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Abstract

The compositional distributional account models meaning of sentences

relying on their grammatical structure to guide semantic composition.

It has been successfully applied to the theory of conceptual spaces for

cognition in [7], using convex algebras that describe the important convex

structure of natural concepts. In the literature, metric spaces are also

widely used to characterise conceptual spaces, however, they do not have

the necessary structure as a category, compact closedness, to fit into the

compositional distributional account. There are several alternatives to

build a compact closed category from a given one and, in particular, this

dissertation investigates the so-called span construction.

Various interpretations and applications, including those in the cognition

and linguistics setting, are analysed for spans of sets and metric spaces.

A model for path composition is first explored to introduce the most

important characteristics of this construction. Later, an interpretation

for cognition to describe hyper-conceptual spaces results in applications

for the phenomena of categorical perception or concept correlation. As a

side effect, a connection with algebra of bags is explored and an enrichment

over commutative monoids for span categories arises from this setting.

To conclude, it is found that spans of metric spaces are suitable to model

several aspects in cognitive science and they have applications in other

areas such as algebra of bags.
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Chapter 1

Introduction

Traditionally, quantum mechanics has been described in the setting of finite dimen-

sional Hilbert spaces FHilb. However, what makes this category ideal for this appli-

cation in particular lies in the fact that it features a dagger compact closed structure.

In fact, the most recent axiomatization of quantum computing takes place in this

categorical setting [1], which allows to abstractly describe quantum protocols, such

as teleportation and entanglement-swapping, with key elements such as the Born rule

arising categorically.

The application of compact closed categories does not reduce exclusively to quan-

tum mechanics. In the linguistics and cognition settings, the compositional distribu-

tional model of meaning [10] exploits this kind of structure to guide semantic compo-

sition through the syntactic structure of sentences. Is this setting and the important

compact closedness property that motivates this dissertation.

1.1 The compositional distributional scheme

The syntactic structure of a sentence can be modelled by means of pregroup grammars

[14]. A pregroup (P,≤, ·, (−)l, (−)r) is a partially ordered monoid where each element

p ∈ P has a left pl and right pr adjoints satisfying certain equations. In this model,

words are assigned to elements in the pregroup representing their grammatical type.

For example, the sentence John plays football is assigned the type

John plays football

n · (nrsnl) · n,

where both John and football are assigned to noun n and plays is assigned to a

compound type of verbs nrsnl, where the adjoints nr, nl encode interactions with the
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noun subject and direct object of the sentence. Pregroup reductions then model the

syntactic interactions of the sentence:

n · (nrsnl) · n ≤ (nnr) · s · (nln) ≤ 1 · s · (nln) ≤ s · 1 = s

It turns out that as a category, pregroups Preg exhibit compact closed structure,

and here is where the compositional distributional scheme comes into play. Type

reductions are regarded as structural morphisms in this grammar category defining a

semantic map, graphically depicted as

The compositional distributional account then takes a semantic category, also ex-

hibiting compact closedness, and uses functoriality to map the structural morphisms

into it. Words are assigned to states in this category and fed into the semantic map,

playsJohn football

which reflects the grammatical structure in the semantic category and guides meaning

composition.

For example, in the linguistics setting, the traditional distributional model of

meaning is embed in the compositional distributional framework in [10]. In this

model, the meaning of words is represented in vectors containing information about

occurrences of certain close contextual words. The semantic category, in this case,

is taken to be finite dimensional Hilbert spaces FHilb. In this direction, [6],[17]

are examples of recent work that expose the versatility of this abstract categorical

framework.

1.2 The cognition setting

Gärdenfors’s model for cognition [12] provides an account to describe concepts by

means of geometrical structures denoted conceptual spaces. For example, the concept

of taste is described by a 4-dimensional hypercube (See Figure 1.1), where each di-

mension is one of the four flavour dimensions: sweet,bitter,saline,sour. The geometric

structure in these spaces is described in terms of notions such as distance or convexity.
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Figure 1.1: Taste hypercube; from [12]

In a model that strongly emphasises convexity of natural concepts, the composi-

tional distributional scheme is successfully applied to Gärdenfors’s theory in [7]. In

this scenario, convex conceptual spaces are modelled by means of convex algebras

(A,α), which are essentially a set A together with a mixing function α that takes a

collection elements in A and creates a convex mixture lying in A again. It turns out

that convex algebras are Eilenberg-Moore algebras for a monad, and they form a reg-

ular category from which a compact closed category of relations can be constructed.

The resulting category ConvexRel of convex algebras and relations on them is taken

as semantic category and determines how meaning is composed.

On the other hand, many of Gärdenfors’s ideas involve the notion of distance,

which he models mathematically using metric spaces. A metric space is a set M

together with a distance function d measuring the distance between two points in

M . Unfortunately, none of the variants for categories of metric spaces HMet, QMet

and Met features compact closedness and, consequently, they cannot be regarded as

semantic categories for the compositional distributional model of meaning.

In order to use metric spaces with the compositional distributional framework,

it is necessary to construct a compact closed category over them. However, the

construction of relations over Eilenberg-Moore categories cannot be applied in this

scenario and, as a result, it is necessary to resort to other constructions. A very

standard one in the literature, but not much investigated in this setting, is the so-

called span construction, on which this dissertation focuses its attention.
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1.3 The span construction

The span construction essentially takes diagrams of the form

S

�� ��
X Y

in a base category, regards them as arrows and defines a composition law. Interest-

ingly, the resulting category is compact closed, provided that the original category

satisfies a few assumptions.

This is an abstract construction that has not been yet analysed for the cognition

setting. For that reason, this dissertation aims to build intuitions on spans of sets and

metric spaces to shed some light on the way they behave and analyse their suitability

for applications in cognition.

1.4 Outline of the dissertation

The ideas presented in this dissertation unfold along three core chapters. The main

contribution is given in Chapters 3 and 4, where all the ideas and results developed

are original unless otherwise stated.

As a starting point, John Baez’s interpretation of paths and matrix mechanics

for spans of sets [5] is inspected in Chapter 2. This is used as a vehicle to introduce

general results about the span construction. A small contribution of the author of this

thesis in this part is the introduction of an informal notation, a graphical language,

to better describe the path interpretation.

Subsequently, Chapter 3 explores an interpretation of spans of metric spaces for

conceptual spaces. This results in a model for hyper-conceptual spaces, where spans

encode concept-subconcept relations. Several applications, such as the phenomenon

of categorical perception or the compositional distributional model, are then modelled

using this new setting.

Finally, a side connection with algebra of bags is investigated in Chapter 4. This

results in a categorical framework to describe tables and operations on them, with the

most fundamental ones (projection, natural join, selection, rename and set-theoretic

operations) being described categorically. A good interaction of span composition

with set-theoretic operations on them is shown in Theorem 4. Also, this perspective
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points to an enrichment over commutative monoids for spans of metric spaces (The-

orem 2) and, more generally, for spans of locally distributive categories (Theorem 3),

with potential applications in the general setting of this dissertation.

5



Chapter 2

A model for matrix mechanics

This chapter will introduce the span construction and will present the first of the

intuitions on spans: John Baez’s interpretation of paths and matrix mechanics for

spans of sets [5].

2.1 A bit of category theory

2.1.1 Monoidal categories

A basic knowledge of category theory, such as understanding of products, coproducts

and pullbacks, will be assumed in this work and will not be covered; instead, the

reader can refer to [4],[2] if necessary. This section will give a brief introduction to

the theory of symmetric monoidal categories and some of the internal structures that

they feature. Further background on the topic can be found in [15] and [1]. Before

that, however, some basic notions will be revised.

Lemma 1. In Set, the pullback of X
f→ Z

g← Y is given by X
πX← X ×Z Y

πY→ Y ,

where

X ×Z Y = {(x, y) ∈ X × Y : f(x) = g(y)}

and πX ,πY are the projections into the corresponding components.

Notation. In the following, ∆X : X → X×X and τX : X → 1 will be used to denote

the diagonal morphism and the unique terminal arrow from the product structure.

The main categorical setting on which all the results in this dissertation focus is

that of symmetric monoidal categories, which are defined as follows:

Definition 1 (Symmetric monoidal category). A monoidal category is given by a

structure (C,⊗, I, α, λ, ρ, σ) where
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1. C is a category,

2. ⊗ : C×C→ C is a functor; the tensor product of the monoidal structure,

3. I is a distinguished object in C; the the monoidal unit,

4. α,λ,ρ,σ are natural isomorphisms, known as the associator,left unitor, right

unitor and symmetry

αX,Y,Z : X ⊗ (Y ⊗ Z)
∼=→ (X ⊗ Y )⊗ Z

λX : I ⊗X
∼=→ X

ρX : X ⊗ I
∼=→ X

σX,Y : X ⊗ Y
∼=→ Y ⊗X

that express associativity of the tensor product, unitality of the monoidal unit

with regard to the tensor product and commutativity (symmetry) of the tensor

product.

5. The data above satisfies the triangle, pentagon and hexagon equations [15],

which ensure coherence in the monoidal structure.

Essentially, the coherence conditions ensure that all possible ways of associat-

ing, uniting and interchanging tensor-compound types are isomorphic by means of a

unique isomorphism built from the axioms of a symmetric monoidal category. For

example,

(X ⊗ Y )⊗ (Z ⊗ I)
(idX⊗σY,Z)◦(idX⊗(idY ⊗ρZ))◦α−1

X,Y,Z⊗I−→ X ⊗ (Z ⊗ Y ),

and this is the unique morphism built out of identities, associators, unitors and sym-

metries. In practice, this means that any rearrangement can be safely ignored and

work without the structural morphisms in any formula, since they are implicit.

Some symmetric monoidal categories feature a special internal structure known as

compact closedness. They are particularly interesting because they can be described

by means of a graphical calculus that allows to reason in them using string diagram

calculations. This graphical calculus will be later introduced in more detail.

Definition 2 (Compact closed category). A compact closed category is a symmetric

monoidal category C in which every object X has a dual object X∗ and there exist
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a unit morphism ηX : I → X∗ ⊗ X and a counit morphism εX : X ⊗ X∗ → I that

satisfy the snake equations

(εX ⊗ idX) ◦ (idX ⊗ ηX) = idX (idX∗ ⊗ εX) ◦ (ηX ⊗ idX∗) = idX∗

Dual objects are unique up to isomorphism.

On the other hand, symmetric monoidal categories can feature another type of

internal structure: a dagger structure. They arise from a special type of functor that

strongly relates the category with its opposite category while preserving the monoidal

structure.

Definition 3 (Dagger functor). A dagger functor is an involutive, contravariant and

identity on objects endofunctor † : Cop → C.

Definition 4 (Dagger symmetric monoidal category). A dagger symmetric monoidal

category is a symmetric monoidal category C equipped with a dagger functor † :

Cop → C that preserves the monoidal structure, i.e. (X ⊗ Y )† ∼= (X† ⊗ Y †) natural.

Furthermore, the two previous structures, the dagger structure and the compact

closedness, may interact well with each other, allowing the expression of units in terms

of counits, and vice versa, by means of the dagger functor. A category exhibiting this

behaviour is known as a dagger compact closed category.

Definition 5 (Dagger compact closed category). A dagger compact closed category

is a compact closed, dagger symmetric monoidal category in which the compact and

dagger structures interact well, i.e. the following diagram commutes for every object:

I
ε†X//

ηX ##

X ⊗X∗

σX,X∗

��
X∗ ⊗X

Important examples of categories with this kind of structure are the category of

relations Rel and the category of finite dimensional Hilbert spaces FHilb.

The well-known mathematical structure of monoids and their dual counterpart,

comonoids, may appear internally in a monoidal category. If they moreover interact

well with each other, they give rise to the so-called Frobenius algebras, which are

typically used to model flows of information and operations on them such as copying

or discarding.
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Definition 6 (Frobenius algebra, dagger Frobenius algebra). A Frobenius algebra in

a monoidal category is a quintuple (X, δ, ι, µ, ζ) where

1. (X, δ, ι) is an internal comonoid, i.e. δ : X → X ⊗ X, ι : X → I satisfy

coassociativity and counitality:

(δ ⊗ idX) ◦ δ = (idX ⊗ δ) ◦ δ (idX ⊗ ι) ◦ δ = idX = (ι⊗ idX) ◦ δ,

2. (X,µ, ζ) is an internal monoid, i.e. µ : X ⊗ X → X, ζ : I → X satisfy

associativity and unitality:

µ ◦ (µ⊗ idX) = µ ◦ (idX ⊗ µ) µ ◦ (idX ⊗ ζ) = idX = µ ◦ (ζ ⊗ idX),

3. and they moreover satisfy the Frobenius law:

(µ⊗ idX) ◦ (idX ⊗ δ) = δ ◦ µ = (idX ⊗ µ) ◦ (δ ⊗ idX)

In a dagger symmetric monoidal category, it is said to be a dagger Frobenius algebra

if †(δ) = µ and †(ι) = ζ. The maps δ, µ are typically referred as copy and uncopy

maps respectively.

Finally, some categories can exhibit a commutative monoid structure over the

hom-set. When it interacts well with composition, it is said that the category is

enriched over commutative monoids.

Definition 7 (Enrichment over commutative monoids). A category C is said to be

enriched over commutative monoids if there is a commutative monoid structure over

the hom-set, i.e there exists an operation + : C(X, Y ) ×C(X, Y ) −→ C(X, Y ) that

satisfies

1. Commutativity: f + g = g + f ,

2. Associativity: (f + g) + h = f + (g + h) and

3. Units: for all X,Y there exists a unit morphism uX,Y : X → Y such that for

all f : X → Y it holds that f + uX,Y = f ,

and that is moreover compatible with composition, i.e

4. Addition compatible with composition (f + g) ◦ h = (f ◦ h) + (g ◦ h) and

h ◦ (f + g) = (h ◦ f) + (h ◦ g) and

5. Units compatible with composition f ◦ uX,X = uX,Y = uY,Y ◦ f .

An example of a category enriched over commutative monoids is FHilb, where

the monoid structure over the hom-set is given by addition of linear maps with unit

the constant zero linear map.
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2.1.2 Graphical calculus for compact closed categories

As it was briefly mentioned earlier in the previous section, compact closed categories

can be described by a graphical calculus that allows to perform calculations on mor-

phisms. This section is based on the graphical calculus in [9]. In this calculus, arrows

f : X → Y are represented as boxes

f

X

Y

with input and output wires for the domain and the codomain respectively. Compo-

sition and tensor of arrows are depicted by placing them sequentially or in parallel

respectively:

g

f

Z

X

f g

X V

WY

Distinguished morphisms, such as the identity, unit and counit, have special depic-

tions, as they play a fundamental role in this graphical calculus. Their representations

are:

idX ≡
X

ηX ≡
XX∗

εX ≡
X X∗

Note that the trivial system I in both the unit and counit, and in general, is not

depicted. With this representation, the snake equations receive a characteristic form

X XX∗

X

= X∗X∗ X

X∗

= .

that resembles a pulling out, a deformation, of a string. In fact, a very powerful

general result [18] for compact closed categories states that

Theorem 1. An equation between morphisms holds if and only if it holds in the

graphical language up to framed isotopy in three dimensions.
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Framed isotopy simply expresses that wires are treated as if they were ribbons

in a three dimensional space. This theorem is the cornerstone of the graphical cal-

culus: calculations with morphisms are reduced to deformations of string diagrams.

