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Q: Why (how) does it work?

A: ‡-compact/scc categories capture
the logically relevant structure of Hilb.

Task

Rational reconstruction of the "logically relevant structure".

◮ ⊗, ‡— partitions and interactions

◮ ⊕— base decompositions
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A: ‡-compact/scc categories capture
the logically relevant structure of Hilb.
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Rational reconstruction of the "logically relevant structure".

◮ ⊗, ‡— partitions and interactions

◮ ⊕— base decompositions

Pro: Need a computational base.
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A: ‡-compact/scc categories capture
the logically relevant structure of Hilb.

Task

Rational reconstruction of the "logically relevant structure".

◮ ⊗, ‡— partitions and interactions

◮ ⊕— base decompositions

Pro: Need a computational base.
Con: Not preserved on the states.
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Introduction

Categorical quantum mechanics

Q: Why (how) does it work?

A: ‡-compact/scc categories capture
the logically relevant structure of Hilb.

Task

Rational reconstruction of the "logically relevant structure".

◮ ⊗, ‡— partitions and interactions

◮ ⊕— base decompositions

Pro: Need a computational base.
Con: Not preserved on the states.

Proposal: Classical objects
Where do they come from?
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f : Ω −→ Ω : x 7→ f (x)

f ′ : Ω× Ω
∼
−→ Ω× Ω : (x , y) 7→ (x , f (x)⊕ y)

Uf : B ⊗ B −→ B ⊗ B : |x , y〉 7→ |x , f (x) ⊕ y〉
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Example

f : Ω −→ Ω : x 7→ f (x)

f ′ : Ω× Ω
∼
−→ Ω× Ω : (x , y) 7→ (x , f (x)⊕ y)

Uf : B ⊗ B −→ B ⊗ B : |x , y〉 7→ |x , f (x) ⊕ y〉

Abstraction in computation

◮ counterpart of implementation:
◮ ". . . whatever x and y might be. . .

◮ interface specification
◮ denote abstract data by variables:

copiable, deletable
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λ-abstraction

S
f

x

a

fa

adx
Z[x ]

Z

Z
2 −→ Z[x ] : (a,b) 7→ ax3 + bx + 1

Z
2 −→ Z

Z : (a,b) 7→ λx . ax3 + bx + 1
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λ-abstraction in cartesian closed categories

adx
1 x
−→ X

1 a
−→ FX

S

S[x ]

F

Fa

C

A λx .fx−→ BX in S

A fx−→ B in S[x : X ]
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λ-abstraction in cartesian closed categories

adx
1 x
−→ X

1 a
−→ FX

S

S[x ]

F

Fa

C

S(A,BX )

S[x ](A,B) A
fx
−→B

A
λx .fx
−→BX

A
〈ϕ,x〉
−→ BX×X ǫ

→B

A
ϕ

−→BX
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λ-abstraction in cartesian closed categories

Theorem (Lambek, Adv. in Math. 79)

Let S be a cartesian closed category, and S[x ] the free
cartesian closed category generated by S and x : 1→ X.
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λ-abstraction in cartesian closed categories

Theorem (Lambek, Adv. in Math. 79)

Let S be a cartesian closed category, and S[x ] the free
cartesian closed category generated by S and x : 1→ X.

Then the inclusion adx : S −→ S[x ] has a right adjoint
abx : S[x ] −→ S : A 7→ AX and the transpositions

S(A,abxB)

S[x ](adxA,B) A
fx
−→B

A
λx .fx
−→BX

A
〈ϕ,x〉
−→ BX×X

ǫ
→B

A
ϕ

−→BX

model λ-abstraction and application.
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λ-abstraction in cartesian closed categories

Theorem (Lambek, Adv. in Math. 79)

Let S be a cartesian closed category, and S[x ] the free
cartesian closed category generated by S and x : 1→ X.

Then the inclusion adx : S −→ S[x ] has a right adjoint
abx : S[x ] −→ S : A 7→ AX and the transpositions

S(A,abxB)

S[x ](adxA,B) A
fx
−→B

A
λx .fx
−→BX

A
〈ϕ,x〉
−→ BX×X

ǫ
→B

A
ϕ

−→BX

model λ-abstraction and application.

