
A Cognition-Based Model of Text Meaning
Distributional Models of Meaning: Hilary Term 2019

Nicolas Köcher

March 27, 2019

Abstract. We present a mathematical framework to model the meaning
of a text, which is based on both Coecke’s DisCoCirc model and Gärdenfors’
theory of conceptual spaces. This combination lets us deal with some previ-
ously intractable elements, most notably allowing us to resolve the meaning
of pronouns. We also give an outlook on possible tasks for further research.

Contents
1 Introduction 2

2 Compositional Models of Meaning 3
2.1 DisCoCat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Internal wirings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Conceptual spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 DisCoCirc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 A Cognition-Based Model of Text Meaning 7
3.1 Why conceptual spaces? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 A simple model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Resolving pronouns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Reflexivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Going beyond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Comparing Text Meanings 15

5 A Story 16

6 Conclusion 18

1



1 Introduction

“There are dictionaries for words, so why aren’t there any dictionaries for sentences?”
Bob Coecke [4]

This is the question that initially motivated the creation of categorical compositional
distributional models of meaning, DisCoCat for short. In the seminal paper [2], Coecke
combines two different theories: a quantitative approach that empirically generates a
meaning vector for each word from a large text corpus, and the use of a pregroup to
model the grammatical structure of a sentence. This structure can be reduced to a single
element by the rules of the pregroup. By performing analogous “reduction” operations
on the tensor product of the vectors that represent each word, it is in fact possible to
calculate a single meaning vector for the whole sentence.

An alternative approach that has arisen only recently uses Gärdenfors’ framework
of conceptual spaces [7] in place of a distributional model. Originating from cognitive
science, this theory is based on the way the human brain understands concepts as com-
binations of certain properties, such as size, colour and taste. Representing each noun in
this way, we can once again obtain a meaning for the whole sentence by using a categor-
ical compositional approach. As it is directly modelled on human cognition, the results
of this framework are generally more tangible than with DisCoCat, where the meaning
vectors are mostly only useful for sentence comparison. While there is currently no way
to automatically generate a conceptual space for each word, Tyrrell [9] suggests that
manual input is unavoidable, and in fact important as part of a learning process.

Both of these frameworks, however, only focus on single sentences. In [4], a first
attempt was made to extend DisCoCat to whole texts in the form of DisCoCirc (circuit-
shaped compositional distributional) models of meaning. The goal of this theory is to
investigate how the meaning of words changes throughout a text, and what influence the
order of sentences has. While the general ideas introduced in [4] seem to be very fruitful,
combining them with the distributional framework leads to a few issues and limitations.
Rather, the author believes that the paper’s general method of analyzing texts naturally
lends itself to an adaptation in a cognition-based model, using conceptual spaces as the
base. Not only does this result in a clearly tangible output, but it also allows us to
resolve some kinds of ambiguities more easily, such as those arising from pronouns.

After a brief recapitulation of the current state of research in Chapter 2, we introduce
our framework in Chapter 3. Aside from providing several examples that showcase its
features or justify our design choices, we also talk about possible directions for further
expansion of the model. Chapter 4 deals with text comparison, before we finish the
paper by analyzing a small story with the methods of our framework.
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2 Compositional Models of Meaning

2.1 DisCoCat

In order to deduce the meaning of a sentence from those of the isolated words, it is nec-
essary to understand the underlying grammatical structure. We solve this by assigning
each word an element of a pregroup P as its type. The combined type for the whole
sentence is then reduced to the sentence type s by using the pregroup axioms xl · x ≤ 1,
x · xr ≤ 1; an in-depth explanation can be found in [2].

We can now choose any compact closed strict monoidal category C as our category of
meaning spaces. Each type is associated with an object of C, with adjoints being mapped
to adjoints and pregroup products to tensor products. The morphisms εl : Al ⊗ A → I
and εr : A⊗Ar → I that are given by the compact closed structure of C now correspond
to the pregroup reduction rules. Forming the tensor product of the meaning spaces of
each word, we can therefore compose εl, εr and identities in an analogous manner to the
type reduction and obtain a morphism from this tensor product to the sentence space.
This morphism makes it possible to calculate the meaning of a sentence from those of
the words that make it up.