Finally, in some sections, states, which are morphisms of the form v : I → X, will be

intensively used and they will be represented in the graphical calculus as:

v

2.2 The span category

The span construction is an elegant category-theoretic construct that allows to turn

any arbitrary category that satisfies some few requirements, such as the existence of

pullbacks and finite products, into a richer category with more interesting proper-

ties. Specifically, the resulting category will inherit a monoidal structure and will be

compact closed, which makes it an attractive candidate for the applications along the

lines of this dissertation. This construction relies on some particular diagrams in the

original category, which will be the spans, and treats them as arrows. This section is

based on [16].

Definition 8 (Span). Given any category C, a span from X to Y is a diagram of

the form

S
sX

��

sY

��
X Y

S is the apex, X and Y are the domain and codomain respectively and the arrows

sX and sY are the left and right legs of the span.

Remark. In many occasions, specially due to the notation adopted for the legs of the

spans, different arrows will be given the same name and will be distinguished instead

by the type information encoded in their domain and codomain. This choice will

increase readability of the ideas presented.

It turns out that if C has pullbacks, then spans can be composed. Given two

spans X
sX←− S

sY−→ Y , Y
sY←− T

sZ−→ Z, the pullback of the two apices with respect

11



to the coinciding legs produces a new cone

S ×Y T
πS

{{

πT

##
S

sX

��

sY

$$

T
sY

zz

sZ

��
X Y Z

that allows to define a composite span by taking composite legs into the new domain

and codomain:

S ×Y T
sX◦πS

zz

sZ◦πT

##
X Z

.

However, since pullbacks are defined up to isomorphism, a choice of pullbacks will be

assumed and instead the span construction will be built over a class of isomorphic

spans. To make this idea more precise, first it is necessary to define the notion of

map between spans.

Definition 9 (2-morphisms). Let X
sX←− S

sY−→ Y , X
sX←− T

sY−→ Y be spans in a

category C. A map between them or 2-morphism is given by a morphism f : S −→ T

in C such that the following diagram commutes:

S

sX

��

f
��

sY

��

T

sX~~ sY ��
X Y

The basic idea behind this concept is that both legs of the source span factorise

over or can be given in terms of the target span. On the other hand, isomorphic

spans are then those such that there exists a 2-isomorphism between them and an

isomorphic class of spans is the collection of all spans that are isomorphic to a certain

representative. This allows for a suitable definition of span category.

Definition 10 (Span category). Given a category C with pullbacks, the span category

Span(C) has objects of C as objects and classes of isomorphic spans as arrows.

To start appreciating some interesting properties of this construction, take Span(Set)

and consider two binary relations R ⊆ X×Y and S ⊆ Y ×Z. They can be made into

12



spans by taking the projections into their domain and codomain X
πX←− R

πY−→ Y ,

Y
πY←− S

πZ−→ Z. Composing them results in the span

R×Y S
πX◦πR

zz

πZ◦πS

##
X Z

where

R×Y S ={(r, s) ∈ R× S : πY (r) = πY (s)}

={(r, s) = ((x, y), (y′, z)) ∈ R× S : πY (x, y) = y = y′ = πY (x′, y′)}

={((x, y), (y, z)) ∈ R× S},

i.e. if there is some shared y ∈ Y , then elements (x, y) ∈ R are related with elements

(y, z) ∈ S. In other words, the composite span encodes binary relation composition

and, in fact, there is a 2-morphism into the actual composite relation

R;S = {(x, z) : ∃ y(x, y) ∈ R, (y, z) ∈ S},

given by f : R ×Y S → R;S : ((x, y), (y, z)) 7→ (x, z), that disregards the extra

information, the shared element, that the composite span carries. It is easy to observe

that the diagram

R×Y S

πX◦πR

��

f
��

πZ◦πS

��

R;S

πX
zz

πZ
##

X Z

commutes, since the right projections are involved.

2.3 A model for matrix mechanics

This section will present John Baez’s matrix mechanics and path interpretation [5]

for spans of sets and will use it as a vehicle to introduce general results about span

categories.

Surprisingly, Span(Set) can be interpreted as a model for path composition. In

this interpretation, a span X
sX←− S

sY−→ Y describes a collection of paths together

with their starting and ending points. The sets X and Y are collections of starting

and ending points respectively; whereas the set S is the collection of paths. The left
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and right legs of the span associate each path to the point where it starts and the

point where it ends.

X

Y

sX(s)

sY (s)

s ∈ S

Span composition then models path composition. Given two collections of paths

X
sX←− S

sY−→ Y and Y
sY←− T

sZ−→ Z, their composite

S ×Y T = {(s, t) : sY (s) = sY (t)}
sX◦πS

tt

sZ◦πT

**X Z

joins a path s ∈ S and a path t ∈ T if they meet in the middle and preserves the

starting point of s and the ending point of t.

X

Y

Z

≡

X

Z

Tightly connected with this path interpretation, there is another interpretation

that emphasises the fact that there is some sort of movement from a source to a target.

Letting Sxy be the set of paths or ways to go from point x to y, a span X
sX←− S

sY−→ Y

can be interpreted as a matrix (Sxy )x∈Xy∈Y , where X,Y are the rows and columns and

the two legs assign each element in S to a cell.

To get from a point x ∈ X to a point z ∈ Z through an intermediate location

Y , any y ∈ Y is taken as a commuting point, so the collection of paths from x to z

14



is given by (
⊔
y∈Y S

x
y × T yz ). Span composition, under the matrix interpretation, is

matrix multiplication

(Sxy )xy ; (T yz )yz = (
⊔
y∈Y

Sxy × T yz )xz

in the semiring (Set,t,×); a categorified semiring in which the elements are sets and

the addition and product operations are the categorical coproduct and product. As

a result, Span(Set) models movements or mechanics by means of matrices: it is also

a model for matrix mechanics.

The inherent regularity of spans provides the span construction with a dagger

functor. Each span can be identified with a symmetric version that has both domain

and codomain interchanged. Moreover, the very same symmetry makes the operation

an involution.

Proposition 1 (Span(C) is a dagger category). Span(C) is a dagger category when

equipped with the dagger functor that takes each span to its mirror image:

†

 S
sX

��

sY

��
X Y

 =

S
sY

��

sX

��
Y X

This functor satisfies the axioms of a dagger functor : it is contravariant, involutive

and the identity on objects. In Span(Set), interpreting spans as collection of paths,

the dagger functor turns their orientation around:

†


 =

On the other hand, interpreted as matrices, the dagger functor takes each matrix to

its transpose †[(Sxy )xy ] = (Syx)xy .

It turns out that if C moreover has finite products, Span(C) inherits a monoidal

structure that makes it into a monoidal category. In this setting, binary products in

C are used to glue together two spans into a combined one, as if it were a realisation

of both of them at the same time. The monoidal unit is taken to be the terminal

object in C.

Proposition 2. If C is a category with finite limits, then Span(C) is a symmetric

monoidal category with a tensor product given by: S
sX

��

sY

��
X Y

⊗
 S ′

sX′

~~

sY ′

  
X ′ Y ′

 =

S × S ′
sX×sX′

||

sY ×sY ′

!!
X ×X ′ Y × Y ′
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In Span(Set), a path in the tensor product comprises two paths that take place

in parallel, with independent starting and ending points.
⊗


 =

In addition, in the matrix mechanics counterpart, the tensor product of two set-valued

matrices is a generalisation of the usual tensor product:

(Sxy )xy ⊗ (T vw)vw = (Sxy × T vw)x,vy,w.

Hereafter, a more diagrammatic representation for paths will be adopted in order

to illustrate equations involving them in a more insightful manner. This notation will

only be used for certain distinguished spans and will reflect properties of the span that

it is being represented. Notice, however, that this is only an informal representation

and it is not meant to be a rigorous system to prove statements. To begin with, the

identity arrow span, which is given by idX ≡ X
idX←− X

idX−→ X, will be depicted as

x

,

where the index x ranges over the collection of paths X. Informally, this means that

there is a path for each x ∈ X that starts at a homonymous point x in a location X

and ends at a homonymous point x in a location X as well.

The same product structure in C allows for a richer compact closed structure on

Span(C). In this case, an object X is both left and right dual of itself.

Proposition 3. If C is a category with finite limits, then Span(C) is a compact closed

category with unit and counit given by:

η ≡
X

τX

��

∆X

##
1 X ×X

ε ≡
X

∆X

{{

τX

��
X ×X 1

In Span(Set), the unit is a collection of paths that are originated at the same

fixed point and end in mirror points in two different locations. On the other hand,

the counit is a collection of paths that start at mirror points in two different locations

and end at the same fixed point.

η ≡ x ε ≡ x

16



In terms of matrices, the unit and counit are the column vector η = (δx,x′)x,x′ and

row vector ε = (δx,x′)
x,x′ respectively, where

δx,x′ =

{
{x} if x = x′

∅ otherwise

is a generalised Kronecker delta. The snake equations can be verified under both

interpretations:

(ε⊗ idX) ◦ (idX ⊗ η) =

x1 x2

x3x4

≡
x x

xx

≡ x ≡ x = idX .

The first step is effectively using path composition: only when the paths are x1 =

x2 = x3 = x4 they meet in all the middle points; and it is merely an intermediate

step that leads to the span in the next equivalence. The last equivalence uses that

1×X ∼= X ∼= X × 1. On the other hand, using the matrix mechanics interpretation,

the remaining snake equation can be verified.

(idX ⊗ ε) ◦ (η ⊗ idX) = [(δx1,x′1)
x1
x′1
⊗ (δx2,x′2)

x2,x′2 ] ◦ [(δx3,x′3)x3,x′3 ⊗ (δx4,x′4)
x4
x′4

]

= [(δx1,x′1 × δx2,x′2)
x1,x2,x′2
x′1

] ◦ [(δx3,x′3 × δx4,x′4)
x4
x3,x′3,x

′
4
]

= (
⊔

x1∈X,x2∈X,x′2∈X

δx1,x′1 × δx2,x′2 × δx1,x2 × δx4,x′2)
x4
x′1

= (δx′1,x4)
x4
x′1

= (δx1,x′1)
x1
x′1

= idX

The first three equalities use definition of identity, unit and counit; definition of

tensor product and definition of composition. The last equality uses that it must be

x′1 = x1 = x2 = x′2 = x4 so the product is not empty.

Finally, both the compact and dagger structures are compatible and there exist

Frobenius algebras for all objects.

Proposition 4. If C is a category with finite limits, Span(C) is a dagger compact

category.
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Proposition 5. If C is a category with finite limits, then Span(C) has dagger Frobe-

nius algebras (X, δ, ι, µ, ζ) for all objects X given by

δ = †(µ) ≡
X

idX

~~

∆X

##
X X ×X

ι = †(ζ) ≡
X

idX

~~

τX

��
X 1

In the path interpretation, δ and µ communicate three mirror points in three

different locations

δ ≡ x µ ≡ x ,

while ι connects every point with a single fixed point in a different location and ζ

links a fixed point with every point in another location.

ι ≡ x ζ ≡ x .

On the other hand, in terms of matrices, the morphisms of this Frobenius algebra are

given by δ = (δx,x′,x′′)
x
x′,x′′ , µ = (δx,x′,x′′)

x,x′

x′′ , ι = (x)x, ζ = (x)x, where

δx1,x2,··· ,xn =

{
{x} if x1 = x2 = · · · = xn

∅ otherwise

is a generalised multiparameter Kronecker delta.

The fact that (X, δ, ι, µ, ζ) as defined earlier is a dagger Frobenius algebra can be

readily verified using the graphical language of paths. As an instance, the Frobenius

18



law unfolds as follows:

(µ⊗ idX) ◦ (idX ⊗ δ) =

x1 x2

x3x4

≡
x x

xx

≡ x ≡
x2

x1

= δ ◦ µ

≡
x1 x2

x3x4

= (idX ⊗ µ) ◦ (δ ⊗ idX).

The first step uses path composition and leads to the resulting span in the second

equivalence. The remaining equivalences are different compositions of spans that

result in the same canonical form. Observe how, in the path interpretation, the

different components of the Frobenius law are just rearrangements of ways to go from

an initial location to a final one.
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Chapter 3

A model for hyper-conceptual
spaces

This chapter will present interpretations for spans of metric spaces. As a first step,

it will briefly introduce a slight modification to the path interpretation developed in

Chapter 2 to account for metrics. Afterwards, the main interpretation for concep-

tual spaces will be given: a model for hyper-conceptual spaces that describes exten-

sion of concepts with correlation. Finally, this interpretation will be applied to the

phenomenon of categorical perception and the compositional distributional model of

meaning in the cogintion setting.

3.1 Metric spaces and conceptual spaces

3.1.1 Categories of metric spaces

Hitherto, spans of sets have been analysed and possible interpretations for them have

been discussed. However, the main focus of this dissertation is on metric spaces and,

therefore, a further step will be taken, exploring the slightly different setting in which

spans are constructed over metric spaces. This section is based on [13], where the

reader is referred to for further information.

These spaces add some additional structure on sets. Namely, they come with a

distance map that allows to talk about the concept of proximity between two points

in a set. Depending on the conditions imposed on this map, three different notions

of metric arise.

Definition 11 (Hemi-metric,Quasi-metric,Metric). A hemi-metric d on a set X is a
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map d : X ×X → [0,∞] such that

d(x, x) = 0 for all x ∈ X

d(x, y) ≤ d(x, z) + d(y, z) for all x, y, z ∈ X.

A quasi-metric is a hemi-metric d that is moreover T0, i.e.

d(x, y) = d(y, x) = 0 =⇒ x = y.

And a metric is a hemi-metric d that is additionally symmetric, i.e

d(x, y) = d(y, x).

Hemi-metric is the weakest notion of the three of them. It requires the two essen-

tial axioms that capture the concept of a distance: non-negativity and the triangular

inequality. Notice that the symmetry condition that later appears in the definition of

a metric is not present. This may be interesting in situations where there is a different

cost or effort between two points depending on the direction. A Quasi-metric, on the

other hand, satisfies the T0 axiom, which is adequate in settings where if two points

are at zero distance from each other regardless of the direction then they are treated

as the same.

Finally, a metric embodies the traditional axiomatisation of the concept of dis-

tance. In this case, distances are symmetric, so the proximity of two points does not

take into account the direction of the movement, which is closer to the natural intu-

ition of distance. In particular, the T0 condition is direct consequence of the axioms

of a metric, which makes this kind of map into a stronger version of a quasi-metric.

Moreover, combined with the symmetry prerequisite, T0 implies

d(x, y) = 0 ⇐⇒ x = y,

i.e. points at zero distance are regarded as the same.

An important remark is that this definition of distance allows for infinity distances.

It is not unusual to find a definition of distance that does not allow for infinity in the

literature. For the purposes of this dissertation, infinity distances are more suitable

for the categories that will be investigated.

The three notions of distance above then give rise to three different conceptions

of metric spaces when paired together with a set.

21



Definition 12. A (hemi-,quasi-) metric space (X, d) is a set X together with a (hemi-

,quasi-) metric d on it.

In addition, there is a notion of morphism between these spaces that allows to

consider transformations between them. In this dissertation, only the so-called weak

contractions will be acknowledged, as they are the canonical choice to build categories

upon in the literature.

Definition 13 (1-Lipschitz map). A 1-Lipschitz map or weak contraction is a map

between (hemi-,quasi-) metric spaces f : (X, d) → (Y, d′) such that d′(f(x), f(x′)) ≤
d(x, x′) for all x, x′ ∈ X.

