mixed state—if it exists—is uniform.

Recall the definition of a bit-symmetry from section 1.3.4 in chapter 1. In any

bit-symmetric theory with at least two pure and distinguishable states, it can be

shown [49] that the group of reversible transformations acts transitively on the set

of pure states. That is, given any two pure states |ρ), |σ), there exists a reversible

transformation T such that T |ρ) = |σ). This fact can be used [15, 16] to prove

the existence of a completely mixed state as the unique state—for a given system

type—that is invariant under all reversible transformations.

Bit-symmetry is a powerful principle and has many useful consequences. Two

more of which are:

1. Every bit-symmetric theory is self-dual [49]. That is, to every pure state |ρe)
8This argument is based on von Neumann’s argument for turning two copies of a biased coin into

one copy of an unbiased coin.
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there is associated a unique pure effect (eρ|, and vice versa 9. This association is

achieved via an inner product 〈·, ·〉, on the real vector space V generated by the

set of states, as: (eρ|σ) = 〈|ρe), |σ)〉, for all states |σ). Note that 〈|ρ), |ρ)〉 = 1

for all pure states |ρ).

2. Let ‖|v)‖phy = 2 max(e| |(e|v)| and ‖v‖E =
√
〈v, v〉, for v an arbitrary vector

in V . Note that these are both norms. The norm ‖|ρ) − |σ)‖phy has a natural

operational interpretation as the distinguishably of |ρ) and |σ). Bit-symmetry

implies [114] that ‖|ρ) − |σ)‖phy ≤ c‖|ρ) − |σ)‖E, where c = ‖|c)‖E for |c) the

completely mixed state.

Using the above facts, we now prove a version of the “as good as new lemma”10—

discussed in the quantum case in [102]—for all bit-symmetric theories. Before we

state this lemma, we need to briefly introduce a notion of post-measurement state

update rule for bit-symmetric theories. In this work applying a measurement to

a state corresponds to a closed circuit—that is a probability. However, to discuss

post-measurement states, this must be generalised slightly. A measurement will

henceforth correspond to a laboratory device from some input state to the output

post-measurement state, where the classical pointer denotes the outcome of the mea-

surement. Consider the measurement {(i|}, consisting of pure effects (i|, and apply

it to some state |ρ). On observing outcome i, the state |ρ) is updated to |ρi)/(u|ρi)
where |ρi) is the unique pure state associated to (i| via self-duality. This state update

rule satisfies a natural repeatability condition: any state yielding outcome i with unit

probability is left invariant by the update rule, thus repeated measurements always

yield the same result. See [113] for more in-depth discussion of state update rules in

general theories.

Lemma 4.6. Given a two outcome measurement, consisting of the pure effects {(0|, (1|},
and a state |ρ) such that (0|ρ) = 1− ε, for ε ≥ 0, the post-measurement state on ob-

serving outcome 0 satisfies

‖|ρ)− |ρ0)‖phy ≤ c
√

2ε,

where c = ‖|c)‖E is the completely mixed state, in all bit-symmetric theories.

9The proof of this fact requires two further technical assumptions, both implicit in Ref. [49].
These are: the group of reversible transformations must be compact, and every mathematically
allowed effect is physical.

10Also called the “gentle measurement lemma”, which was independently proved by Winter in
[117] and improved by Ogawa and Nagaoka in [118]

91



Proof. Recall in a bit-symmetric theory that ‖|ρ)− |σ)‖phy ≤ c‖|ρ)− |σ)‖E. We thus

have
‖|ρ)− |ρ0)‖phy ≤ c‖|ρ)− |ρ0)‖E

= c
√
langle|ρ)− |ρ0), |ρ)− |ρ0)〉

≤ c
√

2− 〈|ρ), |ρ0)〉 − 〈|ρ0), |ρ)〉

= c
√

2− 2∠|ρ0), |ρ)〉

= c
√

2− 2(0|ρ) = c
√

2ε.

The first line follows from the definition of ‖.‖E, the second from the fact that

‖|σ)‖E ≤ 1 for all |σ), the third from the symmetry of the inner product 〈·, ·〉 and

the last from the definition of self-duality.

The above lemma states that if one outcome of a two-outcome measurement occurs

with high probability on some state, then the post-measurement state after getting

that outcome is “close” to the original state. We are now in a position to state

the main result of this section. Before we do, let us fix the accepting criterion for

computation with advice so that the acceptance function a(·) only depends on the

measurement applied at the end of the computation. Moreover, we make the simpli-

fying assumption that this final accept/reject measurement consists of pure effects.

Theorem 4.7. Any causal, bit-symmetric, tomographically local theory G with at

least two pure and distinguishable states satisfies

BGP/gpoly ⊆ PostBGP/poly ⊆ PP/poly.

The above theorem states that in theories with non-trivial reversible dynamics,

there is a bound to how much useful information one an extract from any state. This

result provides partial evidence for the existence of a trade-off between states and

dynamics and can be seen as a natural converse to the results of [11, 95, 96]. Our

proof is a slight variation of the original proof in the quantum case, due to Aaronson

[102].

Proof. Begin by amplifying the success probability of BGP/gpoly on input x from

2/3 to 1− 1/2q(|x|). This is achieved by running a polynomial number of copies of the

circuit Cx in parallel and taking the majority answer, as described in chapter 2. Note

that in this amplification scheme the total advice state is the (vector space) tensor

product of advice states for each individual circuit. Recall that the completely mixed

state |c) is assumed to satisfy uniformity and that there exists a non-zero probability

p such that p|σ) is a refinement of |c), for any |σ). Uniformity implies that p can be
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well approximated by some rational c/dw(|x|), for c an integer and d a polynomial in

the size of the input x (recall the proof of theorem 2.2 in section 2.5.2 of chapter 2).

Given any language L ∈ BGP/gpoly we now construct a PostBGP/poly algo-

rithm that decides L. Given some x, use the completely mixed state as the advice to

the circuit Cx. Now, from the definition of BGP/gpoly, if |c) cannot be used as ad-

vice to determine x ∈ L, the circuit accepts with probability less than 1/3. Consider

the post-measurement state |c′) of the auxiliary register after running Cx with advice

|c) post-selecting on the event that we succeeded in outputting the correct answer.

If |c′) cannot be used as advice for all inputs, there exists some x′ such that Cx′

succeeds with probability less than 1/3. As before, consider the post-measurement

state of the auxiliary register after running Cx′ with advice |c′) post-selecting on

outputting the correct answer. Continue in this fashion for some t(|x|) stages, t a

polynomial. Successful post-selection is guaranteed as the actual advice state refines

|c) with probability c/dw(|x|).

If, at any iteration of this process, we cannot find an x to move forward, we must

be holding a state that works as advice for every input, and we can use it to run Cz

on any input z, succeeding with high probability. Thus if the process halts after a

polynomial number of iterations, we are done.

If the correct advice state |σ) had been used in the computation, lemma (4.6)

would imply the post-measurement state on observing the accepting outcome, |σacc),
would—under the simplifying assumption that the accept/reject measurement con-

sists of pure effects—satisfy:

‖|σ)− |σacc)‖phy ≤ c

√
1

2q(|x|)−1
.

As the completely mixed state |c) is uniform, it follows that c = ‖|c)‖E ≤ O(2m(|x|))

for m a polynomial. Therefore, c/
√

2q(|x|)−1 = o(1). We thus have

‖|σ)− |σacc)‖phy ≤ o(1).

Therefore on each iteration of the above process, the correct answer is output with

probability
c

dw(|x|) (1− o(1)) .

This process has been designed so that the probability that |c) can be re-used on

each iteration and succeed at each stage is at most 1/3t(|x|). Therefore, we have that

c

dw(|x|) (1− o(1)) ≤ 1/3t(|x|).
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Thus t(|x|) ≤ O(w(|x|)) and we are done.

There thus exists a polynomial number of x1, . . . , xt such that, if |a) is the post-

measurement state after we start with |c) and post-select on succeeding on each xi

in turn, |a) is a good advice state for every string z. Provide the algorithm with

this sequence of classical strings, along with the correct outcomes b, . . . , bt for each of

them. The algorithm then prepares |c), uses it as advice and post-selects on getting

outcomes b, . . . , bt. After this process we obtain the state |a) and so all languages that

can be decided in BGP/gpoly can also be decided in PostBGP/poly and thus, by

tomographic locality and theorem 2.7 from chapter 2, in PP/poly.

4.3 Bounds on the power of proofs in physical the-

ories

In this section we will put a non-trivial bound on GMA. To state our result, we will

again use the notion of a GapP function. We now define the class A0PP.

Definition 4.8. A language L is in the class A0PP if and only if there exists a

GapP function f and an efficiently computable function T such that

1. for all x ∈ L f(x) ≥ T (x) and;

2. for all x /∈ L we have 0 ≤ f(x) ≤ 1
2
T (x)

It known that the above class is contained in PP [99].

Fix the efficient acceptance condition for proof verification so that, in all uniform

circuits, the acceptance function a(·) only depends on the measurement applied at

the end of the computation to the non-auxiliary register. Moreover, we demand

that the measurement applied to the auxiliary register consist only of unit effects.

We make this choice to move closer to the standard quantum acceptance condition

and to simplify the proof of the following theorem. We also make the simplifying

assumption—routinely made in the literature—that all mathematically allowed states

are physically allowed. That is, all vectors whose inner product with any effect is in

[0, 1] correspond to physical states.

Theorem 4.9. For any generalised probabilistic theory G satisfying causality, tomo-

graphic locality and the assumption that all mathematically allowed states are physi-

cally allowed, we have that

GMA ⊆ A0PP ⊆ PP.
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Proof. Recall that any matrix M has a singular value decomposition given by M =

UDV T , where U, V are unitary (orthogonal if the matrix is real) matrices, V T is

the transpose of V and D is a diagonal matrix. The diagonal entries of D are all

non-negative real numbers and are called the singular values of the matrix M . Note

that the eigenvalues of the matrix MTM = V DTDV T are the squares of the singular

values of M .

Let Mx be the matrix representation of the uniform circuit, including states and

effects on the non-auxiliary register, on input x, (u| be the (tensor product) of unit

effects applied on the auxiliary register and |ρ) be any arbitrary state (which can be

non-uniform) input to the auxiliary register. Without loss of generality, one can pad

this matrix (and row and column vector) with rows and columns of zeros to ensure it

is square. The probability that the circuit accepts the string x is given by (u|Mx|ρ).

It will now be shown that this probability is upper bounded by the largest singular

value of the matrix Mx. Consider the following

(u|Mx|ρ) = (u|UDV T |ρ) ≤ σmax(u|UV T |ρ),

where σmax is the largest singular value of Mx. Now UV T is a unitary matrix and so

can be decomposed as follows UV T = WD′W T , where W is another unitary matrix

and D′ is a diagonal matrix consisting of the eigenvalues of UV T , recall that these

eigenvalues all have absolute value 1. Thus,

(u|Mx|ρ) ≤ σmax(u|WD′W T |ρ) ≤ σmax(u|ρ) ≤ σmax,

where the second inequality follows from that fact that the entries of D′ have absolute

value 1 and that W is unitary and the third inequality follows as (u|ρ) ≤ 1.

Now as the squares of the singular values are the eigenvalues of the (positive

definite) matrix MT
xMx, we have that

(σ2
max)

d ≤ Tr
(
(MT

xMx)
d
)
≤ 2n(σ2

max)
d,

where 2n is the number of entries on the diagonal of MT
xMx, n is a polynomial in |x|

an d is an arbitrary natural number. Let d be a polynomial in |x| that takes values in

the natural numbers and assume without loss of generality that it grows faster than

the polynomial n, we will need this requirement later.

The matrix Mx satisfies the uniformity condition, and it was shown in section 2.5.2

of chapter 2 that the entries of all such matrices are GapP functions. By the closure

properties of GapP (again see chapter 2) functions the entries in the matrix (MT
xMx)

d
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are also GapP functions. Using an argument similar to that in [99], Tr
(
(MT

xMx)
d
)

can be straightforwardly shown to be a GapP function, denote it by f(x). So, from

the definition of GMA, we have that f(x) ≥ σ2d
max ≥

(
2
3

)2d
for all x in the language.

Now the vector that achieves the bound of σmax is the right singular vector of Mx

with singular value σmax, which we denote by |σ). If this vector is a physical state

then we are done, as it follows from the definition of GMA and an argument similar

to the one above that f(x) ≤ 1
2

(
2
3

)2d
for all x not in the language. If this vector is

not a physical state then we have a bit more work to do.

Towards this end, consider the following. We are free to re-parametrise (e.g. see

page 7 of [100]) the set of states by an affine transformation φ : Rm → Rm, where Rm

is the (smallest) real vector space that contains the set of states, as follows:

|ρ)→ |ρ̃) = φ|ρ), (a| → (ã| = (a|φ−1

and, Mx → M̃x = φMxφ
−1

as this does not change the probabilities, i.e. (a|Mx|ρ) = (ã|M̃x|ρ̃). Now, as an affine

transformation can be thought of as a translation followed by a scaling, choose φ

so that the Euclidean unit ball is contained in the re-parametrised state space (just

translate the original state space and scale it appropriately to ensure this, noting that

translations and scaling are reversible). As the singular vectors of every matrix are

unit vectors, without loss of generality they are contained in this unit ball. Under

the assumption that all mathematically allowed states are physically allowed ensures

these singular vectors are physical states. Thus σmax = (ũ|M̃x|σ), where (ũ| is the

unique deterministic effect. The causality principle ensures that one can re-normalise

any state, that one can scale each state |s̃) so that (ũ|s̃) = 1 [15]. So for x not in the

language we have σmax = (ũ|M̃x|σ) ≤ 1/3.

It follows that

f(x) ≤ 2nσ2d
max ≤ 2n

(1

3

)2d

≤ 1

2

(2

3

)2d

,

where the first inequality follows from Tr
(
(MT

xMx)
d
)
≤ 2n(σ2

max)
d and the last in-

equality follows from the fact that, for d increasing sufficiently faster than n, we have

2n+1 ≤ 4d.

Thus, for a language L in GMA we have

1. for all x ∈ L there exists a GapP function f such that f(x) ≥
(

2
3

)2d
and;

2. for all x /∈ L we have f(x) ≤ 1
2

(
2
3

)2d

,

and so we have that GMA ⊆ A0PP.
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4.4 Relating proofs and advice?

The following relation, discussed in section 4.1, BQP/qpoly ⊆ QMA/poly, cap-

tures an intriguing feature of proofs and advice in quantum theory: one can always

replace quantum advice with classical advice together with a quantum proof. Here

we study the relation

BGP/gpoly ⊆ GMA/poly, (4.1)

in general theories. Note that the relation is satisfied in classical computation:

BPP/rpoly = P/poly ⊆ NP/poly ⊆MA/poly,

where BPP/rpoly = P/poly was shown in [116, 105]. Clearly the relation in (4.1)

is then not uniquely satisfied by quantum theory, but one could ask whether quantum

theory is the most computationally powerful theory in which (4.1) is satisfied?

Using these observations as motivation we obtain the following corollary of theo-

rem 4.9.

Corollary 4.10. There exist general theories G satisfying tomographic locality and

causality such that BGP/gpoly * GMA/poly.

Proof. Firstly, we can use theorem 4.9 to conclude that GMA/poly ⊆ PP/poly and

by a counting argument PP/poly is strictly contained in ALL. From theorem 4.3,

there exists a theory G such that ALL = BGP/gpoly and so we do not have

BGP/gpoly ⊆ GMA/poly ⊆ PP/poly for this theory.

Motivated by the above corollary we can say something non-trivial about theories

where BGP/gpoly * GMA/poly. Consider the case of using a polynomially-sized

circuit from a specific theory, built from any fixed gate set in that theory, to prepare

an arbitrary, but polynomially large, state in the theory. Given this set-up, we can

prove the following result.

Theorem 4.11. In any general theory G with

BGP/gpoly * GMA/poly

there exist states (of polynomial size) that cannot be prepared using an efficient circuit

built from any gate set in the theory.
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Proof. Assume toward contradiction that all states can be prepared using an efficient

circuit built from any gate set in the theory. Thus, as there must exist a classical

description of each circuit, any advice state from this theory can be replaced with the

classical advice that specifies the description of the circuit that efficiently prepares

the given advice state. We thus have

BGP/gpoly ⊆ BGP/poly ⊆ GMA/poly,

which is a contradiction. There must therefore exist at least one state that cannot be

prepared efficiently in this theory.

Thus in theories that do not satisfy

BGP/gpoly ⊆ GMA/poly,

the dynamics are not rich enough to prepare the states that contain a large amount of

“useful” information. This is not to say that in theories satisfying this relation every

state can be efficiently prepared, it is just that in theories violating the relation this

assertion can be proved directly from the violation. As a side remark, within the the-

orem proof we have proven that BGP/poly is strictly contained in BGP/gpoly for

theories G where BGP/gpoly * GMA/poly. It is presently unknown if quantum

advice is strictly stronger than classical advice for quantum computers.

In addition to proving BGP/gpoly ⊆ GMA/poly, Aaronson and Drucker

proved what they called a “Quantum Karp-Lipton” theorem [103]. The Karp-Lipton

theorem states that if NP ⊆ P/poly then the polynomial hierarchy collapses to

its second level, which is believed to be unlikely [109]. The Quantum Karp-Lipton

theorem states that if NP ⊆ BQP/qpoly then the second level of the polynomial

hierarchy is contained in QMAPromiseQMA 11, which is also thought to be unlikely

[103]. We refer the reader to the original works for further details but we only wish to

highlight that, due to theorem 4.3, there exist theories G where NP ⊆ BGP/gpoly

is necessarily satisfied. Therefore, we cannot obtain a “Generalised Karp-Lipton” the-

orem where unlikely consequences are expected from assuming NP ⊆ BGP/gpoly.

4.4.1 Related work

Evidence for the existence of a general trade-off has also appeared in recent work

which has considered theories satisfying the no-signalling condition from the point-

of-view of interactive proofs. The Merlin-Arthur game is an example of an interactive

11Here PromiseQMA is the same as QMA except there is a “promise” on the inputs, i.e. all
the inputs satisfy some property.
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proof. Another example is a multi-interactive prover (MIP) system where more than

one of these all-powerful provers sends classical bit-strings to a probabilistic classical

computer verifier [110]. Just as in the Merlin-Arthur game, the provers cannot be

trusted. However, these provers are not permitted to communicate with one another.

A quantum generalisation of this is to allow the provers to share entangled quantum

states. In work by Ito and Vidick [111], in this quantum generalisation of MIP

it is possible for the verifier to efficiently compute problems in the class NEXP

which is the class of problems evaluated by a non-deterministic computer running in

time exponential in the size of the input. However, recent work by Kalai, Raz and

Rothblum [112] has shown that if the provers share resources that satisfy only the

no-signalling principle (such as Boxworld), then the problems that can be solved in

such a model are actually contained in the class EXP. Since EXP ⊆ NEXP, in a

theory with states more non-local than quantum mechanics these interactive proof

systems have less computational power, unless EXP = NEXP.

4.5 Discussion and conclusion

The results in this chapter provide another example where the best known upper

bound on a quantum complexity class (in this case, QMA) follows from very minimal

assumptions on what constitutes an operational theory. This raises the question of

whether better bounds can be derived in the quantum case by exploiting some of the

structure unique to quantum theory.

