
Profunctor Semantics for Linear
Logic

Lawrence H. Dunn III

University of Oxford

A thesis submitted for the degree of

M.Sc Mathematics and the Foundations of Computer Science

Trinity Term 2015

Abstract

Linear logic is a sort of “resource-aware” logic underlying intuitionistic
logic. Investigations into the proof theory of this logic typically revolve
around proof nets, certain two-dimensional graphical representations of
proofs. Where sequent calculus deductions enforce arbitrary distinctions
between proofs and complicate these investigations, proof nets represent
sequent calculus deductions up to a notion of equivalence suggested by
the semantics provided by ∗-autonomous categories, at least for restricted
fragments of the logic. Indeed, proof nets may be considered the string di-
agrams of these categories. However, for fragments of the logic containing
units for the multiplicative connectives, the coherence of ∗-autonomous
categories implies an equivalence of proofs which prevents a canonical ex-
tension of proof nets to the full system. This obstruction is what is meant
by “the problem of units for proof nets.”

In this paper we begin to develop a geometric approach to the proof the-
ory of linear logic which depicts proofs as three-dimensional surfaces. This
line of research is made possible by Street’s observation that ∗-autonomous
categories are particular Frobenius pseudoalgebras in a monoidal bicate-
gory prof. In some sense, proof nets can be embedded into these surfaces,
but with a sort of “extra dimension.” The central idea being developed
is that coherence can be seen by visually exposing this extra structure
and considering the result up to a suitable topological equivalence. These
ideas are presented up to the frontiers of current work regarding the co-
herence of Frobenius pseudoalgebras, which proceeds in two directions.
First, it is thought that the coherence of ∗-autonomous categories may
be fully subsumed by that of Frobenius pseudoalgebras. Second, based
on the known properties of Frobenius algebras (proper), the coherence
properties of Frobenius pseudoalgebras ought to have an interpretation
as some intrinsically homotopical notion of equivalence of surfaces. This
work suggests there exists a principled geometrical proof theory which,
among other things, exposes the problem of units as a mere observation
about the topology of surfaces.

Contents

1 Introduction 1

2 Linear Logic and its Categorical Semantics 3
2.1 Introduction . 3
2.2 Proof Nets and Parallelism . 7
2.3 Categorical Semantics . 12

3 ∗-Autonomy and Frobenius Pseudoalgebras 26
3.1 Surfaces in PROF . 26
3.2 Frobenius Pseudoalgebras . 31

4 Proofs as Surfaces 44

A Symmetric Monoidal Bicategories 55

i

Chapter 1

Introduction

Linear logic is a “resource-sensitive” refinement of usual logic, introduced by Girard
in [6]. Seely showed in [17] that a denotational semantics can be given by Barr’s
∗-autonomous categories (pronounced “star-autonomous”) [1]. The structure of such
categories, and the structure of linear logic’s cut-elimination procedure, underly a
notion of equivalence of proofs which is coarser and better behaved than syntactic
equality of sequent calculus deductions. The “bureaucracy of syntax” of sequent cal-
culus (to use Girard’s phasing) is partially mitigated by Girard’s theory of proof nets,
a sort of graphical parallel natural deduction. Proof nets are particularly satisfactory
for the fragment mll−, the multiplicative fragment without units for the connectives,
within which proof nets are fully canonical – equality of proofs is syntactical. However,
various attempts to extend the theory to include the units have resulted in structures
which are not canonical and must be considered up to a notion of equivalence [11]
[13]. Moreover, the decision problem for proof equivalence in the full multiplicative
fragment mll has been found to be pspace-complete [8], indicating that no entirely
suitable extension of proof nets can exist for this fragment.

In separate work, Street demonstrated that ∗-autonomous categories, considered
as objects of a monoidal bicategory prof of (small) categories, profunctors, and
natural transformations, have a natural Frobenius structure [18]. The central idea
in this paper is to take this approach to ∗-autonomy seriously and capture linear
logic through the surface calculus of monoidal bicategories. This strategy offers a
principled approach to the geometrical foundations of proof theory, and through it
we can see that both proof nets and the sequent calculus seem to be approximations
to the full three-dimensional presentation.

This paper proceeds in several chapters:

Chapter 2 We review linear logic through a sequent calculus and the de-
notational semantics provided by ∗-autonomous categories. Motivated by the
desire to avoid cumbersome commutative conversions in cut-elimination, and
the identifications between proofs suggested by the categorical semantics, we
are led into a discussion of proof nets for mll as an parallel syntax for proof
theory. A brief literature survey concludes that proof nets are unable to cope

1

with multiplicative units in a fully satisfactory way.

Chapter 3 The surface calculus of symmetric monoidal bicategories is intro-
duced alongside prof. The Frobenius law is examined. The visualization of
∗-autonomous categories under the embedding of cat into prof leads to the
observation that ∗-autonomous categories are certain Frobenius pseudoalgebras.

Chapter 4 By chaining together the categorical semantics and the surface
calculus, we uncover a three-dimensional presentation of proofs in linear logic.
Through a series of examples, we see that proof nets and sequent calculus are
both approximations to the full three-dimensional presentation.

An appendix provides background material regarding monoidal bicategories.

2

Chapter 2

Linear Logic and its Categorical
Semantics

2.1 Introduction

Linear logic was introduced by Girard in [6] as a refinement of usual logic (classical
and intuitionistic). By carefully controlling the scope of the usual structural rules,
the usual binary connectives bifurcate into two systems; the resulting logic can be
seen to be “resource-aware.”

We begin by surveying classical propositional linear logic (cll), though we later
restrict our attention to one fragment of this system. We assume a set of liter-
als: p, q, r, p⊥, q⊥, r⊥, etc., and special constants 0,1,>,⊥. Note that each literal x
is paired with a dual, x⊥, both of which we take to be atomic. There are four bi-
nary connectives: ⊗,&,`,⊕ (often pronounced, respectively, “times,” “with,” “parr,”
“plus”). There are two unary connectives (modalities) ?, ! (“why not,” “of course”).
Especially for notational convenience, we define a negation operation (−)⊥ as given
in Table 2.1. Note that negation is involutive.

Linear logic is usually defined through a sequent calculus. A generic sequent has
the form

A,B,C, . . . ` X, Y, Z, . . .

with a finite (possibly empty) list of formulas on each side, and we read this sequent
loosely as “The conjunction of A,B,C . . . yields the disjunction of X, Y, Z . . .”. If
the left hand side is empty, it may be read as “true” – a kind of left-hand unit.
Correspondingly, an empty right-hand side is loosely read as “false.” The duality
between the left and right sides plays a central role in classical linear logic.

The rules of the system are often divided into thematic groups:

Identity group Rules which essentially codify that A is equal to itself (Table 2.2).

Negation group Rules governing the classical nature of negation (Table 2.3).

3

(p)⊥ := p⊥ (p⊥)⊥ := p

1⊥ := ⊥ ⊥⊥ := 1

0⊥ := > >⊥ := 0

(A⊗B)⊥ := A⊥ `B⊥ (A`B)⊥ := A⊥ ⊗B⊥

(A⊕B)⊥ := A⊥ &B⊥ (A&B)⊥ := A⊥ ⊕B⊥

(!A)⊥ := ?(A⊥) (?A)⊥ := !(A⊥)

Γ := A,B,C . . . Γ⊥ := A⊥, B⊥, C⊥ . . .

Table 2.1: Definition of the negation operation

(id)
A ` A

Γ1 ` ∆1, A A,Γ2 ` ∆2
(cut)

Γ1,Γ2 ` ∆1,∆2

Table 2.2: Identity rule group

Structure group Rules for manipulating sequents while preserving the formulae
on both sides of the turnstile. In linear logic this consists merely of the exchange
rule (Table 2.4), since weakening and contraction are not accepted as general
principles of the logic.

Logic group Rules for introducing the connectives. They can be further divided
into subgroups: additive (Table 2.5), multiplicative (Table 2.6), and exponential
(Table 2.7).

Remark 2.1. We use capital Greek letters Γ,∆, . . . to stand for arbitrary finite
ordered lists of formula, possible empty. Sometimes these are called “contexts,”
but the same word is also used to mean the slightly different notion of non-
principal (i.e. unaffected) formula in a particular rule application. We simply
call them lists.

4

Γ, A ` ∆
⊥ L

Γ ` A⊥,∆
Γ ` A,∆

⊥ R
Γ, A⊥ ` ∆

Table 2.3: Negation group

Γ1, A,B,Γ2 ` ∆
(exch. L)

Γ1, B,A,Γ2 ` ∆

Γ ` ∆1, A,B,∆2
(exch. R)

Γ ` ∆1, B,A,∆2

Table 2.4: Structural rule group

Conjunction Disjunction Units

Left rules
Γ, A ` ∆

&L1
Γ, A&B ` ∆

Γ, A ` ∆ Γ, B ` ∆
&R

Γ, A⊕B ` ∆
(0)

Γ,0 ` ∆

Γ, A ` ∆
&L2

Γ, B & A ` ∆

Right rules
Γ ` A,∆ Γ ` B,∆ `R

Γ ` A&B,∆

Γ ` A,∆
⊕R1

Γ ` B ⊕ A,∆
>

Γ ` >,∆

Γ ` A,∆
⊕R2

Γ ` A⊕B,∆

Table 2.5: Additive subset of the logical group

5

Conjunction Disjunction Units

Left
Γ1A,B,Γ2 ` ∆

⊗L
Γ1, A⊗B,Γ2 ` ∆

Γ1, A ` ∆1 B,Γ2 ` ∆2 `L
Γ1, A`B,Γ2 ` ∆1,∆2

⊥L⊥ `

Γ ` ∆
1L

Γ,1 ` ∆

Right
Γ1 ` ∆1, A Γ2 ` B,∆2 ⊗R

Γ1,Γ2 ` ∆1, A⊗B,∆2

Γ ` A,B,∆ `R
Γ ` A`B,∆

1R` 1

Γ ` ∆ ⊥R
Γ ` ∆,⊥

Table 2.6: Multiplicative subset of the logical group

!Γ, A ` ?∆
?L

!Γ, ?A ` ?∆

!Γ ` A, ?∆
!R

!Γ ` !A, ?∆

Γ ` ∆
!W

Γ, !A ` ∆
Γ, !A, !A ` ∆

!C
Γ, !A ` ∆

Γ, A ` ∆
!D

Γ, !A ` ∆

Γ ` ∆
?W

Γ ` ?A,∆
Γ ` ?A, ?A,∆

?C
Γ ` ?A,∆

Γ ` A,∆
?D

Γ ` ?A,∆

Table 2.7: Exponential subset of the logical group

6

Remark 2.2. In classical linear logic, linear implication is commonly defined

A(B := A⊥ `B.