S[x ] is isomorphic with the Kleisli category for the power
monad (−)X .
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κ-abstraction in cartesian categories

Theorem (Lambek, Adv. in Math. 79)

Let S be a cartesian category, and S[x ] the free
cartesian category generated by S and x : 1→ X.

Then the inclusion adx : S −→ S[x ] has a left adjoint
abx : S[x ] −→ S : A 7→ X × A and the transpositions

S(abxA,B)

S[x ](A,adxB) A
fx
−→B

X×A
κx .fx
−→B

A
〈x,id〉
−→ X×A

ϕ
→B

X×A
ϕ

−→B

model first order abstraction and application.

S[x ] is isomorphic with the Kleisli category for the product
comonad X × (−).
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κ-abstraction in monoidal categories

Theorem (DP, MSCS 95)

Let C be a monoidal category, and C[x ] the free
monoidal category generated by C and x : 1→ X.

Then the strong adjunctions abx ⊣ adx : C −→ C[x ] are in
one-to-one correspondence with the internal comonoid
structures on X. The transpositions

C(abxA,B)

C[x ](A,adxB) A
fx
−→B

X⊗A
κx .fx
−→B

A
x⊗A
−→X⊗A

ϕ
→B

X⊗A
ϕ

−→B

model action abstraction and application.

C[x ] is isomorphic with the Kleisli category for the
comonad X ⊗ (−), induced by any of the comonoid
structures.
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κ-abstraction in monoidal categories

Task
Extend this to Categorical Quantum Mechanics.
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Task
Extend this to Categorical Quantum Mechanics.

Problem
Lots of complicated diagram chasing.
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κ-abstraction in monoidal categories

Task
Extend this to Categorical Quantum Mechanics.

Problem
Lots of complicated diagram chasing.

Solution?
What does abstraction mean graphically?
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X A B D X⊗A⊗B⊗D
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Identities

X A B D X⊗A⊗B⊗D

DX A B X⊗A⊗B⊗D

id
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Morphisms

h

X A

B X

B D

h

B⊗X

X⊗A⊗B⊗D
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Tensor (parallel composition)

h

X A

f

X

B X C

B D

B⊗X⊗C

h⊗f

X⊗A⊗B⊗D⊗X
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Sequential composition

h

X

X

A

g

f

X

B X C

D D

B D

X⊗A⊗B⊗D⊗D⊗X

B⊗X⊗C

X⊗A⊗B⊗g

h⊗f

X⊗A⊗B⊗D⊗X
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Elements (vectors) and coelements (functionals)

h

X

X

A

g

f

X

B X C

D D

B D

X⊗A⊗B⊗D⊗D⊗X

B⊗X⊗C

b

a

B⊗X

B⊗X⊗b

X⊗A⊗B⊗g

h⊗f

X⊗I⊗D⊗D⊗X
X⊗a⊗D⊗D⊗X

X⊗A⊗B⊗D⊗X
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Symmetry

h

X XA

g

f

X

B X C

c

D D

B

B

D

X⊗A⊗B⊗D⊗D⊗X

B⊗X⊗C

b

a

B⊗X

B⊗X⊗b

X⊗A⊗B⊗g

X⊗A⊗D⊗B⊗X

h⊗f

X⊗I⊗D⊗D⊗X
X⊗a⊗D⊗D⊗X

X⊗A⊗B⊗D⊗X

X⊗A⊗c⊗X
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Polynomials

h

X XA

g

f

X

B X C

c

D D

B

B

D

I⊗I⊗D⊗D⊗I

X⊗A⊗B⊗D⊗D⊗X

X⊗A⊗B⊗D

X⊗A⊗D⊗B⊗I

B⊗X⊗C

X⊗A⊗c⊗r

x⊗a⊗D⊗D⊗x

b

a

B⊗X

B⊗X⊗b

X⊗A⊗B⊗g

X⊗A⊗D⊗B⊗X

id⊗x

h⊗f
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Abstraction with pictures

Theorem (again)

Let C be a symmetric monoidal category, and C[x ] the
free symmetric monoidal category generated by C and
x : 1→ X.

