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1 A structural inconsistency

1.1 Causality in bipartite physical processes

Consider two parties, Alice and Bob, who each have a device with a binary input and output.

Alice Bob

aI

aO

bI

bO

Seen as one joint process, we can denote the pair of input bits as (aI , bI) and the pair of output bits
as (aO, bO). We can now consider the 4-by-4 possibilistic correlation matrix that has faO,bO

aI ,bI
= 1

as entry when for input (aI , bI) the output (aO, bO) is possible, i.e. may happen with non-zero
probability, and faO,bO

aI ,bI
= 0 otherwise. In contrast, the probabilistic correlation matrix [40] would

have the actual probabilities as entries. Depending on the internal architecture of such a device, it
may or may not be used by Alice and Bob to communicate. Here are simple examples of a device
that enables communication and one that doesn’t enable communication:

a

a

b

b

a

b

b

a

By possibilistic signaling we mean that from the possibilistic correlation matrix it can be con-
cluded that the device enables signaling. One easily sees that possibilistic signaling implies the
more standard notion of probabilistic signaling (e.g. see [6]). Put more precisely, a device enables
Alice to signal to Bob if, from his input and his output, Bob can deduce something about Alice’s
input, i.e., there is at least one input-output pair at Bob’s end which reflects something about
Alice’s input. In terms of the (possibilistic/probabilistic) correlation matrix:

∃(bI , bO) : f0,bO
0,bI

+ f1,bO
0,bI
6= f0,bO

1,bI
+ f1,bO

1,bI

where in the possibilistic case we use Boolean calculus; the sums represent tracing out Alice’s
output, which is irrelevant to Bob. From this it also easily follows that possibilistic signaling
indeed implies probabilistic signaling.

What relativity theory teaches us is the manner in which Nature restricts the ability to sig-
nal. While quantum non-locality stretches beyond what can be modeled in classical causal theory
(i.e. hidden variable theories), it happens to be still perfectly compatible with relativity, in that it
is non-signaling in the above-described sense. (But, is it really? – see §1.3 below)

There has been increasing interest in studying the space of probabilistic non-signaling correla-
tion matrices for devices that one may be able to craft with the resources provided by a certain
(possibly hypothetical) theory of physics [8, 6, 7, 46]. Typical cases are: theories which admit a
local hidden variable theory, quantum theory in which one has entangled states as an additional



resource, and Barrett’s box-world [8] in which the PR-boxes [41] with respective probabilistic and
possibilistic correlation matrix:

PR probabilistic =


1
2

1
2

1
2 0

0 0 0 1
2

0 0 0 1
2

1
2

1
2

1
2 0

 , PR possibilistic =


1 1 1 0
0 0 0 1
0 0 0 1
1 1 1 0

 ,

is a primitive. The polytope of probabilistic correlation matrices decomposes as follows [50]:

signaling theories

quantum

classical

PR-box
Tsirelson
  bound post-quantum

Motivated by the fact that relativistic non-signaling constraint seems to allow for more non-locality,
an important current challenge on which there is great activity is to derive the Tsirelson bound
from operational and/or information-theoretic principles under the slogan: “Why isn’t nature even
more non-local than it is?” [39, 5, 47, and references therein].

With some exceptions [51, 9], there has been very little study of multipartite processes. But note
here that the GHZ-Mermin game (which only relies on impossibilities rather than probabilities)
shows that quantum non-locality is already fully encoded in the possibilistic correlation matrix:

GHZ possibilistic =



1 1 1 0 1 0 0 1
0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
1 1 1 0 1 0 0 1
0 1 1 1 1 1 1 1
1 1 1 0 1 0 0 1
1 1 1 0 1 0 0 1
0 1 1 1 1 1 1 1


.

which gives the possible coincidences of outcomes given choices of either X- or Y -measurements.

aO cO

X/Y X/YX/Y

GHZ-state

bO

choice of measurement:

physical resource:

measurement outcome:

1.2 Causal orders in relativistic space-times

Many results have been obtained which show that discrete structures are a very powerful tool
for understanding a space-time manifold, despite the latter having continuum properties such as
differentiable structure. For example, Zeeman [52] showed that the Poincaré group can be defined as
the group of automorphisms of Minkowski space that preserve the causal order on points (i.e. space-
time events). Here the causal order relation captures signaling (or better, the ability to do so), that
is, for events a, b:

• a ≤ b: a precedes b by either a time-like or light-like curve;

• a 6≤ b: a and b are space-like separated.
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Moreover, almost the entire structure of many space-times can be reconstructed from this order.
Malament [36] showed that for a certain class of spacetimes both the differentiable structure and
the conformal metric can be recovered from the causal structure (cf. work by Kronheimer and
Penrose [30]). It was also shown that the causal structure is actually an instance of Scott Domains,
an important area of research in computer science [37].

The Malament result provides part of the motivation for several approaches to quantum gravity,
in particular the causal set programme [48].

1.3 A clash!

There is a structural clash at the most foundational level with the two notions of causality put
forward above. The striking fact is that this conflict doesn’t even require quantum theory, but
any non-deterministic theory (i.e. one can model it by a local hidden variable theory) suffices. The
fact is mathematically fairly trivial, but to our surprise any leading expert we talked to in the
foundations of quantum theory was not aware of this.

The issue is the behavior under time-reversal of the fundamental structure in each of the above
discussions of causality. Starting with the second one discussed in §1.2, causal orders, these are
perfectly time-symmetric, since given a partially ordered set (P,≤), one again obtains another
partial order (P,≤′) by simply setting a ≤′ b ⇔ b ≤ a. However, the concept of no-signaling
discussed in §1.1 is by no means time-symmetric. A counter example is:

HV =


1 0 1 0
1 1 1 1
0 1 0 1
1 1 1 1


=

(
1 1
0 0

)
×
(

1 0
0 1

)
+

(
1 1
0 0

)
×
(

0 0
1 1

)
+

(
0 0
1 1

)
×
(

0 1
1 0

)
+

(
0 0
1 1

)
×
(

0 0
1 1

)

where the decomposition in 2 by 2 matrices establishes that this correlation matrix indeed admits
a local hidden variable representation, the summation representing the different local states for the
four values of the hidden variable — a probabilistic counterpart can easily be constructed too. When
performing time reversal, that is, exchanging the roles of inputs and outputs via transposition, we
obtain a signaling situation:

HV T =


1 1 0 1
0 1 1 1
1 1 0 1
0 1 1 1

 since both

 1 = f0,0
0,0 + f1,0

0,0 6= f0,0
1,0 + f1,0

1,0 = 0

0 = f0,1
0,0 + f1,1

0,0 6= f0,1
1,0 + f1,1

1,0 = 1

Simpler put, if Bob inputs bI = 0, then we have bO = aI , that is, he receives Alice’s input.
The same passage from non-signaling to signaling under time-reversal is also true for the PR

matrix given above, while the non-signaling of the GHZ matrix is retained under time-reversal.
To illustrate how counter-intuitive this passage from non-signaling to signaling under time-

reversal is consider the following anecdote of a classical situation:

A game is going on in which two players, Alice and Bob have an input-output device.
They are not supposed to communicate during the game. From the correlations between
their inputs and outputs we want to deduce whether they cheated or not. While they
may not have been cheating at all, when we record their game and play the movie
backwards now exchanging the roles of inputs and outputs, there are cases where we
are able to prove that they in fact cheated in this backward reality!
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As physicists we are so used to thinking in such a time-symmetric manner about causality while
probabilistic reasoning is fundamentally incompatible with it. When quantum theory comes into
play, we know that probability is manifestly unavoidable, and we have to adopt a more subtle
time-asymmetric of causality. This is what this project is about:

to understand in the most primal manner this time-asymmetric nature of causal structure.

Of great aid here will be the diagrammatic representation of the symmetric monoidal categories in
which we can organize composite physical processes [14]. For example, in this language (which we

explain below), the no-signaling constraint becomes ( = environment):

=
which directly reflects in an intuitive topological fashion that Alice’s input, when we ignore her
output, has no affect on the relation between Bob’s input and Bob’s output — note in particular
that this constraint is not at all time-symmetric.

