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Abstract

The categorical compositional distributional model of Coecke, Sadrzadeh and

Clark combines the distributional theory of meaning in terms of vectors space

models, and the compositional model of meaning in terms of pregroup gram-

mars, in a unified categorical setting. It provides a way of computing the

meaning of sentences and strings of words based on the grammatical relation-

ships between the different constituents, and the empirical meaning vectors of

individual words: the grammatical reductions of pregroups are lifted to mor-

phisms in vector spaces. This is based on the fact that pregroup grammars

and vector spaces share a compact-closed structure.

In the aim of modeling a feature of language, this framework was extended

to include mixed states by the means of Selinger’s CPM-construction. This

translates into the passage from vectors to density matrices. Two applications

of this extension are modelling lexical ambiguity, and modelling entailment

relationships between words.

The aim of this dissertation is to further extend the model of Coecke et al.

by iterating the CPM-construction in order to accommodate for two features

of language: ambiguity and entailment. We present an axiomatisation of the

CPM2-construction and generalise it to axiomatise the CPMn-construction –

which has the potential to accommodate for an increasing number of features.

The CPM2-construction preserves †-compact closed structure, and ensures

that the grammatical reductions are carried over to the new category. We

then study the structure of double-density matrices, new states introduced

by the CPM2-construction, and investigate their role in accounting for both

lexical ambiguity and entailment. This framework is showed to successfully

model the two features of language via a series of examples, and is equipped

with independent measures of the levels of ambiguity and entailment in words.
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Chapter 1

Introduction

1.1 Background and scope

Historically, the computational representation of natural language meaning has been ap-

proached in two somewhat orthogonal ways: on the one hand, distributional semantics,

echoing Wittgenstein’s saying “the meaning of a word is its use” [42], builds on the dis-

tributional hypothesis [23] according to which the meaning of a word is determined by

its context. A widely used distributional model for word meaning is the vector space

model. In this model, a set of relevant context words is chosen from a large corpus of

text as a basis for a vector space. Words are then represented as vectors of co-occurrence

frequencies with the different context words. While this model is quantitative and offers

a way of comparing the meaning of words, it does not scale to the level of sentences, but

more importantly, it fails to take into account the syntactic relations between the words

of a string of words.

Compositional formal semantics, on the other hand, views words as parts of a logical ex-

pression. Following the framework of Lambek [27] and Montague [17], this model builds

on Frege’s principle of compositionality which states that the meaning of an expression is

determined by the meanings of its constituents and the rules that combine them. How-

ever, it does not reliably provide individual word meaning.

The model of Coecke et al. [14] unifies these two approaches under a categorical setting.

This model is based on the fact that pregroup grammars, used to model grammatical

relationships between words, and finite-dimensional vector spaces share a compact-closed

categorical structure. By the means of a strong monoidal functor between the two cat-

egories, this framework provides a way to express the grammatical reductions in the

pregroup grammar as morphisms in the category of finite-dimensional vector spaces.

The framework of [14] was extended by applying Selinger’s CPM-construction [41] which

adjoins to the pure states used in [14] the notion of mixed states. This translates into a
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passage from vectors to density matrices. This extension allows to model one feature of

language. Piedeleu [34] uses density matrices to model ambiguity in language, or more

particularly, homonymy : two words are said to be homonymous if they share the same

spelling and pronunciation but refer to two different concepts. In this dissertation, we will

use “ambiguity” and “homonymy” interchangeably. Balkır [4] resorted to density matri-

ces in order to model lexical entailment, or more specifically subsumption relationships

between words: a word w1 is said to subsume a word w2 if its meaning generalises that

of w2. We say that w1 is a general word.

The aim of this dissertation is to extend this framework even further by iterating the

CPM-construction, in order to model two features of language: ambiguity and entail-

ment.

1.2 Outline

The next three chapters introduce the background needed for this dissertation. Chapter

2 presents the category theoretical concepts encountered in the categorical framework of

[14], along with their relation to semantic analysis and their graphical calculus.

Chapter 3 revolves around the categorical model of [14]: it introduces both the compo-

sitional and the distributional models of meaning in terms of compact-closed categories,

and unifies these seemingly orthogonal models by means of a strong monoidal functor.

Chapter 4 describes an extension of the previous model where words are represented by

density matrices. These operators embody probabilistic mixing, which allows for the ac-

commodation of one feature of language. Density matrices are completely positive maps,

a notion formalised by Selinger’s CPM-construction [41].

The last four chapters develop the theory behind the suggested extension and offer ap-

plications. In Chapter 5, I reformulate some of the axioms of Coecke’s axiomatisation of

the CPM-construction [7] and offer diagrammatic proofs of the theorems involved. I also

define and axiomatise the CPM2-construction, which introduces maps whose structure

embodies two levels of mixing. I extend this to the CPMn-construction for arbitrary n.

In Chapter 6, I show that this new framework is adequate for representing ambiguous,

general words, the grammatical relations between them, and measuring their similarity,

while also accounting for relational types.

Chapter 7 investigates density matrices and the properties they satisfy in order to mo-

tivate the introduction of double-density matrices. Double-density matrices are states

in CPM2(C) which model two levels of mixing, and the properties these states satisfy

are identified. In addition, this chapter offers a novel approach to the characterisation

of density matrices by showing that maps satisfying the conditions of hermiticity and
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positive-semidefiniteness have the structure of a density matrix.

Finally, Chapter 8 details the role of double-density matrices in representing ambiguous,

general words, and provides applications of the new model. The sentence space chosen is

Rel, and a characterisation of the states in CPM2(Rel) is presented. This chapter also

introduces a way of measuring independently the level of ambiguity and entailment in a

word.

1.3 Contributions

• I revise the axioms proposed in Coecke’s axiomatisation of the CPM-construction

[7], and diagrammatise the proofs involved. I also define the CPM2-construction and

axiomatise it in terms of a squared-environment structure. In addition, I generalise

this to the CPMn-construction for arbitrary n.

• I show that the CPM2-construction preserves †-compact closed structure, and define

compact-closure maps in CPM2(C). I also show that CPM2(C) possesses †-special

commutative Frobenius algebras and define the relevant maps.

• I prove that maps satisfying the conditions of hermiticity and positive-semidefiniteness

possess the structure of density matrices.

• I define the notion of double-density matrices, states in CPM2(C) which account

for two levels of mixing, and determine the properties they satisfy.

• I demonstrate how the framework models ambiguity and entailment in language by

means of concrete examples involving the categories CPM2(FHilb) and CPM2(Rel),

and present ways to measure independently the levels of ambiguity and entailment

in words.
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Chapter 2

A little categorical background

The field of category theory formalises mathematical structures in terms of a collection of

objects and arrows or morphisms. Category theory is of particular interest to us because

it allows the study of two relevant types of connections: the connection between quan-

tum information flow and linguistic modelling, and that between structures representing

grammar – pregroup grammars – and structures representing meaning – finite dimensional

Hilbert spaces. These connections are captured in the categorical framework of Coecke et

al. [14], in which categories formalise the compositionality of natural language.

In this chapter, I aim to introduce basic notions of category theory and their relation

to semantic analysis. The main focus is not to provide a tutorial on categories: for this

purpose, I redirect the reader to [11]. Categories are equipped with a graphical calculus

(surveyed in [40]) that will be introduced in parallel.

2.1 Basic definitions

We start by recalling the definition of a category:

Definition 2.1.1. [2] A category is an algebraic structure that comprises:

• A collection of objects Ob(C), denoted by A, B, C...

• For each pair of objects (A,B), a set C(A,B) of morphisms with domain A and

codomain B, denoted by f : A→ B, f ∈ C(A,B)

• For any triple of objects (A,B,C), a composition map:

cA,B,C : C(A,B)×C(B,C)→ C(A,C)

such that cA,B,C(f, g) = g ◦ f

• For each object A, an identity morphism idA

Elements of a category satisfy two axioms:
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h ◦ (g ◦ f) = (h ◦ g) ◦ f
f ◦ idA = f = idB ◦ f

where the domains and codomains of the morphisms match so that the compositions are

well-defined.

An interesting property, which stems from the first axiom in the above definition, is that

morphisms can be composed sequentially and associatively to form new morphisms. From

a linguistic perspective, objects can be thought of as grammatical types, and morphisms

as “interactions” between grammatical types (these will become clearer as the next con-

cepts unfold).

In the graphical language, morphisms are depicted by right trapezoidal boxes, with in-

coming and outgoing wires labelled by the corresponding objects. I use the convention

whereby information flows in a bottom-top way.

Identity is represented as a naked wire:

Finally, composition of morphisms is represented by two boxes on one wire:
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2.2 Monoidal categories

A sentence is a concatenation, or juxtaposition, of words of different grammatical types,

and some grammatical types are themselves juxtapositions of basic grammatical types.

Monoidal categories offer a way to model this process.

Definition 2.2.1. [2] A monoidal category is a sextuple (C,⊗, I, α, l, r) where:

• C is a category

• ⊗: C×C→C is a bifunctor – a morphism of categories whose domain is a product

category – called tensor product, which assigns to each pair of objects (A,B) a

composite object A⊗B, and to each ordered pair of morphisms (f : A→ C, g : B →
D), a parallel composite f ⊗ g : A⊗B → C ⊗D

• I is the distinguished object of C called the tensor unit

• α, l, and r are natural isomorphisms with components:

αA,B,C : A⊗ (B ⊗ C) ∼= (A⊗B)⊗ C

lA : I ⊗ A ∼= A

rA : A⊗ I ∼= A

such that lI = rI : I ⊗ I ∼= I, and satisfying the pentagon and triangle axioms [18].

A strict monoidal category is a monoidal category where all the equivalences in the above

definition are equalities. According to [30], any monoidal category is equivalent via a

strong monoidal isomorphism to a strict monoidal category. In what follows, we will omit

the natural isomorphisms.

The tensor unit gives rise to morphisms ψ : I → A called states, and morphisms ϕ : A→ I

called effects. Thanks to the tensor product, monoidal categories model both sequential

and horizontal composition. From a linguistic perspective, this allows juxtaposition of

words and grammatical types.

Monoidal categories admit a graphical calculus which is sound and complete, accord-

ing to the following theorem by Selinger [40], originally based on a theorem by Joyal and

Street [24]:

Theorem 2.2.1. A well-formed equation between morphism terms in the language of

monoidal categories follows from the axioms of monoidal categories if and only if it holds,

up to planar isotopy, in the graphical language.
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This theorem basically means that we are allowed to move boxes around, but not to cross

or uncross wires. States (resp. effects) are represented by triangles with no input (resp.

output) wire:

And horizontal composition is represented by putting morphisms (or wires) next to each

other, ordered from left to right:

Another important notion is that of a symmetric monoidal category, which adjoins to the

definition of a monoidal category a natural isomorphism σA,B : A⊗B ∼= B⊗A, such that

σ−1
B,A = σA,B, and satisfying conditions stated in [2]. Symmetric monoidal categories also

admit a sound and graphical calculus [40] where crossing and uncrossing wires is allowed,

and will play an important role in manipulations involving density matrices in CPM(C)

and double-density matrices in CPM2(C). Graphically, the swap map σA,B is represented

by two wires crossing:

2.3 Compact-closed categories

In the English language, a sentence is an ordered string of words that interact with each

other to form meaning. For example, a transitive verb interacts with a subject on its left

and an object on its right to form a sentence. These characteristics can be modelled using

compact-closed categories :

Definition 2.3.1. [25] A compact-closed category is a monoidal category in which each

object A has a left and right adjoint Al and Ar, and morphisms:
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ηlA : I → A⊗ Al εlA : Al ⊗ A→ I

ηrA : I → Ar ⊗ A εrA : A⊗ Ar → I

satisfying the following yanking equations :

(1A ⊗ εlA) ◦ (ηlA ⊗ 1A) = 1A (εrA ⊗ 1A) ◦ (1A ⊗ ηrA) = 1A

(εlA ⊗ 1Al) ◦ (1Al ⊗ ηlA) = 1Al (1Ar ⊗ εrA) ◦ (ηrA ⊗ 1Ar) = 1Ar

Furthermore, a compact-closed category is symmetric if Ar = Al := A∗ for all A. The

above four equalities collapse to two:

(εA∗ ⊗ 1A) ◦ (1A ⊗ ηA) = 1A (1A∗ ⊗ εA∗) ◦ (ηA ⊗ 1A∗) = 1A∗

where εA : A∗ ⊗ A→ I, and ηA : I → A∗ ⊗ A.

In a compact-closed category, the left and right adjoints account for the order of words in

a sentence, and the η and ε maps model the interactions of the different parts of a system.

Compact-closed categories are equipped with a graphical language that is sound and

complete, as expressed in [40]:

Theorem 2.3.1. A well-formed equation between morphisms in the language of compact

closed categories follows from the axioms of compact closed categories if and only if it

holds, up to isomorphism of diagrams, in the graphical language

The η and ε maps are depicted by cups and caps as follows:

And the equations they satisfy are represented by the following, which boil down to

yanking wire (hence the name “yanking equations”):
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The introduction of cups and caps, also called entanglement structure, enables us to define

three useful notions: process-state duality, transposition, and trace.

Process-state duality [10] is the concept according to which one can turn a process

– a morphism f : A → B, where A,B 6= I – into a bipartite state, for example by ap-

plying a cup to the input of the process, and vice-versa, by applying a cap to one of the

output wires of the bipartite state. A process f turned into a bipartite state by process-

state duality is called the name of f , denoted dfe.

Definition 2.3.2. (Transposition) In a symmetric compact-closed category, the trans-

pose of a morphism f : A→ B is another morphism f ∗ : B∗ → A∗:

Note: the notion of transposition is also defined for non-symmetric compact-closed cat-

egories. In this case, we distinguish between left and right transpose.

Transposition of composite systems. There are two ways of defining the transpose

of a composite system [10]. The first remains consistent with the 180◦ rotation defined

above and gives the transpose of a morphism f : A⊗B → C ⊗D by:

We will call this the diagrammatic transpose and denote it by ( )∗. Notice that the cups

and caps are nested.

The second definition of transposition crosses the caps and cups, which introduces a

twist for the composite system:
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We will call this the algebraic transpose and denote it by ( )T . It is in fact the one used

in linear algebra. In what follows, we will consider the diagrammatic transpose as the

default, and refer to it simply by “transpose”.

Definition 2.3.3. (Trace) In a symmetric compact-closed category, the trace of a mor-

phism f : A→ A is the scalar:

2.4 †-compact-closed categories

So far, all the properties of language we have been seeking to formalise were composi-

tional. One crucial property of a distributional nature, first introduced in [1], is that

of the distance and angle between the meaning vectors of the words. To formalise this

property, we introduce †-compact-closed categories.

Definition 2.4.1. [40] A †-compact-closed category C is a symmetric compact-closed-

category with an involutive, identity-on-objects, contravariant functor † : C→ C, which

assigns to every morphism f : A→ B its adjoint f † : B → A, such that for all f : A→ B

and g : B → C:

id†A = idA : A→ A

(g ◦ f)† = f † ◦ g† : C → A

f †† = f : A→ B

The † functor of the above definition gives rise to two notions that will come in handy in

the characterisation of density matrices:

Definition 2.4.2. [40] (Unitarity, Hermiticity) In a dagger category, a morphism

f : A→ B is called unitary if it is an isomorphism, and f † ◦ f = 1A and f ◦ f † = 1B, i.e.

f−1 = f †. A morphism f : A→ A is called self-adjoint or hermitian if f = f †.

10



The † functor allows us to turn a state into an effect and an effect into a state. The

notions of inner product of two states, and norm of a state, rely on this ability to turn a

state into an effect and vice-versa. Before defining these two notions, we give the Dirac

notation of states and effects [16]:

- A state ψ in the Dirac notation is given by |ψ〉 and called “ket”

- An effect ϕ in the Dirac notation is given by 〈ϕ| and called “bra”

Definition 2.4.3. [10] The inner product of two states ϕ and ψ is the scalar ϕ†◦ψ = ψ†◦ϕ,

and is written in the Dirac notation as the “braket” 〈ϕ|ψ〉 or 〈ψ|ϕ〉.

Definition 2.4.4. [10] The squared-norm of a state ϕ is the inner product 〈ϕ|ϕ〉.

From a linguistic perspective, the inner product and the norm are essential to measure

the similarity between two words or strings of words.

†-compact-closed categories admit a graphical language that was proved to be sound

and complete in Theorem 7.2 of [40]. Taking the adjoint of a morphism is reflecting it

about the x -axis:

Finally, the dagger and the transpose functors give rise to a new functor which acts as

follows:

Definition 2.4.5. (Conjugation) In a †-compact-closed category, the conjugate of a

morphism f : A→ B is another morphism f∗ : A∗ → B∗, such that f∗ = f ∗
†

= f †
∗
. The

conjugate is depicted graphically by reflection about the y-axis:
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Conjugate of a composite system. Two ways of defining the conjugate of a composite

system emerge from the the different definitions of the transpose of a composite system.

The diagrammatic conjugate of a composite system, denoted by ( )∗, is the result of

taking the diagrammatic transpose of the adjoint – or equivalently the adjoint of the

diagrammatic transpose – of the system and is depicted as:

In what follows, we will consider the diagrammatic conjugate as the default, and refer

to it simply by “conjugate”. The algebraic conjugate of a composite system, denoted by

( ), is the result of taking the algebraic transpose of the adjoint – or equivalently the

adjoint of the algebraic transpose – of the system and is depicted as:

The algebraic conjugate restores the order in the inputs and outputs by inducing a twist

in the wires of the (diagrammatic) conjugate.

This chapter introduced the basic notions of category theory encountered in the framework

of Coecke, Sadrzadeh and Clark [14], along with their semantic interpretation and their

graphical calculus. In the next chapter, we will take a closer look at this framework.
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Chapter 3

A compositional distributional
categorical framework

Historically, there have been two seemingly orthogonal ways of representing language:

the first builds on pregroup grammars and formalises the grammar of natural language

without reasoning about the meaning of words, and the second is distributional and

represents words as vectors in highly-dimensional vector spaces, without modeling syntax.