Definition 14 (HMet,QMet,Met). HMet,QMet,Met are the categories of hemi-

metric, quasi-metric, metric spaces respectively and 1-Lipschitz maps between them.

The most general theory developed along this thesis can be described regardless of

the choice of category. However, in some particular scenarios and applications, it will

be necessary to resort to the weakest of the three of them, i.e. hemi-metric spaces,

and it will be because it is the only scenario that allows metric 0 on arbitrary sets:

0 : X ×X −→ [0,∞] : (x, x) 7→ 0(x, x) = 0.

The T0 axiom on both QMet and Met would collapse all points, which are at distance

0 from each other in both directions, into the same point and, therefore, this metric

does not exist there.

Finally, the most important limits for metric spaces have the following form:

Lemma 2 (Product). The product in Met (resp. HMet,QMet) of two metric

spaces (X, dX), (Y, dY ) is given by

(X, dX)
πX← (X × Y, dX × dY )

πY→ (Y, dY ),

where (dX × dY ) : (X × Y )× (X × Y )→ [0,∞] is the product metric, defined as

(dX × dY )((x, y), (x′, y′)) = max{dX(x, x′), dY (y, y′)},

and πX , πY are the projections into the respective components.

Lemma 3 (Coproduct). The coproduct in Met (resp. HMet,QMet) of two metric

spaces (X, dX), (Y, dY ) is given by

(X, dX)
iX→ (X t Y, dX t dY )

iY← (Y, dY ),
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where (dX t dY ) : (X t Y )× (X t Y )→ [0,∞] is defined as

(dX t dY )((z, i), (z′, i′)) =


dX(z, z′) if i = i′ = 1

dY (z, z′) if i = i′ = 2

∞ i 6= i′,

and iX , iY are the injections into the disjoint union.

Lemma 4 (Pullback). The pullback in Met (resp. HMet,QMet) of a pair of

arrows (X, dX)
f→ (Z, dZ)

g← (Y, dY ) is given by

(X, dX)
πX← (X ×Z Y, dX × dY )

πY→ (Y, dY ),

where X ×Z Y = {(x, y) ∈ X × Y : f(x) = g(y)},

(dX×dY ) : (X×ZY )×(X×ZY )→ [0,∞] : ((x, y), (x′, y′)) 7→ max{dX(x, x′), dY (y, y′)},

is the product metric and πX , πY are the projections into the respective components.

3.1.2 Conceptual spaces

The interpretation of spans in this chapter is mainly inspired by Gärdenfors’s cognitive

framework for concept representation and aims to establish connections with some of

his ideas developed in [12]. In particular, the idea of conceptual space plays a key

role in this account and will be central to the span perspective in this thesis. The

following is a humble introduction to his framework [12, Ch. 1,3,4] 1.

Before introducing the notion of conceptual space, some other ideas need to be

clarified. The first of these notions is quality dimension. A quality dimension rep-

resents an attribute of an object. Examples of these dimensions are height, width,

depth (spatial dimensions), bitterness, sweetness (flavour dimensions), hue, brightness

or chromaticness (colour dimensions).

These quality dimensions can be integral or separable. Integral dimensions are sets

of quality dimensions that need to be assigned a value simultaneously in order to make

sense. For instance, hue cannot be given a value without giving also brightness and

chromaticness values, so they describe a particular colour. Separable dimensions,

on the contrary, are those that are independent from each other, such as hue and

bitterness.

Collections of integral quality dimensions are grouped together into domains. A

domain is a set of integral dimensions that are separable from any other quality

1All images in this section and the following subsection were taken from [12]
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dimension. For example, colour is a domain comprised of the integral quality dimen-

sions of hue, brightness and chromaticness; and tone is another domain that can be

described with the integral quality dimensions of pitch and loudness.

A conceptual space is then defined as a collection of one or more domains. Both

colour and tone are examples of conceptual spaces with only one domain, however, the

juxtaposition of both of them can also be considered as a conceptual space colour-tone

that realises all the attributes of colour and tone at the same time.

Moreover, Gärdenfors puts a strong emphasis in the geometrical structure of these

conceptual spaces, which is explained in terms of several notions such as betweeness

or distance. In this regard, elements or stimuli in a conceptual space are points or

vectors representing each of their corresponding quality dimensions, which are then

said to be in between other points or at some distance of other point. For example,

the conceptual space of colour is represented as a colour spindle, where each point

in the spindle represents a particular colour and where there is a clear geometrical

structure (See Figure 3.1).

Figure 3.1: Colour spindle

This work will mainly focus on the distance approach to model the geometrical

structure of conceptual spaces, which uses metric spaces as the primordial mathemat-

ical tool. A conceptual space will be a set of points representing the different stimuli

together with a distance function (X, d) that encodes concept similarity and confers

the aforementioned geometrical structure.

Two important conceptual spaces in this dissertation are the conceptual spaces of

colour and taste. As pointed out earlier, colour is comprised of the quality dimensions

hue, brightness and chromaticness. The first one, hue, is represented by means of the

so-called colour circle (See Figure 3.2), which corresponds to the metric space of a

circumference (S1, dρ), with a distance function that measures proximity in polar

terms. On the other hand, brightness and chromaticness can be described by an

interval of the real line ([0, 1], de) and Euclidean distance representing the extent of

lightness and intensity of the colour.
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Figure 3.2: Colour circle Figure 3.3: Triangle representation

However, there is some correlation between the dimensions of brightness and chro-

maticness, namely, the more intense the colour is (chromaticness), the less choices of

brightness there are. This correlation is depicted by means of a triangular repre-

sentation (See Figure 3.3). For that reason, when the three colour dimensions are

integrated together, they give rise to the characteristic shape of the conceptual space

of colour (See Figure 3.1). The distance function on this space is polar in the hue

dimension and Euclidean in the remaining ones.

On the other hand, the conceptual space of taste is given by the four integral

flavour dimensions: salt, sweet, bitter and sour. Each of these components is given

by the interval ([0, 1], de) of the real line, with Euclidean metric on them and they are

combined into the higher conceptual space of taste ([0, 1]4, de), which is 4-dimensional

hypercube with Euclidean metric (See Figure 3.4).

Figure 3.4: Taste hypercube

Concepts as cognitive entities are represented in this account according to the

following criterion:

CRITERION C A natural concept is represented as a set of regions in a

number of domains together with an assignment of salience weights to the

domains and information about how the regions in different domains are

correlated. [12, p. 105]
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As a result, concepts can be regarded as metric subspaces of a conceptual space

comprised of one or more domains. The importance or salience of each of the domains

can be expressed in terms of metrics. To see that, consider the conceptual space of

taste (T, dT ) and colour (C, dC) as described earlier. The conceptual space realising

both domains at the same time is given by the product metric space (C × T, dC ×
dT ), where the product metric is giving equal importance to both taste and colour.

However, it can be instead considered a weighted combination of the two metrics,

where each of the weights adjust the specific salience of each domain

(C × T,wCdC × wTdT ),

where

(wCdC × wTdT )((c, t), (c′, t′)) = max{wCdC(c, c′), wTdT (t, t′)}.

Finally, a basic notion of correlation between domains will be subsequently explored

in the span interpretation for conceptual spaces.

3.1.2.1 Prototype theory and the phenomenon of categorical perception

Gärdenfors also reviews prototype theory [12, Ch. 3] from the perspective of concep-

tual spaces and tries to tie it to the notion of metric spaces. In prototype theory,

stimuli in a conceptual space are grouped together in certain categories represent-

ing concepts, as if describing a process of mental categorisation or conceptualisation.

Some specific stimulus within a category are regarded as more representative than

others and they are referred as prototypes. For instance, the conceptual space of colour

can be categorised in seven major colours, yellow, green, blue, violet, red, orange and

grey, according to Figure 3.2.

Gärdenfors uses Voronoi tesselations as a mathematical tool to link prototype

theory with metric spaces. Given a metric space and a set of distinguished points, a

Voronoi tesselation is a partition of that space in which each element is assigned to

its closest (in terms of the metric) distinguished element. As a result, a Voronoi tes-

selation of a conceptual space based on a collection of representatives conceptualises

the space in regions described by a representative and its most similar stimuli.

A process of mental categorisation occurs with the so-called stop consonants

/p/,/b/,/t/,/d/. These consonants can be accurately described by means of two artic-

ulatory parameters that correspond to two integral dimensions: the voiced-unvoiced

dimension and the labial-dental-velar dimension, where the latter controls the position

of the tongue while making the sound. Those two dimensions can be described by the
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interval ([0, 1], de) of the real line, which expresses the degree to which the dimension

occurs, and they are combined into the conceptual space of articulatory parameters

([0, 1]2, de); a rectangle in the plane with Euclidean metric. A Voronoi tesselation of

this space taking the stop consonants as prototypes yields the discretisation in Figure

3.5.

Figure 3.5: Stop consonants categorisation

Although the conceptual space of articulatory parameters is a comprised of in-

finitely many stimuli, it is perceived by the auditory system in a categorical way, i.e.

there is a noticeable difference between two elements in different categories. Although

these stimulus may be close in their conceptual space representations, their perceived

dissimilarity is significant. This is known as the phenomenon of categorical percep-

tion. Specifically, in the example of the stop consonants, /p/ and /b/ could be very

close in terms of their articulatory parameters, however, they would be perceived as

different consonants.

3.1.3 Compositional distributional model of cognition

Compositional distributional models for natural language [10] provide a method for

interpreting language semantics in a compositional manner, guided by the gram-

matical structure of the sentences. In this framework, a grammar category, such as

pregroup grammars [14], is used to describe the syntactic structure of an expression;

while a semantic category determines how meaning should be composed. The model

then leverages a shared abstract structure, that of compact closedness, between the

grammar category and the semantic category to mediate between the two of them; the

structural morphisms mimicking the syntactic structure lead meaning composition in

the semantic category.
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The traditional distributional model of meaning for natural language uses vec-

tors of co-ocurrence statistics extracted from a corpus to give semantic significance

to words. Syntactic structure can be incorporated in this model by embedding it

into the compositional distributional account with finite dimensional Hilbert spaces

FHilb as the semantic category. Furthermore, Gärdenfors’s model for cognition can

be described using the semantic category of convex algebras and convex relations

ConvexRel [7], which puts emphasis on the convex structure of natural properties.

This dissertation will, however, analyse the suitability of spans of metric spaces, which

are compact closed, as a semantic category.

As far as the grammar category is concerned, the choice in this thesis will be

pregroups [14]. A pregroup is defined as follows:

Definition 15 (Pregroup). A pregroup is a tuple (P,≤, ·, (−)l, (−)r) where (P,≤, ·)
is a partially ordered monoid and (−)l, (−)r : P → P are endofunctions onto P ,

known as the left and right adjoints respectively, that satisfy the following properties:

pl · p ≤ 1 ≤ p · pl and p · pr ≤ 1 ≤ pr · p.

Each grammatical role in a sentence will be associated with an element in a pre-

group grammar, which is a pregroup freely generated over a set of some basic types.

In the simplest scenario, this pregroup grammar is generated by a noun type n and

a sentence type s, i.e. the set B = {n, s}, and all other types are composite types

built upon these basic ones. For example, adjectives are assigned the type n ·nl, while

intransitive and transitive verbs are assigned the type nr · s and nr · s ·nl respectively.

Pregroup reductions reveal grammatical interactions between the words in a sen-

tence. For example, John plays football, which is represented by the composite type

n · (nrsnl) · n, exhibits the following grammatical reduction into the sentence type:

n · (nrsnl) · n = (nnr) · s · (nln) ≤ 1 · s · (nln) ≤ s · 1 = s.

Similarly, the sentence red apple, typed as (nnl) · n, can be reduced to the noun type

by means of the following reduction:

(nnl) · n = n · (nln) ≤ n · 1 = n.

A pregroup can also be seen as a monoidal category; objects are elements of the

pregroup, morphisms are type reductions and tensor is given by the monoidal product

on objects. Moreover, it is a compact closed category with counits εl : pl ⊗ p→ 1 ≡
pl · p ≤ 1, εr : p ⊗ pr → 1 ≡ p · pr ≤ 1 and units ηl : 1 → p ⊗ pl ≡ 1 ≤ p · pl,
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ηr : 1→ pr ⊗ p ≡ 1 ≤ pr · p. Pregroup reductions are then interpreted equivalently in

this category; the previous example would now be:

n⊗ (nr ⊗ s⊗ nl)⊗ n→ (n⊗ nr)⊗ s⊗ (nl ⊗ n)

→ 1⊗ s⊗ (nl ⊗ n)

→ s⊗ 1→ s,

which corresponds to the following final morphism

εrn ⊗ ids ⊗ εln : n⊗ (nr ⊗ s⊗ nl)⊗ n→ s.

These morphisms encoding the grammatical structure are used to guide compo-

sition of meaning in the semantic category. A monoidal functor F : Grammar −→
Semantic from the grammar category to the semantic category is defined to bridge

both aspects. The resulting morphism in the semantic category is finally applied

to the semantic input in order to obtain the composite meaning. In the previous

example, the morphism

F (εrn ⊗ ids ⊗ εln) : F (n)⊗ (F (n)r ⊗ F (s)⊗ F (n)l)⊗ F (n)→ F (s)

would give a meaning map to interpret the meaning of the sentence. Graphically (See

Section 2.1.2, [9]), this morphism is depicted as

As far as the semantic input is concerned, words are mapped into states in the

semantic category, which are then fed into the semantic map. These states can

be regarded as preparation of data that is then transformed by the meaning map

encoding the grammatical structure. The resulting state is the semantic output.

Graphically,

playsJohn football
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3.2 The path interpretation for spans of metric

spaces

The path interpretation from Chapter 2 can be enhanced in order to take into account

metrics. Both the starting and ending locations, as well as the path space, can be

refined with an additional metric structure. A span of metric spaces is now given by

a diagram

(S, dS)
sX

yy

sY

%%
(X, dX) (Y, dY )

in HMet (QMet,Met), where sX and sY are weak contractions. It can be interpreted

as a collection of paths together with their ending and starting points, in which there

is an additional requirement, given by the weak contractions assumption, on them:

dX(sX(s1), sX(s2)) ≤ dS(s1, s2)

dY (sY (s1), sY (s2)) ≤ dS(s1, s2)

This conditions signify that the distance between two paths must take into account

the distance between their extreme points, in the sense that two paths are at least as

far apart as their initial and ending points are.

X

Y

x1 x2

y1 y2

dS(s1, s2)

Span composition is again path composition. Given two collections of paths

(X, dX)
sX←− (S, dS)

sY−→ (Y, dY ) (Y, dY )
sY←− (T, dT )

sZ−→ (Z, dZ), composition joins

them in the middle and preserves extreme points

(X, dX)
sX◦πS←− (S ×Y T, dS × dT )

sZ◦πT−→ (Z, dZ).

The metric structure in both X and Z is preserved, however, there is a new metric

on the resulting paths; the distance between two composite paths is the maximum

distance between the original paths

dS × dT ((s1, t1), (s2, t2)) = max{dS(s1, s2), dT (t1, t2)}.

In other words, two composite paths are as far apart as their components jointly are.
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X

Y

x1 x2

y1 y2

dS × dT

z2z1
Z

It goes beyond the aim of this dissertation to discuss further the path interpreta-

tion. Instead, it is more relevant an interpretation for conceptual spaces, which will

be presented in the next section.

