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Abstract

Higher-order quantum computation is a novel paradigm in computation where inputs and
outputs can be quantum gates. In a series of recent works, higher-order computation has
been shown to yield advantages over first-order quantum computation. One prominent
example of higher-order computation is the quantum SWITCH, which takes two quantum
channels as input and combines them in an indefinite causal order. There is currently no
established framework for reasoning about protocols with indefinite causal order, where our
intuition may easily fail. In this thesis we develop a series of computational models and
graphical languages for dealing with higher-order computations that include the quantum
SWITCH. We present an analysis of the allowed types of transformations arising in our
models. Using our framework, we construct a novel higher-order algorithm. We argue that
this algorithm offers an exponential advantage over all algorithms with definite causal order.
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Chapter 1

Introduction

Most of the existing quantum algorithms - including the famous Shor’s factorising [1] and
Grover’s search [2] algorithms - are formulated in the circuit model of computation [3]. An
important characteristic of the circuit model is that quantum gates are used in a fixed causal
order. Quantum mechanics, however, allows for scenarios where the gates’ order is not fixed
[4, 5, 6].

An example operation that produces indefinite causal order is the quantum SWITCH,
proposed by Chiribella, et. al. [5]. Given two channels A and B, the quantum SWITCH can
output a combination of the two channels in a superposition of both compositional orders
A ◦ B and B ◦ A.

The quantum SWITCH is a higher-order operation that acts on quantum channels. It is
an example of a more general class of maps, called quantum supermaps [7], which transform
quantum gates into quantum gates.

Going further, maps from supermaps to supermaps can be defined, and so on indefi-
nitely. In this way one obtains an infinite hierarchy of higher-order transformations, where
the first order describes quantum operations acting on quantum states, the second order
quantum supermaps acting on quantum operations, the third order maps between quantum
supermaps, and so on. This is the hierarchy of higher-order quantum computation. In prin-
ciple, a full-blown model of quantum computation should include all levels of this hierarchy
(Figure 1.1).

There already exist results that indicate advantages of higher-order computation with
indefinite causal order over algorithms with fixed causal order. Chiribella in Ref. [8] showed
an advantage of the quantum SWITCH in a toy problem where the task is to decide whether
two operators commute or anti-commute. Araújo, et. al. have proposed in Ref. [9] a problem
which is conjectured to have exponential complexity classically, quadratic for quantum with
fixed causal order, and only linear for quantum with indefinite causal order. (The number
of queries to n black boxes is O(2n), O(n2), and O(n) respectively.)

Despite the existence of the above algorithms, no formal model of quantum computation
with indefinite causal order has been proposed so far. In this thesis we fill this gap by
rigorously defining a model for second-order computation using the quantum SWITCH. We
proceed to evaluate our model in terms of the types of maps it allows, thus exploring the
potential of our model of second-order computation.

We also develop a graphical language for describing second-order circuits, which we call
supercircuits. Our motivation is that there does not yet exist a convenient way of expressing
circuits with indefinite causal order.

The importance of having a graphical language is highlighted in cases where our intuition
may fail. An example is the communication protocol proposed by Ebler, et al. in Ref.
[10]. It describes how non-zero communication via two completely depolarising channels is
made possible by applying them with indefinite causal order. The result is counter-intuitive
because the two fixed composition orders of two identical channels are the same, and so one

1



Chapter 1. Introduction
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Figure 1.1: A diagram of the infinite hierarchy of higher-order quantum computation.

would not expect to gain any advantage by putting them in superposition.
We utilise our framework in order to construct a novel second-order algorithm, inspired

by the DQC1 algorithm [14]. The algorithm accepts N black box quantum channels as
input and estimates a certain quantity that depends on them. We provide evidence that
our algorithm has an exponential advantage over any algorithm that uses the black boxes in
definite causal order. If this expectation is proven correct, our algorithm would be the first
particular example of exponential advantage of computation with indefinite causal order over
computation with fixed causal order. In comparison, the strongest currently known results
for such advantage is only polynomial (examples are Refs. [9, 15]). While finding a formal
proof of the expected advantage is still an open problem, in this thesis we provide evidence
for it. As a matter of fact, proving an asymptotic advantage over arbitrary algorithms
with definite causal order is a challenging problem that has not been solved for any of the
algorithms presented so far in the literature.

Our work is timely because the quantum SWITCH has recently been implemented exper-
imentally, hence verifying computation with indefinite causal order. Procopio et. al. [15]
then designed and executed an experiment that solves this task using the quantum SWITCH,
hence providing experimental evidence for its physical realisation.

Further experimental evidence was provided by Rubino, et. al. in Ref. [16] with another
experiment involving indefinite causal order. There they define a causal witness to be a
set of measurements such that some outcome is incompatible with any fixed causal order.
Using that causal witness, their experiment guarantees that genuine indefinite causal order
was used.

These positive experimental results indicate that higher-order computation with indefi-
nite causal order can be utilised in a practical way, rather than it being a purely theoretical
framework. This highlights the practical importance of defining well the computational
model made possible by higher-order maps, and shows our motivation for doing so.

1.1 Contributions list

• Non-signalling supercircuits with definite causal order

– Defined computational model

– Developed graphical language

– Characterised the allowed transformations

• Non-signalling supercircuits with indefinite causal order

2



Chapter 1. Introduction

– Defined computational model

– Developed graphical language

– Characterised the allowed transformations

• Signalling supercircuits with definite causal order

– Defined computational model

– Developed graphical language

– Characterised the allowed transformations

• Signalling supercircuits with indefinite causal order

– Proved a no-go result on the decomposability of the causal N -SWITCH

• DQC1 with indefinite causal order

– Proposed a novel quantum algorithm

– Provided arguments why there is an expected exponential advantage over algo-
rithms with fixed causal order

• Miscellaneous

– Developed LaTeX tools for typesetting supercircuits

1.2 Thesis structure

This thesis is structured as follows. We begin by introducing the mathematical framework
of density matrices and quantum channels in Chapter 2. In Chapter 3 we overview recent
developments on higher order quantum computation that serve as the basis for our work.
Our original contributions begin in Chapter 4 where we define a model for non-signalling
supercircuits with definite causal order, and we prove results on the transformations it
allows. In the same chapter we present the core of our graphical language. In Chapter 5
we enrich our model with the quantum SWITCH, hence introducing indefinite causal order.
We again prove results on the allowed transformations and extend the graphical language
to include the quantum SWITCH. In this framework, we construct a novel second-order
quantum algorithm, presented in Chapter 6. In the same chapter we provide evidence for an
exponential advantage of our algorithm over algorithms with definite causal order. A further
extension of our model is considered in Chapter 7 where we include arbitrary signalling
channels. In this model we show that the quantum SWITCH of N channels cannot be
decomposed into elementary SWITCHes on 2 channels. Finally, in Chapter 8 we summarise
our results and envisage further developments of our research.
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Chapter 2

Density operators and quantum
channels

In this chapter we introduce the mathematical framework of density operators and quantum
channels, which is used throughout this thesis.

2.1 Postulates of quantum mechanics

Summarised concisely, quantum mechanics can be described by 4 postulates. (For more
details, see e.g. Shankar’s book on quantum mechanics [17].) These 4 basic postulates
form the following mathematical framework. (P1) The state of a quantum system is fully
described by a vector in a Hilbert space. In finite dimensions a Hilbert space is an inner
product space over the complex numbers. States are represented in Dirac notation as kets
|ψ〉, and their Hermitian conjugates as bras 〈ψ|. Usually it is assumed that these states are
normalized, which means that their respective vectors in the space are of unit length:

〈ψ|ψ〉 = 1 (2.1)

(P2) The evolution of a closed system’s state is described by a unitary operator U :

|ψ〉 U−→ U |ψ〉 (2.2)

Measurement allows us to extract information about a system’s state. However, then that
system cannot be treated as closed, and hence it is not unitary and in general not reversible.
(P3) Measurement is mathematically described by a set of operators {Mi} satisfying the
completeness relation ∑

i

M†iMi = I, (2.3)

needed to conserve total probability. Each of these operators corresponds to a particular
outcome i of the measurement which is yielded with probability

P(i) = 〈ψ|M†iMi |ψ〉 (2.4)

and for each of them respectively, the system is transformed (non-unitarily) into another
state:

|ψ〉 −→ Mi |ψ〉(
〈ψ|M†iMi |ψ〉

)1/2 (2.5)

4



Chapter 2. Density operators and quantum channels

Finally, (P4) composite systems are treated by taking the tensor product of their individual
Hilbert spaces.

2.2 Density operators formalism

Having briefly described the basic postulates of quantum mechanics, we proceed to show
how they give rise to the formalism of density operators, first introduced by von Neumann
in Ref. [18]. This alternative framework is equivalent mathematically to the one described
above. However, it is more convenient to work with, and as such is the one used throughout
this thesis.

A density operator is a positive operator with trace one that acts on the state space.
A system’s state is completely described by its density operator. Let us elaborate on the
correspondence of this statement to the first postulate quoted above - that a system’s state
is completely described by a vector. Consider a system which is in one of some states {|ψi〉}
with probability pi for each, respectively. This state is described by the following density
operator:

ρ =
∑
i

pi |ψi〉 〈ψi| (2.6)

A state is called pure if it can be represented by a single ket |ψ〉, i.e. its density matrix
is of the form ρ = |ψ〉 〈ψ|. Otherwise, the state is described by a convex combination of
pure states and is referred to as mixed. This distinction illustrates the convenience of the
density operators formalism within which both pure and mixed states are represented by
a single object ρ. In the previous framework, however, mixed states need be represented
rather clumsily as a set {pi, |ψi〉}.

Having reformulated the way we describe a system’s state, we proceed to accordingly
reformulate the other postulates from the previous section. Unitary evolution (Equation
2.2) for density matrices becomes:

ρ
U−→ UρU† (2.7)

Regarding measurement, Equations 2.4 and 2.5 become respectively

P(i) = Tr
[
M†iMiρ

]
(2.8)

and

ρ −→ MiρM
†
i

Tr
[
M†iMiρ

] (2.9)

Composite systems are still described by taking the tensor product of their Hilbert spaces.
More precisely, given n systems in states ρ1 ∈ H1, . . . , ρn ∈ Hn, their composite state is
ρ ∈ H where

ρ =

n⊗
i=1

ρi and H =

n⊗
i=1

Hi (2.10)

In order to obtain the reduced density operator ρA of a subsystem A of a composite system
A⊗B, we use the partial trace:

ρA = TrB [ρ] (2.11)

2.3 Quantum channels

Quantum channels describe quantum operations beyond unitary evolutions and measure-
ments. Kraus showed in Ref. [19] that it is sufficient and necessary for an arbitrary quantum
operation to be completely positive (CP) and non-trace-increasing. Quantum channels are
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Chapter 2. Density operators and quantum channels

a subset of quantum operations, described by completely positive trace-preserving (CPTP)
maps. They describe deterministic quantum operations that do not include measurement
(which is not a trace-preserving operation).