1.4 The even trickier bit

One may wonder why we relied on the ‘possibilistic shadow’ of processes rather than on the prob-
abilistic matrices themselves. The simple answer is that in that case of probabilities even the
concept of time-reversing the process becomes somewhat nonsensical. Indeed, although one can
turn a stochastic matrix with I as givens and O as conclusions into one which has O as givens and
I as conclusions via Bayesian inversion:

P (I|O) =
P (O|I)P (I)

P (O)

this requires knowing P (I), and since this is an arbitrary choice by the agents, there is no a priori
manner of specifying this — e.g. one agent may decide for it to be constant while another may
take it to be random. In other words, it makes no sense to speak of time-reversal of a probabilistic
process when we do not at the same time fix the behavior of the agents.

2 Causality in a monoidal category

2.1 Categorical quantum mechanics

In categorical quantum mechanics, initiated in [1], the basic data consists of a collection of named
systems A, B,C, ..., processes f : A → B which may take a system of one kind into a system of
another kind, and connectives which allow the composition of these both ‘in parallel’ and ‘sequen-
tially’. Mathematically, this means that we are dealing with a fairly involved algebraic gadget
called a symmetric monoidal category (SMC) (C,⊗, I) [13].

One of the nice features of SMCs is that they admit an equivalent, very simple, purely diagram-
matic calculus in which systems are represented by wires and processes by boxes. In this language
the two compositions are:

• The sequential, or dependent, or causal, or connected composition of processes f : A→ B and
g : A→ B is g ◦ f : A→ C, which as usual can be depicted as:

g

f
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• The parallel, or independent, or acausal, or disconnected composition of processes f : A→ B
and g : C → D is f ⊗ g : A⊗ C → B ⊗D, and is depicted as:

f fg

In category-theoretic terms, the key ingredients in categorical quantum mechanics are:

(A) Abramsky and us proposed dagger compact categories as a means to axiomatize bipartite
entangled states, map-state duality, bra-ket duality and unitary operations, by endowing
compact categories with an identity-on-objects involution, the dagger-functor [1] ;

(B) Selinger proposed a construction which assigns to any dagger compact category C of pure
states and operations another dagger compact category CPM(C) as the abstract counterpart
to ‘mixed states’ and ‘completely positive maps’[44]; Perdrix and us axiomatized CPM(C)
as a dagger compact category with an ‘environment’ [20] ;

(C) Pavlovic and us introduced classical structures as certain Frobenius algebras, in order to
handle quantum measurements and resulting classical data flows [19, 20] ;

(D) Duncan and us axiomatized ‘complementary’ classical structures and were able to construct
from this basic quantum logic gates [15] ; the sum of the above is in [20] .

A substantial portion of the mathematical backbone to this approach is drawn from so-called Aus-
tralian category theory, most notably from work by Kelly-Laplaza [29], Joyal-Street [28] Carboni-
Walters [10] and Lack [31]. This abstract mathematical counterpart to the intuitive diagrammatic
presentation is crucial in understanding the power of the graphical calculus.

Thm. [29, 44] An equational statement between expressions in dagger compact categorical language
holds if and only if it is derivable in the graphical notation via homotopy.

Thm. [45] An equational statement between expressions in dagger compact symmetric monoidal
categorical language holds if and only if it is derivable in the category of finite dimensional Hilbert
spaces, linear maps, tensor product, and adjoints.

More informally, the two together can be stated as follows:

Any equation involving states, operations, effects, unitarity, adjoints (e.g. self-adjoint),
projections, Bell-states/effects, transpose, conjugation, inner-product, trace, Hilbert-
Schmidt norm, positivity and complete positivity, holds in quantum theory if and only
if it can be derived in the graphical language via homotopy.

This means that an important fragment of quantum theory can be completely done in a sound
manner in purely diagrammatic terms, and there is ongoing work to extend this remarkable result
to even larger fragments.

