
Distributional models of meaning
Semantical, grammatical, and moral ambiguity

Mario Román

27th March 2019

Contents

Introduction: a mathematical model 3

Experimental setting: Les Justes 4
Characters and sentences . 4
Example 1: semicartesian verb . 4
Example 2: relative pronouns . 6

Semantic (and moral) ambiguity 9
The meaning category . 9
Meaning in dispute . 9
Example 3: �rst scenario . 10
Example 4: second scenario . 11

Some ideas on grammar ambiguity 13
The theory . 13
Example 5: ’with’ and the prepositional phrase attachment problem . . 15
Example 6: how plausible is each reduction 18

Other models of meaning 19
Semirings . 19
Finite vector spaces over the reals . 20
The Viterbi semiring . 22

Conclusions 23

References 24

1

24

Appendix: complete implementation 25
MainVector.hs . 25
MainViterbi.hs . 27
Main.hs . 28
Vectorspaces.hs . 32
Rel.hs . 33
Lambek.hs . 34
Words.hs . 35
Multiwords.hs . 36
Dimension.hs . 37
HasCups.hs . 37
Universe.hs . 37

2

Introduction: a mathematical model

The distributional compositional categorical framework (DisCoCat) of [CSC10] is
based on the fact that both the grammar and meaning can share the structure of a
compact closed monoidal category. On the one hand, grammar can be expressed
by pregroups [Lam97], which happen to be compact closed posets. On the other
hand, in distributional semantics, the meanings are represented in the compact
closed category of �nite vector spaces. Once we accept some level abstraction,
however, we are not limited anymore to vector spaces. Examples of models out-
side vector spaces include Gärdenfors’ conceptual spaces [Gär04], as developed
in [BCG`17], or categories of generalized relations, as in [CGL`18].

We will follow [Ash15] to brie�y describe the framework in a manner that will be
useful to our exposition. We can �x some types for our grammar, (e.g. G “ tn, su)
and we take the free compact-closed category G over them: each element a will
have some left adjoint al and some right adjoint ar and we will have the following
morphisms determining the dualities.

1Ñ aal, 1Ñ ara, aar Ñ 1, alaÑ 1.

We will be primarily using the category of relations Rel as our model of mean-
ing. In our case, the categories G and Rel have a compact closed structure in
common that will be preserved by any strong monoidal functor.

In this text, we will de�ne mathematical meanings over some models and then we
will use them to tell parts of the story of a play by Camus. We will also propose
a technique for transforming grammatical ambiguity into semantic ambiguity. In
practice, this technique will allow the grammatical parsing of a sentence to be
a�ected by the meaning of the words. Because of their simplicity, we will make
use of the compact closed category of relations Rel and its free enrichment over
convex algebras RelD . However, we think it would be easy to extend the same
ideas to other categories of generalized relations as described in [CGL`18].

We �nally propose an implementation of all our computations in the Haskell pro-
gramming language [HHJW07]. The structure of this programming language will
be specially suited for the kind of models we will work with. Moreover, the nota-
tion of the language can be useful to informally write down morphisms of Rel.
On the other hand, we have decided not to pursue the distributional part of the
model: we will just assume that the meanings of the words have been given be-
forehand.

3

Experimental setting: Les Justes

Our experimental setting will be based on the 1949 play "Les justes" ("The Righ-
teous" or "The just assassins") by Albert Camus [Cam49]. The justi�cation for
this choice is that (1) the play has a very limited set of characters, (2) we will have
examples of ambiguity in the meaning, (3) these same examples will be useful for
dealing with ambiguity on the grammar. We also will take one of the ideas from
DisCoCirc framework of [Coe19] for representing an evolution of the characters;
namely, that verbs will be processes instead of just states.

Characters and sentences

On our stage, we have a group of revolutionaries (Yanek, Dora, Stepan and Boris)
plotting the assassination of the Grand Duke Alexandrovich. The �rst acts of the
play revolve around a furious debate among the revolutionaries on whether and
when their violence is morally justi�ed. Two minor characters of the play but rel-
evant to our modeling will be the Duke’s nephew and the police o�cer Skouratov.
We �x a set Nouns and then all the characters, with grammatical type n, can be
seen as relations 1 Ñ Nouns, or, in other words, as subsets of a big space of
nouns. We write this in Haskell notation as follows.

data Nouns = Yanek | Dora | Duke | Stepan | Boris | Nephew | Skouratov
| Poet | Revolutionary | Terrorist | Innocent |
| Tsarist | Alive | Saviour
| Life | Poetry | Chemistry | Propaganda | Bomb

yanek = [Yanek, Poet, Revolutionary, Alive, Innocent]
stepan = [Stepan, Revolutionary, Alive]
dora = [Dora, Revolutionary, Alive, Innocent]
duke = [Duke, Tsarist, Alive]

Note that we have chosen to have both a basis element for each character (their
identity, that never changes) and a description in terms of other basis elements
(their description, that may change).

Example 1: semicartesian verb

Transitive verbs will have type nlsnr in the Lambek grammar, meaning that they
should be represented by relations 1Ñ NounsbSentencebNouns. If we also
want our subjects and objects to evolve, as they do in the DisCoCirc framework
developed in [Coe19], we can use relations of the form Nouns b Nouns Ñ

4

Nouns b Sentence b Nouns. In this example, the verb kill is represented
almost like an identity relation, with the exception that it blocks the possibility
of being "innocent" anymore for the subject, and the possibility of being "alive"
for the object. We have a sentence meaning plot P Sentence that will be useful
later.

kills “ pa, bq ÞÑ pa, plot, bq if pa ‰ Innocentq ^ pb ‰ Aliveq.

This can be seen then as an example of a semicartesian verb, as de�ned in
[CLM18]. In order to write it down in a compact way, we will need some notion of
negation. Finding some morphism that suitably represents negation is a problem
in the models of meaning we are using, so we will use an operation outside the
model to represent it. Given any relation s : 1 Ñ A we take p sq : 1 Ñ A to
be a relation given by the complement subset. This negation operation p q must
not be interpreted as having any particular meaning on the framework (it is not
a morphism, after all), but as a notational convention on top of it.

We have our �rst example of an evaluation here:

• Yanek kills the Duke.

It is translated to the Haskell implementation as follows. The implementation
automatically �nds and computes the necessary Lambek grammar reduction.

-- Definition of 'kills' as a semicartesian verb. We write
-- concatenation as (<>). The Lambek grammar type is given after
-- '@@'.
kills = (lnot Innocent <> cnst IsTrue <> rnot Alive)

5

@@ [L N, N, S, N, R N]

-- Let's compare Yanek before and after the murder. We discard the two
-- wires we do not need in the second case. In the first case, Yanek
-- is innocent.
yanek
>> Yanek, Poet, Revolutionary, Alive, Innocent
-- However, after the murder, he stops being innocent.
(yanek <> kills <> duke) <> discard <> discard
>> Yanek, Poet, Revolutionary, Alive

Example 2: relative pronouns

At the �rst stages of the play, the moral di�erences between the protagonists are
highlighted. They represent di�erent moral positions regarding how the revolu-
tion and the greater good justi�es their actions. We will study these di�erences
using relative pronouns.

There are two possible interpretations of a sentence: (1) as asserting the truth of
something or providing some new information to our model, or (2) as a query
that can be answered with the information we have. The modelling of pronouns
in [SCC14] seems to be better suited for the second kind of interpretation. On the
other hand, Example 1 was working with the �rst interpretation in mind.