Example 2.1. Consider a sentence with a simple noun – transitive verb – noun struc-
ture, such as “Jack loves Jill”. We assign the noun type n to both Jack and Jill, while
“loves” as a transitive verb gets the type nrsnl (this is elaborated on a bit more in [9]).
The sentence as a whole now has the type n(nrsnl)n. This reduces to s by

n(nrsnl)n = (nnr)s(nln) ≤ 1 · s · 1 = s. (1)

In C, we identify the noun and sentence types n and s with the meaning spaces N and
S, respectively. The whole sentence therefore lives in the space N ⊗ (N r ⊗S ⊗N l)⊗N .
This can be reduced in the same way:

N ⊗N r ⊗ S ⊗N l ⊗N εr⊗1S⊗εl−−−−−−→ I ⊗ S ⊗ I = S. (2)

Both the pregroup and the monoidal category lend themselves to a graphical repre-
sentation via string diagrams, which allows us to depict Example 2.1 in a simple way:

Despite all efforts to change this convention, linguists sadly still prefer a top-down
notation, which is contrary to the usual bottom-up orientation in quantum theory.
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The conventional approach used for DisCoCat chooses C to be FVect. Meaning
vectors are usually generated through quantitative analysis over a large corpus of text; [9],
for example, chooses the five most common words as the basis for the noun space, and
the coefficients correspond to the number of times a word appears in close proximity
to the respective basis word. Other types of words are quantified in a similar way. For
transitive verbs in particular, DisCoCat uses [6]’s suggestion of identifying the sentence
space S with N ⊗N , representing verbs as sums of the form

∑
ij cij(ni⊗ (ni⊗nj)⊗nj),

with {ni} being the base of N and the constants cij generated through learning.

2.2 Internal wirings

Linguistics differentiates between content words, which we considered in the previous
section, and functional words such as “and” or relative pronouns. The meanings of the
latter should obviously not be learned through a quantitative approach, but pre-defined
as part of the framework. If there is no such definition, the relevant text corpus needs
to be edited in order to replace these words, as is done with pronouns in [9]. Being able
to handle as many functional words as possible, or even full unedited texts, is one of the
long-term goals for successful models of meaning.

Depending on the purpose of the specific model, other words may also be represented
in a particular pre-determined way; we will see an example by the end of this chapter.

One of the easiest functional words to model is “does” of type nrssln, as in “Jack
does love Jill”. This can be represented by a double cup (η-morphism) in the graphical
calculus, which disappears upon contracting the diagram by the use of the yanking
equations. A perhaps more interesting example are relative pronouns, whose structure
was first explored in [3]. They can be represented using a familiar feature of string
diagrams, so-called spiders or multi-wires:

The two types, subject (“Men who love Jill”) and object (“Women whom Jack loves”)
relative pronouns, have the types nrnslnl and nrnnlsl, respectively. Using spiders, we
can represent their meanings as follows:

4



We can justify this notation by looking at the previous example “Men who love Jill”.

Example 2.2. Let N be spanned by W ∪M , where W := {n1, .., nw} corresponds to the
set of women and {nw+1, .., nm} to that of men. In particular, n1 represents Jill.

If we define “loves” as
∑
ij `ij(ni ⊗ (ni ⊗ nj) ⊗ nj) in accordance with the previous

section, we can model the entire sentence as:

(1N ⊗ εS) ◦ (εN ⊗ 1N ⊗ 1S ⊗ εN ⊗ 1S ⊗ εN ) ◦
(( m∑

i=w+1
ni
)
⊗
( m∑
j,k,l=1

nj ⊗ nj

⊗ (nk ⊗ nl)⊗ nj
)
⊗
( w∑
p,q=1

`pq(np ⊗ (np ⊗ nq)⊗ nq)
)
⊗ n1

)

= (1N ⊗ εS) ◦
( m∑
i=w+1

m∑
j,k,l,p,q=1

δijδjpδq1`pq(nj ⊗ (nk ⊗ nl)⊗ (np ⊗ nq))
)

= (1N ⊗ εS) ◦
( m∑
i=w+1

m∑
k,l=1

`i1(ni ⊗ (nk ⊗ nl)⊗ (ni ⊗ n1))
)

=
m∑

i=w+1

m∑
k,l=1

δkiδl1`i1ni =
m∑

i=w+1
`i1ni.