Kraus’ theorem provides a particular form in which all quantum operations can be ex-
pressed. It states that for any map E which transforms a density matrix of a Hilbert spaceH1

into a density matrix of a Hilbert space H2, there exists a set of operators {Ei} : H1 → H2,
referred to as Kraus operators, such that∑

i

E†iEi ≤ I, (2.12)

where the action of the map on the density matrix is described by

ρ
E−→
∑
i

EiρE
†
i (2.13)

For CPTP maps the completeness constraint (Equation 2.12) becomes strict:∑
i

E†iEi = I (2.14)

The Kraus decomposition is not unique, i.e. different sets of Kraus operators can implement
the same quantum map.

A convenient way to represent quantum channels is using the Choi-Jamio lkowski iso-
morphism [20, 21, 22]. It establishes a correspondence between quantum channels (CPTPs)
and quantum states (density operators). In order to give the mathematical definition of the
Choi-Jamio lkowski isomorphism, we need to first introduce a bit of notation.

Let L(H) denote the set of linear operators on a finite-dimensional Hilbert space H. Let
the set of linear operators from a finite-dimensional Hilbert space H1 to a finite-dimensional
Hilbert space H2 be denoted by L(H1)→ L(H2). The set of linear operators from L(H1) to
L(H2) is denoted by L

(
L(H1)→ L(H2)

)
. Consider a quantum channel E : L(H1)→ L(H2)

which transforms density matrices in a Hilbert space H1 into density matrices in a Hilbert
space H2. We can construct a density matrix ρ in the joint Hilbert space H1 ⊗ H2 in the
following way:

ρ = (E ⊗ I)
(
|I〉〉 〈〈I|

)
, (2.15)

where I is the identity map on H1, and |I〉〉 is the maximally entangled state

|I〉〉 =
∑
i

|i〉 ⊗ |i〉 ∈ H⊗21 . (2.16)

(The double ket notation was first introduced by Royer in Ref. [23] and further developed
by D’Ariano, et. al. in Ref. [24].) The constructed density operator ρ is referred to as
the Choi matrix of E . The Choi-Jamio lkowski isomorphism describes the correspondence
between E and ρ in the following way:

E ∈ L
(
L(H1)→ L(H2)

) ∼= ρ ∈ L(H1 ⊗H2). (2.17)

The inverse of Equation 2.15 determines the action of the channel E acting on an arbitrary
density operator σ to be

E(σ) = TrH1

[
(I ⊗ σT)ρ

]
. (2.18)

Here σT is the transpose of σ in the same basis {|i〉} used in Equation 2.16.
Non-signalling channels are a particular type of quantum channels which are of special

interest in this thesis. By definition, they are multipartite channels which allow any causal
order between their parts. This intrinsic property of theirs will be of use to us when we
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Chapter 2. Density operators and quantum channels

discuss indefinite causal order. Their formal definition is given as follows.

Definition 2.1 (Non-signalling channels)
Consider a channel C that transforms systems A,B, . . . into A′, B′, . . . respectively:

A

C

A′

B B′

...
...

(2.19)

We call the channel C non-signalling or causal (Ref. [25]) if it has the following property:

A

C

A′ Tr
B B′

...
...

=

A Tr
B

C

B′

...
...

(2.20)

and similarly for all the other transformations B → B′, etc.

Non-signalling channels are characterised in Ref. [5] to be affine combinations of product
channels. The characterisation is as follows. Let CPTP(A → A′) be the set of CPTP
maps (quantum channels) from system A to system A′. Then a quantum channel C ∈
CPTP(AB → A′B′) is non-signalling if and only if

C =
∑
i

λiFi ⊗ Gi (2.21)

where ∀i. λi ∈ R,Fi ∈ CPTP(A→ A′),Gi ∈ CPTP(B → B′), and
∑
i λi = 1.

2.4 Quantum information processing

The standard circuit model describes the evolution of finite-dimensional quantum systems
through a sequence of quantum gates. Here we provide one possible way to define a quantum
circuit. It is obtained by slicing the circuit into sequential timesteps and representing each
timestep by a quantum channel.

Definition 2.2 (Quantum circuits)
A quantum circuit describes how an ordered sequence of quantum channels transforms the
state of a quantum system. It is fully described by the following three objects:

• A finite-dimensional quantum system A (e.g. a set of qubits)

• A set of channels that act on A

• A total order on the channels which fixes their order in time.

Qubits, the most commonly used type of quantum system, are described by states in two-
dimensional Hilbert spaces H2. Different physical implementations of such two-level quan-
tum systems could be electron spins (up/down), photon polarisation (horizontal/vertical),
and others. Throughout this thesis, however, we are not concerned with the physical realisa-
tion of quantum computation, but rather its theoretical side. Three-level systems in H3 are
called qutrits, and general higher-dimensional systems are referred to as qudits. We denote
the trivial system type, which is the type of measurement outcomes, simply as 1, where
H1 = C. A more general discussion on the standard model of quantum computation can
be found for instance in Nielsen and Chuang’s book [26]. In this thesis we consider higher
orders of computation, which generalise this basic scenario.
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Chapter 3

Higher-order quantum
computation

3.1 Quantum supermaps

Quantum supermaps are maps between quantum operations. In Ref. [7] two types of quan-
tum supermaps are distinguished: deterministic supermaps that transform channels into
channels (CPTP to CPTP maps), and probabilistic supermaps that transform channels into
operations (CPTP to CP maps). Deterministic supermaps on quantum channels take a cen-
tral place in the research presented in this thesis. Therefore we deem important to quote here
their formal definition provided in Ref. [5], mostly following the original notation used in
that paper. A few intermediate definitions need to be introduced first. Let St(A) denote the
set states of a system A. As discussed in section 2.2, this is exactly the unit-trace positive op-
erators subset of L(HA). Denote the Hermitian-preserving subset of L

(
L(HA)→ L(HA′)

)
by Herm(A → A′). The marginal on A → A′ of a channel C ∈ CPTP(AE → AE′) relative
to a state σ ∈ St(E) is defined to be the channel Cσ, where

Cσ(ρ) = TrE′
[
C(ρ⊗ σ)

]
(3.1)

Finally, the extension of a set of channels S ⊆ CPTP(A → A′) in CPTP(AE → AE′), for
some systems E,E′ is the set

ExtE→E′(S) := { C ∈ CPTP(AE → AE′) | ∀σ ∈ St(E). Cσ ∈ S } (3.2)

Using all these new terms, Ref. [5] defines a deterministic supermap on quantum channels
in the following way.

Definition 3.1 (Deterministic supermaps on quantum channels)
A deterministic supermap of input type CPTP(A→ A′) and output type CPTP(B → B′) is
a map S from Herm(A→ A′) to Herm(B → B′) such that for any systems E,E′

∀C ∈ ExtE→E′ [CPTP(A→ A′)]. (S ⊗ IE→E′)(C) ∈ ExtE→E′ [CPTP(B → B′)] (3.3)

Two types of generalisations to supermaps are proposed by Chiribella, et al. in Ref. [5].
The first generalisation is a recursively generated infinite hierarchy of higher-order maps.
The first order describes quantum operations acting on quantum states. The second order are
the already described quantum supermaps, the third order are maps between supermaps, etc.
Every tier gives rise to the next one by considering maps between its elements. Throughout
this thesis we used the terms “first-order computation” and “second-order computation” in
the sense of the hierarchy just described. Quantum circuits (Definition 2.2) are an example
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Chapter 3. Higher-order quantum computation

of first-order computation.
The other generalisation from Ref. [5] regards supermaps between restricted sets of

channels, rather than only CPTP → CPTP, as in Definition 3.1. Ref. [5] proceeds in
this direction by rigorously defining deterministic supermaps on product and non-signalling
channels. We shall not present the definitions here for the sake of brevity since they are
similar in spirit to Definition 3.1, and are readily available for further reference in the paper.
In principle, an even further generalisation could be considered by mixing the two already
mentioned. Namely, one could consider maps between restricted maps of different levels of
the hierarchy. For instance, a third-order map from (restricted first-order) non-signalling
channels to (second-order) supermaps.

3.2 Indefinite causal order through the quantum
SWITCH

Some higher-order maps can be realised by quantum circuits. Ref. [27] characterises such
maps for all tiers of the hierarchy. In general, however, higher-order maps cannot be realised
using quantum circuits. One example is the novel higher-order quantum resource, called the
quantum SWITCH [5].

In order to understand the quantum SWITCH, it is useful to start from its classical
version. The classical SWITCH is an operation that accepts two unknown quantum boxes F
and G, and a classical control bit x, and outputs a compositional ordering of the two boxes
depending on the control:

SWITCH(x,F ,G) =

{
G ◦ F if x = 1

F ◦ G if x = 0
(3.4)

The classical SWITCH is an example of a higher-order operation that cannot be expressed
as a circuit. In particular, Ref. [5] proves a no-go theorem that the SWITCH, as defined in
Equation 3.4, cannot be implemented by a circuit, in which the oracles F and G are called
a single time in a fixed causal order. The proof shows that a circuit implementation implies
the existence of deterministic time travel, and is hence impossible ad absurdum.

In order to appreciate what qualities of the SWITCH make it non-computable by a regular
circuit, let us discuss the four ways around the no-go theorem, proposed in the paper.
Relaxing any of these four requirements makes the SWITCH simulatable by a quantum
circuit. First, F and G are given as black boxes, i.e. we have zero knowledge about these
channels. Second, they can be called only once by the circuit. In fact, if the channels are
unitaries, a circuit realisation exists that only needs two copies of one of them. Third, it
is assumed that closed timelike curves do not exist. This requirement is more a constraint
on physics, rather than an intrinsic property of the SWITCH. It is important nonetheless,
since the SWITCH could be implemented by utilising signalling from the future to the past.
Finally, the no-go theorem applies to deterministic circuits only. Otherwise, using post-
selected teleportation, a circuit could implement the SWITCH probabilistically. It is shown,
however, that the probability for such a probabilistic circuit to successfully compute the
SWITCH is upper-bounded by an exponentially small quantity in the number of qubits the
channels act on.

Having discussed the classical SWITCH, let us consider possible generalisations. In prin-
ciple, the SWITCH outputs superpositions of permutations of its input channels. The chan-
nels need not be composed in order to produce a single channel as output. This leads to
the more general SWITCH, shown in Figure 3.1, which simply reorders its input channels.
The permuted channels could then be composed, achieving the same result, but further
transformations are also allowed, such as inserting another channel in between them.

A second important generalisation is allowing the SWITCH to have quantum control,
instead of just classical. That establishes quantum correlation between the two orders (A⊗B

9



Chapter 3. Higher-order quantum computation

SWITCH A , B =
A

B
+

B

A

Figure 3.1: An illustration of the quantum SWITCH acting as a second-order map on two quantum
channels. The SWITCH maps a pair of quantum channels into a superposition of their permutations.
The permutations can correspond either to sequential (◦) or parallel (⊗) composition. Some authors
(e.g. [9, 10]) use a variation of the SWITCH that composes sequentially its input channels, i.e. the
output is B ◦ A + A ◦ B. Instead, we consider a more general SWITCH that does not compose its
input channels. This gives us the additional freedom to insert other channels between A and B
after they are SWITCHed.

and B ⊗ A for input channels A and B) and the state of the external control system. The
result is a way of creating and utilising superpositions of causal orders - indefinite causal
order. A formal definition goes as follows.