(In intuitionistic linear logic, linear implication is usually taken as a primitive
construct.) The resource-sensitive nature of the logic is witnessed, for example,
in the fact that we can prove X (X for any X, but we cannot generally prove
X (X ⊗X – in effect, linear “implication” is about converting resources into
others, and in general we cannot duplicate (or destroy) resources.

Our presentation of the rules is not minimal. For instance, the left rules of the
connective ⊗ can be deduced from the right rules of `, taking into account the
deMorgan duality between the connectives (which can be seen in Table 2.1) and the
negation laws from Table 2.3.

We shall restrict our attention to mll – the multiplicative fragment of cll. This
system consists of Tables 2.2, 2.3, 2.4, and 2.6, and acts as the primary fragment on
which the theory of proof nets is founded.

2.2 Proof Nets and Parallelism

One feature of the multiplicatives that becomes immediately apparent is their parallel
nature. Considering the deductions in Figure 2.1.

(id)
A ` A

(id)
B ` B

(id)
C ` C ⊗R

B,C ` B ⊗ C
⊗L

B ⊗ C ` B ⊗ C
⊗R

A,B ⊗ C ` A⊗ (B ⊗ C)

(a)

(id)
A ` A

(id)
B ` B

(id)
C ` C ⊗R

B,C ` B ⊗ C
⊗R

A,B,C ` A⊗ (B ⊗ C)
⊗L

A,B ⊗ C ` A⊗ (B ⊗ C)

(b)

Figure 2.1: Two proofs featuring “parallel” rule applications.

Notice that proofs differ by the order of application of the rules ⊗L and ⊗R.
Notice also that the two rule applications are, in some sense, independent of one
another. It is not apparent why we ought to distinguish between the two proofs.
Instead, we would prefer a syntax which makes it clear that particular rule instances
can be applied in parallel.

The situation gets worse when we look at the (cut) rule. One of the most essential
theorems of linear logic (indeed, of essentially any logic of mathematical interest) is
that cuts can be eliminated.

7

Theorem 2.1. Any proof which can be proved from the given rules of linear logic,
can be proved without invoking the (cut) rule.

Proof. A proof is found in [7].

In fact there are effective procedures for rewriting sequent calculus deductions into
ones which prove the same sequent, without using the (cut). The standard approach
in these procedures is to push (cut) applications up the deduction tree as high as
possible. Now consider the situation of a (cut) applied after two independent rule
instances (say, R1 and R2).

π1

...

` Γ, A
(R1)

` Γ
′
, A

π2

...

` A⊥,∆
(R2)

` A⊥,∆′
(cut)

` Γ
′
,∆

′

The (cut) application is applied to the A and corresponding A⊥. The two generic
rule applications shown do not act on these formulas. Therefore we can push the
(cut) up the tree. However, there are two branches of the tree to choose, resulting in
an arbitrary choice to prefer the form

π1

...

` Γ, A

π2

...

` A⊥,∆
(cut)

` Γ,∆
(R1)

` Γ
′
,∆

(R2)

` Γ
′
,∆

′

or the form

π1

...

` Γ, A

π2

...

` A⊥,∆
(cut)

` Γ,∆
(R2)

` Γ,∆
′

(R1)

` Γ
′
,∆

′

This situation is a prototypical example of a “commutative conversion.” From the
sequent calculus perspective, cut-elimination (normalization, from a λ -calculus per-
spective), becomes “extremely complex and awkward” [7] – and highly non-canonical

8

– due to constant commutations of parallel rule applications, complicating the result-
ing theory.

In fact, the doctrine of denotational semantics (discussed in Section 2.3) requires,
as a central tenet, that denotations of proofs be invariant under cut-elimination,
meaning that however we rewrite proofs in carrying out cut-elimination, each rewrite
must preserve the denotation of the proof. Again, the natural desideratum here is
a syntax which is able to cope with the parallel nature of the multiplicatives, offers
a canonical form for deductions which are identified in the semantics, and moreover
might allow for a simple cut-elimination procedure. Such a syntax is found in Girard’s
theory of proof nets, introduced in [6] alongside linear logic itself.

First we invoke the rules of negation to present the logic in a one-sided fashion.
We also make the assumption that our lists are multi-sets, making the exchange rule
unnecessary. We are left with just a few rules, shown in Table 2.8.

(id)

` A,A⊥
` Γ, A ` A⊥,∆

(cut)
` Γ,∆

` Γ, A ` B,∆
⊗

` Γ, A⊗B,∆
` Γ, A,B `` Γ, A`B

Table 2.8: Rules for one-sided mll−, treating sequents as multi-sets

To each of these rules we associate a graphical “link.” This is a somewhat ad-hoc
device which we could formalize in terms of graphs, but we will present the ideas
more intuitively. The four links are given in Figure 2.2.

A⊥A

A⊥A

Axiom Cut

A

A⊗B

Times Parr

BA B

A`B

Figure 2.2: The links for multiplicative proof nets, without units

For each link, we consider the top to represent its “input ports.” The bottom
represents its “output ports.” The Times link takes two inputs and yields one output,
for instance. We connect these links in an intuitive fashion suggested by this idea of
input and output. Now return to the example deductions given in Figure 2.1. Under
the scheme of forcing all sequents to be one-sided, we arrive at the proofs

9

(id)

` A⊥, A

(id)

` B⊥, B
(id)

` C⊥, C
⊗

` B⊥, C⊥, B ⊗ C
⊗

` A⊥, B⊥, C⊥, A⊗ (B ⊗ C) `
` A⊥, B⊥ ` C⊥, A⊗ (B ⊗ C)

and

(id)

` A⊥, A

(id)

` B⊥, B
(id)

` C⊥, C
⊗

` B⊥, C⊥, B ⊗ C `
` B⊥ ` C⊥, B ⊗ C

⊗
` A⊥, B⊥ ` C⊥, A⊗ (B ⊗ C)

At each rule application, we introduce the relevant graphical link. If the link
takes inputs, we wire it to the corresponding outputs of previous links. Applying
this process shows that both proofs have the same proof net, given in Figure 2.3.
Notice there are three “free” outputs A⊥, A ⊗ (B ⊗ C), and B⊥ ` C⊥– free in the
sense that they are not being fed to the input ports of any other link. We consider
the proof net to represent a proof of the disjunction of its free outputs. Notice that
the geometry of how we draw the proof net is not as important as how we have
arranged the connections. In fact this seems to be evidence already that these proofs
are topological entities.

A⊥

B ⊗ C

CB

B⊥ ` C⊥

A⊗ (B ⊗ C)

A

C⊥B⊥

Figure 2.3: The common proof net associated to the proofs above

Not every graph built from these links is a proof, however. The nature of the
links does not forbid diagrams which “plug into themselves.’ For instance, Figure 2.4
results from wiring a Cut link to an Axiom link. But this cannot be a proof – there
is not even a conclusion.

The general term for the figures obtained by arranging occurrences of links is
“proof structure.” It is only subset of these, by definition the proof nets, which can
be put into correspondence with sequential deductions in mll−. A variety of criteria
exist to distinguish between an arbitrary proof structure and a net, one of the most
widely used being the Danos-Regnier criterion of [3]. The several criteria for proof

10

A A⊥

Figure 2.4: A degenerate proof structure – not a proof net

structure correctness are slightly ad-hoc – one of the goals of our work is to analyze
their content from a surface calculus perspective. Work in this direction is ongoing.

Of the many nice properties that proof nets enjoy, there is the fact that cut-
elimination can be performed on proof nets directly – there is no need to bother with
the sort of commutative conversions we encounter in a sequent calculus presentation.
For instance, the proof in Figure 2.5 has a proof net given in Figure 2.6. While
cut-elimination for the former case is complicated, cut-elimination for the proof net
involves a simple rewrite to the proof net in Figure 2.7. For proof nets, cut-elimination
is of a local nature.

id
` A⊥, A

id
` B⊥, B

⊗
` A⊗B,A⊥, B⊥ `
` (A⊗B) `B⊥, A⊥

id
` A,A⊥

id
` C,C⊥ `

` A,A⊥ ` C,C⊥
cut

` (A⊗B) `B⊥, A⊥ ` C,C⊥

Figure 2.5: A proof involving a cut link between occurrences of A⊥ and A

A

A⊥ A⊥

B⊥

(A⊗B) `B⊥

A

A⊗B

C⊥C

B
A⊥ ` C

Figure 2.6: A proof net involving a cut link between occurrences of A⊥ and A

When proof structures are correct (i.e., they are nets and correspond to sequent
calculus deductions), they are canonical. Two deductions have the same denotation
(in ∗-autonomous categories, Section 2.3) precisely when they have the same proof net.
Moreover, two different proof nets must correspond to different (equivalence classes
of) proofs – the net for a given proof is unique. Additionally, proof nets are tractable
entities – translating from deductions to nets requires very little computation, giving
a simple method of determining proof equivalence. We shall see that introducing the
multiplicative units breaks these properties.

11

A

A⊥

B⊥

(A⊗B) `B⊥

A⊗B

C⊥C

A⊥ ` C
B

Figure 2.7: A proof net resulting from eliminating the cut in Figure 2.6

2.3 Categorical Semantics

It is well understood that there is a tight correspondence between proof theory and
programming (certainly for intuitionist logic, if not immediately apparent in the clas-
sical case, but see [5]). These ideas extend to linear logic. Along those lines, one
seeks a denotational semantics: To each formula A we seek an interpretation as some
object JAK, its denotation, and we extend this to consider denotations of lists of for-
mulas. Sequents Γ ` ∆ ought to correspond to some notion of a function between the
denotations of the Γ and ∆ – essentially a function type. A deduction of a sequent
ought to describe the construction of a term of the type of the conclusion, and more-
over this assignment of denotations ought to be invariant under cut-elimination – we
are interested in a denotational, rather than operational semantics, and this choice
corresponds to seeking a semantics for which the denotation is static throughout the
execution of the program (see [12], especially Chapter 3).