The categorical model of Coecke et al. [14] seeks to unify these two approaches. This

model is based on the fact that pregroup grammars and finite-dimensional vector spaces

share a compact-closed categorical structure. Coecke et al. also extended their framework

to model relative pronouns via the use of †-special commutative Frobenius algebras.

3.1 Pregroups as an account for compositionality

In a recent development by Lambek [28], pregroups are introduced as a tool for analysing

the structure of syntax, using simple algebraic type reductions.

Definition 3.1.1. [5] A pregroup algebra is a structure (P,≤, ·, 1, (−)l, (−)r) where:

• (P,≤, ·, 1) is a partially ordered monoid

• (−)l and (−)r are unary operations on P , called the left and right adjoints, satisfy-

ing the inequalities:

∀a ∈ P, al · a ≤ 1 ≤ a · al, a · ar ≤ 1 ≤ ar · a

We recall that a partially ordered monoid is a partially ordered set (P,≤, ·, 1), where P

is a set of objects with partial ordering “≤” , and “·” is an associative, non-commutative

monoid operation with monoid unit 1, satisfying a · 1 = a = 1 · a, for all a ∈ P . In what

follows, we will omit the “·” for the sake of simplicity, and replace “≤” by “→” to better

illustrate type reductions.
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3.1.1 The role of pregroups in modelling grammar

To see how pregroups can formalise grammar of natural language, one can generate what

is called a pregroup grammar, a pregroup algebra freely generated over a set of basic types

[25]. For the purpose of this dissertation, we fix two basic grammatical types: {n, s},
where n is the grammatical type for noun, and s is the grammatical type for sentence.

A sentence is deemed grammatical whenever its reduction leads to the type s. Com-

pound types are formed by adjoining and juxtaposing basic types [14]. For example, a

transitive verb interacts with a subject to its left and an object to its right, to produce a

valid grammatical sentence. Transitive verbs are therefore assigned the type nrsnl, and a

transitive sentence reduces to a valid grammatical sentence, according to the inequalities

of Definition 3.1.1:

n(nrsnl)n = (nnr)s(nln)→ s

Graphically, one can represent this reduction by:

Note that this representation is analogous to the graphical calculus for compact-closed

categories described in Section 2.3.

3.1.2 Pregroups as compact-closed categories

In [36], the authors generate a free compact-closed category from the pregroup algebra of

a pregroup grammar. Let us denote this category by CG: the monoidal structure of CG

is induced by that of the pregroup algebra, each element a has left and right adjoints al

and ar (by Definition 3.1.1), and the η and ε maps are given by the inequalities:

ηla : 1 ≤ aal εla : ala ≤ 1

ηra : 1 ≤ ara εra : aar ≤ 1

The yanking equations follow straightforwardly from the pregroup reductions.

Going back to the previous example of a transitive sentence, the reduction:

(nnr)s(nln)→ s

corresponds to the map:

εrn1sε
l
n : nnrsnln→ s
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3.2 Finite-dimensional Hilbert spaces as an account

for meaning

The model suggested in the previous section formalises the syntax of natural language,

but fails to take into account the meaning of words. In this section, I introduce the

distributional model of meaning, also called vector space model, which addresses this

problem. Words are represented by vectors living in finite-dimensional semantic spaces,

which form a †-compact-closed category.

3.2.1 Distributional semantics

Distributional semantics, first introduced by Firth [19], follows Harris’s distributional hy-

pothesis [23], according to which the meaning of a word is determined by its context. The

basic assumption is that words appearing in a similar context must have similar meanings.

The goal is to represent words as vectors in a semantic space, where the notions of angle

and distance between vectors allow for similarity to be quantified.

Word vectors, usually normalised, live in a highly dimensional – but finite – semantic

space with a fixed orthonormal basis {ni}i, where each ni is a context word against which

words to which we want to assign meaning are measured: given a word w to which we

want to assign meaning, we rely on a large corpus of text to establish what is called the

relative frequency of w with respect to each context word. Relative frequency is a measure

of co-occurrence: it counts how many times word w occurs in the context of words ni.

The meaning vector of a word w is therefore given by:∑
i

cini,

where ci is the relative frequency of w with respect to context word ni.

The vector spaces usually used in this model are Hilbert spaces : vector spaces that have

the inner product structure, allowing for distance and angle measurements. As we will

see in the next subsection, Hilbert spaces form a †-compact-closed category.

Models following this paradigm have been found to be very fruitful when applied to

language processing tasks. [14] summarises some of these tasks, namely word sense dis-

crimination and disambiguation [32, 39], text segmentation [6], and thesaurus extraction

[21].

This model however has some important shortcomings: a problem of a distributional

nature is that this model does not scale up to the level of sentences, since no corpus can
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reliably provide the distribution of a sentence. Another issue is that it does not take into

account the ability of humans to understand new sentences: this capacity is based on a

compositional mechanism whereby meaning is generated from words and their relations

in a sentence.

3.2.2 FHilb as a †-compact-closed category

Finite-dimensional Hilbert spaces form a category FHilb that is †-compact-closed:

A monoidal category. The objects of FHilb are finite-dimensional vector spaces,

and the morphisms are linear maps. The monoidal tensor is given by the the usual vector

space tensor ⊗, and the tensor unit is the scalar field of the vector spaces. Theoretically,

this scalar field can be chosen to be the field of complex numbers C. We will consider

C in the characterisation of density matrices and double-density matrices. However, in

practice, the distributional model is obtained from real data and therefore lives in the real

vector space R. A vector, or column vector, v ∈ V is represented by a linear map I → V ,

where I is the scalar field, and a row vector by the linear map V → I.

A symmetric compact-closed category. The vector space tensor ⊗ being commu-

tative, the left and right adjoints collapse, and the adjoint of a vector space V is simply

its dual vector space V ∗. The inner product structure of Hilbert spaces induces an iso-

morphism between vector spaces and their duals: V ∼= V ∗. The η and ε maps are given

by:

ηV : I → V ⊗ V :: 1 7→
∑

i ni ⊗ ni
εV : V ⊗ V → I :: vi ⊗ wi 7→ 〈vi|wi〉

The two equations are verified as follows:

(εV ⊗ 1V ) ◦ (1V ⊗ ηV )(v) = (εV ⊗ 1V )(v ⊗ (
∑

i ni ⊗ ni)) =
∑

i 〈v|ni〉 ⊗ ni = v

(1V ⊗ εV ) ◦ (ηV ⊗ 1V )(v) = (1V ⊗ εV )((
∑

i ni ⊗ ni)⊗ v) =
∑

i ni ⊗ 〈v|ni〉 = v

A †-compact-closed category. The adjoint of a linear map f : V → W is the map

f † : W → V satisfying ∀v ∈ V,w ∈ W , 〈fv|w〉 = 〈v|f †w〉.

3.3 From grammar to semantics: a functorial passage

The two models of meaning presented in the previous sections are somewhat orthogonal:

one is compositional but does not account for word meaning, and one is quantitative

but non-compositional. Nonetheless, CG and FHilb have something in common: they

share a compact-closed structure. The unification of these two frameworks is done by

transitioning from syntax to semantics via a strong monoidal functor Q [35].
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Definition 3.3.1. [25] [26] (Monoidal and strongly monoidal functors) A functor

F between two monoidal categories C and D is monoidal if there exists a morphism I →
F (I) and a natural transformation F (A)⊗F (B)→ F (A⊗B) satisfying the corresponding

coherence conditions.

A monoidal functor is said to be strongly monoidal or strong monoidal if the above

morphism and natural transformation are invertible.

Proposition 3.3.1. A strong monoidal functor F on two compact-closed categories C and

D preserves the compact-closed structure, that is F (Al) = F (A)l, and F (Ar) = F (A)r.

Proof. We present the proof given in [25]: to show that F (Al) is indeed the left adjoint

F (A)l of F (A), we have:

F (Al)⊗ F (A)→ F (Al ⊗ A)→ F (I)→ I → F (I)→ F (A⊗ Al)→ F (A)⊗ F (Al)

The right adjoint is proved similarly.

Let us now define the strong monoidal functor Q: CG → FHilb: it maps atomic gram-

matical types to basic vector spaces:

Q(n) = N Q(s) = S

By Proposition 3.3.1, Q(tl) = Q(t)l, and Q(tr) = Q(t)r, for every grammatical type t

of CG. Note that since Q(t) is an element of FHilb, Q(tl) ∼= Q(tr) ∼= Q(t). Furthermore,

Q maps the monoidal tensor in CG to the monoidal tensor in FHilb. Therefore, juxta-

position of grammatical types in CG is mapped to the tensor product of vector spaces.

For example:

Q(nnr) = Q(n)⊗Q(nr) = N ⊗N

Finally, Q acts on morphisms by mapping grammatical reductions in CG to linear maps

in FHilb, for example:

Q(εrn · 1s · εln : nnrsnln→ s) = εN ⊗ 1S ⊗ εN : N ⊗N ⊗ S ⊗N ⊗N → S

Meaning of strings of words. This definition of the strong monoidal functor Q allows

to define the meaning of a sentence or string of words based on the individual meanings of

the words constituting this sentence. Effectively, the grammatical reductions determine

the order in which the linear maps in FHilb are applied.
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Definition 3.3.2. Let w1w2...wn be a string of words with types t1, t2, ..., tn and corre-

sponding meaning vectors |w1〉 , |w2〉 , ..., |wn〉. Let α : t1t2...tn → x be a type-reduction

to some grammatical type x. The meaning of w1w2...wn is defined as:

|w1w2...wn〉 := Q(α)(|w1〉 ⊗ |w2〉 ⊗ ...⊗ |wn〉)

Let us consider the example of a transitive sentence. The subject and object have basic

type n, and the transitive verb nrsnl. Nouns are mapped to the basic vector space N ,

and the transitive verb to the tensor product space N ⊗ S ⊗N . The pregroup reduction

n(nrsnl)n → s corresponds to the morphism εrn1sε
l
n : n(nrsnl)n → s in CG, which is

mapped to the linear map Q(εrn · 1s · εln : n(nrsnl)n→ s) = εN ⊗ 1S ⊗ εN : N ⊗N ⊗ S ⊗
N ⊗N → S in FHilb. Graphically, this derivation is given by:

Let us show the explicit computation of the meaning of a transitive sentence. Let subject,

T verb and object be defined by:

|subject〉 =
∑
r

csubr |nr〉

|T verb〉 =
∑
i,j,k

cverbijk |ni〉 ⊗ |sj〉 ⊗ |nk〉

|object〉 =
∑
t

cobjt |nt〉

Then:

|subject T verb object〉 = (εN ⊗ 1S ⊗ εN)(|subject〉 ⊗ |T verb〉 ⊗ |object〉)

= (εN ⊗ 1S ⊗ εN)(
∑
r

(csubr |nr〉)⊗
∑
i,j,k

(cverbijk |ni〉 ⊗ |sj〉 ⊗ |nk〉)⊗
∑
t

(cobjt |nt〉))

=
∑
r,i,j,k,t

csubr cverbijk c
obj
t 〈nr|ni〉 ⊗ |sj〉 ⊗ 〈nk|nt〉

=
∑
r,i,j,k,t

csubr cverbijk c
obj
t δri ⊗ |sj〉 ⊗ δkt

=
∑
i,j,k

csubi cverbijk c
obj
k |sj〉
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3.4 Frobenius algebras

One problem with the compositional distributional framework described so far is that some

words, like relative pronouns – who, which, that... – cannot be modelled contextually:

pronouns occur in practically any context, and so the context in which they occur cannot

provide a reliable meaning. The authors of [14] extended their framework in [37] to model

relative pronouns, using Frobenius algebras over vector spaces. The result is a model of

relative pronouns that does not rely on co-occurrence frequencies, and that only takes

into account the structural roles of the pronouns.

3.4.1 †-Frobenius algebras

In this subsection, we provide the basic definitions pertaining to Frobenius algebras. All

definitions are taken from [10].

Definition 3.4.1. An associative algebra in a monoidal category consists of linear map

µ : A⊗ A→ I and ζ : I → A, depicted by

satisfying associativity and unit conditions:

Definition 3.4.2. A co-associative algebra in a monoidal category consists of linear map

∆ : I → A⊗ A and ι : A→ I, depicted by

satisfying co-associativity and co-unit conditions:

Definition 3.4.3. A Frobenius algebra is a quintuple (A, µ, ζ,∆, ι), such that (A, µ, ζ)

is an associative algebra, (A,∆, ι) is a co-associative algebra, and µ and ∆ satisfy the

Frobenius equations :
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We define maps, called spiders, based on the structure provided by a Frobenius algebra:

Definition 3.4.4. A †-special commutative Frobenius algebra is a Frobenius algebra that

satisfies:

We now define the composition of spiders:

Theorem 3.4.1. (Spider fusion) In a †-special commutative Frobenius algebra, spiders

compose as:

Proof. The proof consists in writing the spider on the left-hand side in canonical form and

applying the rules of †-special commutative Frobenius algebras. The reader can consult

the proof of Theorem 8.109 in [10].
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3.4.2 Frobenius algebras over vector spaces

In [12], the authors show that a finite-dimensional Hilbert space with an orthogonal basis

has a †-commutative Frobenius algebra. Furthermore, when the basis is normalised, this

†-commutative Frobenius algebra becomes special as well.

Let V be any Hilbert space, with fixed orthonormal basis {|i〉}i. The maps of the †-
special commutative algebra are given by:

∆ :: |i〉 7→ |i〉 ⊗ |i〉 ι :: |i〉 7→ 1

µ :: |i〉 ⊗ |j〉 7→ δij |i〉 :=

{
|i〉 i = j

0 i 6= j
ζ :: 1 7→

∑
i |i〉

We interpret the ∆ map as copying information and encoding components in V into a

matrix in V ⊗ V , the ι map as deleting, and the µ map as uncopying – or comparing –

elements: it picks out the diagonal elements of a matrix in V ⊗ V and returns them as a

vector in V .

[37] defines subject- and object-relative pronouns in terms of the maps of the †-special

commutative algebra described above:

It is clear from this definition that the relative clause (to the right of the pronoun) in-

teracts with the head noun (to the left of the pronoun) via the relative pronoun. The

relative clause is discarded, and the modified noun is returned.

In this chapter, I discussed two orthogonal models of meaning and their unification in

Coecke et al.’s distributional compositional categorical model of meaning. I also dis-

cussed how this model accounts for relational types via †-special commutative Frobenius

algebras. In the next chapter, I present an extension of this framework aiming to model

one property of language.
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Chapter 4

Accommodating for one feature of
language

The framework described in the previous chapter was extended to include density ma-

trices, which are generalisations of vectors. This extension allowed for one feature of

language to be modelled: in [34], Piedeleu made use of density matrices to model ambi-

guity – more precisely homonymy,– and in [4], Balkır resorted to them in order to model

subsumption relations, or lexical entailment.

In this chapter, I will justify the use of density matrices following the model in [35] by in-

troducing mixed states, completely positive maps, along with Selinger’s CPM-construction

[41], and relate them to their linguistic interpretation in terms of ambiguity (the same

analysis can be carried out for entailment). I will also suggest a way to accommodate yet

another feature of language by iterating the CPM-construction.

4.1 Mixed states and density matrices

The framework we have been dealing with so far represents words as vectors in a Hilbert

space, where these vectors correspond to pure states : a system is said to be in a pure

state if we have complete knowledge about that system. In other words, we know pre-

cisely which state the system is in. In quantum physics, representing states as vectors

in a Hilbert space has its limitations: what if we do not have complete knowledge about

the state the system is in? The answer is by considering probability distributions over

ensembles of pure states. States that are defined as such are called mixed states.

This situation is analogous to that of having to deal with a homonymous word. Repre-

senting a homonymous word as a convex sum of all its meanings collapses these meanings

into a single vector. While this might seem to align with the distributional hypothesis,

we would like to retain the ambiguity of the word in the absence of sufficient context,

and allow it to collapse only when enough context is given to disambiguate the word
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partially or completely. It is therefore more intuitive to represent a homonymous word as

a probabilistic mixing of its individual meanings [35].

The mathematical counterpart to a mixed state is called a density matrix or density oper-

ator. Density matrices and their characterisation will be discussed in detail in Chapter

7. We give the following definition of a density operator:

Definition 4.1.1. Given a set {|ϕm〉} of pure, not necessarily orthogonal quantum states,

and {pm} a probability distribution over them, define the density operator for this system

by:

ρ ≡
∑

m pm |ϕm〉 〈ϕm|

From a linguistic perspective, the meaning of a homonymous word w is given by ρ(w) =∑
m pm |wm〉 〈wm|, where each meaning wm has probability pm. In the case of an unam-

biguous word w
′
, the meaning of w

′
is given by ρ(w

′
) = |w′〉 〈w′|.

Note: When accommodating for lexical entailment, the same analysis is carried out:

general words – i.e. words that generalise the meaning of other words – are represented

as a probabilistic mixing of “pure” words, and the meaning of a pure word is given by

doubling that word.

4.2 Completely positive maps and the CPM-construction

In the Hilbert space model, the morphisms are linear maps and map states to states. In

the mixed setting, we need morphisms that map density matrices to density matrices.

These are called completely positive maps.

Definition 4.2.1. Let A,B be objects in a †-compact-closed category C. A morphism

f : A⊗ A∗ → B ⊗ B∗ of C is completely positive or CP if there exists an object C of C

and a morphism x : A→ B ⊗ C such that:

f = (1B ⊗ εC∗ ⊗ 1B∗) ◦ (x⊗ x∗)

or graphically:

23



Note that Selinger proved this definition to be equivalent to his initial definition of com-

pletely positive maps in [41]. Selinger also laid down the properties of CP maps, namely

that the identity for any CP maps f and g with appropriate domains and codomains, the

identity A⊗A∗ → A⊗A∗, the composition g ◦ f , the tensor f ⊗ g and the tensor f ⊗ f∗
are completely positive.