Definition 3.2 (Quantum SWITCH)
Consider two quantum channels C(1), C(2) with Kraus decompositions

C(i)(ρ) =
∑
j

K
(i)
j ρ

(
K

(i)
j

)†
for i = 1, 2 (3.5)

The quantum SWITCH acting on these two channels is then defined (Ref. [5]) as

S
(
C(1), C(2)

)
(ρ) =

∑
ij

WijρW
†
ij (3.6)

where the Kraus operators Wij are given by

Wij = |0〉 〈0| ⊗K(1)
i ⊗K

(2)
j + |1〉 〈1| ⊗K(2)

j ⊗K
(1)
i (3.7)

Remark 3.1 Notice that we define the SWITCH without composing the channels at its out-
put. This allows for further SWITCHing of them and for inserting other channels in between
them. Some authors use an alternative definition of the SWITCH, where the channels are
composed at the output. More precisely, Equation 3.7 becomes

Wij = |0〉 〈0| ⊗K(2)
j ◦K

(1)
i + |1〉 〈1| ⊗K(1)

i ◦K
(2)
j (3.8)

Throughout the thesis we use our definition (Equation 3.7) where the channels are not com-
posed at the output.

A further extension is to define a supermap that operates similarly to the quantum
SWITCH but acts on an arbitrary number of channels. The N -SWITCH is defined to be
such a map that outputs permutations of N channels. There are N ! permutations, therefore
we choose the control of the N -SWITCH to be an N !-level quantum system. In order to
give a formal definition, we first need a bit of notation. Let Perm(N) be the set of all
permutations of N elements. We denote the jth element of a permutation π ∈ Perm(N) by
π(j).

10



Chapter 3. Higher-order quantum computation

Definition 3.3 (Quantum N-SWITCH)
Consider a set {C(i)} of N quantum channels with Kraus decompositions

C(i)(ρ) =

di∑
j=1

K
(i)
j ρ

(
K

(i)
j

)†
, (3.9)

where di is the number of Kraus operators of the ith channel. Consider an N !-dimensional
quantum system C with orthonormal basis {|π〉 | π ∈ Perm(N)}. The quantum N -SWITCH
is a supermap that, given the set of channels {C(i)} as input and using C as control, outputs
a quantum map with Kraus operators Wi1,...,iN given by

Wi1,...,iN =
∑

π∈Perm(N)

|π〉 〈π| ⊗
N⊗
j=1

K
(π(j))
iπ(j)

(3.10)

An important question is whether theN -SWITCH can be decomposed into a number of in-
stances of the 2-SWITCH. This has been shown to be true in Ref. [28] for non-signalling chan-
nels with O(N2) uses of the 2-SWITCH. This result has been strengthened to O(N log2N)
in Ref. [29].

When decomposing the N -SWITCH into a sequence of K 2-SWITCHes, the control system
E is a set of K qubits. In general 2K need not be equal to N !. Therefore some of E’s
orthogonal states will correspond to identical permutations in Perm(N). This deviates from
Definition 3.3 but does not change how the N -SWITCH works. The mapping between states
of E and resulting permutations in Perm(N) can be defined arbitrarily, as long as each
permutation is related to at least one state.

Remark 3.2 Consider a physical realisation of the N -SWITCH as a sequence of 2-SWITCHes
that only allows product states of their controls. This can be true when, for instance, an appli-
cation of the SWITCH involves preparing a new qubit to be used as control, without allowing
it to interact with other external systems. For such product state-controlled SWITCHes it
is no longer true that any superposition of permutations can be obtained. For instance, the
equally weighted superposition for three channels is impossible to generate. It is an interest-
ing question we leave open to categorise which superpositions are obtainable and which are
not, using only product states as control.

The N -SWITCH has been utilised in Ref. [9] which proposes a problem where its use
is conjectured to reduce computational complexity. On the experimental side, an optical
implementation of the N -SWITCH has been proposed in Ref. [30] as a basis for further
experiments.

11



Chapter 4

Non-signalling supercircuits
with definite causal order

Higher-order maps form an infinite hierarchy with very sophisticated structure. We now
limit our attention to a fragment of this hierarchy, which is still more expressive than the
usual quantum circuits.

The standard quantum circuit model consists of wires representing qubits, and boxes
representing quantum channels. We now consider a model of second-order supercircuits
where the wires represent time slots to which quantum channels are allocated, and the
boxes represent higher-order transformations. We call these wires timelines.

4.1 Basic computational model

The first and simplest model for such supercircuits we can define goes as follows.

Definition 4.1 (Non-signalling supercircuits with definite causal order)
A non-signalling supercircuit with definite causal order describes how a sequence of quantum
supermaps acts on an N -partite non-signalling channel. In order to process such input, we
allow the following three supermaps:

• Sequential composition - the sequential composition of two channels A and B is the
channel B ◦ A.

• Parallel composition - the parallel composition of two channels A and B is the channel
A⊗ B.

• Swap of timelines - deterministic reordering in time of channels.

In this model the channels are composed only with a definite causal order. Also, there are
no allowed operations between supermaps. Hence the model is of second-order computation
with definite causal order.

Now let us consider how to depict graphically supercircuits on such non-signalling chan-
nels. First, let any non-signalling channel C that transforms systems of dimensionalities
A,B, . . . into A′, B′, . . . respectively in the first-level circuit, be represented as:

C

A→A′

B→B′

...
(4.1)

12



Chapter 4. Non-signalling supercircuits with definite causal order

in the supercircuit. The labels A,A′, B,B′, . . . can stand for the Hilbert spaces of quantum
systems of different dimensionalities. For instance, a qubit - H2, a qutrit - H3, two qubits -
H4, etc. Note how an operation in a circuit becomes a state in a supercircuit. As described
above, the wires coming out of it are the timelines that represent when this operation will be
applied. In order to differentiate between first and second order wires, we use a thick style
for second-order ones, i.e. timelines. Without loss of generality, let timelines be ordered
from top to bottom, i.e. a timeline above another means that its corresponding operation
happens before or at the same time as the operation of the other one. An N -partite input
channel is depicted with N timelines.

The labels only carry information about the dimensionality of the systems acted on.
Hence operations with matching dimensionalities could act on the same system, or on differ-
ent systems. In order to illustrate this point, consider two channels, both of type H2 → H2,
i.e. from a single qubit to a single qubit. We may want to indicate that they act on two
separate qubits, or that they act on the same qubit, in some order. This is achieved by
utilizing the two second-order composition operations - sequential and parallel. The former
- sequential composition - allows the application of two operations on the same system under
the following condition. It is only defined for operations where the output type of the top
(earlier) one matches the input type of the bottom (later) one. Suppose we have operations
A : A → B and B : B → C. Graphically we denote their sequential composition B ◦ A on
the same physical system as:

A A→B

B ◦ A ! A→C

B B→C

(4.2)

Parallel composition, in contrast, denotes operations applied on different systems. Naturally,
there is no restriction on the types since the operations do not act on the same system.
Suppose we have arbitrary operations A : A→ A′ and B : B → B′ the types of which need
not match in any way. We express graphically their application to different systems as:

A A→A′

A⊗ B ! A⊗B→A′⊗B′

B B→B′

(4.3)

Finally, the swap of timelines is depicted as:

A A→A′ B→B′

B B→B′ A→A′
(4.4)

Using the notation discussed above, we can express the preparation of a physical system
to an initial state as a channel from the trivial type which we denote simply as “1”, where
H1 = C. We do not draw timelines with the trivial type 1 → 1. The graphical language
expresses the rule that second-order operations have a fixed order by considering their ap-
plication time from left to right. Example 4.1 shows how a simple circuit can be expressed
as a supercircuit in our model.

13



Chapter 4. Non-signalling supercircuits with definite causal order

Example 4.1

ρ
X

Z H
!

ρ

1→H2

1→H2

X
H2→H2

Z
H2→H2

H
H2→H2

(4.5)

Remark 4.1 The circuit model of computation is widely used in literature and is the frame-
work within which a lot of algorithms have been discovered. For that reason we define our
graphical language in a way that resembles the circuit model. There does already exist an-
other graphical framework for dealing with higher-order computation and indefinite causal
order. It was first presented in Ref. [11] by Kissinger and Uijlen, and then developed further
by them in Ref. [12] where it incorporates and visualises the process matrices formalism
proposed in Ref. [6]. That framework, however, is based on string diagrams (see e.g. Coecke
and Kissinger’s book - Ref. [13]). Our motivation for the approach we have chosen lies in
this difference between circuits and string diagrams.

4.2 Characterisation of the transformations

We now consider what kind of maps can be described by the model defined above.

Proposition 4.1 Non-signalling supercircuits with definite causal order (Definition 4.1) are
maps from non-signalling channels to non-signalling channels.

Proof. In order to prove the result we prove that all allowed supermaps in our model map
non-signalling channels to non-signalling channels. First, consider the parallel composition
supermap that outputs the tensor product of two channels. By Equation 2.21, any product
channel is also a non-signalling channel. Hence parallel composition preserves the non-
signalling property. Next, consider the sequential composition supermap. We explicitly
show it preserves the non-signalling property in the following equation:

A

C

A′ α

C′

α′

...
...

...
...

I I′ λ λ′

J J′ J′ µ′
Tr

K K′ ν′ ν′

...
...

...
...

Z Z′ ω′ ω′

A

C

A′ α

C′

α′

...
...

...
...

I I′ λ λ′

(2.20)
= J J′ Tr

K K′ ν′ ν′

...
...

...
...

Z Z′ ω′ ω′

A

C

A′ α

C′

α′

...
...

...
...

I I′ λ λ′

(2.20)
=

K K′ ν′ ν′

...
...

...
...

Z Z′ ω′ ω′

(4.6)
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Finally, the swap of timelines also trivially preserves the non-signalling property since it
only reorders the channels rather than altering or connecting them. We have shown that all
three allowed second-order operations preserve the non-signalling property of the channels.
Therefore supercircuits are maps from non-signalling channels to non-signalling channels. �

We have characterised the transformations that our model describes. Now we show that
our model contains all first-order circuits as supercircuits with a single output timeline.

Proposition 4.2 Non-signalling supercircuits with definite causal order (Definition 4.1)
with exactly one output timeline are in a 1-to-1 correspondence with first-order circuits.

Proof. We first prove that each such supercircuit has a corresponding circuit. Consider a
supercircuit with N input timelines and 1 output timeline. If N = 1 this is just a single
quantum channel which is a valid first-order circuit. Otherwise, we can deterministically
construct an equivalent supercircuit with one less input timelines. Since there are more
than 1 input timelines, and exactly 1 output timeline, the supercircuit has at least one
composition. Take the first composition in the sequence of supermaps, described by the
supercircuit. Construct an equivalent supercircuit by substituting the RHS of Equation 4.2
or 4.3 (depending on the composition type) with a single initial channel - the LHS - and
hence single initial timeline. We have deterministically reduced the number of timelines by
one. Iteratively repeat this operation until the base case N = 1 which we have already
shown corresponds to a valid circuit. Hence any supercircuit corresponds to a valid circuit.