Central to this discussion is knowing who are the revolutionaries combatting; who
are they plotting to murder. We also consider the verb to be, used to describe the
characters; and two transitive verbs with the same meaning, enjoy and like. That
is, we will have morphisms combat, likes, is : 1Ñ NounsbSentencebNouns.
We write them as subsets in Haskell notation, together with their grammatical
types.
combat = Words (fromList

[[Yanek , IsTrue , Duke]
, [Dora , IsTrue , Duke]
, [Stepan , IsTrue , Duke]
, [Yanek , IsTrue , Skouratov]
, [Dora , IsTrue , Skouratov]
, [Stepan , IsTrue , Skouratov]
, [Skouratov , IsTrue , Yanek]
, [Skouratov , IsTrue , Dora]
, [Skouratov , IsTrue , Stepan]
, [Stepan , IsTrue , Nephew]

6

]) [L N , S , R N]

is = Words (fromList
[[Yanek, IsTrue, Revolutionary]
, [Yanek, IsTrue, Poet]
, [Dora, IsTrue, Revolutionary]
, [Stepan, IsTrue, Revolutionary]
, [Stepan, IsTrue, Terrorist]
, [Boris, IsTrue, Revolutionary]
, [Duke, IsTrue, Tsarist]
, [Skouratov, IsTrue, Tsarist]
, [Nephew, IsTrue, Innocent]
]) [L N, S, R N]

enjoy = Words (fromList
[[Yanek, IsTrue, Poetry]
, [Yanek, IsTrue, Life]
, [Dora, IsTrue, Chemistry]
, [Dora, IsTrue, Life]
, [Stepan, IsTrue, Propaganda]
, [Boris, IsTrue, Propaganda]
, [Yanek , IsTrue , Dora]
, [Dora , IsTrue , Yanek]
, [Stepan , IsTrue , Dora]
]) [L N, S, R N]

likes = enjoy

With these descriptions, we are ready to de�ne new compound concepts. For
instance, the tsarists and the revolutionaries are precisely those described by these
basis terms.
-- Tsarists = People who is tsarist.
tsarists = (people <> who <> is <> tsarist) M.@@ [N]
>> [Duke , Skouratov]

-- Revolutionaries = People who is revolutionary.
revolutionaries = (people <> who <> is <> revolutionary) M.@@ [N]
>> [Yanek , Dora , Stepan , Boris]

The diagram with the corresponding reduction shows that the constructions is
adjt. could have been interpreted as intersective adjectives (as in [BCG`17]).

7

We can go into more interesting (and even nested) queries, as in the following
code. Note, however, that the second one presents a problem to the implemen-
tation. It is not the same to say "People who combat (people who combat tsarists)"
than it is to say "(People who combat people) who combat tsarists". Right now, we
will choose to declare how we want the grammatical reduction to work, but we
will be able to deal with these ambiguities in later sections.
-- People who combat tsarists.
(people <> who <> combat <> tsarists) M.@@ [N]
>> [Yanek , Dora , Stepan]

-- People who combat people who combat tsarists.
(people <> who <> combat <>

(people <> who <> combat <> tsarists) M.@@ [N])
M.@@ [N]

>> [Skouratov]

Let’s throw in some more examples! Thanks to our implementation, we can let
the computer �gure out the wirings by itself without having to input them.

-- "Revolutionaries who enjoy life enjoy propaganda" evaluates to
-- false.
(revolutionaries <> who <> enjoy <> life <> enjoy <> propaganda) M.@@ [S]
>> [] of grammar type [S]

-- "Yanek likes revolutionaries who enjoy poetry or chemistry"
-- evaluates to true. The meaning of "or" is a relation that gives
-- the union of the basis elements.
or = [[a,a,b] ++ [a,b,b] | a <- universe , b <- universe]
(yanek' <> likes <> revolutionaries <> who <> enjoy

<> poetry <> or <> chemistry) M.@@ [S]
>> [[IsTrue]] of grammar type [S]

-- "Revolutionaries that combat people who is innocent are terrorists"
-- Evaluates to true. There is some grammatical ambiguity that we
-- solve.
that = who

8

are = is
(revolutionaries <> who <> combat <> people <> that <> is <> innocent

<> are <> terrorist) M.@@ [S]
>> [[IsTrue]] of grammar type [S]

Semantic (and moral) ambiguity

The meaning category

In order to work with ambiguity of the grammar, we �rst need models that allow
for ambiguity of the meaning to compare how the multiple interpretations of the
grammar a�ect it. We choose one of the models suggested in [Mar17]. The model
allows for probabilistic mixtures to be encoded in the hom-sets.

De�nition 1. We de�ne RelD as the free convex algebra enriched category over
the category Rel of relations.

Let D : Sets Ñ Sets be the �nite distribution monad. We are saying that given
two sets a, b P Sets, the morphisms between them in this category are given by
the free convex algebra over the set of relations between them. That is,RelDpa, bq “
DpRelpa, bqq. Using this category as our category of meaning spaces is justi�ed
by Theorem 5.14 in [Mar17].

Proposition 2. RelD is a compact closed category. More generally, if C is a com-
pact closed category, then CD is a compact closed category.

Meaning in dispute

During the play, Yanek and the rest of the protagonists confront a moral dilemma:
is their revolution enough justi�cation for their crimes? are they saviours of the
people or simply terrorists? The meaning of being revolutionaries is something
that not everyone agrees on; and we will model this as an ambiguity. Tsarists
think that the revolutionaries are terrorists, while the revolutionaries think of
themselves as saviours. Everyone will agree in drawing the line between protec-
tors and terrorists on killing innocent people, but the question is which scenarios
would imply the meaning of revolutionaries to be unambiguous. We take the def-
inition of revolutionary to be an uniform mixture in RelD between saviour and
terrorist.

revolutionary “ 0.5 tRevolutionary,Saviouru

` 0.5 tRevolutionary,Terroristu

9

On the �rst act, Yanek tries to kill the Grand Duke. Yanek decides not to detonate
the bomb when he discovers that the Duke is accompanied by his nephew. To
understand the moral choice Yanek makes, we will consider two scenarios. The
ambiguity on the identity of our protagonist is kept in one of the cases but not in
the other.

Example 3: �rst scenario

Our �rst scenario is the following one.

• Yanek is a revolutionary.

• He kills the Duke.

• Is he a terrorist?

Here we take the verb is to mean becomes. We have a morphism becomes : 1 Ñ
NounsbNounsbNouns that works using the basis noun Alive to add some
adjectives to a character. Formally,

becomes “ tpa, a, bq | a, b P Nounsu Y tpAlive, b, bq | b P Nounsu .

Or, in Haskell notation.
becomes = Words (fromList $

[[a , a , b] | a <- universe , b <- universe] ++
[[Alive , b , b] | b <- universe])

[L N , N , R N]

With a suitable interpretation of the functional words and considering the pro-
nouns on a sentece as placeholders for the wires dangling from the previous sen-
tences, we get the following diagram of the whole scene.

10

And our implementation gives back a scalar represented as a mixture of the two
possible relations 1 Ñ 1. Under the de�nition of terrorist, and considering that
the Duke is causing the su�ering of the Russian people (not innocent), it is still
not clear that Yanek has become a terrorist in the eyes of everyone.
-- We set up the scenario as concatenating the three sentences.
scenario = (sentence1 <> sentence2 <> sentence3) M.@@ []
where

sentence1 = (yanek <> becomes <> revolutionary) M.@@ [N]
sentence2 = (he <> kills <> duke <> discarding) M.@@ [L N , N]
sentence3 = (is <> he <> terrorist <> (?)) M.@@ [L N]

-- We still get a mixture.
>> [[]] of grammar type [] with p=0.5
>> [] of grammar type [] with p=0.5

Example 4: second scenario

Our second scenario is:

• Yanek is a revolutionary.

• Yanek kills the duke and his nephew.

• Is Yanek a terrorist?

11

In this case, the word "and" is especially important. It could be argued that in
some cases, an intersection of both nouns (a spider) would be the most suitable
representation of and; but in this case, we want the pair to have the union of
all the characteristics of its components. That means we will choose to de�ne
and : NounsbNounsÑ Nouns as follows

and “ ppa, bq ÞÑ aq Y ppa, bq ÞÑ bq.

Incidentally, this is the same representation we used for "or" in Example 2. Again
using a suitable representation of all the other functional words, we get the fol-
lowing diagram.