(3)

This is a mixture of all male base vectors, weighted by their love to Jill. If we consider
love to be a binary relation, we can indeed recover the definition.

In the same way that spiders provide an intersection between the properties “is a
man” and “loves Jill”, they can also be used to model certain types of adjectives, as
shown in [1]. So-called intersective adjectives, such as those that denote colour, gender
or other properties that clearly specify a subset of the noun space, can be modelled by
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“attaching” that subset to the noun with a three-way spider. Other adjectives however
vary in meaning depending on the noun they are attached to, such as “soft”, which has
a different softness threshold for clay and for bananas; some, like “dead”, even create
new meanings that the noun by itself does not include. These two kinds of adjectives
can generally not be represented by an internal structure.

2.3 Conceptual spaces

[1] first introduced the concept of defining nouns in terms of human cognition rather
than empirically calculating their meaning. The noun space in that model is the Carte-
sian product of finite intervals, corresponding to different attributes by which the brain
classifies concepts; rather than as a vector, we represent a noun as a convex subset of
that space. A more detailed explanation, along with comprehensive examples, can be
found in that paper.

For this model, we choose ConvexRel as our category of meaning spaces, in which
the morphisms are convexity-preserving relations. Like FVect, this category allows for
ε and η morphisms, which are the usual caps and cups from Rel, as well as spiders. As
each subset of the noun space can be seen as the union of its single points, just like a
vector is a linear combination of its base vectors, a spider N ⊗ · · · ⊗N → N ⊗ · · · ⊗N
is therefore defined by (x, .., x) 7→ {(x, .., x)} and (.., x, .., y, ..) 7→ ∅ for any points x 6= y
in that space. It is evident from this definition that a spider morphism, in fact, returns
the intersection of multiple sets. As such, it can be used to represent relative pronouns
and intersective adjectives in a much more natural way than the vector-based model.

One can indeed think of a convex subset as a direct representation of the knowledge
we have about a noun. The more we learn about a subject, the more does this knowledge
restrict the corresponding set. For example, in a model that includes a colour property
in the form of a three-dimensional RGB space, applying the adjective “red” to a word
intersects its colour dimension with the subset of colours that are perceived as red.

Verbs, however, pose a problem in this model, as there is no obvious choice for a
sentence space. Identifying S with N ⊗N hardly makes as much sense as in the vector-
based model, particularly for sentences that do not have exactly one subject and one
object. [1] offers various examples, each of which only provides a specialized model
focusing on one specific aspect of meaning for a pre-defined type of sentence. While
this shows the versatility of the conceptual framework, it clearly lacks the elegance of
DisCoCat’s ability to compare any two sentences regardless of grammatical structure.
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2.4 DisCoCirc

A recent development is the idea that rather than unifying sentence types and comparing
single sentences, we should instead switch to analyzing whole texts. If we fix a sentence
type S, this is only possible by connecting all of them with spiders, which [4] calls
the bag of sentences model. The reason for this is that since spiders fuse with each
other, modelling a text in this way would remove any effects of sentence order. It can
however be argued that ignoring the order of sentences has non-neglegible consequences
(as Coecke illustrates by the example of a recipe).

In order to solve this problem, and simultaneously investigate the extent of the effect
that sentence order imposes upon a text, [4] introduces a model that omits the existence
of a sentence type altogether. DisCoCirc, which serves as a circuit-shaped generalization
of DisCoCat, instead assigns each actor that appears in a text its individual type. In
place of a sentence space, the output of a verb is a combination of the meaning spaces
for these actors. By arranging the whole text in a graphical circuit with the actor wires
running from top to bottom, it is even possible to see temporal order and causal relations.

This idea in itself is very versatile and allows the DisCoCirc framework to be used
for many specialized purposes. To mention a simplistic example that appears in [4]: by
identifying the verb “knows” with a 4-way spider, the whole diagram for a text consisting
of sentences of the form “A knows B” contracts to a (transitive) knowledge graph.

