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The Contextuality of a Text

Abstract

The aim of a computer is (roughly) to translate a sequence of instructions written in
some kind of language to a set of mathematical operations. The goal of distributional
models of meaning is to some extent to do the opposite. In other word, how can one
formally represent the structure of language? In the search of a mathematical model of
meaning and more generally of perception, we will investigate various ways one can place
a discourse in its context.

We will approach this very broad question from two different point of views. We
will first adopt a rather pragmatic approach on contextualisation, namely how to resolve
ambiguity for anaphoric-type ambiguity. In the last part of this project, we will investigate
perception in a more general way by borrowing some formalism from quantum information
theory.

1 Introduction - The story of a DisCoCat

We can see language as having a logical structure (grammar), which is specific to a
given language, and meaning which ought to be universal. These two aspects has historically
been treated separately, with Lambek’s grammar of one side[Lam07], and via Montague
semantics|RDEWP80] or distributional approaches (e.g. [MPW16, [Clal5]) on the other.

In Lambek’s formalism, sentences are modelled in a pregroup. Recall that a pregroup
(P,<,-,1,!, ") is a partial order (P, <) equipped with a monoid structure (P,-,1) and left

and right adjoints satisfying the reduction rules:
pp<l
p-p <1

We will use graphical calculus to make these reductions more readable by writing:

P
/) !
p p"

/) !
Figure 1: Reduction rules in a pregroup.
Each word on a sentence is attributed a type (e.g. n for nouns) such that every grammat-

ically correct sentence reduces to a specific atomic type, the sentence type, usually denote s.
Here is an example of a typed transitive sentence:

Mathematicians  drink cof fee
n n" s pl n s

N N




This assignment of types indeed works since the overall reduces to the sentence type.
There are many more examples in [Lam07], but it is not the aim of this project to expand
too much on this.

There are also several of interpretations of what “meaning”, well, means. The distri-
butional approach is based on a simple concept: similar words tend to appear in similar
contexts. We can then relate words by their statistical co-occurrences|[Clal5l IMSC™13]. For
example, the word cat, can appear in the same contexts as dog, lion or physics, but will
be unrelated to, say skyscraper. One could also see a truth-theoretic approach . The main
theory on the subject is referred to as the Montague semantics. This, in particular, gives a
way of dealing with entailment[RDEWPS0]. For instance:

1. The mug is on the table.
2. The table is in the kitchen.

entails: The mug is in the kitchen.. The theory also provides a (set-theoretic) way of
ruling out contradictory statements (e.g. The mug is full and the mug is empty) or sentences
that are grammatically correct, but do not have a meaning (e.g. I wait for a waterfall to
save).

The main idea behind compositional distributional model of meaning (a.k.a. DisCoCat),
introduced by Coecke, Sadrzadeh and Clark in [CSCI10] is to combine all of these concepts
into a single theory of language: each word is associated a grammatical type coupled with its
“meaning” (e.g. element of a vector space or a convex space). As in the Lambek grammar,
types admit left and right adjoints so that they can reduce to a sentence type. The represen-
tation adopted is similar to the one used in [CK17] to describe quantum processes, and for
instance, the previous example will be depicted as:

Mathematicians drink cof fee

N

In terms of evaluating the meaning of a sentence, say an easy transitive sentence, we can
see verbs as a relation between the the subject and the object of the sentence. For example,
let’s consider a universe where the only nouns are {Alice, Bob, M athematicians, cof fee},
and suppose that:

1. Alice likes Bob.
2. Alice likes coffee.
3. Mathematicians like coffee.
Hence, we can define the meaning verb like as:
|like) = |Alice) (Bob| + |Alice) (cof fee| + |Mathematicians) (cof fee]

using the “braket” notation, also taken from the quantum mechanics formalism. We obtain
a truth-value of a sentence by computing the inner product. In this example, Alice likes



Bob will evaluate to 1 (i.e. true) whereas Bob likes coffee will evaluate to 0 (i.e. false).
Similarly, predicate representation of words are adopted in [SCCI4]. In this model, the proper
nouns corresponds to the atomic elements of a universe U; nouns, adjectives, non-transitive
verbs, etc are represented as unary predicates (e.g. [Human] = {x € U|z is a human}) =
{Alice, Bob, Mathematicians}), and transitive verbs are binary predicates (e.g. [like] =
{(z,y) € Ulz likes y} = {(Alice, Bob), (Alice, cof fee), (Mathematicians, cof fee)}). We will
find this representation particularly useful in the subsequent sections.

We will in this project focus on the meaning aspect rather than the grammatical structure.
We will first give a quick review of previous work on modeling meaning and cognition.