One particular choice for giving a denotational semantics to linear logic, and the
one we shall consider throughout this paper, is through ∗-autonomous categories.
Without extra structure, theses categories model the fragment mll, with additional
connectives modeled by further structure imposed on the category.

Remark 2.3. For a category A, we will find it convenient to write A(x, y) in
place of HomA(x, y). We will also name the identity morphism on an object

after the object itself, e.g. A
A−→ A.

Definition 2.1 (∗-autonomous category). A category (A,⊗,1, S, α, λ, ρ, σ) given by
a symmetric monoidal category (A,⊗,1, α, λ, ρ, σ) (where α is the associator, λ and
ρ the unitors, and σ is the braiding) equipped with an equivalence S : A - Aop
with natural isomorphisms

• A ' SSA

• A(A⊗B, SC) ' A(A, S(B ⊗ C))

12

By a slight but common abuse of notation, we simply refer to a ∗-autonomous
category by the name of the underlying category. However we truly mean that we have
in mind a particular choice of symmetric monoidal structure, a particular equivalence
S, and particular natural isomorphisms as above.

Remark 2.4. It is a theorem that if a ∗-autonomous category A satisfies S(A⊗
B) ' (SA ⊗ SB), then it is compact-closed. Thus, what we are asking for
from A is a notion of tensor product and a notion akin to that of dual objects,
but such that the “duality” functor S does not (necessarily) distribute over the
tensor.

This minimal definition of ∗-autonomy hides the full structure of such categories.
For a given such category A, there is much we can say about it:

• S is self-adjoint (or rather, A
S−→ Aop is adjoint with the functor Aop

Sop−−→ A with
the same action on objects and morphisms). This gives us isomorphisms like
Aop(Sa, b) ' A(a, Sb).

• A is monoidal-closed via a functor (given on objects by

A(B := S(A⊗ SB).

The family of adjunctions arises from the isomorphisms

A(A⊗B,C) ' Aop(S(A⊗B), SC)

' A(A⊗B, SSC)

' A(A, S(B ⊗ SC))

natural in the three variables A,B,C, where we have used the self-adjointness
of S.

• A features an additional symmetric monoidal structure, a tensor we denote •,
defined on objects as

A •B := S(SA⊗ SB).

The full monoidal and coherence structure is inherited from ⊗ (we shall dis-
tinguish between the natural isomorphisms with superscripts). The object SI
acts as a unit, and we define ⊥ := SI to emphasize the logical correspondence.
Notice A •B = SA(B ' SB(A.

• The two tensors ⊗, • make A into a linearly distributive category. We shall
return to this subject shortly below, since it is the source of the “problem of
units” with proof nets.

13

The correspondence between the objects of linear logic and those of ∗-autonomous
categories is straightforward. The key ideas are summarized in Table 2.9. Assuming
some map J−K which associates to each atomic proposition p an object JpK ∈ A, we
inductively extend this map to all formula by taking tensors of atomic denotations.
For a list Γ = A,B,C, . . . X we write ⊗JΓK for JAK⊗ (JBK⊗ (. . . JXK), of A is Γ is a
singleton, or 1 if Γ is empty. Similarly we write •JΓK to mean the disjunction of the
items of Γ.

Remark 2.5. One particular feature of this interpretation is that we ignore the
syntactical distinction between the commas in a sequent, and the corresponding
multiplicative connective: e.g., a left-hand list A,B,C and the formula A⊗(B⊗
C) are both simply JAK⊗(JBK⊗JCK) in the category. One approach to removing
this discrepancy is through multi-categories. For our purposes, maintaining this
distinction is not particularly important.

The notation for denotations quickly becomes clumsy. Therefore we shall not
usually write the double brackets J−K when examining the denotation of a given
sequent. In the case of a list Γ, whether we mean ⊗JΓK or •JΓK must be inferred.
However, this will be clear from context.

The interpretation of the rules of mll largely rests on the two families of natural
transformations which exist in any ∗-autonomous category. They are the “linear
distribution” morphisms

δL : A⊗ (B • C) −→ (A⊗B) • C

δR : (A •B)⊗ C −→ A • (B ⊗ C)

Remark 2.6. This distribution is “linear” in the sense of being somewhat
resource-aware, like linear logic in general. Compare it to the distributive laws
in other contexts, e.g.

A⊗ (B • C) ' (A⊗B) • (A⊗ C)

in which the resource A appears in the right-hand side twice, but the left-hand
side just once.

(eliding subscripts for objects). The structure of linear distribution is interesting
in its own right – [15] defines linearly distributive categories (there called “weakly”
distributive, apparently an older name) as categories C consisting of two symmetric-
monoidal structures, with natural transformations as above, which moreover satisfy
a quite large number of coherence conditions, such as the following:

14

In Linear Logic In ∗-aut. categories

Atomic p Object JpK

⊗ unit 1 ⊗ unit I

` unit ⊥ • unit ⊥ := S I

Multiplicative Conjuction A⊗B Tensor JAK⊗ JBK

Multiplicative Disjuction A •B “Dual” Tensor JAK • JBK

Linear Implication A(B Internal Hom JAK(JBK

Negation A⊥ Object S JAK

Right-sided sequent ` ∆ Sequent I −→ •JΓK

Two-sided sequent Γ ` ∆ Sequent ⊗JΓK −→ •J∆K

Left-sided sequent Γ ` Sequent JΓK −→ ⊥

Table 2.9: Categorical interpretation of linear logic

15

X ⊗ Y
X ⊗ ρ•−1

Y- X ⊗ (Y • ⊥)

(X ⊗ Y) • ⊥

δL

?

ρ •−1X⊗Y
-

Remark 2.7. Actually, the coherence axioms listed in [15] feature the diagram
above with the two “unitor” natural isomorphisms going in the other direction,
like so:

X ⊗ Y �
X ⊗ ρ•Y X ⊗ (Y • ⊥)

(X ⊗ Y) • ⊥

δL

?

�

ρ •
X⊗Y

It is not hard to show that one of these diagrams commutes if and only if the
other one does, since

ρ•X⊗Y ◦ δL = (X ⊗ ρ•Y) ⇐⇒ ρ•X⊗Y ◦ δL ◦ (X ⊗ ρ•−1
Y) = idX⊗Y

⇐⇒ δL ◦ (X ⊗ ρ•−1
Y) = ρ•−1

X⊗Y

We have chosen our diagram because it more directly corresponds to the unit
introduction rule of linear logic.

Theorem 2.2 (Cockett-Seely). ∗-autonomous categories are particular linearly dis-
tributive categories.

This theorem is not an entirely trivial verification. Proving that ∗-autonomous
categories satisfy the coherence requirements of linearly distributive categories is an
exercise in applying, besides the naturality equations resulting from the adjunctions,
also the resulting extranaturality equations. A proof is not given in the original pa-
per [15] (noting that the diagrams involved are “pretty horrid”). A full proof of a
theorem relating linearly distributive categories to ∗-autonomous ones is presented
in [4], mostly confined to pages 51–75. It is hoped that coherence conditions of
∗-autonomous categories can be recovered from those satisfied by Frobenius pseu-
doalgebras, although verifying the relevant equalities in the latter case has also been
found to be less than obvious. We shall have more to say about the subject later.

The authors of [15] do indicate how they derive one of the linear distribution
natural transformations. At first glance, one might presume we can use the morphism
of type

16

A(SX, S(Y ⊗ Z))
(∗-autonomy)

A(SX ⊗ Y, SZ)
(Braiding)

A(Y ⊗ SX, SZ)

Figure 2.8

A(A⊗X, Y (B)
(Monoidal Closure)

A((A⊗X)⊗ Y,B)
(Associator)

A(A⊗ (X ⊗ Y), B)
(Braiding)

A(A⊗ (Y ⊗X), B)
(Associator)

A((A⊗ Y)⊗X,B)
(Monoidal Closure)

A(A⊗ Y,X (B)

Figure 2.9

(SB(C)⊗ ((A(SB)⊗ A) −→ C,

built from the monoidal-closure counits and, after precomposing with braiding
and associator transformations, take the transpose across the monoidal-closure iso-
morphism to arrive at a morphism of type

A⊗ (SB(C) −→ (A(SB)(C,

which combined with the isomorphism A (SB ' S(A ⊗ B) would yield a
morphism of the correct type. However, we have not verified the coherence conditions
for this morphism. Therefore we shall indicate how the authors of [15] derive a linear
distribution transformation. (It is probably reasonable to suspect their morphism is in
fact equal to the one we defined above, but we have not investigated this thoroughly).

Using the adjunction S we can derive a natural isomorphism as in Figure 2.8.
Specializing to the case X = (A ⊗ B), Y = A, Z = B, and taking the identity
morphism in the first set yields a morphism of type A⊗ S(A⊗B) −→ SB.

Using the monoidal closure defined earlier we can define the evaluation arrow
S(SB⊗SC)⊗SB −→ C. Precomposing with the braiding and then taking the image
of the result across the closure yields a morphism of type SB −→ S(S(SB⊗SC)⊗SC),
i.e. SB −→ (SB (C) (C. Composing this morphism with the one given earlier
yields one of type

A⊗ S(A⊗B) −→ (SB(C)(C

Finally there is a natural isomorphism of hom-sets as in Figure 2.9 which, com-
bined with the above morphism, yields a morphism of the correct type.

We are now in a position to define the categorical interpretation of the sequent

17

calculus rules. For convenience we shall simply ignore the associator natural trans-
formation and presume the tensor product is strictly associative.

Identity

(identity)
A ` A

From no morphism at all, we must define a morphism of type A −→ A. For this
we simply use the identity, idA.