3 A Cognition-Based Model of Text Meaning

In this chapter, we will present a cognition-based framework for understanding text
meanings that operates in ConvexRel, using the DisCoCirc notion of actor wires. We
shall first justify our use of conceptual meaning spaces over vectors, before outlining the
basic functionality of our model and the ways it resolves certain aspects of language.

3.1 Why conceptual spaces?

As a distributional model of sentence meaning was the base for the DisCoCirc approach,
one may ask why that should not be the preferred framework. Indeed, compared to
DisCoCat, which has been prevalent for almost a decade, the use of Gärdenfors’ model
is a very young approach. Still, the choice of FVect as our category of meaning spaces
has several drawbacks, while we can remedy these to an extent and reap further benefits
when choosing a cognition-based framework.

The most obvious issue with vector models is that of choosing a basis for the noun
space. Usually, the basis vectors are chosen to be the most common words in a text
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corpus, or even identical to the actors. [9], for example, includes Anakin and Palpatine
as elements of his basis, who are simultaneously the two main characters of the text
corpus. Similarly, in Example 2.2, which concerned itself with relations between people,
we chose the basis to be the set of all men and women. These choices do not make much
sense if each actor is represented by their own wire type. While we can certainly choose
the basis to be a set of attributes instead, a vectorial framework would force every word
to be linear in any of these properties. As a possible side effect of this, two actors who
are both humans might for instance share very similar coefficients for most basis vectors
of the noun space, making it hard to accurately model verbs that have very different
effects for the two of them. ConvexRel on the other hand grants a lot more flexibility in
choosing a sensible basis, as a noun can be described by a convex subset of the meaning
space rather than a single point, and the concept of linearity does not exist.

A second problem arises from the way verbs are modelled in DisCoCat. As noted
in Section 2.1, we represent a seemingly 4-dimensional verb, which lies in the space
N⊗S⊗N (or in the case of DisCoCirc, N⊗(N⊗N)⊗N), as

∑
ij cij(ni⊗(ni⊗nj)⊗nj)

with cij being entries in a (2-dimensional) dim(N)×dim(N) matrix C. If we choose the
top-down depiction and write the verb as an endomorphism on N ⊗ N , this becomes
ni ⊗ nj 7→ cij(ni ⊗ nj). Graphically, we can simplify this to:

From this notation, it is clear that if we use the vector-based model for text meanings,
each text contracts to a bag of sentences, defeating the purpose of our framework.

Furthermore, DisCoCirc has no clear notion of information gain. At any point each
actor is only represented as a linear combination of arbitrary base vectors, and due to the
aforementioned problems in choosing a base, purity or mixedness does not make sense
as a measure of informational content. This could arguably also create an issue with
intersective words, as the properties they denote might not be preserved throughout the
following sentences in this model. A conceptual framework on the other hand has the
advantage of representing actors as subsets, which gives both a clear notion of intersection
and the possibility of measuring information, for example by defining a volume measure
or simply by the number of dimensions of a set.

One additional advantage of our chosen model is the tangibility of its output. While
DisCoCat has proven to be very effective in comparing sentences, a human reader will
not understand the meaning of an isolated vector outside of very trivial cases. This
problem is obviously avoided by modelling noun spaces on human cognition.
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3.2 A simple model

In this section, we will be giving a basic outline of a possible framework along with a
relatively simple example. While some of the model’s intricacies will be explained later
in the chapter, we leave the detailed specifications open for future research.

The basis of our model is given by the noun space, which we intentionally do not specify
in too much depth. In order to be capable of modelling both human and inanimate
actors accurately, this space needs a lot of dimensions that may not all be compatible
with each noun. For example, if we go by Tyrrell’s model from [9], a “human propensity”
dimension does not make much sense for an apple, neither do colour, taste and texture
for a human. Regardless, all these classifications exist in the human mind, even though
we only pay attention to some of them for each noun. We shall therefore assume that
if a particular attribute is not given, the respective noun spans the whole possible space
in this dimension.