This approach meanwhile has had an important impact and new followers in the quantum
foundations community, e.g. [27, 16, 11]; Lucien Hardy recently declared:

“... we join the quantum picturalism revolution” [27]

(this term ‘quantum picturalism’ was coined by us in [13]). The approach has also led to new results
in quantum computation and information [17, 23], and supports automation; currently a software
named quantomatic that enables semi-automated theory-exploration is under development.

Categorical quantum mechanics as a ‘canvas’ for quantum foundations was the subject of our
previous FQXi Large grant, which was very successful, as mentioned above. But despite these
successes there is a somewhat embarrassing issue that urgently needs addressing! (Cf. §2.3.)
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2.2 Implicit ‘partial’ causal structure

What one could consider as a system in the sense described above is very broad, for example, as in
algebraic quantum field theory [24, 25] it could be those observables that we are able to measure
within a certain region of space time. Just looking at some protocol in the categorical quantum
mechanics language, one tends to think of the ‘acausal’ composition ⊗ as ‘spatially’ separating,
while one thinks of the ‘causal’ composition ◦ as ‘time-wise’ separating:

g

f
f fg

future

past

alice bob

A more detailed discussion of the conceptual understanding of this framework is in [14].

2.3 Incompatibility with a non-postselected causal universe!

The first achievement of categorical quantum mechanics was deriving physical phenomena such as
post-selected quantum teleportation with tiny structural resource [1, 12]:

==

Unfortunately this derivation may be ‘abused’ to show that quantum theory enables signaling:
=

A

B

A

Bfuture future

past past

The problem here is postselection, that is, the assumed ability to condition on the measurement
outcome. If we only consider processes that can be established with certainty, then we will always
have:

=
i.e. there are no disentangled effects. This is of course a well-known fact, and one of the subtleties
of quantum mechanics, that the non-determinism of measurement avoids allowing entanglement
to be a signaling resource. In [11], Chiribella-D’Ariano-Perinotti enforced the disentanglement of
effects by axiomatizing the uniqueness of deterministic effects, from which it follows via parallel
composition that bipartite effects have to be disentangled (now: = deterministic effect; which
plays the same structural role as the environment):

==

A BA⊗B f

g =

f
f

Unfortunately, this axiom has radical consequences, namely that the key structures of categor-
ical quantum mechanics, which are also central to quantum theory and quantum information,
namely the adjoint that turns kets into bras, and the partial transpose which underpins the Choi-
Jamiolkowski isomorphism, cannot be retained in a ‘causal universe of processes’, since both gen-
erate entangled effects:
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dagger

transpose

3 Proposed work: a time-asymmetric foundation for causality

In §1.3 we demonstrated that models of causality based on partial orders fail to capture the time-
asymmetric aspect which comes into play when we consider fundamentally probabilistic processes.
The overall goal of this project is to identify the fundamental structure which underpins a universe
of quantum relativistic processes. This will involve taking into account not only causal relationships
between processes but also essential aspects of the actual processes that take place. As we argued
in §2.3 one such essential aspect is for example whether a process Ψ : I→ A⊗B is entangled.

Proof theory and categorical logic have seen a similar passage, from expressing that there is
a proof which derives predicate B from predicate A, to an explicit account of the space of proofs
which establish this, these proofs then being the morphisms in some category (see e.g. [32, 2]). The
paradigm connecting the ordered structure and the categorical is

A ≤ B ⇐⇒ C(A, B) 6= ∅ .

But this paradigm cannot be retained here. When performing a ‘physical scenario’:

A

B

f

g

where f and g are arbitrary physical processes, although we argued in §2.3 that g should be
disentangled, as a whole this is still a physical process. But the proof-theory paradigm tells us
A 6≤ B ⇒ C(A, B) = ∅, i.e. such a process doesn’t even exist! Hence the crucial thing to do is to
formally make a clear distinction between:

• the existence of a physical process ; and

• the flow of information enabled by such a process.