Meaning spaces Within the distributional framework, the first naive approach is store the
meaning of a word in a vector(see [MSCT13, [Clal5]). The main advantage of this method is
that vector spaces are computationally convenient to implement; an example of such imple-
mentation is the word2vec programm based on the model introduced by Mikolov et. al. in
[MSC™13]. This approach leads a very natural geometric interpretation of the lexical space,
and furthermore gives fairly good results. For example by comparing the distance and di-
rection of words on the obtained vector space, [MPW16] showed that it is possible to obtain
word association such as:

e Paris is to France what Helsinki is to Finland.
e Girl is to boy what princess is to prince.

but also yielded some unexpected examples. In particular, it is difficult in this framework
to differentiate antonyms since they will be very likely to appear in the same context (e.g.
a sentence containing the word love will in most case still make sense if love is replaced by
hate, even though their meanings can be considered as opposite). In addition, it might not be
very convenient conceptually to represent the meaning of words by a (very high dimensional)
vector. In the work of Gérdenfors (see [Gar04, [Garll]), each word is modeled as a convex
space. Each noun is given some properties (a basis), and can be expressed as the convex
combination of those properties. In this scenario, verbs can acts on objects (nouns) by modify
the weight of one of its properties. This concept has also been extended in compositional
distributional models of meaning in [BCG™17].

Dealing with ambiguity Conversations on a daily basis shows that ambiguity is om-
nipresent in language. Moreover, we can distinguish several degrees of ambiguity:

e Unrelated words which share the same spelling (homonymy). For example the word
bank could refer to the financial institution, or the edge of a river.

e Words that are related, share the same spelling but represents different things (poly-
semy). Continuing the previous example, the word bank can mean the abstract concept
of the institution, or the physical building.

e An even more subtle type of ambiguity would be at the level of a sentence. We can
for example consider a sentence where all words are well-defined and not ambiguous,
but for which the meaning will depend on the previous sentences, or a more general
context. For example:



Alice and Bob speak French and English.
There is no lexical ambiguity here, but are both Alice and Bob bilingual or is Alice
speaking French, while Bob speaks English?

The first two points were treated in [PKCSI5|, while the second can to some extent be
resolved by taking intonation into account[KS15].

In the case of homonymy and polysemy, one can view ambiguous words as a probabilis-
tic mixture of two or several non-ambiguous meanings — note already the parallelism with
quantum mechanics. The work presented in [PKCS15] is based upon the original work of
Piedelieu|[Piel4] which uses concepts of quantum mechanics to model ambiguity: the meaning
of a word can then be represented as density matrices via the CPM construction[Sel07], i.e.
doubling[CK17]. In this framework, if non-ambiguous words are considered as bases states,
then polysemous words are depicted as a mixture of those basis states, but which is still a pure
state, while homonymous words corresponds to the classical mixture of pure states, i.e. mized
states. This indeed gives rise to a much richer structure than standard probabilistic mixing.
Furthermore, polysemous and homonymous words are intrinsically different[PKCS15]: poly-
semous words do refer to roughly the same concept, but need to be put in context to “select”
one of its instantiation. We might note, as remarked by Marsden in [Marl7], that working in
the category CPM(Rel) (rather than CPM(FHilb)) as in [PKCS15] can lead to anomalies,
e.g. convex combination of mixed states giving a pure state. In response to that, Marsden
proposed in the same paper ([Marl7]) an alternative way of dealing with ambiguity using
the power-set monad (for unquantified ambiguity) and the distribution monad (for quantified
ambiguity), and also introduces Seto-enriched categories to model incomplete information so
that L refers to a “I-don’t-know” element. We may also note that the CPM-construction is
also used to describe entailment (see [PKCSI5, BCLM16]), hence to describe both ambiguity
and entailment, one need to apply the CPM-construction twice (see [PKCS15| [AC16]).

From a different perspective, Kartsaklis and Sadrzadeh exposed how intonation can be
modelled within the distributional compositional of language in [KS15]. The main idea is
that a sentence has a rheme part and a theme part. The emphasis of the sentence is on
the former, which is the part giving information; the latter just places this information in
context. The intonation boundary is denote by the token < (or > depending on the sentence)
such that:

rheme <theme

For example, using the example used in [KS15], we can differentiate:
1. Mary likes > musicals.
2. Mary < likes musicals.

In the first case, the emphasis is put on musicals and hence can be an answer to the question
What does Mary like?, while in the second case Mary is the main information, so this is a
suitable answer to Who likes musicals ?.