For the purposes of this paper, we will only consider a relevant subset of the possible
attributes a complete model should include. These are: size, age, mood (each on the
interval [0, 1], which [9] makes a more detailed case for), colour (as a 3-dimensional RGB
cube), location and gender. Location is generally hard to model and tends to include
references to other objects, which was explored more in [8] and is an entirely different
issue for models of text meaning; however, for the scope of this project, a simplification
to [0, 1] shows to be sufficient. We also represent gender on a 1-dimensional interval of
[−1, 1], with 0 for male, 1 for female and −1 for neutral. This lets us resolve gendered
pronouns, and we can initialize the gender as −1 for inanimate nouns and [0, 1] for actors
with a name. Our whole 8-dimensional meaning space is therefore:

N := Nsize ×Nage ×Nmood ×Ncolour ×Nlocation ×Ngender. (4)

As in [4], we choose not to define a sentence space S. In place of that, each verb
outputs as many wires of type N as there are subjects and objects. Each actor therefore
has one wire representing them that runs through the whole diagram, allowing sentences
to compose sequentially by connecting the output of one with the corresponding input
of another. To enable a cleaner notation that lets all actor wires run straight from the
top to the bottom of the diagram, we choose a different representation for words in the
category: rather than modelling all words as states, we make them into morphisms from
an input space to an output space. Inputs can generally be distinguished from outputs
by the fact that they are left or right adjoints in the pregroup model. For instance, a
transitive verb of type nrsnl will no longer be written as a state I → N ⊗ (N ⊗N)⊗N ,
but as a morphism N ⊗N → N ⊗N (Subject ⊗ Object → Subject ⊗ Object).

For every morphism we construct, we make sure that every subject or object wire at
the top has exactly one corresponding wire at the bottom, with the possible exception
of the word “is” (in the form of a two-to-one spider [4]), which may identify two actors
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with each other. While all existing actor wires are therefore preserved, every new subject
or object on the other hand creates an additional wire due to the possibility of it being
referenced later. This may result in an abundance of unnecessary wires; these can,
however, be terminated and ignored when it comes to text comparison.

The advantages of our framework are showcased well by a single example:
Example 3.1. Consider the sentence “Jack is taller than Jill”. For the sake of clarity
and simplicity, we model “taller than” as a single word of type nnl. As this corresponds
to a morphism Jill → N returning the set of points with a greater height than Jill,
we need to copy Jill’s state first in order to preserve the wire, resulting in a composite
morphism Jill → N ⊗ Jill. This set is then intersected with Jack’s meaning subset by
“is” : Jack ⊗N → Jack. The entire sentence can therefore be modelled as:

Note that “Jill is shorter than Jack” has an identical meaning, as is evident from the
symmetrical structure of the diagram, along with “shorter than” and “taller than” being
the relational converse of each other.

Let us compute what the composition of these morphisms actually does: consider two
single points k ∈ Jack, l ∈ Jill. One may think of them as possible configurations for
Jack and Jill, given the current knowledge we have about them. Writing k = (size(k), k̂),
l = (size(l), l̂) with k̂, l̂ ∈ Nage × · · · ×Ngender, we have:

(Jack is taller than Jill)(k ⊗ l)
= (is⊗ 1Jill)(1Jack ⊗ taller than⊗ 1Jill)(1Jack ⊗ copy)(k ⊗ l)
= (is⊗ 1Jill)(1Jack ⊗ taller than⊗ 1Jill)(k ⊗ l ⊗ l)
= (is⊗ 1Jill)(k ⊗ {n ∈ N ; size(n) ≥ size(l)} ⊗ l)
= ({k} ∩ {n ∈ N ; size(n) ≥ size(l)})⊗ l

=
{
k ⊗ l, size(k) ≥ size(l)
∅, otherwise.

}
(5)

The sentence therefore filters out all pairs of points where Jack is not taller than Jill.
The individual heights of both Jack and Jill are not restricted, however, they have to

10



obey this relation and are therefore interdependent. In a vector space model that works
with linear maps instead, encoding such a relation would not be possible.

3.3 Resolving pronouns

As our framework is so heavily based on intersection, it offers a surprisingly effective
way to resolve the meaning of pronouns. The vast majority of pronouns that appear
in texts refer to an actor that appears in the directly preceding sentence, either as a
subject or an object. As opposed to other languages like Spanish, English also has the
advantage that pronouns can never be omitted, and therefore always determines at least
the gender, if not the identity of an actor. These two properties – appearing as an actor
in the previous sentence, and gender – are in fact the only indicators for the meaning of
a pronoun. We shall prove this by means of a few simple examples.

