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Abstract

In this thesis the abstract resource theoretic approach to thermodynamics is used to derive
a number of results regarding the transition between resources of different values assigned
by monotone functions. In particular the focus is on the behaviour of these systems as one
approaches the thermodynamic limit. Transition rates are presented in a novel manner in relation
to resource theories and new results are presented alongside generalisations and corrections of
work found within quantum information theory literature.

Explicitly these new results are as follows. It is shown that the value of a regularised monotone
on the input resource of a transition is bounded from below by the value of the regularised
monotone of the output resource times the rate of transition. Following this it is shown that for
reversible resource theories with a currency all regularisable monotonic functions are unique up
to a constant. The study of rates is then extended to asymptotically exact transitions which
allows for the inclusion of transitions which only exist in the limit into the existing framework.
The key result shows that rates of transition between two resources in asymptotically reversible
theories are related to the ratio of their value as dictated by the regularised monotones.

Finally the resource theory of purity is outlined as a proving ground for the usefulness of these
results and final new result is presented where sharp theories with purification are shown to be
asymptotically reversible as far as the resource theory of purity is concerned.
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1
Introduction

If one takes the leap past solipsism then there are few things as certain as thermodynamics.

Solitons may be sophistry, neurons nonsense, and mitochondria misguided - but hot things get

cold. Thermodynamics is the most phenomenologically accessible physical theory, as such it

is the most well tested . When one derives results that contravene thermodynamics, one has

obtained solid evidence they are wrong. Phenomenological conviction however, does not indicate

understanding. As the years have passed thermodynamics has been reinterpreted through the

lens of each scientific paradigm. In particular the advent of statistical mechanics provided fertile

soil to give justification to many of the macroscopic rules and properties discovered. Statistical

mechanics uses probability to understand large scale properties of mechanical systems[23],

for instance if one considers an ideal gas, though one doesn’t know the exact position and

momentum of every particle, the temperature of the system can arrived at by using using

the average speed of all its particles. Into the 20th century quantum mechanics lead to new

analysis of the underlying structure and extensions of previous results, this however, was still

focussed on statistical methods with numerous particles barely interacting. This traditional

approach, or philosophy, to thermodynamics was the standard for well over 100 years. In more

specific terms, in both the classical or quantum setting, the analysis focussed on systems in

the thermodynamic limit. This means one has a large number of weakly interacting particles;

the prototypical example being the kinetic theory of gasses. In this work the focus will be on a
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broader approach known as single-shot thermodynamics which is capable of analysing small and

strongly correlated (quantum) systems immersed in heat baths.

Single shot thermodynamics is distinct from many physical theories in that it takes an "agent-

centric" approach. One models thermodynamics as a resource theory, where an agent has access

to certain states, and based on their value, certain transitions may or may not be possible.

Specifically for thermodynamics one is interested in states of knowledge and the energy of a

system1. The focus here will be on systems of fixed energy which is to say the thermodynamics

of an isolated system. At fixed energy the deciding factor is the aforementioned states of

knowledge, the certainty regarding a system, which will be denoted its purity - a term which

takes its name from the idea of pure states in quantum mechanics, where one is certain of what

quantum state one has, as opposed to mixed states where one is unsure. This discussion of

purity as a resource motivates a different name for single-shot thermodynamics - The resource

theory of purity.

This resource approach to thermodynamics is pertinent to nano-scale systems [19] as thermo-

dynamics on this scale is anything but in the thermodynamic limit. It is interesting to note

that much of the impetus behind thermodynamics was originally motivated by the industrial

revolution in the united kingdom during the 18th century[26]. The capability for nano-scale

engineering is likely to provide similar levels of motivation to understanding systems far from the

limit. Resource theories allow one to deduce quantifiable boundaries on behaviours of systems

in this region. Past success in this area include Landauer’s work on the physical bounds on

information processing, he showed that the necessary physicality of information - due to the fact

information must fundamentally be represented by the state of a system- imposes a fundamental

limit on the energy it takes to ’forget’ 2 something in a system. This result also brought to a

close a long-standing problem in the philosophy of physics3 by showing that Maxwell’s demon

cannot break the second law of thermodynamics [3]. To understand this better consider memory

in the most basic binary terms, a one for true a zero for false, this is stored by a system being

in one of two states which correspond to these binary options. Suppose further one has a
1The work of Emmy Noether famously links energy to the existence of time symmetry - in fact the resource

theory of symmetry in combination with the, to be discussed, theory of purity encapsulates thermodynamics
proper[18].

2Namely KBT ln2 where kB is the Boltzmann constant and T is the temperature
3Actually there was still a bit of philosophical debate about this centring on the Ladyman and Norton

controversy [22], however the introduction of further rigour by Abramsky in [1] brought this to an end, Maxwell’s
Demon, for all it knows, is as much a slave to entropy as the rest of us.
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"forgetting" procedure which takes the current state of the system and always leaves the system

in the zero state. In entropic terms one has gone from possibly being in two states to one state -

this corresponds to an entropy change of (−ln2), for a system at a temperature T , with the

Boltzmann constant KBT , there is an associated energy change KBT ln2[3]. One can approach

this fact from another perspective, it implies that the minimum energy separation between a

certain state and a state where the previous state is completely unknown is this very energy. In

other words the minimum energy required to go from a mixed state to a pure state is KBT ln2.

Extrapolating from this one can view the cost of forming any state, of some arbitrary level of

uncertainty, in terms of the amount it costs to form a pure state multiplied by the amount of

the state one can, in a sense, extract from said pure state. Before discussing this idea of using

pure states to reach other states, there is slightly more to be said on the relationship between

pure states and energy - namely that while one can spend energy to go from a mixed state to

the pure, the converse allows the extraction of energy. One has a physical manifestation physical

manifestation of the old adage that "knowledge is power".

To understand this better it is helpful to consider the work of Szilard and his eponymous engine

shows that knowledge of the state of a system can be directly linked to energy extraction. To

understand this, Szilard proposes the classical situation of a particle bouncing around in a box

that has a removable partition down the centre and two pistons as sides, see the below figure

for a clearer idea.

The idea is that one slides in the partition, and then if one knows what side the particle is in,

one can push the piston in on the other side. When the partition is removed the piston will be

pushed out extracting useful work. In this way a pure state, the state where one knows the

position of the particle, equates to work! The application of this principle for quantum systems

has been studied in the bosonic and fermionic setting [20].

The question remains as to what one does without a pure state. This motivates the study of

rates. In quantum mechanics one can use a collection of mixed states to get a smaller number

of pure states. Essentially by knowing a quite a few things with a degree of uncertainty one can

extract a smaller number of certainties. This motivates one to consider exactly how many pure

states can be distilled from a collection of other states. It also motivates the contrary question

of how few pure states one can get away with spending to get some mixed states should one

require them - this is a question of cost. Rates of transition between states can be studied

3



.
Figure 1.1: In 1 the particle is bouncing around the box unimpeded. In 2 the partition is imposed,
a process that can occur arbitrarily slowly which implies there is no lower bound on the energy this
requires. The partition effectively reduced the number of micro-states the particle can inhabit in half,
which is an entropy change of − ln 2. In 3 one uses the knowledge of which side the particle is on and
slides the piston on the other side of the partition forward, again a process with no lower energy bound.
In 4 the the partition is removed. In 5 the particle bounces into the piston pushing it back, at which
point energy can be extracted to the tune of KBT ln 2 joules. Note the particle maintains its energy
because the system is in a heat-bath; this is not energy creation.

abstractly in terms of resource theories. In this way one can focus on the underlying structure

and avoid technicalities induced by working with a particular example of a resource theory.

Once the results are obtained one can take a particular case, like the resource theory of purity,

and directly deduce bounds relevant to that system .

The informational approach is not limited to thermodynamics, this can be seen as part of the

encroaching informational tide washing over physics. Another field in which this approach

is important is in the reformulation of quantum mechanics. From the outset there has been

dissatisfaction with the mathematical underpinning and philosophical interpretation of quantum

mechanics. Consider the visceral foundations of other physical theories and principles: Newtons

laws, the way objects interact when they collide; Special Relativity, the maximum speed

of something is the speed of light; General relativity, how the mass of something affects how

something moves around it; Fermat’s Principle, light goes in straight lines; Even thermodynamics,

traditionally one of the murkier frameworks is essentially the fact energy is constant, and entropy,

a measure of how many ways things can be arranged to get the same general result, is low when

its cold and increases as things happen in the universe. While these explanations may not be the
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most erudite or even clear description of these theories, what they do outline is they are founded

on physical principles, reasoning about physical things. The traditional foundations of quantum

mechanics on the other hand rely on abstract statements about Hilbert spaces and projectors.

In the words of Asher Peres "...quantum phenomena do not occur in a Hilbert space, they occur

in a laboratory"[29]; this notion motivates alternative phenomenological foundational axioms.

The key principles for this philosophy is that one should have physical axioms underpinning a

physical theory. In quantum mechanics the physical elements are the observations and what an

observer can know - therefore the axioms should talk of states of knowledge.

One approach to achieve this is through what are called generalised probability theories.

This framework was created to describe a landscape of theories, one of which is quantum

mechanics, where each different theory possesses different combinations of structure inherent

to quantum mechanics. The aim of this is to pin point exactly what the structural source of

various quantum mechanical behaviours are. It also gives researchers flexibility when analysing

candidate replacement theories to quantum mechanics motivated by research such as quantum

gravity[15].

As current research stands one prominent reformulation of quantum mechanics, motivated by

the work done in generalised probability theories, is based on what are termed sharp theories

with purification. The axioms of these theories attempt to provide the informational foundation

desired for the reasons discussed above.

The study of thermodynamics and the resource theoretic questions it motivates, applied to

the resource theory of purity, considered from within the framework of generalised probability

theories, can be considered the general theme of the thesis. Specifically, resource exchange rates

will be analysed and the results will be applied to studying the resource theory of purity. By

describing (quantum) thermodynamics via sharp theories with purification as the resource theory

of purity, the relationship between the single-shot behaviour of a system and the behaviour of

the system in the asymptotic or thermodynamic limit, will be presented.

The specifics of the the sections ahead are as follows. Firstly the framework of OPTs is introduced

(chapter 2) as the variant of generalised probabilistic theories used in this thesis. This structure

is then formalised in terms of category theory (chapter 3). With the category theory framework
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outlined, resource theories are defined as a specific structure where the categories maps are

partitioned into free and costly processes (section 3.2).

With resource theories defined the next section will focus on rates (chapter 4) as they relate

to resources in the abstract. Definitions and properties in a wide variety of situations will be

presented. This section constitutes the vast majority of the novel results provided by this author.

A number of properties are discussed and propositions and theorems are presented. In addition

generalisations of work specific to entanglement literature is also presented, including a theorem

which generalises a major result which was discovered by this author to be incorrectly proven -

a correct proof is herein presented (Theorem 4.1.7). In addition to the novel results, this section

also brings a certain degree of order to what is currently a jumbled area[11][12][21] of study

where numerous, ostensibly contradictory, notations exist. The work here has tried to present,

from first principles, a clear and reasoned approach.

Finally the specifics of purity theory are addressed (chapter 5) and this author presents result

that was previously proven specifically for quantum theories and is here generalised to sharp

theories with purification (Theorem 5.7.3). This result shows that in such theories there is

but one entropy in the thermodynamic limit and as such shows coherence between single shot

thermodynamics at a fixed temperature as approached through the framework presented here

and macroscopic thermodynamics as its understood in the thermodynamic limit.
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2
Operational Probability Theories

The general approach in this section is to create a framework in which one is focussed on the

implementation and combination of measurements in the abstract. The motivation behind this

is to try and outline a landscape of theories focussed on describing experiments, one of which is

to be quantum theory. In this way one can begin to identify the logical origins of the properties

of quantum mechanics relative to the only phenomenological experience one ever actually has of

quantum systems, the measurement and extraction of information from experiments.
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2.1 Foundational Concepts [4]

The initial step is to consider in rough terms what defines a set of experiments, in a sense one

aims to define a meta-laboratory. The basis of such a thing would surely be an abstract device

which would have an input and an output that in some way yet to be defined "performs an

experiment". Next attach a label to the input and the output in this way one can tell what

goes in and what comes out. Now suppose one can create a new device by putting two old ones

in series, but one may only do this if the output label of the first matches the input label of

the second. From a computer science perspective one has a typing. Consider also the parallel

composition of devices, creating a new device which acts on the combined inputs of the old

devices. Its output is then the combination of the composite outputs. In this way one begins to

form a non-specific framework for experimental observation.

With composition outlined the natural next question is: what are these devices? The answer is

that a device corresponds to a test, which is a process that produces an outcome i ∈ X where

X is the set of possible outcomes that this test can produce. The outcome of a test indicates an

event has occurred. In a physical theory this situation corresponds to a measuring device acting

on system A and returning a system B; these systems can be anything from the contents of a

test tube to the click of a Geiger counter. The specific elements of B returned by the device are

referred to as the measurement. With these ideas in mind it is appropriate to begin to formalise

this non-specific experimental framework.
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Suppose there exists some arbitrary physical systems denoted with letters such as A,B,C, ...

reserving I for the trivial system which simply represents nothing. These are the systems one

moves between when using a device

Definition 1 (Test). A test with input system A and output system B is a collection of events

{Ci}i∈X labelled by outcomes in some outcome set X. Diagrammatically the test {Ci}i∈X is

represented as

A {Ci}i∈X B . (2.1)

with each event represented as

A Ci
B . (2.2)

Note the wires for the trivial system are omitted. A test can be thought of as the collection of

events that constitute the possible outcomes of using some device.

The definition above allows for a test to have trivial input, that is to say a corresponding device

would act on nothing and just provides an output, such a thing is called a preparation test;

conversely a test with a trivial output is called an observation event which only takes an input

and produces nothing. Diagrammaticality these are written

{ρi}i∈X A := I {Ci}i∈X A (2.3)

and

A {aj}j∈X := A {Cj}i∈X I (2.4)

respectively.

It is practical to write E(A,B) to denote the set of all events occurring in all tests taking one

from A to B; written E(A) if A = B. In this theme, the set P(A) := E(I, A) is the set of

all preparation events. It can be helpful to write this formulaically, a natural choice is |ρ)A,

where ρ ∈ P(A) - note it has a deliberate ’Dirac-like’ structure. One can similarly define the

set of all observation eventsO(A) := E(A, I) with the formulaic representation (a|A for a ∈ O(A).

Remark 1. [27] In quantum theory an observation-test is a quantum measurement and is

represented by a positive operator valued measurement (POVM) which is a collection of positive

operators {Pi}i∈X satisfying ∑i∈X Pi = IA where IA is the identity on the space of a system A.
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An important case of tests are those that return a guaranteed result.

Definition 2 (Deterministic Test). A test with a single outcome is deterministic. In this case

|X| = 1 as the set of outcomes has a single element.

With tests outlined the next step is to consider their sequential composition - the act of applying

one device after another. The idea that the outputs and inputs must match immediately asserts

itself - one cannot reasonably apply the technique of NMR spectroscopy to the resonance of a

crystal: the systems are not compatible. For contrast note that one could apply spectroscopy

to the result of the introduction of a catalyst to a substrate. Experiments are inherently

typed.

Definition 3 (Sequential composition of tests). If {Ci}i∈X is a test from A to B and {Dj}j∈Y
is a test from B to C, then their sequential composition is a test from A to C, with outcomes

(i, j) ∈ X × Y , and events {Dj ◦ Ci}(i,j)∈X×Y . This is written diagrammatically as

A Ci
B Dj

C := A Dj ◦ Ci
C (2.5)

One says that test {Ci} precedes {Di}, or conversely, that {Di} follows {Ci}.

This ordering is not necessarily a temporal relation - it refers only to whatever the notion of

composition happens to mean in the particular instance in which these tests are combined.

This sequential composition naturally suggests an identity.

Definition 4 (Identity Test). The identity test for system A is a test with a single event IA

such that for every system B

A Ci
B I B = A Ci

B ∀Ci ∈ E(A,B) (2.6)
B Dj

A I B = A Dj
B ∀Di ∈ E(B,A)
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The other form of composition was based on taking two devices and combining them in parallel.

To define this formally one requires a definition for their combined inputs and outputs.

Definition 5 (Composite System). If A and B are systems, the corresponding composite system

is A⊗B, often shortened to AB. Composition of systems are such that

1. A = I ⊗ A = A⊗ I

2. A⊗B u B ⊗ A

3. A⊗ (B ⊗ C) u (A⊗B)⊗ C := A⊗B ⊗ C

The first property outlines composition with nothing is simply what you already have. The

second and third demonstrate that the orderings and groupings of the systems compositions are

irrelevant.

In general any N-partite composite system A1 ⊗A2 ⊗ ...⊗AN with N wires will be represented

as

A1

A2

...

An

:= A1⊗A2⊗...⊗An (2.7)

where the trivial systems wires are omitted.

Definition 6 (Parallel composition of tests). If {Ci}i∈X is a test from A to B and {Di}i∈X is a

test from C to D, then their parallel composition is a test from A⊗ C to B ⊗D with outcomes

(i, j) ∈ X × Y and events {Ci ⊗Dj}(i,j)∈X×Y is represented as

A Ci
B

C Dj
D

:=
A

Ci ⊗Dj

B

C D

(2.8)

If Ci,Dj,Ek,Fl are events form , A to B, B to C, D to E, E to F , respectively, their parallel

composition is such that

A Dj ◦ Ci
C

D Fl ◦ Ek
F

=
A Ci

B Dj
C

D Ek
E Fl

F
(2.9)

11



Note that as the ordering of parallel composition is irrelevant as the above implies that tests on

different systems commute. Indeed for any pair of events Ci and Dj one has that

A Ci
B

C Dj
D

=
A Ci

B I B

C I C Dj
D

=
A I A Ci

B

C Dj
D I D

from here on the identity test will not be explicitly stated but left as a wire.

Given the diagrammatic compositions presented above one might ask how to represent this

formulaically. For C ∈ E(A,B) and ρ ∈ P(A ⊗ C) one writes C ◦ | ρ)A⊗B in the place of

(C ⊗IB)| ρ)A⊗B. On the subject of contractions, the following shorthand is also introduced:

C ◦ | ρ)A⊗B will be written C | ρ)A⊗B, and | ρ)A ⊗ | ρ)B written as | ρ)A | ρ)B.