One can interpret the fact that GMA ⊆ PP holds for tomographically local and

causal G as partial evidence for the existence of a general trade-off between states

and dynamics in operational theories. Indeed, if both the computational power and

prowess in communication tasks of a theory G increase, then, intuitively speaking, so

too may the size of the class GMA. If both increase by a large amount it is conceiv-

able that the bound GMA ⊆ PP may no longer hold. When viewed this way, this

upper bound on GMA appears to suggest a limit to the power of computation in a

theory given its prowess in communication tasks, and vice versa. Since, otherwise,

one may no longer expect the upper bound to hold. This is just one possible inter-

pretation of this result, indeed it could turn out to be the case that computation and

communication power are in fact positively correlated and all our result implies is

that BGP and GMA both cannot exceed AWPP and PP respectively. The status

of the “trade-off conjecture” is still open, but the results of this chapter suggest that

99



studying situations which involve both computation and communication complexity

may suggest a path to its resolution.

While the definitions of advice and proof verification presented in this chapter can

be applied to any theory in the framework, they seem to intuitively encode a notion

of causality. Note that in a non-causal theory, circuits do not have any particular

“direction” and so inputting a given state at the “start” of the computation is not

the most natural situation one could consider. Instead of receiving an advice state, a

more natural situation might be to receive an advice circuit fragment—consisting of

either a state, transformation or measurement—which can be plugged into the circuit

as it is being built. It would be interesting to determine if this more general definition

coincides with the standard one in extensions of quantum theory with indefinite causal

structure [61, 62].

On a final note, it would be fascinating if the analysis of computation in generalised

probabilistic theories could say something concrete about quantum computing. In an

analogous fashion, tools from quantum theory have been used to prove results in

classical computer science, see [115] for a nice review of such results. We speculate

that by understanding quantum theory better within the framework of more general

theories we can use tools from the latter to prove results in the former.
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Chapter 5

Higher-order interference

Over the course of the previous three chapters we have investigated the connections

between physical principles and computation, using the language of complexity classes

to derive general bounds on the power of computation in generalised probabilistic

theories. However, as mentioned in the introduction to this thesis, much of quantum

computing is concerned not so much with the high-level view offered by complex-

ity classes, but instead with the construction of concrete algorithms to solve specific

problems. Quantum interference between computational paths has been posited [84]

as a key resource behind the computational “speed-ups” offered by many quantum

algorithms, such as Grover’s search algorithm [149]. However, as first noted by Sorkin

[124, 125], there is a limit to this interference—at most pairs of paths can ever in-

teract in a fundamental way. Sorkin has defined a hierarchy of possible interference

behaviours where classical theory is at the first level of the hierarchy and quantum

theory belongs to the second. Informally, the order in the hierarchy corresponds to

the number of paths that have an irreducible interaction in a multi-slit experiment.

Could more interference imply more computational power?

This conjecture will be investigated over the course of the remaining chapters of

this thesis. The current chapter provides an overview of the literature on higher-

order interference and investigates two proposed extensions of quantum theory from

the perspective of their interference behaviour. The two theories in questions are the

theory of Density Cubes proposed by Dakić, Paterek and Brukner, which has been

shown to exhibit third-order interference in the three slit set-up, and the Quartic

Quantum Theory of Życzkowski. This investigation clarifies the impact of these two

generalised theories to ongoing experimental tests for higher-order interference and

explores potential information-theoretic consequences of post-quantum interference

in concrete theories. In particular it highlights an ambiguity in the current definition

of higher-order interference, which shall be remedied in chapter 6. In chapter 6

101



we show how some of the essential components of computational algorithms arise

from physical principles alone and use these tools to begin an investigation of the

relationship between interference behaviour and computational power. Finally, in

chapter 7 we use the results of chapter 6 to to investigate how Grover’s speed-up

depends on the order of interference in a theory.

5.1 Background and introduction

The predictions of quantum theory are the most accurately tested of any physical

theory in the history of science. Nevertheless, it may turn out to be the case that

quantum theory is only an effective description of a more fundamental theory whose

predictions deviate from those of quantum theory in certain energy regimes or in

sufficiently sensitive experimental set-ups. It is thus of the utmost importance that

fundamental tests of the validity of quantum theory be performed. Such tests take a

characteristically quantum prediction and probe the limits of its accuracy in different

experimental situations. One such prediction, currently under experimental investi-

gation [131, 132], is the limitation of quantum theory to second, as opposed to higher,

order interference in n-slit experiments.

Higher-order interference was first described by Sorkin [124] who noted that quan-

tum theory is limited to having only second-order interference. Informally, this means

that the interference pattern obtained in a three—or more—slit experiment can be

written in terms of the two and one slit interference patterns that are obtained by

blocking some of the slits; no genuinely new features result from considering three

slits instead of two. This is in stark contrast to the existence of second-order, i.e.

quantum-like, interference, where the two-slit interference pattern cannot be written

as a sum of the one slit patterns obtained by blocking each one of the slits. This

was first made precise in the context of quantum measure theory [125], where moving

from classical to quantum theory can be seen as a weakening of the Kolmogorov sum

rule to allow for second (but not third, or higher) order effects.

Restriction to only second-order interference appears to be a characteristically

quantum phenomena and many other ‘quantum-like’ features, which, at first glance,

appear to be unrelated to interference, can be derived from it. For example: limiting

correlations [127, 128] to the “almost quantum correlations” discussed in [75], and

bounding contextuality [74]. Additionally a lack of third-order interference was also

used by Barnum, Müller and Ududec [72] as a postulate in their reconstruction of

quantum theory.
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The natural question that arises from this discussion is why does quantum theory

only exhibit second-order interference? It may strike some as odd that there is a

limit to the non-classicality of quantum theory. Why is nature strange, but not

excessively so? Does the existence of genuine third-order interference imply incredible

computational power that we could consider physically unreasonable?

Barnum, Müller and Ududec provide an operational definition [72] (see also [78]) of

higher-order interference that is—at least at first sight—applicable in any generalised

probabilistic theory. Given this definition, one can attempt to construct a theory

that exhibits higher-order interference in the hope of using it as a ‘foil’ to quantum

theory. Such a foil theory would hopefully shed some light on possible pathological—

or at least undesirable—features of higher-order interference and thus provide reasons

‘why’, in some sense, quantum theory should be limited to second-order interference.

Currently, there are no ‘complete’ generalised probabilistic theories that exhibit third-

order interference. There are particular state spaces [129] that have higher-order

interference but these are of a fixed dimensionality and composition is not discussed,

additionally they have a highly restricted set of dynamics when compared to quantum

theory.

It would be of particular interest if there was a theory that exhibited higher-order

interference and which contained quantum theory as a limiting case. Yet, if such a the-

ory exists, there should be some mechanism by which the magnitude of effects unique

to this theory are suppressed, thus explaining why quantum theory is such a good

effective description of the world. This mechanism would be analogous to the pro-

cess of decoherence, which induces the quantum-classical transition and which makes

observation of genuine quantum effects difficult to experimentally detect. Hence the

mechanism by which an extension of quantum theory reduces to standard quantum

theory is called hyper-decoherence1. Any well-defined theory that extends quantum

theory should provide a mechanism for hyper-decoherence. Experimental bounds

have been found limiting the possible amount of third (or higher) order interference

[131, 132] and these place stringent bounds on the hyper-decoherence time of potential

extensions of quantum theory.

Ududec, Barnum and Emerson have shown [78] that the absence of third-order

interference is equivalent to the ability to perform full tomography of any state using

only measurements consisting of two-slit experiments, i.e by only performing mea-

surements on two dimensional subsystems2. It follows that any theory which exhibits

1See [122] for a more in-depth discussion of hyper-decoherence.
2i.e. by only performing measurements of the form a〈i|+ b〈j|.
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genuine third-order interference, and aims to be an extension of quantum theory,

requires more parameters to specify an n-level system than are required to specify

an n-level quantum system. Intuitively then, one can think of the dimension of the

subspace upon which one needs to perform measurements to do complete tomography

as corresponding to the order of interference.

Guided by this, Dakić, Paterek and Brukner [121] have proposed a method to

construct a theory which exhibits third-order interference and which extends standard

quantum theory. In section 5.3.3, we show that this construction gives rise to a

sensible notion of hyper-decoherence which leads to the emergence of quantum theory

in particular cases—analogous to the emergence of classical physics from quantum

theory. In section 5.3.4 we also show that this construction provides an advantage over

quantum theory in a certain computational task, foreshadowing results in chapters 6

and 7. Despite all these nice features, in section 5.3.5 we demonstrate that this

approach—as it is currently presented—does not lead to a well-defined physical theory

by showing the axioms defining the state space are insufficient to uniquely characterise

the theory. It is therefore suggested that one can view the theory of Density Cubes

more as a framework for developing operational theories than a unique theory.

Another feature of tomography in the generalised probabilistic theory framework

is discussed by Hardy in [18], where a hierarchy of theories are presented and shown

to satisfy the relation K = N r, where K is the number of effects whose statistics are

required to completely determine a state, N is the dimension of the system, and r is

a positive integer specifying the level in the hierarchy. The case r = 1 corresponds

to classical theory and r = 2 to quantum theory3. For r > 2 one may expect—based

on the results of [78] discussed above—that tomography on these higher dimensional

subspaces leads to higher-order interference. The results of [78] suggest that the rth

level of this hierarchy, i.e. K = N r, should exhibit rth-order interference, but no

higher.

Życzkowski has developed a theory [122] satisfying K = N4, which extends quan-

tum theory, and so provides a candidate for a theory of higher-order interference. In

section 5.4 it will be shown that Życzkowski’s K = N4 theory does not suffer from

the problems of Dakić et al.’s construction; there is a unique state space associated

with the theory and all transformations are physical. Furthermore, this theory does

indeed exhibit third—and higher—order interference. In fact, every n-level system

in this theory exhibits nth-order interference, for all n. This is somewhat surprising

3Note that we are allowing sub-normalised states, hence quantum theory satisfies K = N2 rather
than K = N2 − 1.
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and unexpected as, based on the discussion in the previous paragraph, one would

expect this theory to exhibit at most 4th-order interference. Another surprising, and

somewhat worrying, feature of interference in this theory is the fact that the exis-

tence of higher-order interference stems from a somewhat artificial and operationally

unmotivated choice. Blocking some subset of the slits corresponding to apertures in

the physical barrier describing an n-slit experiment should uniquely define a mea-

surement. Życzkowski’s theory does not posses this feature: there exist (at least) two

well-defined measurements that correspond to blocking the same subset of slits in an

n-slit experiment. One of these measurements results in higher-order interference,

the other does not.

Arguably, both of these features arise from a limitation of Barnum, Müller and

Ududec’s definition of higher order interference rather than a genuine phenomenon;

there should be a unique measurement that corresponds to opening any subset of

slits, and this does not appear to happen without further constraints on the theory.4

Thus one should not consider Życzkowski’s theory as an example of higher-order in-

terference in the sense originally meant by Sorkin, but rather a demonstration of the

challenges of applying his original definition to arbitrary generalised probabilistic the-

ories. Thus to begin to understand the reason why, in some sense, quantum theory is

limited to second-order interference, we first need a definition of higher-order interfer-

ence that is applicable to, and makes good operational sense in, arbitrary generalised

probabilistic theories. Such a definition is provided at the start of chapter 6

Finally, in section 5.4.3.1, we briefly comment on the type and strength of correla-

tions allowed in Życzkowski’s theory and briefly discuss the possibility of a speed-up

over quantum theory in communication complexity problems.

To summarise, the five novel contributions of the current chapter are as follows:

1. The theory of Density Cubes possesses a well-defined mechanism which leads

to the emergence of quantum theory – analogous to the emergence of classical

physics from quantum theory via decoherence.

2. The theory of Density Cubes provides an advantage over quantum theory in a

computational task based on the collision problem.

3. The axioms used to define the theory Density Cubes are insufficient to uniquely

characterise it. It should hence be thought more as a framework for possible

theories than a unique theory.

4It should be noted that all theories of interest to Barnum, Müller and Ududec do satisfy these
extra constraints, and so their definition suffices for all considerations of interest in [72].

105



Multiple slits

Source

“Paths”

Block

Screen

Interference pattern

Fig. 5.1: Depiction of a multi-slit experiment

4. Quartic Quantum Theory (QQT) exhibits irreducible interference to all orders

relative to the definition of higher-order interference provided by Barnum et al.

in [72].

5. Point 4, above, explicitly highlights an ambiguity in the current definition of

higher-order interference which must be taken into account in future experi-

mental investigations of higher-order interference.

5.2 A definition of higher-order interference in gen-

eralised probabilistic theories

Informally, a theory is said to have nth order interference if one can generate in-

terference patterns in an n-slit experiment, such as that depicted in Fig. 5.1, which

cannot be created in any experiment with only m-slits, for all m < n. More precisely,

this means that the interference pattern created on the screen cannot be written as a

particular linear combination of the patterns generated when different subsets of slits

are blocked. In the two slit experiment, quantum interference corresponds to the fact

that the interference pattern cannot be written as the sum of the single slit patterns:

6= +

It was first shown by Sorkin [124, 125] that—at least for ideal experiments [152]—

quantum theory is limited to the n = 2 case. That is, the interference pattern created

in a three—or more—slit experiment can be written in terms of the two and one slit
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interference patterns obtained by blocking some of the slits. Schematically, this can

be represented as:

= + + − − −

where the role of the minus signs results is to compensate for the fact that we have

overcounted each slit. If a theory does not have nth order interference then one can

show it will not have mth order interference, for any m > n [124].

Higher-order-interference was initially formalised by Sorkin in the framework of

Quantum Measure Theory [124] but has more recently been adapted to the setting

of generalised probabilistic theories in [72, 78]. Barnum, Müller and Ududec [72]

have provided a definition of higher-order interference in generalised probabilistic

theories which is equivalent to Sorkin’s original definition in the quantum and classical

cases. This definition takes its motivation from the set-up of certain experimental

interference experiments, in which a quantum particle (a photon or electron, say)

passes through apertures corresponding to a collection of slits in a physical barrier.

By blocking some of the slits and repeating the experiment many times, one can build

up an interference pattern on a screen placed behind the physical barrier. The entire

physical situation is illustrated in Fig. 5.1.

The Barnum et al. definition of higher-order interference proceeds as follows.

They firstly define exposed faces5, Fi, of St(A), for any system A, as a set of states

for which there exists an effect (ei| ∈ Eff(A) satisfying (ei|s) = 1 ⇐⇒ |s) ∈ Fi.
We should think of the effect (ei| as the effect corresponding to placing a detector

just behind the slit i. The face Fi therefore corresponds to the set of states which

are detected at slit i with certainty. The union of two exposed faces, Fij := Fi ∪ Fj,
is defined as the smallest exposed face that includes both Fi and Fj. This is the

face generated by an effect arising as a coarse graining of the effects corresponding

to slit i and j respectively. Faces are disjoint Fi ⊥ Fj if (ei|s) = 0, ∀|s) ∈ Fj and

(ej|s) = 0, ∀|s) ∈ Fi. We expect faces corresponding to an n-slit experiment to be

disjoint; if we know with certainty that the particle has passed through a particular

slit, there should be no probability of finding it at another slit. The union of multiple

exposed faces FI :=
⋃
i∈I Fi, with I ⊆ {1, ..., n}, is defined as the smallest exposed

5Recall that a face F is a convex set with the property that px+ (1− p)y ∈ F , for any 0 ≤ p ≤ 1,
implies x, y ∈ F .
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face that includes all Fi with i ∈ I. As before, membership in FI corresponds to the

existence of an effect (eI | ∈ Eff(A) satisfying (eI |s) = 1 ⇐⇒ |s) ∈ FI .
An n-slit experiment requires a system that has n disjoint exposed faces Fi, i ∈

{1, ..., n}. Consider an effect (E| which represents the effect corresponding to the

probability of finding a particle at a particular point on the screen. Then an n-slit

experiment is a collection of effects (eI |, I ⊆ {1, ..., n} such that

(eI |s) = (E|s), ∀|s) ∈ FI :=
⋃
i∈I

Fi, (5.1)

and, (eI |s) = 0, ∀|s) where s ⊥ FI . (5.2)

We can see these effects as being the composition of the transformation induced by

closing the slits {1, ..., n} \ I and the effect (E|. If the particle was prepared in a

state such that it would be unaffected by the slit closure (i.e. |s) ∈ FI) then this

composition should act the same as (E| so that (eI |s) = (E|s). If instead the particle

is prepared in a state which is guaranteed to be blocked (i.e. |s′) ⊥ FI) then we

should not observe it, corresponding to (eI |s′) = 0.

The relevant quantities for the existence of various orders of interference are there-

fore,

I1 := (E|s), (5.3)

I2 := (E|s)− (e1|s)− (e2|s), (5.4)

I3 := (E|s)− (e12|s)− (e23|s)− (e31|s) + (e1|s) + (e2|s) + (e3|s), (5.5)

In :=
∑

∅6=I⊆{1,...,n}

(−1)n−|I|(eI |s), (5.6)

for some state |s) and defining (e{1,...,n}| := (E|. A theory has nth order interference

if there exists a state |s) such that In 6= 0. Lack of third-order interference therefore

means that the three slit interference pattern is the sum of the two-slit patterns minus

the sum of the one-slit patterns. This is what we find for quantum theory. It was

shown in [124] that In = 0 =⇒ In+1 = 0, so if we have no nth order interference

then there will be no (n + 1)th order interference. It can be shown that classical

probability theory satisfies I2 = 0 and quantum theory satisfies I3 = 0. The failure

of I2 = 0 for quantum theory means that the two-slit pattern is not the sum of the

one-slit patterns, which corresponds to the usual notion of interference in the two-slit

experiment.
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5.3 Density cubes

Dakić et al. [121] have proposed a method to construct a theory that exhibits third-

order interference and extends standard quantum theory. They argue, based on the

results in [78], that the absence of third-order interference in quantum theory can be

traced back to the fact that a quantum state coherently links at most two levels of

the quantum system. This can be summarised as the fact that a quantum state is

represented by a density matrix, where the matrix entries ρij, i 6= j, are the coherences

linking the levels i and j. So in order for a theory to exhibit third-order interference

the representation of states in said theory must contain terms that coherently link

three levels, i.e. terms of the form ρijk, with i, j, k all distinct. Thus a potential way

to construct a theory that exhibits third-order interference is to consider a theory

where the states are described not by matrices ρij as in quantum theory, but by (rank

3) tensors with elements of the form ρijk. Dakić et al. refer to such tensors as density

cubes, as opposed to the density matrices of quantum theory.

5.3.1 States and effects

The basic features of the theory of density cubes are defined in analogy with quantum

theory, as follows6. Every measurement outcome is associated with a density cube7

which, in general, has complex entries ρijk. The element ρiii is chosen to be real and

corresponds to the probability of the outcome i = 1, ..., n of a particular measurement.

Thus
∑

i ρiii = 1 and ρiii ≥ 0. In analogy to quantum theory, we refer to this property

as the trace of the density cube. In standard quantum theory the probability of finding

the quantum state ρ in the state σ on measurement is given by p = Tr(ρ†σ) = ρ∗ijσij,

where Einstein’s summation convention has been adopted. In a similar manner, define

p = (ρ, σ) = ρ∗ijkσijk, where p denotes the probability of finding the a density cube in

state ρ when the measurement corresponding to the state σ is applied. To ensure that

p is a real number, the constraint ρ∗ijkσijk = σ∗ijkρijk is enforced. In the quantum case

p ∈ R is ensured as ρij is a Hermitian matrix, hence ρij = ρ∗ji. Similarly, call a density

cube Hermitian if exchanging two indices gives a complex conjugated element. As

in the case of Hermitian matrices, Hermitian cubes form a real vector space with the

inner product given by (ρ, σ) = ρ∗ijkσijk. We define pure states as those that satisfy

the above conditions and also satisfy (ρ, ρ) = 1. Positivity of the inner product,

6See [121] for a more comprehensive discussion.
7i.e. the authors of [121] require that their theory has a one-to-one correspondence between states

and effects, in terms of GPTs this means that the state and effect cones are the same.
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Hermiticity and the requirement that the terms ρiii are probabilities are the only

constraints imposed by [121] on the structure of density cubes, and their state space.

