
A geometrically inspired category
as a meaning space for natural

language

Jozef Barnabas Houben

St Anne’s College

University of Oxford

A dissertation submitted for the degree of

MSc in Mathematics and Foundations of Computer Science

Trinity 2017

Abstract

In this dissertation we apply the theory of conceptual spaces to the domain

of shapes to develop a mathematically rigorous conceptual space providing

a natural, geometrically motivated encoding of shapes that can be used in

the compositional distributional model of meaning. To this end, we ab-

stractly treat hierarchical conceptual spaces, developing the mathematical

tools required to define these spaces and reason about them. In particu-

lar, we define generalisations of the notions of metrics and convexity and

apply these generalisations to our conceptual space. We then define a

category for these spaces and discuss some of the aspects of language that

the model captures. We specialise this category to the specific domain of

shapes by implementing a variant of the Marr-Nishihara model. We also

introduce a model for representing interactions with prepositions.

Contents

1 Introduction 1

1.1 Overview . 2

I Review of existing theory 3

2 Compositional distributional models of meaning 4

2.1 Foundations . 5

2.1.1 Pregroup grammars . 5

2.1.2 Reductions in compact closed categories 6

2.1.3 From word meaning to sentence meaning 7

2.2 Relative pronouns . 8

2.3 Entailment and Ambiguity . 10

3 Conceptual spaces 12

3.1 Convexity . 13

3.2 Example: colour . 15

II Building a hierarchical category for shapes 17

4 Building hierarchical conceptual spaces 18

4.1 Marr and Nishihara’s model . 18

4.2 Defining trees . 22

4.2.1 Finite labelled subsets . 22

4.2.2 Finite trees . 24

4.2.3 Ordering trees . 27

4.3 Generalised metrics and convexity . 31

4.4 A metric for trees . 35

i

4.4.1 Preliminary definitions . 35

4.4.2 The structural metric . 37

4.4.3 The tree metric . 39

5 A category of trees 42

5.1 The category FTree(P) . 42

5.2 Concepts versus concrete objects . 44

5.2.1 Closed sets . 45

5.2.2 Convexity of closed sets . 45

5.2.3 Closed sets as a model for concepts and concrete objects . . . 48

5.3 Entailment and ambiguity . 49

6 A hierarchical category for shapes 50

6.1 Node properties for the Marr-Nishihara model 50

6.2 Decorating trees with preposition attachment points 52

7 Concluding remarks 55

Bibliography 58

ii

Chapter 1

Introduction

Natural language processing is a field which has seen much excitement and grabbed

a lot of attention in recent years. Tools such as personal assistance promise us easier,

more comfortable lives. However, much of the development in these head-line grab-

bing technologies has been due to the advent of more powerful computers, and the

discovery of algorithms that allow for automated learning of language tasks without

giving much insight into the structure of language and human thought.

Compositional approaches to natural language have much more promise in this re-

gard, but have simply not been as effective at producing tangible results. In 2010,

Coecke et al. [CSC10] introduced a compositional distributional model which com-

bined this qualitative compositional approach with a quantitative distributional ap-

proach. The model utilized techniques from categorical quantum mechanics, thus

providing a diagrammatic way to reason about language. Moreover, the model out-

performed other models in tasks such as computing sentence similarity ([GS11]).

Subsequently, the model has been extended to encode notions such as entailment

and ambiguity ([AC16]). Recently, interest has arisen in combining this composi-

tional distributional approach with the theory of conceptual spaces spearheaded by

Gärdenfors ([Gär00, Gär14]), and some early work in this area was done by Bolt et

al. [BCG+16]. In the present work, we aim to apply the theory of conceptual spaces

to the domain of shapes, thus developing a mathematically rigorous conceptual space

providing a natural, geometrically motivated encoding of shapes, that can be used in

the compositional distributional model.

1

1.1 Overview

In the first part of this work, we will review existing theory. For this, some knowledge

of categorical quantum mechanics and the graphical calculus is assumed. Readers

who are not familiar with this material are referred to [HV17]. In chapter 2 we give

an overview of the compositional distributional model of meaning. Then, in chapter

3, we discuss the aspects of the theory of conceptual spaces that are relevant for our

purposes.

Then, in the second part of this dissertation, we will construct a hierarchical category

for representing shapes. Chapter 4 is dedicated to discussing the notion of such

spaces and developing the mathematical tools required to define these spaces and

reason about them. In particular, we define generalisations of the notions of metrics

and convexity and apply these generalisations to our conceptual space. In chapter

5, we define a category based on these spaces and discuss some of the aspects of

language that this category captures. Then, in chapter 6 we specialise the category

to the specific domain of shapes by implementing a variant of a model first developed

by Marr and Nishihara ([MN78]). In that chapter we also introduce a model for

representing interactions with prepositions. Finally, in chapter 7, we give an overview

of our results, evaluate the strength and weaknesses of the model that was developed,

and suggest avenues for further research.

2

Part I

Review of existing theory

3

Chapter 2

Compositional distributional
models of meaning

Traditionally, there have been two partially orthogonal approaches to assigning mean-

ing to natural language. On the one hand, there was the compositional approach, an

introduction to which can be found in [DWP81]. This approach is based on the no-

tion that the meaning of a sentence is a function of the meaning of its parts ([GS11]),

but is solely qualitative. On the other hand, there was the distributional approach

([Sch98]) which is quantitative but lacks a compositional structure by which to accu-

rately combine meanings in complex sentences. Under the distributional approach,

the meaning of words is encoded using vectors. These vectors are typically deter-

mined by examining the context of the word in a large corpus, and determining the

co-occurrence with some designated set of basis words. Under the simplest model,

the vector simply expresses how many times each of these basis words occurred in

the word’s context (subject to some normalisation). This distributional approach has

found some real world applications ([GS11]).

More recently, Coecke et al. ([CSC10]) introduced a new approach which combines

these two approaches. This compositional distributional model of meaning is both

quantitative and compositional, and has been shown to outperform other models

in computing sentence similarity ([GS11]). In the first section we will describe this

model, largely following the treatment in [CSC10]. In section 2.2 we will discuss how

relative pronouns can be accommodated in this model, following the treatment in

[SCC14]. Finally, in section 2.3 we will briefly discuss entailment and ambiguity.

4

2.1 Foundations

Under the model by Coecke et al., computing the meaning of a sentence is a three

step process:

1. First, grammatical types are assigned to each of the words in the sentence.

2. Then the grammatical types are used to construct a morphism in a compact

closed category.

3. We then feed the meanings of the individual words into this morphism to cal-

culate the meaning of the sentence.

We will discuss each of these steps, together with the required mathematical material

in a separate subsection.

2.1.1 Pregroup grammars

For the grammatical types a Pregroup grammar is used. A detailed overview of

Pregroup grammars can be found in [Lam08]. Here we will give a brief overview of

the aspects relevant for our purposes. First, we define a Pregroup.

Definition 2.1 (Partially ordered monoid). A partially ordered monoid (P,≤, ·, 1)

is a partially ordered set (P,≤) equipped with a monoid multiplication −·− with unit

1, where for p, q, r ∈ P , if p ≤ q then we have

r · p ≤ r · q and p · r ≤ q · r. (2.1)

Definition 2.2 (Pregroup). A Pregroup (P,≤, ·, 1, (−)l, (−)r) is partially ordered

monoid together with left and right adjoints (−)l and (−)r such that for every element

p ∈ P :

pl · p ≤ 1 ≤ p · pl and p · pr ≤ 1 ≤ pr · p. (2.2)

We refer to pl as the left adjoint of p, and pr as the right adjoint of p.

To construct a Pregroup grammar we simply fix a basic set of grammatical types,

define a (possibly empty) set of inequalities between them, and then freely generate

the Pregroup from these basic types (it has been shown that this free Pregroup exists

and is unique). In the context of Pregroup grammars, the relation ≤ is typically

written as →, and a series of inequalities is referred to as a reduction.

5

As an example, we describe a very simple grammar for declarative transitive sen-

tences. We introduce two basic grammatical types: n for nouns, and s for declarative

statements. We will impose no inequalities between these basic types. The type s we

will be our sentence type. That is to say, a well-formed sentence should reduce to s.

To transitive verbs we will assign the type nrsnl. This can be interpreted as follows:

a transitive verb takes a noun on its right and a noun on its left, and forms with

these a declarative statement. Why this interpretation is valid will become clear in

a moment. With these types fixed, we can now perform step 1 of the process above

for our example sentence “John likes Mary”:

John likes Mary
n nrsnl n

The type of the full sentence is simply the product of the types of the words, i.e. ,

n · nrsnl · n. This yields the following reduction:

nnrsnln→ 1snln→ 1s1→ s. (2.3)

Thus the sentence reduces to s and is indeed well-formed.

2.1.2 Reductions in compact closed categories

The reduction above can be depicted graphically as follows:

n nr s nl n

s

(2.4)

This is obviously suggestive of a morphism in a compact closed category. To make

this concrete, we take some compact closed category C, and set up the following

association between the Pregroup and C:

• For every basic grammatical type p we pick an object P of C.

• The monoid multiplication of the Pregroup is associated with the monoidal

multiplication in C. So if p, q ∈ P correspond to P,Q ∈ Obj(C), then p · q
corresponds to P ⊗Q.

• The left and right adjoints in the Pregroup correspond to duals in C.1

1In [CSC10] each of the categories C that were used had self-dual objects, thus Pregroup elements
and their adjoints were mapped to the same object. Here, we will discuss the more general case
where objects in C might not be self-dual. In that case it is necessary to map adjoints to duals in
order to make the diagrams work.

6

• The reductions pl · p → 1 and p · pr → 1 correspond to the cap, and 1 → p · pl

and 1→ prṗ to the cup.

• For each pre-imposed reduction p → q (i.e. those not generated by the free

structure), we pick a morphism P → Q in C (where P and Q are the objects

corresponding to p and q).

Note that we can regard the Pregroup as a monoidal category with left and right

duals (i.e. an autonomous category), and if we do that the correspondence above is a

functor preserving the monoidal and duality structure.2 In what follows, we will take

this perspective and use F to denote this functor.

Applying this correspondence to the reduction in equation (2.3) yields exactly the

morphism in C whose diagram is (2.4). The process of obtaining this morphism is

exactly step 2 of the three step process described above.

2.1.3 From word meaning to sentence meaning

Next, for every word we pick a state in the object of C corresponding to its grammat-

ical type. So in our example, for “likes” we pick a state in F (nrsnl) = N∗ ⊗ S ⊗N∗,
where N = F (n) and S = F (s). This state is meant to encode the meaning of the

individual word. We then apply the morphism corresponding to the grammatical re-

duction to these meaning-states. This is step 3 of the process above. In our example,

if |John〉 , |likes〉 , |Mary〉 are the states representing the words in the sentence, then

the meaning of the sentence is computed as:

F (nnrsnln ≤ s) ◦ |John〉 ⊗ |likes〉 ⊗ |Mary〉 . (2.5)

Or, diagrammatically:

John likes Mary

N N∗ S N∗ N

S

(2.6)

2In [CSC10] it is stated that the Pregroup is actually compact closed. This is in general not true
under the usual definition of compact closed categories. Compact closure requires symmetry, but
this does not hold for freely generated Pregroups.

7

The motivating example for C is FVec, where the states representing words are vec-

tors. This is where the distributional aspect comes in; vectors encode the meaning of

words just as in the distributional model, then these meanings are combined using a

categorical morphism obtained from the compositional aspect of the model (the Pre-

group grammar). However, the compositional distributional model does not require

that C = FVec, it is much more general. Indeed, in [CSC10], an example using FRel

is also worked out. In later work (e.g. [BCG+16]) other compact closed categories

have been substituted in order to refine the representation of meaning. This freedom

is essential to what follows, since we will mainly be focussing on choosing a category

that is well suited to achieving our goals. In the next chapter, we will pick this thread

back up by introducing the notion of conceptual spaces and discussing how they relate

to the choice of category.