Cut

Γ1 ` ∆1, A A,Γ2 ` ∆2
(cut)

Γ1,Γ2 ` ∆1,∆2

From two arrows
Γ1

f−→ ∆1 • A

and

A⊗ Γ2
g−→ ∆2,

we take

Γ1 ⊗ Γ2
f⊗Γ2−−−→ (∆1 • A)⊗ Γ2

δR−→ ∆1 • (A⊗ Γ2)
id∆1

•g
−−−−→ ∆1 •∆2

Exchange

Γ1, A,B,Γ2 ` ∆
(exchange left)

Γ1, B,A,Γ2 ` ∆

Γ ` ∆1, A,B,∆2
(exchange right)

Γ ` ∆1, B,A,∆2

From

Γ1 ⊗ A⊗B ⊗ Γ2
f−→ ∆

We construct

Γ1 ⊗B ⊗ A⊗ Γ2

Γ1⊗σ⊗B,A⊗Γ2

−−−−−−−→ Γ1 ⊗ A⊗B ⊗ Γ2
f−→ ∆

Likewise, from

Γ
f−→ ∆1 • A •B •∆2

we define

Γ
f−→ ∆1 • A •B •∆2

∆1•σ•A,B•∆2

−−−−−−−→ ∆1 •B • A •∆2

18

⊗L and `R

Γ1A,B,Γ2 ` ∆
⊗L

Γ1, A⊗B,Γ2 ` ∆

Γ ` A,B,∆ `R
Γ ` A`B,∆

Under the categorical interpretation, both rules are trivial, because we do not
interpret the comma separately from the tensors.

⊗R

Γ1 ` ∆1, A Γ2 ` B,∆2 ⊗R
Γ1,Γ2 ` ∆1, A⊗B,∆2

Given two arrows

Γ1
f−→ ∆1 • A

Γ2
g−→ B •∆2

we define

Γ1 ⊗ Γ2

(∆1 • A)⊗ (B •∆2)

f ⊗ g

? δR- ∆1 • (A⊗ (B •∆2))
∆1 • δL- ∆1 • ((A⊗B) •∆2)

19

`L
Γ1, A ` ∆1 B,Γ2 ` ∆2 `L

Γ1, A`B,Γ2 ` ∆1,∆2

Given two arrows

Γ1 ⊗ A
f−→ ∆1

B ⊗ Γ2
g−→ ∆2

we define

Γ1 ⊗ (A •B)⊗ Γ2
Γ1⊗δR−−−−→Γ1 ⊗ (A • (B ⊗ Γ2))

δL−→(Γ1 ⊗ A) • (B ⊗ Γ2)

∆1 •∆2

f • g

?

20

Units

⊥L⊥ ` 1R` 1

Under the categorical interpretation, these rules merely correspond to the iden-
tity arrow on ⊥ and 1, respectively.

Γ ` ∆
1L

Γ,1 ` ∆
Γ ` ∆ ⊥R

Γ ` ∆,⊥

These rules correspond to the unitors for the two units. Namely, for any

Γ
f−→ ∆

there is an arrow

Γ⊗ 1
ρ⊗Γ−→ Γ

f−→ ∆

and likewise there is an arrow

Γ
f−→ ∆

ρ•−1
∆−−→ ∆ • ⊥

The problem of units in linear logic results from equalities induced by these de-
notations.

Theorem 2.3. The following proofs have the same denotation

21

(1)

π1

...

Γ1 ` ∆1 ⊥
Γ1 ` ∆1,⊥

π2

...

Γ2 ` ∆2 ⊗
Γ1,Γ2 ` ∆1 ⊗∆2,⊥

(2)

π1

...

Γ1 ` ∆1

π2

...

Γ2 ` ∆2 ⊗
Γ1,Γ2 ` ∆1 ⊗∆2

⊥
Γ1,Γ2 ` ∆1 ⊗∆2,⊥

(3)

π1

...

Γ1 ` ∆1

π2

...

Γ2 ` ∆2 ⊥
Γ2 ` ∆2,⊥ ⊗

Γ1,Γ2 ` ∆1 ⊗∆2,⊥

Proof. Suppose Γ1
f−→ ∆1 is the morphism constructed by the deduction π1, and that

Γ2
g−→ ∆2 is the morphism from π2. Then (1) corresponds to the morphism

Γ1 ⊗ Γ2

f⊗(ρ•−1
∆2
◦g)

−−−−−−→ ∆1 ⊗ (∆2 • ⊥)
δL−→ (∆1 ⊗∆2) • ⊥

whereas (2) yields

Γ1 ⊗ Γ2

f⊗g
−−→ ∆1 ⊗∆2

λ•∆1⊗∆2−−−−→ (∆1 ⊗∆2) • ⊥

These morphisms are equal according to the diagram in Figure 2.10, where the
two smaller rectangles commute by naturality, and the outer “triangle” commutes by
coherence of linear distribution. We have made use of the equality f ⊗ (ρ•−1

∆2
◦ g) =

(f ⊗ (g •⊥)) ◦ (Γ1⊗ ρ•−1
Γ2

) which is a consequence of functoriality of ⊗ and naturality
of ρ. A similar diagram shows that (3) constructs the same morphism as (2), and
hence also (1).

22

f ⊗ g

(f ⊗ g) • ⊥

f ⊗ (g • ⊥)

ρ•−1
Γ1⊗Γ2

ρ•−1
∆1⊗∆2

δL

Γ1 ⊗ ρ•−1
Γ2

δR

Γ1 ⊗ Γ2 ∆1 ⊗∆2

(Γ1 ⊗ Γ2) • ⊥ ⊥ • (∆1 ⊗∆2)

Γ1 ⊗ (Γ2 • ⊥)s ∆1 ⊗ (∆2 • ⊥)

Figure 2.10: Diagrams like these force the identification of many proofs

Now we return to proof nets, this time with units. The rules of the logic are now
given in Table 2.10. A reasonable way to represent links for units is shown in Figure
2.11. For the ⊥ introduction rule, the “anchor point” A remains free – the link exists
merely to indicate the stage at which the unit is introduced.

(id)

` A,A⊥
` Γ, A ` A⊥,∆

(cut)
` Γ,∆

` Γ, A
1` Γ, A⊗ 1

` Γ, A ` B,∆
⊗

` Γ, A⊗B,∆
` Γ, A,B `` Γ, A`B

` Γ, A
⊥` Γ, A,⊥

Table 2.10: Rules for one-sided mll, treating sequents as multi-sets

A

A⊗ 1

⊥

A

1

⊥

A

A

B

A⊗B

A⊥

A`B

Parr

A

Axiom

B

A⊥

Cut

Times

A

Figure 2.11: The links for multiplicative proof nets, including units

We begin to notice problems immediately. Consider the innocuous proofs in Figure
2.12 and the corresponding proof nets in Figure 2.13. The result is three proofs

23

which are identified in ∗-autonomous categories, but three syntactically distinct (non-
isomorphic) proof nets.

id
` A,A⊥

⊥
` A,⊥, A⊥

id
` B,B⊥

⊗
` A⊗B,⊥, A⊥, B⊥

id
` A,A⊥

id
` B,B⊥

⊥
` B,⊥, B⊥

⊗
` A⊗B,⊥, A⊥B⊥

id
` A,A⊥

id
` B,B⊥

⊗
` A⊗B,A⊥, B⊥

⊥
` A⊗B,⊥, A⊥, B⊥

Figure 2.12: Simple proofs involving bottom introduction

A

⊥

A⊥

A⊗B

B B⊥

⊥
A⊗B

A⊥ B⊥A B

⊥

A⊗B

A A⊥ B⊥B

Figure 2.13: The proof nets corresponding to the proofs in Figure 2.12

How “bad” is the situation? Our attempt to build the unit rules into proof nets
was somewhat ad-hoc. Conceivably there could exist some method of extending
proof nets for which equality of proofs is syntactical, or at least relatively easy to
characterize. In fact there is apparently no good (read: computationally tractable)
way to do this – the 2014 paper [8] proves that proof equivalence for mll (i.e.,
the word problem for ∗-autonomous categories) is pspace-complete. Therefore any

24

scheme for presenting proofs nets involving units is, in general, either intractable
when converting from a deduction to a net, or when determining whether two nets
represent the same morphism. Put another way, there is no simple notion of string
diagrams for describing general morphisms in ∗-autonomous categories which yields
easily-calculated normal forms.

The conjecture being developed in our work is that morphisms for ∗-autonomous
categories are best thought of as surfaces, and equality of morphisms is some topo-
logical notion of equality between surfaces (which, in general, one would not expect
to be a tractable problem). We turn to these ideas in the next chapter.

Remark 2.8. If there are no proof nets for the full system mll, then what
is the proper categorical notion for the fragment mll−, for which proof nets
are canonical? A reasonable criterion for answering this question is that such
proof nets ought to generate a free model of such a category. Two different
approaches to this line of research are explored in the papers [4] and [9].

25

Chapter 3

∗-Autonomy and Frobenius
Pseudoalgebras

3.1 Surfaces in PROF

The theorem that makes our work possible states that ∗-autonomous categories have
a characterization as objects of a monoidal bicategory prof, which is useful in light
of the fact that monoidal bicategories have a convenient notation, the surface calcu-
lus, described in Chapter 8 of [10]. This section introduces prof and this calculus
simultaneously. Our reference for profunctor theory is [2] and the notes [14]. We
assume familiarity with bicategories – Appendix A contains background material on
the subject.

A note on the surface calculus: There are at least two ways of thinking about
it. First, we can depict 2-cells as actual three-dimensional surfaces. This is the per-
spective we will use when considering equivalence of surfaces in Chapter 4. Another
presentation is to depict 1-cells as string diagrams, and depict 2-cells as arrows be-
tween them which describe “local rewrites.” The rewrite perspective will prove more
useful in Section 3.2. Here, we will present both perspectives side-by-side. We do
assume familiarity with string diagrams for monoidal categories, described in [10].

Remark 3.1. From the rewrite perspective, the structure of monoidal bicate-
gories ensures that the rewrites are local operations, in the sense that rewrites
which can be “spatially separated” commute with each other. We use this fact
to build commutative diagrams of rewrites like in Figure 3.35.

The bicategory prof is essentially an expansion of the monoidal bicategory cat

of categories, functors, and natural transformations. A profunctor F : A −7−→ B from A
to B is simply a functor Bop×A −→ Set (thus, the type of an arrow differs depending
on whether it is considered in prof or cat – notice we use a slash to indicate when
an arrow is being thought of as a profunctor). This means profunctors are particular
functors. However, they are also generalizations of functors.