We need to define a construction that introduces mixed states, preserves †-compact

closure, and allows for a †-special commutative Frobenius algebra to be defined. This

construction is Selinger’s CPM-construction:

Definition 4.2.2. The CPM-construction [9, 41]

Given a †-compact closed category C, define a new category CPM(C) as follows:

(i) The objects of CPM(C) are the objects of C

(ii) The morphisms A→ B of CPM(C) are of the form (1B ⊗ εC∗ ⊗ 1B∗) ◦ (f ⊗ f∗), or

graphically:

where C is the ancillary system of (1B ⊗ εC∗ ⊗ 1B∗) ◦ (f ⊗ f∗).

(iii) Identities are inherited from C

(iv) Composition is defined the usual way:

In the next section, we show that the CPM-construction preserves compact closure, and

that it allows for a †-special commutative Frobenius algebra to be defined.
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4.3 CPM(C) as a †-compact closed category

We begin this section by an important theorem stated and proved in Selinger’s paper [41]:

Theorem 4.3.1. Let C be a†-compact closed category. CPM(C) is again a †-compact

closed category.

Proof. The proof of this theorem can be found in Selinger’s paper [41], under Theorem

4.20. It is worth noting, however, that the proof uses the following: the fact that f ⊗ f∗
is a CP map for any CP map f yields an identity-on-objects functor F : C → CPM(C)

which maps morphisms f to f ⊗ f∗. This functor is shown to preserve the compact

structure.

We can now extend Definition 4.2.2 to include the following [9]:

(v) The tensor unit I and the tensor product of objects are inherited from C, and the

tensor product of morphisms is defined as follows:

(vi) The dagger is defined the usual way:

(vii) The cap εA : A∗ ⊗CPM A→ I is given by:

Frobenius algebra. [35] considers the doubled version of the Frobenius algebra in C,

that is, the Frobenius algebra in CPM(C) with maps defined as the image of the Frobe-

nius algebra maps in C by the functor F . Piedeleu [34] shows that the Frobenius algebra
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in CPM(C) based on a †-Frobenius algebra in C is indeed a †-Frobenius algebra (note

that Piedeleu defines the Frobenius agebra maps in [34] in a different but ultimately

equivalent way to the definition in [35]). Similarly, it can be shown that this †-Frobenius

algebra, when based on a †-special commutative Frobenius algebra in C, is special and

commutative.

The construction defined in this chapter fulfils the required goals: the category of operator

spaces and completely positive maps is a †-compact closed category and possesses a †-
special commutative Frobenius algebra that accounts for copying, deleting, and comparing

information. The use of density matrices allows for modelling one feature of language.

4.4 Accommodating for two features of language

Our ultimate goal is to extend the categorical framework even further to accommodate for

a second feature of language. Since, by Theorem 4.3.1, CPM(C) is a †-compact closed

category whenever C is a †-compact closed category, a solution is obtained by iterating

the CPM-construction. Morphisms f : A→ B in CPM2(C) are derived as follows:

And states are given by:

Assuming that the first application of the CPM-construction accounts for homonymy

and the second for entailment, a general, non-homonymous word and a non-general,

homonymous word correspond respectively to:
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This chapter introduced mixed states and their mathematical counterparts, density matri-

ces, and gave their linguistic interpretation in terms of ambiguity. The CPM-construction

yields a †-compact closed category and models adequately one feature of language, and

iterating the CPM-construction will allow us to account for more features.

This concludes the background needed for this dissertation. The next chapters will in-

troduce a new framework based on double-density matrices, mathematical tools used to

model states that have two levels of mixing. This framework will be shown to adequately

model two features of language: ambiguity and entailment.
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Chapter 5

Environment structures and
CPM-constructions axiomatisation

The previous chapter introduced density matrices, completely positive map representing

mixed states. In [7], Coecke recasts the CPM-construction as an axiomatisation of maxi-

mally mixed states.

In this chapter, I investigate and revise the methods used in Coecke’s paper to axiomatise

CPM(C), and offer an axiomatisation of CPM2(C), the category obtained by applying

the CPM-construction to a category C twice, in terms of what we will call discardings 1

and 2. In the last section, I generalise this axiomatisation to CPMn(C), the category

obtained by applying the CPM-construction to a category C n times.

5.1 Axiomatisation of CPM(C)

In this section, I revise the axiomatisation of CPM(C) presented in [7], alter some of

the axioms and notations to better suit higher orders of iteration of Selinger’s CPM-

construction, and offer a diagrammatic representation of the proofs involved.

5.1.1 Environment structure and implications

Definition 5.1.1. A >- structure or environment structure on a †-compact-closed cate-

gory C consists of:

(i) a designated effect >A : A→ I for each object A of C, called the maximally mixed

effect or discarding and depicted as:

which satisfies the following properties:
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• >I = 1I

• >A⊗B = >A ⊗>B

• (>A)∗ = >A∗

The above properties are respectively represented by the following diagrams:

(ii) an all-objects-including sub-†-compact-closed category CΣ of pure morphisms, which

carries an entanglement structure, and which is such that for all morphisms f, g of

CΣ:

f † ◦ f = g† ◦ g ⇐⇒ >codom(f) ◦ f = >codom(g) ◦ g (5.1)

or graphically:

(iii) the purifiability axiom [13]: for every morphism f : A → B in C, there exists a

morphism g : A→ B ⊗ C in CΣ such that:

A more rigorous definition of the notion of “purifiability” is given in definitions 5.1.2

and 5.1.3 below.
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Definition 5.1.2. In a †-compact-closed category C with a >-structure:

• the partial internal trace is the map trCA,B : C(A,B ⊗ C) → C(A,B) :: f 7→
(1B ⊗>C) ◦ f , for objects A,B,C and any arrow f : A→ B⊗C in C. Graphically:

• the full internal trace is the map trC : C(I, C) → C(I, I) :: ψ 7→ >C ◦ ψ, for an

object C and a state ψ : I → C in C. Graphically:

Definition 5.1.3. In a †-compact closed category C with an environment structure,

define a purification of an operation f : A → B to be a pure operation g : A → B ⊗ C
which is such that f = trCA,B(g). f is said to be purifiable.

Axiom (5.1) of Definition 5.1.1 entails an important special case: let us consider two

effects ψ, ϕ : A→ I in CΣ. By axiom (5.1):

ψ† ◦ ψ = ϕ† ◦ ϕ⇐⇒ >I ◦ ψ = >I ◦ ϕ⇐⇒ 1I ◦ ψ = 1I ◦ ϕ⇐⇒ ψ = ϕ⇐⇒ ψ† = ϕ†.

Graphically,

which is exactly the preparation-state agreement axiom [8]. The following conclusion is

reached:

axiom (5.1)⇒ preparation-state agreement axiom (5.2)

Axiom (5.1) can also be stated as:
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This stems from the fact that:

where the first and last equalities hold by properties of the entanglement structure of CΣ.

This new formulation of axiom (5.1) has an important implication stated in Proposition

5.1.1 below. Recall first that in a †-compact-closed category C, a morphism f : A→ A of

C is positive if and only if it decomposes as f = g†◦g, for some morphism g : A→ B of C.

Proposition 5.1.1. In a †-compact-closed category C with a >-structure, axiom (5.1)

gives rise to an isomorphism of categories

F : Cpos
Σ ' C,

where Cpos
Σ is the homset of all positive morphisms in CΣ, i.e. morphisms of the form:

Proof. Define F as follows:

• F maps objects to themselves

• F maps morphisms (1B⊗εC∗⊗1B∗)◦(f⊗f∗) in Cpos
Σ (A⊗A∗, B⊗B∗) to (1B⊗>C)◦f

in C(A,B), or graphically:

The forward direction of axiom (5.1) ensures that F assigns a unique interpretation to a

given morphism in the domain category. Therefore, F is well-defined.
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Functoriality is shown as follows:

- F (g ◦ f) = F (g) ◦ F (f)

- F (idA) = idF (A) = idA

It remains to show that F is an isomorphism, i.e. that both the objects and the mor-

phisms of Cpos
Σ and C are in one-to-one correspondence to each other.

The one-to-one correspondence between objects is trivially implied by the fact that F is

identity-on-objects.

A one-to-one correspondence between morphisms is equivalent to showing that F is

full and faithful: by the backward direction of axiom (5.1), every morphism FA,B :

Cpos
Σ (A ⊗ A∗, B ⊗ B∗) → C(A,B) is injective, which shows that F is faithful. By the

purifiability axiom, every morphism f in C is purifiable, i.e. there exists a pure morphism

g in CΣ such that f is the result of discarding parts of the output of g. Therefore, every

morphism FA,B : Cpos
Σ (A⊗ A∗, B ⊗B∗)→ C(A,B) is surjective, and F is full.

∴ axiom (1)⇒ Cpos
Σ ' C.

5.1.2 Recovering Selinger’s CPM-construction

We refer the reader the the definition of Selinger’s CPM-construction (Definition 4.2.2)

in Chapter 4 and its extended version in Section 4.3. We remind the reader that given

a †-compact closed category C, the CPM-construction yields a new †-compact closed

category CPM(C).
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Theorem 5.1.1. Let C be a †-compact-closed category. If C has an environment struc-

ture, then CPM(CΣ) ' C, and CΣ satisfies the preparation-state agreement axiom.

Proof. The category C has an environment structure. Therefore, CΣ satisfies axiom (5.1).

By (5.2), CΣ also satisfies the preparation-state agreement axiom.

Apply the CPM-construction to CΣ. The maps of CPM(CΣ) are the maps of the form:

which are exactly the maps in Cpos
Σ . By Proposition 5.1.1, the fact that CΣ satisfies

axiom (5.1) implies that Cpos
Σ ' C, and therefore that Cpos

Σ (A⊗A∗, B ⊗B∗) ' C(A,B).

Therefore:

CPM(CΣ)(A,B)
def
= Cpos

Σ (A⊗ A∗, B ⊗B∗) ' C(A,B)

∴ CPM(CΣ) ' C.

Theorem 5.1.2. Let C be a †-compact-closed category with an entanglement structure,

and let C satisfy the preparation state agreement axiom. Define the category CPM(C)

according to Definition 4.2.2. Then CPM(C) has a >-structure.

Proof. Define the maximally mixed effect as follows:

It is easy to check that >A satisfies the required properties:

Consider now the all-objects-including sub-†-compact-closed category CPM(C)Σ of pure

morphisms, which carries an entanglement structure. The identity-on-objects embedding

FCPM : C ↪→ CPM(C) defined by Selinger in [41] maps pure morphisms in C to pure

morphisms in CPM(C), i.e. morphisms in CPM(C)Σ. These morphisms are of the

form:
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Let us show that CPM(C)Σ satisfies axiom (5.1), graphically:

This is evident from topological manipulations:

can be stated as

by properties of the entanglement structure. Therefore,

Finally, every morphism in CPM(C) is purifiable, by definition of morphisms in CPM(C)

and of the maximally mixed effect in CPM(C).
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Corollary 5.1.1. By theorems 5.1.1 and 5.1.2, a †-compact-closed category C carrying

a >-structure coincides with CPM(CΣ) ' C, and applying the CPM-construction to a

†-compact-closed category C which satisfies the preparation-state agreement axiom induces

a >-structure on C.

5.2 Axiomatisation of CPM2(C)

In this part, I apply and extend the findings of [7] to the CPM2-construction. I start by

defining the notion of squared-environment structure and the isomorphism of categories

that stems from its axioms. I then formalise the notion of CPM2-construction in terms

of completely squared-positive maps and finally axiomatise it.

5.2.1 Squared-environment structure and implications

Definition 5.2.1. A >1,>2- structure or squared-environment structure on a †-compact-

closed category C consists of:

(i) two designated effects >1,A,>2,A : A→ I for each object A of C, called respectively

discarding-1 and discarding-2, and depicted as:

Both discarding effects satisfy the same properties as the maximally mixed state in

the environment structure definition of Part 5.1, namely:

(ii) an all-objects-including sub-†-compact-closed category CΣ2 of pure morphisms, which

carries an entanglement structure, and which is such that for all morphisms f, g of

CΣ2 where dom(f) = Cf,1 ⊗ Cf,2, and dom(g) = Cg,1 ⊗ Cg,2:

(f † ⊗ f ∗) ◦ (1Cf,1
⊗ ηC∗f,2 ⊗ 1Cf,1

) ◦ (1Cf,1
⊗ εC∗f,2 ⊗ 1Cf,1

) ◦ (f ⊗ f∗)

=(g† ⊗ g∗) ◦ (1Cg,1 ⊗ ηC∗g,2 ⊗ 1Cg,1) ◦ (1Cg,1 ⊗ εC∗g,2 ⊗ 1Cg,1) ◦ (g ⊗ g∗)

⇐⇒(>1,codom(f) ⊗>2,codom(f)) ◦ f = (>1,codom(g) ⊗>2,codom(g)) ◦ g

(5.3)
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or graphically:

(iii) the squared-purifiability axiom: for every morphism f : A → B in C, there

exists a morphism g : A→ B ⊗ C1 ⊗ C2 in CΣ2 such that:

The concepts pertaining to “squared-purifiability” are defined below.

Definition 5.2.2. In a †-compact-closed category C with a squared-environment struc-

ture:

• the squared-partial internal trace is the map trC1,C2

A,B : C(A,B⊗C1⊗C2)→ C(A,B) ::

f 7→ (1B ⊗ >1,C1 ⊗ >2,C2) ◦ f , for objects A,B,C1, C2 and any arrow f : A →
B ⊗ C1 ⊗ C2 in C. Graphically:

• the squared-full internal trace is the map trC1,C2 : C(I, C1 ⊗ C2) → C(I, I) :: ψ 7→
(>1,C1⊗>2,C2)◦ψ, for objects C1, C2 and a state ψ : I → C1⊗C2 in C. Graphically:

Definition 5.2.3. In a †-compact closed category C with a squared-environment struc-

ture, define a squared-purification of an operation f : A → B to be a pure operation

g : A→ B ⊗C1⊗C2 which is such that f = trC1,C2

A,B (g). f is said to be squared-purifiable.
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As in the previous part, axiom (5.3) of Definition 5.2.1 has two main implications: first,

let us consider two effects ψ, ϕ : A→ I in CΣ2 . By axiom (5.3):

(ψ† ⊗ ψ∗) ◦ (ψ ⊗ ψ∗) = (ϕ† ⊗ ϕ∗) ◦ (ϕ⊗ ϕ∗)⇐⇒ (>1,I ⊗>2,I) ◦ ψ = (>1,I ⊗>2,I) ◦ ϕ

⇐⇒ (1I ⊗ 1I) ◦ ψ = (1I ⊗ 11) ◦ ϕ

⇐⇒ ψ = ϕ

⇐⇒ ψ† = ϕ†.

Graphically,

which is what we define to be the squared-preparation-state agreement axiom. We con-

clude:

axiom (3)⇒ squared-preparation-state agreement axiom (5.4)

Axiom (5.3) can also be stated as:

This stems from the fact that:
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where the first and last equalities hold by properties of the entanglement structure of CΣ2 .

This reformulation of axiom (5.3) leads us to the second major implication mentioned

before. But first, we introduce the notion of “squared-positive” maps:

Definition 5.2.4. In a †-compact-closed category C, a morphism f : A⊗ A∗ → A⊗ A∗

of C is squared-positive if and only if it decomposes as f = (g† ⊗ g∗) ◦ (1Cg,1 ⊗ ηC∗g,2 ⊗
1Cg,1) ◦ (1Cg,1 ⊗ εC∗g,2 ⊗ 1Cg,1) ◦ (g ⊗ g∗), for some morphism g : A→ C1 ⊗ C2 of C.

We now introduce the second important implication of axiom (5.3):

Proposition 5.2.1. In a †-compact-closed category C with a squared-environment struc-

ture, axiom (5.3) gives rise to an isomorphism of categories

F2 : Cpos2

Σ2 ' C,

where Cpos2

Σ2 is the homset of all squared-positive morphisms in CΣ2, i.e. morphisms of

the form:

Proof. Define F2 as follows:

• F2 maps objects to themselves

• F2 maps morphisms

(1B⊗1B∗⊗ εC∗1 ⊗1B⊗1B∗)◦ (1B⊗σC1,B∗⊗σB,C∗1 ⊗1B)◦ (1B⊗1C1⊗1B∗⊗ εC1⊗1B⊗
1C∗1 ⊗ 1B∗) ◦ (1B ⊗ 1C1 ⊗ εC∗2 ⊗ σC∗1 ,B∗ ⊗ σB,C1 ⊗ εC∗2 ⊗ 1C∗1 ⊗ 1B∗) ◦ (f ⊗ f∗ ⊗ f ⊗ f∗)

in Cpos2

Σ2 (A⊗A∗⊗A⊗A∗, B⊗B∗⊗B⊗B∗) to (1B ⊗>1,C1 ⊗>2,C2) ◦ f in C(A,B),

or graphically:
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The forward direction of axiom (5.3) ensures that F2 assigns a unique interpretation to a

given morphism in the domain category. Therefore, F2 is well-defined.

Functoriality is shown as before:

- F2(g ◦ f) = F2(g) ◦ F2(f)

- F2(idA) = idF2(A) = idA

It remains to show that F2 is an isomorphism.

The one-to-one correspondence between objects is trivially implied by the fact that F2 is

identity-on-objects.

Fullness and faithfulness of F2 is shown as before: by the backward direction of axiom

(5.3), every morphism F2A,B
: Cpos2

Σ2 (A ⊗ A∗ ⊗ A ⊗ A∗, B ⊗ B∗ ⊗ B ⊗ B∗) → C(A,B)

is injective, which shows that F2 is faithful. By the squared-purifiability axiom, every

morphism f in C is purifiable, i.e. there exists a pure morphism g in CΣ2 such that f

is the result of “square-discarding” parts of the output of g. Therefore, every morphism

FA,B : Cpos
Σ (A⊗ A∗ ⊗ A⊗ A∗, B ⊗B∗ ⊗B ⊗B∗)→ C(A,B) is surjective, and F is full.