Even though the link with ambiguity is not completely obvious here, one can see that
this method can be used to resolved some ambiguous statements. For example the sentence:



The lady hit the man with an umbrellall]
might mean that the lady is hitting a man who has an umbrella, or that she is hitting a
man using an umbrella. However, by marking the intonation boundary as:

1. The lady hit > the man with an umbrella.
2. The lady hit the man > with an umbrella.

the ambiguity is resolved: 1. corresponds to the statement when the man has an umbrella,
and 2. is the situation where the lady has the umbrella.

1.1 Intuition and motivation

At the moment, most of the work has been done locally, in other words, within one or two
sentences. Hence, the goal of this project is to have a better idea of what is happening in
a more global scale. Indeed, a single sentence can have a lot of different interpretations in
different contexts. As previously discussed, in many cases, this ambiguity can be resolved by
putting the intonation at the right place. Now, let’s consider the sentence:

I'm ready.

This may equally mean I'm ready to go for lunch, or I'm ready to handle whatever is
gonna happen next. In the first interpretation, “I” is the one acting, whereas it has a more
passive role in the second one. Hence, intonation here is not enough to resolve the ambiguity
and only the whole context will determine the meaning of the sentence.

The first aim will then be to describe the structure of a text rather than sentences alone.
Some work has been done in this direction in [CAMTI18| [Coel9, [AST4], and we will talk
about this in more details in the next section. The second idea will be to have a (rather
philosophical) discussion about how a text is perceived, and how external parameters may
interact with attribution to meaning.

As a side note, this project will use a lot of different concepts borrowed from the formulation
of quantum theory, and I would like to justify and motivate this choice. One of the obvious
reason is that the majority of the literature on categorical models of meaning is based on
monoidal categories, which is also used to describe quantum systems[AC0§|, and moreover,
the graphical notation used is clearly inspired from |[CK17]. In addition, real life and our
perception of the world has more in common with quantum mechanics than one realises
and all paradoxes can have a very natural interpretation when it comes to our everyday
experience:

e Non-locality. In quantum mechanics, if two spacelike separated parties share an
entangled state, local operation made by one party changes the state of the other,
this is known as non-locality. In the case of language, the truth of a sentence might
be altered by something or someone outside of our reach and upon which we have no
control.

!This example is shamelessly taken from https://mw.lojban.org/papri/Ambiguous_sentences_in_
English.
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e Probabilistic nature and terminality of measurements. It is said and has been
proven that nature as described by quantum mechanics is not deterministic and the
same state can lead to two different measurements. However, once a measurement has
been made, the outcome is definite and every subsequent measurements will lead to
the same result. Similarly, it is very natural to think of the future as open to many
possibilities; but once a decision is made, this cannot be changed.

e Complementarity and non-commutativity of measurements. The uncertainty
principle in quantum mechanics states that it is not possible to simultaneously measure
the position and the momentum of a particle. In psychology, is it also quite clear that,
for example, the process of making judgments shouldn’t be commutative.

e ctc.

This intuition has already been used in several areas outside of physics|[Khrl5] and notably
led to interesting experimental results for example in psychology and cognitive science (see
for example [DK12, ICTF*07, [Khr5]).We'll give more details about this in the last section.

2 The meaning of a discourse

There’s no sense in being precise when you don’t even know what you’re talking
about.
John von Neumann

It is quite clear that a piece of text or a given discourse can only make sense when put
in context. The first thing to consider is the basic example of anaphora. It is indeed very
common to make references within a discourse it order to make it less complicated. Indeed,
rather than saying:

John is hungry. John is going to Tesco to buy food.
It sounds more natural to say:
John is hungry. He is going to Tesco to buy food.
instead. The question now is how do we mentally make the link between He and John?
The formalism used in the next section is largely inspired by the work of Abramsky on
contextuality (see [ASK™T15]).

2.1 Texts in context

Recall that we are trying to get a more global view of the structure of a discourse rather
than (local) sentences alone. A standard way of doing so is by using sheaf theory[MM94].
Sheaf-theoretical techniques are already in use in the domain of contextuality, which relates
to quantum mechanics non-locality |JASK™15] (but not only! See for example in [Abri4]
where it is also applied to the structure of databases). Let us briefly describe the method
from|ASK™15].