2.2 Relative pronouns

In the previous section we have seen how we can combine the meanings of words using

the unit and counit of a compact closed category. But of course, these categories often

have much richer structure to exploit. In this section we will discuss how Frobenius

algebras can be used to model relative pronouns.

Pronouns are difficult to represent in distributional models, because the context in

which they occur has little bearing on their meaning; they occur in the context of

a great variety of nouns and verbs. It is precisely their interaction with the other

words in a sentence which is relevant. Thus the compositional distributional approach

would seem like a natural approach to modelling these words. A method introduced

by Sadrzadeh et al. ([SCC14]) deals with subject and object relative pronouns by

using Frobenius algebras. In this section we will give an overview of the material in

[SCC14].

Sadrzadeh et al. write:

The intuition behind the use of Frobenius algebras to model such cases

is the following. In “book that John read”, the relative clause acts on

the noun (modifies it) via the relative pronoun, which passes information

from the clause to the noun. The relative clause is then discarded, and

the modified noun is returned. Frobenius algebras provide the machinery

for all of these operations.

8

Sadrzadeh et al. assign the following Pregroup types to the subject and object relative

pronouns:

nrnsln (subject) nrnnllsl (object) (2.7)

Using these types in a simple noun phrase, we obtain the following reductions:

Subject Rel-Pronoun Verb Object

n nr n sl n nr s nl n

n

(2.8)

Object Rel-Pronoun Subject Verb

n nr n nll sl n nr s nl

n

(2.9)

Note that the reduction is to n, not to s. Thus the phrase is not a full well-formed

sentence, but instead a noun-phrase.

To these words we assign the following states:3

Subj:
N∗ N S∗ N

Obj:
N∗ N N S∗

(2.10)

When used in a simple noun phrase the subject relative pronoun yields the following

diagram:
Subject Rel-Pronoun Verb Object

N N∗ N S∗ N N∗ S N∗ N

(2.11)

3Again, unlike in [SCC14], we do not assume that objects in C are self-dual.

9

And for the object relative pronoun:

Object Rel-Pronoun Subject Verb

N N∗ N N S∗ N N∗ S N∗
(2.12)

For further details and implementations using toy models, please refer to [SCC14].

2.3 Entailment and Ambiguity

While the basic model of C = FVec based on co-occurrence is attractive for its

simplicity, and has shown promise in both the compositional distributional model

and traditional distributional models, it lacks the structure to capture some finer

aspects of meaning. This can be remedied by choosing a different model C which

has a richer structure. This comes at the price of simplicity, and thus likely makes

it much harder to use an automated process to determine the states representing the

meaning of words. In the next chapter we will take a closer look at the choice of C
when we discuss conceptual spaces, but for now we mention two aspects of meaning

which are poorly represented by vectors, and the solutions which have been proposed

for them in the literature: lexical entailment and ambiguity.

Entailment (or hyponymy) refers to the notion that a word can be an instance of

another word. For example, ‘pigeon’ is an instance of ‘bird’, which is an instance

of ‘animal’. We say that ‘pigeon’ entails ‘bird’ (or that ‘pigeon’ is a hyponym of

‘bird’, and ‘bird’ a hypernym of ‘pigeon’). The vector model does not capture this

notion; while the vector model can capture the fact that ‘pigeon’ and ‘bird’ are closely

associated, it’s not clear how to differentiate this relation from the reverse relation

(hyponymy versus hypernymy), or from the relation between ‘pigeon’ and ‘hawk’.

Bankova et al. [BCLM16] describe a model based on density matrices that does

capture this notion. Similar approaches were described in [BKS15] and [BSC15].

Density matrices are a concept from quantum mechanics, where they are used to

represent partial knowledge of a system, and can be described in a categorical manner

10

as completely positive maps. The model by Bankova et al. further allows for graded

entailment, thus capturing a notion of entailment strength.

Similarly, vectors do not represent ambiguity well. The vector model can capture

the fact that the word ‘queen’ is closely associated with ‘monarch’, ‘bee’, ‘rock band’

and ‘chess’, but it does not capture the fact that each of these associations stems

from a separate meaning of ‘queen’, and that when the word is used in a sentence,

generally only one of these meanings is intended. Piedeleu [Pie14] introduced a model

to capture this notion, again based on density matrices. Ashoush and Coecke [AC16]

combined these two approaches by using dual density operators to simultaneously

represent ambiguity and entailment.

Our model, which will be introduced in subsequent chapters, naturally captures both

entailment and ambiguity, but is unable to capture any grading in these notions.

11

Chapter 3

Conceptual spaces

While the compositional distributional model was first applied together with meaning

representations drawn from distributional models and represented in C = FVec,

the model is independent of the exact choice of meaning space. In the previous

section we already touched upon how moving from vectors to single or dual density

operators allows us to encode entailment and ambiguity. In this chapter we will

take a step back and consider what we would expect from a meaning space from the

point of view of cognitive science. The hope is that this will lead to a more efficient

representation of meaning which naturally encodes many aspects of meaning that

would otherwise have to be imposed on the meaning space in an ad-hoc manner.

Such a space would be interesting for natural language processing applications, but

might also be mathematically interesting in its own right. Moreover, studying such

spaces and their requirements could be an interesting avenue for research in cognitive

science.

The exploration of these topics has been driven by Gärdenfors, who published two

books ([Gär00, Gär14]) on this subject. In these books, he introduced the concept of

conceptual spaces, and put these in a (limited) mathematical context. In this chapter

we will summarise the relevant information in these works. In subsequent chapters,

we will apply these concepts in a mathematically rigorous setting.

Gärdenfors writes (section 2.1 of [Gär14]):

Conceptual spaces are constructed out of quality dimensions. Examples

are pitch, temperature, weight, size, and force. The primary role of the di-

mensions is to represent various “qualities” of objects in different domains.

Some dimensions come in bundles – what I call domains – for example,

12

space (dimensions of height, width, and depth); color (hue, saturation,

and brightness); taste (salt, bitter, sweet, and sour, and maybe a fifth di-

mension); emotion (arousal and value; [. . .]); and shape (dimensions not

well known; [. . .]).

[. . .]

The notion of a dimension should be understood literally. It is assumed

that each dimension is endowed with a topological or geometric structure.

3.1 Convexity

The geometric structure that Gärdenfors exploits is largely based on notions of dis-

tance (or similarity), and betweenness, and these are the notions that we will restrict

ourselves to in the following chapters.

A central thesis by Gärdenfors is the following (section 2.2 of [Gär14], and also section

3.5 of [Gär00]):

Thesis about properties: A property is a convex region in some domain.

And (section 2.2 of [Gär14]):

Properties, as characterized by the thesis, form a special case of concepts.

This distinction is defined by saying that a property is based on a single

domain, while a concept is based on one or more domains.

[. . .]

Concepts are not just bundles of properties. The representation of an

object category that I present in chapter 6 also includes an account of the

correlations between the regions from different domains that are associ-

ated with the category. For example, the concept apple involves a very

strong (positive) correlation between the sweetness in the taste domain

and the sugar content in the nutrition domain and a weaker correlation

between the color red and a sweet taste.

Gärdenfors defines convexity in terms of betweenness, and betweenness as a ternary

relation B satisfying (section 1.6.1 of [Gär00]):

B0: If B(a, b, c) then a, b, c are distinct points.

13

a

b

c

d
e

Figure 3.1: Example of a graph violating betweenness requirement B3, if the metric
is hops in the graph, and betweenness is defined in terms of the metric. Based on
figure 1.9 from [Gär00].

B1: If B(a, b, c) then B(c, b, a). In words: “If b is between a and c, then b is between

c and a.”

B2: If B(a, b, c) then not B(b, a, c). “If b is between a and c, then a is not between

c and b.”

B3: If B(a, b, c and B(b, c, d), then B(a, b, d). “If b is between a and c and c is

between b and d, then b is between a and d.”

B4: If B(a, b, d) and B(b, c, d), then B(a, b, c). “If b is between a and d and c is

between b and d, then b is between a and c.”

Gärdenfors then defines the usual notion of a metric, and notes that betweenness B

can be defined in terms of a metric d as B(a, b, c) ⇐⇒ d(a, c) = d(a, b) + d(b, c).

Gärdenfors also notes that such a notion of betweenness satisfies B1, B2 and B4, but

not necessarily B3 (see figure 3.1). In the following chapters, we will define a metric

for our model and then define convexity in terms of this metric. Thus, to preserve

generality, we are forced to drop B3 from the list of requirements for betweenness. B0

can always be recovered by a trivial modification of B, thus for the sake of simplicity

we will also drop this requirement.

A convex subset is then defined as (definition 3.3 in [Gär00]):

Definition 3.1 (Convex subset of a conceptual space). A subset C of a conceptual

space S is said to be convex if, for all points x and y in C, all points between x and

y are also in C.

Gärdenfors argues that convexity plays a crucial part in learning. As an example

of how learning based on the convexity assumption might work, he describes how a

set of concepts can be created from prototypes (or first examples) of those concepts

by creating a Voronoi tessellation, and then slowly adjusting this tessellation as new

14

Figure 3.2: The colour spindle. Source: figure 2.1 from [Gär14]

examples are observed, while still maintaining the convexity of the concepts. For

details, refer to section 2.3 of [Gär14].

3.2 Example: colour

In both [Gär00] and [Gär14], Gärdenfors uses the example of the colour domain to

clarify the notions discussed above. This example is particularly helpful because

the proposed domain matches very well with our experience of colour, and with the

representation of colour in digital imagery. The quality dimensions in this domain

are hue, saturation and brightness. Hue is considered to be a polar dimension, in the

sense that it ‘wraps around’, while saturation and brightness are linear. Figure 3.2

shows the geometric intuition behind these dimensions.

This example also shows how a single domain may admit multiple choices for the

notion of betweenness (or, equivalently, distance), and that the specific choice can

be crucial to obtaining a natural notion of properties. In figure 3.3 two different

notions of betweenness are shown. The linear notion, shown on the left, leads to a

non-convex region for the property ‘red’, thus violating the convexity thesis. This

15

Figure 3.3: A horizontal (hue-saturation) slice of the colour spindle. Left: a linear
notion of betweenness does not match with the natural interpretation of colour prop-
erties. Right: this can be remedied by using a polar notion of betweenness for the
hue dimension. Source: figures 3.5 and 3.6 from [Gär00].

can be remedied by choosing a different notion of betweenness, one that respects the

polar nature of the hue dimension.

Such a notion of betweenness could arise from the following metric:

dcolour((θ1, s1, v1), (θ2, s2, v2)) =
√
dθ(θ1, θ2)2 + |s1 − s2|2 + |v1 − v2|2, (3.1)

where θ, s, v are the coordinates for hue, saturation and brightness, respectively. The

function dθ is the angular distance function, which gives the difference between two

angles. Explicitly:

dθ(θ1, θ2) = min{|θ1 − θ2|, |θ1 − θ2 + 2π|, |θ1 − θ2 − 2π}. (3.2)

16

Part II

Building a hierarchical category for
shapes

17

Chapter 4

Building hierarchical conceptual
spaces

In this chapter we will develop the tools for building hierarchical conceptual spaces

based on trees. Then, in the next chapter, we define a category for such conceptual

spaces and show how it fits within the distributional compositional model. Finally,

in chapter 6, we specialize this category to represent shapes using a variant of the

Marr-Nishihara model.

