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Chapter 1

Introduction

Abstraction is an important part of our lives. We use abstraction all the time; we

learn to recognise ideas and concepts rather than the actual events. For example,

when playing a jigsaw puzzle, we often can extrapolate the missing picture and tell

whether a piece is correctly placed rather than trying out all possible ways.

Computer scientists are the master of abstraction. There are many layers of

abstractions from the hardware all the way to modern programming languages. Each

layer hides the unnecessary details of the previous layer, and expresses the important

aspect in a fashion that is easier for us to understand; that is, we don’t have to worry

about the stuff going on in the previous layers and code in confidence using high level

languages, only focusing on the important parts. This is absolutely needed for any

progress in the field; as computer programmes get increasingly complex, there is a

need for more and more abstract layers to reason about the complicated processes in

the programme. It will be unimaginable to think about writing even a simple phone

app by manipulating the current and voltage in each part of the circuit.

In the realm of quantum computing, this is not the case; abstraction is still at

a pretty low level. One layer above the hardware is the mathematics governing all

quantum systems, the mathematics of Hilbert space written by von Neumann in the

1930s, and we are very much still “programming” with it. This is somewhat like

an assembly code, and understanding these quantum operations can be horrendous.

Take for example, swapping two quantum bits (qubits) is the calculation
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
However, conceptually we know that swapping twice is equals to doing nothing. Per-

haps, this is the reason why it took decades to design the first quantum algorithm.
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There is a level above this, the quantum circuits, which uses diagrams that have

a strong connection to the implementable operations. At this level, things become

more intuitive. For example, two operations placed side-by-side is understood that it

doesn’t matter which one is done first:

=
f

g
=

f

g
,

f

g

where the diagrams are read left to right. Perhaps, with diagrammatic abstractions,

our minds are able to grapple with the quantum processes better, using similar part

of our brains to reason jigsaw puzzles.

The quantum circuit formalism is good as it abstracts quantum processes while

keeping in mind what are the allowed processes in laboratories. However, because of

this, it is kind of restricting. It will be desirable to have a higher level language which

provides further abstraction. This is where ZX and ZW calculus comes in. These

two calculi are diagrammatic abstraction of quantum operations, similar to quantum

circuits, but is more liberal than the circuit formalism.

Abstraction may be good, but it is, after all, not the actual thing; there are

limitations to how much the abstraction can reason about the systems. This is the

concept of completeness. If an abstraction can capture all of the system’s dynamics,

then we say that it is complete. The circuit formalism and the ZX calculus are known

to be incomplete, and it greatly limits their ability to reason quantum operations.

This thesis is about completeness, but we won’t explore the completeness of the

quantum circuit formalism; we will present a ZX calculus that is complete.

The ZW calculus is complete, but it is hard to make connections to the imple-

mentable quantum operations. We could modify the calculus to obtain a calculus

that is closely related to what is called fermionic circuits, but then this calculus is not

known to be complete. In this thesis, we will complete it. As a bonus, we will show

an even more restricted version, that may have connections to the understanding of

the universe, which is complete. This may be an useful abstraction for the study of

the fundamental properties of fermions.

The gist of the thesis is not about the complete ZW and ZX calculi; it is the

formula to produce a complete diagrammatic calculus. The thesis is organised as

follows.

Chapter 2 lays down the foundation for the thesis. It explains the groundwork

needed while avoiding over elaborating its mathematics. First, we will covered the
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intuition of string diagrams, explaining with examples. Concepts such as soundness,

universality, and completeness are loosely explained, which is mostly good enough for

understanding the remaining of the thesis. Then, a simple mathematical definition,

using category theory, is given to justify string diagrams and all the concepts intro-

duced. We may use the categorical jargon for the rest of the thesis, but the intuition

from previous section should suffice the reader to have a good idea what is going on.

We will next provide a quick recap to finite-dimensional quantum theory, stripping

down to only the required knowledge for the thesis. Finally, we will introduce the

common elements to a family of diagrammatic calculus, called the Z* calculus which

includes ZX, ZW and ZH calculi. The common elements is essentially saying that the

Z* calculus are string diagrams.

Chapter 3 will be on the ZW calculus. We will introduce the calculus by first

stating the motivation behind inventing the calculus, namely to aid in solving the

entanglement problem. Then we list the algebraic properties that the ZW calculus

exhibits. These properties together gives an complete axiomatisation for the qubit

theory, as proved by Hadzihasanovic in his Ph.D. thesis [31] and paper [33]. We will

explain the idea of the proof, which is via a normal form argument, and give a recipe

which can be used for other diagrammatic calculi. We will show how to make slight

modifications to the calculus to suit different scenarios, in particular, the one for the

Clifford+T fragment of qubit theory.

Hadzihasanovic also noted in his Ph.D. thesis that a certain fragment of the ZW

calculus, called the pure fragment, is suited to model a particular type of quantum

computing, called fermionic quantum computing. This fragment was not complete.

We will complete this fragment using the recipe given previously; this part is based

on our paper [32] which is a joint work with Hadzihasanovic and de Felice.

We will restrict the calculus further to the even fragment, and using the same

recipe, complete the calculus. The even fragment has a couple of interesting proper-

ties: it is a calculus with two symmetric braiding, which on its own is interesting as it

is closely related to virtual knot theory; second, it may be interpreted as a theory of

the fermionic universe where particles are simulated by the curvature of space-time.

This work is not published anywhere at the time of writing this thesis.

Chapter 4 is about the ZX calculus. The first part will introduce the calculus’

properties and its connection to quantum circuits. Then, we will quickly summarise

the ideas used to complete the Clifford+T fragment of the ZX calculus by Jeandel,

Perdrix and Vilmart [36], which is to translate the ZX calculus to ZW, and back.

Improving on their work, we came up with an algorithm to perform the translation.
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The result is completing various fragments of the ZX calculus, more notably the

general qubits quantum computing which is a joint work with Wang in our paper

[33]. In fact, we will show that any fragments containing the Clifford+T fragment is

automatically complete, a work unannounced yet.

Chapter 5 states several future work. They are mainly unfinished work, and many

of them are low hanging fruits. We will introduce the ideas of having a ZX calculus

that could perform both quantum and classical computations. This may have great

applications in the hybrid system of quantum and classical computers. We also state

a generalisation of the ZX and ZW calculus to qudit systems. The completeness

is in principle doable according to our recipes, but the challenge is to identify the

axioms of the calculus that categorise the calculi. Finally, we gave another direction

of generalising the ZW calculus, which is to have matrix elements over a semiring.

The completeness should not be hard, but requires some effort to check.

Finally, we end off with some concluding words in the last chapter.

For convenience of the reader, the appendices contain a summary of all the axioms

for the different versions of the ZW and ZX calculi.
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Chapter 2

String diagrams

Overview:

• Section 2.1 — We informally introduce the concept of graphical reason-
ing with strings diagrams.

• Section 2.2 — We then formalise the concepts using category theory,
showing how the axioms are expressed in diagrammatic language. The
concepts include: strict symmetric monoidal category, compact close
structure, dagger. We also introduce the definition of soundness, uni-
versality, and completeness.

• Section 2.3 — This section starts with a brief history of the Z* calculi.
Then, we give a quick recap of the finite dimensional quantum theory
which is just enough to understand this thesis. Next, we will summarises
the few algebraic structures we may encounter in the next couple of
chapters, mainly to be familiar with the jargon. Finally, we give a
definition of the common ground of the Z* calculi, which is the category
of self-dual, compact close PROP.

2.1 Working knowledge of string diagrams

Process theory is a kind of diagrammatic representation which is used to study pro-

cesses abstractly. The philosophy of such theories is to make analysing and designing

processes as intuitive as possible. In this section, we will look at some examples of

process theories to get a feeling of what it is.
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2.1.1 Process theory

This is an example of a diagram in some process theory:

.

h

g

f

f, g, h are abstract processes, drawn as boxes with a bulge on the right-hand corner,

and they are wired together as in the picture. The diagram should be read from

bottom to top, and stuff would enter from the bottom wires and processed stuff

would exit from the top wire. These processes can be mathematical processes like

functions and relations, physical processes like laboratory equipments, or even cooking

processes like described in the book [17]. The processes can only take in certain types

of information, and they should be wired in a sensible manner.

Taking a cooking example, f could be chopping some meat, g could be preparing

your favourite sauce, and h could be cooking in the oven. The types on these processes

are

,

f

meat

meat

,

g

spices

sauce

.

h

meat

meal

sauce

And wiring them in a sensible manner means that the types should match when

connecting the wires, that is we shouldn’t connect f and g wires together. Usually,

we will keep the types implicit and not show them on the digram.

The above example should give us some intuition on what a process theory is. Our

example tells us a general way of preparing a meal, ignoring and the choice of meat,

spices, and preparation. In summary, a process theory consist of boxes representing

abstract processes, and wires connecting these processes in a reasonable manner. The

focus of process theories is how the (simple) processes are wired together, giving rise

to new (complex) processes.
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2.1.2 Twisting wires and moving boxes

A nice feature of process theory is that we are able to move freely the processes up

and down along a wire, and even twist the wires. For example,

=

h

g

f

.

h

g
f

We have twisted the wires and slide the processes f and g along them. It should be

obvious to the eye that these two process diagrams are the same by untangling the

boxes. Operationally, taking the cooking example again, it is saying that it doesn’t

matter if we chop the chicken or prepare the sauce first or do them simultaneously,

and it also doesn’t matter if we prepare the chicken on the left or right to the sauce,

as long as they are fed into the oven in the correct order.

2.1.3 Bending wires and rotating boxes

Not all deformations of the diagrams are allowed. For example, if we rotate the

chopping meat process,

,

f

we will get a process which ‘unchops’ the meat, which is absurd! We also cannot bend

an input to an output and vice versa, as the bending operations

, ,

simply don’t have a physical meaning in the theory of cooking processes. However,

the processes we are interested in this thesis – quantum processes – can allow such

moves.

A process theory where it is legal to rotate the boxes and move the inputs to
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outputs and vice versa is called a string diagram. An example would be as such:

.

We can untangle the wires to give a slightly neater diagram:

.

The punchline of a string diagram is that we are allowed to deform the wires, rotate

the boxes, move them freely on the surface of a plane, as long as the input and

output wires are in the proper order. This is the background of all the diagrams in

the subsequent parts of the thesis.

2.1.4 Reflecting boxes

There is one more diagrammatic transformation which is to mirror image the boxes:

, , ,

where the middle is the original box, the left is reflecting horizontally and is called

the conjugate, and the right is reflecting vertically and is called the adjoint. The

conjugate and adjoint is related by a rotation.

A string diagram which we can do a mirror image is said to be equipped with a

dagger. This move is not the focus of the thesis, but we briefly mention it as it is a

nice thing to have in mind.

8



2.1.5 Terminology and shapes of boxes

We will state some terminology of the diagrammatic moves we have introduced so

far. This is summarised in the picture below:

adjointtranspose

conjugate

Since the aim of a pictorial theory is to make them easy to grasp, the boxes should

be given meaningful shapes to show certain symmetries of the processes. For example,

a process with no symmetries should be given an irregular shape like the one we have

seen so far, a process that is invariant under conjugation may be shaped like

,

a process that is invariant under adjunction may be shaped like

,

a process that is invariant under transposition may be shaped like

,

a process that is invariant under all these transformations may be shaped like

,

9



and a process where the inputs and outputs are interchangeable may be shaped like

=

.

2.1.6 Diagrammatic calculus

So far, we have encountered some diagrammatic equations, that is equations stating

when two diagrams are equal. They are usually pertaining to the deformation of

the wires and sliding the boxes along them. While this is already a powerful tool

to analyse and design processes, we can make it more expressive by adding some

diagrammatic rules regarding when some of the boxes are equal. We will end this

section with a simple demonstration of the use of diagrammatic rules with a process

theory of basic arithmetic (addition, subtraction, multiplication, and division) with

the natural numbers N.

Example 1. Addition is the simplest process in basic arithmetic, and we will denote

it as the diagram

.

It takes in a pair of numbers m,n ∈ N, and gives a number m+ n. In mathematical

terms, it is a relation

(N× N)× N +−→ {TRUE, FALSE}

((m,n), p) 7→

{
TRUE if p = m+ n,

FALSE otherwise.

Remark 2. A more familiar, equivalent definition for relations is

+ ⊆ (N× N)× N

+ = {((m,n),m+ n)|m,n ∈ N}.

Associating the diagrams to some mathematics is called interpreting the diagrams.

In this case, the addition diagram has interpretation as the + relation.

We know that addition is commutative, and it is depicted with a diagrammatic

equation as

=

.
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The addition is also associative, and we will show it as

=

.

Because of this, we may define a family of diagrams for multiple additions as such:

=

n ,n− 1

=

.

for n ≥ 1.

The lighter shade of wires represents repeated pattern. This convention is ex-

plained more clearly in Section 2.3.3. As for now, don’t be too worried about the

convention as this example is meant to be informal.

Furthermore, there exist a additive identity 0, drawn as

,

which satisfies the equation

=

.

Note that the | 0 〉 can be defined using the addition as such:

:=

.

When interpreted as a relation, the additive identity 0 is a relation between the

singleton set {∗} and N, where

(∗, 0) 7→ TRUE

(∗, n) 7→ FALSE, n > 0.

The natural numbers form a commutative monoid under addition, and the dia-

grams introduced is a typical representation for this structure.
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The subtraction process, or more technically correct – the coaddition, is commonly

thought as the reverse of addition. In diagrammatic language, that is just reading

the diagram backwards. In other words, it means that we just have to transpose all

the diagrams: the subtraction process may be defined as such

:=

,

and the rules are

=

,

=

,

=

,

where

:=

is the counit of the subtraction process. Likewise, we can define a family of diagrams

for multiple subtractions as such:

=

n n− 1

for n ≥ 1.

The bendy wires responsible for rotating the diagrams can be interpreted as such:

7→ (∗, (j, k)) 7→

{
TRUE if j = k

FALSE otherwise.

7→ ((j, k), ∗) 7→

{
TRUE if j = k

FALSE otherwise.

Interpreting these subtraction diagrams can be a bit tricky. The input wire is the

minued, either of the output is the subtrahend and the other one is the difference.

We could bend the subtrahend wire down to make the diagram looks like the familiar

subtraction equation, but that is not necessary.
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Written as relations, the subtraction process is

(n, (j, k)) 7→

{
TRUE for k = n− j,
FALSE otherwise.

It should be fairly obvious that if we insist that one of the output in the subtraction

is 0, then the remaining diagram is not doing anything, that is, n − 0 = n. Hence,

the counit of the subtraction is the relation

(n, ∗) 7→

{
TRUE for n = 0,

FALSE otherwise.

The structure of the subtraction process is known as the commutative comonoid.

The addition and subtraction processes also interact in a nice way. They interact

via the diagram

=

,

=

,

=

,

which forms a bialgebra, and

=

,

which is called specialness property.

The first equation in the bialgebra equations may be a bit hard to apprehend.

The left-hand side, which is easier to understand, is first summing then splitting up

the sum. To visualise algebraically, it is m + n = s = j + k for all j, k that sums up

to s. The right-hand side can be understood as splitting up in all possible ways, then

sum them up. Hence, the output will range from (0, s) to (s, 0).

The specialness property is pretty easy to understand as if add the difference and

subtrahend of a subtraction process, we get our original minued. That means we

essentially did nothing.
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The next thing to introduce is multiplication. Multiplication of natural numbers

can be thought as iterative addition of the same number. For instance, m times of n

is

n+ · · ·+ n︸ ︷︷ ︸
m

.

For this, we will include a copy process, and we will denote it as the diagram

.

This process takes in a number n ∈ N and gives a pair of the same number, that is

(n, (j, k)) 7→

{
TRUE for j = n = k,

FALSE otherwise.