Then there is a one-to-one correspondence between
◮ adjunctions abx ⊣ adx : C −→ C[x ] satisfying

1. abx (A⊗ B) = abx (A)⊗ B
2. η(A⊗ B) = η(A) ⊗ B
3. ηI = x

and
◮ commutative comonoids on X.
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Abstraction with pictures

Theorem (again)

Let C be a symmetric monoidal category, and C[x ] the
free symmetric monoidal category generated by C and
x : 1→ X.

Then there is a one-to-one correspondence between
◮ adjunctions abx ⊣ adx : C −→ C[x ] satisfying

1. abx (A⊗ B) = abx (A)⊗ B
2. η(A⊗ B) = η(A) ⊗ B
3. ηI = x

and
◮ commutative comonoids on X.

C[x ] is isomorphic with the Kleisli category for the
commutative comonad X ⊗ (−), induced by any of the
comonoid structures.



Geometry of
quantum

abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of
abstraction
Abstraction with pictures

Consequences

Geometry of
‡-abstraction

Teleportation
through
abstraction

Proof (↓)

Given abx ⊣ adx : C −→ C[x ],
conditions 1.-3. imply

◮ abx (A) = X ⊗ A
◮ η(A) = x ⊗ A
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Proof (↓)

Therefore the correspondence

C
(

abx(A),B
)

C[x ]
(

A,adx(B)
)
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Proof (↓)

. . . is actually

C(X ⊗ A,B) C[x ](A,B)
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Proof (↓)

. . . with

C(X ⊗ A,B) C[x ](A,B)

f f

X A

B B

A

(−)◦(x⊗A)
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Proof (↓)

. . . and

C(X ⊗ A,B) C[x ](A,B)

h

g

fh

g

f

X

∆

κx.
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Proof (↓)

The bijection corresponds to the conversion:

C(X ⊗ A,B) C[x ](A,B)

(

κx . ϕ(x)
)

◦
(

x ⊗ A) = ϕ(x)

κx .
(

f ◦ (x ⊗ A)
)

= f

κx.

(−)◦(x⊗A)

(η-rule

(β-rule

∼=
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Proof (↓)

The comonoid structure (X ,∆,⊤) is

⊤

∆ =

=

κx .

κx .

X X

idI
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Proof (↓)

The conversion rules imply the comonoid laws

⊤

∆

∆
=

∆

∆

∆

=

∆

=

∆
=

⊤
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Proof (↑)

Given (X ,∆,⊤), use its copying and deleting power, and
the symmetries, to normalize every C[x ]-arrow:

h

g

f h

g

f

∆

=ϕ(x) ϕ ◦ (x ⊗ A)
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Proof (↑)

Then set κx . ϕ(x) = ϕ to get

C(X ⊗ A,B) C[x ](A,B)

(

κx . ϕ(x)
)

◦
(

x ⊗ A) = ϕ(x)

κx .
(

f ◦ (x ⊗ A)
)

= f

κx.

(−)◦(x⊗A)

(η-rule

(β-rule

∼=



Geometry of
quantum

abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of
abstraction
Abstraction with pictures

Consequences

Geometry of
‡-abstraction

Teleportation
through
abstraction

Remark

◮ C[x ] ∼= CX⊗ and C[x , y ] ∼= CX⊗Y⊗,
reduce the finite polynomials to the Kleisli
morphisms.
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Remark

◮ C[x ] ∼= CX⊗ and C[x , y ] ∼= CX⊗Y⊗,
reduce the finite polynomials to the Kleisli
morphisms.

◮ But the extensions C[X ], where X is large
are also of interest.
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Remark

◮ C[x ] ∼= CX⊗ and C[x , y ] ∼= CX⊗Y⊗,
reduce the finite polynomials to the Kleisli
morphisms.

◮ But the extensions C[X ], where X is large
are also of interest.

◮ Cf. N[N], Set[Set], and CPM(C).
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Interpretation
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Interpretation

Upshot
In symmetric monoidal categories,
abstraction applies just to copiable and deletable data.
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Interpretation

Upshot
In symmetric monoidal categories,
abstraction applies just to copiable and deletable data.

Definition
A vector ϕ ∈ C(I,X ) is a base vector (or a set-like
element) with respect to the abstraction operation κx if it
can be copied and deleted in C[x ]

(κx .x ⊗ x) ◦ ϕ = ϕ⊗ ϕ

(κx .idI) ◦ ϕ = idI
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Interpretation

Upshot
In symmetric monoidal categories,
abstraction applies just to copiable and deletable data.