To motivate this construction, we first discuss Marr and Nishihara’s model in ab-

stract terms in section 4.1. Then we give a mathematically rigorous definition of

trees in section 4.2. In order to discuss similarity and convexity for such trees, we

define a generalisation of metrics and convexity in section 4.3. Finally, we apply this

generalisation to trees in the last section of this chapter.

4.1 Marr and Nishihara’s model

In his work on conceptual spaces, Gärdenfors argues that shape is an important

dimension for understanding language and learning (section 3.2.4 of [Gär14]):

During the period between eighteen and twenty-four months, children

undergo what is called a naming spurt, acquiring a substantial number

of nouns for representing objects. Evidence suggests that, during this

period, they also learn to extract the general shape of objects, and this

abstraction improves object category learning (Son, Smith, & Goldstone,

2008; L. Smith, 2009). How the object category space develops in children

18

is still not well known. Some cues can be obtained from children’s ability

to learn nonsense words for new things (Bloom, 2000; L. Smith, 2009).

There seems to be a shape bias; that is, the shape of objects seems to

be the most important property in determining category membership for

small children (Landau, Smith, & Jones, 1998; Smith & Samuelson, 2006).

Yet it is not clear how to represent shape in the compositional distributional model.

A first idea for representing shapes might be to simply encode the physical embodi-

ment of a shape as a subset S of euclidean space R3. Such an approach has numerous

advantages:

• It is conceptually very simple.

• It has a clear relation to the physical world and to sensory input.

• Constructing such representations for real-world shapes seems straight forward

and might even be completely automated through techniques such as 3D scan-

ning.

However, it also has some clear disadvantages:

• For real-world, non-mathematical objects, it is not clear with how much detail

shapes should be encoded. Take a spider, for example, should its shape simply

be represented as a sphere with eight legs sticking out of it? Or should we

painstakingly encode the exact shape of its body and legs, the details of its

eyes, its fangs, all the hairs on its legs, etc.? How do we deal with two spiders

with a slightly different shape? How do we deal with entailment in the context

of shapes (for example, the general shape of an insect versus the specific shape

of an ant)?

• It is not clear how to define similarity and betweenness.

• When describing the shape of an object to someone, a speaker would be unlikely

to describe the exact physical embodiment of that object. Instead, the speaker

would likely compare the object to another object with a similar shape, or

describe it as a composition of simpler geometric shapes. Thus the physical

embodiment model does not mesh well with verbal descriptions of shapes. This

also suggests that it doesn’t mesh well with our mental representation of shapes.

• The physical embodiment representation has no concept of whole-part relation-

ships. Thus while the model might be able to represent the shape of a spider

19

Figure 4.1: This figure shows what (part of) a tree representing a human would look
like under the Marr-Nishihara model. Source: figure 3 of [MN78].

and the shape of a leg, it is unable to model the fact that a leg is a distinct part

of a spider.

• The representation is purely static; it doesn’t encode any information on how

an object might move or be deformed. While it might seem strange to want

such dynamic information to be included in the shape domain, this does seem

defensible when you consider the fact that we think of humans having a certain

‘shape’, even though a person can deform and move their body in many different

ways.

In section 6.3.1 of [Gär14], Gärdenfors suggests using a model developed by Marr

and Nishihara [MN78] to represent shapes. In this model a shape is described by a

tree, where each node in the tree describes a cylinder with certain dimensions, an

orientation and a position. Each level describes the shape in more detail, with the

children of a node representing the parts that together make up that node.

In figure 4.1 we see a depiction of what a tree representing the shape of the human

body could look like. The root node simply describes a single vertical cylinder. The

children of the root node describe the main parts that make up the human body:

a torso, a head, two arms and two legs. Each of these parts are represented by a

cylinder with a certain size, position and orientation relative to the root cylinder.

Moreover, each of these parts is itself described as being made up of smaller parts,

going on in a recursive fashion thus giving rise to the tree structure. For example,

the arm is made up of two parts: the upper arm and the lower arm. Then the lower

20

arm is again made up of two parts: the forearm and the hand. The hand, in turn, is

again made up of several parts: the palm of the hand, a thumb and four fingers.

Contrasting this model to the simple model of physical embodiment, we see that it

has many advantages over that model:

• The level of detail for a shape is explicitly encoded in a Marr-Nishihara tree;

higher trees encode a higher level of detail in their deeper levels. Thus it is

possible to compare two shape representations even if they do not have the

same amount of detail: we can simply compare deeper and deeper levels of

both trees until we exhaust the detail in one of the trees. This also allows us

to deal with entailment: shallower trees represent general concepts, and deeper

trees represent instances of such concepts. So an insect might have a certain

general shape, represented by a shallow tree, and then specific insects, such

as ants, are represented by deeper trees that agree with the insect tree in the

shallower levels. This notion will be explored further in the next section when

we define the subtree relation, and again in chapter 5.

• While similarity and betweenness are not clear cut, the hierarchical structure of

Marr-Nishihara trees does seem to make defining such concepts more tractable.

And in fact, we will develop mathematically precise formulations of these no-

tions in the remainder of this chapter.

• This model seems to mesh well with how shapes are verbally described; a shape

is represented by a (recursive) composition of primitive shapes. Moreover, Marr

and Nishihara specifically constructed this model to (attempt to) mirror our

mental model of shapes [MN78].

• Whole-part relationships are explicitly encoded in Marr-Nishihara trees.

It also has some disadvantages:

• This model is much more complicated than the physical embodiment model.

This makes it harder to argue about.

• It’s not clear how the Marr-Nishihara tree representing the shape of an arbitrary

object should be determined. Marr and Nishihara do touch upon this problem

in [MN78], and suggest that it might inferred from a picture of the object.

It is conceivable that this process could be automated by using a database of

captioned images, though this would certainly be very challenging.

21

• Marr and Nishihara developed this model primarily to represent the shapes

of animals. It is not clear that the model generalises well to non-biological

shapes. In particular, using cylinders as the primitive may not be well suited to

describing the many somewhat cubic man-made objects that fill our lives. One

way of solving this problem is by choosing a different primitive or using several

different primitives together.

• The model is inherently three dimensional, even though certain shapes are

clearly not (circles, for example), and even some real world objects (such as

a piece of paper or a string) are thought of as having a one or two dimensional

shape. Again, this problem can be solved by choosing one or two dimensional

primitives.

• Like the physical embodiment model, this model is purely static.

In section 6.3.2 of [Gär14], Gärdenfors also mentions a more intricate model which

does explicitly include information about how an object can be deformed. However,

with an appropriate choice of metric and betweenness, this information can simply

be encoded as a convex region in the space of Marr-Nishihara trees.

In light of the above, the Marr-Nishihara model seems like a good starting point

for building a conceptual space for shapes. With that in mind, we will spend the

remainder of this chapter on developing the mathematical tools that we will need in

order to reason about trees.

4.2 Defining trees

We now give a mathematically rigorous definition for trees as we will use them in the

remainder of this work. In the first section we will define a structure which allows

us to label children of a node in a tree using consecutive natural numbers. Then we

define the actual tree structure, parametrising over a property space P : nodes in the

tree will carry an element of P . This element represents the properties of the node.

Finally, we define an order on trees.

4.2.1 Finite labelled subsets

We define a structure akin to sets, but with the elements being labelled, thus permit-

ting duplicates. We use bounded natural numbers as the labels to enforce finiteness.

22

This also gives us an ordering of the labels.

Definition 4.1 (Finite labelled subset). Let X be a set and let S be a function

S : N→ X ∪ {ε}, (4.1)

Where, ε is some designated symbol such that ε /∈ X. We say that S is a finite

labelled subset of X, and write S v X, if S satisfies:

∃n0 ∈ N :
(
∀n ∈ N, n < n0 : S(n) 6= ε

)
∧
(
∀n ∈ N, n ≥ n0 : S(n) = ε

)
. (4.2)

We refer to n0 as the size of S, and write #(S) = n0. We write x ∈ S if there is

some n ∈ N such that S(n) = x. Note that {x |x ∈ S} is a finite set. In particular,

its cardinality is bounded by n0. We write P(X) for the set of all finite labelled subsets

of X.

Note that finite labelled subset could equivalently be called a finite sequence over a

set.

Definition 4.2 (Empty labelled set). For any set X, we use the symbol ∅ to denote

the empty labelled set, defined as:

∅ : N→ X,

∀n ∈ N : ∅(n) = ε.
(4.3)

Note that ∅ v X.

Definition 4.3 (Set builder notation for finite labelled subsets). Let X be a set,

f : N→ X a function and n0 a natural number. Then we write

S = {n 7→ f(n) |n ≤ n0} (4.4)

for the finite labelled subset of X defined by

S(n) =

{
f(n) if n < n0,

ε otherwise.
(4.5)

Note that S v X and #(S) = n0. Similarly, for x ∈ X the singleton labelled set of

x, written as

S = {0 7→ x} (4.6)

is defined by

S(n) =

{
x if n = 0,

ε otherwise.
(4.7)

23

And a useful transformation on such structures:

Definition 4.4 (Reduction function). The reduction function ρ transforms a finite

labelled subset S of X into a different finite labelled subset of X defined by:

ρ(S)(n) = S(n+ 1). (4.8)

Note that if #(S) ≥ 1, then #(ρ(S)) = #(S)− 1, and otherwise #(ρ(S)) = 0.

4.2.2 Finite trees

We are now ready to formally define trees. We will restrict ourselves to finite trees.

In order to rigorously define finite trees, we first define sets of non-empty trees with

finite width and an upper bound on their height, and then define the full set of trees

as the union of these sets, together with the empty tree.

Definition 4.5. Let P be a set. Then the set Tree1(P) of non-empty finite trees of

height at most 1, having properties in P , is defined as:

FTree1(P) =
{

(p,∅) | p ∈ P
}
. (4.9)

Definition 4.6. Let P be a set, and n ≥ 2 an integer. Then the set Treen(P) of

non-empty finite trees of height at most n, having properties in P , is defined as:

FTreen(P) = FTreen−1(P) ∪
{

(p, C) | p ∈ P, C v FTreen−1(P)
}
. (4.10)

Definition 4.7 (Finite trees). Let P be a set. Then the set FTree(P) of finite trees

having properties in P is defined as:

FTree(P) = {ε} ∪
∞⋃
n=1

Treen(P). (4.11)

We refer to ε as the empty tree.

Depending on the perspective we want to take, we use the terms node and tree

interchangeably, with the former emphasising the node properties of the tree, and the

latter emphasising the structure of the tree.

We make a few auxiliary definitions

Definition 4.8 (Properties and children). For a non-empty tree (p, C), we refer to

p as the properties of the root node, and write Prop
(
(p, C)

)
= p, and we refer to C

as the set of children of the root node, and write Children
(
(p, C)

)
= C.

24

Definition 4.9 (Height). Let P be a set. We define a height function height :

FTree(P)→ N as follows:

• The height of the empty tree is 0:

height(ε) = 0. (4.12)

• The height of a tree with no children is 1:

height
(
(p,∅)

)
= 1, (4.13)

for all p ∈ P .

• Otherwise, the height of a tree is 1 more than the maximum height of its children:

height
(
(p, C)

)
= 1 + max

t∈C
height(t). (4.14)

Definition 4.10 (Size). Let P be a set. We define a size function size : FTree(P)→
N as follows:

• The size of the empty tree is 0:

size(ε) = 0. (4.15)

• Otherwise, the size of a tree is 1 plus the sum of the size of its children:

size
(
(p, C)

)
= 1 +

∑
t∈C

size(t). (4.16)

Definition 4.11 (Node path and depth). A node path p is a finite labelled subset of

N. Let P be a set and t ∈ FTree(P) a tree. We write t(p) for the node indexed by p

in t, given by:

• If #(p) = 0, then t(p) = t.