It is straightforward to check that this copy process satisfies the commutative

comonoid conditions:

=

,

=

,

=

.

where the counit of the copy process

maps any number to TRUE. The counit can also be defined using the copy process like

this:

:=

.

Like before, we can define a multiple copying process

=

n

,

n− 1

=

,

for n ≥ 1.

14



The multiplication by m can then be formed by

.

m

This multiplication diagram is sometimes known as the multiplicity gate in quantum

computing.

Similar to the subtraction, the division process can be obtained by transposing

the multiplication diagram:

.

m

For this, we need to define a cocopy, also known as the comparing process for obvious

reasons.

The cocopy process is defined to be

:=

,

and it satisfies the commutative monoid conditions

=

,

=

,

=

,

where the unit

:=

can be interpreted as the “all possible number” process.

We have chose to draw the copy process with a circle because of this rule:

=

.

Due to this rule, the copy and compare processes satisfy the Frobenius conditions

= =

,
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and also the specialness property

=

.

We can also put in some rules for the interaction between the addition and the

copy processes. They interact via a bialgebra:

=

,

=

,

=

.

With all these rules, we can show some nice identities of arithmetic diagrammat-

ically. For instance, k × (m+ n) = k ×m+ k × n can be shown as such:

= =

.

So far, we have just focused on the arithmetic processes. Sometimes it is nice to be

able to feed in a number (other than 0 which is the (co)unit) and count with it. Since

the natural number is generated by a single element 1, we only have to introduce a

new symbol for it:

,

7→ (∗, n) 7→

{
TRUE for n = 1,

FALSE otherwise,

and its transpose

.

7→ (n, ∗) 7→

{
TRUE for n = 1,

FALSE otherwise.

Then, we give a few rules on how 1 interacts with all the processes we have defined

so far:

=

,

=

,

=

,

16



=

,

=

.

The last two diagram equations reflects the properties of the FALSE outcome: once

we see a FALSE

,

all diagram falls apart and all calculation is meaningless.

We will demonstrate calculating with these rules with a baby example. Say we

want to do (3− 2) + 1, the diagrammatic calculation for this is

= = =

which then can be read as the number 2. A fun observation is that (3− 2) + 1 may

seem the same as (1− 2) + 3, a diagrammatic calculation shows otherwise:

= = =

.

where we see a FALSE outcome. The diagram shows this because (1− 2) is not in the

natural numbers, hence it is impossible to do this calculation.

Some other fun operations are the greater than and equals to ≥ and the less than

and equals to ≤. The following operators allow numbers greater than or less than n

to pass through respectively:

,

n. . .

n. . .

.

n. . .

n. . .

17



2.1.7 Soundness, universality, completeness

We have defined all four basic arithmetic operations using diagrams. By how we

constructed these diagrams, if two diagrams are equal under these diagrammatic

rules, then the underlying arithmetic equation is equal. We call this diagrammatic

calculus sound with respect to the arithmetic of natural numbers.

Furthermore, we can represent all arithmetic equations using diagrams. This fact

is called universality, that is, this diagrammatic calculus is universal with respect to

arithmetic of natural numbers.

However, we aren’t sure whether we can diagrammatically proof all truths in

arithmetic. For instance, m× 2÷ 2 should give m, but the diagrammatic equation

=

,

may not be provable with our existing rules. If all truths are provable, then we call

this calculus complete with respect to arithmetic of natural numbers, otherwise we

call it incomplete. Completeness of a diagrammatic calculus is important because

if it is incomplete, then it indicates that we are not understanding the essentials of

the arithmetic operations. The completeness problem is usually the one plaguing

a diagrammatic calculus because there is usually no clear strategy of proving it or

completing the calculus. The completeness problem is the main focus of the thesis.

2.2 Formalising string diagrams

In the previous section, we introduced how diagrammatic calculus is used in prac-

tice; it involves twisting and bending of wires, and sliding of boxes along the wires.

This graphical representation of processes may seem like a back-of-the envelope cal-

culation, but they actually are mathematically consistent. In this section, we will

go through the essential mathematics to make these diagrammatic calculus rigorous.

The numbering of the subsections in this section corresponds to the numbering of the

previous section where the concepts were introduced.

Remark 3. Everything in this section can be found in a survey paper by Selinger [49].

The paper explores the mathematics with much more rigour than what is presented

in this thesis, so interested readers should definitely head over. Fortunately, we don’t

have to go to such depth.
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2.2.1 Basic category theory

We are going to use category theory to formalise process theories. We are going to

define what a category is, and how process theories are related to categories.

Definition 4. A category C consists of:

• a collection Ob(C) of objects ;

• for each pair A,B of objects, a collection C(A,B) of arrows from A to B;

• for each object A, there exists an identity arrow idA ∈ C(A,A);

• a binary operation ◦ assigning a pair (g, f) ∈ C(B,C)× C(A,B) of arrows to a

composite arrow g ◦ f ∈ C(A,C), such that:

(i) the arrows compose associatively, that is, h◦ (g ◦f) = (h◦g)◦f for arrows

f ∈ C(A,B), g ∈ C(B,C), h ∈ C(C,D);

(ii) the identity arrows satisfy the following property: f ◦ idA = f = idB ◦
f for arrows f ∈ C(A,B) and identity arrows idA, idB for objects A,B

respectively.

An arrow f ∈ C(A,B) is also called a morphism and sometimes written as f : A→ B

or A
f−→ B.

We can express the definition of category theory pictorially: The objects are

represented by the labels on the wires

,A

and the arrows are boxes

,

f

A

B
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The identity arrows are just the plain wires (no boxes). Composition of arrows are

connecting the wires appropriately, like this:

.

g
C

f

A

B

The arrows must satisfy the following properties:

(i) associativity of composition is drawn as such:

=

g
C

f

A

B

h

D

,

g

C

f

A

B

h

D

(ii) the identity arrows satisfy the diagram equation

=
f

A

B

=f

A

B

.

f

A

B

Very often, we will keep the labelling on the wires implicit.

The pictorial form makes the definition of a category really intuitive. In fact, it

looks almost like process theories. An interpretation of a process diagram assigns

each diagram to a underlying theory in a well-behaved manner. In categorical terms,

this assignment is called a functor.

Definition 5. Suppose C and D are categories. A functor F : C → D assigns

• for each object A ∈ Ob(C) an object F (A) ∈ Ob(D),

• for each arrow f ∈ C(A,B) an arrow F (f) ∈ D(F (A), F (B)) such that:
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– F (idA) = idF (A) for every A ∈ Ob(C),

– F (g ◦ f) = F (g) ◦ F (f) for all composable arrows f, g ∈ C.

A functor F is called contravariant functor if it satisfy all the conditions except that

F (g ◦ f) = F (f) ◦ F (g).

An assignment is called functorial if it forms a functor. Some people may recognise

a functor as a homomorphism between categories.

There is something more to process theories; we need to define what does it mean

to put the processes side-by-side, and also twisting of wires. We will define these in

the next subsection.

2.2.2 Strict symmetric monoidal category

A strict monoidal category is often used as a foundation for the mathematics for a

process theory. This is fairly obvious after we introduce its definition.

Definition 6. A strict monoidal category is a category C equipped with a monoidal

product (−⊗−) : C × C → C such that:

• when acts on objects:

– the objects A,B ∈ Ob(C) are mapped to A⊗B ∈ Ob(C),

– the mapping is associative A⊗(B⊗C) = (A⊗B)⊗C for objects A,B,C ∈
Ob(C),

– there exist an object called the monoidal unit I such that I⊗A = A = A⊗I
for any object A ∈ Ob(C),

• when acts on arrows:

– the arrows f ∈ C(A,B), g ∈ C(A′, B′) are mapped to an arrow f ⊗ g ∈
C(A⊗ A′, B ⊗B′),

– the mapping is associative f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h for arrows f, g, h,

– f ⊗ e = f = e⊗ f for an identity arrow e of the monoidal unit,

– acts nicely with the usual composition (g ◦ f)⊗ (j ◦ h) = (g⊗ j) ◦ (f ⊗ h).
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Expressing the definition pictorially: The monoidal product on objects is repre-

sented by juxtaposition of the wire labels (together with the wires)

,A B

and its associativity is drawn as

=

A B C ,A B C

while the monoidal unit is just an ‘empty wire’

satisfying

=

A

=

A .A

The monoidal product on arrows is represented by juxtaposition of the boxes

,

f g

where the associativity is drawn as

=f g h

,

f g h

the identity arrow of the monoidal unit is just an ‘empty box’

satisfying

=f =f

,

f

22



and it acts nicely with the usual composition

=

g j

hf

.

g j

hf

The pictorial presentation of the definition makes many of the conditions really

easy to grasp. Because of the pictures, the composition of arrows is sometimes called

sequential composition while the monoidal product is called parallel composition. In

this thesis, as we are dealing with mostly diagrams, we will use the word ‘plugging’

for the sequential composition, and the word ‘juxtaposition’ for parallel composition.

The ability to twist the wires is an added feature on a strict monoidal category.

This is called the symmetric property.

Definition 7. A strict symmetric monoidal category C is a strict monoidal category

where for each pair of objects A,B ∈ C, there is a swap arrow σA,B : A⊗B → B⊗A.

The swap arrows satisfy the following properties:

• σB,A ◦ σA,B = idA⊗B,

• σA,I = idA = σI,A for A ∈ Ob(C) and the monoidal unit I,

• σA,B⊗C = (idB ⊗ σA,C) ◦ (σA,B ⊗ idC) for A,B,C ∈ Ob(C),

• for arrows f : A→ B and g : A′ → B′, σB,B′ ◦ (f ⊗ g) = (g ⊗ f) ◦ σA,A′ .

The last bullet point is sometimes call the naturality condition.

The symmetric property can be easily summarised with some simple diagrams: A

swap arrow is represented by

where it satisfies the following four diagrams corresponding to the four bullet points

respectively:

=

,

= =

,

=

,
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=
f g

.

fg

Definition 8. A functor F between two strict monoidal categories C and D is called

a strict monoidal functor if it respects their monoidal structures. That is,

• F (A⊗B) = F (A)⊗ F (B) for A,B ∈ Ob(C),

• F (IC) = ID where IC and ID are the monoidal units for C and D respectively,

• F (f ⊗ g) = F (f)⊗ F (g) for arrows f, g ∈ C.

We have already made all the necessary definitions to make process theories math-

ematically rigorous. A process theory is basically a strict symmetric monoidal cat-

egory. An interpretation is usually a strict monoidal functor (an unstrict version is

not too much different, at least the idea is the same). We are now free to use process

diagrams to analyse problems and forget about the laborious mathematics. Our next

goal is to make string diagrams mathematically rigorous.

Remark 9. The strict symmetric monoidal category can be relaxed to braided monoidal

category where many of the equalities are replaced with natural isomorphisms. How-

ever, process theories do not feature those as it is unnatural to draw these natural

isomorphisms. Furthermore, a monoidal category is monoidally equivalent to a strict

one by Mac-Lane’s coherence theorem, so we will not bother defining an unstrict,

braided version.

2.2.3 Compact closed

The compact closed structure is responsible for the bending of wires in a string dia-

gram.

Definition 10. Suppose C is a strict symmetric monoidal category. It is called a

compact closed category if for all A ∈ Ob(C), there is a dual object A∗ ∈ Ob(C) and

a pair of arrows ηA : I → A∗ ⊗ A and εA : A⊗ A∗ → I such that

(εA ⊗ idA) ◦ (idA ⊗ ηA) = idA,

(idA∗ ⊗ εA) ◦ (ηA ⊗ idA∗) = idA∗ .
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A pictorial presentation of this compact closed structure is sometimes called the

snake or yanking equations because of the following diagrams: The ηA and εA are

drawn as

, ,

respectively. They are sometimes called the cup and cap respectively. They satisfy

the snake or yanking equations

=

A

A∗

A

,A

=

A∗

A

A∗ .A∗

We can use the compact structure to transpose an arrow. That is, for any arrow

f : A→ B, its transpose fT : B∗ → A∗ is defined as

f ∗ := (idA∗ ⊗ εB) ◦ (idA∗ ⊗ f ⊗ idB∗) ◦ (ηA ⊗ idB∗).

In pictorial form,

:=f

,

f

where the irregular shaped box will tell us whether it is f or fT .

From the pictorial definitions, it’s not hard to see that we have a string diagram.

We are pretty much done with all the hard mathematics. Although not needed for

this thesis, we will define another structure on a compact closed category just because

we will be dealing with quantum processes later – the dagger.

Remark 11. Using the compact closed structure, we can define a partial trace opera-

tion

.

In this case, we need A∗∗ = A. We can even weaken the compact closed structure

to what is called a traced monoidal category where we only have the trace operations

and not able to freely bend wires.
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Example 12. Here is a cute example of a compact structure: it lives in the category of

relations. The objects are iterative monoidal product of the natural numbers N, the

arrows are just the identities, swaps, and cups and caps. The identities and swaps

are defined in the usual way. The cups and caps are defined and generated by the

relations:

ηN : (N× N)× N→ {TRUE, FALSE},

εN : N× (N× N)→ {TRUE, FALSE}

The definition is cumbersome to state, but an simple example will illustrate it clearly.

For example, for ηN, these triplets are mapped to TRUE:

((5, 3), 53),

((12, 34), 1324),

((213, 10), 201130),

((10, 213), 21103);

The first pair of numbers are encoded in the third by first taking the right-most digit

of the second number, then append the right-most digit of the first number on the

left, then append the second right-most digit of the second number on the left, and

so on. If there are no more digits, then append 0’s.

εN is defined in a similar way which decodes the ηN. One can check that this forms

a compact structure.

2.2.4 Dagger

The dagger is mainly inspired from quantum mechanics. It was introduced by Abram-

sky and Coecke to give a categorical description of quantum systems [2]. As the name

suggests, it is to describe the adjoint operation in quantum mechanics.

Definition 13. Suppose C is a category. A dagger (−)† : C → C is a contravariant

functor which maps

• A† = A for A ∈ Ob(C),

• A f−→ B 7→ B
f†−→ A for arrow f , satisfying

– (g ◦ f)† = f † ◦ g† for arrows f, g,

– (f †)† = f for arrow f .
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Pictorially, the dagger is reflecting the diagram along the horizontal axis:

†7−→f

.

f

The conditions is simply the following moves:

†7−→f †7−→f

.

f

The move for (g ◦ f)† = f † ◦ g† is so trivial in diagrams that drawing it out looks

really silly. . .

The pictorial presentation is very fitting because the adjoint in quantum mechanics

is sometimes seen as a ‘time reversal’, and the dagger can be seen as reading the

diagram backwards which is like reversing time.

Remark 14. Because of its motivation from quantum mechanics adjoint, dagger and

adjoint is often used interchangeably.

2.2.5 Terminology

The terminology is pretty much the same as the one introduced in subsection 2.1.5:

adjointdaggertranspose

conjugate
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But, we have yet to define what is a conjugate. It can be defined as a combination

of transpose and adjoint (in any order):

:=f

.

f

where we will write equationally as f ∗ : A∗ → B∗.

A fun fact: if we look at the diagrams, it is clear these moves form a group Z2×Z2.

2.2.6 Diagrammatic calculus

Diagrammatic calculus, as the name suggests, is a method for using diagrams to

perform calculations. So far, we have presented and justified the use of string diagrams

for compact closed categories. However, such presentation is not yet a diagrammatic

calculus because it lacks the ability to calculate. All we have now are boxes and all we

can do is to move them around. We still have to specify the rules of the calculations,

that is, the axioms of the calculus.