In the surface calculus, a profunctor F : A −7−→ B from A to B is drawn as in Figure

26

F
A B

(a)

A

F

B

(b)

Figure 3.1: A Profunctor F from A to B, as a surface and as a string diagram

3.1 as either a surface (3.1a) or a string diagram (3.1b).

Any functor A
F−→ B between categories induces two profunctors A F∗−7−→ B and

B F ∗−7−→ A in prof, namely

A F∗−7−→ B defined on objects by (b, a) 7→ B(b, Fa)

and

B F ∗−7−→ A defined on objects by (a, b) 7→ B(Fa, b)

Not every profunctor is induced in this fashion however. Profunctors naturally
isomorphic (see below) to ones of the form F∗ as above are called representable. We
shall also show that natural transformations induce 2-cells in prof, and moreover
these embeddings preserve the structure of composition in cat. This is what we mean
by the fact that cat embeds into prof. In fact there are two such embeddings: the
covariant (F 7→ F∗) and the contravariant (F 7→ F ∗)

Since profunctors are particular functors, we can consider natural transformations
between them in the usual sense. These are the 2-cells in prof. That is, given two

profunctors A
F−7−→ B and A

G−7−→ B of the same type, a 2-cell µ : F ⇒ G between them
in prof is a natural transformation between F and G as functors Bop×A −→ Set. A
natural transformation µ : F ⇒ G is drawn as in Figure 3.2. Vertical composition is
drawn as in Figure 3.3.

Composition of profunctors is less straightforward to define than that of functors.

Notice that a profunctor A F−7−→ B is essentially a functor (which we call F̂ , the “trans-

pose” of F) A F̂−→ B̂, where by B̂ we mean the category whose objects are functors

Bop −→ Set. Now, given two profunctors A
F−7−→ B and B

G−7−→ C, we can “officially” define
their composition as the profunctor G ◦ F whose transpose is LYB(Ĝ) ◦ F̂ , where by
LYB(Ĝ) we mean the left Kan extension of Ĝ along the Yoneda functor B −→ B̂ which
maps b 7→ B(−, b). A discussion of Kan extensions would take us outside the scope
of this paper – fortunately there is an easier way. One shows that this definition is
equivalent to

27

G

A B

F

µ

(a)

µ
F

B

A

G

B

A

(b)

Figure 3.2: A natural transformation µ from F to G, as a surface or a rewrite

µ

G

F

A B

ν

H

,
(a)

µ ν
F

B

A

G

B

A

B

H

A

(b)

Figure 3.3: The vertical composite of a 2-cell µ from F to G and another ν from G
to H

.

28

F
A B DC

FG

(a)

A

B

D

C

F

G

H

(b)

Figure 3.4: The composition of several profunctors

(G ◦ F)(c, a) =

∫ x∈B
G(c, x)× F (x, a)

Here the intergral notation means the coend of the “integrand,” the functor of
type Bop × B −→ Set given by (b1, b2) 7→ G(c, b2) × F (b1, a). While a discussion of
coends would also take us beyond our current scope, this object has a straightforward
characterization: Let Φ be the integrand, the functor defined above. We obtain two
actions (in a sort of categorified, “many-object” sense) of B on Φ of type,∐

b1,b2∈B

Φ(b2, b1)× B(b1, b2) -
∐
b∈B

Φ(b, b).

Notice the the coproduct on the left hand side is the set of all ((y, x), f) where c
y−→ b1,

b2
x−→ a, and b1

f−→ b2. A left action is given by mapping this object to (f · y, x) where
f · y := f ◦ y. Similarly, a right action maps it to (y, x · f) where x · f := x ◦ f . The
coend above is the (object part of the) coequalizer of these two actions. This implies
that up to isomorphism, (G ◦ F)(c, a) is given on objects by

(c, a) 7→
(∐
b∈B

G(c, b)× F (b, a)
)
/ ∼

where ∼ is the equivalence relation generated by the relation (f · y, x) ∼ (y, x · f)

for b
f−→ b′. As an exercise, one can verify that the composition of representable

profunctors works as one might expect: (G∗ ◦ F∗) ' (G ◦ F)∗.
Composition of profunctors is only associative up to a natural isomorphism, which

is allowed in a bicategory. The composition of profunctors, for instance of A
F−7−→ B,

B
G−7−→ C, and C

H−7−→ D, is drawn as in Figure 3.4. (However the surface by itself
only depicts the composite up to isomorphism.) Up to isomorphism, the identity
profunctor on a category A is given by the hom-functor (a′, a) 7→ A(a′, a).

Natural transformations of functors lift to ones between representable profunctors.

Given µ : F ⇒ G, we obtain a 2-cell B(−, F−)⇒ B(−, G−) defined by (b
f−→ Fa) 7→

(b −→ Fa
µa−→ Ga). Similarly we obtain a 2-cell B(G−,−) −→ B(F−,−) by pre-

composition.

29

F

B

A

F

A

A

A
F

B B

F

B

Figure 3.5: Unit and counit of an adjunction

Id Id

A
F

B

A

F

B

F

F

B

F

B

A A
F

A

A

B
F

B

A
F F

B
F

B

A

Figure 3.6: Commutativity satisfied by the unit and counit of an adjunction. Here,
we are using the position of the arrows to indicate where the rewrites are taking place.

Given two functors there is an evident natural transformationA(a′, a) −→
∫ b∈B B(Fa′, b)×

B(b, Fa) (i.e. 1A −→ F ∗ ◦ F∗). There is also a transformation
∫ a∈A B(b′, Fa) ×

B(Fa, b) −→ B(b′, b) (i.e. F∗ ◦ F ∗ −→ 1B). In fact we can state more than this, in
the form of a theorem we will state without proof

Theorem 3.1. For a functor A F−→ B, F∗ is left adjoint to F ∗. Moreover this is a
characterization – a profunctor with a right adjoint is representable.

We indicate the (unique up to isomorphism) right adjoint to a profunctor F in
the string diagrams by vertically flipping the slanted box, but keeping the same label
F (This is clearer by looking at the pictures). Then the adjointness property means
there are two 2-cells as in Figure 3.5, subject to two commutative diagrams (Figure
3.6).

Finally, note that by taking Cartesian products, prof can be made into a monoidal
bicategory just as cat, where the unit 1prof is given by the single-object, single-arrow
category. We write � for this product. The product is symmetric by taking the maps
which “swap” the two factors. Notice also that the category Aop gives a left and
right dual object for each category A in prof, making it autonomous (see Appendix
A). This gives us several “cup” and “cap” diagrams (Figure 3.7), where for instance
the cup A × Aop −→ 1prof is just the hom-functor (a, a′) 7→ A(a′, a) and the rest
are defined similarly. The cups and caps feature invertible 2-cells, shown in Figure
3.8, a bicategorical generalization of the “snake equations” for objects in monoidal
categories.

30

Figure 3.7: Cups and caps witnessing duality

Figure 3.8: 2-cells like these allow us to “pull strings tight,” or alternatively to bend
them.

3.2 Frobenius Pseudoalgebras

Throughout the following, let B be an arbitrary symmetric monoidal bicategory.

Definition 3.1. A pseudomonoid (A,⊕, 1⊕, α⊕, l⊕, r⊕) in B is given from

• An object A ∈ B0

• Two 1-cells A� A
⊕−→ A and IB

1⊕−→ A (Figure 3.9)

• A 2-cell α⊕ witnessing the associativity of ⊕ and two (l⊕, r⊕) witnessing the
unitality of 1⊕ with ⊕ (Figure 3.10)

• Subject to certain coherence conditions: that diagrams of Figures 3.11 and 3.12
must commute.

Figure 3.9: Monoid 1-cells

31

Figure 3.10: Monoid 2-cells

Figure 3.11

Remark 3.2. Similarly to our conventions with monoidal categories (which the
reader can verify are precisely pseudomonoids in cat), we often abbreviate the
data of a pseudomonoid to simply (A,⊕, 1⊕). We will never conflate the pseu-
domonoid for the object, however, since we will consider several such structures
on one object simultaneously.
As a convention, in our diagrams a white dot corresponds to what is ⊕ in the
text. A black dot always corresponds to ⊗.

The definition of a pseudocomonoid is obtained by vertically flipping the direction
of the 1-cells above. Hereafter we may simply drop the unwieldy prefix “pseudo-,”
but we do not mean to imply that the structures under consideration are strict in any
way.

If the pseudomonoid is equipped with an additional coherent invertible 2-cell as in
Figure 3.13, then it is commutative (and likewise for pseudocomonoids). One of the
coherence conditions is shown in Figure 3.14, and another is generated by horizontally
flipping the 1-cells pictured there.

Definition 3.2. Suppose (A,⊕, 1⊕) is a pseudomonoid in an autonomous B. There
is an induced comonoid on A◦ defined from the data in Figure 3.15. We call this the
dual comonoid. Likewise for pseudocomonoids, which induce dual pseudomonoids.

Definition 3.3. A Frobenius pseudoalgebra (A,⊕, 1⊕,⊗, 1⊗, f) in B is given by

32

Figure 3.12

Figure 3.13: Commutativity of a pseudomonoid

• The data (A,⊕, 1⊕) of a pseudomonoid on A

• The data (A,⊗, 1⊗) of a pseudocomonoid on the same object

• An invertible 2-cell f as in Figure 3.16

There is an additional 2-cell for these structures which comes for free.

Theorem 3.2. Suppose we have the data (A,⊕, 1⊕,⊗, 1⊗, f) of a Frobenius pseu-
doalgebra. Then we can also equip it with two invertible 2-cells shown in Figure 3.17.

Figure 3.17: 2-cells of these types are a fundamental to the study of Frobenius pseu-
doalgebras. We shall call these the “Frobenius rewrites.”

Proof. We shall construct just one of the cells (Figure 3.18), and the other follows
from composing with the Frobenius 2-cell in Figure 3.16.

Figure 3.18

33

Figure 3.14: Coherence required of commutativity

=

Figure 3.15: The dual comonoid

It is not hard to show that in the commutative case, we have a converse to the
above theorem – either one of the of the 2-cells given is sufficient to derive a 2-cell
making the structure Frobenius.