• Otherwise, if t = ε, then t(p) = ε.

• Otherwise, t is of the form (p, C) and t(p) is given by the node indexed by ρ(p)

in C(p(0)):

t(p) = C(p(0))(ρ(p)). (4.17)

The depth of a node n in a tree t is the size of the smallest node path that indexes it.

25

Definition 4.12 (Level). Let P be a set. We define a level-size function ls : N ×
FTree(P)→ N as follows:

• For any n, the size of level n of the empty tree is 0:

ls(n, ε) = 0. (4.18)

• The size of level 0 of a non-empty tree is 1:

ls
(
0, (p, C)

)
= 1. (4.19)

• Otherwise, the size of level n of a non-empty tree is the sum of the sizes of levels

n− 1 of the children of the tree:

ls
(
n, (p, C)

)
=
∑
t∈C

ls(n− 1, t). (4.20)

We define a level function level : N× FTree(P)→ P(FTree(P)) as follows:

• For any n, level n of the empty tree is the empty labelled set:

level(n, ε) = ∅. (4.21)

• Level 0 of a non-empty tree is a singleton containing that tree:

level(0, t) = {0 7→ t}. (4.22)

• Otherwise, level n of a non-empty tree (p, C) is a labelled set of trees S where

for m ∈ N, S(m) is given by:

– If there exists an i ∈ N such that l =
∑i−1

j=0 ls(n − 1, C(j)) satisfies l ≤
m < l + ls(n− 1, C(i)):

S(m) = level(n− 1, C(i)). (4.23)

– Otherwise:

S(m) = ε. (4.24)

Intuitively, the level of a tree is the labelled set of all nodes at a certain depth, where

the labelling is from left to right. Note that #(level(n, t)) = ls(n, t).

Definition 4.13 (Root, leaf and internal node). The root of a tree is the top-level

node of the tree (which is equivalent to the entire tree). Note that the root is exactly

the node indexed by ∅. A leaf is a node in a tree with no children (i.e. of the form

(p,∅)). An internal node is a node that is not a leaf.

26

4.2.3 Ordering trees

It will be useful to be able to compare trees. To this end, we define a subtree relation.

Definition 4.14 (Subtree). Given two trees s, t ∈ FTree(P) for some set P , we say

that s is a subtree of t, and write s ≤ t if one of the following holds:

(ST.1) s = ε; or

(ST.2) s is of the form (p,∅) and t is of the form (q, B), where p = q; or

(ST.3) s is of the form (p,A) and t is of the form (q, B), where p = q, #(A) = #(B),

and

∀n ∈ N : A(n) ≤ B(n). (4.25)

Intuitively, this means that when s ≤ t, the tree s can be obtained from t by removing

all of the children of some of the nodes in t (or discarding the tree entirely). Note that

this is different from the usual graph-theoretic definition of subtrees. The motivation

for this definition within the context of conceptual spaces is that we want s ≤ t to

roughly mean ‘s is a less detailed (or more general) version of t’. In this context,

the empty tree ε is considered the most general. For non-empty trees we allow the

structure of t to continue where s has a leaf. On the other hand, where s has an

internal node, this node must exactly match the corresponding node in t, except

that the children of the node in t may be more detailed. Thus we explicitly disallow

corresponding internal nodes to have a different number of children.

So, if we represents concepts like ‘insect’, ‘ant’, and ‘spider’ by Marr-Nishihara trees,

then we would expect to have the following relationships:

• |insect〉 ≤ |ant〉, because ‘insect’ is more general than ‘ant’. This is witnessed

by the fact that the Marr-Nishihara tree of ‘ant’ is more detailed than that

of ‘insect’. The tree for ‘insect’ would be quite shallow, representing only the

overall structure of three body parts, one pair of antennae and six legs. The tree

for ‘ant’ would be much deeper, with the top levels having the same structure,

but then going on to deeper levels describing the exact morphology of ants.

• |insect〉 � |spider〉, because ‘insect’ is not more general than ‘spider’: a spider

is not an insect. This is witnessed, for example, by the fact a spider has eight

legs, while an insect has six. Thus the Marr-Nishihara tree of ‘insect’ cannot be

extended to the tree of ‘spider’; at some point we would have to add additional

children (representing the extra legs) to an existing node.

27

• |ant〉 � |spider〉, because neither is a more general version of the other. Both

these concepts would be represented by fairly deep trees, which already disagree

in the higher levels.

It should be clear that this relation is related to the concept of entailment. This will

be discussed further in section 5.3.

We note that the relation defined above is a partial order:

Theorem 4.15. For any set P , the relation ≤ ⊆ FTree(P)×FTree(P) as defined in

definition 4.14 is a partial order.

Proof. We prove reflexivity, transitivity and anti-symmetry by induction on the max-

imum height h of the trees.

For h = 0 the only possible tree is ε and all the required properties hold trivially.

Now let h ≥ 1 and assume that reflexivity, transitivity and anti-symmetry of ≤ hold

for all trees of height at most h− 1. Note that for any tree of height at most h, the

children of the root will have height at most h− 1, thus by the induction hypothesis

we can apply reflexivity, transitivity and anti-symmetry to such trees.

For reflexivity, let t be a tree of height at most h. If t = ε, we apply the previous

case. Otherwise, t can be written as (p, C) for some p ∈ P and set of children C. We

then see that case (ST.3) of definition 4.14 applies: for each n we have C(n) ≤ C(n)

by the induction hypothesis.

For transitivity, let r, s, t be trees of height at most h, and assume that r ≤ s and

s ≤ t.

• If r = ε then we can immediately apply case (ST.1) to r ≤ t.

• Otherwise, if r is of the form (p,∅), then s is of the form (p,B). Thus either

case (ST.2) or case (ST.3) applies to s ≤ t and we conclude that t is of the form

(p, C). Thus case (ST.2) applies to r ≤ t.

• Finally, if r is of the form (p,A) for non-empty A, then s is of the form (p,B)

for non-empty B. Thus case (ST.3) applies to s ≤ t, and t is of the form (p, C)

for non-empty C. We have

∀n ∈ N : A(n) ≤ B(n) and B(n) ≤ C(n). (4.26)

28

By the induction hypothesis, we can use transitivity on the trees in the above

equation. This gives us:

∀n ∈ N : A(n) ≤ C(n) (4.27)

We also have #(A) = #(B) = #(C). Thus case (ST.3) applies r ≤ t.

For anti-symmetry, let s, t be trees of height at most h, and assume that s ≤ t and

t ≤ s.

• If s = ε then t ≤ s implies t = ε through case (ST.1), and thus s = t.

• If s is of the form (p,∅) then case (ST.2) applies and thus t is of the form (p,B).

Then t ≤ s implies that either case (ST.2) applies and B = ∅, in which case

we’re done, or case (ST.3) applies and #(B) = #(∅) = 0, which again implies

that B = ∅.

• If s is of the form (p,A) for non-empty A then case (ST.3) applies to s ≤ t and

thus t is of the form (p,B) for non-empty B. Thus case (ST.3) must also apply

to t ≤ s. So we have:

∀n ∈ N : A(n) ≤ B(n) and B(n) ≤ A(n). (4.28)

Applying the induction hypothesis we conclude

∀n ∈ N : A(n) = B(n). (4.29)

Thus A = B and s = t.

We conclude that by the principle of induction, reflexivity, transitivity and anti-

symmetry hold for all trees of finite height. Thus ≤ is a partial order on FTree(P).

We can also define a meet:

Definition 4.16 (Meet of trees). Let P be a set. We define a meet function ∧ :

FTree(P)× FTree(P)→ FTree(P). For s, t ∈ FTree(P), the meet s ∧ t is given by:

• If s = ε or t = ε, then s ∧ t = ε.

• If s = (p,A) and t = (q, B), and p 6= q, then s ∧ t = ε.

• If s = (p,A) and t = (q, B), p = q, #(A) = #(B) and

∀n ∈ N, n < #(A) : A(n) ∧B(n) 6= ε, (4.30)

29

then

s ∧ t =
(
p,
{
n 7→ A(n) ∧B(n) |n ≤ #(A)

})
(4.31)

• Otherwise, s = (p,A) and t = (q, B) with p = q, and s ∧ t = (p,∅).

Theorem 4.17. The meet defined above is indeed an order-theoretic meet, and thus

≤ gives rise to a meet semi-lattice.

Proof. It is obvious from the definition of the meet that for any trees s, t ∈ FTree(P),

we have m = s ∧ t ≤ s, t. To show that m is the maximum among such elements, we

proceed by induction on the maximum height h of m.

If h = 0, then m = ε. Thus either s = ε, t = ε, or s = (p,A) and t = (p,Q) with

p 6= q. In each of these cases the only subtree of both s and t is ε, thus the result

holds.

Now let h ≥ 1 and assume that if s∧t has height at most h−1, then it is the maximum

simultaneous subtree of s and t. If m = ε the previous case applies. Otherwise, m

is of the form (p,A), and thus s is of the form (p,B) and t is of the form (p, C). If

A = ∅ then one of the following must be true:

• #(B) 6= #(C). In this case, the maximum simultaneous subtree of s and t is

clearly (p,∅) = m, so the result holds.

• #(B) = #(C), but there is an n ∈ N with n < #(B) such that B(n)∧C(n) = ε.

This implies that B(n) = ε, C(n) = ε, or Prop(B(n)) 6= Prop(C(n)). The first

two cases contradict the fact that #(B) = #(C), so we can assume the latter

case. This implies that the maximum simultaneous subtree of B(n) and C(n)

is ε. Since ε is not a valid child, this forces m = (p,∅), so the result holds.

Otherwise, A is non-empty. This means that #(B) = #(C) and that for each n ≤
#(B) we have A(n) = B(n) ∧ C(n) 6= ε. By the induction hypothesis, we have that

for each such n, the meet B(n)∧C(n) is the maximum simultaneous subtree of B(n)

and C(n). Let r ∈ FTree(P) such that r ≤ s, t. Then one of the following must be

true:

• r = ε. Then r ≤ m and the result holds.

• r = (p,∅). Then r ≤ m and the result holds.

• r = (p,R) for non-empty R. Then #(R) = #(B),#(C), and for all n ∈ N with

n ≤ #(R), we have R(n) ≤ B(n), C(n). But since A(n) = B(n) ∧ C(n) is the

30

maximum simultaneous subtree of B(n) and C(n), this implies that R(n) ≤
A(n). Thus r ≤ m and the result holds.

Thus, by the principle of induction, meets of any height are indeed the greatest

maximum simultaneous subtree, and thus the order-theoretic meet. We conclude

that ≤ gives rise to a meet semi-lattice.

4.3 Generalised metrics and convexity

In this section we introduce a generalisation to the usual notion of metric spaces, and

use this generalisation to define convexity. We then apply this to trees in the next

section. Compare this approach to the approach taken by Bolt et al. in [BCG+16],

where conceptual spaces were equipped with a linear structure which was then used

to define convexity.

First, we define a distance space, which will take the role of the real numbers in the

definition of generalised metrics:

Definition 4.18 (Distance space). A distance space (D,≤,+, 0) is a set D equipped

with a binary relation ≤, binary operation + and a designated element 0 such that:

(DS.1) (D,+) is an abelian group with 0 as its identity; and

(DS.2) (D,≤) is a totally ordered set; and

(DS.3) the order is translation-invariant with respect to the group operation:

∀a, b, c ∈ D : a ≤ b =⇒ a+ c ≤ b+ c. (4.32)

When confusion is unlikely to arise, we will refer to a distance space (D,≤,+, 0)

simply as D, leaving the structure implied. When we want to make the structure

explicit, we will write D = (D,≤,+, 0) and then use D as a shorthand for the entire

structure.