To define a diagrammatic calculus with an underlying string diagram, we

1. state what are the objects in the string diagram S which will be just labels on

the strings;

2. specify a signature, that is, a collection of boxes T := {fi : Ai → Bi}i∈I that

will be used to generate all other boxes. We now obtain a free string diagram

S[T ] on T , that is, the boxes are free plugging and juxtaposition of fi, modulo

the axioms of string diagrams. This is called the language of the calculus;

3. state a collection of equations between diagrams E in S[T ]. Then, quotient

S[T ] by the smallest equivalence relation including E, compatible with string

diagram axioms to obtain the diagrammatic calculus S[T/E]. E is the axioms

of the calculus which tells us how to calculate with diagrams.

We will now dissect Example 1 to show how this works. Arithmetic process theory

is a string diagram where the objects are iterative monoidal product of the natural

numbers N. The signature contains the boxes

, , .
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The axioms of the calculus are

=

,

=

,

:=

,

=

,

=

,

=

,

=

,

=

,

=

,

:=

,

=

,

=

,

=

,

=

,

=

,

=

,

=

,

=

,

=

,

=

,

=

.

Remark 15. We can, in fact, start from a pictorial representation of strict monoidal

category, then specify a monoidal signature which contains the swap maps, cups and

caps. The equation between diagrams will then have the axioms for the swap maps,

and the snake/yanking equations.
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2.2.7 Soundness, universality, completeness

After defining a diagrammatic calculus D, we want to see how fitting this calculus

is in modelling other compact closed categories C. We have a map i : D → C which

interprets the diagrams in D as some arrows in C. This interpretation should be

sound, meaning that diagram equalities in D should be mapped to arrow equalities

in C. In other words, a sound interpretation shouldn’t break the axioms of C. This

can be formalised as the following definition.

Definition 16 (Soundness). Suppose D is a diagrammatic calculus and C is a sym-

metric monoidal category. An interpretation map i : D → C is called sound if i is a

symmetric monoidal functor.

After obtaining a sound interpretation, which is very important because we don’t

want to be using the diagrams to make false reasoning on the category that it is

modelling, we want to see if everything can be modelled. That means, we want to

see if all the arrows in C has a corresponding diagram in D. This concept is called

universality, which has the following formal definition.

Definition 17 (Universality). Given an interpretation functor i : D → C, the dia-

grammatic calculusD is called universal with respect to the category C if i is surjective

on objects and arrows, that is, the mapping of the objects Ob(D)→ Ob(C) is surjec-

tive, and the function induced from the functor D(A,B)→ C(i(A), i(B)) is surjective

for all A,B ∈ Ob(D).

Remark 18. Sometimes, we may want to relax the definition for universality to be

essentially surjective instead of surjective on objects (the condition on arrows re-

mains unchanged). Essentially surjective means that each object in C just has to be

isomorphic to an object that has a preimage in D.

Finally, we may want to ask if everything provable in C can be proved using

the diagrams in D. Phrasing in a more logic-theoretic language, are all truths in C
provable in the model D, that is, is D complete with respect to C. We can formulate

this as the following definition.

Definition 19 (Completeness). Given an interpretation functor i : D → C, the

diagrammatic calculus D is called complete with respect to the category C if i is a

monoidal equivalence, that is, i is a monoidal functor, the function induced from

the functor D(A,B) → C(i(A), i(B)) is bijective for all A,B ∈ Ob(D), and every

X ∈ Ob(C) is isomorphic to an i(A) ∈ Ob(C) for some A ∈ Ob(D).
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Remark 20. Some authors would define completeness as an isomorphism of categories,

which is stronger than equivalence.

2.3 Brief history of Z* calculi for quantum theory

There is a family of diagrammatic calculi used to model pure-state qubit quantum

computing, the ZX, ZW and ZH calculi. They have, sometimes, been affectionately

known as the Z* series. The main highlight of the thesis is on two of them – the ZX

and ZW calculi.

The Z* series stem from the research on categorising finite-dimensional quantum

theory [2], which this area of research is now known as categorical quantum mechan-

ics. Categorical quantum mechanics studies the structures of quantum theory as an

abstract process theory, in particular the structures relevant to quantum computing.

The model is often a dagger compact closed category [17, 50]. Diagrammatic calcu-

lus is commonly employed as a calculation tool, and as a heuristic for determining

algebraic structures that fit naturally in the framework [19]. Compared to matrix

calculus, which has been compared to “programming with bit strings” [18], diagram-

matic calculi are a higher-level language, allowing one to focus on the connections

between gates and the flow of information. Complete axiomatisations of fragments of

quantum theory would provide quantum programmers with the possibility of under-

standing the behaviour of a circuit entirely within this language, without resorting to

linear algebra.

Within this framework, Coecke and Duncan proposed an axiomatisation of com-

plementary quantum observables in terms of a pair of special Frobenius algebras

whose monoid forms a bialgebra with the comonoid of the other [13, 9]. These struc-

tures, with the addition of phases [15], seemed to capture enough interesting aspects

of pure-state quantum theory, such as non-locality [14]. This partial axiomatisation

is the start of a family of diagrammatic calculi called the ZX calculi. A reasonable

question to ask is if one could take this as a basis for a complete axiomatisation of

quantum theory.

The development of ZX calculi is mainly geared towards qubit quantum comput-

ing, and many different versions were written down for different fragments of qubits

systems. More notably, Backens has provided a ZX calculus for the stabiliser frag-

ment, and one for single-qubit processes in the approximately universal Clifford+T

fragment, both being complete for their respective fragments [3, 4]. Completeness for

the whole of pure-state qubit theory has remained an open problem [22].
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Observing that the components of the ZX calculus seemed ill-suited to analysing

finer properties of entangled qubits, such as their separation in SLOCC classes [25],

Coecke and Kissinger proposed a variant where one Frobenius algebra is replaced

with one satisfying an “anti-special” equation [16]. In [30], Hadzihasanovic refined

and extended this theory into a calculus modelled on ZX calculi, the ZW calculus,

and proved its completeness for maps of qubits that have only integer coefficients. In

[36], Jeandel, Perdrix, and Vilmart used a non-trivial translation of the ZW calculus

into the ZX calculus to obtain a complete axiomatisation of the entire Clifford+T

fragment.

Soon, there is an avalanche of completeness result for the ZX and ZW calculi:

• ZW calculus for the more general pure-state qubit theory [33],

• ZX calculus for the entire pure-state qubit theory [33],

• ZW calculus for fermionic circuits [32],

• ZX calculus for a ‘finer’ Clifford+T fragment [37, 35],

• ZX calculus for Toffoli-Hadamard and other fragments [51].

Remark 21. There is another diagrammatic calculus that is closely related to the Z*

series – the Y calculus [34].

In this thesis, we will look at some of the new completeness result, in particular

the ones on the second and third bullet points.

At the same time while all these completeness result were produced, a new variant

of the ZX calculus was developed by Backens and Kissinger – the ZH calculus [5].

It aims to provide a language that is useful for representing hypergraph states. Like

in the ZW calculus, one of the Frobenius algebra in ZX calculus is replaced with

something that is a generalised Hadamard gate in qubit quantum theory; an arbitrary

arity Hadamard node. This Hadamard node represents the hyperedges. If the arity

is 2, then it reduces back to the normal graph state. This language is also complete

for the entire pure-state qubit theory. We will not explore this calculus in this thesis.

2.3.1 Quick recap of finite-dimensional quantum theory

We will quickly look at what is a finite-dimensional quantum theory. We are not

going to explain the physics, nor the in-depth mathematics. We are just going to

touch on the surface of the subject, just enough for this thesis.
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Finite-dimensional quantum theory is basically finite-dimensional Hilbert spaces.

A n-dimensional Hilbert space is a n-dimensional complex vector space V equipped

with an inner product 〈− |− 〉 : V × V → C. We deliberately didn’t define what an

inner product is because its precise definition is not important for our work. We will

define it along the way. And in later part, when we say ‘Hilbert space’, we meant it

to be finite-dimensional, otherwise stated.

Suppose H is a n-dimensional Hilbert space. A vector in H is called a state. Since

it is a vector space, we can pick a basis set where all other vectors are written as

linear combination of states from the basis set. A computational basis is a set of n

orthonormal vectors, written as the kets

| 0 〉, | 1 〉, . . . , |n− 1 〉.

These computational basis states are orthonormal, meaning that their inner product

is

〈m |n 〉 = δmn,

where δmn = 1 if m = n, and 0 otherwise, for m,n = 0, . . . n − 1. An inner product

between two vectors, say

| v 〉 =
n−1∑
j=0

aj| j 〉,

|w 〉 =
n−1∑
k=0

bk| k 〉,

where aj, bk ∈ C, is evaluated as

〈w |v 〉 =
n−1∑
j,k=0

ajb
∗
k〈 k |j 〉 =

n−1∑
l=0

alb
∗
l ,

where the asterisk on the complex numbers indicates its complex conjugation. Hence,

the computational basis states are also written as the column vectors
1
0
...
0

 ,


0
1
...
0

 , . . .


0
0
...
1

 .
We will use these two presentation interchangeably.
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We can define a dual space H∗. It is a space of linear functionals that map

H → C induced from the inner product. A vector in H∗ is called an effect. There is

a computational basis induced from H, written as the bras

〈 0 |, 〈 1 |, . . . , 〈n− 1 |.

They act linearly on the vectors in H as characterised by

〈m | : |n 〉 7→ 〈m |n 〉.

Hence, these bras are sometimes written as the row vectors[
1 0 . . . 0

]
,
[
0 1 . . . 0

]
, . . .

[
0 0 . . . 1

]
,

and the mapping will then be the usual matrix product between the row vector and

column vector.

We will now state what is a homomorphism between Hilbert spaces. A homomor-

phism between Hilbert spaces is a linear map between them. Let φ : Hm → Hn be

a linear map between a Hilbert space of dimension m to n. Then, φ is completely

described by how the computational basis in Hm map to in Hn, that is, we only have

to specify the maps

| j 〉m 7→ | vj 〉n

for each j = 0, . . . ,m − 1, where the | j 〉m are the computational basis in Hm, and

| vj 〉n are the vectors in Hn. In matrix form, this is just a m by n matrix where the

columns are the matrix representation of | v 〉n
...

...
| v0 〉n . . . | vm−1 〉n
...

...

 ,
and the mapping is by matrix multiplication of the state on the right. In fact, we can

view the dual space of a Hilbert space as a set of linear maps to the 1-dimensional

Hilbert space C.

Next in row is introducing something called a tensor product. Suppose Hm and

Hn are m and n-dimensional Hilbert spaces respectively, the tensor product of them,

written as Hm⊗Hn, is a Hilbert space of dimension m×n. The computational basis

of Hm ⊗ Hn is the set of | j 〉 ⊗ | k 〉, abbreviated as | jk 〉, for j = 0, . . . ,m − 1 and
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k = 0, . . . , n− 1. The inner product and dual space are just a extension in the most

natural way: suppose

| v 〉 =
m−1∑
j=0

n−1∑
k=0

ajk| jk 〉,

|w 〉 =
m−1∑
j=0

n−1∑
k=0

bjk| jk 〉

are vectors in Hm ⊗Hn, then their inner product is

〈w |v 〉 =
m−1∑
j=0

n−1∑
k=0

ajkb
∗
jk.

The dual space is just a set of functional 〈 j k | for j = 0, . . . ,m− 1, k = 0, . . . , n− 1

where

〈 j k |j′ k′ 〉 = 〈 j |j′ 〉〈 k |k′ 〉.

We can also act partially on this combined Hilbert space as such: suppose

|w 〉n ∈ Hn,

| v 〉mn =
m−1∑
j=0

n−1∑
k=0

ajk| jk 〉 ∈ Hm ⊗Hn,

their inner product is define as

n〈w |v 〉mn =
m−1∑
j=0

n−1∑
k=0

ajk| j 〉m n〈w |k 〉m.

A well-known fact about finite-dimensional Hilbert spaces is that if their dimen-

sions are the same, then there exist an isomorphism between them. This means that

they are essentially the same thing. We may insist that they are the same with not

much drawback. Then we will write a n-dimensional Hilbert space as C⊕ · · · ⊕ C, a

n direct sum of C.

We can now define what is finite-dimensional quantum theory. It is the category

of finite-dimensional Hilbert space FHilb. The objects are n-dimensional Hilbert

spaces for n ∈ N, and the arrows are linear maps. A state in a n-dimensional Hilbert

space is a represented by a linear map

C→ Hn := C⊗ · · · ⊗ C

1 7→
n−1∑
j=0

cj| j 〉,
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where cj ∈ C. Normally, we will just write the state as

n−1∑
j=0

cj| j 〉.

This category is a dagger compact closed category. The monoidal product is the

tensor product and the monoidal unit is C, the symmetric map can be defined on the

Hilbert spaces Hm and Hn

σmn : | j 〉m ⊗ | k 〉n 7→ | k 〉n ⊗ | j 〉m,

compact structure on the Hilbert space H is the (generalised) bell state and bell effect

Bell state: 1 7→
∑
j

| jj 〉,

Bell effect: | jj 〉 7→ 1,

and the dagger is the functor

Hm
f−→ Hn

†7−→ Hm
f†←− Hn.

In particular, a state is mapped to its dual space:

C→ Hn
†7−→ C← Hn.

We will write the linear map in a dual space as a bra

〈 v | : Hn → C.

We are mostly interested in the category of qubit theory Qubit. It is the full

monoidal subcategory of FHilb whose objects are tensor product of a finite copies

of 2-dimensional Hilbert space C⊕ C. We can generalise Qubit to Quditn, the full

monoidal subcategory of FHilb whose objects are tensor product of a finite copies of

n-dimensional Hilbert space C⊕ · · · ⊕ C.

In this thesis, we can safely forget about the dagger structure. We can generalise

Qubit and Quditn by generalising the objects to tensor product of a finite copies of

R⊕· · ·⊕R for some commutative ring R. Such categories are called Rbit and Rditn

respectively. They work exactly the same, each state is written as

r0| 0 〉+ r1| 1 〉+ · · ·+ rm−1|m− 1 〉

for r0, . . . , rm−1 ∈ R, and the maps are still linear maps defined in the same way.

These objects are also known as R-modules, and the linear maps are also known as

R-module homomorphisms.

Remark 22. Forgetting the dagger structure, FHilb is just FVectC, the category of

finite-dimensional vector space over the field of complex numbers.
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2.3.2 Some algebraic structures

We have encountered many terms like “monoid”, “commutativity”, “bialgebra”, and

“Frobenius algebra”. We are going to look at some of them in this subsection in

diagrammatic form. This subsection is more like a taxonomy of algebraic structures

than explaining them.

Many of the algebraic structures we will introduce have a corresponding coalge-

braic structure. A coalgebra is an algebra with all the arrows reversed. In diagram-

matic terms, a coalgebra is basically an algebra rotated (or flipped) upside down.

A monoid is a pair of arrows

, ,

satisfying the following axioms:

=

,

= =

.

The unary blue vertex is called the unit.

A monoid is commutative if it satisfies the following swapping axiom:

=

.

A Frobenius algebra is a pair of monoid and comonoid

, , , ,

satisfying the Frobenius law:

= =

.

A Frobenius algebra is commutative if its associated (co)monoid is (co)commutative.

37



A Frobenius algebra is special if the loops close as such:

=

.

A Frobenius algebra is anti-special if the loops are broken as such:

=

.

A bialgebra is a pair of monoid and comonoid

, , , ,

satisfying the following bialgebra axioms:

=

,

=

,

=

.

We have a choice of the braiding. In this case, we have depicted the swap map.

A Hopf algebra is a bialgebra which satisfies the additional Hopf axiom:

=A

.

The vertex A is called the antipode.

2.3.3 Preliminary to Z* calculi

As the title suggests, we are going to introduce some important categories to the Z*

series.

The ambient category in which the Z* series live is the free self-dual, compact

closed PROP. We will define these terms in turn.