Given a poset (P, <), we define a presheaf of P as a contravariant functor:
E: P’ — Set

An object s of £(z), x € P is called a section over z. We say that a presheaf is a sheaf if it
satisfies the gluing condition:
Si’m,-/\:vj = Sj|a7i/\$j
for every two sections s; ; over the elements xz; ; € P. In the context of quantum non-locality,
we define the set X as the set of all possible measurements given a particular situation. We
denote by M the set of all measurements that can be made jointlyELi.e. the measurement
contexts, and O the possible outcomes of these measurement contexts. We then define the
presheaf:
£:P(X)— OF C Set

which is trivially sheaf when X is finite]ASK™15]. And the functorﬂ

Dp : Set — Set
X — {¢: X — B¢ distribution over (B,V,0,A,1)}

with morphisms:

D]B(f) : DB(X) — DB(Y)

o [y \/ o)
@)=y

for every f : X — Y. Note that Dg€ : P(X)? — Set is a presheaf. Now, we say that a
model e € DpE(X) is contextual if there exists a section s € £(C), for some context C' € M,
which cannot be consistently extended to a global assignment t € £(X) which is coherent for
each context C' € M. Note that such ¢ is called a global assignment if there exists C' € M
s.t.:

and:
e(t)|e =1

for all C' € M. More visually, the segment in red in Fig cannot be extended to a closed
path.

2This needs to forms a cover of the set X.
3This definition can be generalised by replacing B by any semiring (R,+,0, x,1). We will also describe the
probabilistic case over (R>g,+,0, x,1) in Section



| (0,0) (1,0) (0,1) (1,1)

(a,0) | 1 1 1 1
(a,b) | 0 1 1 1
@, b)| 1 1 1 0
(a,b) | 0 1 1 1

Figure 2: The Hardy model.

Indeed, one can try to extend the section (by brute force) as:

to see that any global assignment is not globally consistent.
A model is said to be strongly contextual if none of the local section can be extended to
a global assignment, for example:

| (0,0) (1,0) (0,1) (1,1)

(a,b) 1 0 0 1
(a',b) 1 0 0 1
(a',b) 0 1 1 0
@?) | 1 0 0 1

Figure 3: The PR-box.

In this example, the context (a’,b") insures that no local section can be consistently
extended to a global one.



So, this is nice. But why is it relevant to linguistics?

Application to texts There has been already a few attempts to obtain of way of dealing
with a discourse, for example in [AS14] [CAMT18]. We see in both those references that the
first step towards a model of discourse is via anaphora, for example:

John has a cat. It’s fluffy.

Here, it obviously refers to John’s cat; but note that the sentence It’s fluffy. alone, is
not enough to determine what it refers to. This is a very common and intuitive figure of
speech, but rather hard to model (for example, Montague semantics usually fails|JAS14]). The
approach used in [AST4] combines the formalism of Discourse Representation Theory (DRT)
of [KVGR11] and Abramsky’s sheaf-theoretic model of contextuality previously described. In
DRT, a text is represented as a set of variables (words), and a set of conditions which dictates
how these variables interact with each other; these two sets together gives the Discourse
Representation Structure (DRS) of the text. Let’s consider once again the simple example:

John has a cat. It’s fluffy.

Then we decompose the two sentences as:

John has a cat  +—  ({z,y},{John(z), have(x,y), cat(y)})
and:

It is fluffy —  ({u}, {It(v), fluf fy(v)})

where we underline the variable(s) that needs to be assigned a meaning. We also note that
we can get the conditions (number of conditions and types) from the grammatical type of
the word, e.g.:

John(x) have(z,y) cat(y)
is fluffy
n n s
It(v) fluffy(v)

(for simplicity, we treat every type as self-adjoints, and the phrase to be + adj. as a non-
transitive verb). In this procedure, we ignore the sentence type, associate each noun with a
variable, and “follow the wires” to get conditions on the composite types. The DRS of the
whole text is then the disjoint union of the two, i.e.:

({z, y, v}, {John(z), cat(y), It(v), have(z,y), fluf fy(v)}

The role of sheaf theory is then to “glue” sentences together. The game is then to find a
global assignment of all the “unknown” variables so that the discourse makes sense. Inspired



by the predicate approach used in [SCCI4], we define our universe U to be the set of all
characters and object that have a definite identity. In the previous example, we would have:

U = {John, John's cat}

We then define each unknown noun as an unary predicate satisfying certain properties. For
example we would have:

[1t] = {x € U|z is as object, unnamed animal, abstract thing etc. ..}
This is quite trivial in the previous example as it is clear that:
[1t] = {John's cat}

Then, in this case, resolving the ambiguity is trivial: the only possible assignment of the
(only) unknown variable v is v — y or:

It — John's cat

For more complicated example, we will consider the Cech complex (see Fig of all the
unary predicates (e.g. nouns, adjectives and non-transitive verbs) as the set of all possible
measurements, and the binary predicates (e.g. transitive verbs) as measurement contexts.

Figure 4: Example of a Cech complex.