∴ axiom (3)⇒ Cpos2

Σ2 ' C.
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5.2.2 CP2 maps and the CPM2-construction

Definition 5.2.5. (Completely squared-positive maps) LetA,B be objects in a †-compact-

closed category C. A morphism f : A ⊗ A∗ ⊗ A ⊗ A∗ → B ⊗ B∗ ⊗ B ⊗ B∗ of C is

completely squared-positive or CP2 if there exist objects C1, C2 of C and a morphism

x : A→ B ⊗ C1 ⊗ C2 such that:

f = (1B ⊗ 1B∗ ⊗ εC∗1 ⊗ 1B ⊗ 1B∗) ◦ (1B ⊗ σC1,B∗ ⊗ σB,C∗1 ⊗ 1B) ◦ (1B ⊗ 1C1 ⊗ 1B∗ ⊗
εC1⊗1B⊗1C∗1 ⊗1B∗)◦(1B⊗1C1⊗εC∗2 ⊗σC∗1 ,B∗⊗σB,C1⊗εC∗2 ⊗1C∗1 ⊗1B∗)◦(x⊗x∗⊗x⊗x∗),

or graphically:

Proposition 5.2.2.

(a) The identity map idA : A⊗ A∗ ⊗ A⊗ A∗ → A⊗ A∗ ⊗ A⊗ A∗ is CP2.

(b) If f : A⊗A∗⊗A⊗A∗ → B⊗B∗⊗B⊗B∗ and g : B⊗B∗⊗B⊗B∗ → C⊗C∗⊗C⊗C∗

are CP2, then so is g ◦ f .

(c) Let f : A⊗A∗⊗A⊗A∗ → B⊗B∗⊗B⊗B∗ and g : C⊗C∗⊗C⊗C∗ → D⊗D∗⊗D⊗D∗

be CP2. Define the tensor product of CP2 morphisms as follows:

Then f ⊗ g is CP2.
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(d) If f : A→ B is any morphism, then f ⊗ f∗ ⊗ f ⊗ f∗ is CP2

Proof. All the proofs use graphical manipulations:

(a) Setting x to 1A and C1, C2 to I in Definition 5.2.5, idA is CP2:

(b) Graphically,

(c) Graphically,
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(d) Setting x to f and C1, C2 to I in Definition 5.2.5, f ⊗ f∗ ⊗ f ⊗ f∗ is CP2:

Definition 5.2.6. The CPM2-construction

Given a †-compact closed category C, define a new †-compact-closed category – refer to

the note below – CPM2(C) as follows:

(i) The objects of CPM2(C) are the objects of C

(ii) The morphisms A→ B of CPM2(C) are of the form:

(iii) Identities are defined as in Proposition 5.2.2(a)

(iv) Composition is defined as in Proposition 5.2.2(b)

(v) The tensor unit I and the tensor product of objects are inherited from C, and the

tensor product of morphisms is defined as in Proposition 5.2.2(c)

(vi) The dagger is defined the usual way:

(vii) The cap εA : A∗ ⊗CPM2 A→ I is given by:
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Note: CPM2(C), where C is †-compact closed, is also †-compact closed since it is the

result of iterating the CPM-construction on CPM(C), which is proved to be †-compact

closed in [4]. The proof of Theorem 6.1.1 in the next chapter offers a thorough expla-

nation of this fact.

Theorem 5.2.1. Let C be a †-compact-closed category. If C has a squared-environment

structure, then CPM(CΣ2) ' C, and CΣ2 satisfies the squared-preparation-state agree-

ment axiom.

Proof. The sub-category CΣ2 satisfies axiom (5.3). By (5.4) CΣ2 also satisfies the squared-

preparation-state agreement axiom.

Apply the CPM2-construction to CΣ2 . The maps of CPM(CΣ2) are the maps of the

form:

which are exactly the maps in Cpos2

Σ2
. By Proposition 5.1.1, Cpos2

Σ2 ' C, and therefore

Cpos2

Σ2 (A⊗ A∗ ⊗ A⊗ A∗, B ⊗B∗ ⊗B ⊗B∗) ' C(A,B). Therefore:

CPM(CΣ2)(A,B)
def
= Cpos2

Σ2 (A⊗ A∗ ⊗ A⊗ A∗, B ⊗B∗ ⊗B ⊗B∗) ' C(A,B)

∴ CPM(CΣ2) ' C.

Theorem 5.2.2. Let C be a †-compact-closed category with an entanglement structure,

and let C satisfy the squared-preparation state agreement axiom. Define the category

CPM2(C) according to Definition 5.2.6. Then CPM2(C) has a squared-environment

structure.

Proof. Define discardings 1 and 2 as follows:

Both >1,A and >2,A satisfy the required properties: first, >1,A :
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and >2,A:

Consider now the all-objects-including sub-†-compact-closed category CPM2(C)Σ2 of

pure morphisms, which carries an entanglement structure. Proposition 5.2.2(d) defines

an embedding

FCPM2 : C ↪→CPM2(C):: f 7→ f ⊗ f∗ ⊗ f ⊗ f∗

which maps pure morphisms in C to “squared-pure” morphisms in CPM2(C), i.e. mor-

phisms in CPM2(C)Σ2 . These morphisms are of the form:

Let us show that CPM(C)Σ2 satisfies axiom (5.3), graphically:

This follows immediately from the fact that:
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by properties of the entanglement structure. Finally, every morphism in CPM2(C) is

squared-purifiable, by definition of morphisms in CPM2(C) and of >1,>2 in CPM2(C).

Corollary 5.2.1. By theorems 5.2.1 and 5.2.2, a †-compact-closed category C carrying

a >1,>2-structure coincides with CPM2(CΣ2) ' C, and applying the CPM2-construction

to a †-compact-closed category C which satisfies the squared-preparation-state agreement

axiom induces a >1,>2-structure on C.

5.3 Axiomatisation of CPMn(C)

In this part, I generalise the findings of Part 5.2 and define the notions of n-environment

structure and CPMn-construction, as well as the rules that govern them.

5.3.1 n-environment structure and implications

Definition 5.3.1. A >1, ...,>n- structure or n-environment structure on a †-compact-

closed category C consists of:

(i) n designated effects >i,A : A → I, i ∈ {1, ..., n} for each object A of C, called

discarding-i, and depicted as:

The discarding effects satisfy the same properties as the maximally mixed state in

the environment structure definition of Part 1, namely:
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(ii) an all-objects-including sub-†-compact-closed category CΣn of pure morphisms, which

carries an entanglement structure, and which is such that for all morphisms f, g of

CΣn where dom(f) = Cf,1 ⊗ ...⊗ Cf,n, and dom(g) = Cg,1 ⊗ ...⊗ Cg,n:

(5.5)

(iii) the n-purifiability axiom: for every morphism f : A → B in C, there exists a

morphism g : A→ B ⊗ C1 ⊗ ...⊗ Cn in CΣn such that:

The concepts pertaining to “n-purifiability” are defined below.

Definition 5.3.2. In a †-compact-closed category C with an n-environment structure:

• the n-partial internal trace is the map trC1,...,Cn

A,B : C(A,B⊗C1⊗...⊗Cn)→ C(A,B) ::

f 7→ (1B ⊗ >1,C1 ⊗ ... ⊗ >n,Cn) ◦ f , for objects A,B,C1, ..., Cn and any arrow f :

A→ B ⊗ C1 ⊗ ...⊗ Cn in C. Graphically:
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• the n-full internal trace is the map trC1,...,Cn : C(I, C1 ⊗ ...⊗ Cn)→ C(I, I) :: ψ 7→
(>1,C1 ⊗ ...⊗>n,Cn) ◦ ψ, for objects C1, ..., Cn and a state ψ : I → C1 ⊗ ...⊗ Cn in

C. Graphically:

Definition 5.3.3. In a †-compact closed category C with an n-environment structure,

define an n-purification of an operation f : A → B to be a pure operation g : A →
B ⊗ C1 ⊗ ...⊗ Cn which is such that f = trC1,...Cn

A,B (g). f is said to be n-purifiable.

As in the previous parts, axiom (5.5) of Definition 5.3.1 has two main implications: let

us consider two effects ψ, ϕ : A→ I in CΣn . We define A⊗
n

to be A⊗ ...⊗A n times. By

axiom (5.5):

(ψ† ⊗ ψ∗)⊗2n−1

◦ (ψ ⊗ ψ∗)⊗
2n−1

= (ϕ† ⊗ ϕ∗)⊗2n−1

◦ (ϕ⊗ ϕ∗)⊗
2n−1

⇐⇒(ψ† ⊗ ψ∗) ◦ (ψ ⊗ ψ∗) = (ϕ† ⊗ ϕ∗) ◦ (ϕ⊗ ϕ∗)

⇐⇒(>1,I ⊗ ...⊗>n,I) ◦ ψ = (>1,I ⊗ ...⊗>n,I) ◦ ϕ

⇐⇒(1I ⊗ ...⊗ 1I) ◦ ψ = (1I ⊗ ...⊗ 11) ◦ ϕ

⇐⇒ψ = ϕ

⇐⇒ψ† = ϕ†.

which is exactly what we defined to be the squared-preparation-state agreement axiom.

We conclude:

axiom (5)⇒ squared-preparation-state agreement axiom (5.6)

Following the same diagrammatical manipulations as before, axiom (5.5) can also be

stated as:
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From this reformulation of axiom (5.5), we state its second major implication. But first,

we introduce the notion of “n-positivity”:

Definition 5.3.4. In a †-compact-closed category C, a morphism f : (A ⊗ A∗)⊗2n−1

→
(A⊗A∗)⊗2n−1

of C is n-positive if and only if there exists a morphism g : A→ C1⊗...⊗Cn
of C such that f decomposes as:

Proposition 5.3.1. In a †-compact-closed category C with an n-environment structure,

axiom (5.5) gives rise to an isomorphism of categories

Fn : Cposn

Σn ' C,

where Cposn

Σn is the homset of all n-positive morphisms in CΣn, i.e. morphisms of the form:

Proof. Define Fn following the definition given in the proof of Proposition 5.2.1:

• Fn maps objects to themselves

• Fn maps morphisms in Cposn

Σn ((A ⊗ A∗)2n−1
, (B ⊗ B∗)2n−1) to maps in C(A,B) as

follows:
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Well-definedness, functoriality, and one-to-one correspondence of objects and morphisms

are proved as in the proof of Proposition 5.2.1.

5.3.2 CPn maps and the CPMn-construction

Definition 3.2.1 (Completely n-positive maps) Let A,B be objects in a †-compact-

closed category C. A morphism f : (A ⊗ A∗)2n−1 → (B ⊗ B∗)2n−1
of C is completely

n-positive or CP2 if there exist objects C1, C2 of C and a morphism x : A→ B⊗C1⊗C2

such that:

Proposition 5.3.2.

(a) The identity map idA : (A⊗ A∗)2n−1 → (A⊗ A∗)2n−1
is CPn.

(b) If f : (A⊗A∗)2n−1 → (B⊗B∗)2n−1
and g : (B⊗B∗)2n−1 → (C ⊗C∗) are CPn, then

so is their composition, g ◦ f , defined the usual way.

(c) Let f : (A ⊗ A∗)2n−1 → (B ⊗ B∗) and g : (C ⊗ C∗) → (D ⊗ D∗) be CPn. Define

the tensor product of CPn morphisms as it was defined for CP2 morphisms. Then

f ⊗ g is CPn.

(d) If f : A→ B is any morphism, then (f ⊗ f∗)2n−1
is CPn

Proof. All the proofs use the same graphical manipulations as the proofs of Proposition

5.2.2.

Definition 5.3.5. The CPMn-construction

Given a †-compact closed category C, define a new †-compact-closed category CPMn(C)

as follows:
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(i) The objects of CPMn(C) are the objects of C

(ii) The morphisms A→ B of CPMn(C) are of the form:

(iii) Identities are defined as in Proposition 5.3.2(a)

(iv) Composition is defined the usual way.

(v) The tensor unit I and the tensor product of objects are inherited from C, and the

tensor product of morphisms is defined as in Proposition 5.3.2(c)

(vi) The dagger is defined the usual way.

(vii) The cap εA : A∗ ⊗CPMn A→ I is given by:

Note: CPMn(C), where C is †-compact closed, is also †-compact closed since it is the

result of iterating the CPM-construction on a †-compact closed category.

Theorem 5.3.1. Let C be a †-compact-closed category. If C has an n-environment struc-

ture, then CPM(CΣn) ' C, and CΣn satisfies the squared-preparation-state agreement

axiom.

Proof. The proof uses Proposition 5.1.1 the same way the proof of Theorem 5.2.1

uses Proposition 5.2.1.

Theorem 5.3.2. Let C be a †-compact-closed category with an entanglement structure,

and let C satisfy the squared-preparation state agreement axiom. Define the category

CPMn(C) according to Definition 5.3.5. Then CPMn(C) has an n-environment

structure.
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Proof. Define the n discardings intuitively by following the model of the proof of Theo-

rem 5.2.2. Checking that every >i satisfies the required properties follows easily from

graphical manipulations.

Consider now the all-objects-including sub-†-compact-closed category CPMn(C)Σn of

pure morphisms, which carries an entanglement structure. Proposition 5.3.2(d) defines

an embedding

FCPMn : C ↪→CPMn(C):: f 7→ (f ⊗ f∗)2n−1

which maps pure morphisms in C to “n-pure” morphisms in CPMn(C), i.e. morphisms in

CPMn(C)Σn . We show that CPM(C)Σn satisfies axiom (5.5) the same way CPM(C)Σ2

was showed to satisfy axiom (5.3) in the proof of Theorem 5.2.2.

Finally, every morphism in CPMn(C) is n-purifiable, by definition of morphisms in

CPMn(C) and of >i, i ∈ {1, ..., n} in CPMn(C).

Corollary 5.3.1. By theorems 5.3.1 and 5.3.2, a †-compact-closed category C carrying

an n-environment structure coincides with CPMn(CΣn) ' C, and applying the CPMn-

construction to a †-compact-closed category C which satisfies the squared-preparation-state

agreement axiom induces an n-environment structure on C.

The methods in [7] were therefore revised and adapted in order to axiomatise the CPM2-

construction. These methods were also generalised to allow the axiomatisation of the

CPMn-construction. It is worthy to point out that one of the notable uses of CPMn(C)

is accommodating an increasing number of features of language.

In the next chapter, we will dive into the details of the compact closure of CPM2(C),

more precisely that of CPM2(FHilb), and investigate the Frobenius algebras of these

categories.
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Chapter 6

Further analysis of the
CPM2-construction framework

In the previous chapter, I offered a definition and axiomatisation of the CPM2-construction.

Taking a closer look at the CPM2-construction framework, grammatical reductions should

be carried over to the new category. For this, the CPM2-construction needs to preserve

compact closure. It also needs to have a dagger structure in order to have a measure of

similarity between words and between sentences. Finally, it needs to be equipped with a

†-special commutative Frobenius algebra so as to account for relational types.

6.1 CPM2(C) as a †-compact closed category

We denote by FCPM2 the identity-on-objects functor with domain category C and codomain

category CPM2(C) which maps morphisms f : A→ B of C to morphisms fCPM2 : A→
B of CPM2(C), where fCPM2 is defined as follows:

C1 and C2 are the ancillary systems of fCPM2 . FCPM2 being essentially the result of

applying the CPM-construction twice, C1 comes from the first application of the CPM-

construction and is called the first ancillary system, and C2 comes from the second appli-

cation and is called the second ancillary system.

Note: When there is absolutely no confusion, we will denote fCPM2 simply by f .
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Theorem 6.1.1. Let C be a †-compact closed category. The functor FCPM2 : C →
CPM2(C) preserves the †-compact closed structure.

Proof. Theorem 4.3.1 gives rise to a †-compact-closed-structure-preserving functor FCPM :

C → CPM(C). The functor FCPM2 is therefore given by the successive application of

FCPM , that is: FCPM2 = FCPMFCPM . By Theorem 4.3.1, given a †-compact closed

category C, the category CPM(C) is †-compact closed. By the second application of

Theorem 4.3.1, the category CPM2(C) is †-compact closed.

We now proceed with a few definitions pertaining to purifiability, which echo the ones

given in Section 5.2. We also give the linguistic interpretation of these concepts.

Definition 6.1.1. (1-, 2-, and 1,2-pure morphisms) Let f : A→ B be a morphism in

CPM2(C). f is 1-pure if C1 = I; f is 2-pure if C2 = I; and f is 1,2-pure if C1 = C2 = I.

From a linguistic perspective, if we suppose that the first application of the CPM-

construction accounts for ambiguity, and that the second application accounts for en-

tailment, then a 1-pure state corresponds to an unambiguous, general word, a 2-pure

state corresponds to an ambiguous, non-general word, and a 1,2-pure state corresponds

to an unambiguous, non-general word. The graphical representations of 1- and 2-pure

states are given in Section 4.4, and the representation of a 1,2-pure state is given below:

Let us delve into the †-compact closed structure of CPM2(C). The objects of CPM2(C)

are the objects of C, and its morphisms are CP2 maps. The identities, composition, and

tensor unit and product ⊗CPM2 are defined in Proposition 5.2.2, and the dagger is

defined in Definition 5.2.6.

It remains to define the compact-closure maps η and ε. Recall that a †-compact closed

category is symmetric, among other things, and therefore ηl = ηr = η, and εl = εr = ε.