For a three-level system, the normalization and Hermiticity conditions imply:

1. ρiij = ρ∗iij = ρiji = ρjii, i, j = 1, 2, 3, i 6= j,

2. ρ123 = ρ312 = ρ231 = ρ∗213 = ρ∗321 = ρ∗132,

3. ρ111 + ρ222 + ρ333 = 1,

4. ρiii ≥ 0, i = 1, 2, 3.

Thus the density cube of a three-level system is specified by ten real parameters:

point 1. contributes six real parameters (one for each choice of i and j), point 2.

contributes one complex, or two real, parameters, point 3. contributes three real

parameters and point 4. reduces by one. This is two real parameters (one complex

parameter) more than what is required to specify the state of a general three-level

system (qutrit) in quantum theory. Thus, the elements ρijk with i, j, k distinct can

be seen as the crucial difference between the density matrix and the density cube.

Therefore, based on the results in [78] discussed above, one might naively expect that

the existence of the term ρijk, with i, j, k distinct, implies the existence of genuine

third-order interference.

The complete characterisation of the density cube state space remains an im-

portant and interesting open problem. Nevertheless, some genuinely non-quantum

density cubes were presented in [121]. An example of such non-quantum density

cubes (i.e. those with ρ123 6= 0) are the following three pure states, first presented in

[121]:

ρ(j) =




1−δ1j
2

0 0

0 0 ωj−1

2
√

3

0 (ωj−1)∗

2
√

3
0

 ,

 0 0 (ωj−1)∗

2
√

3

0
1−δ2j

2
0

ωj−1

2
√

3
0 0

 ,

 0 ωj−1

2
√

3
0

(ωj−1)∗

2
√

3
0 0

0 0
1−δ3j

2


 ,

for j = 1, 2, 3, where ω = ei
2π
3 and δij is the Kronecker delta. In each of the above

density cubes, the element ρijk occurs in the jkth entry of the ith matrix in the list.

It is easy to check that these density cubes are orthonormal, i.e. (ρi, ρj) = δij, and

can be taken as part of a orthonormal basis in the real vector space of density cubes.

We define a physical basis as a set of density cubes that are orthogonal and sum

to
∑

n δinδjnδkn, these physical bases correspond to allowed (pure) measurements for

density cubes.
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5.3.2 Transformations

An example of a genuine ‘non-quantum’ transformation between density cubes was

also presented in [121]. In order to present the constraints on transformations between

density cubes imposed in [121], consider the following. Take the complex vector space

of general rank-3 tensors, the Hermitian cubes, defined above, form a real subspace

within this. A complex subspace can be defined by Span[C(i)] where C(i) are defined

as,

C
(n)
ijk = δinδjnδkn, n = 1, 2, 3,

C(k) =
1√
3


0 0 0

0 0 δ4k

0 δ5k 0

 ,

 0 0 δ5k

0 0 0
δ4k 0 0

 ,

 0 δ4k 0
δ5k 0 0
0 0 0

 , k = 4, 5,

note that C(4) and C(5) are not Hermitian cubes8 but the others are. A vector

in Span[C(i)] is specified by five complex numbers. If we take the intersection of

Span[C(i)] with the Hermitian cubes we obtain another real vector subspace where in

the C(i) basis9 vectors are of the form (p1, p2, p3, z, z
∗)T , pi ∈ [0, 1] ⊂ R+, z ∈ C and

with
∑3

i=1 pi = 1. This is a subspace of the Hermitian cubes. We must also impose

our constraints as before, which gives the state space as a convex set living in this

subspace.

The authors of [121] consider only transformations that leave this subspace in-

variant. Aside from this the only requirements imposed by the authors of [121] are

that the transformations are unitary matrices that map at least one physical basis of

density cubes to another physical basis.

For example, consider a unitary transformation T : D0 → D, where D0 =

{q1, q2, q3} and D = {ρ1, ρ2, ρ3} are defined (in the C(i) basis) as follows,

q1 = (1, 0, 0, 0, 0)T , ρ1 =
1

2
(0, 1, 1, 1, 1)T ,

q2 = (0, 1, 0, 0, 0)T , ρ2 =
1

2
(1, 0, 1, ω, ω∗)T ,

q3 = (0, 0, 1, 0, 0)T , ρ3 =
1

2
(1, 1, 0, ω∗, ω)T ,

8A similar situation occurs in quantum theory: the Pauli matrices form a basis of the real vector
space of Hermitian matrices, yet individual Pauli matrices are not physical states, only certain linear
combinations of them are.

9We could instead use the basis which uses C(4) +C(5) and C(4)− iC(5) in which case our vectors
would be written as five real numbers.
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where as before ω = e
2πi
3 .

The qi’s span a subspace of the ‘quantum states’ of these density cubes. One

matrix, provided by Dakić et al., that satisfies the conditions Tqi = ρi, leaves this

subspace invariant and is unitary is,

T =
1

2


0 1 1 1 1
1 0 1 ω∗ ω
1 1 0 ω ω∗

1 ω ω∗ 1 0
1 ω∗ ω 0 1

 . (5.7)

Note that there are many matrices that satisfy the above condition, see [121] for a

more in-depth discussion.

Introducing an appropriate post-measurement state update rule for density cubes

and using the transformation from equation 5.7, it is shown in [121] that the theory

of Density Cubes exhibits third-order interference, i.e. I3 6= 0 for this theory. We will

not go through the details of the calculation here, but defer the reader to the original

paper [121]. In section 5.4.2 however, we give the full details of the calculation showing

the Quartic Quantum Theory of Życzkowski [122] exhibits higher-order interference

relative to the definition provided in section 5.2.

5.3.3 Hyper-decoherence

A hyper-decoherence mechanism will now be shown to exist in the theory of Den-

sity Cubes—provided that there is an inner product preserving embedding (i.e. an

injective, linear map) of the quantum states into the density cube state space.

Such an embedding was given in [121] and can be defined as follows. Denote an

arbitrary quantum state by ρQT∈ ΩQT and an arbitrary density cube by ρDC∈ ΩDC ,

where ΩQT is the quantum state space, and so on. Define the embedding map

E : ΩQT → ΩDC by:

(
E [ρQT ]

)
iii

= (ρQT )ii,
(
E [ρQT ]

)
iij

=

√
2

3
Re(ρQT )ij,

(
E [ρQT ]

)
ijj

=

√
2

3
Im(ρQT )ij for i < j,

(
E [ρQT ]

)
ijj

= −
√

2

3
Im(ρQT )ij for i > j, and

(
E [ρQT ]

)
ijk

= 0, for i 6= j 6= k 6= i.

The other elements of the density cube are defined by the Hermiticity condition

described in section 5.3.1 One can check that this embedding preserves the inner

product. That is, we have that

(ρQT , σQT )QT = (E [ρQT ], E [σQT ])DC ,
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where (., .)QT is the inner product between quantum states, and so on.

To discuss hyper-decoherence it is useful to separate the density cubes into third

order and lower order terms, we therefore write a generic density cube as,

ρDC = ρ
(3)
DC + ρ

(2,1)
DC

where we define,

(ρ
(3)
DC)ijk :=

{
(ρDC)ijk if i 6= j 6= k 6= i
0 otherwise

,

(ρ
(2,1)
DC )ijk :=

{
0 if i 6= j 6= k 6= i
(ρDC)ijk otherwise

.

Note that ρ
(2,1)
DC and ρ

(3)
DC are not necessarily themselves valid density cubes.

Given the above embedding, E , one can define a hyper-decoherence map D as

follows:

D ◦ E = IQT , D[ρ
(3)
DC ] = 0,

where D is a linear map10 from the real vector space of Hermitian cubes to the

real vector space of Hermitian matrices, and IQT is the identity transformation on

Hermitian matrices. This choice of D seems natural as we would expect such a map

to leave any quantum state embedded in the Density Cube state space invariant and

to eliminate the higher order coherences.

In order to show that D is a valid hyper-decoherence map we need to show that

it maps all density Cube states to valid quantum states. That is D[ρDC ] must be a

positive, Hermitian operator with unit trace. That D[ρDC ] has unit trace is guaran-

teed by the definition of D and the construction of the Density Cubes. To check the

Hermiticity condition, consider the following. From the definition of E given above

we can write (D[ρDC ])ij as:

(D[ρDC ])ij =

√
3

2

((
E ◦ D[ρDC ]

)
iij

+ i
(
E ◦ D[ρDC ]

)
ijj

)
, for i < j

and, (D[ρDC ])ij =

√
3

2

((
E ◦ D[ρDC ]

)
iij
− i
(
E ◦ D[ρDC ]

)
ijj

)
, for i > j.

(5.8)

To show D[ρDC ]† = D[ρDC ], we must check that
(
D[ρDC ]

)
ij

=
(
D[ρDC ]

)∗
ji

for all

i, j, but this follows from applying the Density Cube Hermiticity condition to equa-

tions (5.8).

10Note that linearity ensures that we can extend the map from the states on which it is defined
to all Hermitian cubes.
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To check the positivity property, we need to show that
(
D[ρDC ], σQT

)
QT
≥ 0, for

all ρDC and σQT . Note that we can always choose suitable real coefficients ci such that

ρ
(2,1)
DC =

∑
i ciE [ρiQT ], where ρiQT ∈ ΩQT are some arbitrary set of density matrices. We

can therefore write an arbitrary density cube as ρDC =
∑

i ciE [ρiQT ]+ρ
(3)
DC . Combining

this with the definition of D, we have that(
D[ρDC ], σQT

)
QT

=
(
E ◦ D[ρDC ], E [σQT ]

)
DC

=
(
E ◦ D

[∑
i

ciE [ρiQT ] + ρ
(3)
DC

]
, E [σQT ]

)
DC

=
(∑

i

ciE [ρiQT ], E [σQT ]
)
DC

=
(
ρDC , E [σQT ]

)
DC
−
(
ρ

(3)
DC , E [σQT ]

)
DC

=
(
ρDC , E [σQT ]

)
DC

≥0,

where
(
ρ

(3)
DC , E [σQT ]

)
DC

= 0 follows from (E [σQT ])ijk = 0 for i 6= j 6= k 6= i. The equa-

tion
(
D[ρDC ], σQT

)
QT

=
(
ρDC , E [σQT ]

)
DC

, derived above, implies that the embedding

map E is the adjoint of the hyper-decoherence map D. This may prove useful in

further constructions of higher-order interference theories.

Given the embedding E , the hyper-decoherence map defined above maps density

cubes to valid quantum states. One should note however, that the existence of this

embedding is not guaranteed by the axioms of the Density Cube framework, but is a

very reasonable constraint if one wants an extension of quantum theory.

In quantum theory, to have coherence between two levels of the quantum state

described by the density matrix ρij there must be some probability of finding the state

in either of the levels that the coherence is between. These probabilities set a bound

on the degree of coherence possible, e.g. for a qubit we have |ρ01|2 ≤ ρ00ρ11. Based

on this, one might expect that any third order coherence in a Density Cube would be

supported by second and first order coherences. Interestingly this is not the case in

the Density Cube framework; states in the physical basis D considered by Daḱıc et al.

have third order terms but all second order terms are zero. While it is the case that

the positivity condition imposes some bounds on the higher-order coherences, there

may be further constraints that need to be imposed to have a well-defined theory. It

would be interesting if future constructions of higher-order interference theories had

this property.
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5.3.4 A computational advantage?

When comparing quantum theory with other foil theories, an approach that has

proved fruitful in recent years is to compare their performance in information-theoretic

tasks. We will now show that the theory of Density Cubes has a slight advantage over

quantum theory in a computational task we call the ‘three collision problem’, which

is a variation of the standard collision problem discussed in [133]. The three collision

problem is defined as follows: given a function from a trit to a bit, f : {0, 1, 2} →
{0, 1}, determine if f(0) = f(1) = f(2). As is standard in quantum computation, we

represent this problem with a black-box oracle. Performance will be measured via

the probability of error after a single query to this oracle, given the caveat that if

f(0) = f(1) = f(2) there must be zero error.

Let {|i〉}, for i = 0, 1, 2, be the quantum computational basis and consider the

following quantum oracle for this problem:

OQTf |i〉 = (−1)f(i)|i〉.

This oracle is the same as the one considered by Grover in his search algorithm [1],

and it is easy to check it is unitary. Preparing a superposition over the three basis

states and querying the oracle leaves us in the state

1√
3

(
(−1)f(0)|0〉+ (−1)f(1)|1〉+ (−1)f(2)|2〉

)
.

If f(0) = f(1) = f(2), then the state, up to a global phase, is: 1√
3

(
|0〉 + |1〉 + |2〉

)
,

while if they are not equal the state, up to a global phase, is one of: 1√
3

(
− |0〉+ |1〉+

|2〉
)
, 1√

3

(
|0〉 − |1〉+ |2〉

)
, or 1√

3

(
|0〉+ |1〉 − |2〉

)
. As the state with f(0) = f(1) = f(2)

is not orthogonal to the other three, there does not exist a measurement that can

perfectly distinguish them and the error after one query is 1/9.

Daḱıc et al. have provided a way to associate one of three density cubes to a pure

three-level quantum state |ψ〉 = c0|0〉+ c1|1〉+ c2|2〉. The association is as follows:

ρ
(n)
iij = − 1√

6
Re(c∗i cj), ρ

(n)
ijj = − 1√

6
Im(c∗i cj) for i < j, ρ

(n)
iii =

1

2
(1− |ci|2),

and, ρ
(n)
012 =

ωn

2
√

3
with n = 0, 1, 2.

The other elements of the density cube are determined by the Hermiticity condition

(see section 5.3.1). Note that only the third-order terms depend on the value of n.

One can show [121] that (ρ(n)(|φ〉), ρ(m)(|ψ〉))DC = 1
4
(1+ |〈φ|ψ〉|2)+ 1

2
cos 2π(n−m)

3
≥ 0.

Given this association, we can describe a Density Cube oracle for the three collision
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problem as follows. The oracle acts as the quantum oracle on the ‘quantum part’ of

the density cube, but also acts on the ‘higher order term’ i.e. the value of n. We

define the oracle as,

ODCf :: ρ(n)(|ψ〉) 7→ ρ(nf )(OQTf |ψ〉)

where nf = n + f(0) + f(1) + f(2) = n +
∑

i f(i). One can check that the action of

this oracle leaves the fragment given by the above association invariant. While it may

appear odd at first to allow density cubes with non-zero higher-order terms access to

the value f(0) + f(1) + f(2), it should be noted that quantum theory has a similar

advantage over classical theory when accessing a computational oracle. In classical

computing one can only access the value of f on a single value i per query of an oracle,

but, in quantum theory, one can access information about f(i) + f(j) by querying

the same oracle in superposition. It thus seems reasonable to allow third-order terms

ρ
(n)
012 access to information about the value of f(0) + f(1) + f(2).

Let |φ〉 = 1√
3

(
|0〉+ |1〉+ |2〉

)
, and prepare the density cube ρ(0)(|φ〉). Applying the

Density Cube oracle leaves this state invariant if f(0) = f(1) = f(2) and maps this

state to either ρ(1)(OQTf |φ〉) or ρ(2)(OQTf |φ〉) otherwise, thus giving an error probability

of (
ρ(0) (|φ〉) , ρ(1)(OQTf |φ〉)

)
=
(
ρ(0)(|φ〉), ρ(2)(OQTf |φ〉)

)
= 1/32

after a single query. The theory of Density Cubes thus provides a slight advantage

over quantum theory in the three collision problem.

5.3.5 Issues with the Density Cube framework

In this section two possible issues with the framework of Density Cubes will be pre-

sented and discussed. In particular it will be demonstrated that the axioms imposed

in defining the theory are insufficient to uniquely characterise the state space. We

also show that the definition of transformations employed by [121] allows for trans-

formations in the theory that map well-defined states to density cubes that give

complex-valued probabilities for certain measurement outcomes.

5.3.5.1 Axioms insufficient to specify a unique operational theory

Dakić et al. mention that they have not fully constructed the state space for density

cubes [121], instead they present a particular set of states which satisfy their axioms

(i.e. they are Hermitian, have unit trace and are each positive with respect to the
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others). The difficulty in fully constructing the state space stems from the positivity

axiom. In quantum theory we can define positivity as,

Tr(ρ†σ) ≥ 0 ∀ρ, σ,

where ρ and σ are density matrices. This is analogous to the positivity condition im-

posed by Dakić et al. and we refer to this property as ‘relative positivity’. In practice

this is a difficult property to use to construct a state space, there is—potentially—an

infinite number of conditions to check for each state in the state space. In quantum

theory we can avoid this problem by using an alternative—and equivalent—definition

of positivity, that

∀λ ∈ Eigenvalues(ρ) λ ≥ 0.

This is a single state property rather than a relative property and so it is simple to

construct a state space by imposing this condition. As we do not have a notion of

eigenvalues for rank 3 tensors, there is no equivalent condition for density cubes. We

are therefore limited to using relative positivity.

Given that we only have a relative notion of positivity, it is possible to construct

different state spaces depending on which set of states we choose to start with. How-

ever we know that—if we want a genuine extension of quantum theory—we need

some (Hermitian, trace and inner product preserving) embedding of the quantum

states into the Density Cube state space. Dakić et al. present one such embedding,

which we discussed in section 5.3.3. One hope is that, once we restrict to such an

embedding, the state space becomes uniquely specified. Moreover, one would hope

that that this choice of embedding is analogous to a of re-parametrization of the

quantum state space, and, as such, leads to operationally equivalent theories. Unfor-

tunately this is not the case; it is possible to construct operationally distinct theories

within the Density Cube framework. As such, the axioms imposed are not sufficient

to uniquely characterise the theory.

For example, consider the embedding of quantum states described in [121], dis-

cussed in section 5.3.3, and use the basis {C(i)} described above. Then we can consider

the states

c =
1

2
(1, 1, 0, 1, 1)T and v =

1

256

(
10, 10, 236,−

(
65 + i

√
595
)
,−
(

65− i
√

595
))T

,

these are both quantum states with added higher-order coherence terms and so will

be positive with respect to all of the quantum states. However they are not positive

with respect to each other, (c, v) < 0. There is no reason to prefer one of these to
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the other and we cannot add both to the state space, we therefore have an arbitrary

choice at this stage in how to construct the theory. Note that both of these states

are positive with respect to the physical basis D, but have different inner products

with elements of D. Hence choosing which state to include will lead to theories that

make operationally distinct predictions about certain measurements.

Given the above discussion it may therefore be better to consider the theory of

density cubes more as a framework for developing theories in. The (partial) state

space of Dakić et al. would then be one example of a state space within this frame-

work. The difficulty in constructing the complete state space causes further problems

when defining transformations within the theory. In theories where there is a com-

plete geometric view of the state space, as was the case for Boxworld in chapter 1, it

is simple to define transformations as linear transformations that map the state space

into itself. However, if we are not given a complete state space it is not possible to

define transformations in this way.

5.3.5.2 Characterising the set of physical transformations

We will now show that the lack of fully constructed state space is also problematic for

defining allowed transformations within the theory. Dakić et al. present a particular

transformation T that they use throughout their paper. It can be shown that for

the particular fragment they are considering, this is a valid transformation. By valid

transformation we mean that it is linear and maps states to states. They also provide

a set of axioms which need to be satisfied such that a transformation is valid. These

conditions turn out to be necessary but not sufficient, as we shall now demonstrate.