While the existence of a process A→ B will indeed imply that C(A, B) 6= ∅, the causality assertion
A ≤ B will stand for the fact that there is a non-zero flow of information from A to B. In the
diagrammatic language of symmetric monoidal categories this means that A and B are connected,
while in the absence of information flow they will be disconnected :

information flow no information flow

Hence the proposed work takes a radical departure from standard categorical logic.
Moreover, the categories in categorical quantum mechanics, dagger compact categories, are in

fact generalized categories of relations. Therefore, by integrating causal structure and categorical
process structure, we axiomatically substantiate the relational approach to space-time (cf. Mach
[35], Barbour [4], Rovelli [43]).

As a stepping stone towards a foundational theory of causality that takes time-asymmetry into
account at the primal level by incorporating aspects of process structure, we will consider some
very concrete subtasks outlined below.
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Subtask 1: Causal categories

The first attempt to adjust categorical quantum mechanics in the way we require is proposed in
[18]. The key feature of this work is that quantum causality (restricting to normalized processes)
and relativistic causality (a global discrete causal structure such as a poset) are unified in a single
framework. This is achieved by introducing the notion of a causal category, which is a category
with the following properties: (i) there is a monoidal product, but it is partial, in the sense that the
monoidal product does not exist for all pairs of objects and morphisms in the category; (ii) the hom-
set of two objects for which the monoidal product exists contains only disconnected morphisms; (iii)
the monoidal unit is terminal. It is important that the paradigm of categorical quantum mechanics
can be retained; indeed, causal categories can be seen as the most conservative way of adding
causal structure to the existing formalism. One can think of a particular causal category as arising
from ‘carving out’ a causal structure from—i.e. selecting a subcategory of—a dagger symmetric
monoidal category of processes.

Milestones for this topic:

• The definition of a causal category encompasses both causal structure and the restriction to
normalized processes; what formal differences arise when considering a category with causal
structure but which also contains post-selected measurements?

• An understanding of how physically important classes of causal orders appear in causal cat-
egories, and how they interact with the structure of a causal category. For example, the
causal order for a Galilean space-time—in which signaling is allowed—can be captured di-
rectly by the condition that the relation of space-like separation between points of space-time
is transitive.

Subtask 2: Non-locality (or contextuality) in pictures

In [16] Edwards, Spekkens and us showed that non-locality of (the stabilizer fragment of qubit)
quantum theory (Stab, as a dagger compact category) versus that of Spekkens’ toy theory [49]
(Spek, as a dagger compact category) can be traced back to a difference in phase group, these
respectively being Z4 and Z2 × Z2; in categorical quantum mechanics, the phase group is a group
that for general abstract reason exists for any classical structure [15]. Elsewhere [3], Anders and
Browne’s analysis showed that entangled quantum resources can boost the power of a classical
computer by providing an AND-gate. This AND-gate turns out to be exactly the ‘difference’
between the Z4 and Z2 × Z2 phase groups. Concretely, one relies on:

Thm. [15] If (green, red) is a pair of coherent bialgebraic structures then under minor conditions
the eigenstates Ored of red form a subgroup of the phase group Ugreen of green.

We call the Abelian group Ored the outcome group and the corresponding Abelian quotient group
of cosets Cg,r = Ugreen/Ored the context group. The multiplication of the phase group itself can
then be depicted in terms of the multiplication of the outcome group and the multiplication of the
context group, explicitly giving rise to the AND-gate:

Z-phases in Spek contexts in Spek outcomes in Spek

Z
=

Z-phases in Stab contexts in Stab outcomes in Stab

Z
=
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Note here that the AND-‘interface’ computes from the choice of the measurements of two parties
the outcome of the third party, so in fact in a sense it takes place ‘out of space-time’.

In terms of input-output physical processes as in §1.1 we have as internal structures:

GHZ in Spek GHZ in Stab PR-boxes

and by relying on the ‘red-green’-calculus of [15] we extract the AND-gate as follows:

= =

in this manner recovering the Anders-Browne result in a purely diagrammatic manner.

Milestones for this topic:

• An extension of the above-discussed results beyond qubits.