The compact-closure maps in CPM2(C) are defined by taking the image of the original

compact-closure maps in C by FCPM2 :

ηCPM2
A

: I → A∗ ⊗CPM2 A := ηA ⊗ ηA∗ ⊗ ηA ⊗ ηA∗

εCPM2
A

: A∗ ⊗CPM2 A→ I := εA ⊗ εA∗ ⊗ εA ⊗ εA∗

Graphically:
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Note that since any monoidal category is equivalent to a strict one,

(A∗ ⊗ A)⊗ (A⊗ A∗)⊗ (A∗ ⊗ A)⊗ (A⊗ A∗) ' (A∗ ⊗ A⊗ A∗ ⊗ A)⊗ (A⊗ A∗ ⊗ A⊗ A∗)

and we can represent the cap as:

This representation of the cap is more convenient in diagrams corresponding to grammat-

ical reductions in CPM2(FHilb). An equivalent representation of the cup in CPM2(C)

can be found similarly.

These compact-closure maps do satisfy the required yanking equations. The derivation

for one of the equations is shown below. The second can be proved similarly:

Maps in CPM2(FHilb). Words with two features of language – homonymy and entail-

ment – are represented as states in the †-compact closed category CPM2(FHilb). As in

54



FHilb, V ∗ ∼= V . The concrete compact-closure maps, given by the first representation,

are defined as follows:

ηCPM2
V

: I → V ⊗
8

:: 1 7→ (
∑
i

ni ⊗ ni)⊗ (
∑
j

nj ⊗ nj)⊗ (
∑
k

nk ⊗ nk)⊗ (
∑
l

nl ⊗ nl)

εCPM2
V

: V ⊗
8 → I :: (vi ⊗ wi)⊗ (vj ⊗ wj)⊗ (vk ⊗ wk)⊗ (vl ⊗ wl) 7→ 〈vi|wi〉 〈vj|wj〉 〈vk|wk〉 〈vl|wl〉

When given by the equivalent representation, the η and ε maps are defined as follows:

ηCPM2
V

: I → V ⊗
8

:: 1 7→
∑
i,j,k,l

(ni ⊗ nj ⊗ nk ⊗ nl)⊗ (ni ⊗ nj ⊗ nk ⊗ nl)

εCPM2
V

: V ⊗
8 → I :: (vi ⊗ vj ⊗ vk ⊗ vl)⊗ (wi ⊗ wj ⊗ wk ⊗ wl) 7→ 〈vi|wi〉 〈vj|wj〉 〈vk|wk〉 〈vl|wl〉

The yanking equation satisfaction is easy to show and follows straightforwardly from the

derivations in Subsection 3.2.2.

Note: When representing maps in CPM(C), we often replace the “doubled” wires by a

single thick wire, and “doubled” boxes by a single box with thick sides. We could do the

same for maps in CPM2(C), by resorting to “extra thick” wires and boxes. However,

with higher and higher levels of CPM-construction iterations, this representation quickly

becomes bulky and impractical. This is why I chose to represent maps in CPM2(C) be-

tween parentheses and with the subscript “CPM2”. Maps that are not confined between

these special parentheses belong to the original category C.

6.2 Frobenius algebras in CPM2(C)

Let (µ, ζ) be an associative algebra in C, and (∆, ι) a coassociative coalgebra in C. We

define the maps:

µCPM2 = FCPM2(µ) ζCPM2 = FCPM2(ζ)

represented graphically by:

and the maps:

∆CPM2 = FCPM2(∆) ιCPM2 = FCPM2(ι)

represented graphically by:
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Note that µCPM2 and ∆CPM2 have equivalent representations that are more practical in

the representation of grammatical reductions, respectively:

Proposition 6.2.1. (µCPM2 , ζCPM2) is an associative algebra in CPM2(C).

Proof. The proof is given graphically by:

The proofs of the propositions below all follow straightforwardly from the equations that

hold in C, and follow the model of the proof above.

Proposition 6.2.2. (∆CPM2 , ιCPM2) is a coassociative coalgebra in CPM2(C).

Proof. The following follows from the fact that (∆, ι) is a coassociative coalgebra in C:

Proposition 6.2.3. Let (µ, ζ,∆, ι) be a Frobenius algebra in C. Then, (µCPM2 , ζCPM2 ,∆CPM2 , ιCPM2)

is a Frobenius algebra in CPM2(C).
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Proof. The following follows from the fact that (µ, ζ,∆, ι) is a Frobenius algebra in C:

Proposition 6.2.4. Let (µ, ζ,∆, ι) be a †-special commutative Frobenius algebra in C.

Then, (µCPM2 , ζCPM2 ,∆CPM2 , ιCPM2) is a †-special commutative Frobenius algebra in

CPM2(C).

Proof. The following follows from the fact that (µ, ζ,∆, ι) is a †-special commutative

Frobenius algebra in C:

We define the spiders in CPM2(C) based on the structure provided by a Frobenius

algebra:

These spiders compose in the expected way:
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†-special commutative Frobenius algebras in CPM2(FHilb). Let V be any Hilbert

space, with fixed orthonormal basis {|i〉}i. The maps of the †-special commutative algebra

in CPM2(C) are given by:

∆CPM2 :: |i〉 ⊗ |j〉 ⊗ |k〉 ⊗ |l〉 7→ (|i〉 ⊗ |i〉)⊗ (|j〉 ⊗ |j〉)⊗ (|k〉 ⊗ |k〉)⊗ (|l〉 ⊗ |l〉)

ιCPM2 :: |i〉 ⊗ |j〉 ⊗ |k〉 ⊗ |l〉 7→ 1

µCPM2 :: (|i1〉 ⊗ |j1〉)⊗ (|i2〉 ⊗ |j2〉)⊗ (|i3〉 ⊗ |j3〉)⊗ (|i4〉 ⊗ |j4〉)

7→ δi1j1δi2j2δi3j3δi4j4 |i1〉 ⊗ |i2〉 ⊗ |i3〉 ⊗ |i4〉

ζCPM2 :: 1 7→
∑
i

|i〉 ⊗
∑
j

|j〉 ⊗
∑
k

|k〉 ⊗
∑
l

|l〉

We note that |i〉, |j〉, |k〉, and |l〉 are vectors in the same basis.

The definitions of ∆CPM2 and µCPM2 in the equivalent representation are given by:

∆CPM2 :: |i〉 ⊗ |j〉 ⊗ |k〉 ⊗ |l〉 7→ (|i〉 ⊗ |j〉 ⊗ |k〉 ⊗ |l〉)⊗ (|i〉 ⊗ |j〉 ⊗ |k〉 ⊗ |l〉)

µCPM2 :: (|i1〉 ⊗ |i2〉 ⊗ |i3〉 ⊗ |i4〉)⊗ (|j1〉 ⊗ |j2〉 ⊗ |j3〉 ⊗ |j4〉)

7→ δi1j1δi2j2δi3j3δi4j4 |i1〉 ⊗ |i2〉 ⊗ |i3〉 ⊗ |i4〉

Thus, the CPM2-construction framework preserves †-compact closed structure, and pos-

sesses †-special commutative Frobenius algebras derived from the †-special commutative

Frobenius algebras in C. This framework is therefore adequate for representing ambiguous

and general words, the grammatical relations between them, and measuring their similar-

ity, while also accounting for relational types.

In the next chapter, we will look deeper into the characterisation of density matrices

and their counterparts in CPM2(C).
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Chapter 7

Density matrices and double-density
matrices

Chapters 5 and 6 introduced and axiomatised the CPM2-construction, and showed that

this framework is adequate for our purposes. This chapter investigates closely density

matrices, their properties and their characterisation, and introduces the notion of double-

density matrices, states of CPM2(C) that will be at the center of modelling two features

of language in the next chapter.

7.1 Characterisation of density matrices

Chapter 4 introduces density operators, mathematical tools used to express mixed states,

or probability distributions over ensembles of pure states.

Definition 7.1.1. Given a set {|ϕm〉} of pure, not necessarily orthogonal quantum states,

and {pm} a probability distribution over them, define the density operator for this system

by:

ρ ≡
∑

m pm |ϕm〉 〈ϕm|

These operators, whose formalism was first introduced in 1927 independently by von

Neumann [33] and Landau [29], present useful characteristics [22]:

• They are self-adjoint, or Hermitian: ρ = ρ†

• They are positive-semidefinite: ∀ |ψ〉 , 〈ψ| ρ |ψ〉 ≥ 0

• Their trace is one.

Density matrices ρ : A→ A are represented by morphisms

(1A ⊗ εC∗) ◦ (ϕ⊗ 1C∗) ◦ (ϕ† ⊗ 1C∗) ◦ (1A ⊗ ηC∗) (7.1)

where ϕ : I → A⊗ C is a bipartite state, or graphically as follows:
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They can equivalently be represented by morphisms

f ◦ f † (7.2)

graphically:

by taking

The name of a density matrix, denoted by dρe, is obtained by process-state duality. The

resulting ⊗-positive bipartite state is represented graphically by:

When there is absolutely no confusion, we will refer to names of density matrices simply

as density matrices. Notice that:

where F : Cpos
Σ ' C is the isomorphism of categories defined in Proposition 5.1.1.
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The main aim of this section is to show that any map of the form (7.1) – or equiva-

lently (7.2) – satisfies the conditions of hermiticity and positive-semidefiniteness. The

next section will deal with the reverse direction.

Proposition 7.1.1. An operator ρ of the form (7.1) is Hermitian.

Proof. A Hermitian matrix satisfies the property that ∀i, j, αij = αji where αij is the

entry in the ith row and jth column, and αji is the complex conjugate of αji. Graphically,

the entry αij of ρ is given by:

We prove graphically that αij = αji:

where

since the adjoint of an operator is its conjugate transpose.
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Proposition 7.1.2. An operator ρ of the form (7.1) is positive-semidefinite.

Proof. Consider the state ψ : I → A. We show graphically that 〈ψ| ρ |ψ〉 ≥ 0:

And since 〈ψϕ|ψϕ〉 is a non-negative scalar ∀ψϕ, 〈ψ| ρ |ψ〉 ≥ 0.

7.2 Representation of positive-semidefinite Hermitian

Operators

In this section, we will show that any positive-semidefinite operator with the property

∀i, j, αij = αji

can be represented as:

First, let us lay down useful properties of Hermitian operators.

Proposition 7.2.1. Let ρ be a Hermitian operator over a finite dimensional space. The

eigenvalues of ρ are real.

Proof. Let ~x be an eigenvector with eigenvalue λ. Without loss of generality, ~x can be
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rescaled to have length one. Then:

λ = λ 〈~x|~x〉 (〈~x|~x〉 = 1)

= 〈~x|λ~x〉 by linearity

= 〈~x|ρ~x〉 (ρ~x = λ~x)

= 〈ρ†~x|~x〉 by definition of adjoints

= 〈ρ~x|~x〉 by hermiticity of ρ

= 〈λ~x|~x〉 (ρ~x = λ~x)

= λ 〈~x|~x〉 by anti-linearity

= λ (〈~x|~x〉 = 1)

And λ = λ ⇐⇒ λ ∈ R.

Proposition 7.2.2. Let ρ be a Hermitian operator over a finite dimensional space. Eigen-

vectors of ρ corresponding to different eigenvalues are orthogonal.

Proof. Let ~x and ~y be eigenvectors of ρ corresponding respectively to eigenvalues λ1 and

λ2, such that λ1 6= λ2.

λ1 〈~x|~y〉 = 〈λ1~x|~y〉 (by anti-linearity)

= 〈λ1~x|~y〉 λ ∈ R by Proposition 7.2.1

= 〈ρ~x|~y〉 (ρ~x = λ1~x)

= 〈ρ†~x|~y〉 by hermiticity of ρ

= 〈~x|ρ~y〉 by definition of adjoints

= 〈~x|λ2~y〉 (ρ~y = λ2~y)

= λ2 〈~x|~y〉 by linearity

Therefore, λ1 〈~x|~y〉 = λ2 〈~x|~y〉 =⇒ (λ1 − λ2) 〈~x|~y〉 = 0 =⇒ 〈~x|~y〉 = 0 (since λ1 6= λ2).

Similar proofs of propositions 7.2.1 and 7.2.2 can be found on page 182 of [3], and on

page 195 of [38].

The following is a useful property of positive-semidefinite Hermitian operators:

Proposition 7.2.3. The eigenvalues of a positive-semidefinite Hermitian operator are

real and non-negative.

Proof. Let ρ be a positive-semidefinite Hermitian operator. By Proposition 7.2.1, the

eigenvalues of ρ are real.

Let |x〉 be an eigenvector of ρ corresponding to some eigenvalue λ. By positive-semidefiniteness:

〈x| ρ |x〉 ≥ 0
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This is equivalent to:

〈x|λ |x〉 ≥ 0 ⇐⇒ 〈x|x〉λ ≥ 0 ⇐⇒ λ ≥ 0

where the last equivalence holds because 〈x|x〉 is positive.

We now prove the main theorem of this section:

Theorem 7.2.1. Let ρ be a positive-semidefinite operator over a finite-dimensional space,

with the property

∀i, j, αij = αji.

Then, there exists a morphism f such that ρ = f ◦ f †, or graphically :

Proof. ρ is a Hermitian operator. Therefore, it is diagonalisable (a proof of this statement

can be found on page 197 of [38]): there exists an invertible matrix U and a diagonal ma-

trix D such that U−1ρU = D.

We claim that U is the matrix formed by the eigenvectors of ρ, and that the entries

of D are the eigenvalues of ρ. Let us write U = (~c1, ~c2, ..., ~cn), where {~ci}i are the column

vectors of U , and denote by λi the entry in the ith row and ith column of D. Then:

U−1ρU = D ⇐⇒ ρU = UD ⇐⇒ ρ~ci = λi~ci, i ∈ {1, 2, ..., n}

The column vectors of U are therefore the right eigenvectors of ρ, and the entries of D

are the corresponding eigenvalues of ρ. By a similar argument, the row vectors of U−1

are the left eigenvectors of ρ.

By Proposition 7.2.2, {ci}i are orthogonal. We can always pick an orthonormal basis of

eigenvectors. U is then a matrix whose columns are orthonormal, and is therefore unitary,

i.e.

UU † = I, U †U = I, U−1 = U †

D is the diagonal matrix whose entries are the eigenvalues of ρ. By Proposition 7.2.3,

the entries of D are real and non-negative. We denote by D1/2 the square root of D. The

entry in the ith row and ith column of D1/2 is
√
λi. D1/2 being a diagonal matrix with
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real non-negative entries, it is easy to see that it is Hermitian.

We now claim that (UD1/2U−1) is a root of ρ. Recall that R is a root of ρ iff RR = ρ.

(UD1/2U−1)(UD1/2U−1) = UD1/2(U−1U)D1/2U−1

= UD1/2D1/2U−1

= UDU−1

= ρ

Therefore, (UD1/2U−1) is a root of ρ.

The last step is to show that (UD1/2U−1) is Hermitian. In fact,

(UD1/2U−1)† = (U−1)†(D1/2)†U † = UD1/2U−1

where the last equality holds by hermiticity of D1/2 and because U−1 = U †. Therefore,

ρ = (UD1/2U−1)(UD1/2U−1)†

and

thus concluding our proof.

7.3 Characterisation of double-density matrices

Just as density matrices are the mathematical counterpart to mixed states, we define

double-density matrices to be the mathematical tool used to represent doubly mixed states,

where a doubly mixed state embodies a two-level probability distribution over an ensemble

of 1,2-pure states. By two-level probability distribution, we mean that there are two levels

of mixing, one corresponding to the first ancillary system, and one corresponding to the

second.
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The name of a density matrix is a state in CPM(C). We define a double-density matrix

to be a state in CPM2(C), with graphical representation:

or equivalently:

using the following isomorphism:

We define two transformations on a double-density matrix that enable us to recover two

density matrices. Density matrix-1 is the result of the following transformation:

and is the morphism ρ1 : A⊗ A∗ → A⊗ A∗ defined by:

(εC1 ⊗ 1A ⊗ 1A∗ ⊗ εC1) ◦ (1C∗1 ⊗ σA,C1 ⊗ εC∗2 ⊗ σC∗1 ,A∗ ⊗ 1C1) ◦ (1C∗1 ⊗ ϕ⊗ ϕ∗ ⊗ 1C1)

◦(1C∗1 ⊗ ϕ
† ⊗ ϕ∗ ⊗ 1C1) ◦ (1C∗1 ⊗ σC1,A ⊗ ηC∗2 ⊗ σA∗,C∗1 ⊗ 1C1) ◦ (ηC1 ⊗ 1A ⊗ 1∗A ⊗ ηC1)

(7.3)

where ϕ : I → A⊗ C1 ⊗ C2 is a tripartite state, or graphically as follows:
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Density matrix-1 can equivalently be represented by a morphism

(f ⊗ f∗) ◦ (1C∗1 ⊗ ηC2 ⊗ 1C1) ◦ (1C∗1 ⊗ εC2 ⊗ 1C1)⊗ (f † ⊗ f ∗) (7.4)

where f is a morphism with domain C∗1 ⊗ C∗2 and codomain A, or graphically:

Density matrix-2 is the result of the following transformation:

and is the morphism ρ2 : A∗ ⊗ A→ A∗ ⊗ A defined by:

(1A∗ ⊗ εC1 ⊗ 1A) ◦ (εC∗2 ⊗ σC∗1 ,A∗ ⊗ σA,C1 ⊗ εC∗2 ) ◦ (1C2 ⊗ ϕ∗ ⊗ ϕ⊗ 1C∗2 )

◦(1C2 ⊗ ϕ∗ ⊗ ϕ† ⊗ 1C∗2 ) ◦ (ηC∗2 ⊗ σA∗,C∗1 ⊗ σC1,A ⊗ ηC∗2 ) ◦ (1A∗ ⊗ ηC1 ⊗ 1A)
(7.5)

noindent where ϕ : I → A⊗ C1 ⊗ C2 is a tripartite state, or graphically as follows:

Density matrix-2 can equivalently be represented by a morphism

(f ⊗ f∗) ◦ (1C2 ⊗ ηC∗1 ⊗ 1C∗2 ) ◦ (1C2 ⊗ εC∗1 ⊗ 1C∗2 )⊗ (f † ⊗ f ∗) (7.6)

where f is a morphism with domain C∗1 ⊗ C∗2 and codomain A, or graphically:

67



Morphisms of the form (7.3) – equivalently (7.4) – and (7.5) – equivalently (7.6) – are

clearly density matrices. Therefore, they satisfy the conditions of hermiticity and positive-

semidefiniteness. We say that a double-density matrix is doubly-Hermitian and doubly-

positive-semidefinite. These two notions are defined below:

Definition 7.3.1. (double-hermiticity). A morphism ϕ : I → A ⊗ A∗ ⊗ A ⊗ A∗ is

doubly-Hermitian if the morphisms ϕ1 : A ⊗ A∗ → A ⊗ A∗, and ϕ2 : A∗ ⊗ A → A∗ ⊗ A,

where ϕ1 and ϕ2 are the result of applying transformations 1 and 2 on ϕ, are Hermitian.