Now we show the opposite - that any circuit can be expressed as a supercircuit with
a single output timeline. Any circuit can be seen as a single quantum channel. Quantum
channels are represented as states in our model. Hence any circuit is a trivial supercircuit
with a single input channel. �

Remark 4.2 The fact that the supercircuits from the proposed basic model converge exactly
to first-order circuits when only one timeline is output suggests that the model correctly
pinpoints the most basic second-order computation model.

4.3 Derived second-order operations

Now that we have proven the correctness of the basic model, let us consider what second-
order operations can be derived from the axiomatised three in Definition 4.1.

Both ◦ and ⊗ are compositions on linear maps. As such, they are associative, in the
sense that A ◦ (B ◦ C) = (A ◦ B) ◦ C and A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C. Therefore we can
overload the definitions from Equations 4.2, 4.3 to accept any number of inputs (sequential
composition still requires all the types to match). More precisely, we extend the definitions
of the sequential composition to:

A A→B

B B→C

... A→Z

Z Y→Z

:=

A A→B

A→C

B B→C A→D

. . .
C C→D

... A→Z

Z Y→Z

(4.7)
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and the parallel composition to:

A A→A′

B B→B′

...
A⊗···⊗Z→
A′⊗···⊗Z′

Z Z→Z′

:=

A A→A′

A⊗B→A′⊗B′

B B→B′ A⊗B⊗C→A′⊗B′⊗C′

. . .
C C→C′

... A⊗···⊗Z→A′⊗···⊗Z′

Z Z→Z′

(4.8)

Consider the associativity equation A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C. The same equation is
shown using supercircuits in Equation 4.9. The dashed boxes show how this is equivalent
to commutativity of the second-order compositions. This is analogously true for sequential
composition too. Hence we reach the interesting observation that associativity (of linear
maps) on the first level corresponds to commutativity (of compositions) on the second level.

A

B

C

=

A

B

C

(4.9)

Remark 4.3 Equations 4.7 and 4.8 are reminiscent of the graphical rules used ZX-calculus,
called spider diagrams [13].

Another operation we can construct is the second-order generalisation of the trace. The
discarding operation for supercircuits erases a timeline, i.e. it acts as a “do not use timeline”
command.

Definition 4.2 (Discarding in supercircuits with definite causal order)
Consider an arbitrary channel C : A → B. We define its discarding within a supercircuit
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with definite causal order as:

ρ 1→A

C A→B := C A→B

Tr B→1

(4.10)

where ρ is a fixed (but otherwise arbitrary) state of a system of dimension A and Tr : B → 1
traces out a system of dimension B. The composition’s output timeline is not drawn because
it has the trivial type 1→ 1.

Proposition 4.3 The discarding operation (Definition 4.2) is independent of the state ρ
used. It can be fixed arbitrarily for any system dimension in supercircuits with definite
causal order.

Proof. Using the definition of discarding from Equation 4.10 on an arbitrary part of a
multipartite non-signalling channel we get:

A

C

A′

...
...

I I′

ρ J J′ Tr
(2.20)

=
K K′

...
...

Z Z′

A

C

A′

...
...

I I′

ρ Tr =
K K′

...
...

Z Z′

A

C

A′

...
...

I I′

K K′

...
...

Z Z′

Hence when discarding is applied directly to an input channel, the state ρ gets traced out
and its particular value does not matter. This, together with Proposition 4.1, which asserts
that supercircuits with definite causal order preserve the non-signalling property, implies
that the particular state ρ does not matter for discarding operations anywhere in such a
supercircuit. �

In summary, we have defined a simple model of second-order supercircuits. We can think
of it as being able to (deterministically) reorder in any way a number of black boxes placed
on a table, which represent all the channels to be applied in some first-order circuit. We
then wire the boxes either to one another, or externally by leaving unconnected wires as
global inputs/outputs. This by itself does not provide us more expressive power than normal
circuits. However, it is the first step towards defining a less constrained model which does.
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Chapter 5

Non-signalling supercircuits
with indefinite causal order

In this chapter we extend the basic model of second-order quantum computation to a model
that includes the quantum SWITCH and is therefore more expressive than first-order circuits.

5.1 Computational model

We now add one more allowed second-order operation - the quantum SWITCH. As discussed
in section 3.2, it allows for superposition of time orders. We can think of the SWITCH as a
controlled swap of timelines, i.e. a controlled superswap.

There are two constraints that we impose at this stage. The first one is that we allow
the SWITCH only for timelines with matching both input and output types. Without this
constraint, the timelines coming out of a SWITCH would be in a superposition of types.
We discuss that case later in the dissertation. For now we assume that the SWITCH is only
defined on timelines with matching both input and output types. Thanks to this assumption,
the resulting timelines’ types remain the same regardless of the control value.

The second constraint is that the control qubits for all SWITCHes are separate from the
ones that the channels act on. We can think of this model as a dynamically programmable
quantum computer with indefinite causal order (described by the supercircuit) which is
controlled by another quantum computer with definite causal order (which sets the controls
of the SWITCHes to desired values).

Definition 5.1 (Non-signalling supercircuits with indefinite causal order)
A non-signalling supercircuit with indefinite causal order describes how a sequence of quan-
tum supermaps acts on an N -partite non-signalling channel. In order to process such input,
we allow the following four supermaps:

• Sequential composition - the sequential composition of two channels A and B is the
channel B ◦ A.

• Parallel composition - the parallel composition of two channels A and B is the channel
A⊗ B.

• Swap of timelines - deterministic reordering in time of channels

• SWITCH of two timelines with matching types - swap of timelines controlled by an
external qubit.

This model allows indefinite causal order between first-order operations, i.e. the channels,
but only a fixed causal order between supermaps. There are also no allowed operations
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Chapter 5. Non-signalling supercircuits with indefinite causal order

between supermaps. Therefore the model itself is one of second-order computation with
indefinite causal order.

Graphically, let the second-order SWITCH operation on two channels, controlled by qubit
c, be denoted as:

SWITCH (A,B) !

A A→A′

S

B A→A′


controlled supercircuit

c •

 controlling circuit

(5.1)

where the controlling circuit could be any normal circuit, as long as the channels of the
supercircuit A,B, . . . do not act on any of its qubits. Note that the SWITCH box has two
output timelines instead of just one. This allows for the possibility to insert other operations
in between A and B, or apply further SWITCHes to them. As for the other second-order
operations, SWITCHes are time-ordered from left to right.

Continuing the analogy of shuffling black boxes on a table, the model described in this
section extends the previous one so that we can not only reorder and connect them arbitrarily
but also have superpositions of those orders and connectivities.

In supercircuits with indefinite causal order it is possible to change which physical system
a channel acts on only by varying a SWITCH’s control value. We refer to this flexibility of
connecting the operators as dynamic connectivity. Example 5.1 below illustrates how it
works.

Example 5.1 This example shows how dynamic connectivity can be achieved using the
SWITCH. Consider the supercircuit below:

X

I

S

Y

Z

ρc •

!
X X Y

Y Z Z

ρc •

(5.2)

where I,X, Y, Z are the Pauli single-qubit gates, and types have been left implicit. The
notation in the RHS indicates that this is a superposition of two circuits, controlled by a
qubit. Depending on the value of the control qubit, the Y gate can be applied to the first or
to the second qubit. We see the supercircuit on the LHS as a more convenient representation,
available through our graphical language.

Another example application of the SWITCH has been proposed by Ebler, et al. in
Ref. [10] as a means to communicate via two completely depolarising channels. In order to

19



Chapter 5. Non-signalling supercircuits with indefinite causal order

show how it can be represented in our framework, we first present a short summary of the
original protocol. We are given a qubit in an unknown state ρ, and two uses of a completely
depolarising channel, which is defined to map any arbitrary state σ into the maximally
mixed state:

ND(σ) =
I

dim(σ)
(5.3)

The two channels are combined through the quantum SWITCH with control qubit in state
ρc = |+〉 〈+|, and the result is applied to the system ρ. Non-zero communication is achieved
since the output state depends on the initial value of ρ. In particular, the receiving party
measures the control qubit in the Fourier basis {|±〉} and obtains

〈±|c S(ρc,ND,ND)(ρc ⊗ ρ) |±〉c =
I

2d
± ρ

d2
(5.4)

where d = dim(ρ). This result seems rather counter-intuitive because combining two com-
pletely depolarising channels in any fixed causal order yields simply ND ◦ND = ND, which
does not allow for communication. Therefore it is a useful illustration of an advantage pro-
vided by the quantum SWITCH. Example 5.2 below shows how the protocol can be concisely
expressed using our graphical language.

Example 5.2 Consider Ebler’s protocol from Ref. [10]. As summarised above, it describes
how communication is made possible by SWITCHing two completely depolarising channels
ND and applying the result to a state ρ. Using our graphical language, we can express in
one diagram the procedure, described verbally in [10]:

ρ 1→H2

ND H2→H2

S

ND H2→H2

ρc •

(5.5)

5.2 Characterisation of the transformations

Analogously to Proposition 4.1, we wish to pinpoint a type of channels which the currently
considered supercircuits leave invariant. This leads us to the following definition:

Definition 5.2 (Extended non-signalling channels)
A channel C : ABE → A′B′E′ is called extended non-signalling if for every σ the channel
N , defined by N (ρ) = TrE′ C(ρ⊗ σ) is non-signalling.

Having this new term at our disposal, we can characterise the current supercircuits as follows.

Proposition 5.1 Non-signalling supercircuits with indefinite causal order (Definition 5.1)
are maps from extended non-signalling channels to extended non-signalling channels.

Proof. Consider an arbitrary supercircuit of this type. If there are no SWITCHes in it, it is
equivalent to a supercircuit with definite causal order. By Proposition 4.1 then, it preserves
the non-signalling and hence the extended non-signalling property.

Otherwise, there is at least one SWITCH in the supercircuit. A SWITCH with control in
fixed states |0〉 or |1〉 corresponds to second-order identity, or the deterministic swap on two
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timelines, respectively. Tracing out its control gives us a mixture of two supercircuits. One
where the SWITCH is substituted for the identity and one - for the swap. Tracing out all
the controls of all, say N , SWITCHes in this manner, we end up in a mixture of 2N super-
circuits. None of them have any remaining SWITCHes and therefore they are supercircuits
with definite causal order. By Proposition 4.1 they are maps from non-signalling channels
to non-signalling channels. Hence we have shown that tracing out all SWITCH controls from
a supercircuit we obtain a mixture of maps from non-signalling channels to non-signalling
channels. Therefore supercircuits with indefinite causal order preserve the extended non-
signalling property. �

Proposition 5.2 Non-signalling supercircuits with indefinite causal order (Definition 5.1)
with exactly one output timeline correspond to superpositions of first-order circuits. More
precisely, tracing out the external control system yields a mixture of first-order circuits.

Proof. We have already seen in the proof of Proposition 5.1 that tracing out the external
control system of a supercircuit with indefinite causal order, we obtain a mixture of super-
circuits with definite causal order. In the special case that all supercircuits of the mixture
have exactly one output timeline it follows directly from Proposition 4.2 that this is also a
mixture of first-order circuits. �

5.3 Derived second-order operations

We wish to extend Definition 4.2 of the discarding operation for supercircuits with indefinite
causal order. The same definition of preparing a state, applying the channel to it, and then
tracing it out, is still applicable. However, as shown below, the value of the state does
matter in this case.