Definition 23. A products category (PRO) is a strict monoidal category whose ob-

jects are finitely iterated monoidal products of a single object X. A products and

permutations category (PROP) is a PRO that is also symmetric.
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Remark 24. Since the objects of a PRO and PROP are finitely iterated monoidal

products of a single object, the objects are sometimes define as the set of natural

numbers instead.

Definition 25. A self-dual, compact closed PROP is a PROP with two arrows,

ε : X ⊗X → 1 and η : 1→ X ⊗X, satisfying

ε ◦ σ = ε, σ ◦ η = η,

(ε⊗ id) ◦ (id⊗ η) = id = (id⊗ ε) ◦ (η ⊗ id),

where id : X → X is the identity arrow on X, and σ : X ⊗X → X ⊗X is the swap

arrow on X ⊗X.

Using the diagrammatic language we have developed so far for strict monoidal

categories, we will give a quick run through of the conventions we will expect in a

PROP diagram. An arrow in a PROP f : X⊗m → X⊗n is depicted diagrammatically

as a box labelled f with m inputs and n outputs:

n

m .

f

Composing arrows is “plugging” the wires of the diagrams together and monoidal

product of arrows is “juxtaposition” of diagrams. The monoidal unit I and its identity

arrow e : 1 → 1 are just an empty diagram, the identity morphism id : X → X is

a straight wire, and the swap arrow σ : X ⊗ X → X ⊗ X is two intersecting wires

satisfying

=

,

=

f
,

f

for all morphisms f . The ε and η are depicted as

, ,

respectively, satisfying the diagrammatic equations

=

,

=

,
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= =

.

In short, it is a string diagram where we don’t have to be concern with the labels on

the wires because they all have the same label.

We will draw a diagram with lines of various shades; a darker shade means that

that portion of the diagram is the focus of the discussion while a lighter shade means

otherwise. A lighter shade lines can also indicate a repeated pattern. Occasionally,

we may zoom in on the diagram while not showing the rest of it. It should be clear

from the context what the lighter shade of lines mean or that we have zoomed in on

the diagram while the rest remains the same.

If one recalls about Qubit,Quditn, Rbit, Rditn, it shouldn’t be hard to realise

that they are self-dual, compact closed PROPs. Example 1 on arithmetic processes

is also a self-dual, compact closed PROP.

The ZX, ZW and ZH calculi are self-dual, compact closed PROPs, with a signature

T , quotient by an equivalence relation E on arrows respecting the number of inputs

and outputs, that is, they are string diagrams with a single generating object X,

and the arrows are freely generated by the set T quotient by the axioms E. These

graphical calculi are used to model Qubit theory, or even Quditn theories, and, after

fixing a computational basis, we can set up an interpretation map iZ∗ : Z∗ → Quditn.

The interpretation on the structures of the categories are as follows:

e := 7→ 1, id := 7→
∑n−1

j=0 | j 〉〈 j |,

σ := 7→
∑n−1

j,k=0 | kj 〉〈 jk |,

ε := 7→
∑n−1

j=0 〈 jj |, η := 7→
∑n−1

j=0 | jj 〉.

In the next couple of chapters, we will look at the properties of the ZW and

ZX calculi with respect to Qubit, and the present a version that is complete. The

final chapter will be all other, mainly unfinished, generalisations of the calculi, which

includes generalising for Quditn.
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Chapter 3

The ZW calculi

Overview:

• Section 3.1 — We introduce the motivation of the ZW calculus, entan-
glement classification. We then give a quick run through of its algebraic
properties.

• Section 3.2 — We then show the proof of the completeness of the cal-
culus with respect to the category Rbit. All these so far are already
noted by Hadzihasanovic in [31, 33]. Our contribution is noting that the
Clifford+T fragment of qubit quantum theory is also complete. This
will be used in the next chapter regarding the completeness of the ZX
calculus.

• Section 3.3 — This section is the main original contribution in this
chapter. We noted the technique used in the previous section to prove
the completeness of a calculus, and applying it to a fragment of the ZW
calculus, called the fermionic ZW calculus; we will first show its univer-
sality, then add axioms to make the calculus complete. So far, this has
been reported in the paper [32], a joint work between Hadzihasanovic,
de Felice, and Ng.

This technique can be applied for all universal diagrammatic calculus
with a clear normal form, and we will demonstrate it by apply the tech-
nique again for a fragment of the fermionic ZW calculus, called the even
ZW calculus. The even ZW calculus is a calculus which has two differ-
ent symmetric braidings, which may be of interest to mathematicians.
Furthermore, it may have a interpretation of emulating particles with
space-time curvature, which physicists might want to look into. This is
not reported anywhere yet.
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3.1 Basic properties of the ZW calculus

In this section, we shall highlight some of the motivations and properties of the ZW

calculus explored by Coecke and Kissinger in [16] and Hadzihasanovic in his DPhil

thesis [31]. This is also somewhat summarised in [30, 33].

3.1.1 Entanglement classification

Entanglement of quantum systems means that they are related in some ways. An

entangled state can only be drawn as

,

and can never be drawn separately like

.

Entangled states can be thought like the two systems are connected informationally,

that is, the information is able to flow from one system through the wires to another

system. An unentangled state is when the wires are broken. This graphical definition

makes it easy to grasps the concept of entanglement, and it seems to place diagram-

matic calculus in good stead to analyse entanglement problems. One such problem

is to classify them.

One way of classification of entangled states is by stochastic local operations and

classical communication (SLOCC) equivalence classes. This loosely means that if

two states |ψ1 〉 and |ψ2 〉 are SLOCC equivalent, then there are some local quantum

operations fj, gk such that

=
ψ1

,

f1 fnf2

ψ2
=

ψ2

,

g1 gng2

ψ1

with a nonzero probability of success.

The predecessor of ZW calculus, sometimes called the GHZ-W calculus, was built

on ZX calculus for the entanglement classification problem. It features, as the building
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blocks, the representatives of the only two SLOCC equivalence classes of (non-trivial)

three qubit entanglement [25], one is the GHZ state

|GHZ 〉 =
1√
2

(| 0 0 0 〉+ | 1 1 1 〉),

and the other one the W state

|W 〉 =
1√
3

(| 0 0 1 〉+ | 0 1 0 〉+ | 1 0 0 〉).

Coecke and Kissinger found that the two different classifications correspond to dif-

ferent Frobenius algebras, the GHZ state corresponds to a special commutative Frobe-

nius algebra and the W state corresponds to an anti-special commutative Frobenius

algebra. Hence, the problem is equivalent to the classification of Frobenius algebras.

Furthermore, as the GHZ-W calculus (together with arbitrary single qubit states)

is universal, Coecke and Kissinger believed that this calculus is useful to analyse

multi-partite entanglements.

We are going to state a painfully simplified heuristic to show the two Frobenius

algebras.

We are going to represent a GHZ state, up to normalisation, as

:= 7→ | 000 〉+ | 111 〉,

and a W state, up to normalisation, as

:= 7→ | 001 〉+ | 010 〉+ | 100 〉.

Their two qubit versions are

:= 7→ | 00 〉+ | 11 〉,

:= 7→ | 01 〉+ | 10 〉,

respectively.
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Remark 26. The two qubit entanglements represented by the binary black and white

vertices are of the same entanglement class. They are called an EPR state (modulo

normalisation) or a Bell state.

We can define a different partition of inputs and outputs on these state by fixing

a particular partial transposition of the wires. One such definition can be

:=

,

:=

,

:=

,

:=

,

:=

,

:=

,

By observing the interpretations, the binary and ternary black and white vertices

are symmetric with respect to swapping the wires. Hence, it doesn’t matter how we

define the partial transpositions.

The ternary white vertex forms a special commutative Frobenius algebra without

much effort: the pair

,

is a commutative monoid, and it forms a special Frobenius algebra with its comonoid

obtained by transposition.

We can construct an anti-special commutative Frobenius algebra that is SLOCC

equivalent to the ternary black vertex: the pair

,

is a commutative monoid, and the pair

, ,

is a commutative comonoid, and the monoid-comonoid forms an anti-special commu-

tative Frobenius algebra.
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The classification of n ≥ 4 entangled qubits is still an active area of research.

Hadzihasanovic noted that while we can analyse the problem with two Frobenius

algebras, it might be possible to just use the black vertices and study how they are

connected. His argument came from the following observations:

• the entangled states are connected diagrams, assuming that the diagrams are

simplified to give the maximum number of disconnected components,

• for the classification of bipartite states, the binary black vertex is a representa-

tive for the Bell state,

• for the classification of tripartite states, the W-like states are equivalent to the

ternary black vertex, and the GHZ-like states are equivalent to

,

• for the classification of n = 4 qubits states, the following are some examples of

states in distinct SLOCC super-classes [44]:

, , , , ,

where a quaternary black vertex is

.

The gray circle indicates another kind of “braiding” which we will talk about

in the later subsection.

With all these diagrams, he suggests that maybe we can study these classifications

from a topological viewpoint. More specifically, the classification has something to

do with topological inequivalence of the networks.

Nothing much has been done beyond this point.
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3.1.2 Algebraic properties

We have seen that Coecke and Kissinger suggested that the main defining structure of

the ZW calculus is having a special and anti-special commutative Frobenius algebras.

However, Hadzihasanovic thinks otherwise; he suggests that the anti-special commu-

tative Frobenius algebra should be replaced with a Hopf algebra. The Hopf algebra

is inspired by studying the fermionic line in the theory of quantum groups [45]. We

will see how to use ZW calculus to model fermionic quantum theory in section 3.3.

With this change, he quickly obtained a completeness result, the completeness of ZW

calculus for Zbit [30].

Hadzihasanovic split the ZW calculus into a couple fragments: the pure fragment,

the vanilla version, and the one enriched by a commutative ring R. The pure fragment

is responsible for the Hopf algebra structure, the vanilla ZW calculus adds a special

commutative Frobenius algebra in the picture, and then we add a ring structure on

top of everything.

We will introduce the axioms of the calculus as we explore the algebraic properties.

These axioms will be labelled with an upper case alphabet.

Pure fragment

The pure fragment of the ZW calculus can be further broken down into an even

fragment and the rest. The even fragment consists of the generators

7→
1∑

j,k=0

(−1)jk| jk 〉〈 kj |, (3.1)

7→ | 0 〉〈 00 |+ | 1 〉〈 01 |+ | 1 〉〈 10 |. (3.2)

These generators have the characteristic that the sum of the numbers in each bra-ket

of the summands is even. For example, the bra-kets for the summands in Equation

3.1 are | jk 〉〈 kj |. The sum of the numbers in the bra-kets are j+k+k+ j = 2(j+k),

which is an even number. Maps with such characteristic is called even maps.

The identity map, swap map, cup and cap are also even maps. Hence, any com-

position of the generators, by plugging or juxtaposition, will preserve the even parity.

For this reason, this fragment is called even fragment.
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The first generator in Equation 3.1 is called the crossing. From the artwork, one

can tell that it is some sort of braiding, and from the interpretation, it is a Z2-grading.

Hence, it satisfies the following axioms:

1(A)
=

,

1(B)
=

,

1(C)
=

,

1(D)
=

,

1(E)
=

.

(3.3)

These axioms kind of tell us that we are building a calculus with two symmetric

braidings (which is the subject of virtual knot theory [40]), although these axioms

are probably not enough. However, there are still some interesting lemmas regarding

the crossing.

Lemma 27. The crossing is invariant under quarter rotation. That is,

=

.

Proof.

= =

.

Lemma 28. The self crossing is involutive. That is,

=

.

Proof. This follows from 1(E), combined with the equation

=

,
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which is a consequence of the fermionic swap axioms by the Whitney trick [39, p.

484]. More explicitly,

= = =

.

Next, we have the generator in Equation 3.2. This generator satisfies the following

commutative monoid axioms

2(E)
=

,

2(B)
=

,

2(D)
=

,

(3.4)

where the unit is

,

(3.5)

and it is natural and commutative with respect to the crossing:

2(A)
=

,

2(F )
=

.

(3.6)

It is the monoid in the Hopf algebra from the fermionic line in the theory of quantum

groups. The comonoid in the fermionic line is the canonical transposition of the

monoid, hence we have the following axioms:

2(H)
=

,

2(I)
=

.

2(J)
=

,

2(K)
=

,

(3.7)

where the braiding in the bialgebra is the crossing, and the antipode in the Hopf

algebra is the self crossing.

The monoid can be seen as a partial function that “adds” numbers, but adding to

2 or greater is not allowed, as noted by Kissinger. This is closely related to the beam
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splitter formalism which we will talk about in section 3.3. We can also construct an

operation that adds mod 2:

7→ | 0 〉〈 0 0 |+ | 0 〉〈 1 1 |+ | 1 〉〈 0 1 |+ | 1 〉〈 1 0 |.

Next we will introduce the odd maps, the maps where if you add up the numbers

in each bra-ket of the summands, you will always get an odd number. This is simply

obtained by introducing to the even fragment a binary black vertex

7→ | 0 〉〈 1 |+ | 1 〉〈 0 |, (3.8)

as a parity reversing operation, or in other words, it is a bit flip operator.

Remark 29. The bit flip operation is an odd state. We have many choices of odd states

to add to the even fragment, like | 1 〉, but using the bit flip seems most natural.

The bit flip is a self transpose and involutive operation:

=

,

2(C)
=

.

(3.9)

From how the monoid in 3.4 is drawn, it is suggestive that

=

,

(3.10)

which we get a ternary black vertex. This is exactly why we drew the monoid in that

manner in the first place; this is the W state, and from now we will treat this as a

generator instead. So, the monoid is constructed by composing the W state with a

bit flip on any one of the wire, and partial transposing the appropriate wires.

We can then rewrite thes axioms 2(E,F ) as such:

2(E)
=

2(E)
=

,

2(F )
=

2(F )
=

.

(3.11)
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The parity of the diagram can be determined by counting the number of black

vertices; even number of black vertices is a even state, and odd number of black

vertices is a odd state.

In the even fragment, the crossing can be treated as a second braiding. However,

in the entire pure fragment, the odd states is not natural with the crossing. It induces

a self crossing when passing through a crossing, hence we have the axiom:

2(G)
=

.

(3.12)

With all these axioms, the axioms for the Hopf algebra 2(K) can now be derived.

Lemma 30. The axiom 2(K) is derivable.

Proof.

2(C)
=

2(D)
=

2(H)
=

2(I)
=
2(J)

.

(3.13)

This concludes the portion on the pure fragment of ZW calculus.

Vanilla ZW calculus

The vanilla ZW calculus has the addition of a ternary white vertex as generator:

7→ | 0 0 0 〉+ | 1 1 1 〉. (3.14)

This generator is a mixed parity generator, that is, it has both odd and even com-

ponents. This is the GHZ state (up to normalisation), and it satisfies the following

commutative monoid axioms:

3(C)
=

3(C)
=

,
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3(A)
=

,

3(B)
=

.

(3.15)

The monoid is obtained by transposing any of the two output wires, and the unit is

.

(3.16)

With these axioms, we get a Frobenius algebra for free:

= = = =

,

(3.17)

and this Frobenius algebra is special:

= = =

.

(3.18)

This monoid has a few nice properties. The self crossing is a module homomor-

phism, and the bit flip is a monoid homomorphism with respect to it:

3(G)
=

,

3(H)
=

,

(3.19)

and it interacts with the black (co)monoid in Equation 3.4:

3(D)
=

,

3(F )
=

,

3(I)
=

.

(3.20)

The the first two axioms in 3.20 seems like a Hopf algebra, but they only have the

form of a Hopf algebra and are not even true bialgebra. The last axiom is telling

us that when plugging the black and white ternary vertices together, the swap and

crossing are interchangeable.