Given two distance spaces we can construct the product of these spaces:

Definition 4.19 (Product distance space). Let X = (X,≤X ,+X , 0X) and Y =

(Y,≤Y ,+Y , 0Y) be distance spaces. Then the product distance space X × Y is given

by:

31

• The set X × Y equipped with

• total order ≤X×Y given by (x1, y1) ≤X×Y (x2, y2) if x1 6= x2 and x1 ≤X x2, or

x1 = x2 and y1 ≤Y y2; and

• binary operation +X×Y given by (x1, y1) +X×Y (x2, y2) = (x1 +X x2, y1 +Y y2);

and

• the group identity 0X×Y = (0X , 0Y).

Note that in general X × Y will be a very different object from Y × X, due to the

asymmetry in the order relation. The following lemma shows that this definition is

valid.

Lemma 4.20. Let X and Y be distance spaces. Then X × Y is a distance space.

Proof. The group of X × Y is simply the direct product of the groups of X and Y ,

thus it is obvious that (DS.1) holds.

For (DS.2) we check antisymmetry, transitivity and totality.

For antisymmetry, suppose that (x1, y1) ≤ (x2, y2) and (x2, y2) ≤ (x1, y1). If x1 6= x2

then the assumption implies that x1 ≤ x2 and x2 ≤ x1, thus by antisymmetry of ≤
on X, we conclude that x1 = x2, arriving at a contradiction. Thus x1 = x2, and the

assumption implies that y1 ≤ y2 and y2 ≤ y1. Thus by antisymmetry of ≤ on Y , we

conclude that y1 = y2. Thus (x1, y1) = (x2, y2), as required.

For transitivity, suppose that (x1, y1) ≤ (x2, y2) and (x2, y2) ≤ (x3, y3). Note that we

have x1 ≤ x2 and x2 ≤ x3, thus x1 ≤ x3. If x1 6= x2 or x2 6= x3 then x1 6= x3 (this

follows from antisymmetry on X) and thus (x1, y1) ≤ (x3, y3). If instead x1 = x2 = x3,

then y1 ≤ y2 and y2 ≤ y3, thus y1 ≤ y3 and thus again (x1, y1) ≤ (x3, y3), as required.

For totality, note that for (x1, y1), (x2, y2), either x1 = x2 or x1 6= x2. In the former

case, totality follows from the totality on X, in the latter case it follows from totality

on Y . Thus totality is satisfied, as required. This shows that we indeed have a total

order, satisfying (DS.2).

Finally, for (DS.3), let (x1, y1), (x2, y2), (x3, y3) ∈ X × Y and suppose that (x1, y1) ≤
(x2, y2). Then either x1 6= x2 or x1 = x2. In the former case, we have x1 ≤ x2 and

thus x1 + x3 ≤ x2 + x3. We also have x1 + x3 6= x2 + x3, by invertibility of x3. Thus,

in the former case (x1, y1) + (x3, y3) ≤ (x2, y2) + (x3, y3). In the latter case we have

32

y1 ≤ y2, and thus y1 + y3 ≤ y2 + y3. We also have x1 + x3 = x2 + x3, and thus

(x1, y1) + (x3, y3) ≤ (x2, y2) + (x3, y3), as required. Thus (DS.3) is satisfied.

The proof above is the only situation where invertibility of distance space elements is

required. Thus condition (DS.1) could be replaced by the following, weaker require-

ments:

• (D,+) is a commutative monoid with identity 0; and

• for any x, y, z ∈ D, if x 6= y, then x+ z 6= y + z.

We also have the following lemma:

Lemma 4.21. Let X and Y be distance spaces, and let x1, x2 ∈ X and y1, y2 ∈ Y .

If x1 ≤ x2 and y1 ≤ y2, then (x1, y1) ≤ (x2, y2) in the product space X × Y .

Proof. If x1 6= x2 the result holds by x1 ≤ x2. Otherwise, the result holds by y1 ≤
y2.

With this definition of a distance space, the definition of a generalised metric is

obvious:

Definition 4.22 (Generalised metric). Let X be a set and (D,≤,+, 0) a distance

space. A generalised metric is a function d : S×S → D such that for any x, y, z ∈ S:

(GM.1) d(x, y) ≥ 0 (non-negativity); and

(GM.2) d(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles); and

(GM.3) d(x, y) = d(y, x) (symmetry); and

(GM.4) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

We say that (X, d) is a generalised metric space.

Note that D = R with the usual ordering and addition is a distance space, and

generalised metrics to this distance space are exactly the usual metrics.

We can also define a product metric:

Definition 4.23 (Product metric). Let (X, dX) and (Y, dY) be generalised metric

spaces. Then define (X, dX)× (Y, dY) = (X × Y, dX × dY).

The following lemma shows that this definition is valid.

33

Lemma 4.24. Let (X, dX) and (Y, dY) be generalised metric spaces. Then (X, dX)×
(Y, dY) is a generalised metric space.

Proof. It is immediately obvious that (GM.1), (GM.2) and (GM.3) hold.

For (GM.4) (the triangle inequality), let (x1, y1), (x2, y2), (x3, y3) ∈ X × Y . By the

triangle inequality on X and Y , we have dX(x1, x3) ≤ dX(x1, x2) + dX(x2, x3) and

dY (y1, y3) ≤ dY (y1, y2) + dY (y2, y3). Thus, by lemma 4.21, we have

dX × dY ((x1, y1), (x3, y3)) = (dX(x1, x3), dY (y1, y3))

≤ (dX(x1, x2) + dX(x2, x3), dY (y1, y2) + dY (y2, y3))

= dX × dY ((x1, y1), (x2, y2)) + dX × dY ((x2, y2), (x3, y3)).

(4.33)

The notion of metric convexity carries over to generalised metrics. Note that metric

convexity is distinct from te usual notion of convexity. First we define bridges and

betweenness:

Definition 4.25 (Bridge and betweenness). Let (X, d) be a generalised metric space,

and let x, z ∈ X. We define the bridge from x to z as:

Bridge(x, z) = {y ∈ X | d(x, z) = d(x, y) + d(y, z)}, (4.34)

and we say that y ∈ X is between x and z if y 6= x, z and y ∈ Bridge(x, z).

Then a convex subset is simply defined as a set containing bridges between its ele-

ments:

Definition 4.26 (Metric convexity). Let (X, d) be a generalised metric space, and

let S ⊆ X. We say that S is convex if for any x, y ∈ S:

Bridge(x, y) ⊆ S. (4.35)

Note that this definition agrees with definition 3.1.

As one would hope, products of convex subsets are convex:

Theorem 4.27. Let (X, dX) and (Y, dY) be generalised metric spaces, and let SX ⊆ X

and SY ⊆ Y be convex. Then SX × SY ⊆ X × Y is convex.

34

Proof. Let (x1, y1), (x3, y3) ∈ SX × SY , and let (x2, y2) ∈ Bridge((x1, y1), (x3, y3)).

Then

dX × dY ((x1, y1), (x3, y3)) = dX × dY ((x1, y1), (x2, y2))

+ dX × dY ((x2, y2), (x3, y3)).
(4.36)

This implies dX(x1, x3) = dX(x1, x2) + dX(x2, x3) and dY (y1, y3) = dY (y1, y2) +

dY (y2, y3). Thus x2 ∈ Bridge(x1, x3) and y2 ∈ Bridge(y1, y3). Therefore, by con-

vexity of SX and SY , x2 ∈ SX and y2 ∈ SY . Thus (x2, y2) ∈ SX × SY . We conclude

that Bridge((x1, y1), (x3, y3)) ⊆ SX × SY . Thus SX × SY is convex.

4.4 A metric for trees

In order to consider notions of similarity and convexity for hierarchical conceptual

spaces, we need to define a metric on trees. We will develop a metric based on the

following principles:

(a) Structural differences are more important than differences in just node proper-

ties.

(b) Differences higher up in a tree are more important than differences further down.

In section 4.4.1 we will define the distance space that will represent structural dif-

ferences, and introduce a few other concepts that will be required for what follows.

Next, in section 4.4.2 we define a structural metric (ignoring node properties), and

show that it is a valid generalised metric if the property space is trivial. Finally, in

section 4.4.3, we extend the definition of the structural metric to a full tree metric,

which also takes node properties into account.

4.4.1 Preliminary definitions

First, we define a structural distance space, for expressing structural distances be-

tween trees. The intuition behind the construction is that we have an infinite list

of integers, each integer representing the distance due to a specific level of the trees.

The order relation is defined such that deeper levels are only considered if there is

no difference in the shallower levels. This corresponds to principle (b) above. The

addition operation will be used to recursively define distance by summing over the

children of a node.

35

Definition 4.28 (Structural distance space). The structural distance space DS is

given by:

• The set DS = {x : N → Z} of functions from the natural numbers to the

integers.

• The lexicographical order relation ≤ characterised as follows: Let x, y ∈ DS. If

x = y then certainly x ≤ y, so we can assume that x 6= y. Let i ∈ N be the

smallest number such that x(i) 6= y(i). If x(i) < y(i), then x ≤ y; otherwise

y ≤ x.

• The addition operation + given by pointwise addition: (x+ y)(i) = x(i) + y(i).

• The identity 0S defined by 0S(i) = 0.

It is easily checked that this definition indeed satisfies the requirements of a distance

space.

Note that DS can be alternatively described as the infinite product of integer distance

spaces:

DS =×
i∈N

(Z,≤,+, 0). (4.37)

We also define the following function on the structural distance space:

Definition 4.29 (Shift function). The shift function σ : DS → DS is given by:

σ(x)(i) =

{
0 if i = 0,

x(i− 1) otherwise,
(4.38)

for all x ∈ DS and i ∈ N.

This function will be useful when reasoning recursively about distances.

Some properties of the shift function:

Lemma 4.30. The shift function satisfies the following properties:

• σ is linear:
∑

d∈D σ(d) = σ
(∑

d∈D d
)
, for all D ⊆ DS; and

• σ is strictly increasing: σ(x) ≤ σ(y) ⇐⇒ x ≤ y, for all x, y ∈ DS.

Proof. Follows immediately from the definition.

36

Finally, we will use a Kronecker delta-like notation to designate specific elements

δk ∈ DS, for k ∈ N:

δk(i) =

{
1 if i = k,

0 otherwise.
(4.39)

4.4.2 The structural metric

We now define the structural metric on finite trees:

Definition 4.31 (Structural metric). For P a set, the structural metric dS : FTree(P)×
FTree(P)→ DS is given by:

(SM.1) If both trees are empty:

dS(ε, ε) = 0S. (4.40)

(SM.2) If one of the trees is empty:

dS(ε, (p, C)) = dS((p, C), ε) = δ0 +
∑
t∈C

σ
(
dS(ε, t)

)
. (4.41)

(SM.3) Otherwise:

dS((p,A), (q, B)) =
m−1∑
n=0

σ
(
dS(A(n), B(n))

)
, (4.42)

where m = max(#(A),#(B)).

The metric essentially counts, per node, the number of nodes that are missing from

one tree or the other, summing these values per level.

The following theorem shows that the metric defined above is a generalised metric

when the property space is trivial.

Theorem 4.32. For P = {∗}, the structural metric dS is a generalised metric.

Proof. It is immediately obvious that (GM.1) and (GM.3) hold. For the other con-

ditions, we proceed by induction on the maximum height h of the trees.

For h = 0, the only tree of height at most h is ε. Both (GM.2) and (GM.4) are

trivially satisfied.