To study ∗-autonomous categories, we impose further conditions on the algebra.

Definition 3.4. If the monoid and comonoid (and their units) of a Frobenius pseu-
doalgebra have adjoints, the resulting structure is called a †-Frobenius pseudoalgebra.

This terminology is also used to describe situations where the comonoid itself is
adjoint to the monoid. We are considering a more general situation. By specializing to
the case where B is the autonomous monoidal bicategory prof, we shall demonstrate
below that we have arrived at a definition of ∗-autonomous categories. To see this,
note that the axioms of a ∗-autonomous category guarantee a few things:

• The two monoidal structures on the categoryA are precisely two pseudomonoidal
structures on A as an object of cat, which become pseudomonoidal structures
on A in prof. The adjoints (which are given, for instance, by functors like
X, Y, Z 7→ A(X ⊗ Y, Z)) induce pseudocomonoidal structures as well. Further-
more we can take the duals of all of these objects to give (co)monoidal structures
on Aop.

• The covariant embedding of S, a profunctor A −7−→ Aop defined by (a′, a) 7→
Aop(Sa′, a)(= A(a, Sa′)), is a weak inverse to the covariant embedding of Sop.

34

Figure 3.16: The “Frobeniusator”

We also have several duality isomorphisms like the one shown in Figure 3.19.
They are expressing the various isomorphisms like A(x, Sy) ' A(y, Sx) which
are a consequence of the self-adjointness of S.

S S

Figure 3.19: We often use rewrites like these, a consequence of S being left and right
adjoint to Sop.

• The isomorphism
A(A⊗B, SC) ' A(A, S(B ⊗ C))

gives us a local rewrite of either of the equivalent forms depicted in Figures 3.20
3.21 (we will use both interchangeably – we could always achieve one rewrite
from the other by appealing to the “snake” 2-cells relating the cups and caps
between A and Aop).

Sop

Sop

Figure 3.20: One way of picturing the hom-set isomorphism of ∗-autonomy.

Theorems 3.3 and 3.4 show that ∗-autonomous categories can be characterized as
certain objects in prof. These theorems are based on a set of observations by Street
in [18].

Remark 3.3. In some of the diagrams below we do not depict excessive fid-
dling with wires. Implicitly we are making heavy use of the snake 2-cells and
interchange law for monoidal bicategories.

35

SopSop

Figure 3.21: An equivalent way of picturing the hom-set isomorphism of ∗-autonomy.

Theorem 3.3. ∗-autonomous categories induce commutative †-Frobenius pseudoal-
gebras in prof, for which the adjoint of ⊗ is the comonoid and • is the monoid.

Proof. We already know that ∗-autonomous categories induce the commutative monoid
and comonoid. What we must verify is the existence of an invertible 2-cell between
the left (Figure 3.22) and right (Figure 3.23) configurations. Figure 3.24 shows that
this follows from the commutativity of the (co)monoids, the fact that IdA ' Sop ◦ S,
and the ∗-autonomy rewrite described above.

Figure 3.22: (A,B,C,D) 7→
∫ x∈AA(A⊗X,C)×A(B, S(SX ⊗ SD))

Figure 3.23: (A,B,C,D) 7→
∫ x∈AA(A, S(SC ⊗ SX))×A(X ⊗B,D)

Theorem 3.4. The previous theorem is essentially a characterization. Commutative
†-Frobenius pseudoalgebras in prof are ∗-autonomous categories.

Proof. Suppose A is a Frobenius pseudoalgebra. First, we appeal to Theorem 3.1 to
see that the monoid and its unit are representable, say by a functor A×A •−→ A and
another of type 1prof −→ A (which is equivalent to giving an object in A). From the 2-
cells witnessing the associativity, unitality, and commutativity of the pseudomonoid,
and the coherence of the pseudomonoid, we can reconstruct appropriately coherent
natural transformations to complete the monoidal structure on A. (For instance, the
2-cells allows us to construct a natural isomorphism A(A,A)×A(B,B)×A(C,C) −→
A(A ⊗ (B ⊗ C), (A ⊗ B) ⊗ C), from which it is easy to obtain the component αa,b,c
of the associator transformation.) Similarly, the dual pseudomonoid induced by the
pseudocomonoid has a right adjoint, giving a monoidal structure on Aop, which is

36

Sop

S S

S

S

Sop

S

Sop

S

S

Sop

SS

Sop

S

Sop

S

Figure 3.24: The Frobenius law is a direct consequence of the axioms of ∗-autonomous
categories. The last 2-cell applied to the braiding of the • monoidal structure, which
can be defined from that of the ⊗ monoid

Figure 3.25: These 1-cells are weak inverses to each other, allowing us to define a
contravariant self-adjoint equivalence S on A

equivalent to giving one on A. The “snake” 2-cells and the Frobenius law 2-cells
(particularly the one depicted in Theorem 3.2), shows that the two 2-cells in Figure
3.25 are left and right inverse to each other. It is well known that equivalences can
be refined to be adjoint equivalences – hence the 1-cells are adjoint to each other and
are representable. This observation also gives us the isomorphism IdA ' Sop ◦S. We
must verify the natural isomorphism

A(A⊗B, SC) ' A(A, S(B ⊗ C)).

It is established from the invertible 2-cell in Figure 3.26.

Definition 3.5. For a given Frobenius pseudoalgebra, if the diagram of Figure 3.27
(and the one built from taking mirror images of 1-cells) commutes, the structure is
considered coherent (with units).

37

Figure 3.26: The hom-set isomorphism of ∗-autonomous categories. We have used
associativity, the definition of the dual pseudomonoid, commutativity, and several
(implied) instances of the snake 2-cells and interchange law.

Currently it is thought every Frobenius pseudoalgebra is coherent in this manner.
Some motivation is given in Chapter 4, where visualizing the resulting surfaces yields
two figures which are homotopy equivalent. For now, we shall take this coherence as
an axiom and consider its consequences.

What is the advantage of considering such structures? One example is the co-
herence of linear distribution. We return to the derivation of linear distribution
in ∗-autonomous categories as described in [15]. We can visualize this construc-
tion in surfaces diagrams. A close examination shows the first morphsim of type
A ⊗ S(A ⊗ B) −→ B is derived by a transformation which looks like that shown in
Figure 3.28. The second, of type SB −→ (SB(C)(C, is effectively what is shown
in Figure 3.29. The isomorphism from Figure 2.9 is given in Figure 3.30. The full
derivation of linear distribution is then shown in 3.31.

Using the adjoint properties of the (co)monoids, giving a 2-cell of the type in
Figure 3.31 is equivalent to giving one as in 3.32. Instead of deriving a rewrite like
3.32 through this approach, however, we can employ the Frobenius rewrites, whose
use greatly simplifies matters.

38

Figure 3.27: One of the unit coherence properties for Frobenius pseudoalgebras. On-
going work seeks to characterize pseudoalgebras properties like these.

S S−1

S

Sop

S

Sop

S

Sop Sop

S

Figure 3.28: A natural transformation A(A,A)×A(B,B) −→ A(A⊗ S(A⊗B), SB)

Figure 3.32: The type of linear distribution.

Theorem 3.5. A †-Frobenius pseudoalgebra has a linear distribution, a 2-cell of the
form Figure 3.32.

Proof. See Figure 3.33

39

S

S

S−1

S

S S−1

Figure 3.29: A natural transformation A(B,B) × A(C,C) −→ A(SB, (SB (C) (
C)

S−1

S−1

S−1

Figure 3.30: A natural transformation A(A⊗X, Y (C)×A(A⊗ Y,X (C)

40

S
S−1

S−1

S

S−1 S

S−1

S

Figure 3.31: A natural transformation A(A,A)×A(B,B)×A(C,C) −→ A(A⊗ (B •
C), (A⊗B) • C), built from the rewrites in Figures 3.28, 3.29, and 3.30.

41

Figure 3.33: Linear distribution derived from Frobenius rewrites

It is not currently known whether the resulting transformation of hom-sets through
this approach is identical to using the linear distribution of Figure 3.31. However, the
Frobenius approach seems to simplify the coherence properties of linear distribution,
if we are correct in speculating that all Frobenius pseudoalgebras are coherent with
units.

Theorem 3.6. For a given †-Frobenius pseudoalgebra, if the Frobenius law is coherent
with units as in Figure 3.27, then the linear distribution of Theorem 3.5 is coherent
with units in the sense that Figure 3.34 commutes (These are prototypical examples
– We also require diagrams built from mirror images of these 1-cells to commute, for
instance).

Proof. See Figure 3.35.

Figure 3.34: Prototypical example of the coherence required of linear distribution

We will conclude this chapter with a some conjectures which form the grounds for
future work.

42

Adjoints

AdjointsFrobenius

Unit Adjoints

Unit

Unit

Adjoints

Identity

Unit

Figure 3.35: Coherence for the linear distribution rewrite of Figure 3.33, assuming a
coherent Frobenius law. Following diagram along the bottom gives the linear distri-
bution defined in Figure 3.33. Along the top, we get a simple unit introduction.

Conjecture 3.1. All Frobenius pseudoalgebras are coherent with units in the sense
we have defined.

The next conjecture is somewhat imprecise and largely dependent on the previous
one.

Conjecture 3.2. The coherence of linear distribution in ∗-autonomous categories
can be inferred from the coherence properties of Frobenius pseudoalgebras.

In the next chapter we shall examine the correlation between identifications of
proofs and equivalence of surfaces in the surface calculus.

43

Chapter 4

Proofs as Surfaces

In this chapter we shall look at a few examples of how linear logic fits into this idea
of surface deformations (/string diagram rewrites). We shall also visualize a few
examples of three-dimensional surfaces to motivate the ongoing work in this area. In
general, we have some choice on exactly how to draw the surface corresponding to a
rule or proof in linear logic. What we demonstrate here are some possibilities.

First notice for a ∗-autonomous categoryA that there are isomorphismsA(A,A) '
A(I, S(A ⊗ SA)) ' A(A ⊗ SA,⊥), corresponding to the 2-cells in Figure 4.1. This
is essentially a general property of Frobenius pseudoalgebras: cups and caps are
determined up to an invertible 2-cell, and the Frobenius 2-cells, combined with the
fact that S and Sop are weak inverses, guarantee that the 1-cells pictured give a
duality between A and Aop.