Now the results on the modi�ed scenario are clear. Yanek ideals would not allow
him to kill innocent people without considering himself a terrorist, and then the
ambiguity would not exist anymore.
-- We set up the modified scenario.
scenario = (sentence1 <> sentence2 <> sentence3) M.@@ []
where

sentence1 = (yanek <> becomes <> revolutionary) M.@@ [N]
both = (duke <> and <> nephew) M.@@ [N]
sentence2 = (he <> kills <> both <> discarding) M.@@ [L N , N]
sentence3 = (is <> he <> terrorist <> (?)) M.@@ [L N]

-- We do not get a mixture anymore.
>> [[]] of grammar type [] with p=1

12

Some ideas on grammar ambiguity

The theory

In this section we will propose a technique to deal with grammatical ambiguity.
When we use the DisCoCat framework, the grammar a�ects how the meanings of
the di�erent components of a sentence compose to create a meaning for the whole
sentence. In this sense, the grammar informs the meaning. However, it seems
much more di�cult to devise a way in which the meaning informs the grammar.
That is, the interactions in the meaning space should help us understand what the
intended grammatical parsing was. Our proposed technique will use the mean-
ings to resolve grammatical ambiguity.

We start with the basic de�nitions. Let M be some compact-closed category of
meaning spaces (e.g. FHilb or Rel). LetG be the the set of types (e.g. tn, su) that
determine a free compact-closed category G induced by their pregroup algebra.

Proposition 3. A strong monoidal functor φ : GÑMmust preserve the compact-
closed structure. See [KSPC14].

As G is freely generated, if we want to de�ne one of these functors, it su�ces to
choose some meaning space for each one of the generating types using a function
r´s : GÑ objpMq.

The �rst thing we need is to deal with multiple meanings and grammars for the
words at the same time. We will again make use of �nite distributions; but this
time, we want to mix di�erent grammatical types.

De�nition 4. An acceptation w is composed of a grammatical type g P objpGq
and some state in the category of meaning spaces with output type given by the
interpretation of that grammatical type, m PMpI, rgisq.

De�nition 5. A multiword w is given by the formal convex sum of multiple
acceptations indexed by some �nite set, which we call wi for each i P I . Each
acceptation has then an associated probability pi. In other words, a multiword is
an element of the set of �nite distributions over all possible acceptations.

For these, we introduce a notation that uses formal sums for multiwords and labels
the wires not with the meaning space but with their grammatical type.

13

We also could write, in 1-dimensional notation,
ř

iPI pipmi, giq.

Next, we want to consider all possible grammatical reductions. We cannot con-
sider all possible wirings of the words in a compact closed category. It would
be infeasible in practice to work with all of them, and many would be simply
adding unnecessary complexity. An observation about the DisCoCat framework
is that (1) usually, wires do not need to cross, the category does not even need to
be braided, and (2) we do not �nd caps on grammar reductions. This means we
can focus on cups between contiguous tensored objects and on identities. We call
reductions to wirings made up of these.

De�nition 6. A reduction is a morphism in the category G that is generated by
the composition and tensoring of both identities and cups of the form gb gl Ñ 1
and gr b g Ñ 1.

The following are examples and non-examples of reductions.

We �nally introduce a meta-operation called concatenation that composes the
meaning and grammar of multiple words, each one with multiple acceptations.
The �nal result is again a formal sum of multiple meanings paired with di�erent
grammatical types.

De�nition 7. The concatenation of two multiwords a and b will be written as
a ˛ b and it is de�ned as follows. Given two grammatical types gi and hj , we have
α ranging over n possible reductions from these types. Note that φ : G Ñ M is
a functor from grammar to meaning we de�ned earlier.

14

Or, in 1-dimensional notation.
˜

ÿ

i

pipmi, giq

¸

˛

˜

ÿ

j

qjpnj , hjq

¸

“
ÿ

i

ÿ

j

ÿ

α : gihjÑo

piqj
n
ppmi b njq ˝ φpαq, oq

Once we start composing multiple words, we can get a large formal sum with
many di�erent possible grammatical types. We are only interested in those that
match our desired output, so we can select at the end of this process a particular
grammatical type and discard all the others.

De�nition 8. The selection operation (@@) takes a multiword and a grammatical
type and returns a new multiword that contains only the acceptations with that
grammatical type. The probabilities are normalized to ensure that they add up to
1 again. In the case where there is no acceptation with the desired grammatical
type, the function can return the empty word by convention.

In summary, we allow words to be a formal probabilistic mixture with di�erent
meanings and grammars. We concatenate them allowing all possible grammati-
cal reductions to coexist, and �nally we select only these that match the desired
grammatical type.

Example 5: ’with’ and the prepositional phrase attachment problem

In this section, we put the previous ideas on grammatical ambiguity into prac-
tice. Our example will concern the prepositional phrase attachment problem. An
overview of the techniques that have been used to tackle it, and also an applica-
tion of the compositional distributional framework can be found in [Del].

The word with has many di�erent common acceptations. Moreover, it has di�er-
ent grammatical types on each one of these.

with. [CU]

1. Using something. Join the pieces with glue. (slsnr)

15

2. Accompanied by. Mix the butter with the sugar. (nlsnr)

Let us assume that we can count the occurrences of each one of these on a rea-
sonably big corpus of text, and that we �nd that, the �rst acceptation is used 70%
of the time, whereas the second one is used only 30% of the time. We model it
as a multiword with two acceptations, one corresponding to a verb using and the
other corresponding to the already discussed and relation.

In our implementation this looks as follows. We include a new possible basis
element for the sentence space describing a plot that can be carried with a tool.
We then de�ne a verb using that is quite limited but that su�ces for our use case.
We use the previous de�nition of and.
-- A plot can be carried using a bomb.
using = Words (fromList $

[[Plot , Plot , Bomb]
]) [L S , S , R N]

with :: M.Multiword Rel
with = [(using , 0.7) , (and , 0.3)]

Now all the possible reductions on two sentences can be computed, and the ambi-
guity can be transferred from the grammar to the meaning. We want to compute
two sentences that are examples of this behaviour.

• Yanek kills the duke with his nephew.

• Yanek kills the duke with a bomb.

As an example, we will start computing by hand part of the meaning of the �rst
sentence. In this case, "with his nephew" as follows.

16

If we go through the whole sentence applying concatenations and then we select
only these ones with the required grammatical type (in this case, s), we will get
the following multiword.

But we precisely have an implementation to avoid doing these computations by
hand. The two examples look as follows.

-- The first acceptation here can be rejected because it is empty.
-- This corresponds to the case where "and" is the correct
-- acceptation.
(yanek <> attacks <> duke <> with <> nephew) M.@@ [S]
>> [] of grammar type [S] with p=0.756
>> [[Plot]] of grammar type [S] with p=0.243

-- Now both interpretations survive because our "and" word does not
-- complain if it has to mix a human and a bomb. However, it says that
-- the first interpretation ("using") is more plausible.
(yanek <> attacks <> duke <> with <> bomb) M.@@ [S]
>> [[Plot]] of grammar type [S] with p=0.756
>> [[Plot]] of grammar type [S] with p=0.243

17

These de�nitions turn the �rst of the two summands into the empty relation,
whereas they they turn the second into a meaningful sentence. That can be used
to conclude that the correct interpretation for the �rst sentence was the one us-
ing nlnnr as the grammatical type of with. We can also see how in the second
sentence, the grammatical type slsnr is more likely.

Example 6: how plausible is each reduction

This technique solves the problem of grammatical ambiguities we encountered
when dealing with nested relative pronouns. A more sophisticated solution could
assign di�erent probability weights to di�erent reductions depending on how fre-
quent these are in a real corpus of text, but we obtain interesting results simply
by taking an uniform probability distribution each time we encounter multiple
possible reductions.
(people <> who <> combat <> people <> who <> combat <> tsarists) M.@@ [N]
>> [[Yanek],[Dora],[Stepan]] of grammar type [N] with p=0.4285714
>> [[Skouratov]] of grammar type [N] with p=0.5714285

This suggests that the second reading (the one we choose in our �rst approach to
this sentence) is less convoluted than the second. In any case, we developed this
metric only after developing and testing the model; it is non-associative, and it
is unclear if it could be of any potential use. We show both possible reductions
below, the �rst one got 0.57, whereas the second one got 0.43 under this metric.