Now let h ≥ 1, and assume that (GM.2) and (GM.4) hold for trees of height at most

h − 1. Note that for any tree of height at most h, the children of the root will have

37

height at most h− 1, thus by the induction hypothesis, we can apply the identity of

indiscernibles and the triangle equality to such trees.

Identity of indiscernibles (GM.2):

If x = y = ε, the condition is trivially satisfied in the same way as for h = 0.

If one of x and y is ε, and the other is of the form (∗, C), then case (SM.2) of definition

4.31 applies, and we have dS(x, y) = δ0 + σ(. . .) 6= 0S, and x 6= y, thus the condition

is satisfied.

For the final case, we have x = (∗, A) and y = (∗, B) and can assume without loss of

generality that #(A) ≤ #(B). Thus case (SM.3) applies. Note that all the terms in

the sums are non-negative by property (GM.1). If x 6= y, then A 6= B, so there is some

n ∈ N such that A(n) 6= B(n), and we can assume that n < max(#(A),#(B)). This

implies that the sum in equation (4.42) is positive, thus dS(x, y) > 0S as required. If,

instead, x = y, then for all n ∈ N, A(n) = B(n). Thus the sum is 0S (again, by the

induction hypothesis), and we have dS(x, y) = 0S, as required.

Triangle inequality (GM.4):

First, note that for any a = (∗, A) and b = (∗, B), (dS(a, b))(0) = 0, and (dS(a, b))(1) =

|#(A)−#(B)|.

If x, y and z are not all distinct, the triangle equality certainly holds (by property

(GM.2)). Therefore we can assume that x, y and z are all distinct.

If y = ε then dS(x, y) + dS(y, z) = δ0 + δ0 + σ(. . .), thus (dS(x, y) + dS(y, z))(0) = 2.

On the other hand, (dS(x, z))(0) = 0 (since neither x or z is equal to ε). So dS(x, z) <

dS(x, y) + dS(y, z), and the triangle equality is satisfied.

Suppose x = ε, y = (∗, B) and z = (∗, C). Then the distance dS(y, z) is calculated

38

via case (SM.3). So, with m = max(#(B),#(C)),

dS(x, y) + dS(y, z) = δ0 +
∑
t∈B

σ
(
dS(ε, t)

)
+

m−1∑
n=0

σ
(
dS
(
B(n), C(n)

))
= δ0 +

m−1∑
n=0

[
σ
(
dS
(
ε, B(n)

)
+ dS

(
B(n), C(n)

))]

≥ δ0 +
m−1∑
n=0

σ
(
dS
(
ε, C(n)

))
= δ0 +

∑
t∈C

σ
(
dS(ε, t)

)
= dS(x, z),

(4.43)

as required. Note that we used the induction hypothesis to apply the triangle equality

term-wise.

The case with z = ε is symmetric to the case with x = ε.

For the final case, let x = (∗, A), y = (∗, B) and z = (∗, C). Then case (SM.3) applies

to both dS(x, y) and dS(y, z). Letm = max(#(A),#(B)) andm′ = max(#(B),#(C)),

then we have:

dS(x, y) + dS(y, z) =
m−1∑
n=0

σ
(
dS(A(n), B(n))

)
+

n′−1∑
n′=0

σ
(
dS(B(n), C(n))

)
. (4.44)

Setting m∗ = max(m,m′), we can rewrite this to:

dS(x, y) + dS(y, z) =
m∗−1∑
n=0

σ
(
dS(A(n), B(n)) + dS(B(n), C(n))

)
. (4.45)

We then use the induction hypothesis to apply the triangle equation term-wise:

dS(x, y) + dS(y, z) ≥
m∗−1∑
n=0

σ
(
dS(A(n), C(n))

)
= dS(x, z), (4.46)

as required.

We conclude that by the principle of induction both the identity of indiscernibles and

the triangle inequality hold for all trees of finite height. Thus dS is a generalised

metric on FTree({∗}).

4.4.3 The tree metric

When the property space is not trivial, the structural metric will clearly fail to be

a generalised metric, since identity of indiscernibles (GM.2) is violated. However,

39

we can extend this metric to trees with non-trivial property spaces with a minor

modification. To that end, we first define a restriction on the sets P that we will use

as property spaces:

Definition 4.33 (Property space). A property space is a set P equipped with a

generalised metric dP : P × P → DP .

Definition 4.34 (Tree metric). Let P be a property space with generalised metric

dP : P × P → DP . Then define

DP ∗ =×
i∈N

DP . (4.47)

Now the tree metric dT [dP] : FTree(P) × FTree(P) → DS ×DP ∗, written simply as

dT when the property metric is clear from context, is given by:

(TM.1) If both trees are empty:

dT (ε, ε) = (0S, 0P). (4.48)

(TM.2) If one of the trees is empty:

dT (ε, (p, C)) = dS((p, C), ε) = (δ0, 0P) +
∑
t∈C

σT
(
dT (ε, t)

)
. (4.49)

(TM.3) Otherwise:

dT ((p,A), (q, B)) = (0S, dP (p, q)) +
m−1∑
n=0

σT
(
dT (A(n), B(n))

)
, (4.50)

where m = max(#(A),#(B)).

Here, σT : DS ×DP ∗ → DS ×DP ∗ is defined analogously to σ from definition 4.29:

σT (x, y)(i) =

{
(0, 0P) if i = 0,

(x, y)(i− 1) otherwise,
(4.51)

where for (x, y) ∈ DS ×DP ∗ we write (x, y)(i) := (x(i), y(i)).

Theorem 4.35. For (P, dP) a generalised metric property space, the tree metric

dT [dP] is a generalised metric.

Proof. This is a trivial modification of the proof for theorem 4.32.

40

Note that the distance space product DS ×DP ∗ yields an order in which DP ∗ is only

considered if there are no differences in DS (see definition 4.19). This corresponds

to principle (a) above. Principle (b) (differences higher up are more important) for

structural differences is preserved from the structural metric, and for properties it

is guaranteed by the product definition of DP ∗ . Thus the metric dT satisfies both

principles.

41

Chapter 5

A category of trees

In this chapter we define a category of trees, and then explore the properties of states

in this category when interpreted as a representation of meaning. In section 5.1 we

define the category FTree(P) for property space P . In section 5.2 we discuss how the

representation of concepts differs from the representation of concrete objects. Finally,

in section 5.3 we discuss how entailment and ambiguity are encoded in our category.

5.1 The category FTree(P)

Definition 5.1 (Category of trees). Let P be a property space. Then the category

FTree(P) of finite trees with properties in P is the category with:

• Objects: the sets I = {ε} and FTree(P), and any finite Cartesian product of

these.

• Morphisms: for A,B an object of the category, the morphisms between A and

B are the relations between A and B.

• Composition: the usual composition of relations; if R : A→ B and S : B → C,

then

S ◦R : A→ C := {(a, c) ∈ A× C | ∃b ∈ B : (a, b) ∈ R ∧ (b, c) ∈ S}. (5.1)

Note that the metric and order defined on trees can be extended to all the objects

of FTree(P) by using the product metric of definition 4.23 and the usual product

order. The unit carries a trivial structure.

42

Also note that FTree(P) is a full subcategory of Rel. Unsurprisingly then, FTree(P)

admits much the same structure as Rel. In particular, we define the compact closed

structure on FTree(P) exactly as for Rel. Each time, we omit the proofs of cor-

rectness for these structures since they follow directly from the correctness of these

structures for Rel.

Theorem 5.2. Let P be a property space. Then FTree(P) admits a monoidal struc-

ture with the monoidal functor given by:

⊗ : FTree(P)× FTree(P)→ FTree(P),

(A,B) 7→ A×B,

(R : A→ B, S : X → Y) 7→ R× S : A×X → B × Y.

(5.2)

The monoidal unit is given by I = {ε}, the associator has components

αA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C),

((a, b), c) ∼ (a, (b, c)),
(5.3)

the left unitor has components

λA : I ⊗ A→ A,

(ε, a) ∼ a,
(5.4)

and the right unitor has components

ρA : A⊗ I → A,

(a, ε) ∼ a.
(5.5)

Theorem 5.3. Let P be a property space. Then FTree(P) admits a symmetric

structure with the braiding given by

σA,B : A⊗B → B ⊗ A,

(a, b) ∼ (b, a).
(5.6)

Theorem 5.4. Let P be a property space. Then FTree(P) has a duality structure

where every object is its own dual and the unit and counit are given by:

ηA : I → A⊗ A,

ε ∼ (a, a) for all a ∈ A,
(5.7)

and

εA : I → A⊗ A,

(a, a) ∼ ε for all a ∈ A.
(5.8)

43

To avoid confusion between the empty tree ε and the counit ε, we will typically just

refer to ‘the counit’, or draw a cup, while continuing to use ε for the empty tree.

Corollary 5.5. Let P be a property space. Then FTree(P) is a symmetric monoidal

category with duals. Thus FTree(P) is a compact closed category.

5.2 Concepts versus concrete objects

In the remainder of dissertation we will make a distinction between concepts4 and

concrete objects. A concept is an abstract notion to which any given concrete ob-

ject may or may not conform. Examples of concepts include ‘insect’, ‘human’, and

‘furniture’, while a concrete object could be ‘that spider’, ‘John’, ‘our table’.

If we think of the concept-concrete object-distinction in terms of detail, it becomes a

little clearer how this distinction might take shape in our conceptual space. A concrete

object has a maximum level of detail, representing our knowledge about that object.

Adding extra detail to the representation of a concrete object corresponds to gaining

more knowledge about that object and should thus be considered a fundamental

change in our mental model of the object. On the other hand, we do not generally

think of an object in all of its detail; a person who owns a football probably has

some fairly extensive knowledge of the details of the ball: the pattern of the leather

patches, the specific shape of the stitching, etc.; however, when he tells a friend he

will bring the football with him on his holiday trip, his mental model of the ball is

probably limited to a simple sphere (at least as far as shape is concerned). Thus

forgetting details, or generalising, is something we constantly do for concrete objects.

In contrast, a concept has a minimum level of detail, representing the properties that

any object conforming to that concept should, at a minimum, have. Removing detail

from the representation of a concept represents a fundamental change in the mental

model of that concept, since it corresponds to generalising that concept. On the

other hand, filling in extra details corresponds to instantiating that concept and is

something we are constantly doing.

This suggests that concrete objects should be represented by states which are in

some sense closed under ‘generalising’, while concepts should be represented by states

4While Gärdenfors made a distinction between concepts and properties (see chapter 3.1), these
two notions coincide in our case, since our conceptual space covers only a single domain.

44

which are in some sense closed under ‘specialising’. In this section we develop a

mathematically rigorous model for this way of thinking.

5.2.1 Closed sets

Definition 5.6 (Upward closed). Let (P,≤) be a partially ordered set, and let S ⊆ P .

We say that S is upward closed if:

∀x ∈ S, y ∈ P : x ≤ y =⇒ y ∈ S. (5.9)

Definition 5.7 (Basis of an upward closed set). Let (P,≤) be a partially ordered set,

and let S ⊆ P be an upward closed set. Let B ⊆ S. We say that B is a basis of S

and write S = ↑B if:

∀x ∈ P : x ∈ S ⇐⇒ (∃b ∈ B : b ≤ x) . (5.10)

And similarly:

Definition 5.8 (Downward closed). Let (P,≤) be a partially ordered set, and let

S ⊆ P . We say that S is downward closed if:

∀x ∈ S, y ∈ P : y ≤ x =⇒ y ∈ S. (5.11)

Definition 5.9 (Basis of a downward closed set). Let (P,≤) be a partially ordered

set, and let S ⊆ P be a downward closed set. Let B ⊆ S. We say that B is a basis

of S and write S = ↓B if:

∀x ∈ P : x ∈ S ⇐⇒ (∃b ∈ B : x ≤ b) . (5.12)

We say that a set is closed if it is either upward or downward closed. Note that this

notion of closedness is unrelated to the topological notion.