• The above exposes that an essential part of non-locality is a computation (of an AND-gate)
‘outside of space-time’. What is the equivalent computation ‘outside of space-time’ for other
states?

• How can we depict this non-local flow of information ‘outside of space-time’ within the foun-
dational structure of causality that we wish to craft within this project.

Subtask 3: Interaction with the environment axiom

The concept of environment is rarely explicitly accounted for in axiomatic theories. However, for
any theory that is not considered to be complete, or in a theory which can describe open systems,
the mathematical representation of the environment is a very useful gadget for assigning ‘all we
don’t know or can consider’. In [20] the environment is axiomatized (also with a graphical element)
as part of an abstraction of the CPM construction, with the key axiom being the following:

f

=

g ⇔
f

=

g

f g

This allows for the comprehensive formalization of the interaction between classical and quantum
information flow.

Formally the setting is close to that of causal categories, which can allow a rich interplay between
the two concepts.
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Milestones for this topic:

• The environment axiom efficiently axiomatizes features that we have shown are key to the
notion of causality in a quantum setting, such as normalization and whether information flow
occurs in a process. Since the environment axiom also allows for other features, such as the
derivation of various protocols, initially the question is what is the optimal way of combining
it with a causal structure, in particular with the definition of a causal category.

• Can the environment axiom be used to define a setting in which causality is satisfied from
the point of view of quantum theory (i.e. post-selection is disallowed) but in which the global
causal structure required from relativity is not present? How would this relate to causal
categories?

• The environment axiom allows in particular for the distinction between classical and quantum
information to be characterized in terms of broadcastibility: can this be incorporated into
causal categories, to structurally understand how classical and quantum information differ in
their interaction with causal structure?

Subtask 4: Relation to Hardy’s and Chiribella-D’Ariano-Perinotti’s work

In [11] the fact that every mixed state in quantum theory can be described as pure state in a
larger system is elevated to an axiom for the derivation of information-theoretic features. This is
developed in an operational setting that implicitly assumes much of the formal structure of cate-
gorical quantum mechanics. It is also important in this approach that post-selection is disallowed,
i.e. it is imposed that there is a unique deterministic effect. Along with the purification principle,
this allows for the derivation of various features of quantum theory without assuming the usual
Hilbert-space structure, e.g. the existence of entangled states. However, many of the proofs use
methods other than the graphical calculus that could be used in view of the underlying monoidal
structure.

In a similar vein, Hardy has recently developed a formalization of general probabilistic theories,
along with a graphical calculus, that is ‘formalism-local’ [27]. This refers to a formalism in which the
calculations for a particular space-time region need only use mathematical objects that the theory
has assigned to that region. Hardy’s approach develops a mathematical device called duotensors.

Milestones for this topic:

• The condition of a unique deterministic effect is powerful; how much of this power be at-
tributed graphically (especially in relation to the environment axiomatization above)?

• An account of the extent to which the results of the purification approach can be improved
and extended in the categorical setting.

• In Hardy’s duotensor approach, the aim of incorporating spatiotemporal information in a
probabilistic theory is similar to the reason for using causal categories; what is the relation
between these constructions?

Subtask 5: Causal correlations and probabilistic causality

In §1.4 we discussed the problem with genuine probabilistic data versus possibilistic data. In [21]
Spekkens and us, building further on ideas from Leifer-Poulin [33], crafted a general diagram-
matic framework for Bayesian reasoning which encompasses both classical and quantum Bayesian
reasoning, as well as entropic calculus. Here is an example of a computation:
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   conditional
independence

=
P(C|AB)

A A

=

A

=
A

B

A

B
=

B
(BA) 1-

A

C 1- C 1-

C

P(AB|C) P(A|C) P(B|C) P(C|A) P(C|B)
P(C|B) P(C|A)

Milestones for this topic:

• We wish to obtain an understand correlations in space-time in terms of the graphical calculus
for Bayesian updating.

• Is there a ‘probabilistic categorical logic’ that can be drived from the graphical framework
for classical and quantum Bayesian updating in the light of our discussion at the beginning
of this project’s section?