The conditions imposed on transformations in [121]—as discussed in section 5.3.2—

are as follows:

1. linearity

2. unitarity

3. subspace preserving

4. map between physical bases (e.g. D0 7→ D).

This allows for transformations such as T ′, equation 5.9, which can easily be shown
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to violate the Hermiticity of states.

T ′ =
1

2


0 1 1 1

2
(1 +

√
3) 1

2
(−1 +

√
3)

1 0 1 1
2
(ω∗ +

√
3ω) 1

2
(−ω +

√
3ω∗)

1 1 0 1
2
(ω +

√
3ω∗) 1

2
(−ω∗ +

√
3ω)

1 ω ω∗ 1
2

√
3

2

1 ω∗ ω
√

3
2

−1
2

 . (5.9)

For example, T ′(ρ1) has complex entries where real ones should be, and so gives

complex-valued “probabilities” on some measurements.

T ′(ρ1) =

(
1

2
+

√
3

4
,
1

4

(
1−
√

3

(
1 + i

2

))
,
1

4

(
1−
√

3

(
1− i

2

))
,

√
3− 1

8
,

√
3− 3

8

)T

≈(0.9, 0.03− 0.2i, 0.03 + 0.2i, 0.09,−0.2)T .

The usual solution to this would be to require that transformations map states to

states or equivalently that they preserve Hermiticity and positivity, which would rule

out unphysical transformations such as T ′.

Using Hermiticity and positivity preservation as a characterisation of transforma-

tions however is dependent on the state space, and, as we do not have a complete

state space, these are impossible to enforce in practice. Characterising transforma-

tions beyond the specific example of Dakić et al. is not possible at this stage.

This again highlights the issue that different fragments give operationally distinct

predictions, we see here that not only the possible states depend on the choice of

state space, but that the set of physical transformations does as well.

5.4 Quartic quantum theory

Quartic quantum theory (QQT) was developed by Życzkowski [122] as an attempt

to realise the K = N4 level of the tomographic hierarchy introduced by Hardy in

[18]. This is to be contrasted to quantum theory which satisfies11 K = N2 and

classical probability theory which satisfies K = N . Density cubes however satisfy

K = N2 + 2
(
N
3

)
6= N r and so are not in Hardy’s hierarchy12.

We have discussed the connection between tomography and higher-order inter-

ference presented in [78], specifically, the dimension of the subspace on which one

11This is allowing for sub-normalised states hence quantum theory having K = N2 rather than
K = N2 − 1.

12Thus implying that the theory of Density Cubes violates tomographic locality.
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must perform measurements to do complete tomography corresponds to the order of

interference. In the K = N r hierarchy, post-quantum theories require tomography on

greater than two dimensional subspaces. In light of this, QQT provides a potential

candidate for a GPT that exhibits higher order interference.

5.4.1 Description of the theory

We will now provide a brief overview of the theory (see the original paper [122] for a

more in-depth discussion). The state space for an N level QQT system is constructed

from a restriction of an N2 level quantum system (i.e. the tensor product of two N

level quantum systems). The restriction limits us to convex combinations of states

that are unitarily connected to13 |sinitial) := 1
N
I ⊗ |0〉 〈0|, so the state space is given

by the convex hull of |s) ∈ {U( 1
N
I ⊗ |0〉 〈0|)U † | U ∈ SU(N2)}, i.e. we allow for

arbitrary mixtures of any states which can be reached by applying arbitrary unitaries

to the composite quantum system beginning in state |sinitial).
This restriction on the quantum state space implies there is a maximum purity any

state can reach. This can be seen to be roughly analogous to the epistemic restriction

used by Spekkens in his Toy Model [123], where the state space of a two level system

is given by a pair of classical bits (i.e. a pair of two level classical systems) with a

restriction imposed on how much one can know about the system.

Transformations are defined as linear maps that leave the state space invariant and

which are completely preserving, i.e. T : ΩN → ΩN and T ⊗ IM : ΩNM → ΩNM ∀M ,

where ΩN is the QQT state space for an N level system. The last condition is a

generalisation of complete positivity in quantum theory.

Effects satisfy the ‘no-restriction hypothesis’ [126] which says that any mathemat-

ically well-defined effect is allowed. That is an effect (e| is allowed in the theory if

it is linear and 0 ≤ (e|s) ≤ 1, ∀|s) ∈ ΩN . We have imposed a restriction on the

Quantum theory state space14, and so the effect space is enlarged. For example we

can have effects such as (e| = N |0〉 〈0| ⊗ |0〉 〈0|. Which in quantum theory could give

probabilities greater than one, but due to the restriction on purity this cannot happen

in QQT. This is because (e|s) ≤ Nλmaxs . Where λmaxs is the maximum eigenvalue of

13Where we are using curved brackets to denote QQT states and effects and Dirac brakets to
represent the underlying quantum density matrix description of the state

14Geometrically the un-normalised state space of any causal theory is a convex cone [15] (the
normalised state space is the intersection of a hyperplane with the convex cone), and if the no-
restriction hypothesis is satisfied then the effect space is the dual cone. If the state space is restricted
this increases the size of the dual cone, which is what we find in QQT.
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the density matrix representation of the state |s). For a QQT state λmaxs ≤ 1/N so

(e|S) ≤ N/N = 1.

This fully constructs the theory for an N level quartic quantum system as we have

a complete consistent description of all of the states, transformations and effects that

exist in the theory. There is also a consistent notion of hyper-decoherence by which

any quartic quantum system can decohere to a quantum system. In QQT decoherence

is represented by a partial trace over one of the quantum sub-systems, this clearly

can only map us to the quantum state space, additionally any quantum state, ρ, can

be reached in this way through ρ = TrA2(ρ⊗ 1
N
IA2). It is worth reiterating that these

are not physical subsystems. The choice of tensor product decomposition and which

part to trace out is therefore entirely arbitrary.

5.4.2 Interference in Quartic Quantum Theory

We will consider interference in the context of the definitions described in section 5.2,

and show that QQT exhibits Nth order interference in any N level system, for all N .

Firstly we define the faces,

Fi :=

{
1

N
|i〉 〈i| ⊗ I

}
=

{
1

N

N∑
j=1

|ij〉 〈ij|

}
,

we can then choose a set of effects which satisfy the constraints given by the definition.

These are,

(E| :=
N∑

i,j=1

|ij〉 〈ij| , (5.10)

(ei| := N |ii〉 〈ii| ,

(eI | :=
∑
i∈I

N∑
j=1

|ij〉 〈ij| , for I ⊆ {1, ..., N}.

It is simple to show that these do satisfy equation 5.1 and equation 5.2 For instance

if |s) ∈ Fi, we have

(ei|s) = Tr((N |ii〉 〈ii|)( 1

N
|i〉 〈i| ⊗ I)) = 1 = (E|s)

and if |s′) ⊥ Fi, we have

(ei|s′) = Tr((N |ii〉 〈ii|)( 1

N
|j〉 〈j| ⊗ I)) = 0,

as required.
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Consider a three level system, N = 3, we have third-order interference if

(E| 6=
∑
i>j

(e{i,j}| −
∑
i

(ei|,

which is the case here. We have:

(E| =
N∑

i,j=1

|ij〉 〈ij| 6= 2
∑
i 6=j

|ij〉 〈ij| −
∑
i

|ii〉 〈ii| =
∑
i>j

(e{i,j}| −
∑
i

(ei|

If instead of (ei| we used the effects (eI | where I = {i}, these also satisfy the

conditions in the definition but don’t give us third-order interference, that is

(E| =
N∑

i,j=1

|ij〉 〈ij| =
∑
i>j

(e{i,j}| −
∑
i

(e{i}|.

So we see that we obtain higher order interference by using the super-quantum effects

allowed in QQT.

It can be shown that this approach generalises to Nth order interference. That is

that we can find a set of effects such that

(E| 6=
∑

∅6=I⊆{1,...,N}

(−1)N−|I|(eI |.

A valid set of effects for this are those defined above in equation 5.10, where we seeNth

order interference if we replace (e{i}| → (ei|. The simplest way to see this is to observe

that the effects (eI | are all the quantum effects for a N -slit experiment tensored with

the identity, therefore using these we will not see higher-order interference, but if

we replace the ‘quantum’ (e{i}| with a super-quantum (ei| and note that
∑

i(ei| 6=∑
i(e{i}| then we will see higher order interference to all orders.

Note that we obtain this result as the constraints imposed in the definition of

higher-order interference are insufficient to uniquely determine the effects (eI |, this is

perhaps a problem with the definition. If one were to actually perform the experiment

then there should be a unique description of the effect corresponding to what happens,

as, at the operational level, it should arise from blocking slits in a physical barrier.

Thus for the definition of Barnum et al. to correspond to this physical picture in

an operationally meaningful way, extra constraints must be imposed on the theory

under consideration. Note that, such extra constraints are present in all situations of

interest to Barnum et al. in [72].

Based on the above discussion, one should not consider QQT as an example of a

theory that exhibits higher-order interference in the sense originally meant by Sorkin,
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but rather a demonstration of the challenges of applying his original definition to

arbitrary theories. Thus to begin to understand the reason why, in some sense,

quantum theory is limited to second-order interference, we first need a definition of

higher-order interference that is applicable to, and makes good operational sense in,

arbitrary generalised probabilistic theories. Such a definition will be presented in

chapter 6.

5.4.3 Composite systems in Quartic Quantum Theory

The main limitation of quartic quantum theory —as discussed by Życzkowski [122]—

is that it does not deal with composite systems. The difficulty with defining composite

systems is ensuring that discarding part of a composite system does not result in a

state outside the (single system) QQT state space. For example if we define compo-

sition in the same way as quantum theory then a bipartite QQT system would be

made of four quantum systems, two of which are required to be in the maximally

mixed state. If we then allow for arbitrary quantum transformations on this system

then we can use a swap unitary to put all of the mixed systems into one half of the

bipartition and all of the pure systems into the other. If we then discard the mixed

partition we are left with a pure quantum state, which is not a valid state in QQT.

In other words, marginalisation takes us outside the QQT state space.

For example, if we prepare the state |sAB) = 1
N2 |0〉 〈0|A1 ⊗ IA2 ⊗ |0〉 〈0|B1 ⊗ IB2,

apply a swap to the middle two systems (A2 and B1), UA2,B1
swap |sAB) = 1

N2 |0〉 〈0|A1 ⊗
|0〉 〈0|A2 ⊗ IB1 ⊗ IB2, then discarding system B gives, |0〉 〈0|A1 ⊗ |0〉 〈0|A2 , which is

outside the state space as it is ‘too pure’.

A possible solution to this problem is to impose a restriction on the allowed trans-

formations to try to avoid a situation like this. For example, allowing only separable

transformations would mean that it was impossible to apply the swap between the two

QQT systems and so discarding one of them could not cause problems. This would

mean there are no entangling dynamics in the theory15 and moreover that we are

unable to reversibly prepare an entangled state from a product state. An interesting

direction to pursue would be whether this can be seen as a consequence of third-order

interference, or whether it is possible to have a theory with third-order interference

and similar entangling dynamics to those that we have in quantum theory.

15Note that Boxworld also shares this feature [7].
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5.4.3.1 Note on Boxworld-like correlations in Quartic Quantum Theory

In using the quantum tensor product in the previous section we are relying on a

commonly used axiom in quantum reconstructions, that any N level system should

be equivalent, i.e. a single system with N -levels should be equivalent to a composite

system that has N -levels. If we relax this assumption then we can instead use some

other tensor product16.

We note that if we consider the ‘classical’ subspace of a two-level quartic quantum

system, i.e. the diagonal density matrices, the state space corresponding to these

states forms an octahedron [122], and the effect space dual to this forms a cube.

This is the ‘unrestricted Spekkens Toy Model’ state and effect space discussed in

[126]. Janotta and Lal discuss how the (generalised) maximal tensor product of such

a state space gives rise to PR box correlations, i.e. those that maximally violate

a Bell inequality whilst maintaining no-signalling. We therefore should be able to

obtain the same correlations if we take the maximal tensor product of two two-level

quartic quantum systems. Such correlations imply a speed-up over quantum theory

in communication complexity problems and this opens the door to investigations of

the information processing power of well-defined physical theories with higher-order

interference.

We have seen that QQT is a well-defined extension of quantum theory and so may

prove a useful foil in understanding the certain features of the quantum formalism.

5.5 Conclusion

This chapter provided an overview of the literature on higher-order interference and

investigated two proposed extensions of quantum theory: Dakić et al.’s Density Cubes

and Życzkowski’s Quartic Quantum Theory. We examined the order of interference

in these theories relative to the hierarchy defined by Sorkin, and investigated whether

they satisfied natural physical conditions one would expect from an extension of

quantum theory.

The specific partial state space and single transformation presented in the original

Density Cube paper [121] exhibits third-order interference. However this state space is

not uniquely specified by the imposed axioms, and there exist other transformations

allowed by these axioms which lead to unphysical results. It would therefore be

interesting to investigate what further axioms would be necessary to uniquely specify

16This tensor product will have to give a state space bound by the minimal and maximal tensor
products, see [126] for details.
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a state space, as such a construction would provide a natural way of characterising

the physical transformations. We showed that if one has an embedding of quantum

theory into a specific Density Cube state space, the adjoint of this embedding gives a

suitable hyper-decoherence mechanism. Considering further consistency requirements

with quantum theory may help with fully developing the theory and may provide a

complete axiomatisation.

The operational definition of higher-order interference of Barnum et al. suffers

from an ambiguity: the specification of the effect (E| does not uniquely fix the effects

(eI | in an arbitrary theory17. We would intuitively expect that once (E| is specified

the effects (eI | are fixed, as they should arise from blocking a certain number of slits

in a physical barrier. Thus to begin to illuminate why quantum theory is limited to

only second-order interference, we first need a definition of higher-order interference

that is applicable to, and makes good operational sense in, arbitrary theories. This

forms the starting point of the next chapter.

In quantum theory there is an intimate relation between interference and phase,

which is illustrated most clearly by the Mach-Zender interferometer. The connection

between phase and interference is not touched on by the Barnum et al. notion of

higher-order interference. Garner et al. [130] have proposed a definition of phase

and interference applicable to an arbitrary generalised probabilistic theory, but their

definition of interference bears no resemblance to Sorkin’s hierarchy, and as such they

do not discuss higher-order interference. The subject of phase transformations and

higher-order interference will be investigated in the next chapter.

It was shown in [84] that quantum interference is a sufficient condition for a

quantum computer to be hard to classically simulate. In the present chapter we

saw that the theory of Density Cubes provides a slight advantage over quantum

theory in a certain computational task. This raises the question of whether higher-

order interference is a general resource for post-quantum computation and information

processing. The connection between higher-order interference and computation will

be touched upon in the next chapter, and forms the main focus of chapter 7.

17If the theory in question supports filters [72], then the effects can be uniquely specified by a
choice of filters. As this is the only situation of interest to Barnum et al., their definition suffices for
all considerations of interest in [72].
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Chapter 6

Generalised phase kick-back: the
physical structure of algorithms

As discussed the start of the last chapter, our investigations into computation within

the generalised probabilistic theory framework thus far, comprising chapters 2, 3,

and 4, have taken a high-level approach, using the language of complexity classes

to derive general bounds on the power of computation. However, much of quantum

computing is concerned not so much with this high-level view, but instead with the

construction of concrete algorithms to solve specific problems. A deeper understand-

ing of the general structure of computational algorithms in this framework has so far

remained illusive. Here we take a low-level algorithmic view and ask which physi-

cal principles are required to allow for some of the common machinery of quantum

computation in this context.

In this chapter we show that the principles of causality, purification, purity preser-

vation, and strong symmetry (principles 2 to 5 from chapter 1) are sufficient for the

existence of reversible controlled transformations and a generalised phase kick-back

mechanism. In the quantum case, the phase kick-back mechanism [135] plays a vi-

tal role in almost all algorithms—notably the Deutsch-Jozsa algorithm [134], Grover’s

search algorithm [149] and Simon’s algorithm [150]—whilst reversible controlled trans-

formations are central components of most well-studied universal gate sets, and are

fundamental for the definition of computational oracles.

We use these results to investigate the relationship between interference behaviour

and computational power in theories satisfying the above principles. Recall from

chapter 5 that Sorkin [124, 125] has introduced a hierarchy of mathematically con-

ceivable higher-order interference behaviours, and shown that quantum theory is lim-

ited to having only second-order interference. This second-order interference between

quantum computational paths is a resource for post-classical computation [84, 1]. It
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therefore seems prudent to investigate whether the connection between post-classical

interference (i.e. n > 1 in Sorkin’s hierarchy) and post-classical computation holds

in general.

In quantum theory there is an intimate connection between phase transformations—

such as those used in the kick-back mechanism—and interference. Motivated by this,

we introduce a framework that relates higher-order interference to phase transforma-

tions in operationally-defined theories. We show that the generalised phase kick-back

mechanism allows one to access any ‘higher-order phase’ in a controlled manner. Us-

ing this, we show that the existence of non-trivial interference behaviour allows for

the solution of problems intractable on a classical computer, demonstrating that post-

classical interference is a general resource for post-classical computation. In proving

the above, we connect higher-order phases to the existence of new particle types

which exhibit both qualitatively and quantitatively different behaviour to fermions,

bosons, and anyons; potentially providing a novel experimental test of higher-order

interference.

Lastly, we use the existence of reversible controlled transformations to provide a

rigorous definition of a computational oracles, solving a problem that was posed in

chapter 1. Moreover, we show that in theories satisfying the above principles there is a

general solution to the subroutine problem, which was first discussed in the quantum

case by [44]. That is, we use the existence of reversible controlled transformations to

show that BGPBGP = BGP.

6.1 Higher-order interference via phase transfor-

mations

6.1.1 A quantum example

Perhaps the cleanest example of interference in quantum theory is exhibited by the

Mach-Zehnder interferometer, illustrated in Fig. 6.1. There are three parts to this:

1. Prepare a state as a superposition of paths:

|s) = |+〉〈+| := ρ+

2. Apply a ‘phase transformation’:

P∆φ|s) = R∆φ
z ρ+R

∆φ†
z ,

with R∆φ
z a rotation by ∆φ about the z axis of the Bloch ball.
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Fig. 6.1: Relation between the physical set-up of Mach-Zender interferometer and the
operational description, depicted in circuit notation

3. Measure in a superposition of paths:

(e|P∆φ|s) = Tr
(
ρ+R

∆φ
z ρ+R

∆φ†
z

)
= cos2

(
∆φ

2

)
.

The observed interference pattern is therefore a map from the group of ‘phase

transformations’, parametrised by ∆φ, to the unit interval (i.e. probabilities),

P∆φ 7→ cos2

(
∆φ

2

)
. (6.1)

The existence of interference in quantum theory is encapsulated in the statement:

“the interference pattern observed for a particular superposition measurement cannot

be reproduced by the statistics generated by ‘which path’ measurements”. In the

above example this translates to:

cos2

(
∆φ

2

)
6=

1∑
i=0

qiTr
(
|i〉〈i|R∆φ

z ρ+R
∆φ†
z

)
, (6.2)

where qi is an arbitrary constant. Equation 6.2 is to be interpreted as an inequality

of the functions defined on the right and left hand side. That is, these functions do

not coincide on all phase transformations. This follows from the fact that:

R∆φ†
z |i〉〈i|R∆φ

z = |i〉〈i|, ∀i ∈ {0, 1}. (6.3)

That is, the left hand side of equation 6.2 depends on ∆φ whilst the right hand side

does not.
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6.1.2 Operational theories

The quantum example from section 6.1.1 illustrates the key components necessary to

discuss interference:

(i) a notion of ‘path’,

(ii) a notion of ‘superposition of paths’,

(iii) transformations that leave the statistics of ‘which path’ measurements invariant,

i.e. ‘phase transformations’,

(iv) a notion of ‘interference pattern’, i.e. a way of associating phase transformations

with probabilities.