5.2.2 Convexity of closed sets

In this section, we will prove that closed sets with convex bases are convex. We first

prove the following theorem which relates bridges of trees to bridges of their subtrees:

Theorem 5.10. Let P be a property space and let r, t, x, z ∈ FTree(P). Suppose that

r ≤ x and t ≤ z. Then for any y ∈ Bridge(x, z) there exists an s ∈ Bridge(r, t) such

that s ≤ y.

45

Proof. We proceed by induction on h = max(height(r), height(t)).

For h = 0, r = t = ε and the result holds by always setting s = ε.

Now let h ≥ 1 and assume the result holds for all h′ < h. If either of r or t is

ε, we can again set s = ε. Otherwise, we can write r = (pr, R) and t = (pt, T),

and assume without loss of generality that #(R) ≤ #(T). Let y ∈ Bridge(x, z)

arbitrarily. If either x or z is equal to ε, then either r or t is equal to ε, contradicting

our assumption. Similarly, y = ε implies that either x or z is equal to ε, thus giving

a contradiction. Thus we can write x = (pr, X), y = (py, Y), and z = (pt, Z). Note

that py ∈ Bridge(pr, pt).

If #(T) = 0, then s = (py,∅) satisfies the requirements. Otherwise, note that

dT (x, z)(1) = (|#(X) −#(Z)|, d) for some d ∈ DP . From y ∈ Bridge(x, z) we know

that dT (x, y)(1)+dT (y, z)(1) = dT (x, z)(1), and thus |#(X)−#(Y)|+|#(Y)−#(Z)| =
|#(X)−#(Z)|. We conclude that #(X) ≤ #(Y) ≤ #(Z). Moreover, since #(T) > 0,

we have #(T) = #(Z). Similarly, either #(R) = 0, or #(R) = #(X). Thus we have

#(R) ≤ #(Y) ≤ #(Z). Now, for each 0 ≤ n < #(Y), we have:

• R(n) ≤ X(n),

• T (n) ≤ Z(n), and

• Y (n) ∈ Bridge(X(n), Z(n)).

Since max(height(R(n)), height(T (n))) < max(height(r), height(t)) = h, we can ap-

ply the induction hypothesis. So, for every n, there is a tree S(n) ∈ Bridge(R(n), T (n))

such that S(n) ≤ Y (n). We then simply construct s as:

s = (pY , {n 7→ S(n) |n < #(Y)}). (5.13)

Clearly s ≤ y and s ∈ Bridge(r, t). This completes the proof.

The symmetric case also holds:

Theorem 5.11. Let P be a property space and let r, t, x, z ∈ FTree(P). Suppose that

x ≤ r and z ≤ t. Then for any y ∈ Bridge(x, z) there exists an s ∈ Bridge(r, t) such

that y ≤ s.

Proof. The argument is symmetric to the argument in the proof of theorem 5.10.

These theorems have some useful corollaries:

46

Corollary 5.12. Let P be a property space and let r, x, y, z ∈ FTree(P). Suppose

that r ≤ x, z and r � y. Then dT (x, z) < dT (x, y) + dT (y, z).

Proof. We use the contrapositive of theorem 5.10 with r = t. For clarity, we state

theorem 5.10 in predicate logic:

∀r, t,x, y, z ∈ FTree(P) :

(r ≤ x ∧ t ≤ z) =⇒ (y ∈ Bridge(x, z) =⇒ ∃s ∈ Bridge(r, t) : s ≤ y) .
(5.14)

The statement r � y implies

¬ (∃s ∈ Bridge(r, r) : s ≤ y) . (5.15)

Using the contrapositive of the consequent of the top-level implication in equation

(5.14), we get:

¬(y ∈ Bridge(x, z)). (5.16)

This implies that dT (x, z) < dT (x, y) + dT (y, z), as required.

We also get a convexity result for closed sets of trees:

Corollary 5.13. Let P be a property space and let S ⊆ FTree(P). Suppose that S is

upward or downward closed with B a basis. Then if B is convex, so is S.

And finally, the main result of this section:

Theorem 5.14. Let P be a property space, A an object of FTree(P), and ϕ a state

of A. Suppose that the set S represented by ϕ is upward or downward closed with B

a basis. Then if B is convex, so is S.

Proof. We can write A '
⊗n

i=1 FTree(P) for some n ∈ N.

Suppose that S is upward closed with convex basis B. For 1 ≤ i ≤ n, let πi : S →
FTree(P) be the i-th projection operator. Let x, z ∈ S. Then there are r, t ∈ B such

that r ≤ x and t ≤ z. Let y ∈ Bridge(x, z) arbitrarily. Then for every 1 ≤ i ≤ n, we

have:

• πi(y) ∈ Bridge(πi(x), πi(z)); and

• πi(r) ≤ πi(x), and πi(t) ≤ πi(z).

47

Thus by theorem 5.10, for every 1 ≤ i ≤ n there is an si ∈ Bridge(πi(r), πi(t)) such

that si ≤ πi(y). Then s = (s1, . . . , sn) ∈ Bridge(r, t). Since B is convex, this implies

that s ∈ B. We also have s ≤ y, and thus conclude that y ∈ S.

Thus the set S is convex.

The argument for the downward closed case is symmetric.

5.2.3 Closed sets as a model for concepts and concrete ob-
jects

In the context of our conceptual space, an upward closed set essentially models the

possibility of arbitrary specialisation, while a downward closed set models the possi-

bility of complete generalisation. Based on our discussion earlier in this section, this

suggests that upward and downward closed sets are a good model for concepts and

concrete objects, respectively.

However, for concrete objects the possibility of complete generalisation seems like too

strong an assumption. While it is true that any concrete object could be thought

of in most general terms, i.e. ‘just a thing’, when actually discussing an object or

thinking about it, a minimum level of detail is quickly established. When a speaker

tells someone else that ‘Alice went into the kitchen’, both speakers have now formed a

mental model of the kitchen that, at the very least, allows for occupation by a person.

Generalising the kitchen to just some object which may or may not allow people to

go into it is no longer a valid mental manipulation, since it would make it impossible

to faithfully represent the information that has been communicated.

We conclude that when concrete objects interact with other parts of a sentence, that

object’s potential for generalisation may be diminished. In the above example this

interaction happened through the preposition ‘in’. This will be considered in more

detail when we discuss the role of prepositions in our model in chapter 6. Another

example of how this interaction might occur is through being acted upon by a concept;

in the sentence ‘the kitchen is a room’, the concrete object ‘the kitchen’ is acted upon

by the concept ‘room’. The result is that the potential for generalising ‘the kitchen’

is limited to only those generalisations which are still an instance of ‘room’.

48

5.3 Entailment and ambiguity

In section 4.2.3 we discussed how the subtree relation can witness entailment of con-

cepts: |insect〉 ≤ |ant〉, because ‘insect’ is more general than ‘ant’. By representing

concepts as upward closed sets instead of single trees, this entailment relation is cap-

tured by ⊇ rather than ≤: ↑ |insect〉 ⊇ ↑ |ant〉. And in fact, this relation is more

powerful, since it also allows us to represent entailment with respect to the prop-

erty space: we can have ↑ |rectangle〉 ⊇ ↑ |square〉, where the inclusion is not due to

|rectangle〉 having a shallower tree structure than |square〉, but due to representing a

larger region in the property space.

In section 3.1 we discussed the thesis by Gärdenfors that concepts are convex regions.

Then, in section 5.2.2 we showed that we can ensure that upward closed sets are

convex by restricting ourselves to convex bases. Finally, in section 5.2.3 we argued

that upward closed sets are a good model for concepts. Thus we might be inclined

to represent concepts as upward closed sets with convex bases. However, by allowing

ourselves to use non-convex sets, for both concepts and concrete objects, we can

encode ambiguity.

Consider the word ‘queen’. Depending on the context, this word might refer to the

concept of a monarch, a specific monarch, the band Queen, a chess piece (either

conceptually or as a concrete object), or something completely different. In our

model, we would first determine whether the word is being used conceptually or

concretely, and then represent the word as the union of the representations of all the

specific conceptual or concrete meanings. Then, the correct meaning will (hopefully)

be resolved by the interaction of the word with other parts of a sentence.

Contrasting our approach with the one by Ashoush and Coecke [AC16], we note that

in our model representations of entailment and ambiguity arise naturally from the

construction of the conceptual space, whereas Ashoush and Coecke create a separate

structure to represent these aspects using a model that is otherwise unable to capture

them. On the other hand, the approach by Ashoush and Coecke allows for different

gradations of entailment and ambiguity, while our model is unable to capture such

nuance. This could be especially problematic when a word has a large number of

obscure meanings.

49

Chapter 6

A hierarchical category for shapes

Up until now we have treated the category FTree(P) in abstract terms, building

and justifying the mathematical machinery required for this category, but without

specifying it in detail. We are now ready to define a category Shape which can be

used as a conceptual space representing shapes in a distributional model of meaning.

We define Shape as a specific instance of FTree(P) by fixing a property space P .

In section 6.1 we construct a property space to implement the Marr-Nishihara model.

Then, in section 6.2 we extend this property space by adding preposition attachment

points.

6.1 Node properties for the Marr-Nishihara model

We now implement the Marr-Nishihara model as described in section 4.1. Unfortu-

nately, this will involve a number of ad-hoc poorly justified choices. This is a result

of the fact that these choices should be made based upon experimental evidence, or

at the very least based upon arguments from cognitive science or linguistics, and not

mathematical arguments. We therefore settle for making some poorly justified choices

and suggest that future researchers from those fields reconsider the issue at a later

point.

As mentioned in section 4.1, a node has several properties: dimensions, orientation

and position. We will interpret the orientation and position as relative to the parent

node. For the root node, we will simply choose to set the position to the origin and

define orientation relative to the observer. Similarly, dimensions should be considered

50

relative, since (absolute) size is not an aspect of shape. Thus we will arbitrarily choose

to give the root node a volume of 1.

As argued in section 4.1, the Marr-Nishihara model was primarily designed to describe

the shape of animals. To make the model more well-suited for the many somewhat

cubic man-made objects, we deviate from the Marr-Nishihara model by using rectan-

gular cuboids as our primitive. Thus our nodes have three dimensions: width, depth

and height. This choice of primitive makes Cartesian coordinates a natural choice for

describing the relative position of nodes, again deviating from Marr and Nishihara’s

choice of cylindrical coordinates. For the relative orientation Marr and Nishihara

use spherical coordinates to describe the orientation and length of an axis. We have

absorbed the length of the axis in the dimensions of the primitive, and require an

extra angle because we have lost a degree of symmetry by switching from cylinders

to cuboids. Thus we will describe the orientation using an Euler angle system, con-

sisting of three angles. While there are many different conventions for the exact use

of Euler angles, such details won’t really be relevant to our discussion, thus we leave

them unspecified.

Besides defining the information on the nodes, defining a property space also involves

defining a metric on this information. For the dimensions and position a normal

euclidean metric seems appropriate. For the orientation we use an approach similar

to the one used for defining a polar metric on colour in equation (3.1):

dorientation
(
(ϕ1, θ1, ψ1), (ϕ2, θ2, ψ2)

)
=
√
dθ(ϕ1, ϕ2)2 + dθ(θ1, θ2)2 + dθ(ψ1, ψ2)2, (6.1)

where dθ is the same function as in equation (3.1).