Definition 7.3.2. (double-positive-semidefiniteness). A morphism ϕ : I → A ⊗
A∗ ⊗A⊗A∗ is doubly-positive-semidefinite if the morphisms ϕ1 : A⊗A∗ → A⊗A∗, and

ϕ2 : A∗⊗A→ A∗⊗A, where ϕ1 and ϕ2 are the result of applying transformations 1 and

2 on ϕ, are positive-semidefinite.

Density matrices-1 and -2 also satisfy another property: they are diagrammatically self-

conjugate. In fact,

Self-conjugation of density matrix-2 is shown similarly. Double-density matrices satisfy

the condition of double-self-conjugation, defined below:
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Definition 7.3.3. (double-self-conjugation). A morphism ϕ : I → A⊗ A∗ ⊗ A⊗ A∗

is doubly-self-conjugate if the morphisms ϕ1 : A ⊗ A∗ → A ⊗ A∗, and ϕ2 : A∗ ⊗ A →
A∗ ⊗ A, where ϕ1 and ϕ2 are the result of applying transformations 1 and 2 on ϕ, are

(diagrammatically) self-conjugate.

Let us now characterise the entries of density matrices-1 and -2. We consider a morphism

f : A ⊗ B → C ⊗ D, where A, B, C, and D are spanned by BA = {ai}i, BB = {bi}i,
BC = {ci}i, and BD = {di}i. For simplicity, we will assume that BA, BB, BC and BD have

cardinality n. The matrix corresponding to the morphism f is an n2 × n2 matrix with

entries: 

f 11
11 . . . f 1n

11 f 21
11 . . . f 2n

11 . . . fn1
11 . . . fnn11

...
. . .

...

f 11
1n

. . . fnn1n

f 11
21

. . . fnn21
...

. . .
...

f 11
2n

. . . fnn2n
...

. . .
...

f 11
n1

. . . fnnn1
...

. . .
...

f 11
nn . . . . . . . . . . . . . . . . . . . . . . . . fnnnn


where fklij is the entry in the ((i − 1)n + j)th row and ((k − 1)n + l)th column. In fact,

the algebraic representation of this matrix is
∑
i,j,k,l

fklij (ai ⊗ ck) ⊗ (bj ⊗ dl). Note that the

diagrammatic representation of fklij for f : A⊗ A∗ → A⊗ A∗ is given by:

Proposition 7.3.1. The entries of density matrices-1 and -2 satisfy

fklij = f ijkl fklij = f lkji

Proof. The first equality follows immediately from the hermiticity of density matrices-1

and 2. In fact:

69



The algebraic conjugate of a matrix A is the matrix whose entries are the conjugates of

entries in A. Therefore:

The equalities for density matrix-2 are proved similarly.

In this chapter, we explored density matrices even further, gave their graphical repre-

sentation as (7.1) – equivalently (7.2) –, and showed that morphisms of the form (7.1)

satisfy hermiticity and positive-semidefiniteness. We also showed that morphisms satisfy-

ing hermiticity and positive-semidefiniteness could be written as morphisms of the form

(7.1). We then introduced the notion of double-density matrices, quadripartite states

whose structure encloses two density matrices: density matrices-1 and -2. We defined

the properties satisfied by density matrices-1 and -2 and double-density matrices, and

characterised the entries of density matrices-1 and -2.

The next chapter details the role of double-density matrices in representing homonymous,

general words.
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Chapter 8

Introducing ambiguity and
entailment in formal semantics

This chapter investigates the algebraic structure of double-density matrices and gives a

detailed account of the way they model two features of language: ambiguity and entail-

ment. We demonstrate that double-density matrices conserve ambiguity and/or entail-

ment when context is lacking, and collapse gradually when more and more context is

provided. Furthermore, double-density matrices come equipped with two measures of en-

tropy: linguistically, one measures the level of ambiguity of the word, and the other one

the level of entailment.

8.1 Taking a closer look at homonymous, general words

As seen in the previous chapters, a homonymous – or simply ambiguous – general word

w is represented by a CP2 state or double-density matrix ρ(2)(w):

[10] gives an interpretation of the cap in terms of basis vectors of an orthonormal basis –

or ONB –: given a cap εA : A∗⊗A→ I over A, and {|i〉}i an orthonormal basis of A, the

cap is interpreted as
∑

i 〈i|∗ ⊗ 〈i|, where 〈i|∗ denotes the conjugate of 〈i|.

The caps in CP2 maps are of the form εA∗ : A ⊗ A∗ → I. Following the model of

[10], their interpretation is therefore
∑

i 〈i| ⊗ 〈i|∗, graphically:
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We interpret double-density matrices in terms of basis vectors of two ONBs, B1 and B2,

where B1 is an ONB for the first ancillary system C1, and B2 is an ONB for the second

ancillary system C2:

We notice that |i〉 and |j〉 are basis vectors of B1, and |k〉 and |l〉 are basis vectors of B2.

This means that indices i and j vary over the same interval I1, and indices k and l vary

over the same interval I2.

The algebraic representation of the above diagram is given by:

ρ(2)(w) =
∑
i,j∈I1
k,l∈I2

pi,kpj,kpj,lpi,l |ϕi,k〉 ⊗ |ϕj,k〉∗ ⊗ |ϕj,l〉 ⊗ |ϕi,l〉∗ (8.1)

where px,y is the probability term of |ϕx,y〉.

Let us now take another approach and adopt a linguistic point of view. We consider an

ambiguous, general word w, with N unambiguous meanings a1, a2, ..., aN . Let w entail M

words e1, e2, ..., eM . We will refer to these words as subsumed words.

To each unambiguous meaning ai corresponds a set Ei of subsumed words. We illustrate

this idea by the following example: let “Beirut” be an ambiguous, general word, with

unambiguous meanings “Beirut city” and “Beirut band”. The city of Beirut has different

neighbourhoods n1, n2, ... ,nα, and the band Beirut has band members m1,m2, ...,mβ.

The set {n1, n2, ..., nα,m1,m2, ...,mβ} is the set of words subsumed by “Beirut”, and the

subsets {n1, n2, ... ,nα} and {m1,m2, ...,mβ} correspond respectively to unambiguous

meanings “Beirut city” and “Beirut band”.

To formalise this idea:

to unambiguous meaning a1 corresponds the set {e1,1, e1,2, ..., e1,α} = E1,

to unambiguous meaning a2 corresponds the set {e2,1, e2,2, ..., e2,β} = E2,

.

.

.

to unambiguous meaning aN corresponds the set {eN,1, eN,2, ..., eN,ω} = EN .

The disjoint union of the sets Ei’s is equal to the set of all subsumed words {e1, e2, ..., eM}.
Note that a subsumed word belongs to exactly one of the Ei’s.
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The words {ai}i serve as “dummy words” and do not correspond to vectors in the noun

space. The words {ex,y}, however, do correspond to vectors in the noun space, and the

indices x and y respectively account for ambiguity and entailment. It is clear that x varies

over the set {1, 2, ..., N}, but the interval over which y varies is not as obvious. Looking

back at expression (8.1), each |ϕx,y〉 corresponds to subsumed word ex,y, indices i and j

account for ambiguity, and indices k and l account for entailment. Therefore, x varies over

I1 = {1, 2, ..., N}, and y varies over I2. In order for all subsumed words to be taken into

account in the expression of w, y has to vary over the interval I2 = {1, 2, ...max}, where

max denotes the maximum of {α, β, ..., ω}, or in other words, the maximal cardinality of

the Ei’s.

This definition of I2 poses a new challenge: if there exists a set Ex of cardinality less

than max, the algebraic representation of w will have vectors |ϕx,t〉, where t is greater

than the cardinality of Ex, and hence |ϕx,t〉 will not correspond to any of the words

subsumed by w. Let us illustrate this with an example: let w have two unambiguous

meanings, and let E1 = {e1,1, e1,2}, E2 = {e2,1, e2,2, e2,3}. The algebraic representation of

w has a vector |ϕ1,3〉 that does not represent any of the words subsumed by w.

One way of dealing with this problem is the following: every set Ex = {ex,1, ex,2, ..., ex,v},
where the cardinality v is less than max, is extended to {ex,1, ex,2, ..., ex,v, ex,v+1, ..., ex,max},
where the words ex,v+1, ..., ex,max are repetitions of some of the words in {ex,1, ex,2, ..., ex,v}.
It is important to note that the addition of these words should preserve original proba-

bility distributions. In our earlier example, we extend E1 to include a word e1,3 which is

a repetition of e1,1. e1,1 occurs originally with probability p1,1, we could set p1,3 and the

new value of p1,1 to half its original value. In the examples I give below, I will consider

simple cases where the cardinalities of the Ei’s are originally all the same.

Note: This is not the only solution to this problem, but we leave this for future work.

Two types of sums. Two different levels of mixing occur in a double-density ma-

trix: one accounts for ambiguity, and one for entailment.

In order to better illustrate this point, I accompany the explanation with the following

example: consider the ambiguous, general word w =“Beirut”, with unambiguous mean-

ings a1 =“Beirut city” and a2 =“Beirut band”. The city of Beirut has neighbourhoods

e1,1 =“Ashrafieh”, that we will denote by “A”, and e1,2 =“Monot”, that we will denote

by “M”, while the band has members e2,1 =“Zach”, denoted by “Z”, and e2,2 =“Paul”,
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denoted by “P”. The algebraic representation of “Beirut” has 16 terms, listed in the table

below. Note that the dirac notation and tensors are assumed for clarity:

i = 1

j = 1
k = 1

l = 1 AA∗AA∗
l = 2 AA∗MM∗

k = 2
l = 1 MM∗AA∗
l = 2 MM∗MM∗

j = 2
k = 1

l = 1 AZ∗ZA∗
l = 2 AZ∗PM∗

k = 2
l = 1 MP∗ZA∗
l = 2 MP∗PM∗

i = 2

j = 1
k = 1

l = 1 ZA∗AZ∗
l = 2 ZA∗MP∗

k = 2
l = 1 PM∗AZ∗
l = 2 PM∗MP∗

j = 2
k = 1

l = 1 ZZ∗ZZ∗
l = 2 ZZ∗PP∗

k = 2
l = 1 PP∗ZZ∗
l = 2 PP∗PP∗

The terms in this table come from two levels of mixing: in fact, let us consider the

representation of the double-density matrix where the caps over C1 are represented by a

sum over basis vectors:

Notice that this representation is equivalent to:

Each bipartite state |ϕi,j〉 is of the form

|αi,1〉 ⊗ |βj,1〉∗ + |αi,2〉 ⊗ |βj,2〉∗ + ...+ |αi,M〉 ⊗ |βj,M〉∗

and every term |ϕi,j〉 ⊗ |ϕi,j〉∗ is of the form

(|αi,1〉 ⊗ |βj,1〉∗ + |αi,2〉 ⊗ |βj,2〉∗ + ...+ |αi,M〉 ⊗ |βj,M〉∗)

⊗(|βj,1〉 ⊗ |αi,1〉∗ + |βj,2〉 ⊗ |αi,2〉∗ + ...+ |βj,M〉 ⊗ |αi,M〉∗)

Here, the summation inside the parentheses corresponds to entailment mixing, because

the second ancillary system models entailment. The outer summation over indices i and

j corresponds to ambiguity mixing, because the first ancillary system models ambiguity.

In order to illustrate these two levels of mixing, let us go back to our example:
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• for i=1, j=1, |ϕ1,1〉⊗|ϕ1,1〉∗ = (AA∗+MM∗)(AA∗+MM∗) = AA∗AA∗+AA∗MM∗+

MM∗AA∗ +MM∗MM∗

• for i=1, j=2, |ϕ1,2〉⊗ |ϕ1,2〉∗ = (AZ∗+MP∗)(ZA∗+PM∗) = AZ∗ZA∗+AZ∗PM∗+

MP∗ZA∗ +MP∗PM∗

• for i=2, j=1, |ϕ2,1〉⊗ |ϕ2,1〉∗ = (ZA∗+PM∗)(AZ∗+MP∗) = ZA∗AZ∗+ZA∗PM∗+

PM∗AZ∗ + PM∗MP∗

• for i=2, j=2, |ϕ2,2〉 ⊗ |ϕ2,2〉∗ = (ZZ∗ + PP∗)(ZZ∗ + PP∗) = ZZ∗ZZ∗ + ZZ∗PP∗ +

PP∗ZZ∗ + PP∗PP∗

At this stage, the “+” between the parentheses denotes entailment mixing. Adding all

of these terms together – i.e. adding ambiguity mixing –, we recover the 16 terms in the

table above.

Another approach to this two-level mixing is to swap the levels, and consider the dia-

gram where the caps over C2 are represented by a sum over basis vectors:

By dragging the first component to the far right, we obtain:

The same analysis can now be carried out. Here, the “+” inside the parentheses will

correspond to ambiguity mixing, and the outer summation corresponds to entailment

mixing. Note that after computing all the terms, the last component in each should be

returned to the first position, in order to retrieve the correct order. This shows that the

order of mixing does not matter: whether we perform entailment mixing first or

second, the representation of w remains unchanged.
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8.2 An application

The examples in this chapter will deal with the sentence space S = {⊥,>}, where ⊥
stands for “false” and > for “true”. This means that, as in Montague semantics, the

meaning of a sentence boils down to its truth value.

In Rel, the meaning of a sentence can be either |⊥〉, |>〉, or |⊥〉+ |>〉, where the super-

position of |⊥〉 and |>〉 stems from lack of sufficient context. We recall that Rel is the

†-compact-closed category with the class of sets as objects, binary relations R ⊆ X × Y
as morphisms X → Y , and relational composition as composition of morphisms. The

tensor product is given by the Cartesian product of sets/relations, the tensor unit by the

singleton set {?}, and the dagger is defined by R† := {(y, x) | (x, y) ∈ R} [20].

[35] presents a toy model of linguistic ambiguity in CPM(Rel), thereby adding a dimen-

sion interpreted as ambiguity. A sentence in CPM(Rel) can take four possible values:

|⊥〉⊗ |⊥〉, |>〉⊗ |>〉, (|⊥〉+ |>〉)⊗ (|⊥〉+ |>〉), and |⊥〉⊗ |⊥〉+ |>〉⊗ |>〉. Here, the first

three states correspond to pure states, and the fourth one is a mixed state, representing

ambiguity. Note that there are five states in CPM(Rel), the fifth one being ∅, which

also corresponds to a pure state.

In the examples below, I introduce yet another dimension, that of entailment. This

requires us to work in the category CPM2(Rel).

8.2.1 States in CPM2(Rel)

In [31], Marsden provides a graph theoretic perspective of CPM(Rel) and devises a way

to characterise the states of CPM(Rel). Building on this approach, Cunningham [15]

devised a four-step way of characterising the states of CPM2(Rel) diagrammatically:

76



Algorithm for the diagrammatic characterisation of the states of CPM2(Rel):

Starting with a set S, we built a graph G corresponding to a state of CPM2(Rel)
as follows:

1. Select a subset of the elements of S to be vertices of G

2. Out of the set of possible edges, select a subset of edges between the different vertices
and label them as blue edges. All self-edges (edges from a vertex to itself), must be
selected.

3. Out of the set of possible edges, select a subset of edges between the different vertices
and label them as red edges. All self-edges must be selected.

4. Out of the set of possible alternating squares (cycles of four edges of alternating
colours), select a subset of squares and label them as purple squares. All self-squares,
i.e. alternating squares whose two blue edges are the same or whose two red edges are
the same), must be selected.

In order to find the corresponding state in CPM2(Rel), we follow this nomenclature

process: for every alternating square in G:

• Pick one of the red edges to be the starting edge

• Pick a direction – clockwise or counterclockwise: every edge of the alternating square

in now a directed edge (h, t), where h is the head of the edge, and t its tail.

• Go through each of the four edges in the direction chosen, naming the head of every

edge. The result is an ordered quadruple of vertices.

Note 1: An alternating square can have more than one description: the nomenclature

process can start with any one of the red edges, and can alternate through edges either

clockwise or counterclockwise (G is an undirected graph). All possible descriptions of

every alternating square in G make up the state in CPM2(Rel) that G corresponds to.

Note 2: An ordered quadruple (A,B,C,D) corresponds to |A〉 ⊗ |B〉 ⊗ |C〉 ⊗ |D〉 in

CPM2(Rel). For simplicity, the bra, ket, and tensor notations will be assumed, and we

write ABCD.

We now apply this technique to find the graphs corresponding to the different states of

CPM2(Rel). Starting with a set S = {⊥,>}, step 1 of the algorithm leads to three

possible cases:

- G has no vertices: G is the empty diagram, and corresponds to the empty state ∅.
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- G has one vertex: this case has two subcases:

• The following diagram, corresponding to the state ⊥⊥⊥⊥:

• The following diagram, corresponding to the state >>>>:

Note that all edges are self-edges, and all alternating squares are self-squares.

- G has two vertices: the application of steps 2 and 3 of the algorithm leads to three

subcases:

• No edges other than self-edges are labelled. This is represented by the following

diagram and corresponds to the state ⊥⊥⊥⊥+>>>>:

Here, all alternating squares are self-squares.