The possible outcomes then corresponds to the known elements of U. Let’s illustrate this
by a simple example:
John has a cat called Arnold. He is meowing at him.
This text has the following DRS:

({z,y,u, v}, {John(zx), Arnold(y), He(w), him(v), Have(z,y), Meow(u,v)}

In this case, we see that both He and him can refer to both John and Arnold the cat; however,
it seems reasonable to say that the verb to meow can only have a cat as the subject. Hence,
assuming that him and He are different characters, this completely resolves the ambiguity:

| (@) (@y) (2) ()
Meow(g,y)‘ 0 0 1 0

10



So the only possibility is u = y and v = z; in other words:

He — Arnold
Him — John

However, let’s consider the following example:

John has a cat called Arnold. He is happy.

In this case, we see that we need more information to resolve the ambiguity. Indeed, He
can equally refer to John or Arnold the cat; but if we knew that John always wanted a cat or
was sad and lonely, then we could conclude that He — John, or on the other hand if Arnold
just got fed the most probable assignment would be He — Arnold. But in both cases, the
two meanings are perfectly reasonable. Now, if we consider the following example:

John has a cat called Arnold. She’s fluffy.

There is something not quite right there. Indeed, with the information that we are given,
She doesn’t seem to refer to anything (assuming obviously that Arnold needs to refer to a
male character). This is the equivalent of the strong contextuality concept of [ASK™15]. Note
that if, borrowing the terminology of [ASK™15|, if a given discourse is logically contextual,
but not strongly contextual (i.e. at least one global assignment exists), then we can just
restrict to the consistent assignments. We can then classify the inconsistency of a given
discourse as:

e A discourse is contextual if it is strongly contextual in the sense of [ASK™15], i.e. if it
is incoherent;

o If there exists a unique global assignment which makes the text coherent, then the
discourse is contextually non-ambiguous;

e If several global assignments are possible, then the discourse is contextually ambigu-
ous, and obtaining more information (i.e. more sentences) could help resolving the
ambiguity.

As a concluding remark for this section, I have discovered, while writing this report, a
paper by Zadrozny and Garbayo[ZG18] using similar ideas to identify contradictions and
disagreement in related discourses.

2.2 Causal structure of a text

Now, let’s consider the example:
(S1) John and his brother have exams.
(S2) John is not done yet.
(S3) He needs to revise.
(S4) His brother has finished his.
(S5) He is on holidays.
As before, we ask for the sentences (S3) and (S5), who is He? If we isolate these two
sentences:

He needs to revise.
He is on holidays.

11



We can see that in both cases, both John and John’s brother are possible (both male
humans; both having exams); so the previous formalism is not enough to resolve the ambiguity
here. However, when reading the text, it is quite obvious who each He refers to (namely He
is John in (S3) and John’s brother in (S5)). We are now gonna introduce an additional
structure on text, the notion of time passing.

We first note that some work has been done already in the direction of expanding the
formalism of DisCoCat to the scale of a text: DisCoCirc, which has been developed in [Coel9]
by Coecke. In this model, sentences are allowed to commute if they have no influence on one
another. For example:

The sky is blue. The phone is ringing.
Or more importantly, they are allowed to have an influence on one another, for instance:
It’s raining. I should be an umbrella.

The main idea of the paper is that sentences are not states, but rather processes acting
on the protagonists and objects; verbs and relationships are then represented as connectives.
For example:

(S1) John has exams.
(S2) He is stressed.
(S3) He drinks coffee.
(Sy) He stays up all night.
(S5) He passes his exams.
(S¢) Now, John is happy.
is presented as the following circuit:

John FExams cof fee

John Ezams cof fee
e,

M idrmks;

pass

i

Also note that the “spiders” are connected to the subject of each verb. Now we see from
the LHS that by combining each sentences in blocks, this gives the structure of a Directed
Acyclic Graph (DAG) representing the causal structure of the text (see Fig[)).

We can then use this structure and apply it to refine the construction defined in the
previous section.

12
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Figure 5: DAG structure of a text.

Let T be the causal structure associated with a text, for example:
[ ]
L]

e

@ — O — @

where all the nodes are sentences. Then we note that 7 is a (finite dimensional) poset.
Hence, we can define the presheaf F over T as:

F:T? 5 & CSet

where G is the set of sentences of a given a text, satisfying the standard presheaf conditions
(note that since T is finite, then this is trivially a sheaf). As for a general presheaf, we need
the _°P since any sentence needs to be coherent with other sentences which have influence
on them; and hence, this corresponds going backwards in time to “check” consistency with
previous events or facts. Hence, we will then be interested in the existence of global sections
over the presheaf D€ (F(T)). Now, recall the example:
(S1) John and his brother have exams.
(S2) John is not done yet.
(S3) He needs to revise.
(S4) His brother has finished his.
(S5) He is on holidays.
Then, the corresponding causal order is:

13



S1

VRN

S Sy
| !
S S5

Hence, we see that this indeed resolves the ambiguity. Indeed, since (S3) needs to be
compatible with (S2), then He in (S3) needs to refer to John; and similarly, compatibility of
(S5) w.r.t (Sy) implies that the second He corresponds to John’s brother.