We will combine these three metrics using the product metric of definition 4.23. We

do need to choose in what order we combine the metrics, since this order matters. We

will consider the relative position to be more important than the dimensions, which

is more important than the relative orientation.

This gives us the following definition:

Definition 6.1 (Marr-Nishihara property space). The Marr-Nishihara property space

is given by:

• The set M = P ×D × O, where P = R3 encodes relative position, D = (R+)3

encodes the dimensions, and O = [0, 2π)3 encodes relative orientation.

51

• The metric dM = dposition × ddimension × dorientation : M → R3, where dposition and

ddimension are the usual euclidean metrics, and dorientation is defined in equation

(6.1). Each of these three functions are (normal) metrics, and thus generalised

metric, so their product is a generalised metric.

6.2 Decorating trees with preposition attachment

points

As an example of how to exploit the hierarchical structure of the model we’re con-

structing, we equip our model with preposition attachment points. We will extend our

property space to represent such attachment points on nodes, and define attachment

relations that exploit these attachment points.

Definition 6.2 (Preposition property space). Let P be a (finite) set of prepositions.

Then the property space A for preposition attachment points is given by the set P(P),

together with the following metric:

dA(Q,R) =
∑
p∈P

dp(Q,R), (6.2)

where for p ∈ P , dp is given by:

dp(Q,R) =

{
0 if p ∈ Q ∧ p ∈ R; or p /∈ Q ∧ p /∈ R,
1 otherwise.

(6.3)

It is easily checked that dA is indeed a metric for P(P).

We combine this with the Marr-Nishihara property space, letting the Marr-Nishihara

structure take precedence over the preposition attachment point structure in the

metric:

Definition 6.3 (Property space for shapes). The property space for shapes is given

by the set S = M × P(P) with the metric dShape = dM × dA.

Definition 6.4 (Category of shapes). The category Shape is defined as FTree(S).

And we define the preposition attachment relations:

Definition 6.5 (Preposition attachment relation). Let p ∈ P be a preposition. Then

the preposition attachment relation Ap for p is a relation from FTree(S)× FTree(S)

to FTree(S). Given a tree s (the subject) and o the (object), it gives:

52

• If o = ε: ∅.

• If o is of the form ((m, a), C), define

X =
⋃
t∈C

{((m, a), C[t′/t]) | t′ ∈ Ap(s, t)}, (6.4)

where C[t′/t] means, the finite labelled subset obtained by replacing t with t′ in

C.5 If p ∈ a then Ap(s, o) gives:{(
(m, a), C ∪ {s}

)}
∪X, (6.5)

where C ∪ {s} appends s to the end of C. Otherwise, if p /∈ a, then Ap(s, o)

gives:

X. (6.6)

In words:

• Empty trees yield an empty set: there are no valid attachments.

• For non-empty trees, recurse over the children, collecting all valid attachments

in a set. For each child t, the valid attachments of s in t are calculated, and

then for each of those valid attachments we yield a node where the child has

been replaced with that attachment. Additionally, if the root node itself allows

attachment, yield one additional element where s has been attached under the

root.

Thus Ap(s, o) yields all the trees where s has been attached under exactly one node

of o that allowed attachment for the preposition p.

As an example, suppose that in the course of a conversation the word ‘table’ has been

used to mean either a desk or a coffee table. The desk has a drawer and the coffee

table does not. Thus the representation of the desk contains attachment points for

the preposition ‘in’, while the coffee table does not. The phrase ‘the pen is in the

table’ could then be calculated as:

Ain(|pen〉 , |table〉), (6.7)

where |table〉 = ↓{|coffee table〉 , |desk〉}. This calculation would yield all the elements

of |table〉 which have an ‘in’ attachment point, with (an element of) |pen〉 added to

the node containing that attachment point. This yields a mental model which is

different from the mental model of |table〉 in the following ways:

5With slight abuse of notation since t might occur multiple times in C; this notation is used
because it is clearer than the index-based notation.

53

• The mental model now describes an arrangement consisting not just of the desk,

but also of the pen sitting in the desk.

• Only elements originating from |desk〉 remain; the word ‘table’ has been disam-

biguated (see also section 5.3).

• The potential for generalisation has been diminished: we no longer allow our-

selves to generalise to a model where the desk having a drawer is not part of

the description (see also section 5.2.3).

54

Chapter 7

Concluding remarks

In this dissertation we have given an overview of some of the existing theory in the

field of compositional distributional models of meaning and conceptual spaces. We

then went on to define a hierarchical conceptual space that can be used to represent

shape and have shown how it might fit into the compositional distributional model

of meaning. In the process we defined generalisations of the usual notions of metrics

and convexity and proved a number of results for these notions. In this chapter we

briefly discuss some of the strengths and weaknesses of the model we developed, and

suggest further avenues of research.

As argued in section 4.1, the Marr-Nishihara-based model constructed in this dis-

sertation has several advantages, including explicit encoding of the level of detail,

explicit encoding of whole-part relationships, and a clear correspondence to the way

shapes are usually described in speech. Moreover, our model includes a notion of

convexity that arises from the structure of the conceptual space, via a generalised

metric defined using the structure of the space. We contrast this with the approach

by Bolt et al. in [BCG+16], where the convex structure was more ad-hoc and a notion

of distance was not defined. Thus it can be argued that the model developed in this

dissertation is closer to what was suggested by Gärdenfors in his work on conceptual

spaces.

We have shown how our model encodes entailment, as well as more subtle notions

of generalisation and specialisation. Moreover, our model is also able to encode am-

biguity, and provides mechanisms for disambiguation. These notions arise naturally

from the structure of the conceptual space. We contrast this with the approach used

by Ashoush and Coecke in [AC16], as well as similar approaches, where the structure

required to encode these notions was imposed externally.

55

On the other hand, the models like the one by Ashoush and Coecke allow for gra-

dations of entailment and/or ambiguity to be encoded, where our model is not able

to encode such subtleties. Moreover, our model is fairly complex to work with, both

conceptually and computationally.

Another specific shortcoming of our model is the fact that nodes of trees are ordered.

This is not desirable in a conceptual space describing shape: the components that

make up a shape have no ordering other than the hierarchy already encode elsewhere

in the model. The ordering is purely an artefact of the specific definition of trees.

However, modifying the definition to use unlabelled sets of trees leads to problems

with duplicate nodes, and makes the definitions and proofs involving the tree metric

or suborder relation needlessly complicated. An obvious solution to this problem

might be to work with isomorphism classes of trees, where isomorphisms are functions

that act on trees purely by permuting children of a node. However, this approach

is not compatible with the present approach to convexity, since such isomorphism

classes are non-convex sets. Another possible solution is to have some normalisation

condition on the trees to make sure the ordering is not arbitrary. While such a

normalisation condition can be developed quite easily (by defining a total order on

the node properties), it is hard to make relations compatible with such a convention,

and certainly makes relations much harder to deal with.

In spite of the shortcomings of the model, we believe that the concept of hierarchical

conceptual spaces introduced in this dissertation is a fruitful area for future research.

Most of the material in this dissertation is quite general with respect to the specifics

of the conceptual space being encoded. Thus the tree based model could easily be

adopted for other conceptual spaces. The concept of decorating trees also seems

promising. In this model the decorations have been used for resolving prepositions.

It is not hard to see how a similar approach might be used for resolving references.

This would be especially powerful if the model could be adopted to represent (and

interact with) context.

Another interesting topic of research would be how to move more of the structure

of the conceptual space into a categorical context. In this dissertation, most of the

structure is described explicitly in quite a non-categorical manner. Remedying this

would likely make the model more general, thus making it easier to apply to other

problems. Additionally, it would be interesting from a purely theoretical point of

view. In a similar vein, it might be beneficial to use a richer structure then Rel to

56

bring the conceptual space into the compositional distributional model. This might,

for example, allow us to encode graded entailment and ambiguity.

57

Bibliography

[AC16] Daniela Ashoush and Bob Coecke. Dual density operators and natural

language meaning. arXiv preprint arXiv:1608.01401, 2016.

[BCG+16] Josef Bolt, Bob Coecke, Fabrizio Genovese, Martha Lewis, Daniel Mars-

den, and Robin Piedeleu. Interacting conceptual spaces. arXiv preprint

arXiv:1608.01402, 2016.

[BCLM16] Desislava Bankova, Bob Coecke, Martha Lewis, and Daniel Marsden.

Graded entailment for compositional distributional semantics. CoRR,

abs/1601.04908, 2016.

[BKS15] Esma Balkir, Dimitri Kartsaklis, and Mehrnoosh Sadrzadeh. Sentence

entailment in compositional distributional semantics. arXiv preprint

arXiv:1512.04419, 2015.

[BSC15] Esma Balkir, Mehrnoosh Sadrzadeh, and Bob Coecke. Distributional sen-

tence entailment using density matrices. In International Conference on

Topics in Theoretical Computer Science, pages 1–22. Springer, 2015.

[CSC10] Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark. Mathematical

foundations for a compositional distributional model of meaning. CoRR,

abs/1003.4394, 2010.

[DWP81] David R Dowty, Robert E Wall, and Stanley Peters. Introduction. In

Introduction to Montague Semantics, pages 1–13. Springer, 1981.

[Gär00] Peter Gärdenfors. Conceptual spaces: The geometry of thought. MIT press,

2000.

[Gär14] Peter Gärdenfors. The geometry of meaning: Semantics based on concep-

tual spaces. MIT Press, 2014.

58

[GS11] Edward Grefenstette and Mehrnoosh Sadrzadeh. Experimental support

for a categorical compositional distributional model of meaning. In Pro-

ceedings of the Conference on Empirical Methods in Natural Language

Processing, pages 1394–1404. Association for Computational Linguistics,

2011.

[HV17] Chris Heunen and Jamie Vicary. Categorical Quantum Mechanics: An

Introduction. Department of Computer Science, University of Oxford,

2017.

[Lam08] Joachim Lambek. From word to sentence. Polimetrica, Milan, 2008.

[MN78] David Marr and Herbert Keith Nishihara. Representation and recognition

of the spatial organization of three-dimensional shapes. Proceedings of the

Royal Society of London B: Biological Sciences, 200(1140):269–294, 1978.

[Pie14] Robin Piedeleu. Ambiguity in categorical models of meaning. PhD thesis,

University of Oxford Master’s thesis, 2014.

[SCC14] Mehrnoosh Sadrzadeh, Stephen Clark, and Bob Coecke. The frobenius

anatomy of word meanings I: subject and object relative pronouns. CoRR,

abs/1404.5278, 2014.

[Sch98] Hinrich Schütze. Automatic word sense discrimination. Computational

linguistics, 24(1):97–123, 1998.

59

	Introduction
	Overview

	I Review of existing theory
	Compositional distributional models of meaning
	Foundations
	Pregroup grammars
	Reductions in compact closed categories
	From word meaning to sentence meaning

	Relative pronouns
	Entailment and Ambiguity

	Conceptual spaces
	Convexity
	Example: colour

	II Building a hierarchical category for shapes
	Building hierarchical conceptual spaces
	Marr and Nishihara's model
	Defining trees
	Finite labelled subsets
	Finite trees
	Ordering trees

	Generalised metrics and convexity
	A metric for trees
	Preliminary definitions
	The structural metric
	The tree metric

	A category of trees
	The category `39`42`"613A``45`47`"603AFTree(P)
	Concepts versus concrete objects
	Closed sets
	Convexity of closed sets
	Closed sets as a model for concepts and concrete objects

	Entailment and ambiguity

	A hierarchical category for shapes
	Node properties for the Marr-Nishihara model
	Decorating trees with preposition attachment points

	Concluding remarks
	Bibliography