Definition 5.3 (Discarding in supercircuits with indefinite causal order)
Consider a channel C : A→ B. We define its discarding within a supercircuit with indefinite
causal order as:

ρ 1→A

C A→B
ρ

:= C A→B ,

Tr B→1

(5.6)

where ρ is a state of a system of dimension A and Tr : B → 1 traces out a system of
dimension B.

Proposition 5.3 The behaviour of the discarding operation (Definition 5.3) in supercircuits
with indefinite causal order depends on the value of the state ρ.
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Proof. Consider the following example supercircuit on two unitaries, U1 and U2 of type
A→ A.

U1
A→A

S ρ

U2
A→A

ρc •

=

ρ 1→A

U1
A→A

S

U2
A→A

Tr A→1

ρc •

(5.7)

Let Q be the physical system of dimension A that is initially prepared in state ρ and is then
acted on by the unitaries. Tracing out Q we get the following overall state:

TrQ
[
S(U1, U2)(ρ⊗ ρc)

]
=

= TrQ

[(
U1U2 ⊗ |0〉 〈0|+ U2U1 ⊗ |1〉 〈1|

)
(ρ⊗ ρc)

(
U†2U

†
1 ⊗ |0〉 〈0|+ U†1U

†
2 ⊗ |1〉 〈1|

)]
= Tr

[
U1U2ρU

†
2U
†
1

]
⊗ |0〉 〈0| ρc |0〉 〈0|+ Tr

[
U1U2ρU

†
1U
†
2

]
⊗ |0〉 〈0| ρc |1〉 〈1|

+ Tr
[
U2U1ρU

†
2U
†
1

]
⊗ |1〉 〈1| ρc |0〉 〈0|+ Tr

[
U2U1ρU

†
1U
†
2

]
⊗ |1〉 〈1| ρc |1〉 〈1|

= Tr[ρ]⊗ |0〉 〈0| ρc |0〉 〈0|+ Tr
[
U1U2ρU

†
1U
†
2

]
⊗ |0〉 〈0| ρc |1〉 〈1|

+ Tr
[
U2U1ρU

†
2U
†
1

]
⊗ |1〉 〈1| ρc |0〉 〈0|+ Tr[ρ]⊗ |1〉 〈1| ρc |1〉 〈1| (5.8)

This state depends on the particular value of ρ. Hence in supercircuits with indefinite causal
order we need to specify the state ρ used for any particular discarding. �

We defined the N -SWITCH (Definition 3.3) as a supermap that can generate any partic-
ular permutation of N channels by only varying the value of its control system. We denote
graphically an N -SWITCH with control in state ρ as:

SWITCH (A,B, . . . ,Z) !

A

S
B
...

Z

ρ •

(5.9)

The N -SWITCH can be decomposed into O(N log2N) 2-SWITCHes [28, 29]. Therefore
we think of the N -SWITCH for any N ≥ 2 as a derived operation in the current model
of computation. If the complexity of a supercircuit is discussed, the decomposition of all
N -SWITCHes into 2-SWITCHes should be considered, instead of assuming them as a given
resource.
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Chapter 6

A novel second-order quantum
algorithm

In this chapter we develop an application of the model we have developed earlier in the
thesis. We build a novel quantum algorithm that estimates certain properties of a set
of quantum channels. We conjecture that our algorithm has an exponential advantage over
algorithms with definite causal order, and we provide arguments in favour of this conjecture.
That would be the first concrete example of an exponential advantage achieved by utilising
indefinite causal order. Finding a formal proof for this advantage, however, is still an open
problem.

In constructing our algorithm we have taken inspiration from the DQC1 algorithm [14].
There is a similarity between them in the following sense. Both algorithms take quantum
black boxes as input, and output an estimate for some quantity of these boxes, obtained
by sampling measurement probabilities. In order to describe our algorithm, we begin by
considering DQC1 as a simpler precursor.

6.1 The DQC1 algorithm

Here we introduce the standard first-order version of the DQC1 protocol (Ref. [14]). For
conciseness of notation, we denote the type of an n-qubit system as Hn := H⊗n2 . Suppose
we are given access to a controlled operation ΛU which implements the black box unitary
U : Hn → Hn if the control is in state |1〉. The algorithm evaluates the real part of the
trace of U using the following circuit:

|+〉 •

In/2
n

{
U

Tr
...

Tr

(6.1)

The control system C, which is a single qubit, is initially prepared in state ρC = |+〉 〈+|.
The application system A is an n-qubit system initially prepared in the maximally mixed
state ρ = In/2

n. The protocol uses C as the control for applying U to the application qubits,
after which system A is traced out. The state of the total system after tracing A is:
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ρ′ = TrA

[(
|0〉 〈0| ⊗ In + |1〉 〈1| ⊗ U

)
(ρC ⊗ ρ)

(
|0〉 〈0| ⊗ In + |1〉 〈1| ⊗ U†

)]
= TrA

[
|0〉 〈0| ρC |0〉 〈0| ⊗ ρ+ |0〉 〈0| ρC |1〉 〈1| ⊗ ρU†

+ |1〉 〈1| ρC |0〉 〈0| ⊗ Uρ+ |1〉 〈1| ρC |1〉 〈1| ⊗ UρU†
]

= |0〉 〈0| ρC |0〉 〈0|+ |0〉 〈0| ρC |1〉 〈1|
Tr[U†]

2n
+ |1〉 〈1| ρC |0〉 〈0|

Tr[U ]

2n
+ |1〉 〈1| ρC |1〉 〈1|

(6.2)

Measuring system C in the {|±〉} basis then yields the following probabilities

P(±) =
1±

(
Tr[U ] + Tr[U†]

)
/2n+1

2

=
1± Re(Tr[U ])/2n

2
(6.3)

By repeating the procedure a number of times, an estimate of the measurement probabilities
for the two outcomes is obtained. Finally, we use that estimate to evaluate the real part of
U ’s trace.

Re(Tr[U ]) = 2n
(
2P(+)− 1

)
(6.4)

Remark 6.1 Estimating the P(±) probabilities is equivalent to estimating the bias of an
unfair coin through sampling. It is a standard result in probability theory that in order to have
confidence δ that we have estimated the bias up to additive error ε, we need Θ(ε−2 log(1/δ))
samples [31]. In our case each sample is obtained from one execution of the circuit in
Equation 6.1. From Equation 6.3 we see that in order to get a better estimate than simply
1/2 we need ε < Re(Tr[U ])/2n.

If Re(Tr[U ]) = Θ(2n), i.e. it is exponentially large in n, then the overall number of
samples needed is sub-exponential. Consider, however, if it is polynomial, i.e. Re(Tr[U ]) =
O(nα) for some α = O(1). Then ε = O(2−n) and an exponentially large (in n) number of
samples is needed. Hence we remark that the protocol only yields an asymptotic advantage
when Re(Tr[U ]) = Θ(2n).

6.2 N-channel DQC1 with indefinite causal order

Now we present our algorithm which estimates a property of a set of channels. Consider N
noisy channels C(1), . . . , C(N) : Hn → Hn with Kraus decompositions:

C(i)(ρ) =

di∑
j=1

K
(i)
j ρ

(
K

(i)
j

)†
(6.5)

where di is the number of Kraus operators of the ith channel. Let C be an N !-dimensional
quantum system with orthonormal basis {|π〉 | π ∈ Perm(N)}. The supercircuit below
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(Equation 6.6) describes our N -channel DQC1 algorithm.

ρ 1→Hn

C(1) Hn→Hn

S
...

...

C(N) Hn→Hn

Tr Hn→1

ρC •

(6.6)

The application and control quantum systems are initially prepared in states

ρ = In/2
n (6.7)

ρC =
1

N !

∑
π,σ∈Perm(N)

|π〉 〈σ| (6.8)

respectively. We define the measurement on the control system C to be a projective mea-
surement described by the set of two measurement operators {P, In − P}. P is an n-qubit
projector for which P = P † = P 2, and In − P is its orthogonal projector. This is a valid
measurement since it satisfies the completeness relation of Equation 2.3:

P †P + (In − P )†(In − P ) = P 2 + In − P − P + P 2 = In (6.9)

The point of having only two measurement operators is that then only a single probability
needs to be estimated through sampling. Estimating the probability distribution for more
than two measurement outcomes would require more samples, and therefore more copies of
the input channels. That is why we only want to have a single two-outcome measurement.

The projector P can be chosen in various ways, each of which yields estimates for different
expressions involving the channels’ Kraus operators. Therefore we treat it as a degree
of freedom of the protocol to choose a suitable projector P . For the current purpose of
describing how the algorithm works, for now we assume that it is chosen to be

P =
1

N !

∑
π,σ∈Perm(N)

|π〉 〈σ| (6.10)

It is easily seen that P † = P and P 2 = P .
The connection between our algorithm and DQC1 can be seen by comparing their re-

spective supercircuit (Equation 6.6) and circuit (Equation 6.1). Both algorithms apply their
input channels to a system, prepared in the maximally mixed state, then trace it out, and
measure some control system. Our algorithm, however, has a broader scope in that it acts
on N channels, rather than on a single unitary, and utilises the N -SWITCH supermap to ex-
ploit indefinite causal order. In our algorithm the system C controls the order of operations,

25



Chapter 6. A novel second-order quantum algorithm

rather than whether an operation is applied.
Now we consider what the measurement probabilities are, and hence what quantity can

be evaluated through estimating them. Using Equation 2.8, we obtain the following.

P(P ) = Tr

 1

N !2

∑
α,β,π,σ∈
Perm(N)

|α〉 〈β|π〉 〈σ|Tr

 d1∑
i1=1

· · ·
dN∑
iN=1

 N∏
j=1

K
(π(j))
iπ(j)

 In
2n

 N∏
k=1

K
(σ(k))
iσ(k)

†



=
1

N !2

∑
α,β,π,σ∈
Perm(N)

δασδβπ Tr

 d1∑
i1=1

· · ·
dN∑
iN=1

 N∏
j=1

K
(π(j))
iπ(j)

 In
2n

 N∏
k=1

K
(σ(k))
iσ(k)

†


=
1

N !2

∑
π,σ∈Perm(N)

Tr

 d1∑
i1=1

· · ·
dN∑
iN=1

 N∏
j=1

K
(π(j))
iπ(j)

 In
2n

 N∏
k=1

K
(σ(k))
iσ(k)

†
 (6.11)

In order to simplify this expression, consider the case when π = σ. Let π−1 denote the
inverse permutation of π, i.e. π read backwards. Then we get the following.

Tr

 d1∑
i1=1

· · ·
dN∑
iN=1

 N∏
j=1

K
(π(j))
iπ(j)

 In
2n

 N∏
k=1

K
(π(k))
iπ(k)

†


=
1

2n

d1∑
i1=1

· · ·
dN∑
iN=1

Tr

 N∏
j=1

K
(π(j))
iπ(j)

N∏
k=1

(
K

(π−1(k))
iπ−1(k)

)†

=
1

2n

d1∑
i1=1

· · ·
dN∑
iN=1

Tr

 N∏
k=1

(
K

(π−1(k))
iπ−1(k)

)† N∏
j=1

K
(π(j))
iπ(j)


(??)
=

1

2n
Tr [In]

= 1 (6.12)

where between the second and third lines we have used the trace’s cyclic property. Plug-
ging Equation 6.12 into Equation 6.11, we obtain the final expression for the measurement
probability.