These points will now be discussed in the context of arbitrary operationally-defined

theories. We then use this framework to link higher-order interference and phase

transformations. Our approach is similar in spirit to that of Garner et al. [130], with

the caveat that they have not considered higher-order interference.

—(i) Paths: A path is defined by a state and effect pair, where we view the state

as ‘preparing a state which belongs to the path’ and the effect as ‘measuring whether

the state belongs to the path’ and so we demand the probability of the state-effect

pair to be one.

Definition 6.1. Paths, p:

p := (|s), (e|) s.t. (e|s) = 1.

In our quantum example, the paths were p0 = (|0〉〈0|, |0〉〈0|) and p1 = (|1〉〈1|, |1〉〈1|).
Paths are disjoint if the state defining one path has zero probability of belonging

to the other, and vice versa.

Definition 6.2. Disjoint paths, p1 ⊥ p2:

p1 ⊥ p2 ⇐⇒ (ei|sj) = δij.

An n-path experiment is defined by n mutually disjoint paths such that the set

consisting of the effects from each path forms a measurement.

Definition 6.3. n-path experiment, P:

P := {pi} s.t. pi ⊥ pj ∀i 6= j, and
∑
i

(ei| = (u|.

Where (u| in the above definition is the unique deterministic effect. In the quan-

tum case, an n-path experiment would correspond to a multi-arm interferometer.
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—(ii) Superposition of paths: A superposition of paths will be defined relative

to some n-path experiment P via the notion of support. We say that a state (or effect)

has support on a path if the effect (or state) associated to that path gives a non-zero

probability.

Definition 6.4. Support of a state or effect, Supp[|s)] or Supp[(e|] :

Supp[|s)] := {pi ∈ P | (ei|s) 6= 0},

Supp[(e|] := {pi ∈ P | (e|si) 6= 0}.

If the support of a state consists of more than one path this does not guarantee that

it is a superposition of paths—it could equally well be a classical mixture of paths. A

superposition state must therefore lie outside the convex hull of the states which have

support only on a single path. In our quantum example, the state |+〉〈+|—introduced

in point 1 of section 6.1.1—was a superposition of paths.

We can define set of states (or effects) with support on some subset of paths I ⊆ P
as:

ΩI := {|s) ∈ Ω | Supp[|s)] = I},

EI := {(e| ∈ E | Supp[(e|] = I}.

—(iii) Phase transformations: A phase transformation—relative to some P—is

any transformation that leaves the statistics of ‘which path’ measurements invariant.

Definition 6.5. Phase group, P:

P := {T ∈ R | (ei|T = (ei|, ∀i ∈ P}

In the quantum example, the phase transformation was the rotation R∆φ
z intro-

duced in point 2 of section 6.1.1.

—(iv) Interference patterns: We now generalise the quantum interference pat-

tern of equation 6.1 to arbitrary operational theories.

Definition 6.6. Interference pattern, Cs,e :

Cs,e : P → [0, 1] :: T 7→ (e|T |s)

Given this definition, the existence of quantum interference, as represented in

equation 6.2, translates into the existence of (e| ∈ E{0,1}—that is, an effect with

support on path 0 and path 1—and |s) ∈ Ω{0,1} such that

Cs,e 6=
1∑
i=0

Cs,ei (6.4)
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for all possible choices of (ei| ∈ E{i} (including sub-normalised effects, which is the

analogue of the qi’s in equation 6.2). In other words, there is some choice of superpo-

sition state and effect such that their interference pattern cannot be reproduced by

the statistics generated by any set of effects with support on a single path.

It follows that the existence of a non-trivial phase group implies the existence of

interference in a general theory. Indeed, the left hand side of equation 6.4 depends

on the phase group element, whilst the right hand side does not—the analogue of

equation 6.3 from the quantum example. We now use our framework to discuss

higher-order interference.

6.1.3 Higher-order interference and phase

As we saw in chapter 5, other approaches to defining higher-order interference in

operational theories (that of Barnum et al. in [72] for example) require a theory

to have additional structure if the definition is to make sense. Such extra structure

results in transformations that represent the action of leaving open some subset of

paths I, whilst blocking the others. In this case one can define (eI | = (e|PI , PI being

the transformations that leave subset of paths I open, giving a specific set of effects

with which one can check for the existence of higher-order interference. However, as

we saw explicitly in chapter 5 for Quartic Quantum Theory, arbitrary theories do not

necessarily have such structure. Hence, when checking for the existence of higher-

order interference in an arbitrary theory, one must consider all possible choices (eI |
with the correct support. Otherwise, as was the case in Quartic Quantum Theory,

one can choose a specific set of (eI | to give the artificial appearance of higher-order

interference.

The following adaptation of Sorkin’s original definition of higher-order interfer-

ence [124] to our framework of phase transformations results in the following. This

definition is applicable to any generalised probabilistic theory and does not require

further structure.

Definition 6.7. The existence of nth-order interference in an n-path experiment

corresponds to the existence of an effect |e) and a state (s|, such that

Cs,e(T ) 6=
∑
I⊂P

(−1)n−|I|+1Cs,eI (T ), (6.5)

∀(eI | ∈ EI .
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The introduction of the ‘∀’ statement compared to the original definition is due to

the ambiguity in choosing which effect corresponds to blocking some subset of paths.

Henceforth, the explicit dependence on T in the above equation will be suppressed,

as Cse has already been defined as a function from the phase group to probabilities.

As in equation 6.2, equation 6.5 is to be interpreted as an inequality of the functions

defined on the right and left.

For example, the existence of second-order interference implies that there exists

|s) and (e| such that

Cs,e 6= Cs,e{0} + Cs,e{1} , ∀ |e{i}) ∈ Ei.

Whilst the existence of third-order interference corresponds to the existence of, |s)
and (e| such that

Cs,e 6= Cs,e{0,1} + Cs,e{1,2} + Cs,e{2,0} − Cs,e{0} − Cs,e{1} − Cs,e{2} , ∀ |eI) ∈ EI .

The above definition of higher-order interference produces the expected results

when applied to classical or quantum theory, as it should. To illustrate this, we

now show the existence of second-order interference in quantum theory via this new

definition. The calculation showing the lack of third-order interference in quantum

theory—relative to this new definition—is provided in appendix D. Define our paths

by pi := (|i〉〈i|, |i〉〈i|), then choose |s) = |+〉〈+| = (e|. Then (e{i}| ∈ {ri|i〉〈i|}
where ri is an arbitrary positive real number. The phase group is given by P :=

{eiθ0|0〉〈0|+ eiθ1|1〉〈1|}. It is then simple to show that,

Cs,e(T ) = cos2

(
θ0 − θ1

2

)
,

whilst,

Cs,e{0}(T ) + Cs,e{1}(T ) =
r0 + r1√

2
.

It is then simple to see that, as functions of θi,

cos2

(
θ0 − θ1

2

)
6= r0 + r1√

2
,

for any choice of ri, i.e. (e{i}|. Therefore—by the above definition—quantum theory

has second-order interference, as we would expect. In appendix D we provide a more

in-depth comparison between Sorkin’s original definition and the one presented above.

Motivated by equation 6.5, we wish to determine if particular phase transforma-

tions give rise to higher-order interference. The defining feature of phase transforma-

tions is that they leave the statistics of effects with support on single paths—that is,
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effects in
⋃
i E{i}—invariant. The natural generalisation of this is to consider trans-

formations that not only leave the statistics of effects on single paths invariant, but

also superposition effects. This motivates the following definitions.

Definition 6.8. A transformation T is n-undetectable if: (e|T = (e|, ∀(e| ∈
⋃
I:|I|≤n EI .

Together with its natural converse.

Definition 6.9. A transformation T is m-detectable if there exists (e| ∈
⋃
I:|I|≤m EI ,

such that (e|T 6= (e|.

We can now link higher-order interference to certain types of phase transforma-

tions, which we call higher-order phases.

Theorem 6.10. A transformation T that is n detectable and n−1 undetectable im-

plies the existence of nth-order interference.

Proof. Choose |s) and (e| such that T is detected. It is then clear that the left hand

side of equation 6.5 is dependent on T , whilst—due to undetectability—the right

hand side is not. They are thus distinct functions.

In our quantum example, the phase transformation was 2-detectable, but 1-

undetectable.

6.2 Controlled transformations and a generalised

phase kick-back

Definition 6.11. Given a set of pure and perfectly distinguishable states {|i)}, and

a set of transformations {Ti}, define a controlled transformation C{Ti} as:

i

σ

C
=

i

σ Ti{Ti} ∀i, |σ) (6.6)

The top system and lower systems are referred to as the control and target respec-

tively.

Note that classical controlled transformations—where the control is measured and

conditioned on the outcome a transformation is applied to the target—exist in any

causal theory [15] with sufficient distinguishable states, such as Boxworld, or indeed

any of the polygon theories briefly mentioned in chapter 1. However, such trans-

formations are in general not reversible and do not offer an advantage over classical
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computation [11]. Moreover, the existence of reversible controlled transformations

appears to be a rare property of operational theories [11]. The following states that

in theories satisfying physical principles 2 to 5, there exist reversible controlled trans-

formations. The proof is in contained in section 6.4.

Theorem 6.12. In any theory satisfying i) causality, ii) purification, iii) purity

preservation, iv) strong symmetry, and in which there exists a set of n pure and

perfectly distinguishable states, there exists a reversible controlled transformation for

any collection of n reversible transformations {Ti}ni=1.

Moreover, the following lemma states that any controlled transformation in such

theories ‘preserves superpositions’. Where ‘superposition’ is meant in the sense of

section 6.1.2 part (ii) and ‘preserves superposition’ means that the probability of

detecting the system in each path of the superposition is preserved by the transfor-

mation. See section 6.5 for the proof.

Lemma 6.13. Superpositions are preserved on the control input:

iC
=

i

Tiσ σ{Ti} ∀i, |σ) (6.7)

where {(i|} is the measurement that perfectly distinguishes the control states {|i)} 1.

Every controlled transformation in quantum theory has a phase kick-back mecha-

nism [1, 135]. Such mechanisms form a vital component of most quantum algorithms

[135]. We now show the existence of a generalised phase kick-back mechanism in any

theory satisfying our assumptions. The proof is provided in section 6.6.

Lemma 6.14. Given an |s) such that Ti|s) = |s), ∀i, there exists a reversible trans-

formation Qs such that

s

C σ Qs

∀|σ){Ti}
=

s

σ

(6.8)

Moreover, Qs is phase transformation:

Qs ∀i=i i

1In theories satisfying the principles needed in theorem 6.12, the measurement {(i|} is unique up
to normalisation, see section 6.3.1.
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In quantum theory, it is possible to achieve any phase transformation via a kick-

back mechanism. However, lemma 6.14 only implies the existence of at least one

phase that can be ‘kicked-back’. We now show that all phases arise via the generalised

mechanism. Consider the set of pure and perfectly distinguishable states {|si)} and

let {Ti} be elements of their phase group, i.e. Ti|sj) = |sj), ∀i, j. Construct the

controlled transformation C{Ti}. The designation of control and target for C{Ti} is

symmetric:

σ

si

C
=

Qi

si

σ

:=

{Ti}

σ

Csi

{Qi}

∀|σ)

Thus any C{Ti} is control-target symmetric if the Ti are elements of a phase group.

The transformations on the target are given by the kicked-back phases, {Qi}. Given

an arbitrary Wi, construct the transformation {Wi}C and note that via control-target

symmetry it is equivalent to C{Gi}, for some {Gi}. The controlled transformation

C{Gi} thus gives rise to the kicked-back phase Wi and we have:

Theorem 6.15. Every phase transformation can arise via a generalised phase kick-

back mechanism

6.2.1 Particle exchange experiments

Dahlsten et al. [136] have shown that there is a close connection between particle ex-

change statistics and the phase group in operational theories. We use the framework

and results presented in this paper to expand upon and formalise these connections.

Motivated by the quantum case, place a pair of indistinguishable particles in superpo-

sition by inputting them to an interferometer, as shown in the Fig. 6.2. On the upper

path the two particles are swapped using some operation ‘S’, whilst on the lower

path they are left invariant—that is, the identity operation I is applied. The entire

physical set-up is described by a bipartite state, one partition of which corresponds to

the state of the particles, |s) ∈ ΩP ′cles, and the other to the ‘which path’ information

embodied in the interferometer, |s′) ∈ ΩPath. The entire scenario thus takes place in

the state space ΩPath⊗ΩP ′cle. In the quantum case, the phase transformation gener-

ated by this procedure corresponds to the type of indistinguishable particle employed

in the experiment.

The whole experiment can be described via a controlled transformation, with path

information as the control and particle state as the target. Via theorem 6.12, such
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Fig. 6.2: Schematic illustration showing a particle exchange experiment involving two
particles.

an experiment exists in theories satisfying our assumptions. Applying operation S to

the particle state corresponds to swapping a pair of indistinguishable particles and so

must leave the statistics of any measurement invariant. Therefore S|s) = |s), where

|s) is the initial particle state.

s {I, S}

CΩPath

ΩP ′cle

where s S = s

Theorem 6.14 tells us that the above diagram corresponds to a kicked-back phase

on the control system, as in equation 6.8. Thus, to every particle type, there exists

a corresponding phase transformation, which was the connection discussed in [136].

But, in an arbitrary theory, the converse is not necessarily true. The quantum phase

group is U(1) and, fixing its representation to be {eiθ}, bosons kick-back the trans-

formation corresponding to θ = 0, fermions θ = π and anyons any arbitrary θ. Thus,

to every particle type in quantum theory there is an associated phase, and vice versa.

To generalise this to theories satisfying our three assumptions, we must connect

the operational description of these theories to the more physical notion of particles.

Towards this end, we make the following two assumptions:

1. Every operational state |s) corresponds to the state of some collection of indis-

tinguishable particles,

2. Every transformation that leaves the operational state |s) invariant corresponds

to a (possibly trivial) permutation of the collection of indistinguishable particles.

Given the above, theorem 6.15 tells us that to every phase transformation there exists

a corresponding particle type. Therefore, to each higher-order phase—described in

136



• •

•
•

•
•

••
•••

•
• •
•
•

•

• •

• •

...

Fig. 6.3: Schematic illustration showing a particle exchange experiment involving
mulitple particles.

theorem 6.10—there is associated a particle type that should be observable through

a generalisation of the above experiment.

Consider |s), which corresponds to the state of some collection of indistinguishable

particles, and a permutation operation π which leaves |s) invariant. Note that, for a

given permutation, there may be multiple topologically distinct ways of performing it,

particularly in two dimensions or topologically non-trivial spaces. Now consider the

n-path experiment, illustrated in Fig. 6.3, where on each path some distinct permu-

tation operation πi, i = 1, . . . , n, takes place. This can be described by a controlled

transformation C{πi}. Given the above two assumptions, any nth-order phase—if

they exist in the operational theory—can be kicked-back by such an experiment.

Recall that nth-order phases are n-detectable, but n−1-undetectable. That is,

the action of such phases cannot be detected by any effect with support on less than

n paths. Which is in stark contrast to quantum, or 2nd-order, phases, which can

always be detected by an effect with support on two paths. Thus, permutations of

particles, whose type all correspond to an nth-order phase, can only be detected by

recombining all paths in an n-path experiment. In some sense then, nth-order phases

encode holistic information about all paths in an n-path experiment.

6.2.2 Computational oracles

Oracles play a vital role in quantum computing, forming the basis of most known

speed-ups over classical computation [1]. As we saw in section 2.4 from chapter 2,

defining a general notion of oracle—that reduces to the standard notion in the quan-

tum case—in operationally-defined theories appears to be a difficult problem. A

particular example of a quantum oracle is the following controlled unitary:

Uf = |0〉〈0| ⊗ Zf(0) + |1〉〈1| ⊗ Zf(1), (6.9)
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with Z a Pauli matrix, f : {0, 1} → {0, 1} a function encoding some decision problem

and Z0 := I. The quantum phase kick-back for Uf amounts to

Uf = I⊗ |0〉〈0|+ Zf(0)⊕f(1) ⊗ |1〉〈1|. (6.10)

One can see that inputting |+〉|1〉 and measuring the first qubit in the {|+〉, |−〉}
basis reveals the value of f(0)⊕f(1) in a single query of the oracle—a feat impossible

on a classical computer [1].

The results of theorem 6.12 provide a way to define computational oracles in any

theory satisfying our assumptions, answering a question which was posed in chapter 2.

An oracle in such theories corresponds to a reversible controlled transformation2 where

the set of transformations {Ti,f(i)} being controlled depend on a function f : {i} →
{0, 1} encoding a decision problem of interest. As the transformations Ti,f(i) depend

on the value of f(i), so does the controlled transformation and the kicked-back phase.

That is, in theories with a non-trivial phase group, the phase kick-back of an oracle

encodes information about the value f(i) for all i. In such theories, there is thus a

non-zero probability of extracting such global information. Non-trivial interference

behaviour can thus be seen as a general resource for non-classical computation.

In the quantum case, there is a limit to how much global information one can

obtain in a single oracle query. In the situation where f : {0, . . . , n−1} → {0, 1} a

quantum oracle can extract the value of f(i) ⊕ f(j), for some i, j, in a single query

without error [1]. Can theories with higher-order interference reliably extract more

global information about f—without error—in a single query? In chapter 5 we saw

that the theory of Density Cubes offers a slight advantage over quantum theory in

a certain computational task. The results of section 6.2.1 appear to suggest that

nth-order phases encode information about all paths in an n-path experiment, as

opposed to 2nd-order, or quantum, phases which only encode information about at

most two paths. This fact, in conjunction with theorem 6.15, suggests the possibility

that theories with higher-order interference may be able to solve problems intractable

even on a quantum computer. This possibility is investigated from the point of view

of the search problem in the next chapter.

Now that we have a rigorous definition of an oracle, a natural question is whether

BGP is closed under subroutines. Another way to pose this question is to ask whether

BGPBGP = BGP for G satisfying causality, purification, purity preservation, and

2There could be many distinct transformations that have the same behaviour on a set of control
states. As long as one fixes which transformation corresponds to the oracle, this is not a problem.
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strong symmetry? That is, does having access to an oracle3 for a particular decision

problem which can be efficiently solved in that theory provide any more computa-

tional power than just using the efficient algorithm? A potential issue arises when one

compares the performance of the oracle implementation to that of the efficient algo-

rithm when both are used as subroutines in another computational algorithm. Here,

an algorithm consists of a poly-size, uniform circuit family where for simplicity, as in

chapter 4, we fix the acceptance function a(.) to only depend on a final measurement

applied to the first output system. Moreover, to move closer to the quantum accep-

tence condition, this final measurement will always correspond to {(0|, (1|}, where

each (i| is a pure effect, and outcome 0 corresponds to the accept. As we have seen

above, oracles can be queried in superposition, but one does not usually query an

algorithm for a particular decision problem in superposition; one merely prepares the

state corresponding to a particular bit string and uses the algorithm to determine

whether or not that bit sting is in the language in question. Does every BGP al-

gorithm for a decision problem admit a subroutine having the characteristics of an

oracle for that decision problem? Such a was proved in the quantum case by Bennett

et al. in [44]. The following theorem shows that it is also true for theories satisfying

our 4 principles.

Theorem 6.16. Consider a theory G which satisfies causality, purification, purity

preservation, and strong symmetry. Given an algorithm {A|x|} for a decision problem

in BGP, one can always construct a circuit family {C|x|}, consisting of reversible

transformations from G, which, with high probability, functions as an oracle for that

particular decision problem. Hence, BGPBGP = BGP.