2.3 Probabilistic contextuality

So far, we have only considered possible situations, i.e. even though some assignments
might sound absurd, we cannot rule them out since there might be a context for which the
interpretation is realisable. For example:

John is listening to a song on his phone. He likes it.
Now obviously it is more probable that John likes the song rather than John likes his
phone; even though both are possible. Therefore, it would be of interest to add some kind a
probability notion into this framework.

Probabilistic meaning As briefly mentioned before, we could, instead of working over the
booleans, work over any semiring. In particular, to get back a probabilistic interpretation,
we could, and will, work over the (R>p,+,0, x,1) semiring. This approach has been briefly
described in [AS14], along with some empirical results. We’ll adopt a more naive approach
here: let’s assume that in general, people are 70% likely to say that they like a song, rather
than their phone. Hence, writing the previous example DRS as:

({z,y,z,u,v}, {John(x), song(y), phone(z), He(u), it(v), listen(x, y), like(u,v)})

| (x,2) (zy) (x,2) (o) Wy @2 (s2) (2y) (22
like| 0 07 03 0 0 0 0 0 0

Probabilistic time So far we have also assumed that causal orders were definite. But is
this always the case? Let’s consider the example:
(S1) John and his friend are walking on the street.
(S9) He gets distracted by a pigeon.
(S3) He trips over a rock.
Here, there is an ambiguity on whether each He corresponds to John or his friend. How
does the causal order look like? Well, it can either one of:

14



S1

/ /N

Sg 53 SQ

(a) (b)

In the case of (a), the same person gets distracted: the character trips because of the
pigeon and because he is walking on the street. In the second case, He is So and Sj3 refer to
different people; the two sentences So and S3 do not have any influence on each other but
both depend on the fact that John and his friend are on the street. Hence, we would like to
write the causal order as:

Si

N o
Sy + / \
4 A Sy

S3

Furthermore, these two causal order are not born equal; clearly it is more likely that the same
person, whether it be John or his friend, trips over the rock because of the pigeon. Hence we
can add probabilities on top of the superposition as for example:

S1

N >
07 | s +03 / 0\
/ S3 Sy

S3

Interaction of probabilities The next obvious question is how does those two “add-on”
probabilities interact. In the case when the causal order, or each possible causal order, makes
a text completely unambiguous, this is pretty straight forward. Let’s consider the example:
(S1) John is clumsy.
(S2) John and his friend are walking on the street.
(S3) He gets distracted by a pigeon.
(S4) He trips over a rock.
Hence, this gives rise to the following possible causal order:

15



\ \
S3 S1 ‘ S3 h S5 Ss
/ / /N Si /N
Sy Sy Sy Ss Sy Ss
(a) (b) (c) (d)

Which completely resolve the two ambiguities:
) [S3: He v John; Sy: Hew John]
) [S3: He > friend; Sy: He > friend]

(c) [S3: Hew friend; Sy: He— John]
) [Ss: He— John; Sy: He— friend]

Now, if we write the overall (indefinite) causal order as:

S1
| ”
Sa
52 \ S2 S2
0.5 AN +0.1 S1 S3 +0.3 / N\ +0.1 S1 VAR
S3 4 Sa S3 Sy S3
/ Sy
Sy

We then obtain the table of probabilities as the standard union of events:

‘ John friend
Distracted | 0.5+0.1=0.6 0.140.3=0.4
Trips 0.5+0.3=0.8 0.1+0.1=0.2

This example is easy because given a definite causal order, each unknown comes with
probability of either 0 or 1. What about a more general case, for example:
(S1) John and his friend are walking on the street.
(S9) He gets distracted by a pigeon.
(S3) He trips over a rock.
Here, there is ambiguity in both the causal order and the assignments with each definite
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causal order. But, we do have extra conditions, namely:

S1

N\
Sy = (S2: He,S3: He) — (John, John) V (friend, friend)

/

S3

S1
/ \ = (S2: He, S3 : He) — (John, friend) V (friend, John)
S3 So

Note that this is weirdly similar to the Bells states|CK17]:

B, — 100 +111)
V2

1 1

5, _ 110+ [01)

V2

i.e. imposing causal structures creates entanglement of sentences.

From this example, we see that it would make more sense to consider contextual ambiguity
as the quantum superposition of references, and the causal structure ambiguity as classical
superposition. In this case, the previous example can be represented as the mixed state:

) = la) © (0.7|Bo) + 0.3[B1))

where |a) is the non-ambiguous part of the text.