It is not hard to notice that the calculus is about the connectivity of the vertices,

and not having strict distinction of inputs and outputs. Furthermore, the black and
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white vertices are all symmetric, hence we obtain a diagram that resembles a network

where only the topology matters. This is a meta-rule, which is often known as the

only topology matters rule.

We are done with all the axioms of the vanilla ZW calculus. With all these axioms

introduced so far, we are ready to show that the vanilla ZW calculus is complete for

the category Zbit [30]. However, we will enrich the calculus with a ring structure.

Full ZW calculus

Suppose r is an element of a commutative ring R, we are going to add a r labelled

binary white vertex:

,

r 7→ | 0 〉〈 0 |+ r| 1 〉〈 1 |. (3.21)

We can define the ring operations in ZW calculus as:

3(E)
=

,

1 3(J)
=−1

,

3(L)
=

s

r

,

rs 3(K)
=

r s

,

r + s (3.22)

where the composition and convolution by black vertices correspond to multiplication

and addition of the ring elements.

The binary white vertex interacts nicely with the black and white monoids: it is

a monoid homomorphism for the black monoid

3(M)
=

r

,

r r
(3.23)

is eliminated when plugged to the unit for the black monoid

3(O)
=

r

,

(3.24)
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and it is a module homomorphism for the white monoid

3(N)
=

r

.

r (3.25)

We are pretty much done with the introduction to the axioms of ZW calculus. We

obtain a diagrammatic calculus which is in the form of an undirected graph, that is,

only topology matters, and the axioms are mostly motivated by having nice algebraic

properties, which is what Hadzihasanovic envisioned. He also proved that this set of

axioms is complete for Rbit, for some commutative ring R. The completeness result

is briefly summarised in the next section.

3.2 Completeness of the ZW calculus

In [30], Hadzihasanovic proved that the vanilla ZW calculus is complete for Zbit, and

in [31, 33], Hadzihasanovic extended the ZW calculus and proved the completeness

for Rbit for any commutative ring R. We shall recap the proof in this section.

The most important message of this chapter is the idea of the proof. The proof

follows a normal form argument, and is repeated in the subsequent few sections for

different versions of the ZW calculi. The completeness proof is in three stages:

1. First, we will associate to any state v : R → (R ⊕ R)⊗n of Rbit a diagram

g(v) : 0 → n in ZWR such that izw(g(v)) = v. Because both categories are

compact closed, and the dualities of Rbit are in the image of izw, this assignment

can be extended to any map of Rbit, proving universality of our interpretation.

We will say that a diagram is in normal form if it is of the form g(v) for some

v.

2. Then, we will show that any composite of diagrams in normal form can be

rewritten in normal form using the equations in Ezw, proving that g determines

a monoidal functor from Rbit to ZWR.

3. Finally, we will show that all the generators of ZWR can be rewritten in normal

form using the equations in Ezw, proving that g and izw are two sides of a

monoidal equivalence between ZWR and Rbit.

The most important stage is stage 2. That is because we know the initial and

final diagrams of the rewriting process. While rewriting a composite of normal form
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diagrams in a single normal form, we are most likely going to encounter some equalities

which we have no idea how to proceed. Then that will be an axiom for the calculus.

This procedure has also been employed for the recent ZH calculus [5].

The section is separated into two parts for clarity. The first part is the preparation

phase, where we state the axioms and the derive rules that may be used in the com-

pleteness proof. Then is the execution phase, where we demonstrate the completeness

proof. The completeness proof of the other versions of ZW calculi also follows the

same format, but we won’t state them as “preparation” and ”execution” explicitly.

3.2.1 The preparation

A quick summary of ZW calculus: The ZW calculus is a self dual, compact closed

PROP with the following generators Tzw and interpretation izw:

7→
1∑

j,k=0

(−1)jk| j k 〉〈 k j |,

7→ | 0 0 1 〉+ | 0 1 0 〉+ | 1 0 0 〉, 7→ | 0 1 〉+ | 1 0 〉,

7→ | 0 0 0 〉+ | 1 1 1 〉,
r

7→ | 00 〉+ r| 11 〉.

Because of the monoid structure of the black and white vertices, we can define the

arbitrary arity vertices as such:

1. Black vertices. The nullary and unary black vertices are defined as follows:

:= 7→ 0, := 7→ | 1 〉.

We already have binary and ternary black vertices. For n > 3, the n-ary black

vertex is defined inductively by

:=

n n− 1

7→
n∑
k=1

| 0 . . . 0︸ ︷︷ ︸
k−1

1 0 . . . 0︸ ︷︷ ︸
n−k

〉.
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Here, and in what follows, lighter wires and vertices indicate the repetition of

a pattern for a number of times, which may or may not be specified.

2. White vertices. First, define a ternary vertex with parameter r ∈ R as

:=
r

r 7→ | 000 〉+ r| 111 〉.

The nullary and unary white vertex with parameter r ∈ R is then defined by

:=
r r

7→ 2 + r, :=
r

r 7→ | 0 〉+ r| 1 〉.

We already have binary and ternary white vertices with parameters. For n > 3,

the n-ary white vertex with parameter r ∈ R is defined inductively by

:=
r

n n− 1

r

7→ | 0 . . . 0︸ ︷︷ ︸
n

〉+ r| 1 . . . 1︸ ︷︷ ︸
n

〉.

This arbitrary arity vertices presentation is also known as spiders presentation.

With the spiders, we can write the axioms more compactly with some inductive

schemes. Some of them subsume several axioms at once. It is possible to perform

diagram rewriting directly with such equation schemes, using for example the theory

of pattern graphs developed in [41]. In the following table, the non-condensed axioms

are listed on the left, while the condensed version is on the right.

Axioms Condense axioms

2(B) 2(b)
=

2(D) 2(d)
=

2(E,F ) 2(e)
=

2(f)
=
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2(H, I, J) 2(h)
=

n

m

n

m

for m,n ≥ 0

3(A,L,N) 3(a)
=

r

s

rs

3(B) 3(b)
=

3(C) 3(c)
=

3(D,M,O) 3(d)
=

n

m

r rr

n

m

r

for m = 0 = n, or m > 0, n ≥ 0

3(E) 3(e)
=

3(e)
= 1

The condense axioms show some nice properties: both black and white vertices are

symmetric under permutation of wires (axioms 2(e), 3(c)), which allows us to write

vertices with different numbers of inputs and outputs, transposing some of them with

no ambiguity. Most importantly, they satisfy certain “fusion” rules, as shown in

axioms 2(b, d), 3(a, b).

All these condensed axioms are easy to prove. Perhaps, the axioms that require

some justification are 2(h) and 3(d).

The axiom 2(h) can be proved case by case. For m = n = 0, this is 2(J). The case

n = 0, m > 1 is an inductive generalisation of 2(I), and similarly for n > 0,m = 0.

The case m = n = 1 follows from 2(C). The case m = n = 2 is simply 2(H). From

here on, it is a double induction on n,m using 2(A) to slide the black vertices through

the crossings.

Finally, the axiom 3(d) can be proved case by case. For m = 2, n = 0,
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3(O)
=r

3(D)
=

3(A)
=

3(F )
=

2(J)
=

2(C)

.

The case m = n = 0 then simply follows by connecting the two outputs and apply

2(C, J) to get the empty diagram. The case m = 1,n = 0 is 3(O), m = n = 1 follows

from 2(C), m = 1, n = 2 is 3(M), m = 2,n = 2 is combining 3(D,M). From here on,

it is a double induction on n,m.

A summary of the axioms Ezw in the condense form is as follows: with appropriate

partial transposition,

1. The following are the axioms for the crossings:

(a)
=

,

(b)
=

,

(c)
=

,

(d)
=

,

(e)
=

.

2. The following are the axioms for the black vertices:

(a)
=

,

(b)
=

,

(c)
=

,

(d)
=

,

(e)
=

(f)
=

,

(g)
=

,

(h)
=

n

m ,

n

m

for all m,n ∈ N.

3. Given a commutative ring R, the following are the axioms for the white vertices:
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(a)
=

r

s

,

rs

(b)
=

,

(c)
=

,

(d)
=

n

m

r rr

,

n

m

r

3(e)
=

3(e)
=

,

1 (f)
=

r

,

(g)
=

,

(h)
=

,

(i)
=r s

,

r s

(j)
=−1

,

(k)
=

r s

,

r + s

for r, s ∈ R, m,n ∈ N such that either m = n = 0 or m > 0.

The set of axioms Ezw is sound with respect to the interpretation izw, that is, the

map izw is functorial. This can be easily check by verifying the interpretation of each

axiom.

There are some derived rules that are useful for the completeness proof.

Proposition 31. The following are derived rules:

(i)
=

n ,n

(ii)
=

n ,n

(iii)
=

r

n

,

(iv)
=

,

(v)
=

r1 rnr2

,

∑n
i=1 ri

(vi)
=

r

.

−r

for all n ∈ N in rules (i, ii, v), n ≥ 2 in rule (iii), and r, ri ∈ R in rule (v, vi).

Proof. Rule (i): The case for n = 0 is as follows:

2(d)
=

1(d)
=

2(a)
=

2(d)
=

.
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The case for n = 1 is just using axiom 2(c), and n = 2 is axiom 2(a). The cases for

n ≥ 2 are induction starting from axiom 2(a) and using the axiom 2(b).

Rule (ii): The case for n = 0 is as follows:

3(b)
=

2(c)
=

3(h)
=

3(b)
=

.

The case for n = 1 is just using axiom 3(e), and n = 2 is axiom 3(h). The cases for

n ≥ 2 are induction starting from axiom 3(h) and using the axiom 3(a).

Rule (iii): The case n = 2 is axiom 3(f). The cases n > 2 follows by:

3(a)
=
2(b)

r

3(f)
=

r

3(d)
=

r

3(b)
=

.

Rule (iv): This is proved in Lemma 30.

Rule (v): The case for n = 0 is as follows:

(iv)
=

3(e)
=
3(j)

3(k)
=

−11

.

0

The case for n = 1 is simply applying axiom 2(c), and the case n = 2 is axiom 3(k).

For cases for n ≥ 2 are induction starting from axiom 3(k) and using the axiom 2(b).

Rule (vi): Start with:

2(c)
=

r
2(g)
=

r 3(e)
=
3(f)

r

,

r

−1

where we have transposed some wires in the last step. Then,

3(a)
=

r

−1

3(i)
=

r

−1

3(a)
=

r

−1

3(c)

2(c)
=
3(e)

−r

.

−r
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3.2.2 The execution

Theorem 32 (Universality of the ZW calculus). The interpretation functor izw :

ZWR → Rbit is full.

Proof. Due to the presence of self-duality (known as the Choi-Jamio lkowski isomor-

phism in quantum information theory), every morphism in Rbit can be written as a

partial transpose of a state. Hence it suffices to prove that for every state in Rbit

there exists a corresponding ZW diagram.

Write an arbitrary n-partite state in Rbit as

m∑
i=1

ri| bi1 . . . bin 〉,

where ri 6= 0 and no two kets in the sum are the same. We claim that it is the image

of the diagram

,

n

m

r1 rmr2

(3.26)

where the i-th white vertex has one connection to the j-th output if and only if

bij = 1, for i = 1, . . .m, j = 1, . . . n. The claim can be proved by a direct calculation:

the black vertex creates the state

n∑
k=1

| 0 . . . 0︸ ︷︷ ︸
k−1

1 0 . . . 0︸ ︷︷ ︸
n−k

〉,

where the ith summand will be transformed to ri| bi1 . . . bin 〉 by first going through

the ith white vertex to give

ri| 0 . . . 0 1 . . . 1︸ ︷︷ ︸
p

0 . . . 0 〉

where there are p number of 1’s in bi1 . . . bin . Then the 1’s are swapped according and

added using the black vertices to get the desired result.

The proof of universality showed that any state is the image of the diagram in

(3.26). We will call this diagram the normal form. From how the normal form is

constructed, it is clear that it is unique up to a permutation of the white vertices. It
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is possible to give an ordering to the white vertices, but due to the symmetry of the

black vertex with respect to swap it does not matter what ordering we take.

Allowing diagram (3.26) to have two white vertices with the same connections,

and ri to be 0 for some i, we obtain what we call a diagram in pre-normal form.

Example 33. The following diagrams are in pre-normal form, but only the second one

is in normal form:

1 0 i 1

,

i 2

.

Both are interpreted as the state 1 7→ i| 01 〉+ 2| 10 〉.

The pre-normal form can be reduced to a normal form, as we will now show.

Then, the structure of our completeness proof is as follows:

• any composite of two diagrams in normal form can be rewritten to pre-normal

form:

– the juxtaposition of diagrams in normal form can be rewritten to pre-

normal form;

– the plugging of an output of a diagram in normal form into another (self-

plugging) can be rewritten to pre-normal form;

– an arbitrary composition of two diagrams can be factored as a juxtaposi-

tion, followed by a self-plugging;

• all generators can be rewritten to normal form.

Lemma 34. A ZW diagram in pre-normal form can be rewritten in normal form.

Proof. Suppose a diagram is in pre-normal form. If two white vertices have the same

connections, then we can “sum” them by

3(a)
=
2(b)

r s

3(d)
=

r s r s

2(b)
=
3(k)

3(a)
=r + s

.

r + s

If ri = 0 for some i, then we can eliminate that white vertex by
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3(a)
=
(v)

0 3(d)
=

,

and use axiom 2(b) to simplify the diagram.

Lemma 35 (Negation). Given a diagram in pre-normal form, the diagram obtained

by composing an output with a binary black vertex can be rewritten in pre-normal

form, which complements the connections of that output to the white vertices; that is,

locally,

=r1 r2 rn s1 s2 sm

.

r1 r2 rn s1 s2 sm

Remark 36. In the picture, the dotted wires can stand for a multitude of wires.

Proof. First isolate the first n white vertices on the left hand diagram using axioms

3(a) and 2(b), then proceed as follows:

3(d)
=

r1r2 rn

s1s2 sm

3(h)
=
2(c)

r1r2 rn

s1s2 sm

r1r2 rn

s1s2 sm

3(d)
=

3(a)
=
2(b)

r1r2 rn

s1s2 sm

.

r1r2 rn s1s2 sm

A nullary black vertex is interpreted as the scaler 0; the following lemma shows

that it acts as an “absorbing element” for diagrams in pre-normal form, that is, it

kills off everything.

Lemma 37 (Absorption). For all diagrams in pre-normal form, a nullary black vertex

eliminates all the white vertices; that is,
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=
r1 rmr2

.

Proof. Use axiom 2(b) to expand the nullary black vertex and apply the negation

lemma:

=
r1 rmr2

.

r1 rmr2

Then apply axioms 2(h) and 3(d), which eliminate all the white vertices:

2(h)
=r1 rmr2

3(d)
=r1 rmr2

.

The final diagram can be simplified using axiom 2(b) which merges the black vertices

to get the desired result.

Lemma 38 (Juxtaposition). The juxtaposition of two diagrams in pre-normal form

can be rewritten to pre-normal form.

Proof. Consider the following juxtaposition of diagrams,

.

r1 rmr2 sns2s1

Using the axiom 2(h), we can produce a pair of connected black vertices, and using

the negation lemma we can connect the pair of black vertices to the diagrams:

.

r1 rmr2 sns2s1
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The only case in which this still leaves two disconnected diagrams is when one of the

diagrams has no white vertices, that is, it is a nullary black vertex with some outputs

like in right-hand side of the the negation lemma. In this case, we can use the nullary

black vertex to “absorb” the other diagram, which produces a diagram in pre-normal

form.