18

We had another sentence with a similar problem whose resolution we present as
a second example.
-- "Revolutionaries who combat people that is innocent are terrorists"
(revolutionaries <> who <> combat <> people <> that

<> is <> innocent <> are <> terrorist) M.@@ [S]
>> [[IsTrue]] of grammat type [S] with p=0.5
>> [] of grammat type [S] with p=0.5

Other models of meaning

We have been working so far using variations over the category Rel of relations.
One could argue this is boring and too simplistic: we would like to compare the
similarity of two concepts and get more than a simple true or false. But we still
have an ace up our sleeve. We implemented everything keeping the compact
closed structure abstract, and we can reuse again the same implementation with
a di�erent underlying category.

Semirings

Both the category of �nite relations FRel and the category of �nite vector spaces
FVect can be seen as equivalent to categories of matrices over some semiring: in
one case over the booleans pB,_,^q, and in the other case over the reals pR,`, ¨q.
We will consider arbitrary semirings in our implementation and play with the dif-
ferent categories we get. In particular, we consider real vector spaces and modules
over the Viterbi semiring, which has been considered for parsing, for instance, in
[Goo99].

De�nition 9. A semiring (sometimes called a rig [nLa18]) is a set R which is a
monoid under some multiplication operation and an abelian monoid under some
addition operation, in such a way that multiplication distribute over addition.

-- Operations of a semiring in Haskell. Checking that they satisfy
-- semiring laws is a task for the programmer.
class Semiring m where

plus :: m -> m -> m
mult :: m -> m -> m
zero :: m
unit :: m

19

Finite vector spaces over the reals

Finite vector spaces over the real numbers pR,`, ¨q are a particular case of the
general construction for semirings. We will need to rewrite our universe to ac-
count for the structure we want to model. This is just a more so�sticated version
of the relations we wrote in Example 2.
likes' :: Words (Vectorspace Double)
likes' = Words (fromList

[([Yanek , IsTrue , Dora] , 0.9)
, ([Dora , IsTrue , Yanek] , 0.8)
, ([Stepan , IsTrue , Dora] , 0.6)
, ([Dora , IsTrue , Poetry] , 0.8)
, ([Dora , IsTrue , Chemistry] , 1)
, ([Yanek , IsTrue , Poetry] , 1)
, ([Yanek , IsTrue , Life] , 0.9)
, ([Dora , IsTrue , Life] , 0.8)
, ([Stepan , IsTrue , Propaganda] , 0.9)
, ([Stepan , IsTrue , Life] , 0.1)
, ([Boris , IsTrue , Life] , 0.3)
, ([Boris , IsTrue , Propaganda] , 0.6)
]) [L N , S , R N]

combat' :: Words (Vectorspace Double)
combat' = Words (fromList

[([Yanek , IsTrue , Duke] , 1)
, ([Yanek , IsTrue , Skouratov] , 0.7)
, ([Dora , IsTrue , Duke] , 0.8)
, ([Dora , IsTrue , Skouratov] , 0.4)
, ([Stepan , IsTrue , Duke] , 1)
, ([Stepan , IsTrue , Skouratov] , 0.9)
, ([Stepan , IsTrue , Nephew] , 0.7)
, ([Boris , IsTrue , Duke] , 0.9)
, ([Boris , IsTrue , Nephew] , 0.1)
, ([Skouratov , IsTrue , Yanek] , 0.9)
, ([Skouratov , IsTrue , Stepan] , 1)
]) [L N , S , R N]

is' :: Words (Vectorspace Double)
is' = Words (fromList

[([Yanek , IsTrue , Revolutionary] , 0.9)
, ([Yanek , IsTrue , Poet] , 1)
, ([Dora , IsTrue , Poet] , 0.5)
, ([Dora , IsTrue , Revolutionary] , 0.7)
, ([Boris , IsTrue , Revolutionary] , 0.7)

20

, ([Stepan , IsTrue , Terrorist] , 0.95)
, ([Yanek , IsTrue , Terrorist] , 0.25)
, ([Boris , IsTrue , Terrorist] , 0.25)
, ([Stepan , IsTrue , Revolutionary] , 0.8)
, ([Duke , IsTrue , Tsarist] , 1)
, ([Skouratov , IsTrue , Tsarist] , 0.9)
, ([Nephew , IsTrue , Tsarist] , 0.3)
, ([Nephew , IsTrue , Innocent] , 1)
, ([Yanek , IsTrue , Innocent] , 0.5)
]) [L N , S , R N]

people' :: (Semiring m) => Words (Vectorspace m)
people' = Words (fromList
[([Yanek] , unit)
, ([Dora] , unit)
, ([Stepan] , unit)
, ([Duke] , unit)
, ([Nephew] , unit)
, ([Skouratov] , unit)
, ([Boris] , unit)
]) [N]

We recover the same sentences from Example 2 and reinterpret them here. Where
applicable, we simply repeat the exact same de�nitions. The scalars are now a bit
more informative than our previous true/false booleans.

-- "People that combat Tsarists" lists the revolutionaries and adds
-- how much they combat each one of the tsarists.
(people <> who <> combat <> tsarists) M.@@ [N]
>> [([Yanek],1.63),([Dora],1.16),([Boris],0.9),([Stepan],1.81)]

of grammar type [N]

-- "Revolutionaries who enjoy life enjoy propaganda" seems not to
-- be very true.
(revolutionaries <> who <> enjoy <> life <> enjoy <> propaganda) M.@@ [S]
>> [([IsTrue],0.198)] of grammar type [S]

-- "Revolutionaries who enjoy life enjoy poetry" does much better.
(revolutionaries <> who <> enjoy <> life <> enjoy <> poetry) M.@@ [S]
>> [([IsTrue],1.258)] of grammar type [S]

-- "Revolutionaries who combat people that is innocent are terrorists"
-- is again true, but it scores not very high because no one really
-- combats innocent people with much intensity.
(revolutionaries <> who <> combat <> people <> that <> is

21

<> innocent <> are <> terrorist) M.@@ [S]
>> [([IsTrue],0.549)] of grammar type [S]

The Viterbi semiring

One could say that the desired semantics for the addition on the semiring need
not to be addition of real numbers. For example, when we were computing "People
that combat Tsarists", we may not want to add how much they combat each one,
but just take the maximum as the aggregate. The Viterbi semiring pr0, 1s,max, ¨q
allows precisely for this and keeps its values into the unit interval.

As our �nal example, we reinterpret some of the sentences from Example 2 in this
third model. The numbers we used for vector spaces can be recycled here, even if
they will have a completely di�erent meaning as elements of this new semiring.

-- "People that combat Tsarists" lists the revolutionaries but
-- now it takes the maximum instead of adding up values.
(v people <> v who <> v combat <> v tsarists) M.@@ [N]
>> [([Yanek], 1.0),([Dora], 0.8),([Boris], 0.9),([Stepan], 1.0)]

of grammar type [N]

-- No surprises here. "Revolutionaries who enjoy life enjoy
-- propaganda" gives a slightly lower number because of having
-- substituted addition by maximum.
(v revolutionaries <> v who <> v enjoy <> v life

<> v enjoy <> v propaganda)
M.@@ [S]

>> [([IsTrue], 0.198)] of grammar type [S]

-- Same goes for "Revolutionaries who enjoy life enjoy poetry".
(v revolutionaries <> v who <> v enjoy <> v life <> v enjoy <> v poetry)

M.@@ [S]
>> [([IsTrue], 0.81)] of grammar type [S]

-- A slight difference in the last sentence that can be attributed to
-- the fact that Boris considers the idea of killing innocents if that
-- saves other lifes.
(v revolutionaries <> v who <> v combat <> v people <> v that <> v is

<> v innocent <> v are <> v terrorist) M.@@ [S]
>> [([IsTrue], 0.532)] of grammar type [S]

22

Conclusions

On the implementation side, dependent types as used in Agda [Nor08] or Idris
[Bra13] could be the perfect tool if we want to formally model all the components
of the DisCoCat framework. A practical implementation of compact closed cate-
gories over dependent types would have been very useful to avoid us repeating
some tedious work, and it could be of great utility to the whole applied category
theory research community. We are unaware what is the state of the art on this
area and unable to tell whether it could help here.