Example 3.2. Alex reads a book. Meanwhile, Jordan watches TV. She is tired.

While the pronoun could theoretically refer to both Alex and Jordan (note that these
are gender-neutral names), it is clear to the reader that we are talking about Jordan,
showing that appearing in the previous sentence is in fact important.

Example 3.3. Alex lives with his wife Jordan. He is coming home from work.

Both Alex and Jordan are actors in the previous sentence, but since a gender has
been given for both, the pronoun “he” can be unambiguously resolved. Note that the
possessive pronoun in the first sentence refers to Alex, who appears in the same sentence.
This is an exception, as any other pronoun would turn into “him-/herself” here.

Example 3.4. Alex thinks of Jack. He had just been talking to him.

While there is some bias towards subject and object retaining their roles, it is often
not entirely clear, as we can see from this example. Both Jack and Alex could be the
subject of the second sentence, creating sufficient ambiguity to reflect this in the model.

Example 3.5. Jack works at night. Alex has a few drinks with his wife.

This example showcases how the possessive pronoun may either refer to a previous
actor (Jack) or take a reflexive role. Let’s hope for Jack’s sake that the latter is the case.

From our observations, we can now deduce a concrete method for resolving pronouns.
While there is no direct way to rewrite them within the diagrammatic calculus, we can
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instead model them as the union of several string diagrams, which represents ambiguity
and is a direct analogon to the sum in FVect. One may think of this as a kind of overlay.

Algorithm 3.6. For a sentence containing non-reflexive pronouns, consider any dia-
gram fulfilling the following criteria:

• In place of any personal pronoun, that wire is connected to any distinct actor
wire from the last sentence (such that no two pronouns represent the same actor),
and the corresponding gender adjective (male/female/neutral: specifying subset
{n ∈ N ; gender(n) = 0, 1,−1}) is attached to the wire.

• In place of any possessive pronoun, that wire is either connected to any distinct
actor wire from the last sentence, attaching the corresponding gender adjective, or
the pronoun is marked as reflexive.

The union of all resulting diagrams is now an equivalent representation of that sentence.

We can directly see the usefulness of Algorithm 3.6 from the following example:

Example 3.7. Consider the two sentences from Example 3.3. If the pronoun is unre-
solved, the diagram looks like this (ignoring details of little relevance):

The pronoun can now stand for either Alex or Jordan, and the text therefore represents
the union of these two possibilities:
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However, the state on the right is empty, as Jordan’s wire is first intersected with
“female” (by defining her as Alex’ wife), then with “male” (by assuming the pronoun
applies to her). These two adjectives are conflicting, therefore we can ignore the diagram
on the right and connect the pronoun’s wire to Alex with certainty.

3.4 Reflexivity

Reflexive pronouns remain an issue of our framework. While they can always be assigned
without ambiguity, the difficulty lies in defining how an actor can simultaneously act as
subject and object of the same sentence. As we will see, this is not always entirely
possible within our model.

Consider a transitive verb, modelled as a morphism N ⊗ N → N ⊗ N , and let the
object of this verb be a reflexive pronoun. The verb therefore only needs one actor as its
input, and as the subject and object should still be the same afterwards, it only needs
to output one noun either. It remains to find a way to construct a morphism N → N
that corresponds to the reflexive application of this verb. As the following consideration
shows, we obtain this morphism from applying spiders at the top and bottom of the
original box:

Let i be an element of N , and we consider any possible combination k of attributes
that an actor with previous state {i} may take after a reflexive application of this verb.
This combination can occur if it is simultaneously possible for subject and object, after
both are initialized with i. We can rewrite this using two spiders, as single elements
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are exactly the copyable states of our framework. Obviously, depending on the exact
pronoun, the corresponding gender attribute should also be added to the wire.

Note that this method of resolution is not perfect: We can for instance consider the
sentence “[Subject] makes [Object] happy”, which can arguably be modelled by the mood
of the object being set to (not intersected with!) [0.8, 1], while nothing happens to the
subject. However, we run into a problem when trying to resolve “Jack is sad. Jack
makes himself happy”. As the subject, Jack’s mood does not change, and when a happy
Jack is intersected with a sad Jack, the text contradicts itself. It is implied that the
mood change of the object automatically applies to the (identical) subject too; however,
a compositional model does not offer any easy solution to this.