It was shown in [15] that the purification principle implies the ability to dilate any

transformation to a reversible one. We use this fact in the construction of the circuit

{C|x|}. Our construction is equivalent to the one employed in the quantum case [44].

Each C|x| is corresponds to

...
U|x|

C

U−1
|x|...

...

3represented as some function which can be queried using said oracle
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where U is the reversible transformation which dilates4 the BGP algorithm A|x|

...
...A|x| =

...
U|x|

...

0

and C is a reversible controlled transformation with the lower system as the control

C =
i i

Ti

with |i) ∈ {|0), |1)}, T0 = I, and where T1 acts as T1|i) = |i⊕ 1).

To prove theorem 6.16, we need to show that the probability corresponding to the

following closed circuit

0

x

0

0

...

U|x|

C

U−1
|x|...

...

0

x

0

0

is greater than or equal to 1 − 2−q(|x|), for some polynomial q(|x|), when x is in the

required language, as this entails that C|x| functions as an oracle with high probability.

The proof of theorem 6.16 is presented in section 6.7 and is essentially the analogue

of the original quantum proof, but generalised and adapted to our setting.

6.3 General results following from physical princi-

ples 2 to 5

To prove our results we will need the following consequences of principles 2 to 5.

4Here we assume for simplicity that the circuit family {U|x|}, with U|x| a reversible transformation
which dilates A|x| for each |x|, consists of poly-size uniform circuits.
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6.3.1 Self-duality and uniqueness of distinguishing measure-
ments

Principles 2 to 4, together with the existence of (at least two) pure and perfectly

distinguishable states, imply the following result (see [144] for a proof): for any

given state |s), there exists a natural number n and a set of pure and perfectly

distinguishable states {|ai)}ni=1 such that |s) =
∑

i pi|ai) where 0 ≤ pi ≤ 1, ∀i and∑
i pi = 1.

This result, together with principle 5, implies the existence of a “self-dualising”

[49, 72] inner product 〈·, ·〉, briefly discussed in chapter 4. That is, to every pure

state |s), there is associated a unique pure effect (es|, satisfying (es|s) = 1, such

that: (es|(·) = 〈|s), ·〉. Moreover, the conjunction of causality, purification, purity

preservation, and strong symmetry with the existence of a set of pure and perfectly

distinguishable states {|i)} implies the existence [49, 72] of a unique measurement

{(j|} such that

(i|j) = δij.

That is, if there exists an effect (r| satisfying (r|i) = 1 it must be the case that

(r| = (i|. Additionally, if there is a set {(ej|} such that (ej|i) = αjδij for all j then,

(ej| = αj(j|.

6.3.2 Existence of a completely mixed state

Recall from chapter 1 that purification implies the existence of a unique completely

mixed state |c), defined by T |c) = |c) for all reversible transformations T . Any state is

a ‘refinement’ of this state. See chapter 1 and [15, 16] for a more in-depth discussion.

The completely mixed state will be represented diagrammatically as:

6.3.3 Purification of the completely mixed state is dynami-
cally faithful

The purification principle implies the existence of a pure state |ψ) which purifies the

completely mixed state:

ψ
=
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This is unique up to reversible transformation on the purifying system. In quantum

theory, an example of such a |ψ) would be the maximally entangled state |ψ〉〈ψ|
with |ψ〉 =

∑
i |i〉|i〉/

√
N . For ease and simplicity of notation, we fix a diagrammatic

representation of a particular choice of this purification as follows:

ψ:=

Note that, despite the seeming symmetry in the above diagrammatic representation,

the above pure state state is not required to be symmetric, i.e. it is not required that

applying the unique deterministic effect to the top system results in a completely

mixed state on the bottom system. The above representation is only chosen to make

the diagrammatic proofs contained in the next few sections easier to follow.

Purifications of the completely mixed state are called dynamically faithful states

[15, 16] and satisfy the following important condition [15, 16], known as dynamic

faithfulness :

=T T ′

=⇒

σ

T ′=
σ

T

∀|σ)

In quantum theory, the above implication is known as Choi’s theorem [15].

6.4 Proof of theorem 6.12

Recalling that purity preservation implies that the composite of pure states is pure,

we can define two sets of pure and perfectly distinguishable states:

B1 :=


i

 , and B2 :=

 Ti

i

 .
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Strong symmetry implies that there exists a reversible transformation between these

two sets, T : B1 → B2.

T = Ti

i i

∀i

This result, together with the existence of dynamically faithful states, will be used to

show the existence of a reversible controlled transformation C{Ti} for an arbitrary

set of reversible transformations {Ti}. We break the proofs into lemmas, which we

now present.

Lemma 6.17. ‘Superposition preservation’

T = Ti

ii

Proof. Firstly we prove a weaker condition which is superposition preservation for

the following,

i j

T
= δij

Tj

Strong symmetry =⇒

=

jj

T

= δij

the implication follows from the uniqueness of the maximally distinguishing measure-

ment and the fact that the dynamically faithful state is normalised. Then purification

implies,

=
i

T ′i

i

T
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Now consider,

ii

=

=

i i

T ′i

ii

Ti

=⇒
Ti

= T ′i

T

where the above follows the fact that (i|i) = 1. This, in conjunction with the previous

results, gives:

=
i

T ′i

i

T

i

Ti

=

Lemma 6.18. There exists a reversible transformation T ′, such that

T =

σ σ

T ′

∀|σ)

Proof. Recall from chapter 1 that causality implies
∑

i(i| = (u|, where {(i|} is the

measurement which perfectly distinguishes the control states {|i)}, and (u| the unique

deterministic effect

:= u
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We thus have

T =

T ′

i

TiT

i∑
i

∑
i

=

=

Purification =⇒

T =

Dynamic faithfulness then gives the result.

Theorem 6.19. T ′ is a reversible controlled transformation, T ′ = C{Ti}.

Proof.

T

ii

T ′ = =

i

Ti

Dynamically faithful state =⇒

T ′

σ

i

Tiσ

i

=
∀|σ)

which is the defining characteristic of C{Ti}.

6.5 Proof of lemma 6.13

Lemma 6.17 already provides some notion of superposition preservation, we can use

the other results above to extend this.
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Proof.

T

C
= =

Ti{Ti}

i ii

The first equality uses theorem 6.19 and the second lemma 6.17. Using the result of

dynamically faithful states then implies,

C

σ Tiσ

=
{Ti}

i i

∀|σ)

This actually only proves the existence of a controlled transformation that pre-

serves superpositions, it is simple to show that it must be true for all controlled

transformations using an argument analogous to lemma 6.17.

6.6 Proof of lemma 6.14

Proof.

=

s

C i

s

=
∑

i

{Ti}

C

{Ti}
s

The first equality follows from causality and the second from equation 6.7 and the

definition of |s). Applying this transformation to the top half of the dynamically

faithful state and using purification results in the existence of a reversible Qs such

that:

s

σ σ

s{Ti}

C Qs

∀|σ)
=

Note that Qs depends on both the controlled transformation and the joint eigenstate
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|s). Note that:

Ti

{Ti}

C

=

s

s

σ

i

=

σ

i

s

iσ Qs

∀σ

Causality—via state normalisation—then gives:

iQs ∀ii =

6.7 Proof of theorem 6.16

Proof. Choose the dynamically faithful state to satisfy

i

= pi
i

where pi ∈ [0, 1] and
∑

i pi = 1, which can always be achieved without loss of gener-

ality (see theorem 6 and corollary 9 from [15]). We first show that C satisfies

0

C
0

= 0 0

Indeed, uniqueness of measurement (both of the following states give probability p0

for (0|(0|, and probability zero for each of (0|(1|, (1|(0|, and (1|(1|) implies

0

C
0

= p0

0

0

From our choice of dynamically faithful state, it then follows that

0

C
0

=
00
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A strengthened version of dynamical faithfulness from [144] gives the required result.

Next, note that the conjunction of purity preservation and the fact that reversible

transformations map pure states to pure states gives

x

0

0

...

U|x| ...

0

=
σα

...

where |σ) is a normalised pure state and α ∈ [0, 1]. Our choice of acceptance condition,

and the fact that U is a dilation of the algorithm A, results in

x

0

0

...

U|x| ...

0

= α = Px(acc)

Combining these two results now gives

0

x

0

0

...
U|x|

C

U−1
|x|...

...
0

x

0

0

=

...
...

x

0

U−1
|x| 0

0

σ

Px(acc)

...σ
Px(acc)

2=
σ

Px(acc)
2=

where the last two lines follow from self-duality and strong symmetry.

Now, by amplifying the acceptance probability of the original algorithm A, we

can ensure that when x is in the language we have Px(acc) ≥ 1 − 2−p(|x|) for an

arbitrary polynomial p(|x|). Hence it follows that Px(acc)
2 ≥ 1− 2−p(|x|)+1. Choosing

p(|x|) = q(|x|) + 1 completes the proof.
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6.8 Conclusion

The key result of this chapter was to provide a set of physical principles that are

sufficient for the existence of reversible controlled transformations. Such transforma-

tions are central to our understanding of quantum computing, information processing

and thermodynamics. Moreover, these were shown to guarantee the existence of a

generalised phase kick-back mechanism, which, in the quantum case, forms a funda-

mental component of almost all algorithms. These physical principles are defining

characteristics of information: independence of encoding medium; propagation from

present to future; and conservation at a fundamental level. It would therefore be

surprising if these principles were not necessary primers for information processing.

These results provide the tools for an exploration of the structure of computational

algorithms—and how they connect to physical principles—in operational theories.

We developed a framework that connects higher-order interference and phase

transformations, generalising the intimate connection between phase and interference

witnessed in quantum theory. These ‘higher-order’ phases are accessible via our gen-

eralised kick-back mechanism. Given two assumptions which connect the operational

theory to a physical description of particles, these higher-order phases were shown to

give rise to exotic particle types. Additionally, using the controlled transformations to

define an oracle model of computation, we conjectured that these higher-order phases

may allow for the solution of problems intractable even on a quantum computer.

Computational problems that may be susceptible to efficient solution by generalised

phase kick-back include the n-collision problem, and the non-abelian hidden subgroup

problem. Discovering that higher-order interference leads to ‘unreasonable’ computa-

tional power may provide a reason ‘why’ quantum theory is limited in its interference

behaviour—in the same way that implausible communication complexity is thought

to limit quantum non-locality [5]. In the next chapter, we use the tools developed

in the current chapter to investigate whether higher-order interference provides a

computational advantage over quantum theory in the search problem.

In section 6.2.1 it was shown that, to observe the exotic particle types corre-

sponding to higher-order phases, there must be distinct ways to swap particles. As

we live in a topologically trivial three dimensional space, there is only one topologi-

cally distinct way to swap point particles. This can either be seen as evidence of why

quantum theory is limited to only second-order interference, or evidence that such

particle types must have non-trivial structure, similar to toroidal anyons [137]—which

are constructed from a solenoid ring with an attached charge—or closed strings [138].
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Finally, reference [139] has shown that thermodynamic work can be extracted

from quantum coherences—2nd-order phases in our language. This raises this the

question of whether one can extract work more efficiently using higher-order phases?

If such efficiencies are in contention with thermodynamic principles this could provide

a reason ‘why’ quantum theory has limited interference. Initial investigations into

formulating a consistent thermodynamics in operational theories have been reported

in [142, 143, 144]. The framework and results presented here may therefore have

implications for thermodynamics, information processing, and how each arises in a

unified manner from physical principles.
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Chapter 7

Higher-order interference doesn’t
help in searching for a needle in a
haystack*

Grover’s algorithm [149] provides the optimal quantum solution to the search prob-

lem and is one of the most versatile and influential quantum algorithms. The search

problem—in its simplest form—asks one to find a single “marked” item from an un-

structured list of N elements by querying an oracle which can recognise the marked

item. The importance of Grover’s algorithm stems from the ubiquitous nature of

the search problem and its relation to NP-complete problems [44]. Classical com-

puters require O(N) queries to solve this problem, but quantum computers—using

Grover’s algorithm—only require O(
√
N) queries. Quantum interference between

computational paths has been posited [84] as a key resource behind this compu-

tational “speed-up”. However, as we discussed in chapter 5, there is a limit to this

interference—at most pairs of paths can ever interact in a fundamental way [124, 125].

Could more interference imply more computational power?

Recall from the previous two chapters that Sorkin has defined a hierarchy of pos-

sible interference behaviours—currently under experimental investigation [131, 132,

153]—where classical theory is at the first level of the hierarchy and quantum theory

belongs to the second. Informally, the order in the hierarchy corresponds to the num-

ber of paths that have an irreducible interaction in a multi-slit experiment. To get

a greater understanding of the role of interference in computation, we consider how

Grover’s speed-up depends on the order of interference in a theory.

As we saw in chapter 5, restriction to the second level of this hierarchy implies

many “quantum-like” features, which, at first glance, appear to be unrelated to inter-

*With apologies to L. Grover [149]
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ference. As mentioned previously, such interference behaviour restricts correlations

[127] to the “almost quantum correlations” discussed in [75], and bounds contextual-

ity in a manner similar to quantum theory [74, 73]. This, in conjunction with inter-

ference being a key resource in the quantum speed-up, suggests that post-quantum

interference may allow for a speed-up over quantum computation.

Surprisingly, we show that this is not the case—at least from the point of view

of the search problem. We consider generalised probabilistic theories satisfying the

principles of causality, purification, purity preservation, and strong symmetry, which,

as we saw in the previous chapter, when combined with the existence of pure and

perfectly distinguishable states, are sufficient for the existence of a well-defined com-

putational oracle. Given these physical principles, we prove that a theory at level h in

Sorkin’s hierarchy requires Ω(
√
N/h) queries to solve the search problem in the case

of a single marked item. Thus, post-quantum interference does not imply a computa-

tional speed-up over quantum theory. Moreover, from the point of view of the search

problem, all (finite) non-trivial orders of interference are asymptotically equivalent.

7.1 Standing assumptions

In this chapter we shall be assuming the principles of causality, purification, purity

preservation, and strong symmetry, together with the existence of pure and perfectly

distinguishable states. As we discussed in chapter 1, these principles do not restrict

us to standard quantum theory. Indeed, real vector space quantum theory satisfies

all the above principles, as does classical theory when restricted to pure states.

Recall from the previous chapter that these principles, together with the existence

of (at least two) pure and perfectly distinguishable states, imply the following result,

called weak spectrality by [72], (see [144] for a proof): for any given state |s), there

exists a natural number n and a set of pure and perfectly distinguishable states

{|ai)}ni=1 such that |s) =
∑

i pi|ai) where 0 ≤ pi ≤ 1, ∀i and
∑

i pi = 1.

As discussed previously, this result, together with principle 5, implies the existence

of a “self-dualising” [49, 72] inner product 〈·, ·〉. That is, to every pure state |s), there

is associated a unique pure effect (es|, satisfying (es|s) = 1, such that: (es|·) = 〈|s), ·〉.
Henceforth in this chapter, we shall drop the curved brackets of the “Dirac-like”

notion |s) in favour of s. This is done only for stylistic reasons and makes equations

involving the inner product 〈·, ·〉 cleaner and easier to read.

The above inner product is invariant under all reversible transformations, satisfies

0 ≤ 〈r, s〉 ≤ 1 for all states r, s, 〈s, s〉 = 1 for all pure states s, and 〈s, r〉 = 0 if s and
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r are perfectly distinguishable. It also gives rise to the norm ‖ · ‖ =
√
〈·, ·〉, satisfying

‖s‖ ≤ 1 for all states s, with equality for pure states. We will make use of this norm

in proving the main theorem in this chapter.

7.2 Higher-order interference in the presence of

principles 2 to 5

As we saw in chapter 5, higher-order interference was initially formalised by Sorkin in

the framework of Quantum Measure Theory [124] but has more recently been adapted

to the setting of generalised probabilistic theories. However, given the principles of

causality, purification, purity preservation, and strong symmetry, together with the

existence of pure and distinguishable states, it is possible to define unique physical

transformations1 which correspond to the action of blocking certain subsets of slits.

Hence, given our principles, there is a unique way to choose the effects corresponding

to blocking or un-blocking slits in a multi-slit experiment. Given this structure, there

is a more convenient (and equivalent, given the principles) definition of higher-order

interference in terms of such transformations [72].

If there are N slits, labelled 1, . . . , N , these transformations are denoted PI , where

I ⊆ {1, . . . , N} := N corresponds to the subset of slits which are not blocked. In

general we expect that PIPJ = PI∩J , as only those slits belonging to both I and J will

not be blocked by either PI or PJ . This intuition suggests that these transformations

should correspond to projectors (i.e. idempotent transformations PIPI = PI). Given

principles 2 to 5, together with the existence of pure and perfectly distinguishable

states, it was shown in [72] that this is indeed the case. Given this structure, one can

define the maximal order of interference as follows [72].

Definition 7.1. A theory satisfying causality, purification, purity preservation, and

strong symmetry, together with the existence of a set of N pure and perfectly distin-

guishable states for every natural number N , has maximal order of interference h if,

for any N ≥ h, one has:

1N =
∑
I ⊆ N
|I| ≤ h

C (h, |I|, N)PI

1Barnum et al. prove in [72] that the conjunction of strong symmetry and weak spectrality
implies such physical transformations exist.

153



where 1N is the identity on a system with N pure and perfectly distinguishable states

and

C (h, |I|, N) := (−1)h−|I|
(
N − |I| − 1
h− |I|

)
The factor C (h, |I|, N) in the above definition (which is proportional to a binomial

coefficient) corrects for the overlaps that occur when different combinations of slits

are blocked. Note that, for the case h = N , definition 7.1 reduces to the expected

expression of 1h = P{1,...,h} i.e. the identity is given by the projector with all slits

open. The case of N = h+ 1 corresponds to C (h, |I|, h+ 1) = (−1)h−|I|, which is the

situation considered in chapters 5 and 6, as well as the one most commonly discussed

in the literature [124, 78]. In the specific case of quantum theory, definition 7.1

reduces to

1N =
∑
i<j

P{ij} − (N − 2)
∑
i

P{i},

where P{ij} sends all but the ii, jj, ij, and ji entries of a given N ×N density matrix

to zero, and P{i} sends all but the ii entry of a given N ×N density matrix to zero.

Rather than work directly with these physical projectors, it is mathematically

more convenient to work with the (generally) unphysical maps corresponding to pro-

jectors onto the “coherences” of a state. For example, in the case of a qutrit, the

projector P{0,1} projects onto a two dimensional subspace:

P{0,1} ::

 ρ00 ρ01 ρ02

ρ10 ρ11 ρ12

ρ20 ρ21 ρ22

 7→
 ρ00 ρ01 0

ρ10 ρ11 0
0 0 0


whilst the coherence-projector ω{0,1} projects only onto the coherences in that two

dimensional subspace:

ω{0,1} ::

 ρ00 ρ01 ρ02

ρ10 ρ11 ρ12

ρ20 ρ21 ρ22

 7→
 0 ρ01 0

ρ10 0 0
0 0 0

 .

That is, ω{0,1} corresponds to the linear combination of projectors: P{0,1}−P{0}−P{1}.
There is a coherence-projector ωI for each subset of slits I ⊆ N, defined in terms

of the physical projectors:

ωI :=
∑
Ĩ⊆I

(−1)|I|+|Ĩ|PĨ .

These have the following useful properties:
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Lemma 7.2. An equivalent definition of the maximal order of interference, h, is:

1N =
h∑

I,|I|=1

ωI , for all N ≥ h.

Proof. In a theory with maximal order of interference h one has

1N =
∑
I ⊆ N
|I| ≤ h

C (h, |I|, N)PI .