Once the implementation is working, playing with changes in the underlying cat-
egory is satisfactory. We could have also considered conceptual spaces, or some
other of the models proposed in [CGL`18]. On the ambiguity side, we could have
chosen to use density matrices instead of going with RelD , but it was much
easier to �rst think on the simplest model possible. We also got to implement
FVectD (almost for free thanks to the abstraction layer), but we decided against
describing another model of grammatical ambiguity on this project: the main
ideas have been discussed in RelD and they would not change much. If we want
to extend this work a good idea would be to simply use density matrices for gram-
matical ambiguity.

Another idea would be to translate the same thing we do for grammatical ambi-
guity to other monads apart from the �nite distribution monadDwe used. For in-
stance, it makes sense to consider the free monoid monad (called List in Haskell)
and let the concatenation of two words return an (unweighted) list of possible
grammatical types and meanings; we expect that this would be something like a
non-deterministic parsing.

I have enjoyed a lot experimenting with multiple models and the implementation,
specially when dealing with relative pronouns. Coming up with some proposal
is di�cult and I am not very convinced of how my proposed concatenation op-
eration works for multiwords (it is not even associative!). On the other hand, an
apology to Camus’ fans should be made here; mathematical reality �ercely de-
stroyed what I thought were good examples (with lots of intricacies, and based
on the questions posed on the play); and the �nal examples described on this text
look more like a parody of the original. I guess that is part of the charm of trying
to write something like this project.

23

References

[Ash15] Daniela Ashoush. Categorical models of meaning: Accomodating for
lexical ambiguity and entailment. Department of Computer Science,
Trinity 2015.

[BCG`17] Joe Bolt, Bob Coecke, Fabrizio Genovese, Martha Lewis, Dan Mars-
den, and Robin Piedeleu. Interacting conceptual spaces I : Grammat-
ical composition of concepts. CoRR, abs/1703.08314, 2017.

[Bra13] Edwin Brady. Idris, a general-purpose dependently typed program-
ming language: Design and implementation. Journal of Functional
Programming, 23(5):552–593, 2013.

[Cam49] Albert Camus. Les Justes. 1949.

[CGL`18] Bob Coecke, Fabrizio Genovese, Martha Lewis, Dan Marsden, and
Alex Toumi. Generalized relations in linguistics & cognition. The-
oretical Computer Science, 752:104–115, 2018.

[CLM18] Bob Coecke, Martha Lewis, and Dan Marsden. Internal wiring of
cartesian verbs and prepositions. arXiv preprint arXiv:1811.05770,
2018.

[Coe19] Bob Coecke. The Mathematics of text structure. 2019.

[CSC10] Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark. Mathemati-
cal foundations for a compositional distributional model of meaning.
arXiv preprint arXiv:1003.4394, 2010.

[CU] Cambridge University Press. Cambridge online dictionary.

[Del] Antonin Delpeuch. Type-driven distributional semantics for preposi-
tional phrase attachment. MSc. Dissertation.

[Gär04] Peter Gärdenfors. Conceptual spaces: The geometry of thought. MIT
press, 2004.

[Goo99] Joshua Goodman. Semiring parsing. Computational Linguistics,
25(4):573–605, 1999.

24

[HHJW07] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler.
A history of Haskell: Being lazy with class. In Proceedings of the
third ACM SIGPLAN conference on History of programming languages,
page 1. Microsoft Research, April 2007.

[KSPC14] Dimitri Kartsaklis, Mehrnoosh Sadrzadeh, Stephen Pulman, and Bob
Coecke. Reasoning about meaning in natural language with compact
closed categories and frobenius algebras. CoRR, abs/1401.5980, 2014.

[Lam97] Joachim Lambek. Type grammar revisited. In International Conference
on Logical Aspects of Computational Linguistics, pages 1–27. Springer,
1997.

[Mar17] Dan Marsden. Ambiguity and incomplete information in categorical
models of language. arXiv preprint arXiv:1701.00660, 2017.

[nLa18] nLab authors. HomePage. http://ncatlab.org/nlab/show/
HomePage, May 2018. Revision 262.

[Nor08] Ulf Norell. Dependently typed programming in agda. In International
School on Advanced Functional Programming, pages 230–266. Springer,
2008.

[SCC14] Mehrnoosh Sadrzadeh, Stephen Clark, and Bob Coecke. The Frobe-
nius anatomy of word meanings I: subject and object relative pro-
nouns. CoRR, abs/1404.5278, 2014.

Appendix: complete implementation

Some implementation choices di�er slightly from the theoretical presentation: (1)
we have chosen to have a big space called Universe that contains both Nouns
and Sentences, even if we avoid having mixed elements in practice; and (2) we
prefer to always use multiwords, even when there is no grammatical ambiguity:
this eases the implementation.

We think this code could be written in full generality to allow the user to input
their own compact closed categories and data over them to test the models. The
limited time we have will not allow us to rewrite such a complete implementation.

MainVector.hs

Examples over real vector spaces.

25

http://ncatlab.org/nlab/show/HomePage
http://ncatlab.org/nlab/show/HomePage
http://ncatlab.org/nlab/revision/HomePage/262

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE UndecidableInstances #-}

module MainVec where

import Lambek
import qualified Multiwords as M
import Universe
import Vectorspaces
import Words

-- The real numbers have the obvious semiring structure.
instance Semiring Double where

plus = (+)
mult = (*)
unit = 1
zero = 0

yanek' :: Words (Vectorspace Double)
yanek' = Words (fromList
[([Yanek] , 1)
, ([Poet] , 0.7)
, ([Revolutionary] , 0.9)
]) [N]

dora' :: Words (Vectorspace Double)
dora' = Words (fromList

[([Dora] , 1)
, ([Revolutionary] , 0.9)
, ([Poet] , 0.3)
]) [N]

likes' :: Words (Vectorspace Double)
likes' = Words (fromList

[([Yanek , IsTrue , Dora] , 0.9)
, ([Dora , IsTrue , Yanek] , 0.8)
, ([Stepan , IsTrue , Dora] , 0.6)
, ([Dora , IsTrue , Poetry] , 0.8)
, ([Dora , IsTrue , Chemistry] , 1)
, ([Yanek , IsTrue , Poetry] , 1)
, ([Yanek , IsTrue , Life] , 0.9)
, ([Dora , IsTrue , Life] , 0.8)
, ([Stepan , IsTrue , Propaganda] , 0.9)
, ([Stepan , IsTrue , Life] , 0.1)
, ([Boris , IsTrue , Life] , 0.3)
, ([Boris , IsTrue , Propaganda] , 0.6)
]) [L N , S , R N]

combat' :: Words (Vectorspace Double)
combat' = Words (fromList
[([Yanek , IsTrue , Duke] , 1)
, ([Yanek , IsTrue , Skouratov] , 0.7)
, ([Dora , IsTrue , Duke] , 0.8)
, ([Dora , IsTrue , Skouratov] , 0.4)
, ([Stepan , IsTrue , Duke] , 1)
, ([Stepan , IsTrue , Skouratov] , 0.9)
, ([Stepan , IsTrue , Nephew] , 0.7)
, ([Boris , IsTrue , Duke] , 0.9)
, ([Boris , IsTrue , Nephew] , 0.1)
, ([Skouratov , IsTrue , Yanek] , 0.9)
, ([Skouratov , IsTrue , Stepan] , 1)
]) [L N , S , R N]

is' :: Words (Vectorspace Double)
is' = Words (fromList
[([Yanek , IsTrue , Revolutionary] , 0.9)
, ([Yanek , IsTrue , Poet] , 1)
, ([Dora , IsTrue , Poet] , 0.5)
, ([Dora , IsTrue , Revolutionary] , 0.7)
, ([Boris , IsTrue , Revolutionary] , 0.7)
, ([Stepan , IsTrue , Terrorist] , 0.95)
, ([Yanek , IsTrue , Terrorist] , 0.25)
, ([Boris , IsTrue , Terrorist] , 0.25)