• One “non-self” edge is labelled red. This is represented by the following diagram

and corresponds to the state ⊥⊥⊥⊥+>>>>+⊥>>⊥+>⊥⊥>:

Here also, all alternating squares are self-squares.

• One “non-self” edge is labelled blue. This is represented by the following dia-

gram and corresponds to the state ⊥⊥⊥⊥+>>>>+⊥⊥>>+>>⊥⊥:
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As in the previous cases, all alternating squares are self-squares.

• One “non-self” edge is labelled red and another one blue. This case has four

self-squares, shown independently below

and corresponding respectively to states ⊥⊥⊥⊥, >>>>, ⊥>>⊥ + >⊥⊥>,

and ⊥⊥>>+>>⊥⊥. These self-squares will be assumed in the following di-

agrams and will not be represented, for the sake of clarity.

There are three alternating squares that are not self-squares. This subcase

has therefore 23 = 8 subsubcases :

• The diagram below, corresponding to the state ⊥⊥⊥⊥+>>>>+⊥>>⊥+

>⊥⊥>+⊥⊥>>+>>⊥⊥:

• The diagram below, corresponding to the state ⊥⊥⊥⊥+>>>>+⊥>>⊥+

>⊥⊥>+⊥⊥>>+>>⊥⊥+⊥>⊥>+>⊥>⊥:

• The diagram below, corresponding to the state ⊥⊥⊥⊥+>>>>+⊥>>⊥+

>⊥⊥>+⊥⊥>>+>>⊥⊥+⊥⊥⊥>+⊥⊥>⊥+⊥>⊥⊥+>⊥⊥⊥:
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• The diagram below, corresponding to the state ⊥⊥⊥⊥+>>>>+⊥>>⊥+

>⊥⊥>+⊥⊥>>+>>⊥⊥+⊥>>>+>⊥>>+>>⊥>+>>>⊥:

• The diagram below, corresponding to the state ⊥⊥⊥⊥+>>>>+⊥>>⊥+

>⊥⊥>+⊥⊥>>+>>⊥⊥+⊥>⊥>+>⊥>⊥+⊥⊥⊥>+⊥⊥>⊥+⊥>⊥⊥+

>⊥⊥⊥:

• The diagram below, corresponding to the state ⊥⊥⊥⊥+>>>>+⊥>>⊥+

>⊥⊥>+⊥⊥>>+>>⊥⊥+⊥>⊥>+>⊥>⊥+⊥>>>+>⊥>>+>>⊥>+

>>>⊥:

• The diagram below, corresponding to the state ⊥⊥⊥⊥+>>>>+⊥>>⊥+

>⊥⊥>+⊥⊥>>+>>⊥⊥+⊥⊥⊥>+⊥⊥>⊥+⊥>⊥⊥+>⊥⊥⊥+⊥>>>+

>⊥>>+>>⊥>+>>>⊥:

• The diagram below, corresponding to the state ⊥⊥⊥⊥+>>>>+⊥>>⊥+

>⊥⊥>+⊥⊥>>+>>⊥⊥+⊥>⊥>+>⊥>⊥+⊥⊥⊥>+⊥⊥>⊥+⊥>⊥⊥+

>⊥⊥⊥+⊥>>>+>⊥>>+>>⊥>+>>>⊥:
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States of CPM2(Rel) are summarised in the table below. We will look at the linguistic

interpretation of some of these states in our examples.

State Description
1 ∅
2 ⊥⊥⊥⊥
3 >>>>
4 ⊥⊥⊥⊥+>>>>
5 ⊥⊥⊥⊥+>>>>+⊥>>⊥+>⊥⊥>
6 ⊥⊥⊥⊥+>>>>+⊥⊥>>+>>⊥⊥
7 ⊥⊥⊥⊥+>>>>+⊥>>⊥+>⊥⊥>+⊥⊥>>+>>⊥⊥
8 ⊥⊥⊥⊥+>>>>+⊥>>⊥+>⊥⊥>+⊥⊥>>+>>⊥⊥+⊥>⊥>+>⊥>⊥
9 ⊥⊥⊥⊥ + >>>> + ⊥>>⊥ + >⊥⊥> + ⊥⊥>> + >>⊥⊥ + ⊥⊥⊥> + ⊥⊥>⊥ +

⊥>⊥⊥+>⊥⊥⊥
10 ⊥⊥⊥⊥ + >>>> + ⊥>>⊥ + >⊥⊥> + ⊥⊥>> + >>⊥⊥ + ⊥>>> + >⊥>> +

>>⊥>+>>>⊥
11 ⊥⊥⊥⊥ + >>>> + ⊥>>⊥ + >⊥⊥> + ⊥⊥>> + >>⊥⊥ + ⊥>⊥> + >⊥>⊥ +

⊥⊥⊥>+⊥⊥>⊥+⊥>⊥⊥+>⊥⊥⊥
12 ⊥⊥⊥⊥ + >>>> + ⊥>>⊥ + >⊥⊥> + ⊥⊥>> + >>⊥⊥ + ⊥>⊥> + >⊥>⊥ +

⊥>>>+>⊥>>+>>⊥>+>>>⊥
13 ⊥⊥⊥⊥ + >>>> + ⊥>>⊥ + >⊥⊥> + ⊥⊥>> + >>⊥⊥ + ⊥⊥⊥> + ⊥⊥>⊥ +

⊥>⊥⊥+>⊥⊥⊥+⊥>>>+>⊥>>+>>⊥>+>>>⊥
14 ⊥⊥⊥⊥ + >>>> + ⊥>>⊥ + >⊥⊥> + ⊥⊥>> + >>⊥⊥ + ⊥>⊥> + >⊥>⊥ +

⊥⊥⊥>+⊥⊥>⊥+⊥>⊥⊥+>⊥⊥⊥+⊥>>>+>⊥>>+>>⊥>+>>>⊥

8.2.2 A practical example

In all concrete applications, the distributional model space obtained from real world data

is a real vector space. Therefore, all vectors in the noun space have real entries, and

a vector |v〉 is equal to its conjugate |v〉∗. In what follows, we will drop the lower star

notation.

We will consider the ambiguous, general word “Beirut”, with unambiguous meanings

“Beirut city” and “Beirut band”, each with respective set of subsumed words {Ashrafieh,

Monot} and {Zach, Paul}. As earlier, we will denote “Ashrafieh”, “Monot”, “Zach” and

“Paul” by A, M , Z, and P . Our examples will also involve the noun phrases “Lebanese

national day”, “top single”, and “Zach’s birthday”, which we will denote by L, S, and B.
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Notice that the vectors corresponding to L, S, and B live in the noun space. In fact,

by grammatical reductions, we can show that the grammatical type of each of these noun

phrases is n. We give here one example: in the English language, the grammatical type

of an adjective is given by nnl. The noun phrase “Lebanese national day” has type

(nnl)(nnl)n, which reduces as follows:

(nnl)(nnl)n→ n(nln)(nln)→ n

For the purposes of this example, we will take all subsumed words, as well as L, S, and B

to be our set of context words. The set {A,M,Z, P, L, S,B} forms an ONB. The words

A, M , Z, P , L, S, and B are unambiguous, non-general words, and are represented by

1,2-pure states in CPM2(FHilb). Therefore:

ρ(2)(A) = |A〉 ⊗ |A〉 ⊗ |A〉 ⊗ |A〉

which we will denote also by |AAAA〉 or |A〉⊗
4

. The others are defined similarly.

The representation of “Beirut” was derived in the previous section. Recall that:

ρ(2)(Beirut) = |AAAA〉+ |AAMM〉+ |MMAA〉+ |MMMM〉

+ |AZZA〉+ |AZPM〉+ |MPZA〉+ |MPPM〉

+ |ZAAZ〉+ |ZAMP 〉+ |PMAZ〉+ |PMMP 〉

+ |ZZZZ〉+ |ZZPP 〉+ |PPZZ〉+ |PPPP 〉

So ρ(2)(Beirut) is of the form
∑

m c
b
m |b1

mb
2
mb

3
mb

4
m〉. Notice that there are no probability

terms in the above derivation. This is because, for the purposes of the examples of this

section, it is only important for us to know whether a term is present in the expression of

a homonymous, general word or not. The probability terms are superfluous and are there-

fore omitted. In the next section, which deals with measuring the level of ambiguity and

generality of a word, these terms will play an important role, and we will define them then.

At this point, we introduce a basic yet intuitive measure of entailment: a word w1 is

subsumed by a word w2 if ρ(2)(w1) is contained in the expression of ρ(2)(w2). Building on

this measure, we can clearly see that A, M , Z, and P are subsumed by “Beirut”, since

|A〉⊗
4

, |M〉⊗
4

, |Z〉⊗
4

, and |P 〉⊗
4

appear in the expression of ρ(2)(Beirut). A more precise

measure of entailment is given in the next section.

We now define the three verbs we will use in our examples: the transitive verbs cele-

brate and play-in are of the form∑
i,j,k

cijk |subjecti〉 ⊗ |xj〉 ⊗ |objectk〉
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where |x〉 ∈ {|⊥〉 , |>〉}, and are defined by:

|celebrate〉 = |A〉 ⊗ |>〉 ⊗ |L〉+ |M〉 ⊗ |>〉 ⊗ |L〉+ |Z〉 ⊗ |>〉 ⊗ |B〉

+ |P 〉 ⊗ |>〉 ⊗ |B〉+ |Z〉 ⊗ |⊥〉 ⊗ |S〉+ |P 〉 ⊗ |⊥〉 ⊗ |S〉

|play-in〉 = |Z〉 ⊗ |>〉 ⊗ |A〉+ |P 〉 ⊗ |>〉 ⊗ |A〉

The intransitive verb perform is of the form∑
i,j

cij |subjecti〉 ⊗ |xj〉

where |x〉 ∈ {|⊥〉 , |>〉}, and is defined by:

|perform〉 = |Z〉 ⊗ |>〉+ |P 〉 ⊗ |>〉

Since these verbs are unambiguous and non-general, their double-density matrix rep-

resentation is computed in a way similar to that of unambiguous, non-general nouns. We

show here the computation of ρ(2)(play-in). The ket and tensor notations are assumed for

in the middle steps for clarity.

ρ(2)(play-in) =(Z>A+ P>A)(Z>A+ P>A)(Z>A+ P>A)(Z>A+ P>A)

=(ZZ>>AA+ ZP>>AA+ PZ>>AA+ PP>>AA)

(ZZ>>AA+ ZP>>AA+ PZ>>AA+ PP>>AA)

= |ZZZZ〉 ⊗ |>〉⊗
4

⊗ |A〉⊗
4

+ |ZZZP 〉 ⊗ |>〉⊗
4

⊗ |A〉⊗
4

+ |ZZPZ〉 ⊗ |>〉⊗
4

⊗ |A〉⊗
4

+ |ZZPP 〉 ⊗ |>〉⊗
4

⊗ |A〉⊗
4

+ |ZPZZ〉 ⊗ |>〉⊗
4

⊗ |A〉⊗
4

+ |ZPZP 〉 ⊗ |>〉⊗
4

⊗ |A〉⊗
4

+ |ZPPZ〉 ⊗ |>〉⊗
4

⊗ |A〉⊗
4

+ |ZPPP 〉 ⊗ |>〉⊗
4

⊗ |A〉⊗
4

+ |PZZZ〉 ⊗ |>〉⊗
4

⊗ |A〉⊗
4

+ |PZZP 〉 ⊗ |>〉⊗
4

⊗ |A〉⊗
4

+ |PZPZ〉 ⊗ |>〉⊗
4

⊗ |A〉⊗
4

+ |PZPP 〉 ⊗ |>〉⊗
4

⊗ |A〉⊗
4

+ |PPZZ〉 ⊗ |>〉⊗
4

⊗ |A〉⊗
4

+ |PPZP 〉 ⊗ |>〉⊗
4

⊗ |A〉⊗
4

+ |PPPZ〉 ⊗ |>〉⊗
4

⊗ |A〉⊗
4

+ |PPPP 〉 ⊗ |>〉⊗
4

⊗ |A〉⊗
4

This corresponds graphically to:
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So the double-density matrix of a transitive verb has the form∑
i,j,k

cijk |s1
i s

2
i s

3
i s

4
i 〉 ⊗ |x1

jx
2
jx

3
jx

4
j〉 ⊗ |o1

ko
2
ko

3
ko

4
k〉

ρ(2)(celebrate) and ρ(2)(perform) are computed similarly. In what follows, we will explain

thoroughly how the meaning of the sentences is computed, but we will not explicitly show

all the terms involved. The word ρ(2)(celebrate), for example, is composed of 1296 terms.

Let us now demonstrate that our framework accommodates indeed for both ambiguity

and entailment relationships:

“Beirut celebrates”. In this sentence, the word “Beirut” is still ambiguous, and all

the neighbourhoods and the band members remain subsumed. Based on the definition of

celebrate, we expect this sentence to be neither true nor false, but to be tending towards

being true. Let us verify that all of the above expectations are satisfied by our model.

Here, the ι map deletes the object of celebrate. The meaning of this sentence is given by:

(εCPM2
N
⊗ 1CPM2

S
⊗ ιCPM2

N
)(ρ(2)(Beirut)⊗ ρ(2)(celebrate))

where the maps in CPM2(C) work as defined in Chapter 6. We unfold the CPM2

representation of the sentence in order to better visualise the interactions between the

different components.
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The ι map, as explained before, deletes the third component of ρ(2)(celebrate). “Beirut”

and the subject component of celebrate interact via the ε map: the ε map takes the inner

product of ρ(2)(Beirut) and the first component of ρ(2)(celebrate). This effectively picks

out the components of ρ(2)(celebrate) and outputs terms of the form |x1〉⊗|x2〉⊗|x3〉⊗|x4〉,
where |x1〉 , |x2〉 , |x3〉 , |x4〉 ∈ {|⊥〉 , |>〉} . To formalise this:

(εCPM2
N
⊗ 1CPM2

S
⊗ ιCPM2

N
)(ρ(2)(Beirut)⊗ ρ(2)(celebrate))

=(εCPM2
N
⊗ 1CPM2

S
⊗ ιCPM2

N
)(
∑
m

cbm |b1
mb

2
mb

3
mb

4
m〉 ⊗

∑
i,j,k

cijk |s1
i s

2
i s

3
i s

4
i 〉 ⊗ |x1

jx
2
jx

3
jx

4
j〉 ⊗ |o1

ko
2
ko

3
ko

4
k〉)

=
∑
m,i,j,k

cbmcijkεCPM2
N

(|b1
mb

2
mb

3
mb

4
m〉 ⊗ |s1

i s
2
i s

3
i s

4
i 〉)⊗ 1CPM2

S
(|x1

jx
2
jx

3
jx

4
j〉)⊗ ιCPM2

N
(|o1

ko
2
ko

3
ko

4
k〉)

=
∑
m,i,j,k

cbmcijk 〈b1
m|s1

i 〉 〈b2
m|s2

i 〉 〈b3
m|s3

i 〉 〈b4
m|s4

i 〉 (|x1
j〉 ⊗ |x2

j〉 ⊗ |x3
j〉 ⊗ |x4

j〉)

=
∑
m,i,j,k

cbmcijk 〈b1
mb

2
mb

3
mb

4
m|s1

i s
2
i s

3
i s

4
i 〉 (|x1

jx
2
jx

3
jx

4
j〉)

We now give the meaning of the sentence “Beirut celebrates”. The ket and tensor nota-

tions are assumed, for clarity.

(εCPM2
N
⊗ 1CPM2

S
⊗ ιCPM2

N
)(ρ(2)(Beirut)⊗ ρ(2)(celebrate))

=(〈AAAA|AAAA〉+ 〈AAMM |AAMM〉+ 〈MMAA|MMAA〉+ 〈MMMM |MMMM〉)>⊗4

+(〈ZAAZ|ZAAZ〉+ 〈ZAMP |ZAMP 〉+ 〈PMAZ|PMAZ〉+ 〈PMMP |PMMP 〉)

(>+⊥)>>(>+⊥)

+(〈AZZA|AZZA〉+ 〈AZPM |AZPM〉+ 〈MPZA|MPZA〉+ 〈MPPM |MPPM〉)

>(>+⊥)(>+⊥)>

+(〈ZZZZ|ZZZZ〉+ 〈ZZPP |ZZPP 〉+ 〈PPZZ|PPZZ〉+ 〈PPPP |PPPP 〉)

(>+⊥)(>+⊥)(>+⊥)(>+⊥)

=4(>⊗4

+ (>+⊥)>>(>+⊥) +>(>+⊥)(>+⊥)>+ (>+⊥)(>+⊥)(>+⊥)(>+⊥))
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The middle step in this derivation shows clearly the impact of each of the components

of “Beirut” in the meaning of this sentence, which indicates that “Beirut” conserved its

ambiguity. It is also clear from this middle step that all the words subsumed by “Beirut”

had an impact in the meaning of this sentence. Finally, the meaning of the sentence

is neither true nor false, but we can see that it is dominantly true. This confirms our

expectations.