3.3 Interpretation for conceptual spaces

3.3.1 A model for hyperconceptual spaces

A span in HMet (QMet,Met) for conceptual spaces can be interpreted as describing

a hyperconcept - hypoconcept relation, i.e. a relation between a general conceptual

space and a more specific one. The head of the span is the super-conceptual space,

whereas the domain and codomain are two different sub-conceptual spaces. Each con-

cept in (S, dS) is associated with its respective sub-concepts in two different domains

(X, dX) and (Y, dY ).

(S, dS)
sX

yy

sY

%%
(X, dX) (Y, dY )

For instance, consider the conceptual space of taste T = (T, dT ) = ([0, 1]4, de)

and the corresponding projections into the sub-conceptual spaces bitterness B =

([0, 1], de) and sweetness S = ([0, 1], de). Each taste concept, described by the four

flavour dimensions t = (tsalt, tsweet, tbitter, tsour), is projected into its subconcepts tbitter

and tsweet by means of weak contractions.

(T, dT )
sB

ww

sS

''
B = ([0, 1], de) S = ([0, 1], de)
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More generally, a span symbolises a hyperconcept-hypoconcept relation of (S, dS)

with regards to the product space (X × Y, dX × dY ). Due to the universal mapping

property of the categorical product, the following diagram commutes

(S, dS)

sX

}}

〈sX ,sY 〉
��

sY

  

(X × Y, dX × dY )

πXvv
πY ((

(X, dX) (Y, dY )

and the span can be seen as a projection of super-concepts in (S, dS) into sub-concepts

in (X × Y, dX × dY )

(S, dS)

〈sX ,sY 〉
��

(X × Y, dX × dY )

πXvv
πY ((

(X, dX) (Y, dY )

.

It will be useful, however, to treat the two legs of the span independently for different

schemes of composition.

On the other hand, recall that both legs of the span are weak contractions that

impose the conditions

dX(sX(s1), sX(s2)) ≤ dS(s1, s2)

dY (sY (s1), sY (s2)) ≤ dS(s1, s2)

on the conceptual spaces. This constraint can be read as: if two concepts are close,

then their respective sub-concepts are also close. At the same time, it can also be read

as if two sub-concepts are far apart, then their respective super-concepts must be at

least that far apart.

Consider the more abstract conceptual space of dogs Dog = (D, dD) with some

metric dD on it. Both skin colour and height are sub-conceptual spaces that also

describe any dog SkinColour ←− Dog −→ Height. If two dogs are similar then

they will be similar both in height and skin colour. Also, if two dogs are dissimilar in

height or skin colour to some extent, they will be at least dissimilar to that extent.

Moreover, weak contractions are hinting a loss of information from the hypercon-

cept to the hypoconcepts. The distance between two points in the head of the span
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is bigger because there is more refined information to compare. This loss of informa-

tion can be represented by means of partial vectors, where some information of the

hyperconcept is known, the hypoconcepts, while possibly some other is not.

Definition 16 (Partial vector). A partial vector is a representation of a concept

s ∈ S in a span (X, dX)
sX←− (S, dS)

sY−→ (Y, dY ) that emphasises the idea that sX(s),

sY (s) are sub-concepts describing the super-concept to some extent:

s = (sX(s), · · · , sY (s))

Notice that the weak contractions constraints follow naturally from this interpre-

tation: the distance between two partial vectors must be bigger than the distance of

their components :

dS[(sX(s1), · · · , sY (s1)), (sX(s2), · · · , sY (s2))] ≥ dX(sX(s1), sX(s2))

dS[(sX(s1), · · · , sY (s1)), (sX(s2), · · · , sY (s2))] ≥ dY (sY (s1), sY (s2)).

Remark. The idea of loss of information will be central to the intuitions developed in

this and the following chapter. Essentially, it captures the concept that both domain

and codomain objects are parts of a greater whole, the apex of the span.

Additionally, each 1-Lipschitz map is partitioning the upper space into regions.

Each sub-concept x ∈ X (resp. y ∈Y) can be associated with its inverse image π−1
X (x)

(resp. π−1
Y (y)), which is a metric subspace of the hyperconceptual space. Recall that,

by criterion C, regions in a conceptual space are concepts of this conceptual space

and, thus, each element in the domain and codomain is assigned to a concept in

(S, dS).

Take as example a conceptual space of dogs D described by sub-concepts ferocious-

ness, height and weight. This conceptual space is determined by a three-dimensional

cube with Euclidean metric D = ([0, 1]3, de) where each of the components repre-

sents a sub-conceptual dimension. The projection into the sub-concept ferociousness

D
πF−→ ([0, 1], de) creates a partition of this three-dimensional space in planes cor-

responding to different concepts describing different grades of ferociousness, such as

ferocious-0.3 or ferocious-0.7.

H

W

F
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3.3.2 Concept extension with correlation

Span composition in this setting is concept extension with correlation. Given two

hyperconceptual spaces with their respective hypo-concepts (X, dX)
sX←− (S, dS)

sY−→
(Y, dY ),(Y, dY )

sY←− (T, dT )
sZ−→ (Z, dZ), composition joins two concepts if they agree

on their common hypoconceptual space:

(S ×Y T = {(s, t) ∈ S × T : sY (s) = sY (t)}, dS × dT )
sX◦πS

ss

sZ◦πT

++
(X, dX) (Z, dZ)

The composition creates a bigger conceptual space (S ×Y T, dS × dT ) composed

of separable domains S, T , where there exists correlation through the shared hypo-

conceptual space (Y, dY ). Notice that the taxicab distance dS × dT is the best choice

to join separable domains according to Gärdenfors’s ideas [12, Sec. 1.8]. Moreover,

the product metric guarantees that two concepts are close if the compound concepts

are also close in their original conceptual spaces.

As an example, take into account the positive correlation between sweetness S =

([0, 1], de) in the taste domain (T, dT ) and sugar level L = ([0, 1], de) in the nutrition

domain (N, dN) [12, Sec. 4.2.1]. Span composition of (T, dT )
id←− (T, dT )

sS−→ S =

([0, 1], de) and L = ([0, 1], de)
sL←− (N, dN)

id−→ (N, dN) will create a higher conceptual

space (T, dT )
πT←− (T ×SN, dT ×dN)

πN−→ (N, dN) integrating both taste and nutrition

where high levels of sweet correspond to high levels of sugar content. Moreover,

negative correlations can also be modelled; taking 1 − sS in the taste span instead

of sS, which is still a weak contraction, would link high values of sweetness with low

values of sugar content.

As another example, take the conceptual spaces of Dog and Cat and their re-

spective sub-concepts skin colour and height. Composing SkinColour
sS←− Dog

sH−→
Height and Height

sH←− Cat
sC−→ SkinColour produces a higher conceptual space

Dog×Height Cat composed of exemplars of dogs and cats that agree on their height.

In partial vector notation, every vector of type s = (x, · · · , y) in (S, dS) is joined

with every vector of type t = (y, · · · , z) in (T, dT ) to obtain a vector of the form

(s, t) = (x, · · · , z). Notice that the composite object implicitly records information

about the sub-concept in (Y, dY ), since the projection sY ◦ πS = sY ◦ πT : (S ×Y
T ) → (Y, dY ) holds, and the concept could be regarded as (s, t) = (x, · · · , y, · · · , z);
however, the composite span disregards that projection and the information is lost.

Finally, concept extension with correlation can be used to model the phenomena

of categorical perception, which will be explored later on.

34



3.3.3 Concept extension without correlation

Span tensoring in this scenario is concept extension without correlation. Given two

spans (X, dX)
sX←− (S, dS)

sY−→ (Y, dY ),(X ′, dX′)
sX′←− (S ′, dS′)

sY ′−→ (Y ′, dY ′) carry-

ing two hyper-conceptual spaces with corresponding hypo-conceptual spaces, their

composite

(S × S ′, dS × dS′)
sX×sX′

tt

sY ×sY ′

**
(X ×X ′, dX × dX′) (Y × Y ′, dY × dY ′)

is a higher conceptual space S × S ′ that consists of two separable domains S,S ′ in-

terrelated by means of the L1-norm, or taxi-cab distance, dS × dS′ , which preserves

the original relations. This product metric again guarantees that two composite con-

cepts are close to each other if their sub-concepts are close in their original conceptual

spaces.

The conceptual spaces of colour (C, dC) and taste (T, dT ) together with respective

subconcepts hue, brightness H
sH←− (C, dC)

sBr−→ Br and sweetness, bitterness S
sS←−

(T, dT )
sBi−→ Bi can be extended to a higher conceptual space of food experience while

preserving the original relations H× S
sH×sS←− (C × T, dC × dT )

sBr×sBi−→ Br×Bi.

Lastly, using partial vector notation, every concept of the form s = (x, · · · , y)

is joined with every concept of the form s′ = (x′, · · · , y′) to give rise a concept

(s, s′) = ((x, x′), · · · , (y, y′)).

3.3.4 Trivial relations

The distinguished morphisms from the compact closed structure and Frobenius alge-

bras

identity (X, dX)
idX←− (X, dX)

idX−→ (X, dX)

unit ({∗}, 0)←− (X, dX)
∆X−→ (X ×X, dX × dX)

counit (X ×X, dX × dX)
∆X←− (X, dX) −→ ({∗}, 0)

copy (X, dX)
idX←− (X, dX)

∆X−→ (X ×X, dX × dX)

uncopy (X ×X, dX × dX)
∆X←− (X, dX)

idX−→ (X, dX)

represent trivial hyper-concept - hypo-concept relations, where each concept in the

super-conceptual space is paired with zero, one or two copies of the same concept
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in the domain and codomain. Notice the trivial sub-concept ∗ in ({∗}, 0), which is

sub-concept of every concept.

In partial vector notation the relations are expressed as x = (x, · · · , x), x =

(∗, · · · , (x, x)), x = ((x, x), · · · , ∗), x = (x, · · · , (x, x)), x = ((x, x), · · · , x) respec-

tively. Observe how each concept is trivially described by copies of the same concept,

which proves useful for different correlation schemes.

3.4 Applications

3.4.1 The phenomenon of categorical perception

In this section, a connection between the phenomenon of categorical perception (See

Section 3.1.2.1) and the interpretation herein developed will be explored. Recall

that in this phenomenon, stimuli are perceived in a categorical way and, as a result,

distances between stimuli in different categories may be regarded as larger than they

are.

Stop consonants constitute a valuable instance of the latter phenomenon. They

are precisely described by the conceptual space of articulatory parameters, however,

they are perceived in a categorical way and, for that reason, this conceptual space

lacks the necessary information to explain the larger distances between different cat-

egories. As a result, a stop consonant belongs to some higher conceptual space of

articulated consonants A = (A, dA) where both articulatory parameters P = (P, dP )

and perceived consonants C = (C, dC) are sub-concepts.

(A, dA)
sP

yy

sC

%%
(P, dP ) (C, dC)

The conceptual space of perceived consonants is given by the set of phonemes to-

gether with a distance function characterising their perceived dissimilarity C =

({/p/, /b/, /t/, /d/}, dC).

In partial vector notation, an articulated consonant in this higher conceptual space

is given by a = (p, · · · , c) and now the metric takes into account both the articulatory

parameters and the perceived distance:

dA(a = (p, · · · , c), a′ = (p′, · · · , c′) ≥ dP (p, p′), dC(c, c′))

Consequently, even if two different stop consonants are articulated in a similar way,

dP (p, p′) ≈ 0, they will be easily distinguished due to categorical perception dC(c, c′).
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The richer conceptual space of articulated consonants can be built upon the spaces

of articulatory parameters and perceived consonants bridging them by means of con-

cept extension with correlation. These two spaces are correlated through the com-

mon sub-subconcept that is given by the consonant they represent. Thereby, letting

S = ({p, b, t, d}, 0) be the conceptual space of the different categories with no metric

interpretation on them (metric 0), (P, dP )
idP←− (P, dP )

sC−→ ({p, b, t, d}, 0) an articula-

tory parameters span with sC the 1-Lipschitz map taking every articulatory parameter

in (P, dP ) to its corresponding consonant ; and ({p, b, t, d}, 0)
sC←− (C, dC)

idC−→ (C, dC)

a perceived consonant span where sC takes each phoneme into its category, its com-

posite creates a higher conceptual space embedding the two spaces and taking into

account the existing correlation.

(P ×S C, dP × dC)
πP

vv

πC

((
(P, dP ) (C, dC)

Notice that metric 0 in S is necessary in order to obtain a weak contraction.

Since stimuli in different categories in (P, dP ) can be arbitrarily close to each other,

the sub-concept must also be that close and, therefore, they result in distance 0. In

general, metric 0 imposes no interpretation in a conceptual space and it is useful to

correlate different conceptual spaces where the underlying sub-conceptual structure

is equivalent but the metrics are not compatible. Notice also that, if the conceptual

space has more than two points, metric 0 can only be used in hemi-metric spaces;

otherwise the T0 condition would collapse them into a single point.

3.4.2 Compositional distributional model of cognition

Many of the notions introduced by Gärdenfors implicitly rely on the mathematical

tool of metric spaces. This section will try to connect them with the compositional

distributional model of cognition, in order to guide concept composition through the

grammatical structure of the sentence. As categories of metric spaces are not compact

closed categories, spans of metric spaces, which embeds metric spaces, will be taken

as the semantic category instead.

This section will primarily focus on intransitive sentences; sentences composed

by a subject and an intransitive verb that does not accept a direct object. Nouns

will be described as concepts in the conceptual space of food experience, with colour

C = (C, dC) and taste T = (T, dT ) as the domains composing it: N = (N, dN) =
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C × T = (C × T, dC × dT ). An apple is some region Napple ⊆ C × T comprising all

possible combinations of colour and taste stimuli that an apple can be. Also, a banana

is some other region Nbanana ⊆ C × T possibly sharing stimuli with the concept of

apple, as in a yellow sweet apple and a yellow banana.

Verbs, on the other hand, essentially encode actions and Gärdenfors suggests the

use of differential equations on some conceptual space of shapes to describe movement

dynamics [12, Sec. 3.10.3]. As there is not much research yet on this area, verbs will be

concepts in some abstract conceptual space of actions A = (A, dA). For instance, both

to taste and to shine will be regions in this conceptual space of actions Ataste ⊆ A,

Ashine ⊆ A. Moreover, verbs contextualise nouns, in the sense that they highlight

the importance of some integral domains over some others. For example, in banana

tastes, the domain of taste is given more importance; while in apple shines, it is the

colour dimension the one that is given more attention.

The last two sentences are instances of intransitive sentences. Their grammatical

structure can be modelled in the pregroup grammar Preg generated by {n, s} as

n · (nrs), which is reduced into the sentence type by means of the morphism εn⊗ ids :

n⊗ nr ⊗ s→ s. Graphically,

n nrs

banana tastes

This constitutes the meaning map that will guide meaning composition.

Spans of hemi-metric spaces is the choice for the semantic category in this scenario.

The monoidal functor F : Preg → Span(Met) interrelating the grammar category

with the semantic category will act on objects as

F (n) = F (nr) = F (nl) = (N, 0)

F (s) = F (sr) = F (sl) = (N × A, 0) = (S, 0)

F (x⊗ y) = F (x)⊗ F (y).

Notice the choice of no metric interpretation for the target conceptual spaces. This

will prove useful to correlate through the full conceptual structure of the hyper-

conceptual spaces, regardless of their metric interpretation. Notice, also, the choice

of (N × A, 0) for the sentence space (S, 0). This is because the resulting sentence

concept will summarise all the visual, taste and action dynamics stimuli taking place

in the sentence, after processing implicit interactions. On the other hand, nouns and
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their adjoints are mapped to nouns as space of stimuli. As a word of caution, recall

that metric 0 on non-singleton sets can only be used in the setting of hemi-metric

spaces.