Thus, showing 1N =
∑h
|I|=1 ωI reduces to showing

h∑
|I|=1

ωI =
∑
I ⊆ N
|I| ≤ h

C (h, |I|, N)PI .

As ωI :=
∑

Ĩ⊆I(−1)|I|+|Ĩ|PĨ , we just have to count the number of PI ’s that appear as

we sum over |I|. For some fixed I, this is just

h∑
α=|I|

(−1)α−|I|
(
N − |I|
α− |I|

)
.

By expanding and rearranging this, one can straightforwardly (if tediously) show that

this equals C (h, |I|, N), and we are done.

The above lemma implies that any state (or indeed, any vector in the vector space

generated by the states) can be decomposed as s =
∑h

I,|I|=1 sI , where sI := ωIs.

That is, states belonging to theories which satisfy our principles and lie at level h in

Sorkin’s hierarchy decompose in a form reminiscent of rank-h tensors. Hence, theories

satisfying our principles bear some resemblance to the theory of Density Cubes from

chapter 5.

Lemma 7.3. “Coherences are orthogonal”:

(i) ωIωJ = δIJωI for all I, J , and

(ii) ‖s‖2 =
∑

I‖ωIs‖2.

Proof of part (i). From the definition of ωI , it follows that

ωIωJ = (−1)|I|+|J |
∑
Ĩ⊆I

∑
J̃⊆J

(−1)|Ĩ|+|J̃ |PĨPJ̃
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= (−1)|I|+|J |
∑

K̃⊆I∩J

D
(
I, J, K̃

)
PK̃

where D
(
I, J, K̃

)
is the number of distinct pairings of Ĩ and J̃ such that Ĩ ∩ J̃ = K̃

and |Ĩ| + |J̃ | is even, minus the number of distinct pairings where Ĩ ∩ J̃ = K̃ and

|Ĩ|+ |J̃ | is odd. It will now be shown that

D
(
I, J, K̃

)
=

{
0 if I 6= J

(−1)|I|+|K̃| if I = J

For the I 6= J case fix some particular i ∈ I such that i 6∈ J and consider some

Ĩ ⊆ I, J̃ ⊆ J such that Ĩ ∩ J̃ = K̃. If x /∈ Ĩ alter Ĩ by adding i, otherwise alter Ĩ by

removing x. This procedure turns each even |Ĩ|+ |J̃ |, odd. We have thus shown that

for each Ĩ ⊆ I and J̃ ⊆ J such that Ĩ ∩ J̃ = K̃ and |Ĩ| + |J̃ | is even, there exists an

Ĩ ′ ⊆ I such that Ĩ ′ ∩ J̃ = K̃ and |Ĩ ′| + |J̃ | is odd, and vice versa. Thus the number

of distinct pairings of Ĩ and J̃ such that Ĩ ∩ J̃ = K̃ and |Ĩ| + |J̃ | is even is equal to

the number of distinct pairings of Ĩ and J̃ such that Ĩ ∩ J̃ = K̃ and |Ĩ|+ |J̃ | is odd,

and so D
(
I, J, K̃

)
= 0 when I 6= J .

For the I = J case we can make a similar argument by picking some i ∈ I, i 6∈ J̃
except for when J̃ = J = I. This case gives an excess ±1 depending on whether

|J |+ |K̃| is odd or even, implying D
(
I, J, K̃

)
= (−1)|I|+|K̃| when I = J .

This immediately gives ωIωJ = 0 if I 6= J and,

ωIωI = (−1)2|I|
∑
K̃⊆I

(−1)|I|+|K̃|PK̃ = ωI

if I = J .

Proof of part (ii). To prove the lemma, we need the fact that the ωI ’s are self-dual

ω†I = ωI , where the † is defined by the the self-dualising inner-product as: 〈·, ωI ·〉 =

〈ω†I ·, ·〉. Recalling that the ωI ’s correspond to linear combinations of the PI ’s, this

follows immediately from self-duality of the projectors PI , which is shown to follow

from weak spectrality and strong symmetry in [72]. We now have

‖s‖2 = 〈s, s〉 = 〈
∑
I

ωIs,
∑
J

ωJs〉

=
∑
I,J

〈ωIs, ωJs〉 =
∑
I,J

〈s, ω†IωJs〉

=
∑
I,J

〈s, ωIωJs〉 =
∑
I,J

δIJ〈s, ωIs〉
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where the last equality follows from the orthogonality of the ωI ’s. Finally

‖s‖2 =
∑
I

〈s, ωIs〉 =
∑
I

〈s, ω2
Is〉 =

∑
I

〈ωIs, ωIs〉 =
∑
I

‖ωIs‖2

7.3 Setting up the problem

In the standard search problem, one is asked to find a unique “marked” item from

among a large collection of items in some unstructured list. The items are indexed

1, . . . , N and one has access to an oracle, which, when asked whether item i is the

marked item, denoted x, returns the answer “yes” or “no”. Informally, the search

problem asks for the minimal number of queries to this oracle required to find x in

the worst case.

In the standard bra-ket formalism of quantum theory, this oracle corresponds

to a controlled unitary transformation U , defined by its action on the (product)

computational basis: U |i〉|q〉 = |i〉|q⊕f(i)〉, where |i〉 is the index, or control, register,

|q〉 is the target register, ⊕ denotes addition modulo 2 and f : {1, . . . , N} → {0, 1}
satisfies f(i) = 1 if and only if i = x. Inputting |−〉 into the target register results

in a phase being “kicked-back” to the control register: U |i〉|−〉 = (−1)f(i)|i〉|−〉.
Discarding the target register reduces the action of the oracle to applying the phase

transformation Ox|i〉 = (−1)f(i)|i〉. Changing to the density matrix formalism, we see

that this phase oracle, whose action on states ρ is now denoted by Oxρ, acts as the

identity on all entries of a given density matrix except for the off diagonal elements

{ρxi, ρix}i, to which it adds a ‘−’.

Theorem 6.12 from chapter 6 showed that the conjunction of principles 2 to 5

with the existence of pure and perfectly distinguishable states implies the existence

of reversible controlled transformations. As we saw in section 6.2.2 from chapter 6,

such transformations can be used to define oracles in a manner analogous to quantum

theory. Moreover, theorem 6.15 showed every controlled transformation gives rise to

a “kicked-back” reversible phase transformation on the control system [89]. Thus—as

in quantum theory—from the point of view of querying the oracle, we can reduce all

considerations involving the controlled transformation to those involving the kicked-

back phase.

To highlight the role of interference in searching an unstructured list, we describe

the action of querying the oracle in terms of the physically motivated set-up of N -

slit experiments. Consider first the quantum case. Note that an N -slit experiment

157



si

Ox

Ox =

i

“=”

Fig. 7.1: Querying an oracle using a multi-slit experiment

defines a set of N pure and perfectly distinguishable states |i〉〈i|, each of which can be

associated to a distinct element in the N item list. Querying the oracle about item i

is equivalent to applying the oracle transformation to state |i〉〈i|. In quantum theory,

preparing such a state can be achieved by passing a uniform superposition through

the N -slit experiment with all but the ith slit blocked. The oracle can be implemented

by placing a phase shifter behind slit x. Querying the oracle in a superposition of

states can then be achieved by varying which slits are blocked. This is illustrated in

Fig. 7.1. As discussed previously, the physical act of blocking slits is represented by

the projectors PI . The action of the quantum oracle can thus be rephrased in terms

of these projectors: i) OxPI = PI , if x /∈ I or |I| = 1 and, ii) Ox can act non-trivially

on projectors PI with x ∈ I and |I| > 1, but must satisfy OxPI = PIOx, for all PI ,

which corresponds to the fact that a quantum oracle does not “create” or “destroy”

coherence between states passing through different slits.

By direct analogy with the quantum case, we define the oracle which encodes the

search problem in theories satisfying our principles as follows. Note that in this thesis

we only deal with the case of a single marked item.

Definition 7.4. A reversible transformation is a search oracle, denoted Ox, if and

only if:
i) OxPI = PI for all x /∈ I or |I| = 1 and,

ii) OxPI = PIOx, for all PI .

In definition 7.4, the requirement OxPI = PIOx, for all PI , is quite natural. This

requirement ensures that one cannot gain any information about item i when querying

the oracle using a state with no support on i, i.e. a state s such that PIs = s where

i /∈ I. Moreover, the above constraint does not restrict the power of a search oracle.

Indeed, in the search problem, one wants to determine the minimal number of queries

to Ox required to find the marked item in the worst case. In one query, the most the

oracle can “move” a state—relative to the norm ‖ · ‖—is to map it to a state which
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is perfectly distinguishable from the original. This follows from the fact that, for any

two states ρ, σ, we have

‖ρ− σ‖2 = 〈ρ− σ, ρ− σ〉 ≤ 2(1− 〈ρ, σ〉) ≤ 2,

with equality when ρ and σ are pure and perfectly distinguishable. Let FI be the

set of states left invariant by the projector PI (note that these FI are in fact convex

faces, see [72]). The condition PIOx = OxPI implies Ox(FI) ⊆ FI , i.e. the oracle

leaves the set FI invariant. Now, one can show that each FI defines a state space

which satisfies2 our principles (again, see [72]). Hence, for any given state in FI with

|I| > 1, there exists another state in the same set which is perfectly distinguishable

from it. Thus, enforcing the property PIOx = OxPI does not restrict the power of

the oracle.

In an arbitrary theory, it may not be the case that a transformation satisfying

definition 7.4 and acting non-trivially on PI , with x ∈ I, exists. This is not an issue

as in such theories we cannot even define the search problem, let alone show it can

be solved using fewer queries than quantum theory. Henceforth, we shall assume the

existence of a search oracle in any theory we consider.

Given the definition of coherence-projectors ωI we can equivalently write defini-

tion 7.4 as: OxωI = ωI , for x /∈ I or |I| = 1, and OxωI = ωIOx, for all I. Indeed, in

the quantum case, the action of the oracle can be equivalently described as:

OxωI =

{
ωI if x 6∈ I or |I| = 1
−ωI otherwise.

We can now formally state the search problem for a single marked item—defined

for the quantum case in [1, 154, 148]—as:

Search Problem. Given an N element list with search oracle Ox and an arbitrary

collection of reversible transformations {Gi}, what is the minimal k ∈ N such that

GkOxGk−1 . . . G1Oxs can be found, with probability greater than 1/2, to be in the state

x, for arbitrary input state s, averaged over all possible marked items?

7.4 Main result

Theorem 7.5. In theories satisfying causality, purification, purity preservation, and

strong symmetry, with finite maximal order of interference h, and in which there

2Actually, reference [72] proved that in any theory satisfying weak spectrality and strong symme-
try the convex faces define a sub-theory which also satisfies weak specrality and strong symmetry,
which is all that is needed here.
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exists a set of n pure and perfectly distinguishable states for all positive integers n,

the number of queries needed to solve the search problem is Ω(
√
N/h).

Proof of theorem 7.5. The basic idea is based on the proof of the quantum case pre-

sented in [1, 148, 154]. Let

sxk = GkOxGk−1 . . . G1Oxs,

sk = GkGk−1 . . . G1s,

where Gi is some reversible transformation from the theory, and define

Dk =
∑
x

‖sxk − sk‖2.

It will be shown that, for 〈x, sxk〉 ≥ 1/2, we have cN ≤ Dk ≤ 4hk2, where c is any

constant less than
(√

2− 1
)2

, from which the result k ≥ O
(√

N
h

)
follows. The upper

bound will now be shown using induction, deferring a derivation of the lower bound

left to the end of the current proof.

We have

Dk+1 =
∑
x

‖Gk+1 (Oxsxk − sk) ‖2 =
∑
x

‖Oxsxk − sk‖2

=
∑
x

‖Ox (sxk − sk) + (Ox − 1) sk‖2

≤
∑
x

‖sxk − sk‖2 + 2
∑
x

‖Ox (sxk − sk) ‖‖ (Ox − 1) sk‖+
∑
x

‖ (Ox − 1) sk‖2

≤ Dk + 2

√
Dk

∑
x

‖ (Ox − 1) sk‖2 + ‖ (Ox − 1) sk‖2

≤

√Dk +

√∑
x

‖(1−Ox)sk‖2

2

,

which follows from the triangle inequality, the Cauchy-Schwarz inequality, and the

fact the norm is invariant under reversible transformations.

The quantity
∑

x‖(1−Ox)sk‖2—which can be thought of as how much some state

is “moved” in a single query, averaged over all possible marked items x—is the only
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theory dependent quantity that features in this proof. We upper bound it as follows:∑
x

‖(1−Ox)sk‖2

=
∑
x

∑
I

‖(1−Ox)ωIsk‖2 =
∑
x

∑
I

|I| > 1
x ∈ I

‖ωI(1−Ox)sk‖2

≤
∑
x

∑
I

|I| > 1
x ∈ I

(‖1ωIsk‖+ ‖OxωIsk‖)2 ≤
∑
x

∑
I

|I| > 1
x ∈ I

4‖ωIsk‖2,

where the first line follows from lemma 7.2, lemma 7.3, and the definition of the

search oracle Ox, and second from the triangle inequality and the fact that the norm

is invariant under reversible transformations. We need to know how many times each

‖ωIsk‖2 appears when we sum over the marked item x. Each given I = {i1, i2, . . . , i|I|}
will appear |I| times as we sum over x, one for every time ij is the marked item. Thus∑

x

‖(1−Ox)sk‖2 ≤
∑
I

|I| > 1

4|I|‖ωIsk‖2

≤ 4
∑
I

|I|‖ωIsk‖2 ≤ 4h
∑
I

‖ωIsk‖2 = 4h‖sk‖2 ≤ 4h.

The second line follows from
∑
|I|=1 ‖ωIsk‖2 ≥ 0, lemma 7.3, ‖sk‖ ≤ 1, and |I| ≤ h,

for all I. We thus have: Dk+1 ≤
(√

Dk +
√

4h
)2

. Assuming that Dk ≤ 4hk2 gives

us Dk+1 ≤ 4h(k + 1)2, from which the result follows via induction.

We assume that 〈x, sxk〉 ≥ 1/2 for all x, so a measurement of sxk yields a solution

to the search problem with probability at least 1/2. Let Ek =
∑

x ‖sxk − x‖2 and

Fk =
∑

x ‖sk − x‖2. It follows that

i) Ek =
∑
x

2(1− 〈x, sxk〉) ≤
∑
x

2(1− 1/2) ≤ N and,

ii) Fk ≥ 2

N − ‖sk‖
√√√√〈∑

x

x,
∑
y

y

〉 ≥ 2
(
N −

√
N
)

where ii) follows from the Cauchy-Schwarz inequality, ‖sk‖ ≤ 1 and 〈x, y〉 = δxy.

Using the reverse triangle inequality and the Cauchy-Schwarz inequality, it follows

that Dk ≥
(√

Fk −
√
Ek
)2

. Combining this with the upper bound on Ek and the

lower bound on Fk, we have that Dk ≥ cN, for sufficiently large N , where c is any

constant less than
(√

2− 1
)2 ≈ 0.17.

We thus have cN ≤ Dk ≤ 4hk2, from which the desired result follows.
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7.5 Discussion

In this chapter, we considered theories satisfying certain natural physical principles

which are sufficient for the existence of controlled transformations and a phase kick-

back mechanism, necessary features for a well-defined search oracle. Given these

physical principles, we proved that a theory with maximal order of interference h

requires Ω(
√
N/h) queries to this oracle to find a single marked item from some N -

element list. This result is somewhat surprising given that one might expect more

interference to imply more computational power. Our main result can be thought of

as a derivation of Grover’s quadratic lower bound from simple physical principles—

the computational analogue of deriving Cirel’son’s bound on quantum correlations

from physical principles such as Information Causality [77] or Local Orthogonality

[76].

Further work will focus on determining sufficient physical principles for there to

exist an algorithm that achieves the quadratic lower bound derived here. Moreover,

as theories satisfying our five physical principles appear ‘quantum-like’—at least from

the point of view of the search problem—investigating interference behaviour in them

may inform current experiments searching for post-quantum interference.

Finally, recent work has also investigated Grover’s algorithm from the point of

view of post-quantum theories [146, 147]. These works considered modifications of

quantum theory which allow for superluminal signalling and cloning of states. In

contrast, the generalised probabilistic theory framework employed here allowed us to

investigate Grover’s lower bound in alternate theories that are physically reasonable

and which, for example, do not allow for superluminal signalling or cloning. Based

on this, researchers interested in exploring post-quantum theories—such as those

arising from the black hole firewall and information loss paradoxes—may find this

framework an appealing arena in which to explore modifications of quantum theory.

Indeed, preliminary work has already begun in this direction [114].
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Summary and future work

We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time.

Excerpt from “Little Gidding”

T. S. Eliot

This thesis has explored some connections between computation and physical

principles in the framework of generalised probabilistic theories. The main focus has

been on understanding how simple physical principles bound the power of different

computational paradigms. In chapter 2 we showed that in any theory satisfying

tomographic locality the class of problems that can be solved efficiently is contained

in the (slightly obscure) classical complexity class AWPP—the best known bound on

the power of quantum computation [45]. Tomographic locality was needed in order

to ensure that solutions to computationally difficult problems couldn’t be encoded

in “global degrees of freedom” which—in the absence of tomographic locality—could

arise when constructing computational circuits in certain theories. In chapter 3 we

showed this containment to be tight by constructing a concrete theory (albeit in a

modified framework) whose computational power exactly equals AWPP.

The above result raises the question of whether quantum theory is powerful for

computation in the space of all theories. Given a specific theory, under what con-

ditions can computation in this theory be simulated by a quantum computer? Put

differently, can the “quantum region” of the computational landscape illustrated in

Fig. 3.3 be characterised in terms of physical principles alone? Such a character-

isation would deepen our understanding of quantum computation and its ultimate

limitations. Moreover, it would provide a theory-independent characterisation of the

class of problems a quantum computer can solve efficiently.

163



One approach to such a characterisation would be to investigate which physical

principles—when satisfied by a theory G—ensure a given BQP-complete problem

is BGP-hard. An example of such a problem is matrix inversion: the ability to

invert sparse, well-conditioned matrices, together with the ability to simulate a single

system measurement, is a BQP-complete problem. This was first shown by Harrow,

Hassidim, and Lloyd in their paper [155]. Their work provided an efficient quantum

algorithm for solving (certain types of) linear systems of equations [155]. Determining

which physical principles ensure the process of calculating the outcomes of efficient

computations can be reduced to solving the matrix inversion problem would provide

a class of theories which can be simulated by quantum theory.

In chapter 4 we investigated how simple physical principles bound the power of

two different computational paradigms which combine computation and communica-

tion in a non-trivial fashion: computation with advice and interactive proof systems.

We showed that in theories satisfying the principle of strong symmetry the power of

computation with advice is contained in the class PP/poly. Moreover, we showed

that in Boxworld—which does not satisfy strong symmetry—the power of compu-

tation with advice is unbounded. Additionally, we proved that the power of simple

interactive proof systems in theories satisfying tomographic locality is contained in

A0PP (which is itself contained in PP). Finally, we argued that these results could,

in some sense, be seen to illuminate the (still unresolved!) “trade-off conjecture”.

As such, further explorations of computational paradigms which combine both com-

putation and communication in non-trivial ways could help us understand quantum

theory’s place in the broad framework of generalised probabilistic theories.

Over the course of chapters 5, 6, and 7, we explored the structure of computational

algorithms in the generalised probabilistic theory framework. Moreover, we investi-

gated whether certain algorithmic advantages are directly related to simple physical

principles, focusing on whether the existence of post-quantum interference implies a

speed-up over quantum computation. In chapter 6 we showed that, in any theory sat-

isfying causality, purification, purity preservation, and strong symmetry, and in which

there are sufficient distinguishable states, reversible controlled transformations exist.