Sop

S

Figure 4.1

The two-sided introduction rule

id
A ` A

44

has a simple interpretation: The natural transformation 1prof(?, ?) −→ A(A,A)
which sends id? 7→ idA. It is shown in Figure 4.2.

A

A

Figure 4.2

The one-sided introduction rule can be seen through a regular introduction com-
bined with the isomorphism between caps above.

A

A

A AA A

Sop

Figure 4.3

The negation laws are essentially the same as the ∗-autonomy isomorphism (see
Figure 4.4).

45

Sop

Sop

S

Sop

S

Sop

S

S

Sop

S

Sop

S

Sop

Figure 4.4

Now consider (cut).

Γ1 ` ∆1, A A,Γ2 ` ∆2
(cut)

Γ1,Γ2 ` ∆1,∆2

Suppose we fix a linear distribution 2-cell based on the approach in [15] (recall
that this is defined though Figures 3.28, 3.29, 3.30, and 3.31, and then using the
adjoint properties of the monoids to derive a 2-cell of the form 3.32). Then the
interpretation of (cut), as given in Chapter 2, has the visualization shown in Figure
4.5. It is suspected that an equally good (except much simpler) approach is to use a
Frobenius rewrite like in Figure 4.6.

Γ2

∆2

A∆1

A

Γ1

Γ2

∆1

Γ1

Γ2Γ1

A

∆2

∆1 A

∆2

∆1

Γ2Γ1

∆2

∆1

Γ2

∆2

Γ1

Figure 4.5: The interpretation of the (cut) rule given in Chapter 2

46

Γ2

∆2

A∆1

A

Γ1

Γ1

∆2

∆1

Γ2

Γ2

∆1 ∆2

Γ1

Figure 4.6: A candidate for interpreting the (cut) rule based on Frobenius rewrites

Essentially the same discussion applies to the interpretation of the (⊗R) rule – the
standard approach is through linear distribution, but Frobenius rewrites seem to offer
a simpler approach. We shall look at some examples to highlight this. In the simplest
case, the ⊗ rule is simply given by the natural transformation A(A,A)×A(B,B) −→
A(A⊗B,A⊗B) which forms part of the adjunction in prof between the ⊗ monoid
and its adjoint, a comonoid. For instance, the proof in Figure 4.7 has the surface of
Figure 4.8.

id
A ` A

id
B ` B id

C ` C ⊗R
B,C ` B ⊗ C

⊗R
A,B,C ` A⊗ (B ⊗ C)

⊗L
A,B ⊗ C ` A⊗ (B ⊗ C)

Figure 4.7: A particularly simple use of the (⊗R) rule

Figure 4.8

The real interest has to do with way the ⊗ monoid interacts with the ⊕ monoid.
Consider the one-sided proof in Figure 4.9. The proof net is shown in Figure 4.10. We
give two surfaces for this deduction. Figure 4.11 constructs a morphism of the cor-
responding type in ∗-autonomous categories based on the linear distribution. Figure
4.12 accomplishes the same thing using Frobenius rewrites. We believe that reading
the proof net from top to bottom roughly corresponds with reading the rewrites from
left to right as shown.

47

id
` A⊥A

id
` B⊥, B

⊗R
` A⊥, A⊗B,B⊥

Figure 4.9

A⊥A B⊥B

A⊗B

Figure 4.10: The proof net for Figure 4.9. The downward arrow loosely corresponds
to the arrows running from left to right in the rewrite (surface) diagrams.

A

Sop

A B

Sop

B

BBA

Sop Sop

A

B

A A

Sop

B

Sop

B

B

Sop

Sop

AA

Sop

BA

Sop

A

B

Figure 4.11: A surface diagram using a linear distribution 2-cell to construct a mor-
phism I −→ (SA • (A⊗B)) • SB in a ∗-autonomous category

48

A

Sop

A B

Sop

B
B

Sop Sop

A

Sop

BA

Sop

A

BA

Sop Sop

B

B

A B

Sop

A

Sop

B

A

BA

Figure 4.12: A surface diagram using Frobenius rewrites to construct a morphism
I −→ (SA • (A⊗B)) • SB in a ∗-autonomous category

Compare the Frobenius-based surface in Figure 4.12 to the proof net in Figure
4.10. The first stages of rewrites appear to correspond with the geometry of the proof
net. In fact it seems that the surface depicts the proof net being drawn – beginning
from an empty page, we introduce two identity axioms, then “wire together” two
objects whose conjunction we want to take. We also see something new in the surface
diagram: a series of rewrites which appear to depict the proof net being rewritten
into a normal form. The final 1-cell depicted is the hom-set A(I, (SA•(A⊗B))•SB),
which directly corresponds with the sequent ` A⊥, A⊗B,B⊥ in the deduction shown
in Figure 4.10. It seems likely that the existing criteria for proof net correctness have
to do with characterizing when configurations of 1-cells like the ones shown can be
rewritten into a form like the final 1-cell pictured using Frobenius rewrites.

Now suppose the underlying psuedoalgebra is coherent with the units. Returning
to the examples from Figures 2.12 and 2.13 in Chapter 2, we find that the diagram in
Figure 4.13 commutes. Whereas the proof nets of Figure 2.13 had to be identified for
reasons removed from proof net theory per se (that is, because of complicated coher-
ence conditions satisfied by the linear distribution natural transformations defined in
[15]), here we see grounds for identification of proof nets which are more immediate.

Finally, we shall indicate the potential to use topological arguments in surface
identification. First, a simple example: unit introduction and elimination. Recall
the unitality 2-cell from Figure 3.10 in Chapter 3. The units have the property
indicated in Figure 4.14 (where we have slightly distorted the geometry to make the
visualization as a surface easier). Visualized as a surface, this invertibility property
states that the surfaces of Figure 4.15 are equal. The two surfaces are seen to be
homotopy equivalent.

Now consider adjoint profunctors. The diagram in Figure 3.6, specialized to the

49

A

Sop Sop

B

A B

Sop

A

Sop

B

BA

Sop

A

B

B

Sop A

A

Sop Sop

B

A B

A

Sop Sop

B

A B

Figure 4.13: The coherence axiom of Frobenius pseudoalgebras implies this diagram
commutes.

Figure 4.14: The unitors are isomorphisms.

case where the representable profunctor is induced by the ⊗ functor, becomes what
is shown in Figure 4.16.

The 2-cell of type 1A�A −→ ⊗∗ ◦ ⊗∗, has a surface visualization given by Figure
4.17. The other 2-cell, which has type ⊗∗ ◦ ⊗∗ −→ 1A, has the visualization given in
Figure 4.18. Putting them together, one of the equations of the adjunction states
that the 2-cell in Figure 4.19 is the same as that in Figure 4.20.

Now we look at linear distribution. The type of linear distribution (from Figure
3.32) has the three-dimensional visualization shown in 4.21. We have discussed the
fact that [15] defines a particular 2-cell of this type using the axioms of ∗-autonomous
categories, and this cell satisfies many coherence conditions, including for example
the fact that Figure 4.22 is the same as Figure 4.23.

The supposed coherence property of Frobenius pseudoalgebras states that Figures
4.24 and 4.25 define the same 2-cell. Again we see that the surfaces are related by
some notion of deformation.

We conjecture that this idea can be formalized and applied to all derivations in
linear logic.

Conjecture 4.1. There is a precise notion of deformation of surfaces, and a choice
of 2-cells necessary to interpret the rule of linear logic, such that two proofs in linear
logic are identified in ∗-autonomous categories if and only if the corresponding surface
diagrams can be deformed into each other in that sense.

50

=

Figure 4.15: Unit introduction followed by elimination is equal to the identity

Id

Figure 4.16: This diagram commutes as part of the adjunction between ⊗∗ and ⊗∗

Figure 4.17: One of the 2-cells of the adjunction between the covariant and con-
travariant embeddings of ⊗ into prof.

Figure 4.18: Another one of the 2-cells of the adjunction between the covariant and
contravariant embeddings of ⊗ into prof.

51

Figure 4.19: This surface is the same 2-cell as Figure 4.20.

Figure 4.20: This 2-cell is merely the identity on the hom-functor (A,B,C) 7→ A(A⊗
B,C)

Figure 4.21: Linear distribution, visualized as a surface.

52

A

B

C

Figure 4.22: When linear distribution is given according to [15], this surface defines
the same 2-cell as 4.23.

Figure 4.23: A simple unit introduction, shown as a surface.

Figure 4.24: A unit introduction followed by a Frobenius rewrite.

53

Figure 4.25: A simple unit introduction

54

Appendix A

Symmetric Monoidal Bicategories

This section is a quick guide to defining symmetric monoidal bicategories. Our pri-
mary reference for this section is [16], where even more full definitions are given.

Definition A.1. A bicategory B consists of several pieces of data:

• A class B0 of objects (0-cells) x, y, z . . .

• For each ordered pair (x, y) of objects, a category B(x, y) whose objects are
1-cells from x to y, and whose morphisms are 2-cells. A 2-cell f

µ
=⇒ g, where f

and g are 1-cells from x to y, is written

x y

f

g

µ

Composition in B(x, y) is known as vertical composition of 2-cells in B, due to
the diagrammatic notation.

x y

f

g

h

µ

ν

• For each object x ∈ C, a distinguished 1-cell 1x ∈ C(x, x), the identity 1-cell at
x.

x x
1x

55

• For each ordered triple (x, y, z) of objects, a functor C(y, z) × C(x, y)
◦x,y,z−−−→

C(x, z), the horizontal composition functor. For two 1-cells, say x
f−→ y and

y
g−→ z, we write their horizontal composite as g ◦ f , eliding subscripts.

x y zµ ν

• For each pair (x, y) of objects, two natural isomorphisms known respectively as
the left and right unitors,

lx,y : ◦x,y,y ◦
(
Iy × IdC(x,y)

)
−→ IdC(x,y)

rx,y : ◦x,x,y ◦
(
IdC(x,y) × Ix

)
−→ IdC(x,y)

where, for instance,
(
IdC(x,y) × Ix

)
is the functor sending the 1-cell x

f−→ y to
f ◦x,x,y 1x, with a straightforward definition on 2-cells.