Since Preg is the pregroup freely generated over the set {n, s}, the only mor-

phisms are those built out of identities and structural morphisms (units and counits).

These are necessarily mapped to identities and structural morphisms in Span(HMet).

Functoriality and monoidality follow from construction of the functor.

The main idea underlying the following use of spans as a semantic category will

be to describe concepts as hyperconceptual spaces with relevant noun or action sub-

conceptual structures and use specific morphisms to manipulate the salience or metric

of each of the concepts. In order to apply the semantic map, the concepts represented

by the different words are prepared into states of Span(HMet). A noun O ⊆ C × T
will be regarded as a hyper-conceptual space

N, 0

O
(O, 0)

!

zz

� r

i

$$
({∗}, 0) (N, 0)

,

with an underlying sub-conceptual structure of noun (N, 0), where i is the inclusion

map. Note that no metric was given to the concept, (O, 0), as it will be later con-

textualised by the verb in the sentence. In the previous example, apple corresponds

to the state ({∗}, 0)
!←− (Napple, 0)

i
↪→ (N, 0); while banana corresponds to the state

({∗}, 0)
!←− (Nbanana, 0)

i
↪→ (N, 0).

The metric interpretation on the hyperconceptual space embodied by the noun

will be adjusted by the corresponding verb in the sentence and it will be done by

means of a salience morphism:

N, 0

N, 0

Sd

(N, d)
lL

i

zz

� r

i

$$
(N, 0) (N, 0)

,

where d is any particular metric for the conceptual space of nouns N and i is

the identity on stimuli. This morphism correlates through the noun sub-conceptual

structure and effectively changes the metric when composed to any noun state. To

see that, notice that composing any concept state ({∗}, 0)
!←− (O, 0)

i
↪→ (N, 0) with

39



a salience morphism (N, 0)
i←↩ (N, d)

i
↪→ (N, 0) results in ({∗}, 0)

!←− (O ×N N, 0 ×
d)

i◦πN
↪→ (N, 0), where

O ×N N = {(o, n) ∈ O ×N : i(o) = o = n = i(n)}.

This composite span is equivalent to the concept state with the desired metric, since

there exists a 2-isomorphism (O, d)
∼=→ (O ×N N, 0 × d) : o 7→ (o, o) that makes the

following diagram commute

(O, d)

!

~~

∼=
��

i

  

(O ×N N, 0× d)

!vv i◦πN ''
({∗}, 0) (N, 0)

In partial vector notation, every concept o = (∗, · · · , o) in the first span is extended

with the unique concept of the form o = (o, · · · , o) in the second span to give rise

to the concept (o, o) = (∗, · · · , o) where distances are measured with the hemi-metric

0×d. It is easy to see that that space of concepts is isomorphic to the space containing

o = (∗, · · · , o) as concepts with hemi-metric d.

For instance, the salience of the apple state ({∗}, 0)
!←− (Napple, 0)

i
↪→ (N, 0) can

be set so that a linear combination of the colour and taste dimensions is the relevant

metric by composing it with the salience morphism (N, 0)
i←↩ (N,wCdC × wTdT )

i
↪→

(N, 0).

On the other hand, a state encapsulating a verb concept will be given by the

morphism:

N, 0 S, 0

=

N, 0N, 0

Sd

A, 0

D

Essentially, Sd is a salience morphism that will adjust the salience of the attached

noun, providing a contextualisation; and D, additionally, is a state preparing stimuli

pertaining the dynamics of the verb with its corresponding metric interpretation

({∗}, 0)
!←− (D, dD)

i
↪→ (A, 0). For example, the state associated with the verb taste

will be given by

N, 0N, 0

SdT

A, 0

Ataste

,
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where the salience morphism SdT sets the metric of the attached noun to the metric

0×dT , giving only importance to the taste domain, and Ataste is providing information

about the dynamics of to taste.

Having defined how words map into states in the semantic category, the meaning

map can be applied to obtain the final concept. Applying it to the sentence banana

tastes, and using string diagrams calculations, the following results:

N, 0 N, 0 S, 0

banana tastes

=
def N, 0N, 0

SdT

A, 0

Ataste

A, 0

Nbanana

=
iso

N, 0

SdT

A, 0

Ataste

Nbanana

,

which corresponds to the span ({∗}, 0)
!←− (Nbanana ×Ataste, (0× dT )× dA)

i×i
↪→ (N ×

A, 0). Notice that the resulting span summarises all the stimuli embodied by banana

tastes, i.e. visual, taste and action stimuli, and gives the right salience to each of

the domains. Similarly, the resulting span for apple shines is ({∗}, 0)
!←− (Napple ×

Ashine, (dC × 0) × dA)
i×i
↪→ (N × A, 0), where a change of salience morphism into the

metric dC × 0, giving only importance to the colour domain, would be used instead.

Finally, the inner product provides a way to compare how similar the two sentences

are. Let ({∗}, 0)
!←− (S1, d1)

i
↪→ (S, 0) be the span corresponding to banana tastes

and ({∗}, 0)
!←− (S2, d2)

i
↪→ (S, 0) the span corresponding to apple shines, then their

inner product

S, 0

S1

S2

is given by composing ({∗}, 0)
!←− (S1, d1)

i
↪→ (S, 0) with (S, 0)

i←↩ (S2, d2)
!−→

({∗}, 0), which results in ({∗}, 0)
!←− (S1 ×S S2, d1 × d2)

!−→ ({∗}, 0), with

S1 ×S S2 = {(s1, s2) ∈ S1 × S2 : i(s1) = s1 = s2 = i(s2)}.

This resulting span will turn out to be equivalent to a span containing shared stimuli.

As in the case of the salience morphism composition, there exists a 2-isomorphism
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(S1 ×S S2, d1 × d2)
∼=→ (S1 ∩ S2,max{d1, d2}) : (s, s) 7→ s that makes the following

diagram commute

(S1 ∩ S2,max{d1, d2})

!

||

∼=
��

!

""

(S1 ×S S2, d1 × d2)

!uu ! ))
({∗}, 0) ({∗}, 0)

.

This equivalent span ({∗}, 0)
!←− (S1∩S2,max{d1, d2})

!−→ ({∗}, 0) is the conceptual

space of shared stimuli, with a product metric that takes into account the two original

interpretations. In the example of this section, the inner product of banana tastes

and apple shines (S1 ∩ S2,max{d1, d2}) is given by

((Nbanana × Atastes) ∩ (Napple × Ashines),max{(0× dT )× dA, (dC × 0)× dA)}).

Using properties of the cartesian product and the definition of product metric, it is

easy to show that the previous conceptual space is equivalent to

((Nbanana ∩Napple)× (Ataste ∩ Ashine), (dC × dT )× dA),

which corresponds to the space of shared stimuli between banana tastes and apple

shines and where the salience of the domains has been adjusted to take into account

both the colour and taste dimensions with equal importance.
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Chapter 4

A model for Structured Query
Language

This chapter will explore a completely different intuition for spans of sets and metric

spaces that connects them with algebra of bags, the underpinning of Structured Query

Language.

4.1 Preliminaries

4.1.1 Locally distributive categories

Some of the results in this chapter will take place in the setting of locally distributive

categories, whose definition is given in terms of slice categories [4].

Definition 17 (Slice category). The slice category C/C of a category C over an

object C ∈ Ob(C) is the category that has arrows X
x→ C ∈ Arr(C) with codomain

C as objects and arrows f : X → X ′ ∈ Arr(C) such that

X
f //

x

  

X ′

x′

~~
C

as morphisms from X
x→ C to X ′

x′→ C.

Slice categories are interesting because products in them correspond to pullbacks

in the base category and coproducts are preserved. The following are well-known

results in the literature on slice categories:

Lemma 5 (Product in slice categories). Given a category C with pullbacks, in the

slice category C/C the product of X
x→ C with Y

y→ C is given by X ×C Y
p→ C,
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where X ×C Y is the pullback along the pair x, y and p is such that

X
x

$$

X ×C Y
p

��

πXoo πY // Y
y

zz
C

,

with projections given by the pullback projections πX : X ×C Y → X, πY : X ×C Y →
Y . In addition, given arrows f : (Z

z→ C)→ (X
x→ C) and g : (Z

z→ C)→ (Y
y→ C)

in C/C (where x ◦ f = z and y ◦ f = z), the unique arrow for the UMP is given by

the UMP of pullbacks in C 〈f, g〉 : Z → X ×C Y :

Z

〈f,g〉
��

f

zz

g

$$
X

x

$$

X ×C Y
πXoo πY // Y

y

zz
C

.

This is the unique arrow that satisfies πX ◦ 〈f, g〉 = f and πY ◦ 〈f, g〉 = g, where πX

and πY are the pullback projections previously defined.

Lemma 6 (Coproduct in slice categories). Given a category C with coproducts, in

the slice category C/C the coproduct of X
x→ C with Y

y→ C is given by X+Y
[x,y]→ C,

with injections given by the coproduct injections i1 : X → X+Y and i2 : Y → X+Y :

X

x
##

i1
// X + Y

[x,y]
��

Y

y
{{

i2
oo

C

.

Given arrows f : (X
x→ C) → (Z

z→ C) and g : (Y
y→ C) → (Z

z→ C) in C/C

(where z ◦ f = x and z ◦ f = y), the unique arrow for the UMP is given by the UMP

of coproducts in C [f, g] : X + Y → Z,

Z

X
i1
//

f
;;

X + Y

[f,g]

OO

Y
i2
oo

g
cc .

This is the unique arrow that satisfies [f, g] ◦ i1 = f and [f, g] ◦ i2 = g, where i1 and

i2 are the coproduct injections previously defined.

Finally, locally distributive categories are just categories that exhibit distributivity

in a local way, which is given in terms of slice categories. Refer to [8] for further

information on distributive categories.
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Definition 18 (Distributive category). A category C with products and coproducts

is said to be distributive if for all objects X, Y, Z ∈ Ob(C), the canonical distributive

morphism

[i1 × idZ , i2 × idZ ] : X × Z + Y × Z −→ (X + Y )× Z

is an isomorphism.

Definition 19 (Locally distributive category). A locally distributive category C is a

category whose slice categories C/C are distributive.

4.1.2 Tables and operations

For the unfamiliar reader, this section will introduce the most fundamental notions in

Structured Query Language (SQL) [19], which revolve around the concept of tables

and operations on them.

Definition 20 (Table). A table S in SQL is a data entity that consists in a set of

data tuples or rows. Each tuple component is a column. A schema S(c1, · · · , cn)

defines which are the columns of the table.

A first example of a SQL table is given in Table 4.1. This table gathers three pieces

of information regarding students, namely, id, name and supervisor, and records it

into several rows. Its schema is S(ID,Name,Supervisor).

ID Name Supervisor
1 Alice Daniel
2 Beth Eduard
3 Carl Daniel

Table 4.1: Table of students

Each column in SQL has a data type that declares the type of information that can

contain, i.e. the range of values or domain that it allows. In the previous example,

the columns Name and Supervisor are type string of characters, or simply String, and

contains text. On the other hand, the column ID is type Integer and contains integer

numbers. The set of all possible columns is C, the set of all possible data types is T
and the set of all possible values is V. There are functions linking each column with

its data type type : C → T, each data type with its domain dom : T → P(V) and,

transitively, each column with its domain val : C→ P(V).

Furthermore, tables can be manipulated by means of operators. The core ones are

projection, selection, rename, cartesian product, natural join, union and difference.
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Definition 21 (Projection). A projection Πc1,··· ,ck(S) of a table S is a new table

where all the tuples have been restricted to the columns c1, · · · , ck.

For instance, projecting the previous table S into the columns Name and Super-

visor ΠName,Supervisor(S) results in Table 4.2.

Name Supervisor
Alice Daniel
Beth Eduard
Carl Daniel

Table 4.2: Projection of the table students

Definition 22 (Natural join). Let S,T be tables, their natural join S ./ T is a table

consisting in all possible combinations of rows in S and T that agree on their shared

column names.

Consider the table of supervisors T (Supervisor, Department) given by Table 4.3.

The natural join S ./ T of students with supervisors is the collection of combined

rows that agree on the column Supervisor (See Table 4.4)

Supervisor Department
Daniel Maths
Eduard Biology

Table 4.3: Supervisors table

ID Name Supervisor Department
1 Alice Daniel Maths
2 Beth Eduard Biology
3 Carl Daniel Maths

Table 4.4: Natural join of students with supervisors

Definition 23 (Rename). Let S be a table with schema S(c1, · · · , cn), then a rename

ρd1,··· ,dn(S) is a table with the same rows that differs from the original one in the

column names; its schema is renamed to S(d1, · · · , dn).

The Table 4.3 T (Supervisor,Department) can be renamed to a different schema

T (Professor,Department) applying the rename operation ρProfessor,Department(T ).
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Definition 24 (Selection). Given a table S, a selection σψ(S) is a new table consist-

ing of all tuples of S that satisfy the condition ψ on a set of columns.

The selection σID≥2∧Supervisor=Daniel(S) on Table 4.1 filters out all the rows with ID

greater or equal than two and Supervisor name Daniel, which results in Table 4.5.

ID Name Supervisor
3 Carl Daniel

Table 4.5: Filtering of students

Definition 25 (Cartesian product). The cartesian product of two tables S,T is a new

table S × T that consists in all possible combinations of rows in S with rows in T .

The cartesian product of students (See Table 4.1) with supervisors (See Table 4.3)

results in Table 4.6.

ID Name Supervisor Supervisor Department
1 Alice Daniel Daniel Maths
1 Alice Daniel Eduard Biology
2 Beth Eduard Daniel Maths
2 Beth Eduard Eduard Biology
3 Carl Daniel Daniel Maths
3 Carl Daniel Eduard Biology

Table 4.6: Cartesian product of students with supervisors

Definition 26 (Union of tables). The union of two tables with the same schema S,

T is a new table S t T consisting of all the rows in S together with the rows in T .

In particular, an element appears in the union as many times as it appears in both S

and T jointly.

Define the table of teaching assistants as in 4.7, then the union of students with

teaching assistants, which have the same schema, results in Table 4.8 of supervised

students. Note that Beth occurs two times in the union, since she is a regular student

and a teaching assistant at the same time.

Definition 27 (Difference of tables). Given two tables S, T with the same schema,

their difference S \T is a sub-collection of rows in S where each row appears as many

times as it does in S minus the number of times it appears in T or no occurrences if

the number of instances is greater in T
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ID Name Supervisor
2 Beth Eduard
4 Becky Emma

Table 4.7: Table of teaching assistants

ID Name Supervisor
1 Alice Daniel
2 Beth Eduard
3 Carl Daniel
2 Beth Eduard
4 Becky Emma

Table 4.8: Supervised students

Subtracting Table 4.9 from supervised students (Table 4.8) results in Table 4.10.

Notice that there is still an occurrence of Beth in the difference, since there were two

copies in supervised students.