With systems and tests adequately described and their compositions studied, one is in a position

to describe theories of such systems via their closure under said compositions - these are called

operational theories.

Definition 7 (Operational theory). An operational theory is specified by a collection of systems,

closed under composition, and by a collection of tests, closed under parallel and sequential

composition.

As will be discussed later, the informational structure of tests and systems that has emerged

from the idea of composing measuring devices bears a strong resemblance to categories.

In an operational theory one draws circuits that represent the connection between experimental

apparatus such as:

{ρi} A {Cj} B {ak} (2.10)

one can also represent a specific sequence of events

ρi A Cj
B ak (2.11)

here one can see this circuit depicts the preparation event ρi followed by event Cj from the

system A to the system B followed by the observation event ak. One can consider the whole

thing as a single event writing Pkji := (ak|BCj|ρi)A ∈ E(I, I) an event from the trivial system

to itself.
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An operational theory is a framework in which one can describe experiments in the abstract

both in their totality and for some specific outcome. A physical theory however, requires more -

it requires prediction - one seeks to give the probability of any possible outcome. Technically

one requires the assignment of a probability to every event from the trivial system to itself. In

this way any complete sequence of preparations, tests, and observations results in a number

between zero and unity denoting its likelihood. Furthermore, summing over the possibility of

every possible sequence of events gives unity, in short one guarantees that one of the possible

outcomes must actually occur.

Definition 8 (Operational-probabilistic theory). An operational theory is probabilistic if for

every test {Pi}i∈X from the trivial system I to itself one has pi ∈ [0, 1] and ∑i∈X pi = 1, and the

composition of two events from the trivial system to itself is given by the product of probabilities:

pi ⊗ qj = pi ◦ qj = piqj. These theories are often abbreviated to OPTs which is how they will be

referred to hereafter.

From a preparation-event ρi for a system A one can define a function ρ̂i sending observation-

events of A to probabilities:

ρ̂i : P(A)→ [0, 1], (aj | 7→ (aj|ρi). (2.12)

Similarly, for an observation-event aj defines a function âj from preparation-events to probabili-

ties

âj : O(A)→ [0, 1], | aj) 7→ (aj|ρi). (2.13)

Observe that in this context two preparation-events or observation-events corresponding to the

same function are indistinguishable. From this one can move towards defining states and effects

as the distinguishable preparation and observation events.

Definition 9 (States and effects). Equivalence classes of indistinguishable preparation-events

are called states. Equivalence classes of indistinguishable observation-events are called effects.

From here on indistinguishable preparation-events will be defined as states which are elements

of St(A) := P(A)/∼, the quotient space of preparation events over the equivalence class defined

by indistinguishable elements. In a similar way Eff(A) := O(A)/∼ where the equivalence class

here is indistinguishable observation events. The distinction between an event ρi(aj) and the

corresponding function ρ̂i(âj) will also be dropped.
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One can see that a consequence of states and effects being equivalence classes of indistinguishable

events is that states are separating for effects, and the effects are separating for states

| ρ0)A = | ρ1)A iff (a|ρ0)A = (a|ρ1)A ∀a ∈ Eff(A)

(a0 |A = (a1 |A iff (a0|ρ)A = (a1|ρ)A ∀a ∈ St(A)

As states are functions from effects to probabilities, and vice versa for effects acting on states,

one can take linear combinations of them. This defines two real vector spaces StR(A) and

EffR(A), one dual to the other. The focus in this work is on states spanning finite dimensional

vector spaces, due to its relevance for quantum mechanics and generalisations thereof. This, by

construction implies StR(A) and EffR(A) are of the same dimension, as vector spaces have the

same dimension as their dual spaces.

One should note that every event Ck from A to B induces a linear map Ĉk : StR(A)→ ŜtR(B),

uniquely defined by

Ĉk : |ρ) ∈ St(A) 7→ Ck |ρ)A ∈ St(B)

And in a similar manner for every system C the event Ci ⊗ IC induces a linear map from

StR(AC) to StR(BC). From the statistical perspective if two events Ci and C ′i induce the same

maps for every possible system C, then they are indistinguishable. In a similar manner to states

and effects one then collapses indistinguishable events to single transformations.

Definition 10 (Transformations). Equivalence classes of indistinguishable events from A to B

are called transformations from A to B.

Remark 2. One should be aware that two transformations C ,D ∈ E(A,B) can be different

even if C |ρ)A = D |ρ)A for every ρ ∈ St(A): to make C different from D all that is required

is that there exists an ancillary system C and a joint state |ρ)AC such that (C ⊗IC)| ρ)AC 6=

(D ⊗IC)| ρ)AC. This relates to the notion of local discriminability[4].
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Remark 3. [27] In traditional quantum theory systems are associated with Hilbert spaces. The

deterministic states of a system A are density matrices on the corresponding Hilbert space: a

deterministic state ρ is a matrix such that ρ ≥ 0 and Tr[ρ] = 1.

A non-deterministic preparation test {ρi}i∈X - a quantum information source - is a collection of

positive operators where one finds that ∑i∈X Tr[ρi] = 1. Accordingly the set St(A) of all states

of system A in the collection is an un-normalised density matrices ρ with Tr[ρi] ≤ 1. An effect

here is a positive operator P with P ≤ IA where IA is the identity operator.

The probability associated with the occurrence of the state ρ followed the effect P is given by

the Born rule: (P |ρ)A = Tr[Pρ]. A transformation in quantum mechanics is referred to as a

quantum operation. In technical terms a quantum operation from A to B is a linear, completely

positive, trace non-increasing map sending density matrices of system A to un-normalised density

matrices of the system B. One calls a test {Ci}i∈X from A to B as a quantum instrument which

is a collection of quantum operations with the property that ∑i∈X Ci is trace-preserving, namely∑
i∈X Tr[Ci(ρ)] = Tr[ρ] for every state ρ.
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An important case is when the transformation is deterministic.

Definition 11 (Channel). A deterministic transformation C ∈ E(A,B) is called a channel.

Definition 12 (Reversible Channel). A channel U ∈ E(A,B) is called reversible if there exists

a second channel U ′ ∈ E(B,A) such that

A U B U ′ A = A I A (2.14)
B U ′ A U B = B I B

that is they compose in either possible sequence to the identity.

The reversible channels from A to itself actually forms a group denoted GA. With a group

defined ones mind turns to the question of those states that are invariant under its action.

Definition 13 (Invariant states). A state ρ ∈ St(A) is invariant under the action of the group

GA if

ρ = ρ U ∀U ∈ GA (2.15)
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2.2 Refinement and Coarse Graining [4]

It is a common that one considers several outcomes of some experiment to indicate the same

thing. Conversely one may wish to refine a detected outcome - perhaps in order to attain a

more specific understanding of some process. These ideas are contained within the notions of

test coarse-graining and refinement.

Coarse-graining allows one to define tests that have outputs that are groupings of the outputs

of some other test.

Definition 14 (coarse-graining). A test {Ci}i∈X is a coarse-graining of the test {Dj}j∈Y if

there is a partition of Y into disjoint sets Yi such that Ci∈X = ∑
j∈Yi

D for every i ∈ X.

One can define refinements in a simple manner by considering them as the tests that are coarse

grained.

Definition 15 (Test refinement). If {Ci}i∈X is a coarse-graining of {Dj}j∈Y one says that,

{Dj}j∈Y is a refinement of {Ci}i∈X .

This idea becomes clearer if one considers what it is to refine the individual events that compose

a test. In essence a refinement of an event is the assignment of an entire test to that event, in

this way it becomes a more nuanced description of the original event.

Definition 16 (Refinement of an event). A refinement of the event C is given by a test {Dj}j∈Y

and a subset Y0 ⊆ Y such that C = {Dj}j∈Y0.

Once can then define the act of refining as follows:

Definition 17. An event D ∈ E(A,B) refines C ∈ E(A,B), and write D ≺ C , if there exists a

refinement of C such that D ∈ {D}j∈Y0.

One is then in a position to describe the set of all refinements of an event:

Definition 18 (refinement set). The refinement set DC of an event C ∈ E(A,B) is the set of

all events D that refine C , which corresponds to DC := {D ∈ E(A,B)|D ≺ C }

The trivial case is of particular note as it gives one the notion of the primal or atomic event,

which cannot be subdivided, and on which all other coarse-grainings stand.

17



Definition 19 (Atomic and refinable events). An event C is called atomic if it admits only

trivial refinements which is to say that D ≺ C implies that D = λC for some λ ∈ [0, 1]. An

event is refinable if it is not atomic.

The idea of these refinements for preparation-events gives us a notion of pure and mixed

states

Definition 20 (Pure and Mixed States). An atomic preparation event ρ ∈ St(A) is called a

pure state. A refinable preparation state is called a mixed state.
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2.3 Metrised Operational Probability Theories [4]

Through experiment one can attempt to discriminate between different devices. Imagine one has

a set-up that prepares one of two deterministic states ρ0, ρ1 ∈ St(A), and that one wants to find

out which one. To discriminate between two states one can perform a binary observation-test

a0, a1. The probabilities of the outcomes are given by

p(aj|ρi) =: ρi A aj i, j = 0, 1. (2.16)

Assuming prior probabilities of π0 and π1 for returning the states ρ0, ρ1, respectively, one attempts

to maximise the probability discriminating correctly, defined as psucc := π0p (0|0) + π1p (1|1).

Substituting the expression for the probabilities equation 2.16 recalling that the probabilities

sum to unity, one obtains

psucc =:π0 + (a1|π1ρ1 − π0ρ0)A

=π1 + (a0|π0ρ0 − π1ρ1)A (2.17)

if one then takes the supremum over all such binary tests one finds that

psupsucc =:π0 + sup
a1∈Eff(A)

(a1|π1ρ1 − π0ρ0)A

=π1 + sup
a0∈Eff(A)

(a0|π0ρ0 − π1ρ1)A (2.18)

Summing these expressions gives us

psupsucc = 1 + ||π1ρ1 − π0ρ0||A
2 (2.19)

where || − ||A is the operational norm defined by

||δ||A = sup
a1∈Eff(A)

(a1|δ)− inf
a1∈Eff(A)

(a0|δ)A δ ∈ EffR(A). (2.20)

The norm ||π1ρ1 − π0ρ0||A ranges from 0 representing when the two states and probabilities are

equal, and 1, when the two states are perfectly discriminable. For real numbers x ∈ StR(I) ≡ R

one has ||x||I = |x|.

Remark 4. In quantum theory the operational norm is the trace norm.
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For some generic ρ ∈ Eff(A) the operational norm given in equation 2.20 becomes

||ρ||A = sup
e∈Eff(A)

(e|ρi) (2.21)

where the supremum is over deterministic effects.

One can now define states of unit size in terms of their operational norm.

Definition 21 (Normalised States). A state ρ ∈ St(A) is normalised if ||ρ||A = 1. We will

denote such states by St1(A)

If ρ is deterministic then it corresponds to a single outcome preparation test and as e is a single

outcome observation test the probability of the former then the latter occurring is unity; this

implies that ρ is normalised.

Definition 22 (Distinguishable States). The states {ρi}i∈X are perfectly distinguishable if there

exists a test {ai}i∈X such that

aj A ρi = ||ρi||Aδij. (2.22)

The test {ai}i∈X is called a discriminating test.

Remark 5. [27] In quantum theory a set of distinguishable states {ρi}ni=1 is a set of density

matrices with orthogonal support. An example of a discriminating test for this set is the collection

of orthogonal projectors {Pi}ni=1, where Pi is the projector on the support of ρi for all i < n,

while Pn = I −∑n−1
i=1 Pi. The maximum number of distinguishable states available for a certain

system is the dimension d of the corresponding Hilbert space. The distinguishable states are

rank-one projectors on an orthonormal basis, and the corresponding discrimination test is the

projective measurement on the same basis.

20



2.4 Purification and Marginal States [8]

In almost any practical situation one is actually considering only a part of a larger composite

system. It is therefore essential, for any framework capable of representing real physical system,

to understand the act of restricting larger states to smaller ones.

Definition 23 (Purification). A pure state Ψ ∈ St1(A) is a purification of some arbitrary state

ρ ∈ St1(A) if |ρ) = (e|B|Φ)AB, where e is some Deterministic effect. In diagram form

ρ A = Ψ

A

B e

.

The state ρ is called the marginal of Ψ.

Definition 24 (Purification System). If system A⊗B contains a purification of ρ ∈ St1(A),

we call system B a purifying system for ρ.

Definition 25 (Essentially Unique Purification). We say that a pure state Ψ ∈ PurSt(A⊗B)

is an essentially unique purification of its marginal state ρA if the every other pure state

Ψ′ ∈ PurSt(A⊗B) satisfying condition equation 3.1 is of the form

Ψ′
A

B

= Ψ

A

B U B

for U , some reversible transformation.

What has been accomplished here is an abstract framework for measurement has been defined,

where one can compose measurements in parallel and series, should the typings match. Moreover,

by allowing for the assignment of probabilities to outcomes the framework provides an abstract

framework for prediction. Finally through purification the framework is capable of reflecting

the fact that from the human perspective only partial measurement of a much larger system is

ever possible. In the following section the material here will be given rigorous mathematical

grounding.
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3
Resource Theories

The topic of OPTs provided a framework on which one can reason about measurement in

its most abstract setting. In this section there are two aims, to give a formal mathematical

grounding to the OPT framework, and to develop a theory of resources which can be studied

in OPTs that models the idea of vale and exchange. This is something which is at the heart

of thermodynamics and quantum theory where one can view certain states as more valuable

than others. In thermodynamics for example, states that are hotter than average are more

valuable than a cooler ones: energy can be extracted. In quantum mechanics entangled states

are valuable to those only able to perform local operations[10] - one cannot create physically

separated entangled states but one can use them. The ideas behind this will be developed as

the chapter progresses.
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3.1. OPTs as categories

3.1 OPTs as categories

The mathematical formalism behind the intuition of an OPT is the symmetric monoidal category.

It, by its construction, provides the scalable compositional structure required. In the language

of categories, in an OPT, a state is an object of a category and the tests are morphisms, and

one has certain extra isomorphisms between compositions of these things not usually in a

general category. To formally define this we must however begin with the broader object of the

category:

Definition 26. A category D consists of

1. A class ob(D) of objects, also denoted |D|.

2. A class hom(D) of morphisms or arrows between objects. Each morphism f ∈ hom(D)

has a source object a and target object b where a and b are in ob(C). One writes f : a→ b

to represent the mapping of a to b and D(a, b) to denote the class of all morphisms that

perform this mapping.

For every three objects a, b and c, a binary operation hom(a, b)⊗ hom(b, c)→ hom(a, c)

called composition of morphisms; the composition of f : a→ b and g : b→ c is written as

g ◦ f .

One also requires that the following axioms hold. They morphisms are associative:

If f : a→ b, g : b→ c and h : c→ d then h ◦ (g ◦ f) = (h ◦ g) ◦ f .

There exists an identity:

For every object x, there exists a morphism idx : x → x called the identity morphism

for x, such that for every morphism f : a → x and every morphism g : x → b, we have

idx ◦ f = f and g ◦ idx = g.

Category theory is an expansive field in its own right, for the purposes of this thesis the interest

rests on the composition of morphisms which provides the sequential composition. To fully

capture OPTs, more is required, namely something that can represent parallel composition. The

needed structure is a symmetric monoidal category. To formally define this further definitions

are required. In particular the idea of parallel composition implies that one takes two categories

and somehow maps to a single category - one requires mappings of categories - such things are

known as functors.
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3. Resource Theories

Definition 27. Let C and D be categories. A functor F from C to D is a mapping that

1. Associates to each object X ∈ C an object F (X) ∈ D

2. Associates to each morphism f : X → Y ∈ hom(C) X ∈ C a morphism F (f) : F (X)→

F (Y ) in D such that:

F (idX) = idF (X)

F (g ◦ f) = F (g) ◦ F (f) for all morphisms f : X → Y and g : Y → Z in C

The attentive reader will note that in the previous paragraph the ad-hoc requirement was for

a mapping of two categories to a single one. Functors however, provide a mapping between

categories. To understand why functors are useful in defining parallel composition one must

look at the idea of a product category, a category which is in a sense composed of other categories.

Definition 28. A product category C ×D is category containing:

1. As objects:

pairs of objects (A,B) wjere A is an object of C and B of D.

2. As arrows from (A1, B1) to (A2, B2): pairs of arrows (f, g) where f : A1 → A2 is an arrow

of C and g : B1 → B2 is an arrow of D.

3. Where composition, component wise composition from the contributing categories (f2, g2) ◦

(f1, g1) = (f2 ◦ f1, g2 ◦ g1)

4. Where the identities are pairs of identities from the contributing categories id(A,B) =

(idA, idB).

One now has access to a way to compose two categories in way that one gets a single category

as a result. Taking this notion and then applying a functor allows us to get the structure we

desire. A functor of this sort is defined as follows:

Definition 29 (Bi-functor). A bi-functor is a functor whose domain is a product category.
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3.1. OPTs as categories

The structure in place now allows one to create a strict monoidal category which has almost all

the properties required.

Definition 30. A strict monoidal category (SMC) denoted (D,⊗, I) is a category D equipped

with a bi-functor ⊗ : D ×D → D called the tensor product and an identity I such that

1. (A⊗B)⊗ C = A⊗ (B ⊗ C)

2. A⊗ I = A = I ⊗ A.

3. (A⊗ I)⊗B = A⊗B = A⊗ (I ⊗B).

4. (A⊗B)⊗ (C ⊗ E) = ((A⊗B)⊗ C)⊗ E = (A⊗ (B ⊗ C))⊗ E = A⊗ (B ⊗ (C ⊗ E)) =

A⊗ ((B ⊗ C)⊗ E)

Where |D| denotes the set of objects in D, A,B,C,E ∈ |D| and the hom-set D(A,B) represents

the set of morphisms in D with A as a domain and B as a codomain.