Definition
A vector ϕ ∈ C(I,X ) is a base vector (or a set-like
element) with respect to the abstraction operation κx if it
can be copied and deleted in C[x ]

(κx .x ⊗ x) ◦ ϕ = ϕ⊗ ϕ

(κx .idI) ◦ ϕ = idI

Proposition
ϕ ∈ C(I,X ) is a base vector with respect to κx if and only
if it is a homomorphism for the comonoid structure

X ⊗ X ∆
←− X ⊤

−→ I corresponding to κx .
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Definitions
A ‡-category C comes with ioof ‡ : Cop −→ C.
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Definitions
A ‡-category C comes with ioof ‡ : Cop −→ C.

A morphism f in a ‡-category C is called unitary if
f ‡ = f−1.
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‡-monoidal categories

Definitions
A ‡-category C comes with ioof ‡ : Cop −→ C.

A morphism f in a ‡-category C is called unitary if
f ‡ = f−1.

A (symmetric) monoidal category C is ‡-monoidal if its
monoidal isomorphisms are unitary.
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‡-monoidal categories
Using the monoidal notations for:

◮ vectors: C(A) = C(I,A)
◮ scalars: I = C(I, I)
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‡-monoidal categories
Using the monoidal notations for:

◮ vectors: C(A) = C(I,A)
◮ scalars: I = C(I, I)

in every ‡-monoidal category we can define

◮ abstract inner product

〈−|−〉A : C(A)× C(A) −→ I

(ϕ, ψ : I −→ A) 7−→

(

I
ϕ
→ A

ψ‡

→ I
)
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‡-monoidal categories
Using the monoidal notations for:

◮ vectors: C(A) = C(I,A)
◮ scalars: I = C(I, I)

in every ‡-monoidal category we can define

◮ abstract inner product

〈−|−〉A : C(A)× C(A) −→ I

(ϕ, ψ : I −→ A) 7−→

(

I
ϕ
→ A

ψ‡

→ I
)

◮ partial inner product

〈−|−〉AB : C(AB)× C(A) −→ C(B)

(ϕ : I → A⊗ B, ψ : I → A) 7−→

(

I
ϕ
→ A⊗ B

ψ‡⊗B
−→ B

)
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‡-monoidal categories
Using the monoidal notations for:

◮ vectors: C(A) = C(I,A)
◮ scalars: I = C(I, I)

in every ‡-monoidal category we can define

◮ abstract inner product

〈−|−〉A : C(A)× C(A) −→ I

(ϕ, ψ : I −→ A) 7−→

(

I
ϕ
→ A

ψ‡

→ I
)

◮ partial inner product

〈−|−〉AB : C(AB)× C(A) −→ C(B)

(ϕ : I → A⊗ B, ψ : I → A) 7−→

(

I
ϕ
→ A⊗ B

ψ‡⊗B
−→ B

)

◮ entangled vectors η ∈ C(A⊗ A), such that ∀ϕ ∈ C(A)

〈η|ϕ〉AA = ϕ
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Proposition
For every object A in a ‡-monoidal category C holds
(a) ⇐⇒ (b)⇐= (c),
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‡-monoidal categories

Proposition
For every object A in a ‡-monoidal category C holds
(a) ⇐⇒ (b)⇐= (c), where

(a) η ∈ C(A ⊗ A) is entangled
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‡-monoidal categories

Proposition
For every object A in a ‡-monoidal category C holds
(a) ⇐⇒ (b)⇐= (c), where

(a) η ∈ C(A ⊗ A) is entangled

(b) ε = η‡ ∈ C(A⊗ A, I) internalizes the inner product

ε ◦ (ψ ⊗ ϕ) = 〈ϕ|ψ〉
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‡-monoidal categories

Proposition
For every object A in a ‡-monoidal category C holds
(a) ⇐⇒ (b)⇐= (c), where

(a) η ∈ C(A ⊗ A) is entangled

(b) ε = η‡ ∈ C(A⊗ A, I) internalizes the inner product

ε ◦ (ψ ⊗ ϕ) = 〈ϕ|ψ〉

(c) (η, ε) realize the self-adjunction A ⊣ A, in the sense

A
η⊗A
−→ A⊗ A⊗ A A⊗ε

−→ A = idA

A
A⊗η
−→ A⊗ A⊗ A ε⊗A

−→ A = idA

The three conditions are equivalent if I generates C.
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Proposition in pictures
For every object A in a ‡-monoidal category C holds
(a) ⇐⇒ (b)⇐= (c), where

= =(c)
η‡

X

η‡

ηη

=
η‡

(b)

(a)

ϕψ ϕ

ψ‡

=
ψ‡

η ψ
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Quantum objects

Definition

A quantum object in a ‡-monoidal category is an object
equipped with the structure from the preceding
proposition.