P(P ) =
1

N !
+

1

2nN !2

∑
π,σ∈Perm(N)

π 6=σ

Tr

 d1∑
i1=1

· · ·
dN∑
iN=1

 N∏
j=1

K
(π(j))
iπ(j)

 N∏
k=1

K
(σ(k))
iσ(k)

†
 (6.13)

As in the case of the standard DQC1 protocol, by estimating two complementary prob-
abilities, P(P ) and P(In − P ) = 1− P(P ), we evaluate some quantity, τ , which depends on
the input channels. In the original algorithm τ = Re(Tr[U ]), while in our extended protocol
τ is a more complicated and abstract object which quantifies the sum of traces of various
compositions of the input channels’ Kraus operators. Note that the result is independent of
the particular Kraus decomposition of the channels.
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Example 6.1 In order to put our algorithm in less abstract terms, consider an example
with N = 2 input channels, where the N -SWITCH is just a 2-SWITCH. Using Equation 6.13
we get the measurement probability for P = |+〉 〈+| to be

P(P ) =
1

2
+

1

22+n

d1∑
i1=1

d2∑
i2=1

(
Tr

[
K

(1)
i1
K

(2)
i2
K

(1)
i1

†
K

(2)
i2

†
]

+ Tr

[
K

(2)
i2
K

(1)
i1
K

(2)
i2

†
K

(1)
i1

†
])
(6.14)

Hence the quantity we evaluate as final output is

τ =

d1∑
i1=1

d2∑
i2=1

(
Tr

[
K

(1)
i1
K

(2)
i2
K

(1)
i1

†
K

(2)
i2

†
]

+ Tr

[
K

(2)
i2
K

(1)
i1
K

(2)
i2

†
K

(1)
i1

†
])

(6.15)

6.3 N-channel DQC1 using 2-SWITCHes

A more practical perspective on the N -SWITCH is if we consider its decomposition into a
number of 2-SWITCHes. That way, if we know how to construct the 2-SWITCH in an exper-
iment, we can also construct the N -SWITCH. Here we develop our algorithm’s description
to consider the N -SWITCH as a sequence of 2-SWITCHes.

As discussed in section 3.2, the N -SWITCH’s decomposition into 2-SWITCHes is not
unique. Therefore, depending on its particular implementation, its control system may be
of different sizes. In order to keep the description general, the only knowledge we assume of
the control system C is that it is a set of |C| qubits. Similar to before, let all control qubits
to be in the |+〉 state, i.e.

ρC = |+〉|C| 〈+||C| (6.16)

(The ⊗ symbol in the superscripts is omitted for conciseness of notation.) Also define the
measurement projector P to be

P = |+〉|C| 〈+||C| (6.17)

Using Equation 2.8, we obtain the following measurement probability.

P(P ) = Tr

 ∑
~x,~y∈{0,1}|C|

|C|⊗
i=1

|+〉 〈+|xi〉 〈xi|+〉 〈+|yi〉 〈yi| ·

· Tr

 d1∑
i1=1

· · ·
dN∑
iN=1

 N∏
j=1

K
(π(j))
iπ(j)

 In
2n

 N∏
k=1

K
(σ(k))
iσ(k)

†

 (6.18)

Let us inspect Equation 6.18 carefully. First, the overall sums over ~x, ~y enumerate all possible
pairs (with repetition) of bitstrings of length |C|. Each bit of these bitstrings corresponds
to a 2-SWITCH control being in state |0〉 or |1〉, i.e. not swapping or swapping its two
input timelines. The overall N -SWITCH is composed of |C| 2-SWITCHes and therefore
|~x| = |~y| = |C|, i.e. one bit per controlling qubit. The middle part of the expression
corresponds to the measurement projector P acting on the control qubits.

Finally, the inner trace expression corresponds to tracing out the n application qubits
after applying to them the SWITCHed channels. We define π to be the resulting permutation
of the N input channels, if the N -SWITCH’s control qubits had 0/1 values equal to the
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bitstring ~x. Analogously, σ is the resulting permutation if the control values were equal to
~y. Note that then π is a function (only) of ~x, and σ - of ~y. Using this definition, we see that
π and σ indeed denote a single permutation, rather than a superposition of permutations,
because SWITCHes with controls in 0/1 states are second-order operations with definite
causal order - the identity and deterministic swap on timelines.

Having explained all the different bits of Equation 6.18, we now simplify it. First,
consider that

∀xi, yi ∈ {0, 1} : Tr
[
|+〉 〈+|xi〉 〈xi|+〉 〈+|yi〉 〈yi|

]
=

(
1√
2

)4

=
1

4
(6.19)

As before, all the difference in the final state’s coefficients comes from the traced out ap-
plication qubits. Putting together Equations 6.12 and 6.19 into Equation 6.18, we get the
following simplified expression for the probability.

P(P ) =
1

22|C|

 ∑
~x,~y∈{0,1}|C|

s.t. π=σ

1

+
∑

~x,~y∈{0,1}|C|

s.t. π 6=σ

d1∑
i1=1

· · ·
dN∑
iN=1

1

2n
Tr


 N∏
j=1

K
(π(j))
iπ(j)

 N∏
k=1

K
(σ(k))
iσ(k)

†

 (6.20)

The relation between the control bitstrings ~x, ~y and the resulting permutations π, σ obviously
depends on the particular implementation of the N -SWITCH as a number of 2-SWITCHes.
The term ∑

~x,~y∈{0,1}|C|

s.t. π=σ

1 := χ (6.21)

is then a property of the N -SWITCH’s deconstruction into 2-SWITCHes, and does not depend
on the input channels {C(i)}. In order to simplify the final expression, then, we let χ denote
the number of pairs (with repetition) of bitstrings ~x, ~y which result in equal permutations
π = σ. Again, χ itself does not depend on the input channels but is instead a property of
the supercircuit. This gives us the final expression below.

P(P ) =
1

22|C|

χ+
∑

~x,~y∈{0,1}|C|

s.t. π 6=σ

d1∑
i1=1

· · ·
dN∑
iN=1

1

2n
Tr


 N∏
j=1

K
(π(j))
iπ(j)

 N∏
k=1

K
(σ(k))
iσ(k)

†



(6.22)

Note that the second term in the parentheses - call it τ - depends both on the input channels
and on the N -SWITCH’s implementation.

6.4 Measurement modifications to the protocol

As we mention in the initial description of the N -channel DQC1 protocol, there are many
choices for the measurement projector P . Depending on the final quantity that one wants
to evaluate, different values for P can be chosen. This is a degree of freedom of the proposed
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protocol - different quantities of the input channels can be estimating by simply varying the
measurement projector, but otherwise leaving the supercircuit the same. We illustrate the
point by considering another special case, namely

P = |−〉|C| 〈−||C| (6.23)

without going into excessive technical detail (because the derivation is analogous). The
difference to our previous analysis is that Equation 6.19 becomes

∀xi, yi ∈ {0, 1} : Tr
[
|−〉 〈−|xi〉 〈xi|+〉 〈+|yi〉 〈yi|

]
=

1

4
(−1)xi+yi (6.24)

Then the final expression is

P(P ) =
1

22|C|

 ∑
~x,~y∈{0,1}|C|

s.t. π=σ

(−1)s(~x+~y) +

+
∑

~x,~y∈{0,1}|C|

s.t. π 6=σ

d1∑
i1=1

· · ·
dN∑
iN=1

(−1)s(~x+~y)

2n
Tr


 N∏
j=1

K
(π(j))
iπ(j)

 N∏
k=1

K
(σ(k))
iσ(k)

†



(6.25)

where s is a parity function, i.e. s(~a) is 0 if the sum of a’s elements is even, and 1 otherwise.
The final expression looks similar to the one we obtained in Equation 6.20. However, the
quantity being evaluated is different. What was an equally weighted sum of traces there is
now a linear combination over the same traces with coefficients ±1. This illustrates the point
how varying the measurement projector yields different quantities. P can be an arbitrarily
complex operator, rather than the two highly symmetric cases we have shown - all pluses
and all minuses. That way the same algorithm can act as an estimator for various quantities
that depend on the input channels.

6.5 Arguments for the advantage of our algorithm

Having described our proposed N -channel DQC1 protocol and its variations, now we turn
our attention to why we expect it provides computational advantage over algorithms with
definite causal order.

The first argument we present is highly informal but is useful as an illustration of the
main point. We are given as input access to the channels {C(i)} but no information about
them. The only way we can use this input with fixed causal order is by applying copies of
these channels. Their application to some state ρ is governed by the following equation.

C(i)(ρ) =

di∑
j=1

K
(i)
j ρ

(
K

(i)
j

)†
(6.26)

The resulting transformation we get by repeatedly applying Equation 6.26 has the symmetry

of K
(i)
j s and

(
K

(i)
j

)†
s around ρ.
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Now consider the final answer we obtained in Example 6.1 (copied here for convenience).

τ =

d1∑
i1=1

d2∑
i2=1

(
Tr

[
K

(1)
i1
K

(2)
i2
K

(1)
i1

†
K

(2)
i2

†
]

+ Tr

[
K

(2)
i2
K

(1)
i1
K

(2)
i2

†
K

(1)
i1

†
])

(6.27)

The symmetry is not present in the way the Kraus operators are composed. Therefore,
constructing τ requires some knowledge about the Kraus representation of the channels,
which we are not given initially. Obtaining this knowledge is equivalent to performing
quantum process tomography (Ref. [32]) on the input channels, which scales poorly with
system dimension.

Summarised, the argument is that in order to construct τ with fixed causal order, we
need information about the input channels that is computationally hard to obtain. As
mentioned earlier, this is a highly informal argument that is not to be taken as proof.
However, the intuitive insight it provides about where the issue may lay leads us to a more
formal argument. We now show a particular example where a specific algorithm with fixed
causal order fails to outperform our algorithm. This is not a general proof, but it is a proof
about a restricted set of algorithms.

Consider a quantum channel C which is a mixture of M unitaries {Ui}, where M is
arbitrarily large. Its Kraus operators are simply the unitaries with normalisation, i.e. Ki =
1√
M
Ui. Suppose we are given access to the environment system E used to produce the mixed

channel C. Measuring E, we fix C to be equal to one of the unitaries, and we know which
one through the measurement outcome.

Now consider the setting of Example 6.1 where we are given two channels of the type
described just above. As discussed in Ref. [5], the SWITCH of unitaries can be simulated with
fixed causal order, given two copies of them. Therefore, a possible strategy to simulate the
SWITCH is to obtain two copies of the same unitary. Different executions of the supercircuit
will correspond to different unitaries from the set {Ui}, so the overall result over many
samples correctly estimates τ for their mixture - the channel C.