So assuming both our diagrams have more than or equals to one outputs. Applying

axiom 2(h) again on the pair of black vertices (after eliminating the middle two black

vertices using the 2(c) axiom) gives the following diagram (zooming in to the relevant

part of the diagram):

.

r1 r2 rm s1 s2 sn

We can then push all the white vertices through the top black vertices using axiom

3(d), for instance,

3(d)
=

r

.

r

r

r

We would want to merge the white vertices, but they cannot pass through the cross-

ing. However, using 2(b) in the final diagram, the lower black vertex merges with

the bottom black vertex and the higher black vertex merges with some outputs, for

instance

.

r

r

r

The white vertices are all connected to either of the two bottom black vertices and now

we can eliminate all the crossings using 3(i). After merging white vertices pairwise,

there is a white vertex with label risj for each i = 1, . . . ,m, j = 1, . . . , n

.

rmsnrisjr1s1
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Finally, one of the bottom black vertices can be eliminated with the negation lemma

,

risjr1s1 rmsn

and the floating pair of black vertices is eliminated using 2(h).

Lemma 39 (Trace). A self-plugging on a diagram in pre-normal form can be rewritten

in pre-normal form.

Proof. The proof involves some tactful use of the negation lemma. Suppose that we

have the following self-plugging diagram, only zooming in to the white vertices and

the pair of self-plugged outputs,

,
tprm u2s1 t1sn uqu1r2 s2r1 t2

where the r white vertices are not connected to either of the outputs, the s white

vertices are connected to the left output only, the u white vertices are connected

to the right output only, and the t white vertices are connected to both outputs.

From the interpretation in Rbit, we expect the r and t labelled white vertices to

survive while the s and u labelled white vertices are eliminated. This can be shown

diagrammatically by first performing a negation to obtain the following diagram:

.
tprm u2s1 t1sn uqu1r2 s2r1 t2

We can merge the black vertices using the axiom 2(b) and the s labelled white vertices

have two connections with the black vertex. This means that we can apply 3(f) to

eliminate all the s labelled white vertices:

.
tprm u2t1 uqu1r2r1 t2
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We can apply negation lemma again to obtain

.
tprm u2t1 uqu1r2r1 t2

Finally, we can eliminate all the u labelled white vertices as in the absorption lemma,

which completes the proof.

With the juxtaposition and trace lemma, we have proved the following theorem:

Theorem 40 (Functoriality). Any composition of two ZW diagrams in normal form

can be rewritten in pre-normal form.

Theorem 40 shows that the assignment Rbit → ZWR defined by the normal

form is functorial: every morphism in Rbit is mapped to a ZW normal form with

some transposing of outputs, and composition of morphisms in Rbit (tensoring and

vertical composition) is composition of normal forms in ZW (juxtaposition and plug-

ging), which can be rewritten in normal form. This functor is a right inverse to the

interpretation ZWR → Rbit. It remains to show that it is a two-sided inverse.

Theorem 41 (Completeness of the ZW calculus). The interpretation ZWR → Rbit

is an isomorphism of PROPs.

Proof. It suffices to show that every generator of ZW can be rewritten to normal

form.

The binary and ternary black and white vertices are rewritten in normal form as

follows:

2(c)
=
3(e)

,

1 1 1

2(c)
=
3(e)

,

1 1

2(c)
=
3(a)

(ii)
=

,

2(c)
=
3(a)r

(ii)
=r

,

r
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We rewrite the crossing as follows:

= 2(a)
=

3(i)
=
(vi)

,

−1

where in the first step we have rewritten the juxtaposition of two self-duality arrows

in normal form, as made possible by the juxtaposition lemma.

Finally, the case for swap is similar to the case for crossing, except that there are

no crossings in the third diagram. Hence the normal form is simply:

=

.

Just some remarks of the proof. We relied heavily on the bialgebra equations

2(h), 3(d) which allows us to move the monoid and comonoid pass each other. For

this reason, it is believed that the Hopf algebra structure of the black vertices is

a more crucial defining feature of the pure fragment of the ZW calculus than the

anti-special commutative Frobenius algebra.

3.2.2.1 Some interesting ZW calculi for different rings

We have now proved the completeness of the ZW calculus for Rbit. The calculus

features an n-ary R-labelled white vertex for each r ∈ R. Given a presentation of

R, we could in fact have just a label for each generator of R. The calculus remains

largely the same; we just have to add an axiom for each relation the generators satisfy,

and also a slight modification to some of the axioms involving the ring operations on

the white vertices. For instance the axiom 3(k) can be slightly modified to suit the

generators, and 3(a) can be replaced with

=
r

s

m1 m2

n2n1 ,

s

r

m′1 m′2

n′2n′1

67



where r, s are some generators, m1,m2, n1, n2,m
′
1,m

′
2, n

′
1, n

′
2 are natural numbers, and

m1 +m2 = m′1 +m′2, n1 + n2 = n′1 + n′2.

The completeness proof also remains largely the same since any composition of

diagrams in pre-normal form can be rewritten in pre-normal form. We can also modify

the normal form by replacing the R-labelled white vertices with

,

where the box is some fixed expression for the ring elements as sums and products of

generators, expressed by convolution with black vertices and vertical composition.

We will look at some different commutative rings as examples.

If R is the free commutative ring on one generator Z, we recover the result of [30].

We can express n ∈ Z as

,

n

,

−n

depending on whether n is positive or negative.

If R := Zn, then we just need to add one axiom for the relation n = 0,

=n

.

In particular, for Z2bit, also called modal quantum theory in [47], the crossing is

equal to the swap and many of the axioms regarding the crossing become redundant.

If we take R := C, the ring of complex numbers, we obtain completeness for

Qubit. It might be convenient to separate the phase part and the length part and

express each element in C as ρeiφ for ρ the positive reals and φ ∈ [0, 2π). Then all

we need to modify is to have an n-ary white vertex for eiφ, a binary white vertex for

ρ which we require is a (co)module homomorphism with respect to the n-ary white

vertices

=

ρ

eiφ

,

ρ

eiφ
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and change the axiom 3(k) to

=

ρ1

eiφ1

ρ2

eiφ2

.

ρ

eiφ

where ρeiφ = ρ1e
iφ1 + ρ2e

iφ2 . We will call this example the ZWC calculus.

As a final example, we let R := Z
[
1
2
, eiπ/4

]
. It is possible to have an n-ary white

vertex with label ei
π
4 and a binary white vertex with label 1

2
, and some axioms for

the generators. However, for convenience, we can use the same convention as in the

complex case: an n-ary white vertex with labels eiφ for φ = k π
4
, k = 0, 1, . . . , 7, and

a binary one with labels 0 < l ∈ Z
[
1
2

]
. Then an expression for an arbitrary ring

element is
7∑

k=0

lke
kiπ

4

for 0 < lk ∈ Z
[
1
2

]
, k = 0, 1, . . . , 7. The axiom 3(k) is now

=l1 l2

,

l1 + l2

for 0 < l1, l2 ∈ Z
[
1
2

]
. The Z

[
1
2
, ei

π
4

]
bit corresponds to the Clifford + T fragment of

Qubit as proved in [36]. We will call this example the ZWπ
4

calculus.

The last two examples, where R = C and R = Z
[
1
2
, ei

π
4

]
, are of great importance

to the completeness of the ZX calculus for Qubit and the Clifford+T fragment,

respectively. The proof for the completeness results is via a direct translation from

ZX to ZW calculus, which we will detail in the next chapter.

Remark 42. For readers unfamiliar with the notation Z
[
1
2
, ei

π
4

]
, it is defined as follows:

given a commutative ring R and a symbol X,

R[X] := {rnXn + rn−1X
n−1 + · · ·+ r1X + r0|n ≥ 0, rj ∈ R}.

It is an easy undergraduate exercise to check that R[X] is a commutative ring. Given

another symbol Y ,

R[X, Y ] := R[X][Y ].
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3.3 ZW calculus for fermionic circuits

Hadzihasanovic suggested some generalisations of the ZW calculus. One of them is

to explore the limits of the core of ZW calculus, the pure fragment. This core has

the property of only representing maps that have a definite parity with respect to

the computational basis: the subspaces spanned by basis states with an even or odd

number of 1’s are either preserved, or interchanged by a map. This happens to be

compatible with an interpretation of the basis states of a single qubit as the empty

and occupied states of a local fermionic mode, the unit of information of the fermionic

quantum computing (FQC) model.

Fermionic quantum computing is computationally equivalent to qubit computing

[10], although it presents very different properties with regard to entanglement and

non-locality [28, 20]. This connection suggested that an independent fermionic version

of the ZW calculus could be developed, combining the best of both worlds with respect

to FQC rather than qubit computing: the superior structural properties of the ZW

calculus, including an intuitive normalisation procedure for diagrams, together with

the superior hands-on features of the ZX calculus.

In this section, we will lay down the axioms for this ZW calculus for FQC, which

we will call fermionic ZW calculus, and introduce how the physical gates can be

constructed in the language of the fermionic ZW calculus. This section is based on

the work done in the paper [32].

3.3.1 Preliminary for fermionic quantum computing

The basic systems in FQC are local fermionic modes (LFMs), physical sites that are

either empty or occupied by a single spinless fermionic particle [10]. We indicate the

empty and occupied states of a LFM as | 0 〉 and | 1 〉, respectively, in bra-ket notation.

Much like the computational basis states of a qubit, we can see these as an or-

thonormal basis for the two-dimensional complex Hilbert space B. States of a com-

posite system of n LFMs then correspond to states of the n-fold tensor product B⊗n.

However, not all physical states or operations on qubits are accessible as physical

states or operations on LFMs. The Hilbert space of a system of n LFMs splits as

H0⊕H1, where H0 is spanned by states where an even number of LFMs is occupied,

and H1 by states where an odd number of LFMs is occupied. Then, any physical

operation f : H0 ⊕H1 → K0 ⊕K1 must either preserve, or invert the parity, that is,

either map H0 to K0 and H1 to K1, or map H0 to K1 and H1 to K0. This is called

the parity superselection rule; see [8, 20] for a discussion.
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Remark 43. Note that Bravyi and Kitaev only consider parity-preserving operations

in [10], although odd states are allowed.

These operations assemble into a category, as follows.

Definition 44. A Z2-graded Hilbert space is a complex Hilbert space H decomposed

as a direct sum H0 ⊕H1.

A pure map f : H → K of Z2-graded Hilbert spaces is a bounded linear map

f : H → K such that f(H0) ⊆ K0 and f(H1) ⊆ K1 (even map), or f(H0) ⊆ K1 and

f(H1) ⊆ K0 (odd map).

Given two Z2-graded Hilbert spaces H, K, the tensor product H ⊗ K can be

decomposed as (H ⊗K)0 := (H0 ⊗K0)⊕ (H1 ⊗K1), and (H ⊗K)1 := (H0 ⊗K1)⊕
(H1 ⊗ K0). Then, the tensor product (as maps of Hilbert spaces) of a pair of pure

maps f : H → K, f ′ : H ′ → K ′ is a pure map f ⊗ f ′ : H ⊗ H ′ → K ⊗ K ′ of

Z2-graded Hilbert spaces. The Z2-graded Hilbert space C ⊕ 0 acts as a unit for the

tensor product.

We write HilbZ2 for the symmetric monoidal category of Z2-graded Hilbert spaces

and pure maps, with the tensor product as monoidal product.

Remark 45. The zero maps 0 : H → K are the only pure maps between Z2-graded

Hilbert spaces that are both even and odd.

Definition 46. We write LFM for the full monoidal subcategory of HilbZ2 whose

objects are n-fold tensor products of B := C⊕ C, for all n ∈ N.

Here, B0 is the span of | 0 〉, andB1 as the span of | 1 〉. As usual, we write | b1 . . . bn 〉
for the basis state | b1 〉 ⊗ . . .⊗ | bn 〉 of B⊗n, where bi ∈ {0, 1}, for i = 1, . . . , n.

Remark 47. The category LFM admits, in fact, the structure of a dagger compact

closed category in the sense of [50]: each object B⊗n is self-dual, and the dagger of a

pure map f : B⊗n → B⊗k is its adjoint f † : B⊗k → B⊗n.

3.3.2 The model

The pure fragment of the ZW calculus is perfect for modelling the FQC as its opera-

tions are pure maps. We will add a labelled binary white vertex to the pure fragment,

and this is call this the fermionic ZW calculus.
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The following set Tfzw (written with their interpretations ifzw in LFM) is the

generators of the fermionic ZW calculus:

7→
1∑

j,k=0

(−1)jk| jk 〉〈 kj |, z 7→ | 0 〉〈 0 |+ z| 1 〉〈 1 |,

7→ | 001 〉+ | 010 〉+ | 100 〉, 7→ | 01 〉+ | 10 〉.

for z ∈ C. The crossing is seen as a statement of the antisymmetry nature of fermions,

where exchange two identical fermions result in a π phase rotation. For this, we will

now call it the fermionic swap. The usual swap will be called the structural swap, or

simply just the swap.

The difference between the fermionic ZW calculus from the general one is that

this one doesn’t have a ternary white vertex because it is of mixed parity. This

caused some difficulty in defining a normal form like the one before in the general

ZW calculus, and because of this, it is unclear whether it is universal with respect to

LFM.

However, it doesn’t rule out the fact that we may construct a quaternary white

vertex. With a quaternary white vertex, we may define arbitrary even arity white

vertices, and we can define a normal form like the one before. This became the key

challenge, and soon, we found a solution by studying a family of diagrams:

.

This family is called the even projectors. They only allow even states to pass and kill

the odd states, hence the name. It also alters the state by multiplying it with the

scalar 2, but we can simply fix that by

.

1
2

1
2
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We just have to keep in mind that the decoration on this map doesn’t affect its

property of projecting onto the even subspace; it’s there to fix the scalar.

Consider the following even projector:

.

1
2

1
2

This is interpreted as

| 00 〉 7→ | 00 〉, | 11 〉 7→ | 11 〉,

| 01 〉, | 10 〉 7→ 0,

which is exactly the map for the quaternary white vertex! We will adopt the white

vertex notation and define a shorthand for it:

:=

.
1/2

1/2

With this, the rest is mainly modifying the original ZW axioms and a routine proof

of its completeness. While modifying the axioms, we had some revelation about the

white vertices. It seems like many of the algebraic structures are now a consequence

rather than an axiom (see Proposition 49).

3.3.3 The axioms

Like before, we divide the set Efzw of axioms into three groups, based on the gen-

erators to which they mainly pertain. We have rearranged some of the rules when

compared to the original ZW calculus. We did that because it seems more natural

to group them in this manner. Just to avoid confusion, only refer to these axioms

numbering for the fermionic ZW calculus and not the original ones.

1. The following are the axioms for the fermionic swap:

(a)
=

,

(b)
=

,

(c)
=

,
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(d)
=

,

(e)
=

,

(f)
=

,

(g)
=

,

(h)
=

, z

(i)
= z

.

There are a few new additions to the axioms of the crossing. The axioms on

the interplay between the structural and fermionic swaps imply that only the

number of fermionic swaps between two wires matters, and not their direction.

And we have an axiom saying that the binary white vertex is natural with the

fermionic swap.

2. The following are the axioms for the black vertices:

(a)
=

,

(b)
=

(b′)
=

(c)
=

,

(d)
=

,

(e)
=

,

(f)
=

,

(g)
=

,

(h)
=

,

(i)
=

,

(j)
=

.

These axioms are pretty much the same as the original ones. The only notable

one is the final axiom, which says that 0 times 0 is 0; it serves to ensure that

there is a unique zero map, rather than an “even” and an “odd” zero.

3. The following are the axioms for the white vertices:

z

(a)
=

z

,

z z (b)
=

z
,

(c)
=

z
,
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1
(d)
=

,

0
(e)
=

,

wz
(f)
= z+w

,

w

z

(g)
= zw

,

(h)
=

,

(i)
=

.