One can check that this structure allows for many of the properties of an OPT, however it is

lacks a certain symmetry - in OPTs one can compose parallel tests in any order one desires as

this detail is functionally irrelevant - this is lacking in the above A ⊗ B 6= B ⊗ A. This fact

must be imposed which results in the following:

Definition 31 (Symmetric Monoidal Category). A strict symmetric monoidal category(SMC

hereafter) is a strict monoidal category where A⊗B = B ⊗ A

Such a category admits a graphical calculus [11]. This calculus is identical to that of the OPT

diagrams above, in fact an alternative definition for OPTS is the following:

Definition 32. [4] An OPT is an SMC where the systems are the objects and events the are

morphisms.
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3. Resource Theories

The distinction between the OPT and the SMC is not mathematical but a matter of perspective[11].

For the sake of clarifying this link between SMCs and OPTs the diagrammatic calculus is

expressed in categoric terms - with more emphasis on the calculus’ nature than with the OPT

structure as before - the reader is invited to compare this with the last section.

Firstly objects are represented by wires

A (3.1)

with the n-composite A1 ⊗ A2 ⊗ ...⊗ An given by
A1

A2

...

An .

(3.2)

A general morphism f : A1 ⊗ ...⊗ An → B1 ⊗ ...⊗Bm can depicted as follows
A1

f

B1

... ...

An Bn

(3.3)

where the trivial object is represented by the absence of a wire. The absence of a wire for the

trivial object leads us to the notion of a morphism s : I → A with no inputs, which can be

depicted symbolically as follows

s (3.4)

where we have omitted the wire labelling as there is no ambiguity, which will be done from

here on where appropriate. Note this is a preparation state from the OPT perspective. The

’symmetry’ in a symmetric monoidal category arises from the fact wires may cross:

.
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3.1. OPTs as categories

This symmetry is exactly the structure in OPTs that allows one to disregard ordering of systems

composed in parallel; the existence of this symmetry enforces that swapping them around is

equivalent to the original order.

On the topic of composition one has that sequential composition of f : A→ B and g : B → C

is represented by attaching the relevant matching wires together:

f g . (3.5)

Parallel composition of f with h : C → D is accomplished by adjacent box placement

f

h
. (3.6)

Again the relationship with between this and the circuit structure of OPTs is clear. A simple

summary of this diagrammatic framework is that it allows equational reasoning to be performed

by deforming the representative diagram without altering its topology[11].

.

One will notice the use of strict in some of the above definitions which at the time went

unexplained. It is implicit in the diagrammatic structures presented that the grouping of

objects is irrelevant, that is to say, any bracketed groundings A(BC) or (AB)C are equivalent.

Technically, in a general SMC they are only required to be isomorphic. Strictness strengthens

this to equality[24].

One may worry that the fact the diagrammatic calculus does not obviously respect the unit

and associator isomorphisms, which are required to describe SMCs in general, limits the scope
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3. Resource Theories

of diagrams. This is not the case however, as MC Lane’s strictification theorem[24] shows

that any non strict monoidal category is equivalent to a strict one, thus all SMCs can be

represented.

Notice that the enforced symmetry isomorphisms of an SMC are not equivalent to identities

under this theorem. That said, they already exist within the diagrammatic calculus as the wire

crossings which represent the fact A⊗B is equivalent to B ⊗ A - or equivalently in any SMC

there exists a map between such objects. In summary one can be certain that the diagrammatic

structure can describe all the things one would hope.
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3.2. Resource Theories [11]

3.2 Resource Theories [11]

At this point a framework for discussing physical systems and the measurements upon them

has been outlined and made rigorous through categorical considerations. The aim of this

work however is to discuss quantum thermodynamics through an abstract understanding

of the properties that define it. The framework used to achieve this is resource theories.

Thermodynamics is at its core a set of rules about the allowed transition between states. In

extremely broad terms one can move from hot to cold - and one can extract work from this.

The converse direction requires work. In this way the hotter state is more valuable - it is a

resource. It is at first surprising how far this observation can take one.

The intuitive notion of a resource theory is that one has different kinds of resources, denoted

by A,B, ..., and one can transform between them via conversions denoted f : A → B, a

transformation or process from A to B, or g : C → D, ..., a transformation from C to D,

etc. The labelling is necessary as the transition itself is not enough to characterise it; there

may be more than one transition between the same resources. These transformations can be

composed sequentially if the resources match: if f : A→ B and h : B → C then the composition

h ◦ f : A→ C. Resources A and B can also be combined together forming a composite resource

A⊗B1, which lifts to composite maps: for maps f and g, as defined above, one has a composite

transformation f ⊗ g : A⊗ C → B ⊗D. In addition to all this one can presume there exists a

’void’ resource I which when composed with any resource is equivalent to the resource on its

own.

It takes little imagination to see this description coincides with that of an SMC. In fact the

separation between such a category and a resource theory is merely a matter of perspective.

1The notation ⊗ is not necessarily the traditional tensor product just a kind of parallel composition -tellingly
just as in monoidal categories - that said, in suitable resource theories it can be the tensor product.
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3. Resource Theories

The resource perspective has more to it than the compositional requirements seen in the OPTs

for example. It contains an implicit notion value. The unit object I as a void resource is in

essence ′valueless′ as it can be added endlessly or removed from a system without actually

altering anything. Extending this, any resource that can be generated from the void resource

is a free resource that can be attained without any requirement, or ’cost’, so any A such that

the hom-set D(I, A) is non-empty, also has no cost. The set of all such objects are the free

resources; by contrast its complement is the set of costly resources

Definition 33. The collection of free resources in D is |Dfree| := { A ∈ |D| |D(I, A) 6= ∅}.

It is important to note that this collection is defined to be closed - if one can approximate

something to arbitrary accuracy with a free resource - it too is presumed to be free. Broadening

this idea one can ask how does one represent a theory where one chooses certain transitions to

be ′free′. One is in essence asking for a category Dfree which contains all the same objects, or

systems, but where one is restricted to certain morphisms, or processes considered free. This is

the subject of the next section.
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3.3. Free operations and partitioned theories

3.3 Free operations and partitioned theories

The ′free operations′ of Dfree are defined as those which one can execute at ′no cost ′ - a phrase

which finds meaning in the context of a particular application. As an example consider LoCC

quantum information, here one quantum system is physically separated, one has tensored

quantum states and only local operations and classical communication are for free - an excellent

model for information communication in quantum systems[10]. Observe that in this situation

one cannot create non-local entangled states that is to say entangled between the separated

components.

There is a natural line of reasoning from having a set of free processes in that if f and g are free

processes then f ⊗ g should be also; In addition the sequential f ◦ g, where such composition is

defined, should also be free. The identity map will be a free process, as it alters nothing. In this

way we see that Dfree is a sub-SMC, that is to say it is a symmetric monoidal category itself2

that includes all the objects C but only this limited set of free transformations. This motives

the following definition:

Definition 34. A partitioned theory consists of a some system modelled by an SMC denoted

(D, ◦,⊗, I) and a sub-theory of free morphisms, described by an SMC called Dfree that contains

all objects of D. The partitioned theory is written as (D,Dfree).

Again the free processes are closed in the limit as what can be attained to arbitrary accuracy

from free processes is also free.

Remark 6. The free morphisms themselves induce a preorder structure on the objects of the

category, the states, where ρ is more valuable than σ if there is a free operation going from ρ to

σ.

The free morphisms themselves induce a preorder structure on the objects of the category, the

states, where ρ is more valuable than σ if there is a free operation going from ρ to σ.

In practice Dfree will not be given in its totality but in term of a generating set of operations one

defines as free; it will be the smallest SMC closed under this set through parallel and sequential

composition which contains all objects of the super-category.
2Its symmetry is inherited directly from the super-category.
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3. Resource Theories

3.4 The Resource Theory of States [11]

There are many examples of resource theories but the one of practical interest here is the

resource theory of states. Hereafter the resource theories of states will be referred to simply as

resource theories.

To begin one considers a state as the transition whose input is the trivial system. The set of

these states is given by ∪A∈|D| D(I, A). To obtain a resource theory one considers when one

can transition between these states by a free process, that is, the structure of ∪A∈|D|D(I, A)

under ∪A,B∈|D|Dfree(A,B).

Formally, a resource theory of states, in terms of a partitioned resource theory (D,Dfree), will

be denoted S(D,Dfree). The objects of S(D,Dfree) are taken to be states of D,

|S(D,Dfree)| :=
⋃

A∈|D|
D(I, A). (3.7)

A state s : I → A is said to be converted into another state t : I → B by a free transformation

ξ : A→ B if one has

s A ξ B = t B . (3.8)

One then defines the hom-set S(D,Dfree)(s, t) for s, t ∈ |S(D,Dfree)| to be the set of such free

transformations where s→ t.
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3.4. The Resource Theory of States [11]

One can equate two transformations if they have the same effect on all states, which includes

when they act only on one part of a composite system. In the resource theory of states the

equivalence classes of free transformations are the morphisms.

The hom-set S(D,Dfree)(s, t) for s, t ∈ |S(D,Dfree)| is the set of equivalence classes of free

processes such that s→ t, which is to say

S(D,Dfree)(s, t) := {ξ ∈ Dfree(A,B) : ξ ◦ s = t}/ ∼ . (3.9)

Regarding sequential composition if ξ ∈ Dfree(A,B) is a free process turning s into t. and

η ∈ Dfree(B,C) is another free process turning t into a third state u : I → D, then η ◦ ξ ∈

Dfree(A,C) is a free process turning s into u,

s ξ η

= t η

= u

(3.10)

as this respects the structure of equivalence classes one can see that S(D,Dfree) is a category.

To be an SMC one requires parallel composition of objects and morphisms. On objects in

S(D,Dfree), which are states in D, parallel composition is inherited from D. Morphisms in

S(D,Dfree), which are equivalence classes of transformations between states in D using free

processes are composed in the natural manner

s ξ η

t η η .
(3.11)

where one should recall Dfree is closed under parallel composition. Again this is compatible

with the equivalence structure.
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3. Resource Theories

One should note that as D is a strict monoidal category then S(D,Dfree) is a strict monoidal

category as well. The symmetry isomorphism (s⊗ t) → (t⊗ s) on objects in S(D,Dfree) is

given by symmetry in D.

.

This symmetry is guaranteed to be a free process since Dfree was assumed to contain all the

objects of the super-category of D and thereof it inherits the symmetries from D. The identity

object I for the SMC S(D,Dfree) is the tensor unit of D, idI , the result of all this is that one

has proven the following:

Theorem 3.4.1. [11] For any partitioned theory (D,Dfree), the procedure outlined above allows

one to define a symmetric monoidal category S(D,Dfree) that can be interpreted as a resource

theory .

To summarise what has been done here, firstly OPTs were mathematically formalised as examples

of SMCs. Following this the categorical framework was elaborated on and this was expanded

upon to present resource theories which are formed of a base SMC structure but where one

is restricted to some agreed upon free processes. The common categorical theme will in later

sections allow for the discussion of resource theories, namely the resource theory of purity,

described within the framework of OPT, which we have shown, is itself a SMC seen through a

certain lens. This fusion will prove useful in bringing together the resource perspective that

allows for a description of isolated thermodynamic systems and the operational perspective

useful for describing experiments in the abstract.

35



36



4
Rates

Once one has established the ability to transition between certain resources, or in particular,

certain amounts of certain resources, one naturally starts to consider the question of rates of

exchange, how much of one thing can be gotten by exchanging another. Consider transitions of

the sort sending p lots of some resource ρ, to q lots of some resource σ, that is to say a transition

ρ⊗p → σ⊗q, this underlying concept behind all resource transitions. One can imagine two basic

situations: trying to maximise the amount of σ one can distil per ρ, and trying to minimise the

amount of ρ one needs to spend per σ, put alternatively, the cost per σ.

Before going into detail it is helpful consider the general philosophy of approaching rates of

exchange this way. The work here as aimed at addressing the concerns of rates at the correct

level of ′granularity′ - what is meant by this is that the problem is analysed at the clearest level

of abstraction. In Quantum literature resources are considered in variety of situations[18], and

the problems tackled are often addressed in the context of a particular instantiation of a resource

theory, as such computational and technical distractions abound. This attempt to reach an ideal

level of conceptual clarity has been an implicit theme throughout the previous sections, from

the categorical structure, and the abstraction of experimental procedures, to the arguments on

rates presented here - by tackling a problem at the appropriate level of ′granularity′ one sweeps

aside complicating concerns while not abstracting to the point where the key observations are

lost - in this way reasoning becomes easier and results are clarified through being presented in

their correct context.
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The thermodynamic perspective is also intimately related to rates. As one approaches the

thermodynamic limit clearly one is then concerned with transitions in this limit. The issue

is that in the limit it is no longer helpful to talk of individual transitions, the only directly

meaningful relationships are the rates themselves as they are intensive quantities and so can

remain sensibly finite while the potentially unbounded numbers of resources involved in the

transitions wander off to infinity. As was mentioned in the introduction these rates also relate

in a more phenomenological manner to the maximum extractable work from a Szillard-like

machine as providing the amount of pure resources one can extract from other resources - which

in turn can be converted to energy.

The first step to formalising an idea of rates is essentially a labelling exercise - one is required

to take some appropriate mathematical structure capable of encapsulating an exchange and

relate it to rates. Sequences of transition operations, called protocols, are used. As sequences

provide a well trodden path to calculus and considering the limit there will be a natural route

to asymptotic, or thermodynamic, rates. In line with earlier reasoning there are two types of

protocol, which lead to two types of optimal rate.

Definition 35 (Distillation Protocol). Given two resources ρ and σ, a distillation protocol F̄

from the former to the latter is: a sequence of natural numbers {mn} which, for each n ∈ N the

number of initial resources, gives the number of output resources, the elements of said sequence

mn; and a sequence F := {Fn} of operations where Fn : ρ⊗n → σ⊗mn where n is also in N,

which provides these transitions.

For each operation sequence F we define its nth distillation rate RD(n,F ) as the the ratio mn

n
,

where n and mn are those integers that correspond to the operation considered.

Definition 36 (Cost Protocol). Given two resources ρ and σ, a cost protocol F̄ from the

former to the latter is: a sequence of natural numbers {mn} which, for each n ∈ N the number

of output resources, gives the number of input resources, the elements of said sequence mn;

and a sequence F := {Fn} of operations where Fn : ρ⊗mn → σ⊗n where n is also in N, which

provides these transitions.

For each operation sequence F we define its nth cost rate RC(n,F ) as the the ratio mn

n
, where

n and mn are those integers that correspond to the operation considered.
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With these protocols defined one is in a position to talk about optimal rates. For brevity the

optimal forms will be discussed in unison, later it will be shown that they are actually inverses,

and so separating them is a needless complication.

Definition 37. The sequence of real numbers Rx−opt(n), where x is either ′C ′ for cost or ’D’

for distillation, is the optimum rate attainable from an operation acting on any of the possible x

type protocols acting on n resources. For cost and distillation, optimum has a different meaning:

RC−opt(n) = inf
F
RC(n,F )

RD−opt(n) = sup
F
RD(n,F )

The infimum minimises, while the supremum maximises, this is in line with the desire to

minimises cost and maximise distillation.

Definition 38. The optimal rate Rx(ρ→ σ), where x is either ′C ′ for cost or ′D′ for distillation

and indicates the relevant protocol type, is the optimum rate possibly obtainable when one considers

n in the limit for any transition

RC(ρ→ σ) = lim inf
n→∞

RC−opt(n) (4.1)

RD(ρ→ σ) = lim sup
n→∞

RD−opt(n). (4.2)

It may not be obvious why the superior and inferior limit are invoked. The reason is the usual

limit may not exist, there is no fundamental reason why the amount of a product obtained

from an input would not oscillate continually. The superior and inferior limits allow one to take

the limit set of the optimal rates, viewed as a sequence over n, and then choose the largest or

smallest, depending on whether one seeks cost or distillation optimisation.
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It will prove practical to note that the right hand side of equations 4.1 and 4.2 in the above

definition can be rewritten as follows:

Lemma 4.0.1. The limit superior(inferior) of the sequence formed of the optimum rate

obtained for each n is equivalent to the supremum(infimum) over the protocols of the set

of superior(inferior) limits of the rates for each protocol F̄ , written explicitly

For distillation one has

lim sup
n→∞

RD−opt(n) = sup
F

( lim sup
n→∞

R(n,F ) ) (4.3)

and for cost

lim inf
n→∞

RC−opt(n) = inf
F

( lim inf
n→∞

R(n,F ) ) (4.4)

Proof. For distillation

lim sup
n→∞

RD−opt(n) = lim sup
n→∞

(sup
F
R(n,F ))

Using the commutativity of the supremum and the limit superior (see appendix B.0.3)

lim sup
n→∞

(sup
F
R(n,F )) = sup

F
(lim sup

n→∞
R(n,F ))

For cost

lim inf
n→∞

RC−opt(n) = lim inf
n→∞

(inf
F
R(n,F ))

Using the commutativity of the infimum and the limit inferior (see appendix B.0.4)

lim inf
n→∞

(inf
F
R(n,F )) = inf

F
(lim inf
n→∞

R(n,F ))

In essence what has been done here is to move from considering the supremum(infimum) of the

limit set of a sequence composed of the optimal rates attainable for each n over all the protocols,

to a situation where one is collecting the superior(inferior) limit of the rate of every protocol

and then taking the supremum(infimum) of these.
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The ability to compose resources and the maps between them is a relatively simple principle

which immediately implies a less obvious relationship between the supremum(infimum) of the

optimal rate sequence and its superior(inferior) limits. If one has the optimal rate for some

transition in the finite limit, from some ρ⊗a to σ⊗b by a transition F , then by forming a tensor

product of such transitions one can achieve this rate for every P multiple of the original a -

this implies one can form a protocol where Pb is obtained from Pa which implies that the

one can form a protocol where the optimal rate discussed is obtained a countably infinite

number of times (once for every p multiple that exists). This means it is an accumulation

point and so is in the limit set of the sequence of optimum rates - if this rate is known to be

the largest(smallest) obtainable then one immediately knows it must be the largest(smallest)

limit point, the superior(inferior) limit, but at the same time it was also the optimal rate - the

supremum(infimum) of the rates over all n and protocols F̄x, where x is either C for cost or D

for distillation. Before this can be proved the following lemma is required:

Lemma 4.0.2. If Rx(ρ→ σ) is attained for some finite n∗ ∈ N for some protocol F̄ ∗ then this

rate is obtainable for every integer multiple of the input and output resources of this transition,

explicitly

Rx−opt(n∗) = Rx(ρ→ σ) =⇒ Rx−opt(Pn∗) = Rx(ρ→ σ) where P ∈ N.

where x is either D or C, for distillation and cost respectively.