Geometry of
quantum

abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of
abstraction

Geometry of
‡-abstraction
‡-monoidal categories

Quantum objects

Abstraction in
‡-monoidal categories

Classical objects

Consequences

Teleportation
through
abstraction

Quantum objects

Definition

A quantum object in a ‡-monoidal category is an object
equipped with the structure from the preceding
proposition.

Remark
The subcategory of quantum objects in any ‡-monoidal
category is ‡-compact (strongly compact) — with all
objects self-adjoint.
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Abstraction in ‡-monoidal categories

Theorem

Let C be a ‡-monoidal category,

and X ⊗ X ∆
←− X ⊤

−→ I a comonoid that induces
abx ⊣ adx : C −→ C[x ].
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Abstraction in ‡-monoidal categories

Theorem

Let C be a ‡-monoidal category,

and X ⊗ X ∆
←− X ⊤

−→ I a comonoid that induces
abx ⊣ adx : C −→ C[x ].

Then the following conditions are equivalent:
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Abstraction in ‡-monoidal categories

Theorem

Let C be a ‡-monoidal category,

and X ⊗ X ∆
←− X ⊤

−→ I a comonoid that induces
abx ⊣ adx : C −→ C[x ].

Then the following conditions are equivalent:

(a) adx : C −→ C[x ] creates ‡ : C[x ]op −→ C[x ]
such that 〈x |x〉 = x‡ ◦ x = idI .
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Abstraction in ‡-monoidal categories

Theorem

Let C be a ‡-monoidal category,

and X ⊗ X ∆
←− X ⊤

−→ I a comonoid that induces
abx ⊣ adx : C −→ C[x ].

Then the following conditions are equivalent:

(a) adx : C −→ C[x ] creates ‡ : C[x ]op −→ C[x ]
such that 〈x |x〉 = x‡ ◦ x = idI .

(b) η = ∆ ◦ ⊥ and ε = η‡ = ∇ ◦⊤ realize X ⊣ X.
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Abstraction in ‡-monoidal categories

Theorem

Let C be a ‡-monoidal category,

and X ⊗ X ∆
←− X ⊤

−→ I a comonoid that induces
abx ⊣ adx : C −→ C[x ].

Then the following conditions are equivalent:

(a) adx : C −→ C[x ] creates ‡ : C[x ]op −→ C[x ]
such that 〈x |x〉 = x‡ ◦ x = idI .

(b) η = ∆ ◦ ⊥ and ε = η‡ = ∇ ◦⊤ realize X ⊣ X.

(c) (X ⊗∇) ◦ (∆⊗ X ) = ∆ ◦ ∇ = (∇⊗ X ) ◦ (X ⊗∆)
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Abstraction in ‡-monoidal categories

Theorem

Let C be a ‡-monoidal category,

and X ⊗ X ∆
←− X ⊤

−→ I a comonoid that induces
abx ⊣ adx : C −→ C[x ].

Then the following conditions are equivalent:

(a) adx : C −→ C[x ] creates ‡ : C[x ]op −→ C[x ]
such that 〈x |x〉 = x‡ ◦ x = idI .

(b) η = ∆ ◦ ⊥ and ε = η‡ = ∇ ◦⊤ realize X ⊣ X.