The axioms for the binary white vertex is the same. We have some axioms

for the quaternary white vertex as expected. There is a modified bialgebra-

like equation between the black and white vertices to account for the number of

wires on the white vertex. Furthermore, the projector is symmetric under cyclic

permutation of its wires, and it determines a kind of mixed action/coaction of

the algebra on itself.

We state some useful derived equations.

Proposition 48. The following are derived rules concerning the black vertices:

(a)
=

,

(b)
=

,

(c)
=

,

(d)
=

,

(e)
=

,

(f)
= −1

.

Proof. Equation (a) comes from the following manipulation:

=
1(e)
= = =

.

Equation (b) is proved in Lemma 28.

Equation (c) is proved by the following argument:

= =
1(e)
=

,

whereas (d) comes from

=
1(g)
=

(b)
=

,
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finally using the symmetry or the black vertex under the structural swap.

Equation (e) is proved by the following argument:

=
2(f)

=
2(g)

=
2(h)

=
2(i)

,

where we tacitly used axiom 2(d) to introduce or eliminate pairs of binary black

vertices in several occasions.

Finally, for equation (f), start by considering that

=
2(f)

=
3(e)

0 =
3(f)

−1 1

;

by axioms 2(e) and 3(d), this is equal to

−1 =
(e)

−1 ==
2(f)

−1

.

This completes the proof.

The following Proposition shows that all the least natural-looking axioms about

white vertices in the original ZW calculus become provable equations for (quaternary,

rather than ternary) white vertices in the fermionic ZW calculus.

Proposition 49. The following are derived rules concerning the white vertices:

(a)
=

(a′)
=

,

(b)
=

,

z (c)
= z (c′)

=
z

(c′′)
=

z

, 1/2

1/2

(d)
=

,

(e)
=

,

(f)
=

,

(g)
=

.
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Proof. Substituting the definition of the projector, axiom 3(h) becomes the following

equation:

1/2

1/2

= 1/2 1/2

.

(3.27)

Equations (a) and (a′) are then immediate consequences of Proposition 48.(c) and its

transposes, applied to the right-hand side of (3.27).

Equation (b) is also immediate from the definition: because swaps slide through

fermionic swaps and vice versa, we can slide one “circle” past another to get

1/2

1/2 1/2

1/2

=

1/2

1/21/2

1/2

.

For equations (c), (c′), and (c′′), we use either of the forms in equation (3.27) and

slide the binary white vertex through a fermionic swap using axiom 1(i), to move it

to a different wire.

Equation (d) comes from

1/2 1/2 =
2(f)

1/2 1/2 =
3(f)

1 =
3(d)

,

finally applying axiom 2(i). Then, equation (e) follows from it by

1/2

1/2 =
1(c)

1/2

1/2 .

In order to prove equation (f), consider first that

1/2

1/2

=
2(i)

1/2

1/2

=
(3.27)

1/2 1/2 = 1/2 1/2

,

(3.28)

and we can eliminate the circle by equation (d). Then,

1/2

1/2 = 1/2

1/2

(3.28)
=

2(h)
=

.
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Finally, for equation (g), observe that the projector can slide past fermionic swaps

naturally using axiom 1(f). Therefore,

=
2(c)
= =

.

This concludes the proof.

Together with its invariance under cyclic permutation of wires, the first two equa-

tions justify the arbitrary transposition of inputs and outputs of the quaternary white

vertex.

Like before, it is convenient to introduce a condensed notation, a spider presen-

tation including black vertices with n wires and white vertices with 2n wires for all

n ∈ N, and derive inductive equation schemes to use directly in proofs. The definition

is exactly the same as the original ZW calculus, with a slight modification for the

white vertices as there are now even number of wires:

z

2n

:=
z

2n−2

We state some basic properties of black and white vertices in the Proposition 50.

We have already seen most of them in the original ZW calculus. A more noteworthy

one is that all black vertices correspond to odd maps, while white vertices correspond

to even maps, as reflected in their sliding through fermionic swaps (d, d′).

Proposition 50. The following equations hold in FZW for black and white vertices

of any arity:

(a)
=

,
z

(a′)
=

z

,

(b)
=

, z

w
(b′)
=

zw

,

(c)
=

,
z

(c′)
=

z

,
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(d)
=

,

(d′)

z

= z

,

(e)
=

,
z

(e′)
=

−z
.

Proof. All the equations are proved by induction on the arity of the vertices involved.

They are pretty easy to proof. The only ones that require some attention are (d′, e′).

Equation (d′) is a consequence of axiom 1(i) together with the definition of the

quaternary white vertex.

For equation (e′), let 2n > 1 be the arity of the white vertex. The case n = 1 is a

consequence of Proposition 48.(f), and n = 2 follows from the following argument:

1(f)
=

48.(f)
=

−1

1(e)
=

−1

,

applied to the definition of the quaternary white vertex, as in the right-hand side of

(3.27). All other cases follow from this one, by symmetry.

Several other equations, both axioms and derived, admit inductive generalisations;

we list them in the following Proposition.

Proposition 51. The following equations hold in FZW for black and white vertices

of any compatible arities:

(a)
=

, zz z

(b)
= z

,

z1 z2 zn

(c)
=

n∑
i=1

zi

,
z

n>1

(d)
=

,

z w

(e)
=

z w

.
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Proof. Equation (a) has already been proved when discussing the axiom 2(h) in the

original ZW calculus. Equation (b) is proved in a similar fashion as the discussion of

axiom 3(d) in the original ZW calculus.

For equation (c), by Proposition 50.(b) it suffices to prove

z1 z2 zn
=

n∑
i=1

zi

,

which is proved in Proposition 31.

Similarly, for equation (d), it suffices, by Proposition 50.(b) and (b′), to prove

z

n>1

m

=

m

which is proved in Proposition 31.

Finally, equation (e) is an immediate generalisation of Proposition 49.(g), using

Proposition 50.(b) and (b′).

Remark 52. Unlike in the original ZW calculus, we have listed the these condensed

equations as propositions instead of axioms. There is nothing mysterious about this

as it is simply because there is no need to restate all the axioms again.

In the next section, we will use these equations to prove that our axioms are

complete for LFM.

3.3.4 Completeness of the fermionic ZW calculus

The proof for the completeness follows a very similar procedure as the original ZW

calculus. It is via a normal form argument, and we will define a normal form in the

following theorem on the universality. In fact, many of the steps are the same, but

we will state them anyway to make them easier to follow.

Theorem 53 (Universality). The interpretation functor ifzw : FZW → LFM is full.

Proof. Write an arbitrary state v : C→ B⊗n in the form

m∑
i=1

zi| bi1 . . . bin 〉,
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where zi 6= 0 for all i, and no pair of n-tuples (bi1, . . . , bin) is equal. Then, we claim

that the it is the image of either of the diagrams

z2z1 zm

m

n

if v is odd,
z2z1 zm

m

n

if v is even, (3.29)

where, for i = 1, . . . ,m and j = 1, . . . , n, the dotted wire connecting the i-th white

vertex to the j-th output is present if and only if bij = 1. The definition is only

ambiguous if v = 0, in which case we arbitrarily pick one of the two forms.

Because for all summands of an odd (respectively, even) state v, we have bij = 1

for an odd (respectively, even) number of bits, the white vertices in the diagram have

an odd (respectively, even) number of outputs. The two distinct diagrams for odd

and even states ensure that only white vertices with an even arity appear.

The claim can be proved by a direct calculation, which suffices to prove the state-

ment.

We will define Equation 3.29 as the normal form for a state in LFM. Like before,

this is unique up to a permutation of the white vertices.

We can define a pre-normal form like before: two or more white vertices may be

connected to the exact same outputs; zi may be 0 for some i. We will mostly work

with diagrams in pre-normal form, as they are more flexible, but we will later prove

that any diagram in pre-normal form can be rewritten in normal form. We will speak

of even and odd diagrams for diagrams in pre-normal form corresponding to even and

odd states, respectively.

Lemma 54 (Negation). The composition of one output of a diagram in pre-normal

form with a binary black vertex can be rewritten in pre-normal form, and that has

the effect of “complementing” the connections of the output to white vertices: that is,

locally,

z2 z′2z1 zn z′1 z′m
=

z2 z′2z1 zn z′1 z′m

.

81



Remark 55. The version where the original diagram is odd, rather than even, is

obtained by composing again both sides with a binary black vertex and using axiom

2(d).

Proof. Using the “fusion rules” Proposition 50.(b) and (b′), we rewrite the left-hand

side as

z2
z′2

z1 zn
z′1 z′m

=
51.(b)

z2
z′2

z1 zn
z′1 z′m

.

By definition of the quaternary white vertex, this is equal to

z2
z′2

1/2

1/2

z1 zn
z′1 z′m

=
50.(d)

z2 z′2

1/2

1/2

z1 zn z′1 z′m

,

where we made implicit use of some symmetry properties of vertices. Now, fusing

black vertices, and using Proposition 50.(d) and (d′) to move the closed loop to the

outside of the main diagram, we see that this is equal to

z2 z′2

1/2

1/2
z1 zn z′1 z′m

,

and we can conclude by Proposition 48.(b) and 49.(d).

Lemma 56 (Trace). The plugging of two outputs of a diagram in pre-normal form

into each other can be rewritten in pre-normal form.

Proof. We consider the case of an odd diagram; the even case is completely analogous.

Focus on the two relevant outputs, and subdivide the white vertices into four groups,
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based on their being connected to both outputs, to one of them, or neither of them:

a2 b2 d2c2a1 an b1 bm dqd1cpc1
.

Again, the dotted wires can stand for a multitude of wires. Using the negation lemma

on the rightmost output, this becomes

a2 b2 d2c2a1 an b1 bm dqd1cpc1
,

where there are now two black vertices (not pictured) at the bottom, one leading to

all the left-hand inputs, and one leading to all the right-hand inputs of the white

vertices.

After fusing the pictured black vertices, the leftmost n white vertices have two

wires connecting them to the same black vertex. This means that Proposition 51.(d)

is applicable, leaving us with

b2 d2c2b1 bm dqd1cpc1
.

The leftmost black vertices can be fused with any black vertices they are connected

to, or eliminated with axiom 2(i) if there is none, which rids us of the leftmost n white

vertices. Now, we can apply the negation lemma again, to find that the remaining

portion of the diagram is equal to

b2 d2c2b1 bm dqd1cpc1
,

which, focussing on the rightmost part, is equal, by Proposition 51.(a), to

d2c2 dqd1cp

=
51.(b)

c2 cp
.
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This rids us of the rightmost q white vertices, and leaves us with a diagram in pre-

normal form.

The nullary black vertex is interpreted as the scalar 0; the following lemma shows

that it acts as an “absorbing element” for diagrams in pre-normal form.

Lemma 57 (Absorption). For all diagrams in pre-normal form, a nullary black vertex

eliminates all the white vertices; that is,

z2z1 zm
or z2z1 zm

=

.

(3.30)

Proof. Suppose the diagram is even. Expanding the nullary black vertex, we can treat

it as an additional output of the diagram, with no connections to the white vertices,

composed with a unary black vertex. Applying the negation lemma,

z2z1 zm
=

z2z1 zm

,

where the new output is connected to all the white vertices. From here, we can

proceed as in the last part of the proof of the trace lemma in order to eliminate all

the white vertices.

Now, suppose the diagram is odd. If it has at least one output wire, we can

freely introduce two binary black vertices on it; applying the negation lemma once,

we obtain a negated even diagram, to which the first part of the proof can be applied.

Another application of the negation lemma, followed by axiom 2(j), produces the

desired equation. If the diagram has no outputs, it necessarily consists of a single

nullary black vertex, and the statement follows immediately from axiom 2(j).

Lemma 58 (Functoriality). Any composition of two diagrams in pre-normal form

can be rewritten in pre-normal form.

Proof. We can factorise any composition of diagrams in pre-normal form as a tensor

product followed by a sequence of “self-pluggings”; thus, by the trace lemma, it

suffices to prove that a tensor product — diagrammatically, the juxtaposition of two

diagrams in pre-normal form — can be rewritten in pre-normal form.
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Suppose first that the two diagrams are both even. Then, we can create a pair of

unary black vertices connected by a wire by axiom 2(i), and treat them as additional

outputs, one for each diagram. Applying the negation lemma on both sides, we obtain

z2 z′2z1 zn z′1 z′m
=

z2 z′2z1 zn z′1 z′m

,

which is the plugging of two outputs connected to all the white vertices of their respec-

tive diagrams. The only case in which this still leaves the two diagrams disconnected

is when one of the diagrams has no white vertices, that is, it looks like the right-hand

side of equation (3.30). In this case, by the absorption lemma, we can use its isolated

black vertex to “absorb” the other diagram, which produces a diagram in pre-normal

form.

So, suppose that n,m > 0. Focussing on the two outputs,

z2 z′2z1 zn z′mz′1

=
51.(a)

z2 z′2z1 zn z′mz′1
;

(3.31)

then, we can use Proposition 51.(b) on each of the white vertices: for example, on the

leftmost one, it leads to

z2 z′2

z1

zn z′mz′1

z1

z1

.

Each of the outgoing wires leads to a black vertex, so we can push the vertices

indicated by arrows to the outside, and fuse them. Repeating this operation, we

can push all black vertices to the outside, which leaves us with a tangle of n · m
wires connecting white vertices, one for each pair (zi, z

′
j), where i = 1, . . . , n, and

j = 1, . . . ,m.

This tangle is made of fermionic swaps; however, each of the white vertices has at

least one wire connecting it to a black vertex, which means that Proposition 51.(e)

is applicable: this allows us to turn all the fermionic swaps into structural swaps.
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Finally, we can fuse all pairs of white vertices connected by a wire. After some

rearranging, this leaves us with the pre-normal form diagram

ziz
′
jz1z

′
1 znz

′
m

,

where the white vertex with parameter ziz
′
j is connected both to the outputs to which

the original vertex with parameter zi was connected, and to the outputs to which the

original vertex with parameter z′j was connected, for i = 1, . . . , n, and j = 1, . . . ,m.

Now, suppose one diagram is odd, or they both are odd. If the odd diagrams

have at least one output wire, we can introduce a pair of black vertices on it, and

apply the negation lemma to produce negated even diagrams. We can then apply the

first part of the proof to obtain a diagram in pre-normal form negated once or twice,

then apply the negation lemma again to conclude. If one of the odd diagrams has no

outputs, it necessarily consists of a single nullary black vertex, and we can conclude

with an application of the absorption lemma.

Lemma 59. Any diagram in pre-normal form can be rewritten in normal form.

Proof. First of all, by the symmetry property of vertices, we can always reshuffle the

white vertices of a diagram in pre-normal form to make them follow our preferred

ordering of n-tuples of bits.

Suppose the diagram is odd, and two white vertices are connected to the same

outputs. The relevant portion of the diagram looks like

z w

50.(b),
=

50.(b′)
1 1z w

51.(b)
=

1

z w .

The two input wires both lead to the bottom black vertex; zooming in on that, we

find

z w

1

=
3(f)

1

z+w
=

50.(b′) z+w

,

(3.32)

which has a single white vertex, connected to the same outputs, replacing the two

initial ones.
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Now, suppose that there is a white vertex with parameter 0. The relevant part of

the diagram is

0

=
3(e)

=
51.(b)

,

where we can fuse black vertices, which simply eliminates the white vertex.

If the diagram is even, and has at least one output wire, we can introduce a pair

of binary black vertices, apply the negation lemma once to produce a negated odd

diagram, reduce that to normal form, and apply the negation lemma again; it is easy

to see that negation turns diagrams in normal form into diagrams in normal form,

modulo a reshuffling of white vertices.

If the diagram has no output wires, then it is of the form

z2z1 zm
=

51.(c)
∑m

i=1 zi

,

where the right-hand side is in normal form. This concludes the proof.