3.5 Going beyond

The model presented in this chapter is merely an outline of a complete framework, and
while it can deal with several issues that were previously considered intractable, we are
still a long way from being able to understand the meaning of every text. This final
section aims to propose a few ideas that our model could potentially incorporate.

One useful notion might be the introduction of an “ambient” wire to deal with sen-
tences that have no subjects or objects, and as such, do not influence any actors. A
simplistic example for such a sentence is “It rains”, where the verb “rains” would be
modelled by a morphism Ambient → Ambient. This choice of typing would also un-
ambiguously determine “it” not to be a pronoun, but the absence of an actual subject.
Other actors might potentially interact with the ambient state through certain verbs,
although the meaning space would need to be drastically expanded for a sentence such
as “It rains” to make sense in our model.

An important issue has always been posed by the word “and”. If it connects two
sentences, we can simply treat them as separate, however both should be considered for
pronouns in the next sentence. If it connects two actors, though, the meaning may vary,
specifying interaction or simply parallel action depending on the context and possibly
even creating ambiguity between both (“Alex and Jack are married”). Resolving this may
be well beyond the scope of the present work, even though it is certainly an attractive
task for future research.

While we previously touched upon possessive pronouns, it might be difficult or outright
impossible to represent relations between actors, such as ownership, within the bounds of
the model. One can simplify them as semi-cartesian verbs [5], but no actor can directly
refer to another. A partial solution to this might lie outside of the model, by marking
an actor wire as belonging to another (“Jack”, “Jack’s hat”). Still, the representation of
symmetrical relations, such as love, remains an open problem.

One last question that was already brought up in [1] is the notion of negation, as
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the complement of a convex set is generally not convex. However, the author believes
that such negated properties are never an important part of a concept, rather serving
as additional information on top of our conceptual space, in a similar way to ownership.
Therefore we should not need to represent them within our framework.

4 Comparing Text Meanings

By means of the vectorial scalar product, the distributional framework offers a simple
way to calculate a degree of similarity between sentences. This can be extended to entire
texts, provided they have an identical number of actors, which can easily be reached by
discarding all unnecessary wires. ConvexRel on the other hand has no such product,
and directly connecting two sentences or texts directly only yields a Boolean value.
Nevertheless, we can still define some ways to calculate text similarity.

Let us consider a general noun space of dimension m, as well as two texts with n
relevant actor wires each, which are in a one-to-one correspondence. Each text therefore
specifies a convex subset of N⊗n ⊆ Rn·m as its meaning. A first, primitive way of
comparing these is by simply connecting corresponding wires with n cap morphisms,
yielding a composite of type I → I. This is an analogon to the vectorial scalar product
and returns true := {(∗, ∗)} exactly if these two subsets have nonempty intersection.
Through this method of “comparison”, we find out if two texts are at all compatible.

A somewhat more nuanced way to compare two texts arises by looking at their in-
tersection and, assuming it is non-empty, measuring its dimension which represents the
degrees of freedom or ambiguity. We can obtain this intersection by combining each pair
of corresponding actor wires with a two-to-one spider. Comparing its dimension to those
of the original sets can, in a way, measure similarity.

Example 4.1. As an oversimplified example, consider two texts in our 8-dimensional
noun space, talking about a single inanimate actor. One describes this actor to be red,
specifying the 4-dimensional subset Nsize ×Nage ×Nmood × (1, 0, 0) ×Nlocation × {−1},
while the other gives an exact size, age and location, leaving the 4 dimensions of mood
and colour unclear. Their intersection, however, fixes every attribute aside from mood
and is therefore 1-dimensional. So while these two texts might be talking about the same
red car, they are very dissimilar in what they do and do not specify.