Moreover, each reversible controlled transformation has a phase kick-back mecha-

nism. We then used these results to show that non-trivial interference behaviour is a

general resource for post-classical computation.

In chapter 7 we considered how Grover’s speed-up depends on the order of inter-

ference in a theory. We restricted to theories satisfying causality, purification, purity

preservation, and strong symmetry, which, as mentioned above, are sufficient for the
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existence of reversible controlled transformations and hence a well-defined search ora-

cle. In such theories we showed that the quadratic lower bound to the search problem

holds regardless of the order of interference3. That is, we proved that a theory at level

h in Sorkin’s hierarchy requires Ω(
√
N/h) queries to solve the search problem. Hence,

at least from the point of view of the search problem, post-quantum interference is

not a resource for post-quantum computation.

The derivation of the quadratic lower bound to the search problem from causality,

purification, purity preservation, strong symmetry, the existence of sufficient dis-

tinguishable states, and a finite order of interference raises the question of whether

these physical principles are sufficient for the existence of an efficient algorithm which

achieves this lower bound4. A quantum search algorithm based on Hamiltonian sim-

ulation, presented in chapter 6 of the textbook by Nielsen and Chuang [1], may be

more directly generalisable to theories satisfying the above principles than Grover’s

original construction. Indeed, in [1] they consider a Hamiltonian H consisting of pro-

jectors onto the marked item |x〉 and the initial input state |ψ〉 = α|x〉 + β|y〉, with

|y〉 orthogonal to |x〉 and α2 +β2 = 1, respectively. That is, they consider the Hamil-

tonian H = |x〉〈x| + |ψ〉〈ψ|. Evolving the initial input state under this Hamiltonian

for time t results in

exp(−itH)|ψ〉 = cos(αt)|ψ〉 − i sin(αt)|x〉.

Hence, measuring the system in the {|x〉, |y〉} basis at time t = π/2α yields outcome

|x〉 with probability one. If the initial state was a uniform superposition over the

orthonormal basis containing |x〉, then the required evolution time is t = π
√
N/2,

where N is the size of the system (or equivalently, the number of elements in the list

being searched).

One might wonder why there is no mention of a search oracle in the above dis-

cussion. The oracle comes into play when constructing a quantum circuit to simulate

the above Hamiltonian evolution. As the above Hamiltonian depends on the marked

item, the quantum circuit simulating it must query the search oracle a number of times

proportional to the evolution time [1]. In this specific case, an efficient Hamiltonian

simulation requires O(
√
N) queries to the oracle, yielding an optimal quantum algo-

rithm (up to constant factors) for the search problem. Recently, Barnum et al. [72]

have introduced a physical principle, termed “energy observability”, which implies

the existence of a continuous time evolution and ensures that the generator of such

3As long as the order of interference is finite.
4Recall that classical theory violates purification and so is ruled out by these principles.
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an evolution—a generalised “Hamiltonian”—is associated to an appropriate observ-

able, which is a conserved quantity—the generalised “energy” of the evolving system.

Recall from chapter 7 that the principles we have discussed—causality, purification,

purity preservation, and strong symmetry—were sufficient to ensure that projectors

onto arbitrary states correspond to allowed transformations. Hence, our previous

principles, together with Barnum et al.’s energy observability, may be sufficient to

run the above quantum search algorithm, hence providing a theory independent de-

scription of an optimal (up to constant factors) search algorithm.

While the results in this thesis may have deepened our understanding of quan-

tum computers and their limits, they have not explicitly resulted in any practical

applications in the same way that studying Boxworld type correlations led to the

development of device-independent cryptography [10]. Can studying computation in

general theories different from quantum theory result in practical applications? One

potential avenue for this is blind and verified delegated computation [156].

Consider the situation where a computationally bounded client wants to delegate

her computation to a server with access to a full quantum computer. The protocol

for blind computation provided in [156] ensures that the client can have a server

carry out a quantum computation for her such that the client’s inputs, outputs, and

computation remain perfectly private. Hence, a malicious server cannot learn any of

the client’s information, and all the client needs to be able to do is prepare single

qubit states and send them to the server. Moreover, the security of this protocol has

been shown to follow from the no-signalling principle [157]. However, while the server

cannot learn the clients computation, he can still tamper with it by deviating from

the client’s instructions5.

Reference [156] also provides a protocol which verifies whether the server deviated

from the specified instructions while still maintaining blindness. The basic idea of the

verification protocol presented in [156] is to hide “trap” qubits in the computation.

The server does not know the position of the traps, and if he touches one he changes

its state with a certain probability. The client checks the traps and accepts the result

of the computation only if no trap is sprung. Hence to ensure any deviations are

detected with high probability, the client must maximise the probability of the server

touching a trap qubit if he deviates from the correct procedure. This is achieved using

quantum error correcting codes: if the computation is encoded with a quantum error

5Indeed, the server could simply refuse to perform the client’s computation. Such a refusal is
immediately obvious to the client. As nothing can be done to force the server to perform the
computation, we only consider situations in which the server does carry out a computation. It is
then up to the client to verify if the performed computation is the one specified.
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correcting code, the server has to apply global operations to alter the logical qubits,

and this requirement drastically increases the probability of the server touching a

trap hidden among the physical qubits. Using this scheme, the client can detect any

deviations made by the server with probability exponentially close to one. However,

the correctness of this verification protocol rests on the assumption that the server

can only deviate from the specified instructions by using quantum dynamics. The

client may not be able to detect deviations which use post-quantum dynamics.

This raises the question of whether the correctness of this verification protocol

can be established directly from physical principles. This question is of practical

interest; if quantum mechanics were ever to fail in some regime, a technologically and

scientifically advanced server could potentially use post-quantum dynamics to deviate

from the specified computation without necessarily springing a trap. For example, if

an experiment were found to support the existence of higher-order interference, the

server could deviate from the desired computation by applying one of the higher-

order phase transformations introduced in chapter 6. As such transformations are

undetectable on certain subsystems it is conceivable that they could alter the final

outcome of the computation, yet not spring any trap along the way. Hence, as was

the case for quantum key distribution before the work of Barrett, Hardy, and Kent

[10], delegated computation is open to a post-quantum attack.

Some of the results in this thesis lay the groundwork for establishing the cor-

rectness of the above verification protocol from physical principles alone. Indeed, the

protocol presented in [156] uses techniques from measurement-based quantum compu-

tation and quantum error correction to establish verifiability (under the assumption

that quantum theory is correct) of the delegated computation. The basic idea of

measurement-based computation is to apply reversible controlled transformations,

phase transformations, and single qubit measurements to a large entangled state in

order to perform some desired computation. In chapter 6 we showed that reversible

controlled transformations exist in any theory satisfying causality, purification, purity

preservation, and strong symmetry. This, in conjunction with the fact that causality

and purification imply both the existence of entangled states and the ability to per-

form rudimentary error correction [15], suggests that a verification protocol may be

derivable from these physical principles alone.

Another way to discuss verifying delegated computation is to use the language

of quantum prover interactive proofs [158]. Quantum prover interactive proofs con-

sider the case where a verifier is limited to BPP computations, coupled with limited

quantum information processing, and has to verify proofs from a prover with the full
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power of BQP. Another way to phrase the question raised above then presents itself:

can a BPP computer—coupled with limited quantum hardware—verify proofs from

a BGP computer, where G satisfies some natural physical principles? In chapter 4

we discussed simple examples of quantum interactive proofs systems, and it would

be interesting if such considerations could be brought to bear on this practically mo-

tivated problem. Indeed, if one could show that a BPP computer, together with

limited quantum information processing, could verify proofs from an AWPP com-

puter, then one would have established the ability to verify delegated computation

directly from the principle of tomographic locality.

To conclude, this thesis has studied the bounds on computation imposed by simple

physical principles. Moreover, we have suggested potential practical implications of

such investigations. However, the main motivation for undertaking this study was

foundational in nature. Understanding in a rigorous manner how the structure and

limitations of computation are connected to physical principles deepens our knowledge

of the structure of quantum theory—and of quantum computation in particular. Such

an understanding takes us a step closer to knowing what it means to say we live in a

quantum world.
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Appendix A

A compendium of complexity
classes

In this appendix, the definitions of complexity classes mentioned in this thesis—but

not explicitly defined thus far—shall be presented. Relations between these classes

are dicpicted in Fig. A.1. It is assumed that the reader has some familiarity with the

definition of a Turing Machine, both the deterministic and probabilistic varieties. For

a review of these definitions, see [159]. For the class AWPP, see definition 2.3 from

chapter 2. For the class BQP replace G with Q in definition 2.1, also from chapter 2.

Definition A.1 (P). A language L is in P if and only if there exists a polynomial-

time deterministic Turing machine M , such that

1. For every x ∈ L, M accepts

2. For every x /∈ L, M rejects

One can also define P in terms of a uniform family of poly-size Boolean circuits,

see [159] for a discussion of this point.

Definition A.2 (NP). A language L is in NP if and only if there exist polynomials

p and q, and a deterministic Turing machine M with two inputs x, y, such that

1. For all strings x and y, the Turing Machine M runs in time p(|x|) on input of

x, y

2. For every x ∈ L, there exists a string y of length q(|x|) such that, on input of

x, y, M accepts

3. For all x /∈ L, and all strings y of length q(|x|), M rejects on input of x, y
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Fig. A.1: Relation between certain computational complexity classes. A bold line
between two classes indicates the lower class is contained within the higher.

Definition A.3 (BPP). A language L is in BPP if and only if there exists a

polynomial-time probabilistic Turing machine M , such that

For every x ∈ L, M accepts with probability at least 2/3

For every x /∈ L, M accepts with probability at most 1/3

Definition A.4 (PP). A language L is in PP if and only if there exists a polynomial-

time probabilistic Turing machine M , such that

For every x ∈ L, M accepts with probability strictly greater than 1/2

For every x /∈ L, M accepts with probability strictly less than 1/2

Definition A.5 (PSPACE). A language L is in PSPACE if and only if there exists

a deterministic Turing machine M working in polynomial space (see [159]), such that

1. For every x ∈ L, M accepts

2. For every x /∈ L, M rejects
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Appendix B

Proofs and advice: the classical
case

The study of non-uniform classical computation begins with polynomial-sized Boolean

circuits. These circuits can equivalently be viewed as Turing Machines that take

polynomial-sized advice bit-strings. These strings only depend on the size of the

input and not the input itself. If the string were to depend on every input then we

could just encode the solution to any problem for that input and be able to decide any

language. The class of decision problems that are solved by a (uniform) deterministic

classical computer with classical advice is denoted P/poly, where the suffix /poly

denotes a classical advice bit-string.

Definition B.1. P/poly is the class of languages L ⊆ {0, 1}n for which there exists

a poly-time uniform classical circuit family {Cx} and a set of bit-strings {yn}n≥1 of

length d(n) for some polynomial d, such that for all strings x ∈ {0, 1}n, x ∈ L if and

only if Cx accepts for (x, yn) as input.

Since we will be considering probabilistic processes in full generality, it is worth

defining the relevant class of computation with advice where processes are not de-

terministic. In full generality, we allow the possibility that the advice bit-strings are

sampled from a probability distribution for each input size – we denote such advice

as “randomized advice” denoted by the suffix /rpoly. In addition to this, we allow

the uniform circuits to accept inputs with some error as is normal in efficient proba-

bilistic computation (cf. the definition of BGP). Therefore the class BPP/rpoly of

problems solved (with some error) by a (uniform) classical circuit with randomized

advice can now be defined.

Definition B.2. BPP/rpoly is the class of languages L ⊆ {0, 1}n for which there

exists a poly-time uniform classical circuit family {Cx} and a set of randomized advice
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bit-strings {yn}n≥1 of length d(n) for some polynomial d, such that for all strings

x ∈ {0, 1}n:

1. If x ∈ L then Cx accepts with probability at least 2/3 given (x, yn) as input.

2. If x /∈ L then Cx accepts with probability at most 1/3 given (x, yn).

Interestingly, despite the ability to use probabilistic processes, via derandomisa-

tion arguments it can be shown that BPP/rpoly = P/poly [105, 116].

In the case where an efficient computer is given a proof from some untrusted

provider we have already mentioned the classical complexity class NP but this is not

the most general class for probabilistic computation. If the efficient classical computer

accepts some input with some error, then this is in the remit of Merlin-Arthur games

with complexity as follows.

Definition B.3. MA is the class of languages L ⊆ {0, 1}n for which there exists a

poly-time uniform classical circuit {Cx} and a polynomial d, such that for all strings

x ∈ {0, 1}n:

1. If x ∈ L then there exists a proof z ∈ {0, 1}d(n) such that Cx accepts with

probability at least 2/3 given (x, z) as input.

2. If x /∈ L then Cx accepts with probability at most 1/3 given (x, z) as input, for

all proofs z.

The existential quantifiers in the above definition rigorously capture the notion of

a circuit having to ‘verify’ the proof. It immediately follows that NP ⊆ MA. This

definition will also allow us to readily present the quantum analogue to this class

along with its analogue for all possible general theories.
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Appendix C

Proofs and advice: the quantum
case

The class of decision problems that can be solved by an efficient quantum computer

with quantum advice, denoted by BQP/qpoly, is defined as follows.

Definition C.1. BQP/qpoly is the set of languages L ⊆ {0, 1}n for which there

exists a poly-time uniform quantum circuit family {Qx} and a set of (possibly non-

uniform) states {|ψn〉}n≥1 of d(n) qubits for some polynomial d, such that for all

strings x ∈ {0, 1}n:

1. If x ∈ L then Qx accepts with probability at least 2/3 given |x〉|ψn〉 as input.

2. If x /∈ L then Qx accepts with probability at most 1/3 given |x〉|ψn〉.

The class of decision problems for which a “yes” outcome can be verified in quan-

tum poly-time, with help from a poly-size quantum proof, or witness, state, denoted

QMA, is defined as follows.

Definition C.2. QMA is the set of languages L ⊆ {0, 1}n for which there exists a

poly-time uniform quantum circuit {Qx} and a polynomial d, such that for all strings

x ∈ {0, 1}n:

1. If x ∈ L then there exists a d(n)-qubit quantum proof |φ〉 such that Qx accepts

with probability at least 2/3 given |x〉|φ〉 as input.

2. If x /∈ L then Qx accepts with probability at most 1/3 given |x〉|φ〉 as input, for

all proofs |φ〉.

The existential quantifiers in the above definition of QMA rigorously capture the

notion of a quantum circuit having to ‘verify’ the quantum proof.
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Appendix D

Comparing definitions of
higher-order interference

The original definition of higher-order interference was in the framework of quantum

measure theory [124, 125]. The definition revolves around the concepts of ‘histories’

and the ‘quantum measure’. Histories correspond to paths through space-time, a

set of histories A is any collection of these paths. We will be concerned with sets

of histories with some initial condition s and some final condition e along with an

intermediate condition i that ‘the history passes through slit i’. We label these sets

of histories Asei . In an interference experiment it is common to have some way to

create a path difference between the different slits, either by introducing some ‘phase

shifter’ or by moving the final detection point, we label this data t.

The quantum measure µ associates some probability to each set of histories, which

should be thought of as the probability that a particle ‘has a history from that set’.

In general µ will depend on the experimental control t.

The existence of higher-order interference in this framework is as follows:

Definition D.1. n-th order interference ⇐⇒ ∃s, e s.t.

µ

[⋃
i∈P

Asei

]
(t) 6=

∑
I⊂P

(−1)n−|I|+1µ

[⋃
i∈I

Asei

]
(t)

Given this definition, we provide a translation to the operational definition being

employed in this thesis:

QMT GPT
Initial condition s |s)
Final condition e (e|
Experimental control t T
Probability of path i µ[Asei ](t) Cse{i}(T )

Probability of subset I µ[
⋃
i∈I A

se
i ](t) CseI (T )
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Note that some ambiguity is introduced in switching to the operational frame-

work, which eI ∈ EI should be picked? Other approaches to defining higher-order

interference in operational theories [72] have required sufficient structure to define

a set of ‘filters’, {FI}, for the theory. These are transformations that represent the

action of leaving open some subset of slits I whilst closing the others, in which case

(eI | = (e|FI . However, arbitrary theories do not have sufficient structure to define

filters and so one must consider all possible choices (eI | with the correct support.

This leads to the following definition of nth-order interference,

Definition D.2. n-th order interference ⇐⇒ ∃s, e s.t.

Cs,e(T ) 6=
∑
I⊂P

(−1)n−|I|+1Cs,eI (T ),

∀(eI | ∈ EI .

The introduction of the ‘∀’ statement compared to the original definition is due

to the ambiguity in choosing which effect corresponds to blocking some subset of

paths. In the main text the explicit dependence on T in the above equation will be

suppressed, as Cse has already been defined as a function from the phase group to

probabilities.

For example, the existence of second-order interference implies that there exists

|s) and (e| such that

Cs,e 6= Cs,e{0} + Cs,e{1} ,

∀ |e{i}) ∈ Ei. Whilst the existence of third-order interference corresponds to the

existence of, |s) and (e| such that

Cs,e 6= Cs,e{0,1} + Cs,e{1,2} + Cs,e{2,0} − Cs,e{0} − Cs,e{1} − Cs,e{2} ,

∀ |eI) ∈ EI .
We consider the above for the case of quantum theory to provide some intuition

for the definitions. Firstly, we show the existence of second-order interference. Define

our paths by pi := (|i〉〈i|, |i〉〈i|), then choose |s) = |+〉〈+| = (e|. Then (e{i}| ∈
{ri|i〉〈i|} where ri is an arbitrary positive real number. The phase group is given by

P := {eiθ0 |0〉〈0|+ eiθ1|1〉〈1|}. It is then simple to show that,

Cs,e(T ) = cos2

(
θ0 − θ1

2

)
,

whilst,

Cs,e{0}(T ) + Cs,e{1}(T ) =
r0 + r1√

2
.
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It is then simple to see that, as functions of θi,

cos2

(
θ0 − θ1

2

)
6= r0 + r1√

2
,

for any choice of ri, i.e. (e{i}|. Therefore—by our definition—quantum theory has

second-order interference as we would expect.

Next we consider our definition of third-order interference for quantum theory.

We consider a specific choice of |s) and (e|, and note that this can be simply—but

tediously—generalised to all choices. Consider |s) = 1
3
(|0〉 + |1〉 + |2〉)(〈0| + 〈1| +

〈2|) = (e|, and the phase group, P = {eiθ0|0〉〈0| + eiθ1|1〉〈1| + eiθ2|2〉〈2|}. Then let

(e{i,j}| = 1
3
(|i〉+ |j〉)(〈i|+ 〈j|) and (e{i}| = 1

3
|i〉〈i|. Note that these are sub-normalised

effects. It is then simple to check our definition for this particular choice of |s) and

(e|. The interference patterns can be written as,

1.

Cs,e(T ) =
1

9
|eiθ0 + eiθ1 + eiθ2|2

=
1

9

(
3 +

∑
i>j

ei(θi−θj) + ei(θj−θi)

)
,

2.

Cs,e{i,j}(T ) =
1

9
|eiθi + eiθj |2

=
1

9

(
2 + ei(θi−θj) + ei(θj−θi)

)
,

3.

Cs,e{i}(T ) =
1

9
|eiθi |2 =

1

9

and so,

Cs,e(T ) =
∑
i>j

Cs,e{i,j}(T )−
∑
i

Cs,e{i}(T ).

This proves that the particular choice of state |s) and effect (e| do not give higher-

order interference for quantum theory. This can, however, be readily generalised

to hold for any choice, and so demonstrates that quantum theory does not exhibit

higher-order interference.
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