Thus, such transformations consist of invertible 2-cells which look like the fol-
lowing:

x y y
f 1y

f

lx,yf

x x y
1x f

f

rx,yf

natural in the variable f .

• For each quadruple x, y, z, w ∈ C, an associator natural isomorphism

ax,y,z,w : ◦x,y,w ◦
(
◦y,z,w ×IdC(x,y)

)
−→ ◦y,z,w ◦

(
IdC(z,w) × ◦x,y,z

)
Thus we can read diagrams like

x y z w
f g h

56

uniquely up to canonical isomorphism, because of 2-cells which look like

x w

h ◦ (g ◦ f)

(h ◦ g) ◦ f
α

• These data are required to satisfy two sets of coherence conditions, namely the
pentagon identity and the triangle identity, given by commutative diagrams (in
the hom-categories) of the form

(g ◦ 1y) ◦ f g ◦ (1y ◦ f)

g ◦ f

α

r ∗ f
g ∗ l

Figure A.1: The Triangle Identity

and

(k ◦ h) ◦ (g ◦ f)

((k ◦ h) ◦ g) ◦ f k ◦ (h ◦ (g ◦ f)

(k ◦ (h ◦ g)) ◦ f k ◦ ((h ◦ g) ◦ f)

α

α ∗ f

α

k ∗ α

α

Figure A.2: The Pentagon Identity

Throughout the following, assume B and C are bicategories.

Definition A.2 (Whiskering). Given a 1-morphism x
f−→ y and a 2-cell g

µ
=⇒ h

between two 1-morphisms of type y −→ z, we can “compose” f with µ to define a new
2-cell, µ◦1f , from f ◦x,y,z g to f ◦x,y,z h. This 2-cell is written µf , and the operation is
known as whiskering (µ from the left by f). Similarly we can define whiskering from
the right.

57

x y z
f

g

h
µ

:=

x y z

f

f
1f

g

h
µ

Whiskering is “associative” in the sense that writing µfg is unambiguous.

Definition A.3. In B, an equivalence (f, g, µ, ν) is a pair of 1-morphisms x
f−→ y,

y
g−→ x, an invertible 2-cell µ : (g ◦ f) ' 1x, and invertible ν : (f ◦ g) ' 1y.

x y x

f g

1x µ

y x y

g f

1y ν

Definition A.4. In B, an adjunction (l, r, η, ε) is a pair of 1-morphisms x
l−→ y,

y
r−→ x, a 2-cell 1x

η
=⇒ r ◦ l, and a 2-cell l ◦ r ε

=⇒ 1y, such that:

(rε) ◦ (ηr) = 1r

and

(εl) ◦ (lη) = 1l

That is,

x y x yl r l

1x

1y

η

ε

=

x y

l

l
1l

We write l a r, or more explicitly l aεν r

Remark A.1. Alternate terminology says that l is left dual to r, and r a right
dual to l.

Definition A.5. In B, an adjunction (l, r, η, ε) is an adjoint equivalence when η and
ε are invertible.

58

y x y x
r l r

1y

1x

η

ε

=

y x

r

r
1r

It is clear that an adjoint equivalence is a kind of equivalence, especially a more
structured or coherent one. However the property of being an adjoint equivalence
is not more general than the less structured one, since we can always rechoose our
2-cells to form an adjoint equivalence.

Theorem A.1. Suppose (f, g, µ, ν) is an equivalence in B. Then we can find an η,
ε such that (f, g, η, ε) is an adjoint equivalence.

Proof. We will just give the construction here. In fact we can simply take η = µ and

choose ε = f ◦ g fgν−1

−−−→ fgfg
fη−1

−−−→ fg
ν−→ 1.

y x y y

x

f ◦ g

g f 1y

g f1xg

1y

The proper notion of a “morphism between bicategories” is given by a pseudo-
functor.

Definition A.6. A pseudofunctor F from B to a bicategory C is given by the following
data:

• For each x ∈ B0, an object Fx ∈ C0.

• For each (x, y), a functor Fx,y : B(x, y) −→ C(Fx, Fy)

59

• For each x ∈ B0, an invertible 2-cell between the identity 1Fx ∈ C(Fx, Fx) and

Fx,x1x.

Fx Fx

Fx,x1x

1Fx

µ

• For each x, y, z in B0, a natural isomorphism between the functors ◦CFx,Fy,Fz ◦
(Fb,c × Fa,b) and Fa,c ◦ (◦a,b,c). Thus a class of 2-cells

Fy

Fx Fz

Ff Fg

F (g ◦ f)

µ

• These data are required to satisfy some coherence conditions discussed in [16].

Before defining a monoidal structure on a bicategory, we need to define the notion
of a transformation between pseudofunctors and a modification between transforma-
tions.

Definition A.7. Given two pseudofunctors F,G : B → C between bicategories, a
transformation σ : F −→ G is given by

• 1-cells Fx
σx−→ Gx for each x ∈ B0.

• Natural isomorphisms σx,y : σx ◦ Fx,y −→ Gx,y ◦ σy, thus consisting of invertible
2-cells σf of the form

Fx

Gx Gy

Fy
Fx,yf

σx

Gx,yf

σy
σf

natural in the variable f .

• These data are required to satisfy coherence conditions that are further dis-
cussed in [16].

60

Definition A.8. Given two transformations σ, τ : F → G between pseudofunctors,

a modification σ
Σ−→ G consists of 2-cells σx

Σx−→ τx such that all diagrams like the
following commute.

σx ◦ Fx,y

Gx, yf ◦ σy Gx,yf ◦ τy

τx ◦ Fx, y
id ∗ Σy

σf

Σx ∗ id

τf

We are now in a position to define a symmetric monoidal structure on a bicategory.
Our definition is terse – see [16] for more details.

Definition A.9. A symmetric monoidal bicategory (B,�, I, α, l, r, π, λ, %).

• A pseudofunctor � : B × B −→ B

• An associator transformation and two unitor transformations, consisting of ad-
joint equivalences

• Invertible modifications expressing coherence of the associator and unitors

• A braiding transformation β, also an adjoint equivalence with chosen data

• Invertible modifications expressing the coherence of β with the associators and
unitors

• An invertible modification expressing the symmetry of β

• A wealth of coherence equations between all of these data

The coherence and structure of a symmetric monoidal bicategory allow us to ex-
amine 2-cells through the surface diagrammatic notation and the 1-cell “local rewrite”
notation used in Chapter 3.

Definition A.10 (Biduality). In a symmetric monoidal bicategory B, a bidual pairing
(L,R, e, n, α, β) is composed of

• Two objects L,R ∈ B0

• 1-morphisms I
n−→ R� L, L�R

e−→ I

61

• Two invertible 2-cells α and β

L

L� I

L� (R� L) (L�R)� L

I� L

L

R

I�R

(R� L)�R R� (L�R)

R� I

R

If there exists a bidual pairing (L,R, e, n, α, β), we say that L is left bidual to R,
and R right bidual to L.

Definition A.11. If every object in B has a (left/right) bidual, then B is (left/right)
autonomous.

62

Bibliography

[1] Michael Barr. “*-Autonomous Categories”. In: Lecture Notes in Mathematics.
Vol. 752. Springer-Verlag, 1979, pp. 1–100.

[2] Jean Bénabou. “Distributors at Work”. June 2000. url: http://www.mathematik.
tu-darmstadt.de/~streicher/FIBR/DiWo.pdf.

[3] Vincent Danos and Laurent Regnier. “The Structure of Multiplicatives”. In:
Arch. Math. Logic 28 (1989), pp. 181–203.

[4] K. Dosen and Z. Petri. Proof-Net Categories. 2005.

[5] Jean-Yves Girard. “A New Constructive Logic: Classical Logic”. In: Mathemat-
ical Structures in Computer Science 01 (1991), pp. 255–296.

[6] Jean-Yves Girard. “Linear Logic”. In: Theoretical Computer Science (1996).

[7] Jean-Yves Girard. “Proof-nets: The parallel syntax for proof-theory”. In: Logic
and Algebra. Marcel Dekker, 1996, pp. 97–124.

[8] Willem Heijltjes and Lutz Straburger. “No Proof Nets for MLL: Proof equiv-
alence in MLL with units is PSPACE-complete”. In: Proc. Login in Computer
Science 2(4:3) (2014), pp. 1–44.

[9] Willem Heijltjes and Lutz Straburger. “Proof nets and semi-star-autonomous
categories”. In: Mathematical Structures in Computer Science FirstView (Aug.
2015), pp. 1–40. issn: 1469-8072. url: http://journals.cambridge.org/
article_S0960129514000395.

[10] Chris Heunen and Jamie Vicary. “Categorical Quantum Mechanics: An Intro-
duction”. Course Notes. Hilary Term 2015. url: https://www.cs.ox.ac.uk/
files/7051/notes.pdf.

[11] Dominic Hughes. “Simple multiplicative proof nets with units”. 2005.

[12] Yves Lafont Jean-Yves Girard and Paul Taylor. Proofs and Types. Cambridge
University Press, 1989.

[13] Francois Lamarche and Lutz Straburger. “From proof nets to the free *-autonomous
category.” In: Logical Methods in Computer Science 2(4:3) (2006), pp. 1–44.

[14] Fosco Loregian. “This is the co/end, my only co/friend”. 2015. url: http:

//arxiv.org/pdf/1501.02503v2.

[15] J.R.B. Cocket R. A. G. Seely. “Weakly Distributive Categories”. In: Journal of
Pure and Applied Algebra 114 (1997).

63

[16] Christopher John Schommer-Pries. The Classification of Two-Dimensional Ex-
tended Topological Field Theories. 2009.

[17] R.A.G. Seely. “Linear Logic, ∗-autonomous Categories and Cofree Coalgebras”.
In: In Categories in Computer Science and Logic. American Mathematical So-
ciety, 1989, pp. 371–382.

[18] Ross Street. “Frobenius monads and pseudomonoids”. In: 2-categories Compan-
ion 73. 2004, pp. 3930–3948.

64