Proof. Consider the n∗th operation of the protocol F̄ ∗, which achieves the rate Rx(ρ → σ)

where x is either D or C, for distillation and cost respectively:

For distillation one has some transition ρ⊗n∗ to σ⊗mn∗ and by composition one can form the

operation

FPn∗ = F⊗P
n∗ : (ρ⊗n∗)P → (σ⊗mn∗ )P (4.5)

the rate for this operation is Pm∗n
Pn∗

= m∗n
n∗

= RD(ρ → σ). As by definition RD(ρ → σ) is the

optimum obtainable rate, and one can construct some protocol with the above as the Pn∗th

operation then RD−opt(Pn∗) = Rx(ρ→ σ).
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For cost one has some transition ρ⊗mn∗ to some σ⊗n∗ again by composition one can form the

operation

FPn∗ = F⊗P
n∗ : (ρ⊗mn∗ )P → (σ⊗n∗)P (4.6)

the rate for this operation is Pm∗n
Pn∗

= m∗n
n∗

= RC(ρ → σ). As by definition RC(ρ → σ) is the

optimum obtainable rate, and one can construct some protocol with the above as the Pn∗th

operation then RC−opt(Pn∗) = Rx(ρ→ σ).

With this lemma to hand, one can now prove the following:

Lemma 4.0.3. If Rx(ρ→ σ), where x has its usual meaning, is obtained at some finite n then

it is also attained in the limit. Explicitly if the transition rate Rx(ρ→ σ) is obtained at some

finite n∗ for some operation in protocol F̄ ∗ then this rate is also obtainable in the limit via the

supremum or infimum, for distillation and cost respectively. Written formally

sup
n,F

RD(n,F ) = sup
F

( lim sup
n→∞

RD(n,F ) ) (4.7)

inf
n,F

RC(n,F ) = inf
F

( lim inf
n→∞

RD(n,F ) ) (4.8)

Proof. Consider the sequence Rx−opt(n), from lemma 4.0.2 one knows that Rx−opt(Pn∗) =

Rx(ρ → σ) where P ∈ N. This implies that Rx(ρ → σ) ∈ R is such that there are an

infinite number of natural numbers where Rx−opt(n) = Rx(ρ→ σ). Therefore Rx(ρ→ σ) is an

accumulation point of the sequence.

By definition RD(ρ→ σ) ≥ RD−opt(n) ∀n ∈ N and is therefore the largest possible accumulation

point; RC(ρ → σ) ≤ RC−opt(n) ∀n ∈ N and is therefore the smallest possible accumulation

point. One then has that

sup
n,F

RD(n,F ) = lim sup
n→∞

RD−opt(n) (4.9)

inf
n,F

RC(n,F ) = lim inf
n→∞

RC−opt(n) (4.10)

therefore using lemma 4.0.1 one has that

sup
n,F

RD(n,F ) = sup
F

lim sup
n→∞

RD(n,F ) (4.11)

inf
n,F

RC(n,F ) = inf
F

lim inf
n→∞

RC(n,F ). (4.12)
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Remark 7. The above shows that if an optimal rate exists for a finite number of resources it

is also optimal in the limit. This may seem as if it leaves open the possibility that the optimal

rate may only be obtained in the limit and so, depending on whether the resource theory is in a

sense complete, the optimal rate may just be a bound not an actually obtainable rate. In fact, as

was discussed in section 3.2, any transition that can be approximated to arbitrary accuracy by

free states is also free. The implication is that for free transitions the optimal rate is actually

obtainable by a free operation.

With this in mind one arrives at the following corollary.

Corollary 4.0.3.1. In bounded sets the supremum of the rate is equal to its superior limit. Also

the infimum of the rate is equal to its inferior limit. The set of transitions is closed in a resource

theory; any allowed transition is already in the theory. We can then say that the superior limit

rate is equal to the supremum rate and the inferior limit rate is equal to the infimum rate.

It seems reasonable that the optimum distillation rate based of the supremum of the ratio of

product over input might be the inverse of the optimum cost rate, the infimum of the ratio of

input over product. If true this would allow one to show that one need only consider one of

these rates as they are inversely related. Indeed this is the case:

Proposition 4.0.4. The distillation and cost rates are inversely related:

RD(ρ→ σ) = 1
RC(ρ→ σ) (4.13)

Where ρ, σ ∈ |D| for a resource theory D.

Note this applies only where this is defined, which implies finite rates.
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Proof. Consider the family of ordered pairs < ai, bi > with ai, bi ∈ N representing every

transition that exists between resources ρ and σ, belonging to a resource theory D, such that

ρai → σbi where the index i runs over the set of all transitions between these resources.

By definition the distillation rates and cost rates are the supremum and infimum of the ratios

RD,i = bi

ai
and RC,i = ai

bi
respectively. Explicitly we can write the following

RD(ρ→ σ) = sup
i

bi
ai

= b∗

a∗

RC(ρ→ σ) = inf
i

ai
bi

= a′

b′

where a′, a∗ ∈ ai and b′, b∗ ∈ bi. By definition of the supremum one knows that

RD(ρ→ σ) = b∗

a∗
≥ b′

a′
= 1
RC(ρ→ σ)

Now suppose that

b∗

a∗
>
b′

a′

this implies that

a′

b′
>
a∗

b∗

but a′

b′
= inf

i

ai

bi
, so the above is a contradiction. Therefore one can strengthen the relationship

to equality.

From here on the simplification Rx(ρ→ σ) to R(ρ→ σ) may be used where it seems practical,

that is to say the assumption will be that the distillation rate is being discussed. The cost

rate is taken to be the inverse fraction as discussed above; all work referring to distillation

rates immediately also relates to cost rates. Similarly RD−opt(−) will be written Ropt(−) unless

otherwise stated. Finally protocols can be assumed to be distillation protocols.
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With rates between resources defined, it is practical to consider the bounds on compound rates.

One presumes that if their is a transition to some resource via a middle resource then the

optimum rate is at the very least equal to the optimum rates of these composite transitions.

This is the case, as is shown below.

Lemma 4.0.5.

R(ρ→ σ)R(σ → θ) ≤ R(ρ→ θ) (4.14)

Proof. Consider the transitions

ρ⊗n → σ⊗mn (4.15)

σñ → θm̃ñ (4.16)

One can use these to construct a third transition

ρ⊗nñ → σ⊗mnñ → θ⊗mnm̃ñ (4.17)

written more succinctly as

ρ⊗nñ → θ⊗mnm̃ñ

By definition one knows if ρn̂ → θm̂n̂ then as the largest possible such ratio R(ρ → θ) ≥ m̂n̂

n̂
.

This implies that

R(ρ→ θ) ≥ mnm̃ñ

nñ
(4.18)

Suppose now that the transitions given by equations 4.15 and 4.16 are the transitions giving

the largest distillation rate possible for any protocol, which is to say

R(ρ→ σ) = mn

n
and R(σ → θ) = m̃ñ

ñ

Then by using equation 4.18 one can write

R(ρ→ σ)R(σ → θ) ≤ R(ρ→ θ) (4.19)
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There is a similar inequality for cost rates demonstrated in the following lemma.

Lemma 4.0.6.

RC(ρ→ θ) ≤ RC(ρ→ σ)RC(σ → θ) (4.20)

Proof. Taking equation 4.14 for the distillation equivalent of the result and using lemma 4.0.4

regarding the relation between cost and distillation rates one deduces that

1
RC(ρ→ σ)RC(σ → θ) ≤

1
RC(ρ→ θ) (4.21)

which trivially rearranges to the desired result.
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4.1 Monotones

In a more practical setting it seems natural that a rate of exchange relates somehow to value -

in a sense the fact one resource can be converted into many others roughly defines value. In a

resource theory one resorts to monotones in order to discuss value . In this section results relating

the relative values of resources to the optimal transition between them will be demonstrated.

In particular these relations will be considered in the limit; In this way one maintains a close

relationship with the idea of thermodynamic exchanges where many particle systems transition

between various states.

To begin the definition of a monotone is required, which takes a resource and assigns it a

number value such that the resources it transitions to have a lower value, and the resources

that transition to it have a higher one.

Definition 39 (Montone). Consider a resource theory D and a function f : |D| → R sending

resources to real numbers. This function is monotonic, or a monotone, if for all ρ, σ ∈ |D| such

that ρ→ σ then f(ρ) ≥ f(σ). That is to say if it is preorder preserving.

As mentioned the aim here is also to discuss asymptotic transitions. If value is to stay meaningful

in the limit one must be able to move to a value density as the infinite composition of resources

of non-zero value will themselves become asymptotic. For this reason regularised functions are

introduced

Definition 40 (Regulisable function). A function f : |D| → R acting on a resource theory D

is called regularisable if the limit

f∞(ρ) = lim sup
n→∞

f(ρ⊗n)
n

exists ∀ρ ∈ |D| and is bounded. (4.22)

where f∞ is refereed to as the Regulised function.

These regularised functions clearly bear a density like form. This is ideal for attaining a value

density - the question is whether a regularised monotone is itself a monotone. It turns out this

is the case.
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Proposition 4.1.1. The Regulised monotones, of monotones that are regularisable, are them-

selves monotones.

Proof. If one has a transition ρ → σ then by definition for any monotone f one has that

f(ρ) ≥ f(σ). Taking the given transition labelled F1 one can form the composite

F⊗n
1 : ρ⊗n → σ⊗mn

which implies that f(ρ)⊗n ≥ f(σ)⊗n. With this inequality in hand and using the monotonicity

of the limit one arrives at

lim
n→∞

f(ρ⊗n)
n

≥ lim
n→∞

f(σ⊗n)
n

which can be rewritten as

f∞(ρ) ≥ f∞(σ)

These densities also have another property which is useful in later proofs: they are necessarily

non-zero.

Lemma 4.1.2. The Regulised monotones are non-negative.

Proof. Free resources are defined as those which can be created at no cost. Therefore having

one copy or many is should have the same value, which is to say that for a monotone function f

and free resource θ ∈ |D| for a resource theory D

f(θ) = f(θ⊗n).

Now by considering the regularised monotone one can see

f∞(θ) = lim
n→∞

f(θ⊗n)
n

= lim
n→∞

f(θ)
n

= 0

As free resources are those of minimum value it must be the case that f∞ ≥ 0 for all ρ ∈ |D|.
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With regularised monotones defined one can show that the regularised monotonic value of an

initial resource is larger than or equal to that of the final resource multiplied by the optimal

rate. This cannot be presented directly, a few technical lemmas are required. Firstly one must

observe that the sequence {mn}n∈N of some protocol F̄ is unbounded when the optimal rate is

non-zero.

Lemma 4.1.3. If R(ρ→ σ) > 0 for the transitions ρn → σmn, is given by a protocol F̄ , then

the sequence belonging to this protocol {mn}n∈N is unbounded.

Proof. If mn, which is positive by definition, is bounded then lim
n→∞

mn ≤ L for some L ∈ R.

This then implies

lim
n→∞

mn

n
≤ L

n
= 0

This implies that the limit must in fact be zero. As R(ρ → σ) is the limit superior of such

ratios, which is here simply the limit, then it is zero - a contradiction.

The second important technical observation is that from any protocol, provided one can discard

resources, one can always construct from it something called its Steady derived protocol, the

term steady indicates that it is non-oscillating. Crucially it can be shown that this new protocol

has the same optimal rate as the original.

Lemma 4.1.4. Suppose one has a protocol F̄ , where its rate is given by lim sup
n→∞

mn

n
where

{mn}n∈N is the sequence of output resources indexed by the input resources n. Then given that

one can discard resources, one can construct a second protocol called the steady derived protocol

F̄ ′ with a non-decreasing sequence giving the same rate.
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Proof. First take the protocol F̄ composed of a sequence {mn}n∈N and a operations {Fn}n∈N
from this, one can then construct F̄ recursively as follows: for its sequence we let

m′n =


m1 if n = 1
mn if mn ≥ m′n−1

m′n−1 if mn < m′n−1

(4.23)

and for its operations F ′
n

F ′
n =


F1 if n = 1
Fn if mn ≥ m′n−1

F ′
n−1 ◦

(
u⊗I ⊗(n−1)

)
if mn < m′n−1

. (4.24)

where u represents the discarding operator. The new protocol takes the first operation in the

original and then for every subsequent operation checks if its output is lower than the previous

one. If it is, it discards one of the input resources and applies the previous operation, if not, it

uses this operation. In this way one obtains a non-decreasing sequence.

Observe that this protocol will have the same optimal rate as the old protocol1, as the ratio
mn∗
n∗ = sup

n

mn

n
can not be removed by this process. If it was removed this would imply

m′n∗−1 > mn∗ which would in turn imply that there exists mp where is an integer where p < n

such that mp

p
> mn∗

n∗ which is a contradiction.

Corollary 4.1.4.1. As F̄ ′ has a non-decreasing sequence its optimal rate obtained in the limit

by lemma 4.0.3 is obtained as a limit proper - not just a superior limit.

This steady derived protocol obeys the following, somewhat suggestive property, which will be

key in reaching the final result.

Lemma 4.1.5. For a steady derived protocol F̄ ′, composed of sequences {m′n} and {F ′
n} derived

from some protocol F , composed of sequences composed of sequences {mn} and {Fn} , the

following relation holds

lim sup
n→∞

f(ρ⊗n)
n

≥ R(ρ→ σ) lim sup
n→∞

f(σ⊗m′n)
m′n

(4.25)

1Note this is not the same thing as the optimal rate of transition which is optimal over both the number of
resources n and also over all the protocols.
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Proof. Consider the protocol F̄ which contains the operation Fn which attains the optimal

rate RD(ρ → σ) for some transition ρ⊗n → σ⊗m
′
n . This transition then implies that for f , a

regularisable monotone

f(ρ⊗n) ≥ f(σ⊗m′n) (4.26)

from this one can see that

f(ρ⊗n)
n

≥ f(σ⊗m′n)
n

= f(σ⊗m′n)
m′n

m′n
n

(4.27)

one then take the limit superior

lim sup
n→∞

f(ρ⊗n)
n

≥ lim sup
n→∞

f(σ⊗m′n)
m′n

m′n
n

(4.28)

Using corollary 4.1.4.1 one can pull the rate term out of the superior limit, as it converges,

giving

lim sup
n→∞

f(ρ⊗n)
n

≥ lim sup
n→∞

f(σ⊗m′n)
m′n

m′n
n

= lim
n→∞

m′n
n

lim sup
n→∞

f(σ⊗m′n)
m′n

= R(ρ→ σ) lim sup
n→∞

f(σ⊗m′n)
m′n

(4.29)

Lemma 4.1.6. For a steady derived protocol F̄ ′ representing transitions ρn → σm
′
n, composed of

sequences {m′n} and {F ′
n} derived from some protocol F representing the transitions ρn → σmn,

composed of sequences composed of sequences {mn} and {Fn} the following property holds for

the regularised monotone of the output resource.

lim sup
n→∞

f(σ⊗m′n)
m′n

≥ f∞(σ) (4.30)
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Proof. Too see this one must make use of lemma 4.1.3 to see that the new protocol’s sequence

{m′n}n∈N is unbounded, which indicates we can use {m′n}n∈N construct a strictly monotonic

subsequence {m′sn}n∈N

m′sn =


m′1 if n = 1
m′n if m′n > m′sn−1

m′n+p if m′n ≤ m′n−1 where p = inf{p′ ∈ N|m′n+p′ > m′n}
(4.31)

one can view p as the number of terms one must skip in the original sequence to find one that

is larger. Importantly as a strictly increasing monotonic sequence it is a subsequence of the

natural numbers. The importance of this is that if we consider the limit set En of the sequence
f(σ⊗n)

n
then it contains the limit set Em′sn of the subsequence f(σ⊗m′sn )

m′sn
, that is to say

Em′sn ⊆ En. (4.32)

One also has that by construction {m′sn}n∈N is a subsequence of {m′n}n∈N which implies that for

the sequence f(σ⊗m′n )
n

one has that

Em′sn ⊆ Em′n . (4.33)

The key observation is that En contains one element, as the limit must exist by definition: due

to the fact f is a regularisable monotone. One knows that any subsequence must converge to

the same limit, or put another way one knows that Em′
k
must have at least one element, however

it is a subset of En which is a singleton - meaning it must also be a singleton with the same

element - this directly implies that

Em′sn = En (4.34)

this allows one to rewrite

En ⊆ Em′n . (4.35)

By the definition of the superior limit and the fact that the supremum of a set must be greater

than or equal to those of its subsets one can see that

lim sup
n→∞

f(σ⊗m′n)
m′n

= supEm′n ≥ supEn = lim sup
n→∞

f(σ⊗n)
n

= f∞(σ) (4.36)
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Finally with the above lemma one is in a position to reach the main result:

Theorem 4.1.7. For a resource theory D and a regularisable monotone f where there exists a

resource θ ∈ |D| such that f(θ) > 0 the following inequality holds

f∞(ρ) ≥ f∞(σ)R(ρ→ σ) (4.37)

where ρ, σ ∈ |D|, provided there is such a transition between them.

Proof. Given some protocol achieving this rate, by lemma 4.1.4, one can construct a steady

derived protocol which is non-decreasing and achieves this rate.

Then one knows, from lemma 4.1.6, that the following equation holds

lim sup
n→∞

f(σ⊗m′n)
m′n

≥ f∞(σ) (4.38)

Where {m′n}n∈N is the sequence of the steady derive protocol. Using this one can use the relation

given by lemma 4.1.5 alongside the relation given above to show that

f∞(ρ) ≥ lim sup
n→∞

f(σ⊗m′n)
m′n

m′n
n

= R(ρ→ σ) lim sup
n→∞

f(σ⊗m′n)
m′n

≥ R(ρ→ σ)f∞(σ).

where corollary 4.1.4.1 has been used, which showed the derived protocols rate is obtained as a

limit and so can be removed from the superior limit as shown.
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This relationship allows one to propose useful bounds between certain cost and distillation

rates.