26

, ([Stepan , IsTrue , Revolutionary] , 0.8)
, ([Duke , IsTrue , Tsarist] , 1)
, ([Skouratov , IsTrue , Tsarist] , 0.9)
, ([Nephew , IsTrue , Tsarist] , 0.3)
, ([Nephew , IsTrue , Innocent] , 1)
, ([Yanek , IsTrue , Innocent] , 0.5)
]) [L N , S , R N]

people' :: Words (Vectorspace m)
people' = Words (fromList

[([Yanek] , 1)
, ([Dora] , 1)
, ([Stepan] , 1)
, ([Duke] , 1)
, ([Nephew] , 1)
, ([Skouratov] , 1)
, ([Boris] , 1)
]) [N]

yanek = M.singleton yanek'
dora = M.singleton dora'
likes = M.singleton likes'
enjoy = likes
is = M.singleton is'
people = M.singleton people'
combat = M.singleton combat'

who :: (Semiring m) => M.Multiword (Vectorspace m)
who = M.singleton $ Words
(fromList [([a,a,b,a], unit) | a <- universe , b <- universe])
[L N , N , R S , N]

basis :: Universe -> M.Multiword (Vectorspace m)
basis t = M.singleton $ Words (fromList [([t], unit)]) [N]

tsarist = basis Tsarist
life = basis Life
propaganda = basis Propaganda
poetry = basis Poetry
innocent = basis Innocent
terrorist = basis Terrorist

revolutionary :: (Semiring m) => M.Multiword (Vectorspace m)
revolutionary = M.singleton $ Words (fromList [([Revolutionary], unit)]) [N]

tsarists :: M.Multiword (Vectorspace Double)
tsarists = (people <> who <> is <> tsarist) M.@@ [N]

revolutionaries :: M.Multiword (Vectorspace Double)
revolutionaries = (people <> who <> is <> revolutionary) M.@@ [N]

that = who
are = is

-- Tropical semiring. Not used on the examples.
newtype Tropical = Tropical Double deriving (Eq, Show, Num, Ord)
instance Semiring Tropical where
plus = min
mult = (+)
unit = 0
zero = Tropical $ read "Infinity"

MainViterbi.hs

Examples using the Viterbi semiring. These are translates from the examples us-
ing vector spaces.

27

{-# LANGUAGE GeneralizedNewtypeDeriving #-}

module MainVit where

import qualified Data.Map as Map
import Lambek
import MainVec
import qualified Multiwords as M
import Vectorspaces
import Words

-- Viterbi semiring
newtype Viterbi = Viterbi Double deriving (Eq, Show, Num, Ord)
instance Semiring Viterbi where
plus = max
mult = (*)
unit = 1
zero = 0

-- Reals -> Viterbi translation
v :: M.Multiword (Vectorspace Double) -> M.Multiword (Vectorspace Viterbi)
v = M.fromList . fmap (\ (x , p) -> (v' x , p)) . M.toList
where
v' :: Words (Vectorspace Double) -> Words (Vectorspace Viterbi)
v' w = w { meaning = v'' (meaning w) }

v'' :: Vectorspace Double -> Vectorspace Viterbi
v'' = fromMap . Map.map Viterbi . toMap

Main.hs

Examples over the category of relations.

-- We have been used this file for testing the examples. It does not
-- contain any interesting code but just some model of the world and
-- usage examples.
module Main where

import HasCups
import Lambek
import qualified Multiwords as M
import Rel
import Universe
import Words

-- Example: Yanek attacks the Duke
yanek :: Words Rel
yanek = Words yanekRel [N]

where
yanekRel :: Rel
yanekRel = fromList
[[Yanek]
, [Poet]
, [Alive]
, [Revolutionary]
, [Innocent]
]

attacks :: Words Rel
attacks = Words (fromList
[[Yanek , IsTrue , Duke]
, [Yanek , IsPlot , Duke]
]) [L N , S , R N]

duke :: Words Rel
duke = Words dukeRel [N]

where
dukeRel :: Rel
dukeRel = fromList

28

[[Duke]
, [Alive]
, [Tsarist]
]

example2 :: [Words Rel]
example2 = sentence [yanek , kills , duke] @@@ [S]

-- Example: Semicartesian verbs
lnot :: Universe -> Words Rel
lnot adjective = Words

(fromList $ fmap (\x -> [x , x]) $ filter (/= adjective) universe)
[L N , N]

rnot :: Universe -> Words Rel
rnot adjective = Words

(fromList $ fmap (\x -> [x , x]) $ filter (/= adjective) universe)
[N , R N]

cnst :: Universe -> Words Rel
cnst adjective = Words (fromList [[IsTrue]]) [S]

kills :: Words Rel
kills =
head $
sentence [lnot Innocent, cnst IsTrue, rnot Alive]
@@@ [L N, N, S, N, R N]

example3 :: [Words Rel]
example3 = sentence [yanek , kills , duke] @@@ [N , S , N]

-- Example: Grammatical ambiguity (preparation).
nephew :: Words Rel
nephew = Words nephewRel [N]

where
nephewRel :: Rel
nephewRel = fromList
[[Nephew]
, [Alive]
, [Tsarist]
, [Innocent]
]

bomb :: Words Rel
bomb = Words
(fromList [[Bomb]])
[N]

and' :: Words Rel
and' = Words
(fromList $

[[a , a , b] | a <- universe , b <- universe] ++
[[a , b , b] | a <- universe , b <- universe])

[L N , N , R N]

example4a :: [Words Rel]
example4a = sentence [yanek , attacks , duke , and' , nephew] @@@ [S]

using :: Words Rel
using = Words
(fromList $

[[IsPlot , IsPlot , Bomb]
, [IsTrue , IsTrue , Bomb]
]

)
[L S , S , R N]

-- Example: Grammatical ambiguity (full).
with :: M.Multiword Rel
with = M.fromList $
[(using , 0.7)
, (and' , 0.3)
]

29

yanek' = M.singleton yanek
duke' = M.singleton duke
nephew' = M.singleton nephew
bomb' = M.singleton bomb
using' = M.singleton using
and'' = M.singleton and'
attacks' = M.singleton attacks

example5a :: M.Multiword Rel
example5a = (yanek' <> attacks' <> duke' <> with <> nephew') M.@@ [S]

example5b :: M.Multiword Rel
example5b = M.sentence [yanek' , attacks' , duke' , with , bomb'] M.@@ [S]

-- Example: Meaning in dispute

-- Yanek is a revolutionary.
-- Yanek kills the duke.
-- Is Yanek a saviour?

becomes :: Words Rel
becomes = Words

(fromList $
[[a , a , b] | a <- universe , b <- universe] ++
[[Alive , b , b] | b <- universe])

[L N , N , R N]

becomes' :: M.Multiword Rel
becomes' = M.singleton becomes

revolutionary :: M.Multiword Rel
revolutionary = M.fromList $
[(revSaviour , 0.5)
, (revTerrorist , 0.5)
]
where

revSaviour = Words (fromList [[Revolutionary] , [Saviour]]) [N]
revTerrorist = Words (fromList [[Revolutionary] , [Terrorist]]) [N]

kills''' :: M.Multiword Rel
kills''' =
M.singleton $ Words
(fromList $

[[Alive , Terrorist , Innocent , Innocent]]
++
[[a , a , b , b]

| a <- universe
, a /= Innocent
, b <- universe
, b /= Alive
, a /= Saviour
]