ID Name Supervisor
1 Alice Daniel
2 Beth Eduard

Table 4.9: Substracted table

4.2 A model for Structured Query Language

4.2.1 Interpretation

Spans can be used to model tables and operations on them. Let X
sX←− S

sY−→ Y

be a span in Set, then S = {ri}i∈I is some collection of rows, i.e. an instance of

a table, and the two legs of the span are the projections ΠX(S) ≡ sX : ri 7→ ri|X
and ΠY (S) ≡ sY : ri 7→ ri|Y into columns X and Y of the table respectively. Notice

that row repetitions are modelled by simply taking several instances of the same row

in S and regarding them as different elements. The fundamental difference between

algebra of bags and relation algebra is that the former allows for row repetitions and

this makes this interpretation closer to algebra of bags.

Take as an example Table 4.1, with schema S(ID,Name,Supervisor) and its pro-

jections ΠID(S) and ΠName,Supervisor(S). They can be modelled into a span ID
sX←−

S
sY−→ Name× Supervisor by letting S be the collection of rows

S = {(1,Alice,Daniel), (2,Beth,Eduard), (3,Carl,Daniel)}
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ID Name Supervisor
3 Carl Daniel
2 Beth Eduard
4 Becky Emma

Table 4.10: Difference of tables

and

sX :S → ID : (tID, tName, tSupervisor) 7→ tID

sY :S → Name× Supervisor : (tID, tName, tSupervisor) 7→ (tName, tSupervisor)

the two projections.

More precisely, column names are not witnessed by this abstract framework; sets

are rather data types whose elements constitute its possible range of values or domain.

Recall that, in set theory, two sets are equal if they contain the exact same elements,

hence, two columns with the same domain are indeed the same object. In the previous

example, ID = Z, the data type of integers, and Name = Supervisor = Σ∗, the set

of finite sequences of elements over an alphabet Σ. Bearing this in mind, Span(Set)

can be seen as the category of data types as objects and tables and projections as

arrows.

Furthermore, it is possible to extend this setting and instead move to the wider

framework of spans of (hemi-,quasi-) metric spaces. As tables are collections of tuples,

they are tightly connected with elements in some product space of columns. For

example, the table students is a generalised relation in the product space S ⊆ ID×
Name × Supervisor = Z × Σ∗ × Σ∗. A product metric or, more abstractly, any

particular metric can be given to this space of rows S, making it into a metric space.

Data types are given a metric too, e.g. the usual metric for integers Z or any string

metric, such as the widely used in information theory Levenshtein metric, for Σ∗.

In addition, the weak contraction conditions in the span of (hemi-,quasi-) metric

spaces (X, dX)
sX←− (S, dS)

sY−→ (Y, dY ),

dS(s, s′) ≥ dX(sX(s), sX(s′), dY (sY (s), sY (s′),

express that the metric on the space of tuples S must take into account the metric

in the columns, in the sense that the distance between two tuples must be greater

than the distance between its components. In the example of students, the metric

dZ × dΣ∗ × dΣ∗ , where dZ, dΣ∗ are some data type metrics, would make a suitable

metric for this spaces of tuples.
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The choice of category for this chapter will be hemi-metric spaces HMet, as they

allow row repetitions and, therefore, they will model algebra of bags. Although this

will be discussed in more detail at the end of the chapter, intuitively, if there were

two instances s,s′ of the same row, then their distance would be zero d(s, s′) = 0,

as they represent the same row; and the T0 requirement would collapse them into a

single one.

To simplify the notation, the metric on objects will not be written and instead

they will be assumed to implicitly carry a suitable metric; when needed, it will be

referred to as dX for an object X. Finally, a span X
sX←− S

sY−→ Y will be interpreted

as a table where some columns are type X and some others type Y . The first column

will be referred as the domain column and the second one as the codomain column.

4.2.2 Natural join, rename and selection

It turns out that span composition under this interpretation models natural join of

tables. The composite of a table X
sX←− S

sY−→ Y with a table Y
sY←− S

sZ−→ Z is

another table X
sX◦πS←− S ×Y T

sZ◦πT−→ Z where the rows

S ×Y T = {(s, t) ∈ S × T : sY (s) = sY (t)}

are combinations of rows of S with rows of T that agree on the columns of type Y .

Additionally, the resulting span carries the projections into the column of type X in

S and into the column of type Z in T . The metric dS × dT on S ×Y T creates a

product metric that accounts for both the metric on tuples of S and the metric on

tuples of T .

Notice that there is an implicit renaming in the natural join of two spans. The

coinciding legs of the two spans establish the agreement condition, thus, implicitly

renaming their associated columns to the same name. They only require that the data

type of the joint be the same. Consequently, rename is an operation categorically

encoded in arrow composition in this framework.

Let Name
sX←− S

sY−→ Supervisor be Table 4.1 and Supervisor
sY←− T

sZ−→
Department be Table 4.3, with corresponding projections, their composite is the

table Name
sX◦πS←− S ×Supervisor T

sZ◦πT−→ Department, where

S ×Supervisor T =

= {(sID, sName, sSupervisor, tSupervisor, tDepartment) ∈ S × T : sSupervisor = tSupervisor}

sX ◦ πS : (sID, sName, sSupervisor, tSupervisor, tDepartment) 7→ sName

sZ ◦ πT : (sID, sName, sSupervisor, tSupervisor, tDepartment) 7→ tDepartment.
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In addition, the metric on the new rows will be given by

d((s, t), (s′, t′)) = max{dS(s, s′), dT (t, t′)},

which captures the maximum dissimilarity between the original rows.

Note that the resulting table X
sX◦πS←− S×Y T

sZ◦πT−→ Z is not quite the natural join

according to its definition, since the joint columns are repeated rather than being

fused into a single one, i.e. S ×Y T = {((u, y), (y, v) ∈ S × T}. However, this span is

equivalent to the natural join X
s′X←− S ./ T

s′Z−→ Z, where

S ./ T ={(u, y, v) : (u, y) ∈ S, (y, v) ∈ T}

s′X :(u, y, v) 7→ sX(u, y)

s′Z :(u, y, v) 7→ sZ(y, v)

d((u, y, v), (u′, y′, v′)) = max{dS((u, y), (u′, y′)), dT ((y, v), (y′, v′))},

since there is a 2-isomorphism S ./ T
∼=→ S ×Y T : (u, y, v) 7→ (u, y, y, v) that makes

the following diagram commute

S ./ T

s′X

��

∼=
��

s′Z

��

S ×Y T

sX◦πS
zz

sZ◦πT
##

X Z

.

Lastly, natural join of tables is expressed in the diagrammatic calculus by means

of morphism composition

SX Y T Z
,

which instantiated to the previous example gives the following representation

SName Supervisor T Deparment
.

Notice that the orientation of the diagrams has been changed to left-to-right, in

order to provide a better resemblance with actual tables, which suggest a horizontal

distribution.

Selection, on the other hand, can be modelled using span composition as well.

Recall that a selection σψ(S) from a table S filters out those rows that satisfy the

condition ψ on a particular set of columns, i.e.

σψ(S) = {s ∈ S : ψ(sX(s))},
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where sX is the projection onto the target columns. In that sense, ψ is a predicate

on the data type X of the column, ψ : X → {True,False}, that filters out the table.

Equivalently, as a predicate is essentially a characteristic function on a set, it can be

seen as a subset of the data type P = {x ∈ X : ψ(x)} ⊆ X, which can be encoded

into a span

1
!←− P = {x ∈ X : ψ(x)} i

↪→ X

by taking the inclusion map i into X. P is a metric subspace of X and, therefore, it

inherits the metric, i.e. dP = dX |P or simply dX to simplify the notation.

The composite of this filter span 1
!←− P

i
↪→ X with a table X

sX←− S
sY−→ Y

results in the span 1
!←− P ×X S

sY ◦πS−→ Y , where

P ×X S = {(p, s) ∈ P × S : i(p) = p = sX(s)}

= {(p, s) ∈ X × S : ψ(p), p = sX(s)}

= {(sX(s), s) ∈ X × S : ψ(sX(s))}

with metric dX × dS. This is isomorphic to the selection 1
!←− σψ(S)

s′Y−→ Y , with

σψ(S) = {s ∈ S : ψ(sX(s))} ⊆ S

s′Y : s 7→ sY (s)

and metric dS inherited from S, since the 2-isomorphism σψ(S)
∼=→ P ×X S : s 7→

(sX(s), s) makes the following diagram commute

σψ(S)

!

��

∼=
�� s′Y

��

P ×X S

!
{{

sY ◦πS
$$

1 Y

.

That it is a bijection follows easily from the definitions of σψ(S) and P ×X S. To see

that the metric is preserved, note that

(dX × dS)((sX(s), s), (sX(s′), s′)) =
def

max{dX(sX(s), sX(s′)), dS(s, s′)}

=dS(s, s′),

with the last equality following from the fact that sX : S → X is a weak contraction

that satisfies dX(sX(s), sX(s′)) ≤ dS(s, s′).
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Take as an instance the selection σID≥2∧Name=Daniel on the students Table 4.1.

The corresponding predicate is given by P = {z ∈ Z : z ≥ 2} × {Daniel} ⊆ Z × Σ∗.

Composing 1
!←− {z ≥ 2}×{Daniel} i

↪→ Z×Σ∗ with Z×Σ∗ = ID×Supervisor
sX←−

S
sY−→ Name outputs the span 1

!←− P ×ID×Supervisor S
sY ◦πS−→ Name, where

P ×ID×Supervisor S ={(p1, p2, sID, sName, sSupervisor) ∈ P × S : p1 = sID, p2 = sSupervisor}

= {(3,Daniel, 3,Carl,Daniel)}

sY ◦ πS :(3,Daniel, 3,Carl,Daniel) 7→ Daniel

Finally, using string diagrams, selection can be depicted as

SX YP

,

where P is the filter morphism and S the table to select from. In the particular case

of the previous example, the following representation is obtained:

SID× Supervisor NameP

.

4.2.3 Cartesian product

The cartesian product of tables can be modelled in this setting by means of the

tensor product. Given two tables X
sX←− S

sY−→ Y and X ′
sX′←− S ′

sY ′−→ Y ′, their tensor

product X ×X ′ sX×sX′←− S × S ′ sY ×sY ′−→ Y × Y ′ is a new table where the rows

S × S ′ = {(s, s′) ∈ S × S ′}

are all possible combinations of rows in S with rows in S ′. Moreover, the final span

carries the projections into the original columns and, as in the case of the natural

join, S × S ′ is given a product metric dS × dS′ that accounts for the metrics in both

S and S ′.

For instance, consider the tables for students ID
sX←− S

sY−→ Name and su-

pervisors Supervisor
sX′←− T

sY ′−→ Department. Their tensor product is given by

ID× Supervisor
sX×sX′←− S × T sY ×sY ′−→ Name×Department, where

S × T = {(sID, sName, sSupervisor, tSupervisor, tDepartment) ∈ S × T}

sX × sX′ : (sID, sName, sSupervisor, tSupervisor, tDepartment) 7→ (sID, tSupervisor)

sY × sY ′ : (sID, sName, sSupervisor, tSupervisor, tDepartment) 7→ (sName, tDepartment).
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Moreover, the metric measures the maximum dissimilarity between the original rows

(dS × dS′)((s1, s
′
1), (s2, s

′
2)) = max{dS(s1, s2), dS′(s

′
1, s
′
2)}.

In the graphical calculus, cartesian product of two tables is depicted as two morphisms

in parallel:

SX Y

S′ Y ′X ′
.

Instantiated for the previous example leads to the following diagram

SID Name

T DepartmentSupervisor
.

4.2.4 Union of tables

Union of tables are naturally modelled using coproducts, as in this setting they cor-

respond to disjoint unions. Recall that a row appears in the union of two tables

as many times as it does in both tables jointly. For that reason, the disjoint union

operation will provide a successful tool to capture row repetitions. In this section, a

more general notion of union will be investigated; two tables will not necessarily have

the same schema but agree on the projected columns types.

Given two tables X
sX←− S

sY−→ Y and X
sX←− T

sY−→ Y , their union is defined as

the span X
[sX ,sX ]←− S + T

[sY ,sY ]−→ Y , where the rows

S + T = {(s, 1) : x ∈ S} ∪ {(t, 2) : x ∈ T}

are rows in S together with rows in T and the projections take each row to its

corresponding original projection. The metric on S + T

d((x, i), (x′, i′)) =


dS(x, x′) if i = i′ = 1

dT (x, x′) if i = i′ = 2

∞ otherwise

preserves the distances in the original tables and adds no metric information between

rows in different tables.

Notice that there is not enough context to provide metric information for rows in

different tables. The next section will explore a new tool, that of universes, to define

such context. Interestingly, union of spans, defined as above, defines an enrichment

over commutative monoids.
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Lemma 7. Given a category C with finite coproducts and pullbacks, the operation

that assigns two spans S : X
sSX←− S

sSY−→ Y , T : X
sTX←− T

sTY−→ Y in Span(C) to the

span

S + T : X
[sSX ,s

T
X ]

←− S + T
[sSY ,s

T
Y ]

−→ Y

defines a commutative monoid structure over the hom-set.

Proof. Commutativity, associativity and units follow from properties of coproducts:

(Commutativity) Commutativity requires that

S + T =

S + T
[sSX ,s

T
X ]

{{

[sSY ,s
T
Y ]

##
X Y

∼=
T + S

[sTX ,s
S
X ]

{{

[sTY ,s
S
Y ]

##
X Y

= T + S,

which can be reduced to commutativity of coproducts. Coproducts are commutative

by means of the natural isomorphism [i2, i1] : S+T
∼=→ T+S, which is a 2-isomorphism

for the two spans above that makes the following diagram commute:

S + T

[sSX ,s
T
X ]

��

[i2,i1]
�� [sSY ,s

T
Y ]

��

T + S

[sTX ,s
S
X ]yy [sTY ,s

S
Y ] %%

X Y

.

The left triangle is shown to commute using properties of the coproduct

[sTX , s
S
X ] ◦ [i2, i1] = [[sTX , s

S
X ] ◦ i2, [sTX , sSX ] ◦ i1] = [sSX , s

T
X ]

and commutativity of the right triangle is proved analogously.

(Associativity) For associativity the following must hold:

S+(T+U) =

S + (T + U)
[sSX ,[s

T
X ,s

U
X ]]

{{

[sSY ,[s
T
Y ,s

U
Y ]]

##
X Y

∼=
(S + T ) + U

[[sSX ,s
T
X ],sUX ]

{{

[[sSY ,s
T
Y ],sUY ]

##
X Y

= (S+T)+U.

Coproducts are associative with the natural isomorphism [i1 ◦ i1, [i1 ◦ i2, i2]] : S+(T +

U)
∼=→ (S+T ) +U , which is a 2-isomorphism for the two spans above that makes the

following diagram commutes:

S + (T + U)

[sSX ,[s
T
X ,s

U
X ]]

��

[i1◦i1,[i1◦i2,i2]]

�� [sSY ,[s
T
Y ,s

U
Y ]]

��

(S + T ) + U

[[sSX ,s
T
X ],sUX ]

ww
[[sSY ,s

T
Y ],sUY ]

''
X Y

.
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The left triangle again commutes due to properties of the coproduct

[[sSX , s
T
X ], sUX ] ◦ [i1 ◦ i1, [i1 ◦ i2, i2]]

=[[[sSX , s
T
X ], sUX ] ◦ i1 ◦ i1, [[[sSX , sTX ], sUX ] ◦ i1 ◦ i2, [[sSX , sTX ], sUX ] ◦ i2]]

=[sSX , [s
T
X , s

U
X ]].

and an analogous proof holds for the right side of the diagram.