How do we get two copies of the same unitary? First, take an instance of C and measure
its environment E. Now one copy is available of one of the unitaries, say U1 without loss
of generality. Repeat doing this until again U1 comes out as a result of the measurement.
Let X be the random variable that counts the number of iterations performed in this way.
Each of these subsequent measurements has a probability 1/M of yielding U1. Therefore
the expected number of repetitions is

E(X) =

∞∑
i=1

(
M − 1

M

)i−1
i

M
= M (6.28)

The point is that this strategy attempts to compute τ by establishing correlation between
the Kraus operators of C through postselection, but the postselection probability for each
sample can be arbitrarily small as M increases. The overall number of copies of C needed
scales with M . In our algorithm, however, this is not the case. Therefore, we expect an
advantage in this particular example when M � 1.

Taking this argument further, we can consider N channels, each a mixture of M unitaries.
In order to simulate the N -SWITCH now we need N copies of the same unitary. The
probability for obtaining the same measurement outcome (and hence the same unitary) N
consecutive times is (1/M)N . In this case our algorithm’s expected advantage becomes
exponential.

Formal proof of advantage of our protocol over any fixed causal order algorithm is beyond
the scope of this thesis. However, the arguments provided in this section illustrate why we
expect that this advantage exists.
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Chapter 7

Towards higher order
computation with signalling
channels

In this chapter we extend our model of second-order computation in order to allow signalling
channels as inputs.

7.1 Computational model on signalling channels

In extending our model to signalling channels, we need to introduce extra rules to make
sure that no illegal transformations occur. Informally, an illegal transformation is a trans-
formation that reorders the input channels in time in a way that contradicts their causal
structure. For instance, if a channel A signals to a channel B, a supercircuit cannot compose
B before A.

In order to make these statements more precise, from now on we consider the causal
structure as a poset (partially ordered set) that defines which channels signal to which
[33]. Allowed transformations are then order-preserving (monotone) morphisms on that
poset. Hence we define the causal swap as a supermap that swaps two timelines only if the
resulting morphism on the causal poset is monotone.

From now on we use the following notation for posets. For a poset P, let S(P) denote
its underlying set, and

IN(x) := {y | y ∈ S(P), y ≺P x} (7.1)

OUT(x) := {y | y ∈ S(P), x ≺P y} (7.2)

Denote the relation between two elements x, y ∈ S(P) by P(x, y).

Definition 7.1 (Signalling supercircuits with definite causal order)
A signalling supercircuit with definite causal order describes how a sequence of quantum
supermaps acts on an N -partite signalling channel. In order to process such input, we allow
the following three supermaps:

• Sequential composition of adjacent timelines - the sequential composition of two chan-
nels A and B is the channel B ◦ A. Composition cannot be applied to some timelines
if there are other timelines between them in the supercircuit.

• Parallel composition of adjacent timelines - the parallel composition of two channels
A and B is the channel A ⊗ B. Composition cannot be applied to some timelines if
there are other timelines between them in the supercircuit.
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• Causal swap of timelines - deterministic reordering in time of channels such that the
resulting morphism on the causal poset is monotone.

The same categorisation as for the basic model (Definition 4.1) holds. There are no third,
or higher, order operations, hence the model is of second-order computation. Also, there is
no non-deterministic reordering, therefore it is a model of definite causal order.

In order to accommodate for signalling channels in our graphical language, we draw
signalling dependencies as arrows between timelines. Consider a channel A which signals to
another channel B. Extending our notation from Equation 4.1, we depict this as:

A

��

A→A′

B B→B′
(7.3)

The arrows can only point from top to bottom, because of our convention that higher
timelines are executed before (or simultaneously with) lower timelines. A supercircuit with
an arrow pointing up does not describe a valid physical transformation.

Compositions preserve arrows in the natural way, defined by Equations 7.4 - 7.7 below.

IN(B ◦ A) = IN(A) ∪ IN(B) (7.4)

OUT(B ◦ A) = OUT(A) ∪OUT(B) (7.5)

IN(A⊗ B) = IN(A) ∪ IN(B) (7.6)

OUT(A⊗ B) = OUT(A) ∪OUT(B) (7.7)

Equation 7.8 below is an example application of Equation 7.5 in the graphical language.

A

B

��C

=
B ◦ A

��C
(7.8)

There are two differences in the definition, compared to non-signalling supercircuits with
definite causal order, which stem from the fact that now we consider signalling channels.
First, we substituted the swap of channels for the causal swap of channels in order to only
describe physical transformations. In the graphical language, this corresponds to never
inverting an arrow to point upwards.

The second additional constraint is that compositions can only be applied on adjacent
timelines. Without it, the following example issue could occur. Consider A signals to B,
and B to C. Composing A and C sequentially, the only ordering consistent with the causal
structure is that the resulting channel C ◦ A needs to happen simultaneously with B.

A

��

A→A′

B

��

B→B′

C A′→C′

(7.9)

This example, also illustrated in the supercircuit above (Equation 7.9), results in outputting
an arbitrary bipartite channel that allows signalling in both directions. For convenience, we
avoid this scenario by imposing the constraint that only adjacent timelines can be composed.
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This constraint does not lead to any reduction of the expressiveness of the model. Any valid
composition can still be achieved by first swapping timelines to make them adjacent.

7.2 Characterisation of the transformations

As for the previous two models we defined, we now consider the transformations the current
model describes.

Proposition 7.1 Signalling supercircuits with definite causal order (Definition 7.1) are
maps from signalling channels to signalling channels.

Proof. In order to prove the proposition, we need to show that all allowed supermaps in
the model preserve the signalling property of channels. That is, we need to show that for
all supermaps the resulting morphism on the causal poset is monotone. Let us examine
the three allowed supermaps individually. Consider a supercircuit acting on a set S(P) of
channels with causal poset P.

First, consider sequential composition on two channels A,B ∈ S(P). Let its action on
the causal poset be f : P 7→ f(P). f is a monotone morphism if

∀X ,Y ∈ S(P) : X �P Y =⇒ f(X ) �f(P) f(Y) (7.10)

Now we consider all cases for X and Y.

1. If X = A and Y = B. Then f(X ) = f(Y) = B ◦ A. Hence f(X ) �f(P) f(Y).

2. If X ∈ {A ∪ B} and Y /∈ {A ∪ B}. Then X �P Y
Eq. (7.5)

=⇒ f(X ) �f(P) f(Y).

3. If X /∈ {A ∪ B} and Y ∈ {A ∪ B}. Then X �P Y
Eq. (7.4)

=⇒ f(X ) �f(P) f(Y).

4. If X ,Y /∈ {A ∪ B}. Then f(X ) = X , f(Y) = Y and f(P(X ,Y)) = P(X ,Y). Hence
X �P Y =⇒ f(X ) �f(P) f(Y).

For all cases Equation 7.10 holds. Therefore, sequential composition’s action on the causal
poset is a monotone morphism. The exact same argument holds for parallel composition,
only using Equations 7.6 and 7.7 instead of 7.4 and 7.5. Finally, the causal swap is defined
as a monotone morphism on the causal poset. We have shown that all allowed supermaps
in the model act as a monotone morphism on the causal poset. Therefore, signalling super-
circuits with definite causal order send signalling into signalling channels. �

The second result is the same as for non-signalling supercircuits with definite causal
order (Proposition 4.2).

Proposition 7.2 Signalling supercircuits with definite causal order (Definition 7.1) with
exactly one output timeline are in a 1-to-1 correspondence with first-order circuits.

Proof. First, consider a supercircuit that outputs a single timeline. By definition, an N -
partite channel is described by N timelines in our framework. Hence, the output of this
supercircuit is a 1-partite channel which by Definition 2.1 is a valid non-signalling channel.
By Proposition 4.2 then it is exactly a first-order circuit.

Now we show the opposite - that any circuit can be expressed as a supercircuit with a
single output timeline. Any circuit can be seen as a single quantum channel. Quantum chan-
nels are represented as states in our model. Hence any circuit is a trivial supercircuit with a
single input channel. This part of the proof is the same as in the proof of Proposition 4.2 be-
cause a 1-partite channel can be seen both as a signalling and as a non-signalling channel. �
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7.3 No-go theorem for näıve SWITCHing of signalling
channels

Following the line of development of chapter 5, at this point we should introduce the SWITCH
as a resource. However, this turns out to be a bigger challenge when considering signalling
channels. Here we present a näıve definition of signalling supercircuits with indefinite causal
order, and proceed to prove that its simplicity does not allow the decomposition of the N -
SWITCH. This result indicates that it is not a good computational model, since the set of
assumed available operations is infinite, rather than finite.

In order to define the computational model, we first define a new supermap - the causal
N -SWITCH. In the definition, we use the concept of a linear extensions of a poset. By
definition, a linear extension of a partially ordered set is a total order on the set, which
respects the partial order [34, 35]. We denote the set of linear extensions of a poset P
with LE(P). Informally, we define a causal N -SWITCH to be a supermap that takes N
channels as input and outputs a controlled superposition (possibly with some coefficients
equal to zero) of all their allowed permutations, defined by the set of all linear extension of
the causal poset. The formal definition is the following.

Definition 7.2 (Causal N-SWITCH)
Consider a set {C(i)} of N quantum channels with Kraus decompositions

C(i)(ρ) =

di∑
j=1

K
(i)
j ρ

(
K

(i)
j

)†
, (7.11)

where di is the number of Kraus operators of the ith channel. Consider an N !-dimensional
quantum system C with orthonormal basis {|π〉 | π ∈ Perm(N)}. The causal N -SWITCH is
a supermap that, given the set of channels {C(i)} as input and using C as control, outputs a
quantum map with Kraus operators Wi1,...,iN given by

Wi1,...,iN =
∑

π∈LE(P)

|π〉 〈π| ⊗
N⊗
j=1

K
(π(j))
iπ(j)

(7.12)

The only difference in the current definition of the causal N -SWITCH to the N -SWITCH
(Definition 3.3) is that now we sum over the linear extensions LE(P), rather than over all
permutations Perm(S(P)). A causal SWITCH is then an instance of the causal N -SWITCH
for N = 2. Using these new terms, we can define the computational model as follows.

Definition 7.3 (Näıve signalling supercircuits with indefinite causal order)
A signalling supercircuit with indefinite causal order describes how a sequence of quantum
supermaps acts on an N -partite signalling channel. In order to process such input, we allow
the following four supermaps:

• Sequential composition of adjacent timelines - the sequential composition of two chan-
nels A and B is the channel B ◦ A. Composition cannot be applied to some timelines
if there are other timelines between them in the supercircuit.

• Parallel composition of adjacent timelines - the parallel composition of two channels
A and B is the channel A ⊗ B. Composition cannot be applied to some timelines if
there are other timelines between them in the supercircuit.

• Causal swap of timelines - deterministic reordering in time of channels such that the
resulting morphism on the causal poset is monotone.

• Causal SWITCH of adjacent timelines.
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The action of the causal SWITCH on the causal poset is the following. Consider a causal
SWITCH with input channels A and B and output channels A′ and B′. Then

IN(A′) = IN(B′) = IN(A) ∪ IN(B) (7.13)

OUT(A′) = OUT(B′) = OUT(A) ∪OUT(B) (7.14)

Equations 7.13, 7.14 above define the property we call näıve in the supercircuit definition
name. It is illustrated in Equation 7.15 below.