++
[])

[L N, N, N, R N]

discarding' :: M.Multiword Rel
discarding' =
M.singleton $ Words
(fromList
[[a] | a <- universe])

[L N]

he = M.singleton $ Words (fromList [[a,a] | a <- universe]) [L N , N]
saviour = M.singleton $ Words (fromList [[Saviour]]) [N]
terrorist = M.singleton $ Words (fromList [[Terrorist]]) [N]
alive = M.singleton $ Words (fromList [[Alive]]) [N]
is' = M.singleton $ Words (fromList [[a,a] | a <- universe]) [L N , N]
(?) = M.singleton $ Words (fromList [[a,a] | a <- universe]) [L N , L N]

example6 :: M.Multiword Rel
example6 = (sentence1 <> sentence2 <> sentence3) M.@@ []

where
sentence1 = (yanek' <> becomes' <> revolutionary) M.@@ [N]

30

sentence2 = (he <> kills''' <> duke' <> discarding') M.@@ [L N , N]
sentence3 = (is' <> he <> terrorist <> (?)) M.@@ [L N]

example7 :: M.Multiword Rel
example7 = (sentence1 <> sentence2 <> sentence3) M.@@ []

where
sentence1 = (yanek' <> becomes' <> revolutionary) M.@@ [N]
both = (duke' <> and'' <> nephew') M.@@ [N]
sentence2 = (he <> kills''' <> both <> discarding') M.@@ [L N , N]
sentence3 = (is' <> he <> terrorist <> (?)) M.@@ [L N]

-- Example: Revolutionaries who kill people who is innocent
people :: M.Multiword Rel
people = M.singleton $ Words

(fromList
[[Yanek]
, [Dora]
, [Stepan]
, [Duke]
, [Skouratov]
, [Boris]
, [Nephew]
]

)
[N]

combat :: M.Multiword Rel
combat = M.singleton $ Words
(fromList $

[[r , IsTrue , Duke] | r <- revolutionaries] ++
[[r , IsTrue , Skouratov] | r <- revolutionaries] ++
[[Skouratov , IsTrue , r] | r <- revolutionaries] ++
[[Stepan , IsTrue , Nephew]])

[L N , S , R N]
where
revolutionaries = [Yanek, Dora, Stepan]

enjoy :: M.Multiword Rel
enjoy = M.singleton $ Words
(fromList
[[Yanek , IsTrue , Poetry]
, [Yanek , IsTrue , Life]
, [Dora , IsTrue , Poetry]
, [Dora , IsTrue , Chemistry]
, [Dora , IsTrue , Life]
, [Stepan , IsTrue , Propaganda]
, [Boris , IsTrue , Propaganda]
, [Yanek , IsTrue , Dora]
, [Dora , IsTrue , Yanek]
, [Stepan , IsTrue , Dora]
])

[L N , S , R N]

is_ :: M.Multiword Rel
is_ = M.singleton $ Words
(fromList
[[Yanek , IsTrue , Revolutionary]
, [Yanek , IsTrue , Poet]
, [Dora , IsTrue , Revolutionary]
, [Stepan , IsTrue , Revolutionary]
, [Stepan , IsTrue , Terrorist]
, [Boris , IsTrue , Revolutionary]
, [Duke , IsTrue , Tsarist]
, [Skouratov , IsTrue , Tsarist]
, [Nephew , IsTrue , Innocent]
])

[L N , S , R N]

who :: M.Multiword Rel
who = M.singleton $ Words
(fromList [[a , a , b , a] | a <- universe , b <- universe])
[L N , N , R S , N]

tsarist :: M.Multiword Rel
tsarist = M.singleton $ Words (fromList [[Tsarist]]) [N]

31

tsarists :: M.Multiword Rel
tsarists = (people <> who <> is_ <> tsarist) M.@@ [N]

revolutionaries :: M.Multiword Rel
revolutionaries = (people <> who <> is_ <> revolutionary) M.@@ [N]

example8 :: M.Multiword Rel
example8 = (people <> who <> combat <> tsarists) M.@@ [N]

example9 :: M.Multiword Rel
example9 = (people <> who <> combat <> people <> who <> combat <> tsarists) M.@@ [N]

-- Example: Revolutionaries who enjoy life enjoy propaganda
life :: M.Multiword Rel
life = M.singleton $ Words (fromList [[Life]]) [N]

propaganda :: M.Multiword Rel
propaganda = M.singleton $ Words (fromList [[Propaganda]]) [N]

innocent :: M.Multiword Rel
innocent = M.singleton $ Words (fromList [[Innocent]]) [N]

poetry :: M.Multiword Rel
poetry = M.singleton $ Words (fromList [[Poetry]]) [N]

chemistry :: M.Multiword Rel
chemistry = M.singleton $ Words (fromList [[Chemistry]]) [N]

example10 :: M.Multiword Rel
example10 = (revolutionaries <> who <> enjoy <> life <> enjoy <> propaganda) M.@@ [S]

example11 :: M.Multiword Rel
example11 = (yanek' <> likes <> revolutionaries <> who <> enjoy <> poetry <> or <> chemistry) M.@@ [S]

where
likes = enjoy
or = and''

-- Main function
main :: IO ()
main = return ()

Vectorspaces.hs

Cups and identities on the category of vector spaces.

module Vectorspaces where

-- Implementation of cups in the category of matrices over a semiring.

import qualified Data.Map as Map
import Data.Maybe
import Dimension
import HasCups
import Universe

import Data.List

class (Eq m, Ord m) => Semiring m where
plus :: m -> m -> m
mult :: m -> m -> m
zero :: m
unit :: m

data Vectorspace m = Vector (Map.Map UniverseN m)

instance (Show m) => Show (Vectorspace m) where
show = show . toMap

fromMap :: Map.Map UniverseN m -> Vectorspace m
fromMap = Vector

32

toMap :: Vectorspace m -> Map.Map UniverseN m
toMap (Vector v) = v

toList :: Vectorspace m -> [(UniverseN , m)]
toList = Map.toList . toMap

fromList :: (Semiring m) => [(UniverseN , m)] -> Vectorspace m
fromList = fromMap . removeZerosM . Map.fromList . nubPlus
where

nubPlus :: (Semiring m) => [(UniverseN , m)] -> [(UniverseN , m)]
nubPlus = fmap addTogether . (groupBy (\ x y -> fst x == fst y))
addTogether :: (Semiring m) => [(UniverseN , m)] -> (UniverseN , m)
addTogether [] = undefined
addTogether l@((u , x):t) = (u , foldr plus zero (fmap snd l))

removeZerosM :: (Semiring m) => Map.Map UniverseN m -> Map.Map UniverseN m
removeZerosM = Map.filter (/= zero)

removeZeros :: (Semiring m) => Vectorspace m -> Vectorspace m
removeZeros = fromMap . removeZerosM . toMap

removePlus :: (Semiring m) => Vectorspace m -> Vectorspace m
removePlus = fromList . toList

normalize :: (Semiring m) => Vectorspace m -> Vectorspace m
normalize = removePlus . removeZeros

instance Dim (Vectorspace m) where
dim = dimVec

dimVec :: Vectorspace m -> Int
dimVec = dimList . Map.toList . toMap
where

dimList [] = 0
dimList (l : _) = length (fst l)

vecCup :: (Semiring m) => Int -> Vectorspace m -> Vectorspace m -> Vectorspace m
vecCup n r s = normalize . fromList . catMaybes . fmap (agrees n) $ do
(a , x) <- toList r
(b , y) <- toList s
return ((a,b) , mult x y)

vecUnit :: (Semiring m) => Vectorspace m
vecUnit = fromList [([], unit)]

agrees :: (Semiring m) => Int -> ((UniverseN , UniverseN) , m) -> Maybe (UniverseN , m)
agrees n ((x , y) , m) =
if take n (reverse x) == take n y

then Just $ (reverse (drop n (reverse x)) ++ drop n y , m)
else Nothing

instance (Semiring m) => HasCups (Vectorspace m) where
cup = vecCup
cunit = vecUnit

Rel.hs

Cups and identities on the category of relations.