(Units) Define the unit uX,Y as

uX,Y ≡
def

0
iX

��

iY

��
X Y

where 0 is the initial object and iX ,iY are the unique arrows from the initial object

to X and Y . Without loss of generality, the unit span for a particular hom-set will

be refereed as 0 in the following. The unit law requires that

S + 0 =

S + 0
[sSX ,iX ]

{{

[sSY ,iY ]

""
X Y

∼=
S

sSX

��

sSY

��
X Y

= S.

Using the natural isomorphism [idS, iS] : S + 0
∼=→ S, the diagram

S + 0

[sSX ,iX ]

��

[idS ,iS ]
��

[sSY ,iY ]

��

S

sSX{{ sSY ##
X Y

commutes and the spans above are equivalent. To see that it commutes, take the left

triangle, as an instance, and notice that

sSX ◦ [idS, iS] = [sSX ◦ idS, s
S
X ◦ iS] = [sSX , iX ].

Similarly, the same is shown for the remaining triangle.

Before showing that there is indeed an enrichment over commutative monoids,

observe that addition of spans interacts well with the dagger functor.

Proposition 6. The dagger functor † preserves superposition of spans, i.e.

†(S + T) = †(T) + †(S)
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Proof.

†(S + T) = †

 S + T
[sSX ,s

T
X ]

{{

[sSY ,s
T
Y ]

##
X Y

 =

S + T
[sSY ,s

T
Y ]

{{

[sSX ,s
T
X ]

##
Y X

=

S
sSY

��

sSX

��
Y X

+

T
sTY

��

sTX

  
Y X

= †(T) + †(S)

Proposition 7. The dagger functor † preserves units, i.e.

†(0) = 0

Proof.

†(0) = †

 0
iX

��

iY

��
X Y

 =

0
iY

��

iX

��
Y X

= 0

Theorem 2. Given spans of metric spaces S : X
sSX←− S

sSY−→ Y , T : X
sTX←− T

sTY−→ Y ,

the following defines an enrichment over commutative monoids:

S + T : X
[sSX ,s

T
X ]

←− S + T
[sSY ,s

T
Y ]

−→ Y

Proof. The commutative monoid structure follows directly from Lemma 7. The en-

richment follows from the following:

(Addition is preserved by composition) In this case, the following must hold:

(S + T); U ≡ S; U + T; U

U; (S + T) ≡ U; S + U; T;

It suffices to prove that the first equality holds, since the second one can be derived

simply relying on the dagger functor, as it will be shown later. The left hand side of

this first equality amounts to

(S + T); U =

 S + T
[sSX ,s

T
X ]

{{

[sSY ,s
T
Y ]

##
X Y

 ;

 U
sUY

��

sUZ

��
Y Z



=

(S + T )×Y U
[sSX ,s

T
X ]◦πS+T

xx

sUZ◦πU

&&
X Z

,
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with metric (dS + dT )× dU on (S + T )×Y U and where

(S + T )×Y U ={((x, L), u) : (x, L) ∈ (S + T ), u ∈ U, [sSY , sTY ](x, L) = sUY (u)}

={((s, S), u) : s ∈ S, u ∈ U, [sSY , sTY ](s, S) = sSY (s) = sUY (u)}

∪{((t, T ), u) : t ∈ T, u ∈ U, [sSY , sTY ](t, T ) = sTY (t) = sUY (u)}

Notice the choice of L = S, T to index and identify the original sets in the disjoint

union; it will simplify calculations in the remaining. On the other hand, the right

hand side equates to

S; U + T; U =

 S ×Y U
sSX◦πS

zz

sUZ◦πU

##
X Z

 +

 T ×Y U
sTX◦πT

zz

sUZ◦πU

##
X Z



=

S ×Y U + T ×Y U
[sSX◦πS ,s

T
X◦πT ]

ww

[sUZ◦πU ,s
U
Z◦πU ]

''
X Z

,

with metric dS × dU + dT × dU on S ×Y U + T ×Y U and where

S ×Y U + T ×Y U = {(s, u) : s ∈ S, u ∈ U : sSY (s) = sUY (u)}

+{(t, u) : t ∈ T, u ∈ U : sTY (t) = sUY (u)}

={((s, u), S) : s ∈ S, u ∈ U, sSY (s) = sUY (u)}

∪ {((t, u), T ) : t ∈ T, u ∈ U, sTY (t) = sUY (u)}.

These two sets are isomorphic by means of the isomorphism

m : (S + T )×Y U → S ×Y U + T ×Y U : ((x, L), u) 7→ ((x, u), L),

which is a bijection due to the almost identical definitions of domain and codomain

and also preserves distances:

(dS × dU + dT × dU) (m((x, L), u),m((x′, L′), u′))

=(dS × dU + dT × dU) (((x, u), L), ((x′, u′), L′))

=

{
(dL × dU)((x, u), (x′, u′)) L = L′

∞ L 6= L′

=

{
max{dL(x, x′), dU(u, u′)} L = L′

∞ L 6= L′
,
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on the one hand, which is equal to

(dS + dT )× dU (((x, L), u), ((x′, L′), u′))

= max{dS + dT ((x, L), (x′, L′)), dU(u, u′)}

=

{
max{dL(x, x′), dU(u, u′)} L = L′

∞ L 6= L′
.

It is moreover a 2-isomorphism that makes the diagram

(S + T )×Y U

[sSX ,s
T
X ]◦πS+T

}}

m

�� sUZ◦πU

!!

S ×Y U + T ×Y U

[sSX◦πS ,s
T
X◦πT ]

vv
[sUZ◦πU ,s

U
Z◦πU ]

((
X Z

commute and, therefore, the inital spans are indeed isomorphic. Commutation of the

left triangle reduces to showing that

[sSX ◦ πS, sTX ◦ πT ] ◦m ((x, L), u)

=[sSX ◦ πS, sTX ◦ πT ] ((x, u), L)

=sLX ◦ πL (x, u)

=sLX (x)

=[sSX , s
T
X ] (x, L)

=[sSX , s
T
X ] ◦ πS+T ((x, L), u),

whereas for the right triangle it reduces to showing that

[sUZ ◦ πU , sUZ ◦ πU ] ◦m ((x, L), u)

=[sUZ ◦ πU , sUZ ◦ πU ] ((x, u), L)

=sUZ ◦ πU (x, u)

=sUZ (u)

=sUZ(u) ◦ πU ((x, L), u).

As far as the second equivalence U; (S + T) ≡ U; S + U; T is concerned, recall

by Proposition 6 that the dagger functor preserves superposition of spans. Applying

the dagger functor to the right-composition equation proved before gives a dualised
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version that corresponds to the left-composition equation

† ((S + T); U) ≡ †(S; U + T; U)

⇐⇒ † (U); †(S + T) ≡ †(S; U) + †(T; U)

⇐⇒ † (U); (†(S) + †(T)) ≡ †(U); †(S) + †(U); †(T).

(Units are compatible with composition) In this case, it must hold that

S; 0 ≡ 0 ≡ 0; S

The left hand side equates to

S; 0 =

 S
sSX

��

sSY

��
X Y

 ;

 0
iY

��

iZ

��
Y Z

 =

S ×Y 0
sSX◦πS

{{

iZ◦π0

##
X Z

where

S ×Y 0 = S ×Y ∅ = {(s, t) ∈ S × ∅ : sSY (s) = iY (t)} = ∅ = 0.

As a result, sSX ◦ πS and iZ ◦ s0 must be the unique arrows from the initial object to

X and Z respectively so

S; 0 =

S ×Y 0
sSX◦πS

{{

iZ◦π0

##
X Z

=

0
iX

��

iZ

��
X Z

= 0

and the first equation holds. The second equation is proven analogously or, similar

to the previous case, by means of the dagger functor.

In fact, this theorem is an instance of a much more general fact in span categories.

Notice how the previous proof only relies in properties of coproducts (commutativity,

associativity and units) and distributivity of pullbacks with respect to coproducts

(composition preserves addition and units are compatible with composition). The

following theorem extends the previous result to a wider range of categories.

Theorem 3 (Enrichment in commutative monoids for span categories). Let C be

a category with finite coproducts and pullbacks which is moreover locally distributive,

then Span(C) is enriched over over commutative monoids, where the monoid structure

over the hom-set is given by the operation that assigns two spans S : X
sSX←− S

sSY−→ Y ,

T : X
sTX←− T

sTY−→ Y to the span

S + T : X
[sSX ,s

T
X ]

←− S + T
[sSY ,s

T
Y ]

−→ Y
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Proof. The commutative monoid structure is entailed by Lemma 7. The enrichment

follows from the subsequent results.

(Addition is preserved by composition) The following must hold:

(S + T); U ≡ S; U + T; U

U; (S + T) ≡ U; S + U; T

As in the previous theorem, the second equivalence can be proven resorting to the

dagger functor. The left hand side and the right hand side of the first one equate to:

(S + T); U =

 S + T
[sSX ,s

T
X ]

{{

[sSY ,s
T
Y ]

##
X Y

 ;

 U
sUY

��

sUZ

��
Y Z



=

(S + T )×Y U
[sTX ,s

S
X ]◦πS+T

xx

sUZ◦πU

&&
X Z

,

S; U + T; U =

 S ×Y U
sSX◦πS

zz

sUZ◦πU

##
X Z

 +

 T ×Y U
sTX◦πT

zz

sUZ◦πU

##
X Z



=

S ×Y U + T ×Y U
[sSX◦πS ,s

T
X◦πT ]

ww

[sUZ◦πU ,s
U
Z◦πU ]

''
X Z

,

where S
πS←− S ×Y U

πU−→ U , T
πT←− S ×Y U

πU−→ U , S + T
πS+T←− (S + T )×Y U

πU−→ U

are the pullbacks along the pairs of morphism S
sSY−→ Y

sUY←− U , T
sTY−→ Y

sUY←− U and

S + T
[sSY ,s

T
Y ]

−→ Y
sUY←− U respectively.

Since C is locally distributive, then C/Y is distributive, which means that the

canonical distributive morphism [i1 × idU , i2 × idU ] : S × U + T × U → (S + T )× U

in C/Y is an isomorphism. Taking S = S
sSY→ Y , T = T

sTY→ Y and U = U
sUY→ Y , this

morphism becomes the isomorphism

m = [i1 × idU , i2 × idU ] : S ×Y U + T ×Y U → (S + T )×Y U

in C. Remember that both i1 × idU = 〈i1 ◦ πS, idU ◦ πU〉 : S ×Y U → (S + T )×Y U
and i2 × idU = 〈i2 ◦ πT , idU ◦ πU〉 : T ×Y U → (S + T )×Y U come from the UMP of
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pullbacks in the product of objects in the slice category and not from the categorical

product in C. This morphism is a 2-isomorphism that makes the diagram

S ×Y U + T ×Y U

[sSX◦πS ,s
T
X◦πT ]

}}

m
�� [sUZ◦πU ,s

U
Z◦πU ]

!!

(S + T )×Y U

[sSX ,s
T
X ]◦πS+Tvv

sUZ◦πU ((
X Z

commute, since

[sSX , s
T
X ] ◦ πS+T ◦m

=[sSX , s
T
X ] ◦ πS+T ◦ [i1 × idU , i2 × idU ] Def. of m

=[sSX , s
T
X ] ◦ [πS+T ◦ (i1 × idU), πS+T ◦ (i2 × idU)]

=[sSX , s
T
X ] ◦ [πS+T ◦ 〈i1 ◦ πS, idU ◦ πU〉, πS+T ◦ 〈i2 ◦ πT , idU ◦ πU〉]

=[sSX , s
T
X ] ◦ [i1 ◦ πS, i2 ◦ πT ] Pullback projections

=[[sSX , s
T
X ] ◦ i1 ◦ πS, [sSX , sTX ] ◦ i2 ◦ πT ]

=[sSX ◦ πS, sTX ◦ πT ]

sUZ ◦ πU ◦m

=sUZ ◦ πU ◦ [i1 × idU , i2 × idU ] Def. of m

=sUZ ◦ [πU ◦ 〈i1 ◦ πS, idU ◦ πU〉, πU ◦ 〈i2 ◦ πT , idU ◦ πU〉]

=sUZ ◦ [idU ◦ πU , idU ◦ πU ] Pullback projections

=[sUZ ◦ πU , sUZ ◦ πU ]

As a result, the two spans are equivalent. Finally, the second equivalence U; (S+T) ≡
U; S + U; T can be again obtained as a dualised version of the first one using that

the dagger functor preserves addition of spans (Proposition 6):

† ((S + T); U) ≡ †(S; U + T; U)

⇐⇒ † (U); †(S + T) ≡ †(S; U) + †(T; U)

⇐⇒ † (U); (†(S) + †(T)) ≡ †(U); †(S) + †(U); †(T).

(Units are compatible with composition) The following must hold:

S; 0 ≡ 0 ≡ 0; S
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Focusing first on the first equivalence, both the left hand side and the right hand side

equate to:

S; 0 =

S ×Y 0
πS
X◦πS

{{

iZ◦π0

##
X Z

0 =

0
iX

��

iZ

��
X Z

,

where S
πS←− S×Y 0

π0−→ 0 is the pullback along the pair of morphisms S
sY−→ Y

iY←− 0.

Since C is locally distributive, the slice category C/Y is distributive. In addition, in

a distributive category, the projection π0 : S×0→ 0 is an isomorphism [8, Prop. 3.2].

Taking S = S
sY→ Y and 0 = 0

iY→ Y , the projection becomes the pullback projection

π0 : S ×Y 0→ 0

in C. This means that S ×Y 0 is an initial object in C and, therefore, the following

diagram commutes:

S ×Y 0

πX◦πS

��

π0
��

πZ◦π0

��

0

iXzz iZ ##
X Z

Finally, the second equivalence 0; S ≡ 0 can be obtained as a dualised version of

the first one by means of the dagger functor, using that it preserves units (Proposition

7):

† (S; 0) ≡ †(0)

⇐⇒ † (0); †(S) ≡ †(0)

⇐⇒ 0; †(S) ≡ 0

A major example of locally distributive categories with finite coproducts and pull-

backs are lextensive categories [8, Cor. 4.9]. Set and, in general, any topos are in-

stances of this type of categories [11, Sec. 3.1].

Finally, addition of morphism, and in this particular case union of tables, are

depicted graphically using summations

S + TX Y
.
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Moreover, since they interact well with composition, they can be taken out of the

morphisms and decorate globally string diagrams. As a result, union of an arbitrary

collection of tables can be represented by

SiX Y
∑

i∈I .

4.2.5 Schemas

Some set-theoretic operations such as set difference and set complement rely strongly

on a set universe that is taken as reference. In order to model the difference of tables

operation, it will be necessary to introduce a notion of universes for spans. As a first

stage in the following sections, it will be conceptually easier to drop the metric and

work with spans of sets instead; once the basic ideas are developed, introduction of

metric spaces again will be briefly explored.

In this particular interpretation, it is of interest to model the concept of universe of

a table, which is tightly connected with its schema. The schema of a table essentially

declares the range of values that it is allowed to contain. For example, the Table 4.1

of students has schema S(Name, ID, Supervisor), so it can only contain tuples formed

by a string, an integer and another string, i.e. S ⊆ Σ∗ × Z× Σ∗ and the universe of

S is U = Name× ID× Supervisor = Σ∗ × Z× Σ∗.

Given a table S, there is a map iS : S → U that maps each row with its corre-

sponding row in the universe of rows. Notice that repeated rows are accounted by

just simply sending several elements t1, · · · , tn ∈ S to the same row u ∈ U in the

universe. When applied to the particular setting of spans, projections into columns

of elements in S must agree with projections of the corresponding elements in U , since

they represent the same row, i.e.