Lemma 4.1.8. For a regularisable monotone f we have the following relationship between the

distillation and cost rate

RC(σ → ρ) ≥ f∞(ρ)
f∞(σ) ≥ RD(ρ→ σ) (4.39)

when f(ρ) and f(σ) are non-zero.

Proof. consider the two arbitrary resources and some distillation and cost protocol between

them

FD :ρ⊗n → σ⊗mn

FC :σ⊗m̃n → ρ⊗n

By equation 4.37 we can write

f∞(ρ)
f∞(σ) ≥ RD(ρ→ σ)

and similarly

f∞(σ)
f∞(ρ) ≥ RD(σ → ρ)

taking this second equation and using the inverse relationship between RD(σ → ρ) and RC(σ →

ρ) seen in lemma 4.0.4 gives us that

RC(σ → ρ) ≥ f∞(ρ)
f∞(σ)

From which we can deduce the following relation

RC(σ → ρ) ≥ f∞(ρ)
f∞(σ) ≥ RD(ρ→ σ)

In a practical sense this can be seen as the statement that the minimal cost of going from one

resource to another is always less than or equal to the amount one can get back. If this was not

the case it would be possible to continually extract more and more of a resource by moving in a

cycle - the fact one cannot do this is in a sense an abstraction of Carnots theorem.
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The final part of this section connects this work with that on rates found in the work of Coecke,

Fritz and, Spekkens [11] where additive monotones were studied. These are defined below and

then shown to be generalised by the concept of regularisable monotones. In this way all the

above results apply in the additive setting

Definition 41. A monotone f : |D| → R is additive if f(ρ⊗n) = nf(ρ).

Lemma 4.1.9. Additive monotones are regularisable

Proof. If f is additive then by definition one has that for all resources ρ that

f(ρ⊗n) = nf(ρ)

and in this case

f∞(ρ) = lim sup
n→∞

f(ρ⊗n)
n

= lim sup
n→∞

nf(ρ)
n

= f(ρ)

which is finite and exists.
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4.2 Currencies

It is a common feature of many systems that there may exist a resource which can transition to

any other resource. In this way it can function as a link to all other resources and so acts as a

medium of exchange.

Definition 42. A currency is a resource c ∈ |D| such that for all ρ ∈ |D| there exists a

transition

c→ ρ (4.40)

between these resources.

With a currency defined the rates associated with them take on a special role

Definition 43. The distillation and cost rate in a resource theory D with a currency c ∈ |D| is

defined as follows

RD(ρ) := RD(ρ→ c) RC(ρ) := RC(c→ ρ) (4.41)

where ρ ∈ |D| is some arbitrary resource.

These optimal rates are in one sense simply a particular case of those discussed above, however

they now have a particular operational meaning. The currencies act as a mediator between all

resources and therefore leads one to be able to define value as more than just something that

exists between certain resources. It allows for a discussion of value as a global property that is

induced by having this currency as a means to compare all resource. The advantage of this will

become clear as this section progresses.
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The nature of a currency has direct implications for the optimal rates too and from them. The

rate of currency distillation from any other resource is at most one. Similarly one cannot spend

currency at a rate any greater than one.

Lemma 4.2.1. For an arbitrary resource ρ ∈ |D| in a resource theory D with a currency, RD(ρ)

and RC(ρ) are bounded above by one and below by zero

0 ≤ RD(ρ) ≤ 1 and 0 ≤ RC(ρ) ≤ 1

Proof. For RD(ρ)

The lower bound is guaranteed by the fact rates cannot be negative by definition. To see

the upper bound consider, once again, the family ordered pairs < ai, bi > with ai, bi ∈ N

representing every transition that exists between resources c and ρ, belonging to our resource

theory, such that cai → ρbi where the index i runs over the set of all transitions between these

resources

RD(c→ ρ) = sup
i

bi
ai

To begin use the fact that c→ ρ as c for all ρ in the resource theory as it is a currency. This

implies that that RD(c→ ρ) must be at least 1, which is to say

RD(c→ ρ) = sup
i

bi
ai
≥ 1 (4.42)

Now from lemma 4.1.8 one knows that

f∞(ρ)
f∞(c) ≥ RD(ρ) (4.43)

f∞(c)
f∞(ρ) ≥ RD(c→ ρ) (4.44)

From the second of these alongside equation 4.42 one can get the following inequality

f∞(c)
f∞(ρ) ≥ RD(c→ ρ) ≥ 1

by rearranging this result and applying 4.44 one arrives at

1 ≥ f∞(ρ)
f∞(c) ≥ RD(ρ)
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4.2. Currencies

which provides the desired inequality.

For RC(ρ)

The lower bound is again guaranteed by the fact rates cannot be negative by definition. For the

upper bound consider, once again, the family ordered pairs < ai, bi >, where one knows that

RC(ρ) := RC(c→ ρ) = inf
i

bi
ai

We again use the fact that c→ ρ which here implies that RC(ρ) is at most 1, which is to say

RC(ρ) ≤ 1

There is a relationship between the cost and distillation rates showing the rate of cost is greater

than or equal to that of distillation.

Proposition 4.2.2. For an arbitrary resource ρ ∈ |D| in a resource theory with a currency,

RD(ρ) and RC(ρ) are related as follows

1 ≥ RC(ρ) ≥ RD(ρ) ≥ 0 (4.45)

Proof. Firstly consider equation 4.39 in the context of currency resource cost and distillation

which gives us

RC(ρ) ≥ f∞(ρ)
f∞(c) ≥ RD(ρ)

then using lemma 4.2.1 one can extend this equation to show that

1 ≥ RC(ρ) ≥ f∞(ρ)
f∞(c) ≥ RD(ρ) ≥ 0 (4.46)
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This proposition guarantees a certain coherence to the notion of a currency, it indicates a

certain Carnot-esque, or Carnotic property: one cannot get more currency out than one puts in.

Without it the system becomes trivial one one could cyclically generate more and more currency

and accumulate value from nothing.

A final observation is that the act of taking the cost or distillation rate of some resource is the

same of assigning a value to them - this process is is itself a monotonic function. All resources

can be assigned a global value based on the rate at which one can transition from them or too

them from a currency.

Proposition 4.2.3. RD(−) : |D| → R and RC(−) : |D| → R are themselves monotonic

functions.

Proof. For RD(−)

Suppose in our resource theory D one has that ρ→ σ and σ → c and from these the associated

distillation rates. We can then make use of the relation RD(ρ) ≥ RD(ρ→ σ)RD(σ). As one has

that ρ→ σ one knows that RD(ρ→ σ) ≥ 1 which along with the fact RD(ρ→ σ) ≥ 0 allows us

to deduce that

RD(ρ) ≥ RD(σ)

Which shows RD(−) is a monotone function.

For RC(−)

Suppose in our resource theory D one has that ρ→ σ and σ → c and from these the associated

cost rates. We can then make use of the relation RC(ρ) ≤ RC(ρ→ σ)RC(σ). As one has that

ρ→ σ one knows that RC(ρ→ σ) ≤ 1 which along with the fact RC(ρ→ σ) ≥ 0 allows us to

deduce that

RC(σ) ≤ RC(ρ)

Which shows RC(−) is a monotone function.

This shows that the existence of a currency guarantees the ability to assign value; this is perhaps

not so strange given that all resources are connected can be reached by the currency and they

in relation to it only in the rates at which this happens.
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4.3 Reversibility and the role of monotones

In a plain terms reversibility is the property of doing something and then undoing it to find

oneself in the original position. In many physical situations this is not true, in mechanical

settings friction will mean that in performing an action and then undoing it one has lost

energy - reversibility marks something special. Indeed in macroscopic thermodynamics reversible

processes guarantee entropy preservation and energy conservation. In resource terms one should

be able to transition from a certain amount of one resource to another, and then be able to

transition back and reclaim exactly the same amount of the original resource as one started

with. To put it formally one has the following:

Definition 44. A resource theory is described as reversible if RD(ρ→ σ)RD(σ → ρ) = 1 for

all ρ and σ in |D|.

Given the existence of regularisable monotones one can usefully characterise a reversible theory

as one where distillation is equal to cost.

Lemma 4.3.1. A resource theory D is reversible iff

RD(ρ→ σ) = RC(σ → ρ) ∀σ, ρ ∈ |D| (4.47)

Proof. =⇒

Presume RD(ρ→ σ)RD(σ → ρ) = 1 then one can write

RD(ρ→ σ) 1
RC(σ → ρ) = 1 =⇒ RD(ρ→ σ) = RC(σ → ρ) (4.48)

where proposition 4.0.4 was use to introduce the cost rate. This proves the resourcement in this

direction.

⇐=

Going the other way one finds that

RD(ρ→ σ)RD(σ → ρ) = RD(ρ→ σ)RC(ρ→ σ)

= RD(ρ→ σ) 1
RD(ρ→ σ)

= 1

This proves the resourcement in the other direction.
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Corollary 4.3.1.1. In a resource theory with a regularisable monotone f , the pinching of lemma

4.1.8 by the above equality tells one RC(σ → ρ) = f∞(ρ)
f∞(σ) = RD(ρ→ σ)

In a resource theory with a currency reversibility imposes heavy restrictions on the possible

regularised monotones. In fact it shows that they are unique up to a constant.

Theorem 4.3.2. In a reversible resource theory with a currency all regularisable monotones are

unique up to a constant. That is to say for two regularisable monotone functions f1, f2 : |D| → R

f∞1 (ρ) = af∞2 (ρ) where a = f∞1 (c)
f∞2 (c) (4.49)

where c is the currency.

Proof. Consider a reversible theory, by definition 44 one has that RD(ρ → c)RD(c → ρ) = 1

and from corollary 4.3.1.1 one knows that

RD(ρ→ c) = RC(c→ ρ) = f∞(ρ)
f∞(c)

This is true for all resources as the existence of a currency guarantees a connection to all

resources, which is reciprocated due to reversibility. Note the equation is true for all such

monotonic functions so one can take two such examples f∞1 and f∞2 and write that

f∞1 (ρ)
f∞1 (c) = RD(ρ→ c) f∞2 (ρ)

f∞2 (c) = RC(c→ ρ) (4.50)

But one knows RD(ρ→ c) = RC(c→ ρ) therefore

f∞1 (ρ)
f∞1 (c) = f∞2 (ρ)

f∞2 (c) =⇒ f∞1 (ρ) = f∞1 (c)
f∞2 (c)f

∞
2 (ρ) (4.51)

Note that in the above proof the importance of a currency is in ensuring there exists a mapping

to every other resource which allows for the construction of the constant, in general there is no

requirement that resources are connected like this.
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4.4 Asymptotic conversion

The rates considered hitherto consisted of exact transitions that exist for all n. The next step

is to consider transitions that are only possible in the limit. These are transitions that are

asymptotically exact. A complementary physical analogue of this is the thermodynamic system -

where one is looking at the transition possibilities in the thermodynamic limit of many particles,

here phase transitions are possible, something which doesn’t exist on the microscopic scale[32]

.

The broad approach to analysing this mathematically is to take some transition that exists

between one desired initial resource and another that is distinct from the desired output resource,

but that converges to to it in the limit. The first thing required is a notion of proximity, for this

reason one uses a metric 2.

Definition 45. A metric on a resource theory is D is a function d : |D| × |D| → [0,∞) such

that for all ρ, σ, θ ∈ |D|

d(ρ, σ) ≥ 0 (4.52)

d(ρ, σ) = 0 iff ρ = σ (4.53)

d(ρ, σ) = d(σ, ρ) (4.54)

d(ρ, θ) ≤ d(ρ, σ) + d(σ, θ) (4.55)

The notation d(ρ, σ) = |ρ− σ| is also common and bears resemblance to the distance between

resources in quantum theory - this notion will be used from here on.

Definition 46. A metrised resource theory is a pair (D, d) where D is a resource theory and d

is a metric acting on it.

With a metric defined one needs to consider the functions which are compatible with this

structure in the limit. The aim is to define a function that is continuous in the asymptotic limit,

in this way the function will respect that when the resources converge so should their respective

mappings under the function.

2In principle topological proximity could suffice, here however a metric is used to maintain a description close
to quantum theory. In quantum mechanics one has a normed vector space which naturally induces a metric.
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Definition 47. A function f : |D| → R is asymptomatically continuous if for a sequence of

resources such that

lim
n→∞

|ρn − σn| = 0 (4.56)

then

lim
n→∞

|(f(ρn)− f(σn))| = 0 (4.57)

These technical points may look to some degree contrived. They are actually very natural.

In the asymptotic limit the valuation functions, that is the monotones, are often themselves

unbounded; As was discussed earlier adding more resources with non-zero value implies greater

value. Recall the conclusion was to move to intensive quantities in the form of value densities,

the regularised monotones. If similar resources are to converge for these sequences in the limit,

then the monotones themselves must also converge on these sequences.

The rates considered hitherto consisted of exact transitions between resources. The focus now

moves to considering transitions that are only possible in the limit. Suppose there exists a

sequence of resources {σ′n}n∈N such that there exists operations

Fn : ρ⊗n → σ′n (4.58)

where

lim
n→∞

|σ⊗mn − σ′n| = 0 (4.59)

In this way one can define an asymptotic protocol that exists only in the limit. To have protocol

by definition 35 one requires a sequence of operations {Fn}n∈N and integers {mn}n∈N. Note

however that this protocol is only meaningful in the asymptotic limit where the transitions

ρ⊗n → σ′n become ρ⊗n → σmn . In this way one has exact transitions only available in the limit.

One can now define the transition rate in the asymptotic limit.

63



4.4. Asymptotic conversion

Definition 48. In a metrised resource theory D the asymptotic transition rate between the

resources ρ, σ ∈ |D| is defined as follows: let F be a protocol such that

lim
n→∞

|Fn(ρ⊗n)− σ⊗mn| = 0. (4.60)

Then one can write

R(ρ→ σ) = sup
F

lim sup
n→∞

mn

n

= sup
F ,n

mn

n

where the simplification in the last line is due to lemma 4.0.3.

Notice that in most respects this transition rate is the same as that of the optimal distillation

rate, there is a certain distinction due to the fact that this distillation rate only makes sense in

the limit.

With asymptotic theories defined it is then possible to consider asymptotically reversible

theories.

Definition 49. An asymptotically reversible resource theory is a reversible resource theory where

for any two ρ, σ ∈ |D| which are not free resources 0 ≤ RD(ρ→ σ) ≤ ∞ and

R(ρ→ σ)R(σ → ρ) = 1. (4.61)

Note that the bounds are inclusive as the infinite rate is possible when one wants to distil

free resources out of non-free resources; conversely the rate is zero when one wants to distil

non-free resources out of free resources. With these definitions outlined one can relate rates

to the ratio of the input and outputs resources value densities, in other word their regularised

monotones.
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Theorem 4.4.1. For a reversible resource theory D, if f is a regularisable monotone function

and there exists a resource θ such that f∞(θ) > 0 that is asymptomatically continuous where the

asymptotic transition rate is such that RD(ρ→ σ) <∞ then one has the following equality:

R(ρ→ σ) = f∞(ρ)
f∞(σ) (4.62)

Proof. Take the valued resource θ which is defined such that f(θ) > 0, one can then write that

via lemma 4.1.7 that

f∞(θ)R(ρ→ θ) ≤ f∞(ρ) (4.63)

which is trivially equal to

R(ρ→ θ) ≤ f∞(ρ)
f∞(θ) . (4.64)

One also has that

f∞(ρ)R(θ → ρ) ≤ f∞(θ) (4.65)

if one multiplies the latter by R(ρ→ θ) gives

f∞(ρ)R(θ → ρ)R(ρ→ θ) ≤ f∞(θ)R(ρ→ θ). (4.66)

Reversibility implies the rates in the left cancel each other giving

f∞(ρ)
f∞(θ) ≤ R(ρ→ θ). (4.67)

this is the converse inequality to equation 4.64, which implies

f∞(ρ)
f∞(θ) = R(ρ→ θ). (4.68)

This implies that f∞(ρ) > 0 for any resource of D. If one then applies the above logic to some

arbitrary resource σ instead of θ multiplying the equalities, and again using reversibility, one

obtains

R(ρ→ σ) = f∞(ρ)
f∞(σ) (4.69)
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Remark 8. Careful analysis of this theorem reveals it would also be valid sans asymptotic

continuity for standard non-asymptotic transitions rates. It is introduced in this form to draw

parallels with previous work discussed below.

Remark 9. This last formula has particular importance when one is considering entropic

functions. In quantum theory one has the notion of an entropy distance S(ρ|σ)[18] between two

resources Sρ, σ

S(ρ|σ) = Trρ log ρ− Trρ log σ (4.70)

From this entropy distance one can talk of relative entropy distance

Er(ρ) = inf
ρ∈States

S(ρ|σ) (4.71)

which is gives the smallest entropic distance from the set of bound entangled resources (the free

resources of entanglement theory).

This distance is regularisable[18] and so given that there exists resources θ such that Er(θ) > 0

then the optimal rate of transition from ρ to σ can be given by

R(ρ→ σ) = E∞r (ρ)
E∞r (σ) (4.72)

In this way the above theorem can be considered a generalisation of the work of Horodecki and

Oppenheim in [18].

The above theorem essentially proves that if one has a resource theory where one is considering

transitions that only exist in the limit,and said theory is reversible one can get the optimum

rate simply by dividing the asymptotically continuous regularised value of the input resource by

that of the output resource. Their relative value densities fully characterise the rate of exchange:

to know their values is to know their optimal transition rate.
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The Resource Theory Of Purity

The focus of the resource theory of purity is entropy - the purer a state, the lower its entropy,

the greater its value as a resource. Purity theory has a natural relation to thermodynamics.

In fact one can consider thermodynamics as a theory of purity where one must preserve

energy1. Conversely purity theory is thermodynamics at fixed energy[18], equivalently it is the

thermodynamics of an isolated system. This has an intuitive feel to it when one considers that

thermodynamics, be it quantum or classical, can be expressed as the transition rules where

one has ever increasing entropy and a conserved Hamiltonian. There is also the relationship

to information, in this respect purity relates to certainty of knowledge. To understand this in

a thermodynamic manner one need only look to the third law of thermodynamics which can

be stated as - The entropy of a perfect crystal of any pure substance approaches zero as the

temperature approaches absolute zero - as temperature drops one becomes certain of where each

atom in the crystal belongs in the lattice. When one is certain, where ones knowledge is ’pure’,

entropy is zero.