One caveat of this approach is the fact that we rarely obtain definite values for any
attribute of our model, with the obvious exception of gender. Realistically, “red” specifies
the three-dimensional subspace [0.8, 1] × [0, 0.2] × [0, 0.2] rather than the exact colour
value (1, 0, 0); and even a statement such as “Jack is the same height as Jill”, which one
might think would reduce the dimension by 1, should optimally be modelled with a few
millimeters of tolerance.
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The case that both sentences and their intersection have the same dimension is there-
fore more common than one might assume. For this case, we can define a measure on
that subspace, with the obvious choice being the (Lebesgue) volume measure. By di-
viding the volume of the intersection by that of the larger sentence subset, we obtain
a coefficient for similarity. However, this measure is easily skewed by varying tolerance
parameters, as the seemingly minor difference between [0.98, 1] and [0.99, 1] will result
in a halved similarity coefficient when compared to [0.9, 1].

An entirely different approach, albeit a more tedious one, would be to determine a
measurement for distance rather than similarity of two concepts. Using a probability
distribution over N⊗n that is uniform with regards to the aforementioned volume mea-
sure, one could for instance calculate the average Euclidean distance between two points
in the two sets. This idea poses a few problems though: not only does [0, 1]nm have a
greater distance coefficient to itself than to {0.5}nm under this model, but it might also
be troublesome to define a notion of Euclidean distance for non-hyperrectangular spaces
in the first place. While a volume measure is independent of distortion, distance in the
taste tetrahedron, for instance, is directly affected by our choice of embedding into R3.
Still, at least for N ' [0, 1]m, the minimum distance could be a way to compare two sets
without a common element, and the average minimum distance of points in one set to
the other set might be a reasonable choice for a general distance coefficient.

5 A Story
“The author writes a paper for Bob. They go to the Exam Schools and

hand it in. Bob goes from the CS building to the Exam Schools. He likes
the paper. The author is happy.”

Some things to note: As the meanings of “Exam Schools” and “CS building” do
not change throughout the text, we model both as static rather than dynamic nouns
for the sake of simplicity. We can, however, assume that their location attributes are
disjoint. The verbs “write”, “hand in” and “like” can obviously not be represented all too
accurately by our limited model; obviously none of them changes the gender of either
actor though, and neither the location of the subject. “They” is meant as a neutral
pronoun, since at the time when this paper was originally written, the exam conventions
prevented the author from clarifying his gender.

The first two sentences can be modelled as follows:
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We can now resolve the two pronouns in six different ways. However, if we connect
“it” to the author or Bob, we get a mismatch, as these have already been initialized
with a different gender. Therefore, “it” has to be connected to the paper, and the whole
diagram becomes equivalent to the union of these two (non-empty) states:
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We model the verb “go to” to set the location of the subject to that of the object.
Usually, the object would need to be copied first, but as the Exam Schools are a static
noun for the purpose of our story, there is no need for that. Similarly, we can define an
additional parameter “from” for “go to”, which works as an assertion that determines
the subject’s previous location, filtering out impossible cases:

One such impossible case occurs when we assign “they” to Bob, as this sets his location
to that of the Exam Schools. The third sentence, which requires him to be at the CS
institute, therefore causes a contradiction for that case; the only diagram representing
a nonempty state is now the one that identifies “they” with the author. The rest of the
story is entirely unambiguous, thanks to Bob being the only subject in the third sentence
that can be male (unlike the two buildings). A complete diagram, with everything fully
resolved, can therefore be found on the next page. Bob thinks this is a great ending.

6 Conclusion

We have seen that a framework based on conceptual spaces is very suitable for text
analysis. While some of the ideas from this paper can also be applied to the vector-based
DisCoCirc model, pronoun resolution in particular relies on the intersective nature of
gender adjectives, something that is hard to replicate in a distributional framework.

Over the last decade, several previous works have provided internal wirings for certain
classes of words. However, there is clearly a limit to what can possibly be expressed
within a purely compositional model of meaning, and it seems we have reached that
limit now. Further open questions, such as the ones asked in Section 3.5, may have
definite answers that lie outside the possibilities of any such framework.

As meaning evolves during a text, so does our way of understanding it. Taking context
and associations into account, the same concept might represent two entirely different
nouns. Therefore, a rigid model might never be able to accurately encompass every
aspect of the English language. But while the cognition-based approach presented in
this short paper is only an approximation, it brings us a lot closer to our goal.
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