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE TupleSections #-}

-- An implementation of the cups and objects of the category of
-- relations.

module Rel
(Rel
, fromList
, toList

33

, idn
, relCup
, agrees
)

where

import Data.Maybe
import qualified Data.Set as S
import Dimension
import HasCups
import Universe

-- A relation hom(1,a) is given by a subset of the universe with
-- elements in a.
data Rel = Rel (S.Set UniverseN)

fromList :: [UniverseN] -> Rel
fromList = Rel . S.fromList

toList :: Rel -> [UniverseN]
toList (Rel u) = S.toList u

instance Show Rel where
show = show . toList

instance Dim Rel where
dim = dimRel

dimRel :: Rel -> Int
dimRel = dimList . toList

where
dimList [] = 0
dimList (l : _) = length l

idn :: Int -> Rel
idn n = fromList $ do

u <- universe
return $ replicate n u

relCup :: Int -> Rel -> Rel -> Rel
relCup n r s = fromList $ catMaybes $ fmap (agrees n) $ do

x <- toList r
y <- toList s
return (x,y)

relCunit :: Rel
relCunit = fromList [[]]

agrees :: Int -> (UniverseN , UniverseN) -> Maybe UniverseN
agrees n (x , y) =

if take n (reverse x) == take n y
then Just $ reverse (drop n (reverse x)) ++ drop n y
else Nothing

instance HasCups Rel where
cup = relCup
cunit = relCunit

Lambek.hs

Lambek grammatical types and possible reductions.

{-# LANGUAGE FlexibleInstances #-}

-- Lambek grammar types and grammatical reductions for them.

module Lambek
(Type (..)
, Lambek (..)
, agreeOn
)

34

where

import Data.List
import Data.Maybe
import Dimension
import HasCups
import Rel

data Type = N | S | L Type | R Type deriving (Eq, Ord, Show)
type Lambek = [Type]

(>~<) :: Type -> Type -> Bool
a >~< (L b) = (a == b)
(R a) >~< b = (a == b)
c >~< d = False

agree :: Lambek -> Lambek -> Bool
agree p q = all id $ zipWith (>~<) p q

agreeOn :: Int -> Lambek -> Lambek -> Bool
agreeOn n p q = agree (take n (reverse p)) (take n q)

Words.hs

Words as a data structure.

{-# LANGUAGE FlexibleInstances #-}

-- Words and how to concatenate them.

module Words where

import Data.Maybe
import Dimension
import HasCups
import Lambek
import Rel

data Words m = Words
{ meaning :: m
, grammar :: Lambek
}

instance Show m => Show (Words m) where
show w = show (meaning w) ++ " of grammar type " ++ show (grammar w)

instance Dim (Words Rel) where
dim = dim . meaning

size :: Words m -> Int
size w = length (grammar w)

maybeCon :: (HasCups m) => Int -> Words m -> Words m -> Maybe (Words m)
maybeCon n u v =

if agreeOn n (grammar u) (grammar v)
then Just $ Words
{ meaning = (cup n (meaning u) (meaning v))
, grammar = reverse (drop n (reverse $ grammar u)) ++ drop n (grammar v)
}

else Nothing

tryConcatenate :: (HasCups m) => Int -> Words m -> Words m -> [Words m]
tryConcatenate n a b = catMaybes $ [maybeCon m a b | m <- [0..n]]

concatenate :: (HasCups m) => Words m -> Words m -> [Words m]
concatenate a b = tryConcatenate (min (size a) (size b)) a b

35

(@@@) :: [Words m] -> Lambek -> [Words m]
ws @@@ l = filter (\ x -> grammar x == l) ws

(...) :: (HasCups m) => Words m -> [Words m] -> [Words m]
w ... xs = concat $ do

x <- xs
return (concatenate w x)

emptyWord :: (HasCups m) => Words m
emptyWord = Words cunit []

sentence :: (HasCups m) => [Words m] -> [Words m]
sentence = foldr (...) [emptyWord]

Multiwords.hs

A data structure for multiwords.

module Multiwords where

import Data.List
import Dimension
import HasCups
import Lambek
import Rel hiding (fromList, toList)
import Words

type Probability = Double

-- A multiword is given by a list of different words with different
-- probabilities. Note that these words do not need to have the same
-- grammar types.
data Multiword m = Multiword [(Words m , Probability)]

instance (Show m) => Show (Multiword m) where
show =

concat .
intersperse "\n" .
fmap (\ (w, p) -> show w ++ " with p=" ++ show p) .
toList

toList :: Multiword m -> [(Words m , Probability)]
toList (Multiword a) = a

fromList :: [(Words m , Probability)] -> Multiword m
fromList = Multiword

singleton :: Words m -> Multiword m
singleton w = fromList [(w,1.0)]

multiconcat :: (HasCups m) => Multiword m -> Multiword m -> Multiword m
multiconcat x y = fromList $ do

(w , p) <- toList x
(v , q) <- toList y
let concats = concatenate w v
let newprob = (p * q) / fromIntegral (length concats)
zip concats (repeat newprob)

infixr 4 multiconcat

multiempty :: (HasCups m) => Multiword m
multiempty = fromList [(emptyWord , 1)]

instance (HasCups m) => Semigroup (Multiword m) where
(<>) = multiconcat

instance (HasCups m) => Monoid (Multiword m) where
mempty = multiempty

36

mappend = multiconcat

sentence :: (HasCups m) => [Multiword m] -> Multiword m
sentence = mconcat

(@@) :: Multiword m -> Lambek -> Multiword m
ws @@ l = fromList $ fmap (\ (x,p) -> (x , p / totalprob)) newlist
where

totalprob = sum $ fmap snd newlist
newlist = filter (\ (x , _) -> grammar x == l) (toList ws)

Dimension.hs

De�nition of dimension.

module Dimension where
class Dim a where
dim :: a -> Int

HasCups.hs

De�nition of the cups making a category compact closed.

module HasCups where
class HasCups m where

cup :: Int -> m -> m -> m
cunit :: m

Universe.hs

Our universe of discourse.

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE TypeSynonymInstances #-}

-- A finite universe for the play.
module Universe
(Universe (..)
, universe
, UniverseN
, dim
)
where

import Dimension

data Universe
= Universe

-- Nouns
| Yanek
| Dora
| Boris
| Duke
| Stepan
| Nephew
| Skouratov

37

-- Adjectives
| Poet
| Revolutionary
| Terrorist
| Saviour
| Innocent
| Tsarist
| Alive

-- Things
| Life
| Poetry
| Chemistry
| Propaganda

| Bomb

-- Sentence meanings
| IsTrue
| IsFalse
| IsRighteous
| IsWrong
| IsPlot

deriving (Eq, Show, Bounded, Enum, Ord)

-- Enumerate all possible values.
universe :: [Universe]
universe = [minBound .. maxBound]

type UniverseN = [Universe]

instance Dim UniverseN where
dim = length

38

	Introduction: a mathematical model
	Experimental setting: Les Justes
	Characters and sentences
	Example 1: semicartesian verb
	Example 2: relative pronouns

	Semantic (and moral) ambiguity
	The meaning category
	Meaning in dispute
	Example 3: first scenario
	Example 4: second scenario

	Some ideas on grammar ambiguity
	The theory
	Example 5: 'with' and the prepositional phrase attachment problem
	Example 6: how plausible is each reduction

	Other models of meaning
	Semirings
	Finite vector spaces over the reals
	The Viterbi semiring

	Conclusions
	References
	
	Appendix: complete implementation
	MainVector.hs
	MainViterbi.hs
	Main.hs
	Vectorspaces.hs
	Rel.hs
	Lambek.hs
	Words.hs
	Multiwords.hs
	Dimension.hs
	HasCups.hs
	Universe.hs