1As energy conservation is the result of a symmetry - symmetry in time. One can state thermodynamics as a
theory of purity and asymmetry. For more on resource theories of asymmetry see []
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One may feel that a notion of resource should be more practical - in this manner one can also

find motivation. Consider again the Szillard engine [2]. The certainty of knowledge regarding,

in the classical case, the position of a particle allows one to extract energy from the engine.

Here the value of a resource, the low entropy, directly correlates to being able to extract energy

- one is hard pushed to think of a more fundamentally property. In this way purity is a very

natural quality to view as a resource.

Formally one can describe a resource theory of purity as a partitioned theory. The super-category

is all the states and the possible transitions between them. The sub theory is generated by any

one of a number of generating free processes, soon to be discussed. The functional aim will

be to outline some set of free processes and analyse the result. Then by adding requirements

regarding an invariant state with similar properties to the quantum mixed state one hopes to

approach a realistic thermodynamic equivalent.

5.1 The Random Reversible Theory of Purity

In this theory the free transformations are random reversible channels[5]. These transformations

are probabilistic selections of channels. There is a particular simplicity to this theory in that it

requires only the axioms of an OPT.

Definition 50. A random reversible (RaRe) channel is a probabilistic selection of reversible

channels. For a random reversible channel R of the form R = ∑
i piU where {pi} is a probability

distribution, and Ui is a reversible channel for every i.

As the identity transformation is a trivial RaRe channel, and the parallel and sequential

composition of RaRe channels are Rare, these transformation can indeed form a set of free

operations.

It does have the limitation of having no free states - such a thing requires a transformation from

the trivial system to some other, however RaRe transformations go from a system to itself. It

could equivalently be said that this theory posses only trivial free states. This issue motivates a

broader search for suitable physically meaningful representations of thermodynamics.
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5.2 Generalising Micro-Canonical Equilibrium [8]

To broaden the search for suitable resource theories one should return to the idea of minimum

entropy being valuable. The contrapositive, that the maximally mixed state is the state with

least value, suggests this state as an excellent candidate for the free state. This intuition finds

justification in quantum thermodynamics proper; where one has the micro-canonical equilibrium

state. A state which when reached is valueless - as one can no longer extract work - the functional

purpose of thermodynamics.

In quantum thermodynamics the micro-canonical equilibrium state is the maximally-mixed

state χ = I
d
, for a d dimensional system, where I is the identity operator. It is characterisable

as the state that is invariant under unitary transformations2. Analogously one can define an

invariant state:

Definition 51 (Invariant State). A state χ ∈ St(A) is invariant if U χ = χ, for every reversible

channel U . Where A is some arbitrary system.

In microcanonical thermodynamics the system always has a definite energy, and such a system

is presumed to have a well defined equilibrium which motivates the existence of an equilibrium

like state in this framework. As the aim here is to define a framework for quantum theory and

theories like it, the following requirements are proffered based on the work of [8]:

Requirement 1 – Every finite system has one unique deterministic invariant state. For a system A this

state is written as χA. Mimicking quantum thermodynamics this state is considered

free.

As the product of two free states must be a free state itself this demands a second

requirement.

Requirement 2 – The invariant state of a composite system is the product of the invariant states of its

components:

χA⊗B =
χA

χB
(5.1)

2For a geometric perspective consider that the equilibrium state is the only state unaffected by any rotation
of the Bloch hypersphere
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This second condition has a definite thermodynamic flavour in that the tensor product of a two

equilibrium states is itself an equilibrium state. On these grounds equation 5.1 is referred to as

the equilibrium condition. In later discussion of sharp theories with purification.

These requirements motivate the study of two further theories of purity.

5.2.1 The Noisy Resource Theory

Presented with the motivating requirements above it is natural to consider a theory where the

free operations are those that allow one to generate invariant states and also dispose of outputs

for free. In addition it seems natural that reversible channels should be costless. Formally one

defines the following

Definition 52 (Basic Noisy Operation). A basic noisy operation B from a system A to a

system A′ is a channel that can be decomposed as

A B A′ =

A

U

A′

χ E E′ e

(5.2)

Where E and E ′ are suitable systems such that A ⊗ E ≡ A′ ⊗ E ′, U is a reversible channel,

and e is a deterministic effect, representing one possible was to discard system E.

Definition 53 (Noisy Operation). A channel N is a noisy operation if it is the limit of a

sequence of basic noisy operations {Bn}, that is, if for every reference system R, every state

ρ ∈ St(A⊗R), and every effect E ∈ Eff(A′ ⊗R) the probabilities (E|Bn ⊗IR|ρ) converge to

the probability (E|N ⊗IR|ρ)

This second definition is necessitated by the fact that the limit sequence of basic noisy operations

may not be a basic noisy operation [8].

The equilibrium condition 5.1 enforces that the sequential and parallel composition of two noisy

operations is a noisy operation. The identity channel is also trivial noisy operation. One can

then deduce noisy operations are indeed a resource theory of purity.
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5.2.2 The Unital Resource Theory

In this resource theory the free operations are defined only as those that transform invariant

states to invariant states, In this way it is the broadest possible theory meeting the above

requirements. Such transformations are denoted unital channels.

Definition 54. A channel D from a system A to system B is called unital if DχA = χB.

The set of unital channels contains the identity and, once again, the equilibrium condition

guarantees sequential and parallel composition of unital channels are themselves unital. This

resource theory is called the unital resource theory of purity.

5.2.3 Containment Relations

There is a relation between these proposed resource theories, presented in [9], which will later

allow us to define a necessary and sufficient condition for transitions between states. The first

step is to outline the relative inclusions of the theories.

Proposition 5.2.1. Every Rare channel is unital.

Proof. As all RaRe channels can be decomposed into a mixture of reversible channels which

each preserve the invariant state then by definition

RaRe ⊆ Unital (5.3)

Proposition 5.2.2. Every noisy operation is unital, when requirement two is satisfied.
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Proof. [8] Suppose B is a basic noisy operation, decomposed as in equation 52, then one can

see that

χ A B A′ =
χ A

U

A′

χ E E′ e

= χ

A

U

A′

E E′ e

= χ

A′

E′ e

=
χ A′

χ E′ e

= χ A′

where requirement two allows the partition of the invariant state to be two invariant states.

These relations hold for general probabilistic theories. In order to move closer to quantum

theory further axioms must be introduced.
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5.3 Informational Axioms [8]

It has been mentioned above how the fundamental axioms of quantum mechanics should be

physical in nature. In [5], informational axioms are put forward - this is the natural approach

to physical axioms of quantum mechanics. Direct human interaction with quantum systems

comes almost exclusively through experiment; all one can know is the information that can be

deduced about said systems via experiments. Information acquisition and manipulation are the

fundamental phenomenological aspects of quantum mechanics.

The class of theories obeying these axioms are called Sharp Theories with Purification. These

axioms are as follows:

1. Causality

The probability that a transformation occurs is independent of the choice of tests

performed on its output.

2. Purity Preservation

Sequential and parallel compositions of pure transformations yield pure transforma-

tions.

3. Pure Sharpness

Every system possesses at least one pure effect occurring with unit probability on

some state.

4. Purification

Every state has a purification and said purification is essentially unique - definition

23.

These can be given an informational flavour: causality implies that a signal cannot pass

from the future to the past; Purity Preservation implies information is preserved when

pure transformations are composed; Pure Sharpness implies certain knowledge is attainable;

Purification implies incomplete knowledge is the result of ’forgetting’ some information.
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It will be profitable to consider causality under more formal conditions

Definition 55 (Causal theories). [4] A theory is causal if every preparation-test {ρi}i∈X and

every observation-test {aj}i∈Y on a system A the marginal probability pi := ∑
j∈Y . Precisely, if

{aj}j∈Y and {bk}k∈Z are two different observation-tests, then one has

∑
j∈Y

(aj|ρi)A =
∑
k∈Z

(bk|ρi)A (5.4)

In the following section these informational axioms are utilised in the context of a general

probabilistic theory to give a class of theories similar to and including quantum mechanics.

These are called sharp theories with purification.

Definition 56. A general probabilistic theory obeying the axioms of causality, purity preservation,

pure sharpness, and purification, is a sharp theory with purification.
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5.4 Properties of Sharp Theories with Purification [4]

Restricting ones attention to Sharp theories with purification has a number of benefits, not

least the replication of a number of philosophical and technical properties seen in quantum

mechanics.

Causality alone introduces a number of restrictions on what is possible. One key technical

observation is that the introduction of causality limits the deterministic effect to a single

transformation.

Lemma 5.4.1. In a causal theory the deterministic effect is unique for each system.

Proof. If e and e′ are two deterministic effects for system A. As (e|ρi)A = (e′|ρi)A for every

state ρi then e = e′.

Going the other way, if one has a unique deterministic effect and an observation test {aj}j∈Y on

system A then one can utilise coarse graining. This allows the creation of a single outcome test,

with deterministic effect , which by uniqueness is equal to the original, that is to say,

(e|A = (e′| =
∑
j∈Y

(aj|A . (5.5)

From this one can write that for every state ρ the probability (e|ρi)A = ∑
j∈Y (aj|ρi)A, in-

dependently of the choice of observation tests {aj}j∈Y . The meaning of this is that the

outcome probability is independent of what tests are performed in the future - the definition of

causality.

This lemma then restricts the marginal states of a system to being unique. This can be

seen as guaranteeing that there is only one result of discarding information. This guarantees

that it is physically meaningful to consider parts of a larger system as those components are

uniquely defined. As considering sub-sets of larger systems is a procedure used repeatedly in

thermodynamics, and physics in general, this serves as strong evidence in favour of sharp theories

with purification being a suitable general framework for quantum thermodynamics.

Proposition 5.4.2. The marginals of a bipartite state are unique.

Proof. As the deterministic effect is unique all marginal states, definition 23, are unique.
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Mirroring quantum mechanics the notation Tr[ρ] := (e|ρ)A will be adopted for applying the

deterministic state - which like the traditional trace in Hilbert spaces sends states to probabilities.

Furthermore for some arbitrary pure state ρAB the marginal, where system B is discarded, will

denoted by the partial trace TrB[ρAB].

Remark 10. If a theory obeys causality then a state ρ can be deterministically prepared iff

Tr[ρ] = 1, which is to say it is normalised. The set of normalised states on some system A is

denoted St1(A).

A particularly striking and useful feature of sharp theories with purification is that one can also

break and state apart into diagonalised components of perfectly distinguishable pure states -

this serves both as a useful technical tool and a further evidence of a very close connection with

quantum thoery.

Theorem 5.4.3 ([7]). Every normalised state ρ ∈ St1(A) of every system A can be decomposed

as

ρ =
r∑

1=1
Pi αi (5.6)

where r is an integer (called the rank of the state), p1 ≥ p2 ≥ ... ≥ pr > 0 are probabilities

(called the eigenvalues), and {αi}ri=1 is a set of perfectly distinguishable pure states(called the

eigenstates).

Proof. The proof of this is beyond the scope of this work but can be found in reference [6] and

[7].

Remark 11. The vector of eigenvalues P = (p1, ..., pr) is called the spectrum. This spectrum is

unique for sharp theories with purification[7], which is also shown for the above purity theories

in the later corollary 5.5.1.2.

The structure of sharp theories with purification also allows us to expand on the previous

containment relations.

Theorem 5.4.4. In every sharp theory with purification, RaRe channels are noisy operations.

Proof. The proof of this is non-trivial and can be found as the proof of theorem 2 in [8].

This implies the following containment relation

RaRe ⊆ Noisy ⊆ Unital (5.7)
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.

5.4.1 State-effect Duality

A further relation with quantum mechanics is, in rough terms, is that one can know something

with certainty by utilising the dual of a state - in quantum mechanics one knows for some state

|x〉 that 〈x| applied to |x〉 gives unity - one can be certain we have this pure state by applying

its dual. This is also true in sharp theories with purification:

Proposition 5.4.5 (State-effect Duality). Let PurSt1(A) and PurEff1(A)denote the set of

pure states and effects on system A respectively. There is a bijective correspondence between

the normalised pure states and normalised pure effects. Specifically, if α ∈ PurSt1(A), where

PurSt1(A) ,there exists a unique α† ∈ PurEff1(A) such that (α†|α) = 1

Proof. The proof of this is beyond the scope of this work but can be found in reference [6].

As discussed, the meaning of this duality is that for each pure state there is a means by which

to identify it with certainty. Whether ones personal taste is for vector duals or 1-forms - the

comparison with traditional quantum mechanics based on dual Hilbert spaces, particularly in

Dirac notation, is apparent.

One can extend the notion of perfectly distinguishable states to the idea of distinguishable of

maximal sets of said states, alongside the dual set of tests. To state this formally first note the

following definition:

Definition 57. An observation test {ai}i∈X is called perfectly distinguishing if there exists a

set of states {ρi}i∈X , such that (ai|ρi) = δij for all i and j in X.

One can now attain dual sets of pure states and effects:

Proposition 5.4.6. The pure states {ai}i∈X are a maximal set of perfectly distinguishable pure

states if and only if the pure effects {a†i}i∈X form an observation-test.

Proof. The proof can be found in [7].
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5.4. Properties of Sharp Theories with Purification [4]

These maximal sets of perfectly distinguishable pure states have the same cardinality. One can

see that

1 =
∑
i∈X

(
α†i |χA

)
=
∑
i∈X

(
α†0|Ui|χA

)
= |X|

(
α†0|χA

)
(5.8)

where by proposition 5.4.8 α0 is connected to all other αi by a reversible transformation, which

by state effect duality implies α†i = α†0Ui and definition 51 tells one that reversible channels do

not alter the invariant state.

It is now meaningful to talk of a dimension of an entire system A denoted dA which is tied to the

dimension of the systems maximal set of distinguishing states. To understand this notice that

any state on A can be diagonalised such that it is decomposed over the elements of a maximal

set of distinguishable pure states - exactly like a linear combination of orthogonal basis vectors.

As each can be selected by a maximal measurement set of the same size one can separate out

the diagonal decomposition using these duals - the state really is a set of separate components

- thus it is accurate to talk of dimension - the number of elements that must be specified to

characterise the state.

This leads one into a position where one can talk about the dimension of composite systems

relative to their components.

Proposition 5.4.7. If {ai}dA
i=1 is a maximal set of perfectly distinguishable pure states for

system A and {βj}dB
j=1 is a maximal set of perfectly distinguishable pure states for system B,

then {αi ⊗ βj}i∈{1,...,dA},{1,...,dB} is a maximal set of perfectly distinguishable pure states for the

composite system A⊗B.

Proof. By proposition we know {ai}dA
i=1 is an observation test for A, as {βj}dB

j=1 is for B. The

product {αi ⊗ βj}i∈{1,...,dA},{1,...,dB} by definition is an observation test on the composite system

A⊗B. Moreover, each effect αi ⊗ βj is pure, due to purity preservation. From proposition we

know that {αi ⊗ βj}i∈{1,...,dA},{1,...,dB} is a maximal set.

Corollary 5.4.7.1. The dimension of a composite system is the product of the components.

For a system A and B of dimension dA and dB, respectively, the dimension of A⊗B is dAdB.

This fact is referred to as information locality by Hardy[14] for whom this proposition was itself

proffered as a foundational axiom. It can be phrased as the fact that if one performs a maximal

measurements on the components on the component od a composite one has performed one

on the whole; the information was in this way locally obtainable and there is no necessity for
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global operations. In a rough sense this comes back to the nature of what one can know of a

system - and if one knows of all its components, one knows the state in its entirety. In this way

the information within the parts are coherent with the whole.

5.4.2 Uniqueness of the invariant state and the equilibrium condi-
tion

The fundamentals properties of sharp theories with purification outlined are sufficient to show

that these theories satisfy the thwo requirements set out above. Recall that these were motivated

from a desire to attain thermodynamic properties, in particular, those related, in a sense, to

entropic value and the ’worthlessness’ of the invariant state. Three propositions will suffice.

The first requirement was that every finite system has one unique deterministic invariant state,

and indeed the following proposition is to hand:

Proposition 5.4.8. For every system A and every pair of pure states α,α′ ∈ PurSt(A) there

exists a reversible transformation U such that α′ = U α

Proof. [4] All systems are purifying systems for the trivial system, this is can be seen if one

admits a trivial system wire, and one makes use of the purification axiom to show that

Ψ′
I

A

= Ψ

I

A U I

where Ψ and Ψ′ are pure states. This is identical to

Ψ′ I = Ψ A U I

This tells us that if the invariant state exists, it must be unique and so the first requirement is

satisfied.

By considering the diagonalisation of the invariant state for a single system and the composite

one can show requirement two - that the invariant state of a composite system is the product of

the invariant states of its components - is also satisfied.
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Proposition 5.4.9. For every maximal set of perfectly distinguishable pure states {αi}dA
i=1 one

has the expression
χ = 1

d

d∑
i=1

αi (5.9)

Proof. For a proof see reference [7]

Through this decomposition of the invariant state one can consider the diagonalisation of the a

composite state versus those of its components.

Proposition 5.4.10. For every pair of systems A and B, one has χAB = χA ⊗ χB

Proof. Suppose one has two maximal sets of perfectly distinguishable states for A and B {αi}dA
i=1

and {βj}dB
j=1. The product set {αi ⊗ βj}i∈{1,...,dA},j∈{1,...,dB} is maximal for the composite system

A⊗B, by proposition 5.4.9, one obtains

χAB = 1
dAB

dA∑
i=1

dB∑
j=1

αi ⊗ βj

= 1
dAdB

 dA∑
i=1

αi

⊗
 dA∑
j=1

βj


= χA ⊗ χB

where dAB = dAdB by information locality.

In conclusion then, sharp theories with purification display properties consistent with the

micro-canonical equilibrium in quantum thermodynamics.
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5.5 State convertibility and Majorisation [8]

5.5.1 Introduction to Majorisation and its Necessity for state Con-
version

The intuition behind majorisation is that it shows when one state is ’more mixed’ than another.

This is actually clearest when it is framed in terms of an equivalent statement[28] - suppose

we say p majorises q, setting aside this is not yet defined - this is equivalent to having D, a

doubly stochastic matrix, where Dp = q. If one considers the action of a such a matrix one

notes that each component of q is an average over the elements of p. It is in this way that one

is more mixed than the other. The natural question at this point is if the equivalent statement

is intuitively helpful for our purposes why consider the initial one at all? In practical terms

Majorisation is simpler to check than attempting to find a suitable doubly stochastic matrix.