A

��B
S

C

��D

ρc •

=

A

��

��
S(ρc,B, C)

����D
(7.15)

We have defined the causal SWITCH’s action on causal relations (Equations 7.13 and
7.14) in that way for the following reason. Consider the supercircuit in Equation 7.15.
When we SWITCH B and C, we get a superposition of the two orderings - ABCD and
ACBD. Because they are in a superposition, it makes sense to allow only such further
operations, which do not contradict the causal restrictions of either of these two orders.
Hence we overlay the arrows of the two cases - as if ρc = |0〉 〈0| and as if ρc = |1〉 〈1|. This
argument leads us to Equations 7.13 and 7.14.

In our model on non-signalling channels we saw that the N -SWITCH can be decomposed
into a (polynomial) number of 2-SWITCHes. This is convenient because only a single oper-
ation needs to be assumed as an available resource in the model. This, however, does not
hold for the currently discussed model on signalling channels. Now we prove that, unlike
in the case of non-signalling supercircuits, the causal N -SWITCH in signalling supercircuits
does not decompose into causal 2-SWITCHes.

Proposition 7.3 (No-go theorem for causal N-SWITCH
decomposition in näıve signalling supercircuits) The causal N -SWITCH in a näıve
signalling supercircuit with indefinite causal order (Definition 7.3) cannot be decomposed
into any number of causal SWITCHes on less than N channels. Therefore, in order for
arbitrary causal N -SWITCHing to be available, all causal N -SWITCHes for any N ≥ 2 need
to be assumed as available resources in the model.

Proof. The proof proceeds by induction. The first step is to show that the causal 3-
SWITCH cannot be decomposed into causal 2-SWITCHes. Consider the following input to a
supercircuit with S(P) = {A,B, C} and A ≺P B.

A

��B

C

(7.16)
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A causal 2-SWITCH applied to A and B has no effect because their two-element poset forms
a total order (i.e. A ≺P B). A causal 2-SWITCH applied to A and C also has no effect
because C ≺ B ≺ A /∈ LE(P). Acting on B and C with a causal 2-SWITCH generates two
possible linear extensions (A ≺ B ≺ C and A ≺ C ≺ B), but not all, since C ≺ A ≺ B is not
possible. However, at that point the full three-element poset is a total order, and no further
causal SWITCHing is possible. Therefore, no way of applying causal 2-SWITCHes leads to
the desired output of a causal 3-SWITCH. Hence it is non-decomposable.

For the induction step, suppose all causal N -SWITCHes for N ≤ N∗ are assumed as
freely available resources in the model. We need to show that the causal (N∗ + 1)-SWITCH
cannot be constructed from any combination of theirs. Consider (N∗ + 1) channels input
into a supercircuit where the causal structure of the first N∗ channels is a total order, and
the (N∗ + 1)st channel has no causal restrictions. That is, their causal poset P is given by:

•︸︷︷︸
C1

−→ •︸︷︷︸
C2

−→ · · · −→ •︸︷︷︸
CN∗

•︸︷︷︸
CN∗+1

(7.17)

A causal (N∗ + 1)-SWITCH needs to be able to send the (N∗ + 1)st channel to any of the
(N∗ + 1) timeline positions, since it has no arrows forbidding this. Consider applying any
of the available causal N -SWITCHes (N ≤ N∗). If none of the N channels is the (N∗+ 1)st
one, the SWITCH achieves nothing, because its inputs are in a total order. Otherwise, one
of its inputs is the (N∗ + 1)st channel. Because N < N∗ + 1, we know by the pigeon-hole
principle that this single operation cannot send this channel to all of the timeline positions.
However, after it has been applied, the causal structure of all (N∗ + 1) channels is a total
order. Hence, no further causal SWITCHing is possible. The goal of sending the (N∗ + 1)st
channel to an arbitrary timeline position has not been achieved, though. Therefore it is
impossible to achieve using only causal N -SWITCHes with N ≤ N∗. The causal (N∗ + 1)-
SWITCH cannot be decomposed into causal N -SWITCHes with N ≤ N∗. By induction, the
causal N -SWITCH cannot be decomposed into causal SWITCHes on less than N channels. �

Significant literature on the topic of linear extensions of posets exists and may be useful
for further work on the causal N -SWITCH. A particular (classical) result worth mentioning
is the proof in Ref. [34] that the problem of counting the number of linear extensions is
#P-Complete. This indicates why we expect it to be hard to extend the N -SWITCH into a
causal N -SWITCH - just counting the number of outputs is #P-Complete.

Another important result from Ref. [35] is that it is possible to generate all linear
extensions in constant amortized time, i.e. constant in the size of the set of all linear
extensions. The paper argues that this is as fast as any algorithm can do, i.e. constant
amortized, which however is still exponential in general, because the set of linear extensions
can be exponentially large. It is classically hard both to count and to generate linear
extensions, which is the underlying operation of the causal N -SWITCH. Hence we expect its
implementation to be a hard problem.

7.4 The causal N-SWITCH as a direct sum

We have shown that the näıve way of defining a computational model with SWITCHing of
signalling channels fails because of the N -SWITCH’s impossibility of decomposition. Other
models, however, could exist, where this is not an issue. Here we discuss such potential
models.

The problem with our näıve approach arose because SWITCHing channels produced
overly restrictive causal structures. In reality, the SWITCH’s output can be considered as
a direct sum of the orderings. Each branch of this direct sum corresponds to a particular
order, together with its causal structure. Hence, subsequent operations in the supercircuit
could be valid if they provide a valid operation for each branch of the direct sum output. In

36



Chapter 7. Towards higher order computation with signalling channels

comparison, the näıve approach requires any operation after the SWITCH to be compatible
with all branches.

Splitting cases between different branches of a direct sum allows for relaxation of some
constraints. A particular constraint we have imposed on SWITCHes throughout this thesis is
the requirement that the types of its input channels must match. This was needed because
otherwise the output would be in a superposition of types, which we had no means to deal
with. Considering the output of a SWITCH as a direct sum, however, allows us to drop that
requirement. Each branch of the direct sum would correspond to a single well-defined type
for each timeline.

The reason for our current discussion of expressing the superposition created by a causal
N -SWITCH as a direct sum is that there exists literature which may be of use for further
development. In particular, various quantum lambda calculi exist and some of them provide
semantic rules for the direct sum, which may be used to discuss the causal N -SWITCH
within their framework. For instance Sabry, et. al.’s lambda calculus (Ref. [36]) includes
superpositions as direct sums, but only for pure states and processes. We mention the
relation of quantum lambda calculus to our problem of defining the causal N -SWITCH as a
possible research direction.
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Chapter 8

Conclusions

8.1 Summary of results

This thesis focuses on quantum computation with indefinite causal order. We have developed
a series of higher-order computational models with an increasing level of generality. The
first step in this sequence was to rigorously define a basic computational model for second-
order quantum computation. We developed a graphical language for the model so that we
could visualise computation using supercircuits. In order to better understand our basic
model, we also characterised its transformations as maps from non-signalling channels to
non-signalling channels.

Having established the basic model and its graphical representation, we then moved on
to enriching them with the desired indefinite causal order by adding the quantum SWITCH.
We imposed two constraints on the SWITCH in our model. First, that the SWITCH’s control
system needs to be external, i.e. not acted on by the channels input to the supercircuit.
Second, that only channels with matching input and output types can be SWITCHed.

In order to classify the type of transformations of non-signalling supercircuits with indef-
inite causal order, we introduced the new concept of extended non-signalling channels. With
that concept, we could characterise the transformations as maps that preserve a certain in-
variant, in that case the extended non-signalling property. We then extended the graphical
language to provide means for depicting the SWITCH in an intuitive way as a controlled
swap of timelines. We then considered the N -SWITCH as a derived operation that overloads
the SWITCH, and included it into the graphical language.

After defining our model, we set out to explore its applications, using the graphical
language as a tool. We constructed a novel quantum algorithm, inspired by the DQC1
algorithm. Given a set of quantum channels as input, our algorithm estimates a quantity
that depends on the traces of various compositions of their Kraus operators. We conjectured
that the algorithm offers an exponential advantage over all algorithms that use a fixed causal
order. If this conjecture is proven correct, our algorithm would be the first concrete example
where indefinite causal order provides exponential computational advantage. In comparison,
the strongest advantage of that type currently known is only polynomial (e.g. Araújo, et.
al.’s problem in Ref. [9], discussed earlier). Showing our potential exponential advantage,
however, requires further work to extend our arguments for the advantage into a rigorous
proof.

Finally, we extended our computational model to describe signalling supercircuits with
definite causal order. Trying to take the conclusive step to signalling supercircuits with
indefinite causal order, however, turned out to be a significantly harder task. We introduced
a simple extension of the computational model including the causal N -SWITCH, namely a
quantumN -SWITCH that respects the causal structure of its input channels. We then proved
that in this model the causal N -SWITCH cannot be decomposed into causal 2-SWITCHes.
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A brief discussion followed on how to define alternative computational models that allow
the decomposition of the causal N -SWITCH into causal 2-SWITCHes.

8.2 Discussion on further work

Higher-order quantum computation is still a new field that has a lot of potential development.
In this thesis we have worked towards formalising computation by defining our computational
model and the related graphical language. One necessary future development is to find a way
to go around the no-go theorem and incorporate signalling channels in supercircuits with
indefinite causal order. As discussed in the main text, one potential direction to achieve
that is to consider the causal N -SWITCH’s output as a direct sum, and relate the work to
a quantum lambda calculus which provides semantic rules for the direct sum.

Another restriction that also needs to be relaxed is the constraint that all SWITCHes are
controlled externally, by a system acted on only by operations with fixed causal order. In
principle, however, there is no reason why the control systems could not also be acted on by
the supercircuit’s channels. In the analogy of our model describing a quantum computer,
dynamically programmable by another quantum computer this becomes another level of
abstraction where the two computers dynamically program each other. Defining well this
kind of feedback machine where SWITCHes are controlled internally is another possible
further research topic that would enrich our model.

Our models, even with the generalisations described here, would still be highly restricted
models of second-order computation, because only a few second-order maps are allowed.
Defining a computational model that utilises fully the second order of the hierarchy is a
highly important question whose advantages we cannot currently predict. Looking even
further, this is only the first step to understanding arbitrary higher-order computation.
Once a more firm grasp has been established of the second order, a similar treatment should
be developed for higher orders. Having this broader roadmap in view, we wish the current
thesis to set one of the cornerstones for the general treatment of higher-order computation.

Another avenue for further research lies in utilising our framework itself, rather than
developing it. In the same way it allowed us to construct a new second-order algorithm,
it may lead to other novel quantum algorithms being more easily accessible through the
graphical language. If an algorithm of practical importance is discovered that way, the
available experimental research on indefinite causal order would allow it to be verified, and
even potentially exploited in practice.

We see the two main types of further work - developing the model, and using it for
applications - as being in a self-reinforcing cycle. The more advanced the computational
model is, the more algorithms could be discovered that fit in it. The more algorithms
discovered, the better understanding we would get of how the model itself works, and hence
how to enrich it further.
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