All of this is useful for, say a text, where everything and everyone lives in a self-contained
universe; in this universe everything is pretty much pre-determined by whoever is writing the
text. In order to deal with conversation or a more interactive type of discourse, in particular
how a text is perceived, we need add the past and the current “state” of the person reading
the text, or listening to a conversation. We will explore this aspect of this topic in the next
section.

3 A word on perception

For, after all, how do we know that two and two make four? Or that the force
of gravity works? Or that the past is unchangeable? If both the past and the
external world exist only in the mind, and if the mind itself is controllable — what
then?

1984 - G. Orwell
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We have already moved from understanding a sentence to understanding a collection of
sentences. To get a grasp of perception, we want to move to one level up. Why is this
important? We see already from the discussion about probabilistic contextuality that it
is very subjective to “attribute” weights to either meaning or causal structures. The whole
concept of meaning is itself very subjective and individual-dependent. This section is going to
be rather informal compared to the previous one; its aim is simply to give a more metaphysical
discussion about perception.

3.1 Are brains quantum open systems?

The context is essential in our idea of what’s happening or more generally our perception
of the world. Reading the same text, people will have different pictures in their head, and
for example, a film adaptation will never be the same as picturing a book in our heads. This
arguably involves more than just memories, for example the mood of the person receiving a
discourse, and its physical environment - a discourse may not have the same impact from a
cold and dark place rather than from a sunny tropical island.

Furthermore, as more and more information is given, the environment itself becomes more
and more precise. Hence it would make sense to store all information that we know within
the environment.

The idea is that there is a dual interaction between the discourse and what we previously
called the environment, i.e. our internal state, even at the level of one sentence. When
listening to a reference (e.g. see anaphora is the previous section), the mind will search
through the memory to obtain the “pointer” to the reference (either know or the combination
of all possible references that we know of). An similarly, after the listening to the sentence,
then we have obtained new information, which will update our internal state. We then depict
the said environment as an ancilla:

This shows an example of a general sentence, with one reference that needs to be “asked”
to the environment (which we call £), and one new piece of information in blue. Here, we
assume, that there is only one Alice in the world so that this name is completely unambiguous.
If however there has not been a reference to any Alice before and that we have no idea who
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this refers to, we can replace it by a complete uncertainty, e.g.:

‘Alice —
7
Also note that even if we are using the notation of [CK17], time is going down.
Hence a whole discourse depicted as a process will be of the general form:

Some text

If we want to impose a initial internal state € (including for example the past and mood
of the individual), we then obtain:

[\ =
el "1

Some text

/N

This is very similar (pictorially and conceptually) to the concept of quantum open systems
as used in quantum information. In quantum information theory, open systems are used to
obtain a more realistic model of quantum processes, by introducing possible external effects
which can affect the process in question. This includes for example the presence of noise, the
possibility of coupling within the environment or unintended measurements. Here however,
the environment is not merely a side effect but actually what we should be interested in. In
particular, since all the information is stored within this ancilla, it will make sense to obtain
a truth-value of a given sentence, or the answer to a question by measuring the environment.
For example:
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[N =
el T

Some text

VAN

£
Who is Alice?

The analogy with quantum measurement is here quite useful since we can model different
types of questions as different types of measurement. We can then imagine, for example,
see yes-no questions, or questions with a very specific answer (e.g. Who does John like?) as
basis state measurements, whereas questions such as Who is Alice? can be a projection onto
a subspace, and hence will be similar to von Neumann measurements.

Note that we are using here “double wires” here. This choice was made for two different
reasons, that are not completely unrelated.

The first one comes from the fact that every word that requires the environment is inher-
ently ambiguous from the previous discussion, so doubling the wires ensures that this is still
coherent with the standard DisCoCat formalism. The second reason comes from the theory
of Khrennikov et. al. (see [Khr15, ICTET07, [ST92, [AOKTI]) which states that mental states
are essentially quantum-like states.

3.2 Time and space matters

Motivated by the experimental results from a psychological experiment (see [ST92]), Khren-
nikov developed a quantum-like model of decision making, for example in the context of the
Prisoner’s Dilemma (see [AOK11]). This game can be described by the “reward table”:

(A, B) ‘ Cooperates Betray
Cooperates (¢, c) (a,d)
Betray (d,a) (b,0)

Figure 8: The Prisoner’s Dilemma - pay-off table.

where the rewards a, b, ¢, d satisfies a < b < ¢ < d. This game is known to have a rational
solution that maximises the pay-off for each player individually, namely, to betray. It has
however been shown that obtained statistical data[ST92] violates classical probability models,
but is on the other hand similar to the violation of Bell inequalities. This is attributed to non-
sequential reasoning [ST92] and irrational behaviour[AOK11]. In [AOK1I1], the mental state
of the player (in the Prisoner’s Dilemma) is modelled as the tensor product of a prediction
state, i.e. what he thinks the other player is thinking, and his own alternative state in which
he estimates his reward in either case. Both of these states are represented as quantum states,
and are allowed to interfere during the decision making process. The decision itself is seen
as the measurement of the final mental state.
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In modelling natural languages, it is also seems reasonable to account for some similar
type of irrational behaviour. Let’s recall the previous example:

John s listening to a song on his phone. He likes it.