S

sX

��

iS
��

sY

��

U

sX~~ sY ��
X Y

This essentially means that iS is a 2-morphism that links a span S : X
sX←− S

sY−→ Y

with its universe span U : X
sX←− U sY−→ Y . Therefore, schemas are encoded by means

of 2-morphisms iS : S =⇒ U in this framework.
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In the example of the table for students with projections into name and ID at-

tributes, the inclusion map into its schema constitutes a suitable 2-morphism:

S

sX

xx

� _

iS
�� sY

%%

Name× ID× Supervisor

sX
tt

sY
**

Name ID.

Furthermore, the two main operations in this framework, composition (natural

join) and tensor product (cartesian product), interact well with universes. The natural

join of two table-schema pairs S
iS=⇒ U and U

iU=⇒ W is given by the unique 2-

morphism S; U
iS×iU=⇒ U ;W that results from the UMP of pullbacks. More concretely,

S

sX

��

iS
��

sY

��

U

sX~~ sY ��
X Y

 ;



U

sY

��

iU
��

sZ

��

W

sY~~
sZ   

Y Z

 =

S ×Y U

sX◦πS

��

iS×iU
��

sZ◦πU

��

U ×Y W

sX◦πU
zz

sZ◦πW
$$

X Z

,

where iS × iU is the unique arrow that transforms the pullback S ×Y U into the

pullback U ×Y W , according to its UMP:

S ×Y U
πS

zz

πU

$$
iS×iU

��

S

iS

��

U

iU

��

U ×Y W
πU

zz

πW

$$
U

sY
$$

W

sY
zz

Y

Notice that this is not the cartesian product of arrows, since codomain and domain are

not products but pullbacks; however, it can be shown that it is an equalised version

of the actual cartesian product iS × iU and hence the notation. In Set, this arrow

is given by iS × iU : S ×Y U → U ×Y W : (s, u) 7→ (iS(s), iU(u)), which, under the

interpretation of tables, sends each combination of rows that agree on shared columns

to the corresponding combination in the universe.
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On the other hand, the tensor product of two table-schema pairs S
iS=⇒ U and

S′
iS′=⇒ U ′ is given by the unique 2-morphism S ⊗ U

iS×iU=⇒ U ⊗W defined by the

cartesian product of arrows. Specifically,

S

sX

��

iS
��

sY

��

U

sX~~ sY ��
X Y

⊗


S ′

sX′

��

iS′
��

sY ′

��

U ′

sX′~~ sY ′   
X ′ Y ′


=

S × S ′

sX×sX′

��

iS×iU
��

sY ×sY ′

��

U × U ′

sX×sX′yy sY ×sY ′ %%
X ×X ′ Y × Y ′

In Set, this map is given by iS × iS′ : S × S ′ → U × U ′ : (s, s′) 7→ (iS(s), iS′(s
′)),

which, under the interpretation of tables, takes each combinations of rows to its

corresponding combination in the universe.

4.2.6 Difference of tables

Once the concept of universe span has been delved into, set theoretic operations, such

as difference of tables, can be modelled naturally. However, before introducing the

notion of difference of spans, some previous lemmas need to be stated.

Lemma 8. Let S
m−→ U , S ′

n−→ U be maps that satisfy

∀u ∈ U m−1(u) ∼= n−1(u),

then S ∼= S ′ and there exists an isomorphism i : S
∼=−→ S ′ such that m = n ◦ i.

Proof. Given the assumption, there exists a collection of a isomorphisms fu : m−1(u)
∼=−→

n−1(u). In addition, recall that every map creates a partition of the domain in disjoint

sets by simply taking the inverse images of the elements in the codomain; so, in par-

ticular, S =
⊔
u∈U m

−1(u) and S ′ =
⊔
u∈U n

−1(u). Moreover, the isomorphisms fu can

be extended to a higher isomorphism
∑

u∈U fu :
⊔
u∈U m

−1(u)
∑

u∈U fu−→
⊔
u∈U n

−1(u)

taking coproducts, which by construction satisfies

S

m
��

∑
u∈U fu// S ′

n
~~

U

,

i.e. m = n ◦
∑

u∈U fu.
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Intuitively, if two collections of rows S, S ′ with the same universe U have the same

collections of instances of a given row, ∀u ∈ U m−1(u) ∼= n−1(u), then they should

be isomorphic and that isomorphism should preserve each particular row m = n ◦ i.
The next lemma generalises this idea to table-schema pairs and shows that projections

are indeed preserved too.

Lemma 9. Let S
m

=⇒ U and S′
n

=⇒ U be 2-morphisms that satisfy

∀u ∈ U m−1(u) ∼= n−1(u),

then S ∼= S′.

Proof. Expanding the 2-morphisms, the following diagrams commute:

S

sX

��

m
��

sY

��

U

sX~~ sY ��
X Y

S ′

sX

��

n
��

sY

��

U

sX~~ sY   
X Y

.

On the other hand, given the assumption from the statement and applying Lemma

8, there exists an isomorphism i : S
∼=−→ S ′ such that m = n ◦ i. This morphism is

moreover a 2-isomorphism that makes the diagram

S

sX

��

i
��

sY

��

S ′

sX~~ sY   
X Y

commute, since the left triangle reduces to

sX ◦ i = sX ◦ n ◦ i From S′
n

=⇒ U

= sX ◦m Lemma 8

= sX From S
m

=⇒ U ,

and the right triangle is proven analogously. As a result, the two spans are isomorphic

S ∼= S′.

Difference of spans can now be defined as follows:
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Definition 28 (Difference). Let S
iS=⇒ U , T

iT=⇒ U be 2-morphisms, a difference is

a 2-morphism

D
iD=⇒ U ≡

def

D

sX◦iD

��

iD
��

sY ◦iD

��

U

sX~~ sY   
X Y

such that iD : D → U satisfies

∀u ∈ U card(i−1
D (u)) = max(card(i−1

S (u))− card(i−1
T (u)), 0).

The above condition, inspired on [3], basically states that the number of instances

of a row u in the difference D is equal to the number of instances in S minus the

number of instances in T , or 0 if there are more in T . Notice that there are several

choices for the difference, however, it is unique up to isomorphism.

Proposition 8. Difference is defined uniquely up to isomorphism.

Proof. Given 2-morphisms S
iS=⇒ U and T

iT=⇒ U , let D
iD=⇒ U , D′

iD′=⇒ U be two

distinct choices of differences. In particular, they both satisfy

∀u ∈ U card(i−1
D (u)) = max(card(i−1

S (u))− card(i−1
T (u)), 0)

∀u ∈ U card(i−1
D′ (u)) = max(card(i−1

S (u))− card(i−1
T (u)), 0),

and, therefore,

∀u ∈ U card(i−1
D (u)) = card(i−1

D′ (u)).

Since the sets have the same cardinality, they are isomorphic, i.e. ∀u ∈ U i−1
D (u) ∼=

i−1
D′ (u), and Lemma 9 gives D ∼= D′.

As a result, a choice of 2-morphism together with a representative of the difference

span class will be assumed and denoted as

S \T
δ(iS ,iT )
=⇒ U ,

where δ(iS, iT ) satisfies

∀u ∈ U : card(δ(iS, iT )−1(u)) = max(card(i−1
S (u))− card(i−1

T (u)), 0).

In algebra of bags, difference of tables is compatible with natural join and so is

span difference with span composition.
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Lemma 10. The map iS × iV : S ×Y V → U ×Y W : (s, v) 7→ (iS(s), iV (v)) satisfies

(iS × iV )−1(u,w) = i−1
S (u)× i−1

V (w).

Proof.

(s, v) ∈ (iS × iV )−1(u,w) ⇐⇒ (iS × iV )(s, v) = (u,w) Def. of inverse image

⇐⇒ (iS(s), iV (v)) = (u,w) Def. of iS × iV
⇐⇒ iS(s) = u ∧ iV (v) = w

⇐⇒ s ∈ i−1
S (u) ∧ v ∈ i−1

V (u) Def. of inverse image

⇐⇒ (s, v) ∈ i−1
S (u)× i−1

V (u) Def. of ×

Theorem 4 (Span difference is compatible with composition). Given 2-morphisms

S
iS=⇒ U , T

iT=⇒ U and U
iU=⇒W, then the following holds:

(S \T); U ≡ S; U \T; U

U; (S \T) ≡ U; S \U; T

Proof. The right-composition equation will be proven first. Using operations from

the algebra of universes, the left hand side reduces to

((S
iS=⇒ U) \ (T

iT=⇒ U)); (U
iU=⇒W)

=(S \T
δ(iS ,iT )
=⇒ U); (U

iU=⇒W)

=(S \T); U
δ(iS ,iT )×iU

=⇒ U ;W ,

which corresponds to the following map between spans:

(S \ T )×Y U

sX◦δ(iS ,iT )◦πS\T

��

δ(iS ,iT )×iU
�� sZ◦πU

��

U ×Y W

sX◦πU
xx

sZ◦πW
&&

X Z

.

On the other hand, the final form for the right hand side is

((S
iS=⇒ U); (U

iU=⇒W)) \ ((T
iT=⇒ U); (U

iU=⇒W))

=(S; U
iS×iU=⇒ U ;W) \ (T; U

iT×iU=⇒ U ;W)

=S; U \T; U
δ(iS×iU ,iT×iU )

=⇒ U ;W ,
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which corresponds to the following map between spans:

(S ×Y U) \ (T ×Y U)

sX◦πU◦δ(iS×iU ,iT×iU )

}}

δ(iS×iU ,iT×iU )

�� sZ◦πW◦δ(iS×iU ,iT×iU )

!!

U ×Y W

sX◦πU
vv

sZ◦πW
((

X Z

.

Moreover, (S \T); U
δ(iS ,iT )×iU

=⇒ U ;W satisfies

∀(u,w) ∈ U ×Y W card((δ(iS, iT )× iU)−1(u,w))

=card((δ(iS, iT )−1(u)× i−1
U (w)) Lemma 10

=card((δ(iS, iT )−1(u))card(i−1
U (w)) Cardinal of the product

= max(card(i−1
S (u))− card(i−1

T (u)), 0)card(i−1
U (w)) Def. of difference

= max(card(i−1
S (u))card(i−1

U (w))− card(i−1
T (u))card(i−1

U (w)), 0) Distributivity of cardinals

and S; U \T; U
δ(iS×iU ,iT×iU )

=⇒ U ;W meets

∀(u,w) ∈ U ×Y W card(δ(iS × iU , iT × iU)−1(u,w))

= max(card((iS × iU)−1(u,w))− card((iT × iU)−1(u,w)), 0) Def. of difference

= max(card(i−1
S (u)× i−1

U (w))− card(i−1
T (u)× i−1

U (w)), 0) Lemma 10

= max(card(i−1
S (u))card(i−1

U (w))− card(i−1
T (u))card(i−1

U (w)), 0) Cardinal of the product

As a result,

∀(u,w) ∈ U ×Y W card((δ(iS, iT )× iU)−1(u,w)) = card(δ(iS × iU , iT × iU)−1(u,w)),

so ∀(u,w) ∈ U ×Y W (δ(iS, iT ) × iU)−1(u,w) ∼= δ(iS × iU , iT × iU)−1(u,w) and,

applying Lemma 9, it follows that (S \ T); U ∼= S; U \ T; U, i.e they belong to the

same class of isomorphic spans:

(S \T); U ≡ S; U \T; U.

Finally, the left-composition equation is proved similarly. Using algebra of uni-

verses, the two sides reduce to U; (S\T)
iU×δ(iS ,iT )

=⇒ W ;U and U; S\U; T
δ(iU×iS ,iU×iT )

=⇒
W ;U respectively. Since cardinals distribute over both sides, an analogous proof to

the one before shows that U; (S\T) ∼= U; S\U; T and, therefore, they belong to the

same class of isomorphic spans:

U; (S \T) ≡ U; S \U; T.
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Once the key ideas for span universes have been grasped, metrics can be introduced

again. In this case, it is necessary that the map iS : S −→ U , assigning each

instance of row with the corresponding row in the universe, also reflect the metric

information. For that reason, iS must be an isometric embedding, i.e. a map that

preserves distances

∀s, s′ ∈ S dS(s, s′) = dU(iS(s), iS(s′)),

so any two instances s, s′ of rows u, u′ inherit the metric from the universe dS(s, s′) =

dU(u, u′). Consequently, table-schema pairs iS : S ⇒ U are isometric embeddings,

which creates two different scenarios. In Met the T0 condition eliminates duplicates;

two instances s,s′ of the same row u must be the same element

dS(s, s′) = dU(iS(s), iS(s′)) = dU(u, u) = 0 =⇒
T0

s = s′,

so it describes relational algebra, where row repetitions are not allowed. On the con-

trary, HMet has no such requirement and, therefore, row repetitions are allowed,

making it into a model for algebra of bags. Lifting the previous results to the frame-

work of metric spaces is, however, future work.

71



Chapter 5

Conclusion

5.1 Summary

This work analysed different intuitions and applications for spans of sets and metric

spaces. First, John Baez’s interpretation for path composition and matrix mechanics

was explored. The informal language of paths introduced proved intuitive enough to

show how the range of structures for span of sets interact internally.

Afterwards, an interpretation for conceptual spaces was presented: a model for

hyper-conceptual spaces. Under this interpretation, spans of metric spaces capture

concept - sub-concept relations and extension of separable domains to higher con-

ceptual spaces. They were shown to model successfully cognitive phenomena such

as concept correlation and categorical perception. Furthermore, they integrate into

the compositional distributional scheme as a semantic category where the morphisms

are concepts carrying information about the underlying conceptual space structure,

which proves useful to model interaction between linguistic units in the sentence by

means of correlation.

Finally, an interpretation for algebra of bags was introduced. Several major oper-

ations were given categorical counterparts and integrated into string diagrams taking

advantage of the compact closedness in the span construction. In addition, this per-

spective, and in particular union of tables, led to an enrichment over commutative

monoids for spans of locally distributive categories, with potential applications in a

wide range of settings. Also, in the case of the category of Set, it was shown that

difference of tables interacts well with composition, showing consistency with the

framework.
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5.2 Future work

The following items arise as future work:

1. It is a question whether the graphical path language for the path interpretation

could be equipped with more formality.

2. Spans of metric spaces contribute to the compositional distributional scheme

with a perspective that focuses on concept correlation. Other constructions

over metric spaces may provide alternative perspectives as semantic categories

and, therefore, it is worth researching them.

3. Intransitive sentences were semantically modelled using an approach that strongly

emphasises interactions between concepts, modelling them using correlation. It

would be interesting to study how this approach works for other situations, not

necessarily intransitive sentences, in the compositional distributional model for

cognition.

4. Explore other applications within Gärdenfors’s theory of conceptual spaces that

the interpretation presented in this dissertation may explain.

5. Lift the results for spans of sets regarding schemas and difference of tables to

the setting of metric spaces.

6. The results for difference of spans rely on set-theoretic notions such as inverse

images and cardinalities. It would be interesting to describe it in more categori-

cal terms. For instance, inverse images can be described categorically by means

of appropriate pullbacks.

7. Explore the role of Frobenius structures in the interpretation for algebra of bags,

as they are likely to model flows of relational information with operations such

as duplicating, combining and discarding.

8. Examine the value that this categorical framework and, in particular, string

diagrams add to computations in algebra of bags.
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