• In [26] in the causaloid formalism Hardy proposes an operational strategy to construct a
probabilistic theory of general relativity ProbGR. Compare the foundational structure of
causality as we intend to construct it here with the strategy proposed by Hardy; in particular,
is it compatible with the causaloid approach?

Subtask 6: Time asymmetry in generalized probabilistic theories

We have shown how the interaction between causality and time-symmetry provides a structural
difference between relativity and quantum theory. However there is a subtlety in this issue, in
the sense that although probabilistic correlations will not be causally time-symmetric, quantum
theory exhibits a kind of ‘formal’ time-symmetry which needs to be understood better. This arises
when considering different no-signaling theories, in particular the difference between boxworld, the
theory containing all possible no-signaling correlations, and quantum theory. By using a convex
operational approach to study these theories in a common framework, Barrett [8] and Short and
Barrett [46] have shown that although boxworld allows more nonlocal correlations than quantum
theory, it has fewer possible measurements. Indeed boxworld lacks the possibility of entangled joint
measurements, leading to very restricted dynamics.

This implies that boxworld lacks the state-effect bijection present in the usual formalism of
quantum theory, and which is axiomatized in categorical quantum mechanics in the form of the
dagger functor. Since the dagger functor can be thought of as imposing time-symmetry on processes
in the category, the breakdown of state-effect symmetry in boxworld indicates that in some sense
quantum theory ‘optimizes’ the balance between the amount of nonlocality provided by states and
the richness of the dynamics. A precise development of this idea would not only enhance our
understanding of the relation between time-symmetry and quantum theory, but it may also lead
to an understanding of the origin of Tsirelson’s bound.

Hence structural insight into the compatibility between quantum theory and relativity will
require understanding the role of time-symmetry on two levels. Firstly, in the direct sense that the
causal structure of relativity is time-symmetric but non-local correlations are not. Secondly, and
pulling in the other direction, amongst non-local non-signaling theories, the underlying formalism
of quantum theory exhibits a kind of time-symmetry which boxworld does not.

Milestones for this topic:
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• We will formulate no-signaling theories categorically, and by a constructive encoding of the iso-
morphism between states and effects (using compact structure), we will investigate how close
the resulting set of correlations is to the quantum boundary (which is limited by Tsirelson’s
bound).

• McKague [38] has shown that PR boxes are allowed by a quantum-like formalism that uses
quaternionic instead of complex scalars. This presents an intriguing relation to categorical
quantum mechanics, since quaternionic matrices seem to instantiate the notion of premonoidal
categories [42], which generalize monoidal categories by allowing a breakdown of bifunctorial-
ity. We wish to understand to what extent premonoidal categories can be used to understand
no-signaling theories abstractly and more efficiently.

Subtask 7: Varying causal structure via compactness

We discussed in §3 that in the causaloid formalism a notion of probabilistic causality structure is
sought [26], which is motivated by considerations of quantum gravity, in which causal structure
may be indefinite at a fundamental level. In most approaches it is not clear how best to implement
this, however with a category-theoretic formalism this can be achieved in a simple way as follows
[14].

The key feature is that we can use compact structure to turn an input of a process to an
output, and vice versa. Compact structure has so far been used in categorical quantum mechancs
to structurally isolate the resource that a theory requires to contain a teleportation protocol [1].
Graphically, this corresponds to the existence of a cup and a cap:

∪A ≡ and ∩A ≡

subject to the following ‘yanking’ equations:

=

and =
Now, given morphisms g : C ⊗ A → B and f : A → B ⊗ C, consider the causal structure defined
by the composite morphism (1C ⊗ f) ◦ (g ⊗ 1B): the process g occurs ‘before’ the process f . But
by using the ‘yanking rule’, this composite can be seen to induce a different causal structure:

f

g

=_~
g

f g

f

= g

f

~

~
_~

g~

f~

where the morphisms f̃ and g̃ are defined as:

f̃ ≡ f and g̃ ≡ g

Milestones for this topic:

• A systematic treatment of indefinite causal structure using compactness.
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