We can have a similar interpretation here. Considering the “measurement” as determining
which of the two meaning is the right one. John likes the song is the obvious rational choice,
but cannot exclude the other possibility. Hence, it is possible to “project” onto the less
probable choice, which will appear as irrational.

Alongside, some experimental data on psychological experiments in recognition of am-
biguous figures|CTF*07] (see Figfd) or on public opinions[Moo02] exhibit features similar to
the probabilities obtained in quantum experiments[Khrl5], i.e. violates the formula of total
probability:

P(B) = P(A)P(B|Ay)
K

for any partition {Ax}, in the sense that order matters in opinion and perception.

Figure 9: Ambiguous figures.

Note that the results explained in [Khrl5] are similar to the concept of contextuality
discussed on the previous section.

This has a direct application to the previous measurement analogy used to the retrieve
information from an internal state subject to a discourse. Indeed, we would expect these
“questions” to be non-commutative: the answer to a given question could depend on pre-
viously asked questions and their answers. Similarly, the physical context should have an
influence on attributing coefficients for contextually ambiguous terms or in the case of indef-
inite causal orders. For example:

(S1) John is clumsy.
(S2) John and his friend are walking on the street.
(S3) He gets distracted by a pigeon.
(S4) He trips over a rock.
in comparison with:
(S1) John is clumsy.
[Some long and irrelevant text]
(S2) John and his friend are walking on the street.
(S3) He gets distracted by a pigeon.
(S1) He trips over a rock.

The structure of the causal order shouldn’t change. However, it seems reasonable to

assume that the further away the sentence S is compared to the rest of the text, the less
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relevant it becomes; and hence, the weightings for the causal structures for which S; has
influence on other sentences should decrease.

3.3 Tomography

To conclude this section, we carry on the analogy with quantum systems and ask ourselves,
can we get a master equation of the way the mind works? In quantum information, the
standard way of determining the nature of a state or a process is quantum tomography[NCO1].
This is done by applying a series of (selected) measurements in order to obtain a more and
more precise description of the state or process (e.g. black box) in question[NCO1]. This may
be applicable in situations where experiences can be duplicated, for example by playing a
video game of through “interactive” books or ﬁlmsﬂ However in the case of understanding
the mind, this raises some issues. Indeed, the act of measuring, i.e. observing, makes changes
to the system itself[BSO§|, which is in this case, also the observer. Hence, this interpretation
of perception induces an interesting question: how can one get a better understanding of
perception if getting any information in turn alters perception itself?

4 Conclusion

We have, in this report, investigated various ways of putting a discourse within a context.
Sheaf theory seems to provide a convenient mathematical framework to deal with anaphoras
and references within a text. In addition, this method is compatible with causal struc-
tures, which not only resolves remaining ambiguity in some cases but also loops back to the
quantum-like description of ambiguity in the literature by inducing a notion of entanglement
of sentences. Keeping the analogy with quantum mechanics, we explored the advantages of
interpreting perception as a process in a open quantum system.

Further directions There are a few directions that would, in my opinion, be interesting
to explore in relation with the work done here.

e Link with Dynamic Epistemic Logic
The vision of the world that each individual have is built on its personal experience.
Hence, using intuitionistic and constructive logic is very sensible in the sense that we
get a model that is closer to everyday life than standard logic. For example, a baby
wouldn’t know whether the Earth is flat or round; and as we grow up, we assess truth
of statements by our knowledge and past experiences.

The formalism of Dynamic Epistemic Logic[BS17, BCS05] seems to be a very natural
model for doing this. In particular, this gives a way of dealing with public announcement
or public refutation (if something is commonly said to be true or false, then an individual
will accept it as true), failure (learning by failed experiments), and belief revision (it
is reasonable to say that people change their mind). Then, one can represent life in a
general point of view as a gigantic epistemic program.

e Graded entailment and weighted causal structures
It should be possible to get an even more precise description of a given context by

“This idea is entirely due to Vincent Wang during the Distributional Models of Meaning meetings.
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introducing weights on the causal structures introduced in Section 2. It would be
interesting to see if the formalism of graded entailment developed in [BCLMI6] can be
adapted to this model described in this project.
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