The formal statement of majorisation is as follows:

Definition 58. Let p and q be two vectors in Rd, with the components arranged in non-

increasing order. One says that p majorises q, denoted p � q, if
k∑
i=1

pi ≥
k∑
i=1

qi, ∀ k < d and
k∑
i=1

pi ≥
k∑
i=1

qi (5.10)

The next step is to consider how majorisation relates to the theories of purity outlined above.

For this to be possible some new notation is required.

Definition 59. Let ρ and σ be two normalised states of the same system A, and let F be one

of the sets RaRe, Noisy, and Unital. We say that ρ is purer than σ relative to the set F , denoted

as ρ �F σ, if there exists a channel C ∈ F such that C ρ = σ.

If ρ is purer than σ, and σ is purer than ρ, we say that they are equally pure relative to the set

F , denoted ρ 'F σ

One should note that the inclusions outlined in subsection 5.2.3 implies relationships between

the statements of purity as prescribed by the eponymous resource theories. In particular

ρ �RaRe σ =⇒ ρ �Unital σ ∀σ, ρ ∈ St(A)

and

ρ �Noisy σ =⇒ ρ �Unital σ ∀σ, ρ ∈ St(A)
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for some any system A. In this way one can see unitality is the weakest relation. If one could

show that majorisation is weaker still than unitality then majorisability would be a necessary

condition for all the above purity relations; indeed showing this is the intention for the rest of

this section.

Proposition 5.5.1. Let ρ and σ be a normalised states, and let p and q be the vectors of their

eigenvalues arranged in non-decreasing order. Then one has that ρ can be converted into σ by a

unital channel iff p majorises q. In formula

ρ �Unital σ ⇐⇒ p � q (5.11)

Proof. Let ρ = ∑d
j=1 pjαj and σ = ∑d

j=1 qjα
′
j be diagonalisations of ρ and σ, respectively. The

first part of the proof is to show ρ �unital σ implies p � q. Suppose one has σ = Dρ where D is

a unital channel. This implies
d∑
j=1

qjα
′
j =

d∑
j=1

pjDαj (5.12)

Applying α′†j to both sides, one obtains

qi =
d∑
j=1

pj (5.13)

=
d∑
j=1

Dijpj where Dij :=
(
α′†i |D|αj

)
. (5.14)

The terms Dij are the entries of a doubly stochastic by lemma A.0.1. This implies the above

equation shows p majorises q.

Going the other way suppose p � q and let D be a doubly stochastic matrix such that q = Dp.

Now let

D =
d∑
j=1

ρjα
†
j (5.15)

ρj :=
d∑
i=1

Dijα
′
i. (5.16)

By construction, one has

Dρ =
d∑
j=1

ρj
(
α†j
)

=
d∑
i=1

α′i

d∑
j=1

Dijpj

=
d∑
i=1

qiα
′
i = σ

As the channel D is unital by lemma A.0.2 ρ can be converted into σ by a unital channel.
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Due to the inclusion of the RaRe channels and noisy operations in the set of unital channels

one can conclude the following:

Corollary 5.5.1.1. Majorisation is a necessary condition for convertibility in the three theories

of purity given here.

There is a second important corollary of the proposition as majorisation provides one with an

alternative way to see the uniqueness of the spectrum

Corollary 5.5.1.2. Let ρ = ∑d
i=1 piαi and ρ = ∑d

i=1 p
′
iα
′
i be two diagonalisations of the same

state with the eigenvalues p and p′ arranged in non-decreasing order. Then p = p′

In this way majorisation establishes a preorder on the set of states - which as was the stated

aim - is the weakest such ordering as it is implied by unitality and thereof the others. As a final

corollary an important observation one can make at this point is that majorisation allows one

to immediately see that pure states are a currency.

Corollary 5.5.1.3. A pure state π acts as a currency in sharp theories with purification. Firstly

for any other pure state π′, its spectrum is trivially majorised by π. This implies by that all pure

states majorise one another. Moreover any other state can be reached as a pure state necessarily

majorises their eigenvalues.
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5.6 Purity Monotones [8]

Definition 60. A Schur-convex function is a function f : Rd → R such that for all p,q ∈ R

such that p majorises q, one has f(p) ≤ f(q)

Definition 61. A monotone under the free operations F for a system A is a function fF :

St1(A)→ R satisfying the condition

fF (ρ) ≥ fF (σ) ∀ρσ ∈ St1(A), ρ �F σ (5.17)

In sharp theories with purification one can talk of unital monotones. Written in terms of

majorisation this gives that

fUnital(ρ) ≥ fUnital(σ) ∀ρσ ∈ St1(A),p �Unital q (5.18)

where p and q are the respective eigenvalue spectrum’s of ρ and σ.

Proposition 5.6.1. [9] A function on the state fUnital : St1(A)→ R is a unital purity monotone

iff there exists a schur-convex function fs : RdA → R such that fUnital(ρ) = fs(p), where p are

the eigenvalues of ρ

Proof. Let fUnital be a unital purity monotone. Lemma 5.5.1 shows that majorisation, which

depends only on eigenvalues, is a necessary and sufficient condition for unital transformations.

This indicates unital conversion depends only on the eigenvalues, and in turn, the monotones too

must only depend only on eigenvalues. Specifically fUnital(ρ) depends only on the eigenvalues of

ρ, and not on its eigenstates.

This indicates there must exist a function fs : RdA → R such that fUnital(ρ) = fs(p), for every

state ρ. Suppose now that p and q are two probability distributions satisfying p � q. Then the

sufficiency of majorisation criterion implies there exists a RaRe channel, which is itself a unitary

channel, transforming ρ = ∑d
i=1 piαi into the state σ = ∑d

i=1 qiαi, for every pure maximal set

{αi}di=1. As a result, we obtain the relation

fs(p) = fUnital(ρ) ≥ fUnital(σ) = fs(q)

which proves that fs is schur-convex.
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Conversely, given a function schur-convex function fs one can define a function f̃Unital on the

resources, as f̃Unital(ρ) := fs(p), where p is the spectrum ρ. As fs is schur-convex this implies if

fs(p) ≥ fs(q) then p must majorise q, by lemma 5.5.1 this then implies that there is a unital

conversion from a state with spectrum p to a state with spectrum q.

The importance of such functions is that they encapsulate the notion of entropy in its various

technical incarnations.

Consider the negative shannon entropy

H(p) := −
d∑
i=1

pilogpi (5.19)

The purity monotone that corresponds to this is the Von-Neumann entropy

S(ρ) := H(p) (5.20)

Further examples are the negative Rényi entropies[31]:

Definition 62. The negative Rényi entropy of order alpha, where α ≥ 0 and α 6= 1, is defined

as

Hα(X) = − 1
1− αlog2

(
n∑
i=1

pαi

)
(5.21)

where X is a discrete random variable with outcomes in the set {1, 2, ..., n} and associated

probabilities pi = P (X = i) for i = 1, ..., n.

Corollary 5.6.1.1. The existence of Rényi entropies for purity theories away from the asymp-

totic limit[13][7] imposes immediate restrictions on the theory of purity in the non asymptotic

regime. Theorem 4.3.2 shows that for all reversible theories all entropies are unique up to a

constant - Rényi entropies of different values of α are not equivalent up to a constant - which

implies the theory of purity for exact conversions is not reversible.
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5.7 Asymptotic Reversibility In Sharp Theories with Pu-
rification

In this section a generalised version of the proof given in [17] will presented, applicable to all

sharp theories with purification, of which quantum theory is one possibility.

The techniques applied in this section differs from those up until this point. It will be profitable

to consider the state ρ partitioned via the diagonalisation seen in theorem 5.4.3, we have a set of

eigenstates and their eigenvalues. If we now consider the tensor state ρ⊗n, and its diagonalisation

in terms of its composite ρ, each eigenvector is a tensor product of one of the eigenvectors from

each ρ. In this way the total set of eigenvectors of ρ⊗n give all possible arrangements of the

eigenvectors. The eigenvalues of these arrangements are the respective multiplied probabilities

of the composite eigenvectors. For example consider ρ = p1α1 + p2α2 + p3α3 where αi are the

eigenvectors and the pi ∈ [0, 1] are the eigenvalues whose sum equals unity. Then we can see

that

ρ⊗2 = (p1p1)α1 ⊗ α1 + (p2p1)α2 ⊗ α1 + (p3p1)α3 ⊗ α1

+ (p2p1)α2 ⊗ α1 + (p2p2)α2 ⊗ α2 + (p2p3)α2 ⊗ α3

+ (p3p1)α3 ⊗ α1 + (p3p2)α3 ⊗ α2 + (p3p3)α3 ⊗ α3

where we have avoided diagrammatic notation for compactness. One can view these eigenvectors

as strings of symbols, where the eigenvectors of ρ are the symbols and consider the associated

Pi as the probability associated with each of these symbols. In this way one can identify typical

strings that - in the limit of large string length, or equivalently, many states - dominate in

likelihood.

One should note that in the following proof the details of typicality and its formal underpinnings

are outlined in appendix C and the associated proofs found in [27], though for clarity the basics

will be discussed.
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Lemma 5.7.1. In sharp theories with purification there exists a protocol F̄ that allows one to

transition from ρ⊗n to πn(1−S), where π is a pure state, and there also exists an inverse protocol

F̄ ′ from πn(1−S) to ρ⊗n. These are such that their rates multiplied gives unity.

Proof. Consider ρ⊗n, where each ρ is of dimension d, with eigenvalues pni , where the n labels

exist to differentiate the term from the pni eigenvalues of ρ that compose the state. Given

1 > ε > 0 and δ > 03, there exists n ∈ N and the set of T eigenvalues such that

∑
Pn

i ∈T
P n
i ≥ 1− ε, (5.22)

indicating in the limit of large numbers these typical states are the support of the probability

distribution. It can also be shown [30] that the probabilities of each typical string are bounded

by

d−n(S+δ) ≤ P n
i ≤ d−n(S−δ) for pni ∈ T. (5.23)

where S is the Shannon entropy of the spectrum of ρ. This shows the typical states probability

distribution is uniform in the limit.

The reason for this is that one can view the spectrum of the states ρ⊗n, as was discussed above,

as a collection of all the possible strings formed of the perfectly distinguishable eigenstates -

with an attending probability created by the multiplication of the composite eigenvalues. In

line with the weak law of large numbers, one expects that in the limit of large n, the expected

or typical strings making up set T would come to dominate in probabilistic likelihood. This

motivates the idea of partitioning the state ρ⊗n into a combination of typical and an atypical

state, this can be seen diagrammatically by

ρtyp = 1
c

∑
pn

i ∈T
Pi αni , ρatyp = 1

1− c
∑
pn

i 6∈T
P n
i αni (5.24)

where c is the normalisation given by∑pn
i ∈T Pi and α

n
i are the perfectly distinguishable eigenstates

from the diagonalisation of ρ⊗n itself,not those of the diagonalisation of ρ. The original state

then can be written in terms of these typical and atypical states

ρ⊗n = c ρtyp + (1− c) ρatyp . (5.25)

3In fact ε, δ > 0 is all that is required to produce typical states here. 1 > ε is required for other aspects of
our proof, however as ε is introduced in the argument with an aim to make it arbitrarily small this condition is
merely a technicality.
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Recall that c is bounded as in equation 5.22, this implies that by considering the operational

metric 2.20 one can write

||ρtyp − ρ⊗n|| ≤ ||(1− c)(ρtyp + ρtyp)|| ≤ ε||ρtyp + ρtyp|| ≤ 2ε, (5.26)

as ε can be made arbitrarily close to zero this implies we can use ρtyp to approximate ρ⊗n to

arbitrary accuracy in the limit.

The advantage of this comes from the fact one can construct a protocol that allows one to

transition from the the typical state to approximately n(N −S) pure qubits. To see this observe

that the eigenvalues of ρtyp denoted λi satisfy

λi ≡
Pi
c
≥ 1
c
d−n(S+δ) > dn(S+δ). (5.27)

Consider a state ρout with eigenvalues

{ 1
D
, ...,

1
D︸ ︷︷ ︸

D

, 0, ..., 0︸ ︷︷ ︸
dn−D

} where D =
⌈ 1
d−n(S+δ)

⌉
. (5.28)

such a state is reachable from ρtyp via free processes through a noisy operation, which is unital

by lemma 5.7.

Observe that the eigenvalues λi are all smaller than all the eigenvalues of ρtyp. This combined

with the fact that, by definition, both sets of eigenvalues sum to unity means that the spectrum

of ρtyp majorises the spectrum of this new state ρout; lemma 5.5.1 then proves that there is a

unital transformation from the former to the latter.

Note that the fact the λi sum to unity also gives us the number of non zero eigenvalues in ρout
which must be the inverse of the value of the eigenvalues, namely D.

Note now that we can use some other D̃ > D in the eigenvalues of ρout and the transition is

still possible to such a state, as this merely diminishes the eigenvalues of ρout further against

those of ρtyp. In particular if one lets D̃ be larger than D and such that it is a power d then one

finds that

D̃ =
⌈
dm(n(S+δ))

⌉
= ddm(n(S+δ))e (5.29)

where m ∈ N. Let us presume our D̃ is the smallest such term, that is to say m = 1. The result

gives us the following formula

logd D̃ = dn(S + δ)e ≤ n(S + δ) + 1. (5.30)
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With this new D̃ the state ρout represents the tensor product of logd D̃ qubits in maximally

mixed state and n logd d− logd D̃ = n− logd D̃ ≥ n(1− S − δ)− 1 qubits in pure states.

Recall that noisy operations are unital and so one can use the free discarding operation to throw

out the mixed qubits and retain the pure. This process will be referred to as protocol F̄ , and

the new state is denoted πout. The rate of transition is the number of obtained pure states

divided by n4

1− S − δ + 1
n

(5.31)

In the limit of large n this becomes

1− S − δ (5.32)

As δ can be made arbitrarily small, one obtains the final asymptotic rate

1− S. (5.33)

This however, is the transition from ρtyp, one must apply this protocol F̄ with operations

{Fn}n∈N to the state ρ⊗n. Using monotonicity of the operational norm[4] one can see that

||Fn(ρ⊗n)− πout|| = ||Fn(ρ⊗n)−Fn(ρtyp)|| ≤ ||ρ⊗n − ρtyp|| ≤ ε (5.34)

In this way one shows that to arbitrary precision one can obtain πout from ρ⊗n. In summary

from an initial state ρ⊗n one can obtain, via free unital processes, n(1− S) pure states at a rate

of 1− S per input state.

By showing the converse it becomes clear that this process is reversible. In order to achieve this

the aim is to find a protocol from πout to ρ⊗n. To begin one takes the state πout which contains

1− S pure qubits per copy of ρ.

Consider another state state ρ̃out is of the form

{ 1
D′
, ...,

1
D′︸ ︷︷ ︸

D′

, 0, ..., 0︸ ︷︷ ︸
dn−D′

} where D′ =
⌊ 1
d−n(S−δ)

⌋
(5.35)

notice that by equation 5.23 we have that

λi ≡
Pi
c
≤ 1
c
d−n(S−δ) < dn(S−δ). (5.36)

4This division implicitly separates the obtained rate from any dependence on the base, here d, used in the
typicality relationsC. The number of input copies is logarithmic in the size of the input vector so indeed this
removes the particular dependence as all logarithms of different base are multiplicatively related.
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recalling that λi are the eigenvalues of ρtyp.

As the eigenvalues of ρ̃out majorises ρtyp one can then transition from this state to ρtyp by a

unital transformation.

This will also be true for any D̃′ such that D̃′ < D. In addition let D̃′ be a power of d. One

then has that the state ρ̃out is a product of D̃′ qubits in the maximally mixed state and n(1−S)

pure state qubits.

Therefore one can transition from n(1− S) pure states by adding logdD̃′ mixed state qubits,

which is a free operation, and then transitioning to the state ρtyp, by a unital transition, which

in the limit of large n can then be made arbitrarily close to ρ⊗n.

Proposition 5.7.2. The protocols given in proposition 5.7.1 achieve the optimal rate.

Proof. Firstly remember that recall that by corollary 5.5.1.3 pure states are a currency, and

that from proposition 4.2.2 currency cost and distillation rates are bounded as follows:

1 ≥ RC(ρ) ≥ RD(ρ) ≥ 0 (5.37)

This proof will demonstrate a contradiction with the above equation by supposing the rates

given in proposition 5.7.1 are not optimal.

Take the initial protocol F̄ which represents the πn(1−S) → ρ⊗n, suppose one can achieve a cost

transition more optimal than this, suppose one can achieve this rate with one less pure state

n(1− S)− 1, the smallest change possible. Label this new protocol F̄ ′. Then by considering

these in series one can go from πn(1−S)−1 to ρ⊗n and then to πn(1−S)−1 which indicates one can

generate a states for free.

The implications of this are that the optimal distillation rate RD(ρ) can be made arbitrarily

large. This is because any ρ⊗n can generate any number of states by first moving to n(1− S)

pure states and then generating the state ρ⊗(n+1) which in turn can generate n(1− S) + 1 pure

states from which the cycle can continue. Therefore the supremum of the ratio mn

n
for transition

ρ⊗n → πmn is unbounded.

Conversely given any state π⊗n(1−S) of n(1 − S) tensored pure states the cost rate can be

made arbitrarily close to zero. As π⊗n(1−S) can be converted into ρ⊗(n+1) which in turn can be

converted into π⊗n(1−S)+1 which in turn can be converted into ρ⊗(n+2) and so on. Thus Therefore
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5. The Resource Theory Of Purity

the infimum of the ratio mn

n
for transition π⊗mn → ρ⊗n can be made arbitrarily close to zero as

n→∞ when one repeatedly extracts more qubits from which to generate larger quantities of

ρ. The important thing to take from this is that the relationship between currency cost and

distillation rates are

RC(ρ) < RD(ρ). (5.38)

as pure states are a currency this is a direct contradiction of proposition 4.2.2.

Theorem 5.7.3. Sharp Theories with Purification are reversible in the asymptotic limit.