(c) (X ⊗∇) ◦ (∆⊗ X ) = ∆ ◦ ∇ = (∇⊗ X ) ◦ (X ⊗∆)

where X ⊗ X ∇
−→ X ⊥

←− I is the induced monoid

∇ = ∆‡

⊥ = ⊤‡
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Abstraction in ‡-monoidal categories

Theorem in pictures

∇

∆

=
∇

∆

=(b)

⊥ ⊥

⊤⊤

X
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Abstraction in ‡-monoidal categories

Theorem in pictures

∇

∆ ∇

∆
=

∇

∆

=(c)
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Proof of (b)=⇒(c)

Lemma 1

If (b) holds then

∇

∆

∆=
∇

∆

=

⊥ ⊥



Geometry of
quantum

abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of
abstraction

Geometry of
‡-abstraction
‡-monoidal categories

Quantum objects

Abstraction in
‡-monoidal categories

Classical objects

Consequences

Teleportation
through
abstraction

Proof of (b)=⇒(c)

Then (c) also holds because

∇

∆

∇

∆

=

=

∇

∆

∇

⊥

= ∇

∆

∇

⊥

=
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Proof of Lemma 1

Lemma 2

= =
ε

X

ε

ηη

then

If

= =
ε

X η

ε

η

ε

η

ε

η

X
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Proof of Lemma 1

Using Lemma 2, and the fact that (b) implies
∇ = ∆‡ = ∆∗, we get

=
η

η

∆ =
∇

ε

η

η

∇

ε

=

=
η

∇
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The message of the proof
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The message of the proof

There is more to categories than just diagram chasing.



Geometry of
quantum

abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of
abstraction

Geometry of
‡-abstraction
‡-monoidal categories

Quantum objects

Abstraction in
‡-monoidal categories

Classical objects

Consequences

Teleportation
through
abstraction

The message of the proof

There is more to categories than just diagram chasing.

There is also picture chasing.
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Classical objects

Definition

A classical object in a ‡-monoidal category is an object
equipped with the structure from the preceding
proposition.
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Consequences

Upshot

The Frobenius condition (c) assures the preservation of
the abstraction operation under ‡.
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Consequences

Upshot

The Frobenius condition (c) assures the preservation of
the abstraction operation under ‡.

This leads to entanglement.
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Definition

Two vectors ϕ,ψ ∈ C(A) in a ‡-monoidal category are
orthonormal if their inner product is idempotent:

〈ϕ | ψ〉 = 〈ϕ | ψ〉2
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Consequences

Definition

Two vectors ϕ,ψ ∈ C(A) in a ‡-monoidal category are
orthonormal if their inner product is idempotent:

〈ϕ | ψ〉 = 〈ϕ | ψ〉2

Proposition

Any two base vectors are orthonormal.
In particular, any two variables in a polynomial category
are orthonormal.
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Definition

A classical object X is standard if it is generated by its
base vectors

B(X ) = {ϕ ∈ C(X )| (κx . x ⊗ x)ϕ = ϕ⊗ ϕ}
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Consequences

Definition

A classical object X is standard if it is generated by its
base vectors

B(X ) = {ϕ ∈ C(X )| (κx . x ⊗ x)ϕ = ϕ⊗ ϕ}

in the sense that

∀f ,g ∈ C(X ,Y ). (∀ϕ ∈ B(X ). fϕ = gϕ) =⇒ f = g
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Consequences

Definition

A classical object X is standard if it is generated by its
base vectors

B(X ) = {ϕ ∈ C(X )| (κx . x ⊗ x)ϕ = ϕ⊗ ϕ}

in the sense that

∀f ,g ∈ C(X ,Y ). (∀ϕ ∈ B(X ). fϕ = gϕ) =⇒ f = g

Proposition
There are classical objects with no base vectors.
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Consequences

Example
In (Rel,×,1, ‡ = Id), take any A > 3 and

X =
{

{a,b} | a,b ∈ A
}

Define X ⊗ X ∆
←− X ⊤

−→ I by

{a,b} ∆
(

{a, c, }, {b, c}
)

{a} ⊤ {∗}

Then (κx . x ⊗ x)ϕ is entangled for every ϕ.
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Consequences

Example
In (Rel,×,1, ‡ = Id), take any A > 3 and

X =
{

{a,b} | a,b ∈ A
}

Define X ⊗ X ∆
←− X ⊤

−→ I by

{a,b} ∆
(

{a, c, }, {b, c}
)

{a} ⊤ {∗}

Then (κx . x ⊗ x)ϕ is entangled for every ϕ.

The example lifts to Hilb as X = A⊗
s

A.
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Variables in teleportation
This was not presented
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