“Beirut celebrates Lebanese national day”. In this sentence, the meaning of “Beirut”

is completely disambiguated and subsumes both neighbourhoods. Furthermore, based on

the way celebrate is defined, this sentence is true. Let us verify that our expectations are

satisfied:

When we unfold the CPM2 representation of this diagram, we get:

The meaning of this sentence is given by:

(εCPM2
N
⊗ 1CPM2

S
⊗ εCPM2

N
)(ρ(2)(Beirut)⊗ ρ(2)(celebrate)⊗ ρ(2)(Lebanese national day))

=(εCPM2
N
⊗ 1CPM2

S
⊗ ιCPM2

N
)(
∑
m

cbm |b1
mb

2
mb

3
mb

4
m〉 ⊗

∑
i,j,k

cijk |s1
i s

2
i s

3
i s

4
i 〉 ⊗ |x1

jx
2
jx

3
jx

4
j〉 ⊗ |o1

ko
2
ko

3
ko

4
k〉

⊗ |LLLL〉)

=
∑
m,i,j,k

cbmcijkεCPM2
N

(|b1
mb

2
mb

3
mb

4
m〉 ⊗ |s1

i s
2
i s

3
i s

4
i 〉)⊗ 1CPM2

S
(|x1

jx
2
jx

3
jx

4
j〉)⊗ εCPM2

N
(|o1

ko
2
ko

3
ko

4
k〉 ⊗ |LLLL〉)

=
∑
m,i,j,k

cbmcijk 〈b1
m|s1

i 〉 〈b2
m|s2

i 〉 〈b3
m|s3

i 〉 〈b4
m|s4

i 〉 〈o1
k|L〉 〈o2

k|L〉 〈o3
k|L〉 〈o4

k|L〉 (|x1
j〉 ⊗ |x2

j〉 ⊗ |x3
j〉 ⊗ |x4

j〉)

=
∑
m,i,j,k

cbmcijk 〈b1
mb

2
mb

3
mb

4
m|s1

i s
2
i s

3
i s

4
i 〉 〈o1

ko
2
ko

3
ko

4
k|LLLL〉 (|x1

jx
2
jx

3
jx

4
j〉)
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Explicitly:

(εCPM2
N
⊗ 1CPM2

S
⊗ εCPM2

N
)(ρ(2)(Beirut)⊗ ρ(2)(celebrate)⊗ ρ(2)(Lebanese national day))

=(〈AAAA|AAAA〉+ 〈AAMM |AAMM〉+ 〈MMAA|MMAA〉+ 〈MMMM |MMMM〉)

>⊗4 〈LLLL|LLLL〉

=4>⊗4

The derivation shows clearly that the only terms that impact the meaning of this sen-

tence are the ones related to the city of Beirut, and that all neighbourhoods of Beirut are

represented in this sentence. Furthermore, this sentence is true, as expected.

“Beirut that performs”. We expect this noun phrase to completely disambiguate

the meaning of Beirut, while still subsuming all members.

The meaning of this noun phrase is given by the following derivation:

(∆CPM2
N
⊗ ιCPM2

S
)(ρ(2)(Beirut)⊗ ρ(2)(perform))

=(∆CPM2
N
⊗ ιCPM2

S
)(
∑
m

cbm |b1
mb

2
mb

3
mb

4
m〉 ⊗

∑
i,j

cij |s1
i s

2
i s

3
i s

4
i 〉 ⊗ |x1

jx
2
jx

3
jx

4
j〉

=
∑
m,i,j

cbmcij∆CPM2
N

(|b1
mb

2
mb

3
mb

4
m〉 ⊗ |s1

i s
2
i s

3
i s

4
i 〉)⊗ ιCPM2

S
(|x1

jx
2
jx

3
jx

4
j〉)

=
∑
m,i,j

cbmcijδ
1
imδ

2
imδ

3
imδ

4
im |s1

i 〉 ⊗ |s2
i 〉 ⊗ |s3

i 〉 ⊗ |s4
i 〉

=
∑
i,j

cbicij |s1
i s

2
i s

3
i s

4
i 〉

The meaning of “Beirut that performs” is therefore:

(∆CPM2
N
⊗ ιCPM2

S
)(ρ(2)(Beirut)⊗ ρ(2)(perform)) = ZZZZ + ZZPP + PPZZ + PPPP

This clearly shows that “Beirut that performs” disambiguates the meaning of “Beirut”

and subsumes all members.

“Beirut that performs celebrates”. We expect this sentence to disambiguate the

meaning of “Beirut”, but to neither be true nor false according to the definition of cele-

brate, since the band celebrates Zach’s birthday but not winning “top single”.
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We treat this as an intransitive sentence with subject “Beirut that performs”. The deriva-

tion for the meaning of this sentence is similar to the derivation for “Beirut celebrates”,

and the meaning of “Beirut that performs celebrate” is given by:

(〈ZZZZ|ZZZZ〉+ 〈ZZPP |ZZPP 〉+ 〈PPZZ|PPZZ〉+ 〈PPPP |PPPP 〉)

(>+⊥)(>+⊥)(>+⊥)(>+⊥)

=4(>+⊥)(>+⊥)(>+⊥)(>+⊥)

We see clearly that the only terms that impact the meaning of the sentence are the terms

representing the members, and the resulting sentence is neither true nor false. We can

say that this sentence is unambiguously true and false.

“Beirut plays in Beirut”. In this sentence, the first occurrence of “Beirut” refers

to the band and subsumes all band members, and the second occurrence of “Beirut”

refers to the city, and subsumes only “Ashrafieh”, since the band cannot play in two

places at the same time.

The derivation for the meaning of this sentence works like the one for “Beirut celebrates

Lebanese national day”. Explicitly:

(εCPM2
N
⊗ 1CPM2

S
⊗ εCPM2

N
)(ρ(2)(Beirut)⊗ ρ(2)(play-in)⊗ ρ(2)(Beirut))

=(〈ZZZZ|ZZZZ〉+ 〈ZZPP |ZZPP 〉+ 〈PPZZ|PPZZ〉+ 〈PPPP |PPPP 〉)

>⊗4 〈AAAA|AAAA〉

=4>⊗4

The middle step of this computation shows clearly that the terms related to the band mem-

bers interact with the subject component of play-in, and that neighbourhood “Ashrafieh”

interacts with the object component of the verb.

Note: One could compute the meaning of the noun phrases “Beirut who plays in Beirut”

and “Beirut that Beirut plays in” to recover respectively only the terms related to the

band members and only the term representing Ashrafieh.
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“Zach performs” versus “Beirut performs”. This example will enable us to better

see the subsumption relationships. To make this more interesting, we redefine perform to

be:

|perform〉 = |Z〉 ⊗ |>〉+ |P 〉 ⊗ (
1

2
|>〉+

1

2
|⊥〉)

This means that Zach performs all the time, and Paul performs half of the time.

When we compute the meaning of “Zach performs” using the methods described above,

we obtain 〈ZZZZ|ZZZZ〉>⊗4
= >⊗4

. This means that it is always true that Zach per-

forms, as expected by the definition of perform.

The computation of “Beirut performs” yields

〈ZZZZ|ZZZZ〉>⊗4

+ 〈ZZPP |ZZPP 〉>>(
1

2
>+

1

2
⊥)(

1

2
>+

1

2
⊥)

+ 〈PPZZ|PPZZ〉 (1

2
>+

1

2
⊥)(

1

2
>+

1

2
⊥)>>

+ 〈PPPP |PPPP 〉 (1

2
>+

1

2
⊥)(

1

2
>+

1

2
⊥)(

1

2
>+

1

2
⊥)(

1

2
>+

1

2
⊥)

which suggests that it is not always true that all members of the band perform all the

time, as expected.

8.3 Measuring ambiguity and entailment

In this section, we provide a measure of the levels of ambiguity and entailment of a word.

Recall from the previous chapter that the structure of a double-density matrix ρ(2) encloses

two density matrices: applying transformation-1 to:

yields density matrix-1:
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Recall that C1 is the ancillary system which results from the first application of the

CPM-construction, and that the first application of the CPM-construction is the one that

accounts for ambiguity.

Applying transformation-2 to the double-density matrix yields density matrix-2:

Recall that C2 is the ancillary system which results from the second application of the

CPM-construction, and that the second application of the CPM-construction is the one

that accounts for entailment.

Density matrices come equipped with a measure of entropy, or in other words, a measure

of mixedness. In linguistic terms, density matrix-1 is equipped with a measure of ambi-

guity, and density matrix-2 is equipped with a measure of entailment. This measure is

the von Neumann entropy.

Definition 8.3.1. (Von Neumann entropy). [43] Given a density operator ρ, define

the von Neumann entropy S(ρ) of ρ by

S(ρ) = −tr(ρ log(ρ))

or, given the spectral decomposition of ρ as λi |i〉 〈i|, by

S(ρ) = −
∑
i

λi log(λi)

Note that the logarithm in the above definition is typically taken to be base 2, and we

use the conventions 0 log 0 = 0 and x log 0 = −∞ for x > 0.

The von Neumann entropy S(ρ) is equal to 0 if and only if ρ is pure, and it is maximal and

equal to logD for a maximally mixed state, where D is the dimension of the Hilbert space.

Let us now compute the levels of ambiguity and entailment of “Beirut”. For the pur-

poses of this example, we can restrict the set of context words to be {Ashrafieh, Monot,

Zach, Paul}. If {e1, e2, e3, e4} is an orthonormal basis for the noun space N , where
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e1 = (1 0 0 0)T , e2 = (0 1 0 0)T , e3 = (0 0 1 0)T , and e4 = (0 0 0 1)T ,

we set A = e1, M = e2, Z = e3, and P = e4.

ρ(2)(Beirut) =p1 |AAAA〉+ p2 |AAMM〉+ p3 |MMAA〉+ p4 |MMMM〉

+p5 |AZZA〉+ p6 |AZPM〉+ p7 |MPZA〉+ p8 |MPPM〉

+p9 |ZAAZ〉+ p10 |ZAMP 〉+ p11 |PMAZ〉+ p12 |PMMP 〉

+p13 |ZZZZ〉+ p14 |ZZPP 〉+ p15 |PPZZ〉+ p16 |PPPP 〉

where the pi’s are the probability terms associated to the different components. We

denote by ρ1(w) and ρ2(w) density matrices-1 and -2 associated to word w. ρ1(Beirut)

is composed of the following terms:

ρ1(Beirut) =p1 |AA〉 〈AA|+ p2 |MM〉 〈AA|+ p3 |AA〉 〈MM |+ p4 |MM〉 〈MM |

+p5 |ZA〉 〈ZA|+ p6 |PM〉 〈ZA|+ p7 |ZA〉 〈PM |+ p8 |PM〉 〈PM |

+p9 |AZ〉 〈AZ|+ p10 |MP 〉 〈AZ|+ p11 |AZ〉 〈PM |+ p12 |MP 〉 〈MP |

+p13 |ZZ〉 〈ZZ|+ p14 |PP 〉 〈ZZ|+ p15 |ZZ〉 〈PP |+ p16 |PP 〉 〈PP |

and ρ2(Beirut) is composed of the following terms:

ρ2(Beirut) =p1 |AA〉 〈AA|+ p2 |AM〉 〈AM |+ p3 |MA〉 〈MA|+ p4 |MM〉 〈MM |

+p5 |ZZ〉 〈AA|+ p6 |ZP 〉 〈AM |+ p7 |PZ〉 〈MA|+ p8 |PP 〉 〈MM |

+p9 |AA〉 〈ZZ|+ p10 |AM〉 〈ZP |+ p11 |MA〉 〈PZ|+ p12 |MM〉 〈PP |

+p13 |ZZ〉 〈ZZ|+ p14 |ZP 〉 〈ZP |+ p15 |PZ〉 〈PZ|+ p16 |PP 〉 〈PP |

The measurements in this section are computed using Matlab. We start by comput-

ing the ambiguity and entailment measurements of an unambiguous, non-general word.

Let us consider the word “Ashrafieh”. ρ(2)(Ashrafieh) = |AAAA〉, and ρ1(Ashrafieh) =

ρ2(Ashrafieh) = |AA〉 〈AA|. As expected, we obtain S(ρ1(Ashrafieh)) = S(ρ2(Ashrafieh)) =

0, because 1 log 1 = 0. The same goes for all unambiguous, non-general words.

At this point, it is important to stress that since ρ1 and ρ2 are density matrices, their

trace should be equal to one. It is therefore crucial to multiply the entries of ρ1 and ρ2

respectively by 1
tr(ρ1)

and 1
tr(ρ2)

, in order to make sure their trace is one: we normalise the

matrices by their trace.

In what follows, we will deal with different probability terms: pcity and pband are the

probabilities related to ambiguity, where pcity is the probability that “Beirut” refers to
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“Beirut city”, and pband is the probability and “Beirut” refers to “Beirut band”. Nat-

urally, pcity = 1 − pband. pash and pmon are the probabilities associated to neighbour-

hoods Ashrafieh and Monot, where pash is the extent to which the city of Beirut is rep-

resented by Ashrafieh, and pmon is the extent to which the city is represented by Monot.

pash = 1 − pmon. We define pzac and ppau in the same way: pzac is the extent to which

the band “Beirut” is represented by member Zach, ppau is the extent to which the band

is represented by member Paul, and pzac = 1 − ppau. The probability terms pA, pM ,

pZ , and pP are therefore defined by pA = pcitypash, pM = pcitypmon, pZ = pbandpzac, and

pP = pbandppau. Finally, each pi in the expressions above is of the form p1
i p

2
i p

3
i p

4
i , where

p1
i , p

2
i , p

3
i , p

4
i ∈ {pA, pM , pZ , pP}.

Measures of ambiguity. In these examples, we will set pash = pmon = pzac = ppau = 1
2
,

and vary pcity and pband.

For pcity = pband = 1
2
, S(ρ1(Beirut)) = 2.

For pcity = 2
3
, pband = 1

3
, we expect this number to decrease, because the state is less

mixed. In fact, S(ρ1(Beirut)) = 1.4439.

Measures of entailment. In these examples, we will set pcity = pband = 1
2
, and vary

pash, pmon, pzac and ppau.

For pash = pmon = pzac = ppau = 1
2
, S(ρ2(Beirut)) = 2.

For pash = pzac = 2
3
, pmon = ppau = 1

3
, we expect this number to decrease, because the

state is less mixed. In fact, S(ρ2(Beirut)) is an imaginary number with real part 1.4439

and negligible imaginary part.

The imaginary part comes from the fact that ρ1 is diagonalisable but not necessarily

diagonal: ρ1 = V DV −1, where V is the matrix of eigenvectors and D is the matrix of

eigenvalues of ρ1. log ρ1 is given by V log(D)V −1. The eigenvectors of ρ1 are not nec-

essarily real, and log ρ1 could therefore have complex diagonal entries, thus leading to a

complex measurement.

In order to compare measurements, we could either disregard the imaginary part, or de-

fine a partial ordering z1 ≺ z2 if and only if |z1| < |z2|.

Alternatively, we could circumvent the problem of complex numbers by defining yet an-

other measure of entropy: tr(ρ � ρ) for normalised ρ, where � denotes the Hadamard –

or point-wise – product of matrices. tr(ρ � ρ) varies between 1
D

for a maximally mixed

state, where D is the dimension of the Hilbert space, and 1 for pure states.

Going back to the measures of entailment, where pash = pmon = pzac = ppau = 1
2
:

For pash = pmon = pzac = ppau = 1
2
, tr(ρ2(Beirut)� ρ2(Beirut)) = 0.125.
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For pash = pzac = 2
3
, pmon = ppau = 1

3
, we expect this number to increase, because the

state is less mixed. In fact, tr(ρ2(Beirut)� ρ2(Beirut)) = 0.2312.

Thus we have demonstrated that double-density matrices reliably model ambiguity and

entailment in language: words conserve their ambiguity and the extent of their subsump-

tion when context is lacking, and they gradually collapse – i.e. lose their ambiguity or

their generality – as more and more context is provided. We have also provided ways

to measure levels of ambiguity and entailment in double-density matrices, using density

matrices-1 and -2.
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Chapter 9

Conclusion and future work

9.1 Summary

In this dissertation, I proposed a further extension to the model of [14] to include double-

density matrices. Double-density matrices are states in CPM2(C), the category resulting

from the application of the CPM-construction on C twice.

The CPM2-construction was defined and axiomatised in terms of a squared-environment

structure, following the revised model of [7]. These methods were also generalised to allow

the axiomatisation of the CPMn-construction. The CPM2-construction framework was

showed to preserve †-compact closed structure, which enables the modelling of grammat-

ical relations, and allows for measures of similarity between words and strings of words.

Furthermore, CPM2(C) possesses †-special commutative Frobenius algebras derived from

the †-special commutative Frobenius algebras in C, thus accounting for the modelling of

relational types. Theoretically, this framework is adequate in modelling two features of

language.

Double-density matrices were investigated in detail: their structure encloses two density

matrices, density matrices-1 and -2. These density matrices not only satisfy hermitic-

ity and positive-semidefiniteness, but they are also diagrammatically self-conjugate. The

properties satisfied by double-density matrices were then identified, and the entries of

density matrices-1 and -2 characterised.

Finally, we demonstrated how double-density matrices account for lexical ambiguity and

entailment, and showed that the proposed framework is successful in modelling these fea-

tures in language by the means of concrete examples. We also provided ways of measuring

independently the levels of ambiguity and entailment of words.
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9.2 Future work

Many opportunities for future research are available, some of which I discussed in the

body of my dissertation. I list here some of the directions for future research:

• In Chapter 7, I showed that every morphism satisfying the hermiticity and positive-

semidefiniteness conditions have the structure of density matrices. One aspect worth

developing – and that I could not investigate due to time limitations – is the fol-

lowing: if the morphisms given by applying transformations 1 and 2 on a state

ϕ : I → A⊗A∗⊗A⊗A∗ are hermitian, positive-semidefinite, and diagrammatically

self-conjugate, are these conditions enough to show that the original state ϕ has the

structure of a double-density matrix?

• In Chapter 8, in order to deal with the problem of having terms in the expression of

an ambiguous, general word w that do not correspond to any of the words subsumed

by w, I suggested to set all the Ei’s to have maximal cardinality. Other ways of

dealing with this issue could be researched, with the investigations geared towards

improving the computational efficiency of this solution.

• I suggested extending the Ei’s to have maximal cardinality by repeating some of the

subsumed words are revising the probability terms so that the original distribution

remains intact. Other ways of extending these sets could be researched, for example

by resorting to null vectors.

• It could also be particularly interesting to give the linguistic interpretation of the

states of CPM2(Rel). I offered the interpretation of some of them in the examples

of Chapter 8, but did not extend my analysis to all states due to time limitations.

• Chapter 5 offers an axiomatisation of the CPMn-construction and suggests that

higher orders of iteration account for higher orders of mixing, which could lead to

modelling an increasing number of features of language. The next step could be to

model three features of language and investigate maps in CPM3(C).
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