Proof. Proposition 5.7.1 shows that in the asymptotic limit, for sharp theories with purification,

there is a protocol such that one can transition to a product of pure states and a second protocol

back to the original state. Proposition 5.7.2 shows the rates of said transitions are optimal.

Therefore the optimal distillation rate of going from some tensored state ρ⊗n to n(1− S) pure

states is 1− S, and the optimal cost rate going the other way, from n(1− S) pure states to ρ⊗n,

is the same. Lemma 4.3.1 then shows that this theory must be reversible.

The importance of this result is that as sharp theories with purification are reversible in the

thermodynamic limit theorem 4.3.2 shows all entropies in this theory are unique up to a constant.

To summarise this means that as far as macroscopic thermodynamics is concerned there is only

one entropy. This grants a certain coherence to the resource theory position, in a similar manner

to Ehrenfest’s theorem in quantum mechanics - where the expectation value of a quantum

system follows Newtonian mechanics - in the asymptotic limit sharp theories with purification ,

based on resource theories, give the expected single macroscopic thermodynamic entropy.
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6
Conclusion

What has been achieved here is focussed on the study of rates given in chapter 4 where new

results regarding the transitions in a resource theory are presented in detail. Firstly it was

shown how there are essentially two key types of optimal rates: the cost rate, where one tries to

minimise how much one is spending to get the output; and the distillation rate, where one is

trying to maximise the output. These rates were then shown to be inverses.

Montonic functions were then introduced as a means to assign value to different resources. In

order to be meaningful in the limit however it was necessary to define a regularised montonic

function. These functions act as a value densities which are appropriate where other monotonic

functions may be unbounded, specifically in the thermodynamic limit of many resources. With

the value density defined this author proved that there is a clear relationship between the

monotonic value densities assigned to the resources through regularisable monotones and the

optimal distillation rate between these states 4.1.7

f∞(ρ) ≥ f∞(σ)R(ρ→ σ)

Where R(ρ → σ) is the distillation rate from a resource ρ to a resource σ and f∞ is the

regularisable monotone sending these stares to the real numbers. What one is seeing here is

the the value density of the original resource is greater than or equal to that of the output

state times the rate at which this state can be extracted. This makes sense as the converse

93



6. Conclusion

would imply that per input one was extracting more value than one put in. This result was a

generalisation, and the proof a correction, of Theorem 4 in [16].

Following this currencies were discussed as a resource which could transition to all other

states. This was of particular importance for the later discussion of the study of quantum

thermodynamics and purity theory, where pure states constitute a currency.

Reversibility in a resource theory was then discussed. This was defined as a resource theory

where all the distillation rates from one state to another multiplied by the equivalent rate for

the return trip gives unity. This is to say nothing is lost in transitioning there and back. The

key result in this section was showing that for all such resource theories with a currency, all

regularised monotones are unique up to a multiplicative constant. In a sense, there is only one

method of evaluating value density in such theories. Formally this author showed that in a

resource theory D for two regularisable monotonic functions f1, f2 : |D| → R

f∞1 (ρ) = af∞2 (ρ) where a = f∞1 (c)
f∞2 (c)

where c is the currency resource and f∞1 and f∞1 are the regularised functions.

Following this, asymptotic conversion was introduced in an abstract manner, here the set of

possible transitions was extended to include those that only exist in the limit. It was shown

that for a regularisable monotonic function f that is asymptomatically continuous and where

one has a transition between two states ρ and σ where RD(ρ → σ) < ∞, and there exists a

state θ such that f∞(θ) > 0 then

R(ρ→ σ) = f∞(ρ)
f∞(σ)

This authors result was a generalisation of the Work of Horodecki and Oppenheim in [18]. This

result shows that in such theories the value densities of two states exactly dictate the optimum

transition rate between them: the values in the limit completely characters the optimal rate of

exchange.

The above result was then used in the context of the resource theory of purity. In particular

this author showed that sharp theories with purification are asymptotically reversible in terms

of the resource theory of purity. This result revealed that entropies in such theories are indeed

compatible with thermodynamics, as in the limit their reversibility implies that up to constant
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there is only one entropy function, just as in thermodynamics. This is due to the earlier result

regarding the uniqueness of reversible theories regularised monotones. As entropy functions are

an example of regularised monotonic functions one then knows they are unique up to a constant

.

Following on from this work here, an immediate extension would be to consider transitions

with error. This is a very natural physical situation, in practical experiments it is impossible to

guarantee the fidelity of ones transition protocol. Suppose for instance that one only has an

imprecise knowledge of what resource is the result of a transition. This could be expressed by

saying that when transitioning from a resource ρ⊗n and attempting to obtain a resource σ⊗mn

what one actually gets is σn∗ such that |σ⊗mn − σn ∗ | ≤ δ where δ would quantify the degree

of error according to some metric. One would then seek to relate this transition to the values

given by monotonic functions which would require the introduction of a kind of approximate

continuity which would link the fixed error in the resources to a fixed difference in the error on

their value. It is likely one would need this continuity to also preserve the relative size of errors

- resources obtained with a smaller error margin than others should equivalently have a smaller

error margin on their value.

A more exotic extension could be to take the rates work studies here into the causaloid framework

which was devised to introduce the agent-centric approach to quantum gravity[15]. One should

note that the rates material had no explicit need for causal structure. The idea of moving

from one state to another need not be confined to a time-line. Conceptually one can view the

causaloid structure as formed of devices where each use results in a card with three pieces of

information on it; where the measurement is made in space-time, what is measured, and what

the result of the measurement is. It has been shown in [25] that through causaloids one can

conceive of a causally unbiased shannon-entropy though the mathematical properties of this

entropy were unclear. It may prove fruitful to see how the relations between value and rates of

exchange function in this causally peculiar situation.
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The law that entropy always increases holds, I think,
the supreme position among the laws of Nature. If
someone points out to you that your pet theory of the
universe is in disagreement with Maxwell’s equations
— then so much the worse for Maxwell’s equations.

If it is found to be contradicted by observation — well,
these experimentalists do bungle things sometimes.

But if your theory is found to be against the second
law of thermodynamics I can give you no hope; there
is nothing for it but to collapse in deepest humiliation.

— Sir Arthur Stanley Eddington, The Nature of the
Physical World (1927) A

Unital channels and Doubly Stochastic Matrices

In a broad sense, unital channels are the generalisation of doubly stochastic matrices. This

connection can be made more explicit

Lemma A.0.1. Let D be a unital channel acting on system A and let {αi}di=1 and {α′i}di=1 be

two pure maximal sets of system A. Then, the matrix D with entries

Dij :=
(
α†i |D |α′j

)
(A.1)

is doubly stochastic.

Proof. [8] Every entry Dij is a probability and therefore it is non-negative. Moreover, one has

d∑
i=1

Dij =
d∑
i=1

=
d∑
i=1

(
α†i |D |α′j

)
= (u|D |αj)

= Tr[αj]

= 1 ∀j ∈ 1, ..., d
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having used the fact that the effects {α′†i } form as observation-test and that D is a channel and

therefore uD = u [4]. On the other hand, one has

d∑
i=1

Dij =
d∑
i=1

=
d∑
i=1

(
α†i |D |α′j

)
= d

(
α†i |D |α′j

)
=
(
α†i |χ

)
= d · 1

d

= 1 ∀j ∈ 1, ..., d

Where one should remember unital channels by definition leave the invariant state unchanged,

and we have used lemma A.0.2. The fact the summations over each variable shows that D is a

doubly stochastic matrix.

Lemma A.0.2. Let D be a d× d doubly stochastic matrix and let {αi}di=1 and {α′i}di=1 be two

pure maximal sets of system A. Then, the channel defined by

D :=
d∑
j=1

ρjα
†
j with ρj :=

d∑
i=1

Dijα
′
i. (A.2)

is unital.

Proof. [8] The transformation D is a channel of the measure and prepare form: it can

be implemented by performing the observation test {α†j}dj=1 and by preparing the state ρj
conditionally n outcome j. Moreover, one has

Dχ =
d∑
j=1

ρj
(
α†j|χ

)
(A.3)

= 1
d

d∑
j=1

d∑
i=1

Dijα
′
i (A.4)

= 1
d

d∑
i=1

α′i (A.5)

= χ (A.6)

the third equality follows from the definition of a doubly stochastic matrix, and the fourth from

the diagonalisation of the invariant state χ in lemma A.0.2.
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B
Results from Real Analysis

Lemma B.0.1. Supremum commute

sup
m

sup
n
an,m = sup

n,m
an,m = sup

n
sup
m
an,m

where an,m is considered a sequence over two indices.

Proof. Consider the left hand side, and suppose that

sup
m

sup
n
an,m < sup

n,m
an,m (B.1)

This implies that there exists some añ,m̃ such that

sup
m

sup
n
an,m < añ,m̃

But by definition we have that

añ,m̃ < sup
n
an,m̃ < sup

n
sup
m
an,m

A direct contradiction. The inverse to equation B.1 would contradict the definition of supremum,

therefore we have that

sup
m

sup
n
an,m = sup

n,m
an,m
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The exact same argument applied to the inequality

sup
n

sup
m
an,m < sup

n,m
an,m

gives the right hand side equality.

Lemma B.0.2. Infimum commute

inf
m

inf
n
an,m = inf

n,m
an,m = inf

n
inf
m
an,m

where an,m is considered a sequence over two indices.

Proof. Consider the left hand side, and suppose that

inf
m

inf
n
an,m > inf

n,m
an,m (B.2)

This implies that there exists some añ,m̃ such that

inf
m

inf
n
an,m > añ,m̃

But by definition we have that

añ,m̃ > inf
n
an,m̃ > inf

n
inf
m
an,m

A direct contradiction. The inverse to equation B.2 would contradict the definition of infimum,

therefore we have that

inf
m

inf
n
an,m = inf

n,m
an,m

The exact same argument applied to the inequality

inf
n

inf
m
an,m > inf

n,m
an,m

gives the right hand side equality.
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Lemma B.0.3. The supremum and the limit superior commute

sup
m

( lim sup
n→∞

an,m ) = lim sup
n→∞

( sup
m
an,m )

where an,m is considered a sequence over two indices, where n ∈ N and m belongs to any,

potentially uncountable, index set.

Proof. Let us write these the left hand and right hand side in terms of sub-sequential limits.

For the left hand side

sup
m

( lim sup
n→∞

an,m ) = sup
m

( sup
a∞m

a∞m )

= sup
m,a∞m

a∞m

Where a∞m is the limit set for each m. What one has done here is firstly taken the sequence over

two indices an,m and consider it as a set of, potentially uncountable, single index sequences,

running over n, each labelled by a different index m, call them m-sequences. For each fixed

m one takes the limit superior lim sup
n→∞

an,m which is to take the subsequence with the greatest

limit, or equivalently take the largest accumulation point a∞m of the sequence an,m, which is to

say sup
a∞m

a∞m .As one does this for each fixed m-sequence one obtains a set of superior limits - one

for each m.

Now consider the right hand side

lim sup
n→∞

( sup
m
an,m ) = lim sup

n→∞
an,m∗

= sup
a∞

m∗

a∞n,m∗

Where an,m∗ is the maximum an,m for each n. We will call this the m-max series. In this case

one takes each fixed n and for the series over m take the supremum. One now has for each n

the largest associated m term; this is the m-max series an,m∗ . One then takes the limit superior

of this sequence.

The question is are these equations the same?
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Suppose the superior limit of the m-max sequence was less than the largest point taken from all

the limit points generated by each m-indexed series

sup
a∞

m∗

a∞m∗ < sup
a∞m ,m

a∞m (B.3)

By definition then there must exist a point ã∞m̃ such that

sup
a∞

m∗

a∞m∗ < ã∞m̃

This is a limit point of one of the m-sequences which is larger than all the limit points of the

m-max sequence.

However, by considerations regarding the supremum, it must also be the case that

ã∞m̃ ≤ sup
a∞m̃

a∞m̃ ≤ sup
a∞m ,m

a∞m = sup
a∞m

a∞m∗

What we outline here is that this point, that is limit point of some m-sequence, is by definition

less than or equal to the supremum of the set of limit points of the m-sequence to which it

belongs. The second relation then points out that this supremum, over the m-sequence limit

points, is itself less than or equal to the supremum of the collection of all the largest limit

points taken from each m-sequence. This final point is, by above arguments, equal to taking the

largest m for each n and taking the superior limit of this sequence This implies a contradiction

to equation B.3. The relationship must be a ’greater than or equal’ to relation. However, the

inverse to equation B.3 is a contradiction in terms - The supremum over both indices is by

definition the largest point: The two must be equal.

Lemma B.0.4. The Infimum and the limit inferior commute

inf
m

( lim inf
n→∞

an,m ) = lim inf
n→∞

( inf
m
an,m )

where an,m is considered a sequence over two indices, where n ∈ N and m belongs to any,

potentially uncountable, index set.
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Proof. This procedure is extremely similar to the above so the proof is presented without in

depth discussion. Let us write these the left hand and right hand side in terms of sub-sequential

limits.

For the left hand side

inf
m

( lim inf
n→∞

an,m ) = inf
m

( inf
a∞m

a∞m )

= inf
m,a∞m

a∞m

Where a∞m is the limit set for each m. Then consider the right hand side

lim inf
n→∞

( inf
m
an,m ) = lim inf

n→∞
an,m∗

= inf
a∞

m∗
an,m∗

Where an,m∗ is the minimum an,m for each n. Now suppose that

inf
a∞

m∗
a∞m∗ > inf

a∞m ,m
a∞m (B.4)

By definition then there exists a limit point ã∞m̃ such that

inf
a∞

m∗
a∞m∗ > ã∞m̃

However, by considerations regarding the infimum, it must also be the case that

ã∞m̃ ≥ inf
a∞m̃

a∞m̃ ≥ inf
a∞m ,m

a∞m = inf
a∞m

a∞m∗

This is a contradiction. The inverse to equation B.4 is a contradiction in terms; the two must

be equal.
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C
Information Theory and Typicality

For further details and proofs see [27] and [30].

C.1 The weak law of large numbers

The practical use of statistics lies firmly on the fact that if enough trials occur statistical results

should apply - nobody is shocked when twelve dice rolls to fail to give two sixes - one assumes

something is wrong if twelve trillion rolls don’t return around two trillion sixes. What one is

implicitly assuming is that a sequence of independent events should converge in probability to

an average.

Definition 63. A sequence Xn of random variables converges in probability to X if, for any

δ > 0 one has

P (‖Xn −X| ≤ δ)→ 1 (C.1)

as a sequence of real numbers.

. Essentially the probability Xn converges on X to within an error σ approaches 1.

The implication of this is that is one has some δ and ε such that δ, ε > 0, there exists some nε,

such that for all n ≥ nε one has

P (‖Xn −X| ≤ δ)→ 1− ε (C.2)

107



C.2. Typicality

The statement of the weak law of large numbers is expressed in terms of convergence in

probability.

Theorem C.1.1. Let Xn be a sequence of independent and identically distributed random

variables with finite expectation. Then

1
n

n∑
i=1

Xi → E[X] (C.3)

which states the average in converges to the expected value.

One can see that if Xn is a random variable counting the occurrences of a given outcome in the

nth round of some experiment then 1
n

∑n
i=1 Xi gives the relative frequency of that outcome after

n rounds, while E[X] gives the probability of that same outcome.

In this context the weak law of large numbers is the statement that relative frequencies converge

to probabilities "for n large enough". In general terms one can rephrase the weak law of large

numbers a

P (|statistical − probabilistic| ≤ δ)→ 1 (C.4)

C.2 Typicality

Take the familiar case where Alice wishes to contact Bob. Suppose Alice has a source producing

pure states δ1, ..., δd according to a probability distribution

P =


xp1
...
xpd

 (C.5)

These states make up the message she wants to send to Bob. The aim is to send as few of these

states as possible because Alice, much like anyone else, loves efficiency. In the classical case,

knowing the pure state is equivalent to knowing the value od a random variable and the concept

of weak typicality is useful.

Suppose the values of a random variable belong to a set V ar := x1, ...xd. Consider a string

formed of this set n letter long: x = x1...x

It is useful to consider the sample entropy
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Definition 64. Given an n-letter string x of symbols with probability


xp1
...
xpd

, the sample entropy

is given by

h(x) = − 1
n

n∑
i=1

loga pi (C.6)

where a > 1 and pi is the probability to produce the ith letter in the string.

The probabilistic equivalence of the quantity is the Shannon entropy

H(p) = −
n∑
i=1

pi loga pi = E[−logaX] (C.7)

then for any δ > 0, one can define the weakly δ typical strings of n letters as follows.

Definition 65. Given δ > 0 a string x of n letters with probability distribution p is weakly δ

typical, or typical if

|h(x)−H(p)| ≤ δ. (C.8)

The set of weakly δ-typical sequences will be denoted by T nδ , while the set of all sequences

by V arn. The consequence of the weak law of large numbers is that "for n large enough" the

probability of having a typical string is

P(x ∈ T nδ ) ≥ 1− ε (C.9)

for any ε > 0.

A related question is if one has a particular string x ∈ T nδ , what is the probability of this

particular string?

Proposition C.2.1. If x ∈ T one has

a−n(H(p)+δ) ≤ P(x) ≤ an(H(p)+δ) (C.10)

for any δ > 0, and any n.

As δ can be chosen to be very small, it becomes negligible if n is very large. This means that

for large n, different typical strings have nearly the same probability.

How many typical strings are there? While being extremely likely, their cardinality is exponen-

tially small compared to all possible strings.
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Proposition C.2.2. If "n is large enough" we have

(1− ε)dn(H(p−δ)) ≤ |T nδ | ≤ dn(H(p+δ)) (C.11)

for all ε, δ > 0.

The number of all possible strings is |V ar|n = dnloga|V ar|,so

typical

all
= dnδdn(H((p)|Var|)). (C.12)

The argument of the round bracket is always negative because H(p) ≤ loga|V ar| with equality

iff p is the uniform distribution on V ar. If the distribution is non-uniform, δ can be chosen

smaller than loga|V ar| −H(P), so the ratio typical
all

vanishes. If the distribution is uniform, the

cardinality of the typical set is comparable with the cardinality of the set of all strings.
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You can’t win. You can’t break even. You can’t even
get out of the game.

— Allen Ginsberg - The laws of Thermodynamics
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