Theorem 60 (Completeness). The interpretation functor ifzw : FZW → LFM is a

monoidal equivalence.

Proof. It suffices to show that all the generators can be rewritten in normal form.

For the ternary and binary black vertices:

=
2(d),

3(d)

11 1

,

=
2(d),

3(d)

1 1

.

For the binary white vertex with parameter z ∈ C:

z =
2(d),

49.(e)

z 3(d)
= 1 z

.

For the fermionic swap, we use the fact that we know how to rewrite the tensor

87



product of two dualities in normal form:

=
1 1 1 1

=
1 1 1 1

=
50.(e′)

51.(e) 1 1 −1 1

.

The case of the structural swap is similar, and easier. This concludes the proof.

Remark 61. The only properties of complex numbers that were used in the proof are

that they form a commutative ring, and that they contain an element z such that

z + z = 1 (namely, 1
2
). Thus, we can replace C with any commutative ring R that

has the latter property (for example, Z2n+1, for each n ∈ N), and obtain a similar

completeness result for “LFMs with coefficients in R”.

As with the original ZW calculus, instead of introducing binary white vertices

with arbitrary parameters r ∈ R, we can introduce one binary white vertex for each

element of a family of generators of R, together with one axiom for each relation that

they satisfy. For example, in the complex case, it may be convenient to have separate

phase gates, that is, white vertices with parameter eiϑ, for ϑ ∈ [0, 2π), and “resistor”

gates, with real parameter r > 0.

Remark 62. The fermionic ZW calculus doesn’t have a dagger structure. We can

equip it with one by defining the dagger to be the vertical reflection of the diagram,

with parameters z ∈ C of white vertices turned into their complex conjugates z. For

example,
w

z
7→
(−)†

w

z

.

Then, we will obtain an equivalence of dagger compact closed categories between the

fermionic ZW calculus and the category LFM.

3.3.5 Connection to fermionic circuits

Operationally, we are interested in representing circuits built from the following logical

components, shown here in diagrammatic form, next to their interpretation as maps

in LFM.

1. The beam splitter with parameters r, t ∈ C, such that |r|2 + |t|2 = 1:
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r, t

| 00 〉 7→ | 00 〉, | 10 〉 7→ r| 10 〉+ t| 01 〉,

| 01 〉 7→ −t| 10 〉+ r| 01 〉, | 11 〉 7→ | 11 〉.

2. The phase gate with parameter ϑ ∈ [0, 2π):

eiϑ | 0 〉 7→ | 0 〉, | 1 〉 7→ eiϑ| 1 〉.

3. The fermionic swap gate:

| 00 〉 7→ | 00 〉, | 10 〉 7→ | 01 〉,

| 01 〉 7→ | 10 〉, | 11 〉 7→ −| 11 〉.

4. Empty state and occupied state preparation:

1 7→ | 0 〉, 1 7→ | 1 〉.

All of these are isometries, which makes them, at least in principle, physically

implementable gates; see for example [38] for the description of an electron beam

splitter.

Apart from the fermionic swap gate, which exploits the antisymmetry of fermionic

particles under exchange, these operations are structurally the same as those used in

implementations of linear optical quantum computing (LOQC), such as the Knill-

Laflamme-Milburn scheme [43], which employ photons, that is, bosonic particles as

resources. The two models seem closely related; given the way that the fermionic

swap ties the other components together, and that the impossibility for two particles

to occupy the same mode — a constraint for the bosons in LOQC — is simply

a consequence of Pauli exclusion for fermions, it seems likely to us that the logical

features of the optical model are a consequence of the features of the fermionic model,

rather than the other way around.

The beam splitter with parameters r, t can be decomposed as follows:

r, t

:= r r

t −t
.

We will end this part with a simple example, Mach-Zehnder interferometer.
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Example 63 (The Mach-Zehnder interferometer). The Mach-Zehnder interferometer

is a classic quantum optical setup (see for example [48]), which, despite its sim-

plicity, can demonstrate interesting features of quantum mechanics, as in the Elitzur-

Vaidman bomb tester experiment [26]. The theoretical setup can be straightforwardly

imported into FQC, with the same statistics as long as single-particle experiments

are concerned; an electronic analogue of the Mach-Zehnder interferometer has also

been realised in practice [38].

eiϑ

r′, t′

r, t

With the graphical notation introduced, the experimen-
tal setup is represented by the diagram on the left, where
r, t, r′, t′ ∈ C and ϑ ∈ [0, 2π) are parameters subject to
|r|2 + |t|2 = |r′|2 + |t′|2 = 1. In practice, it would also in-
clude “mirrors”, or beam splitters with |r| = 1, which we
omit in the picture, instead taking the liberty of bending
wires at will.

As a first application of the fermionic ZW calculus, we show how this circuit diagram

can be simplified in just a few steps using our axioms, in such a way that its statistics

become immediately readable from the diagram.

In our language, the diagram becomes

r′ r′

t′ −t′

eiϑ

r r

t −t
=
2(h)

3(b),

r′
r′

t′
−t′

r

eiϑ

eiϑ

t r

−t 3(g),

=
3(c)

r′

t′

reiϑ

teiϑ
r

−t

,

which, sliding the leftmost empty state past the fermionic swap, and using axiom

2(f) twice, becomes

r′ t′

reiϑ

teiϑ
r

−t

3(b)

=

reiϑ

r′
r′

teiϑ

t′

r

t′

−t 3(g),

=
50.(b)

r′reiϑ

r′teiϑ

t′r

−t′t

.

Finally, using the fermionic swap symmetry of black vertices (Proposition 50.(e)),
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together with Proposition 51.(c), this simplifies to

r′reiϑ − t′t

r′teiϑ + t′r

.

If we input one particle, after fusing the bottom black vertices, we obtain a diagram

in normal form, whose interpretation in LFM we can readily deduce:

r′reiϑ − t′t
r′teiϑ + t′r 7→ (r′reiϑ − t′t) | 10 〉+ (r′teiϑ + t′r) | 01 〉.

So, the probability of detecting the particle at the left-hand output is |r′reiϑ − t′t|2,
and the probability of detecting the particle at the right-hand output is |r′teiϑ + t′r|2.
If the beam splitters are symmetric, that is, r = r′ = 1√

2
, and t = t′ = i√

2
, the

probability amplitudes become

1

2
(eiϑ − 1) = ei(

ϑ+π
2

) sinϑ,
i

2
(eiϑ + 1) = ei(

ϑ+π
2

) cosϑ,

leading to probabilities sin2 ϑ of detecting the particle at the left-hand output, and

cos2 ϑ of detecting it at the right-hand output.

Arguably, given that this particular example involves at most binary gates, a

matrix calculation would not have been considerably harder. On the other hand,

the result appears here as the outcome of a short sequence of intuitive, algebraically

motivated local steps, rather than the unexplained product of a large matrix mul-

tiplication. Moreover, since the juxtaposition of two diagrams only adds up their

sizes, while the tensor product of two matrices multiplies them, we expect that the

diagrammatic calculus should outperform matrix calculus, as the number of systems

involved grows.

3.3.6 Understanding the fermionic world with ZW calculus

It is customary to describe the fermionic behaviour of a multi-particle system in

terms of a pair of operators a† (creation) and a (annihilation) that satisfy the anti-

commutation relation aa† = 1−a†a; see for example [52, Chapter 27]. In our language,
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these operators can be defined as

,

a† :=

.

a :=

We can see the anti-commutation relation as subsumed by the axioms in the following

way: pulling back the linear structure of LFM to FZW through the equivalence, we

have

= −
,

(3.33)

from which we obtain

=
2.(g)

=
(3.33)
= −

,

which can be read as the equation aa† = 1− a†a.

We are going to be bold and take the black (co)monoid as a fundamental operation

of the fermionic world instead of the creation and annihilation operation. The creation

operation is injecting a particle into the monoid, and the annihilation is expelling a

particle from the comonoid. Injecting or expelling a vacuum state (empty state)

amounts to doing nothing.

We can go further and start imposing some sort of space-time structure on the

diagrams. The horizontal axis may be read as the space axis, and the vertical axis is

the time axis:

.

t

x

The curvy wires are structures on space-time, and the self-duality maps can be seen

as moving back in time. An entangled state can be seen as connecting parts of

space-time in a inseparable manner.

With a space-time that allows for moving backwards in time, we get many in-

teresting phenomena, especially with feedback loops. The self crossing is one such

example, which acts like a π phase rotation. The projectors we have seen in the

previous subsection is also a consequence of feedback loops.
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All these are not new ideas (perhaps the projector construction is a new idea?).

But we are going to be even more bold and think about what if we remove particle

injection. Can the fermionic universe work without a particle to initiate all the “fun”

operations?

This particle-less, fermionic universe has as generators the fermionic swap, binary

z ∈ Z labelled white vertices, and a black monoid. We are going to draw the black

monoid in this fashion to signify that there is no longer a particle injection:

−→
.

Remark 64. In principle, we could have white vertices with just complex phases, since

phase shift is physical. But having labels for the all the complex numbers will be more

convenient for discussion.

Remark 65. With the absence of a particle injection, the ZW calculus has now two

full fledge symmetric braidings. All the operations are natural with the structural

swap and the fermionic swap.

We have seen that the quaternary even projectors can emulate white spiders. The

odd projectors, which is the following diagram (modulo scalar)

,

also can emulate something; the binary one actually emulates a pair of particles!

= = = =

.

The curvature of space-time can actually emulate particles. The particles that we

perceive may be a manifestation of space-time interacting with the fermionic swaps.

We will introduce a short-hand for this binary odd projector:

:=

1
2

7→ | 1 〉〈 1 |.
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We also need a new short-hand for the quaternary white vertex:

:=

.

1
2

1
2

In this scenario, we only have the even maps. We will build a ZW calculus, we

will call it even ZW calculus (EZW), which is complete for the subcategory of only

even maps, which we will call the category of even LFM (ELFM).

1. The following are the axioms for the fermionic swap:

(a)
=

,

(b)
=

,

(c)
=

,

(d)
=

,

(e)
=

,

(f)
=

,

(g)
=

,

(h)
=

, z

(i)
= z

.

2. The following are the axioms for the black vertices:

(a)
=

,

(b)
=

(c)
=

,

(d)
=

,

(e)
=

,

(f)
=

,

(g)
=

,

(h)
=

,

(i)
=

(j)
=

.
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3. The following are the axioms for the white vertices:

z

(a)
=

z

,

z z (b)
=

z
,

(c)
=

z
,

1
(d)
=

,

0
(e)
=

,

z w
(f)
= z+w

,

w

z

(g)
= zw

,

(h)
=

,

(i)
=

.

The axioms for the even ZW calculus are more or less the same as the fermionic ZW

calculus; we have replaced all the axioms that has odd states with a corresponding

even ones. Notable ones are axioms 2(a) which is another way of representing an

annihilation operator, and axiom 2(j) is another empty rule.

Most of the derived equations are the same as the fermionic ZW calculus. The

proofs are also more or less the same. I will state the derived equations without proof.

Proposition 66. The following are derived rules concerning the black vertices:

(a)
=

,

(b)
=

,

(c)
=

,

(e)
=

,

(f)
= −1

.

Proposition 67. The following are derived rules concerning the white vertices:

(a)
=

(a′)
=

,

(b)
=

,

z (c)
= z (c′)

=
z

(c′′)
=

z

,

1
2

1
2

(d)
=

,
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(e)
=

,

(f)
=

,

(g)
=

,

(h)
=

(h)
=

.

We will define some short-hand notation for the black monoid:

:=

,

:=

,

n

:=

n− 1

.

Proposition 68. The following equations hold in EZW for black and white vertices

of any arity:

(a)
=

,
z

(a′)
=

z

,

(b)
=

, z

w
(b′)
=

zw

,

(c)
=

,
z

(c′)
=

z

,

(d)
=

,

(d′)

z

= z

,

(e)
=

,
z

(e′)
=

−z
.

Proposition 69. The following equations hold in EZW for black and white vertices

of any compatible arities:

(a)
=

, zz z

(b)
= z

,
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z1 znz2
(c)
=

n∑
i=1

zi

,
z

n>1

m

(d)
=

m ,

z w

(e)
=

z w

.

The proof for the completeness follows a very similar route. There are some slight

modifications, but they aren’t major. Perhaps, the only big difference is that we don’t

have the negation lemma, but that can be circumvented.

We will kick off by proving that is it universal with respect to the even ZW

calculus.

Theorem 70 (Universality). The interpretation functor functor ifzw : EZW →
ELFM is full.

Proof. Write an arbitrary even state v : C→ B⊗n in the form

m∑
i=1

zi| bi1 . . . bin 〉,

where zi 6= 0 for all i, no pair of n-tuples (bi1, . . . , bin) is equal, and
∑n

j=1 bij is even.

Then, we claim that the it is the image the diagram

z2z1 zm

m

n

,

(3.34)

where, for i = 1, . . . ,m and j = 1, . . . , n, the dotted wire connecting the i-th white

vertex to the j-th output is present if and only if bij = 1.

The claim can be proved by a direct calculation.

We will define Equation 3.34 as the normal form for a state in ELFM, and the

pre-normal form is defined as before.

Lemma 71 (Trace). The plugging of two outputs of a diagram in pre-normal form

into each other can be rewritten in pre-normal form.

97



Proof. Focus on the two relevant outputs, and subdivide the white vertices into three

groups, based on their being connected to both outputs, or to one of them:

.
tp u2s1 t1sn uqu1s2 t2

Again, the dotted wires can stand for a multitude of wires. Using Proposition 69.(a),

this becomes

,
tp u2s1 t1sn uqu1s2 t2

where the white vertices labelled with s and u are connected to a black comonoid each,

and the ones labelled with t are connected to two black comonoids. The comonoids

are separated to two halves, and the the dark dotted lines represents the connections

between the comonoids (not pictured), forming a bipartite graph between the left

half and right half of the comonoids. The intersections between the comonoids are

all fermionic swaps.

Apply the Proposition 69.(b) to the s and u white vertices. Each s vertex produces

p + q white vertices, and each u vertex produces n + p white vertices. Out of these

white vertices, only p of them survive for each label because they will be paired

with another white vertex (a s labelled will be paired with a u labelled one), which

then fuse together and has a double connection to the bottom black vertices, and

Proposition 69.(d) is applicable to kill them off.

We will refer to the diagram we have now as D (although it is not drawn). Now,

apply Proposition 69.(b) between the left half of the black comonoids with the t

white vertices. Using the same argument as above, that will eliminate all the u white

vertices. Then apply Proposition 69.(b) to reverse what was done to recover back the

diagram D, except that now we don’t have the u white vertices. Repeat the same

procedure to the right half of the black comonoids to eliminate the s white vertices.
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We will be left with the following diagram:

.
tpt1 t2

We can now apply Proposition 69.(a) to the black comonoids to get

.

tpt1 t2

Apply Proposition 69.(b) to get

.

tpt1 t2

Finally, apply Proposition 68.(c′, b) and rearrange the diagram. This leaves us

with a diagram in pre-normal form.

Lemma 72 (Functoriality). Any composition of two diagrams in pre-normal form

can be rewritten in pre-normal form.

Proof. The only obstacle in this proof is to connect the two states together without
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the use of negation lemma like before. Consider the following state:

,

r1 rmr2 sns2s1

where there are a pair of black monoid connected to all the white vertices on each

side of the state. We will zoom in on this part of the diagram. The other part is

analogous:

,

r2

rm

r1

We can apply Proposition 69.(b) to obtain

,

r2

rm

r1

Finally, apply Proposition 67.(h), we obtain disconnected states

,

r1 rmr2 sns2s1
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where we can remove the scalar easily by applying Proposition 67.(h) and axiom 2(j).

We have shown how to connect the two states, the rest of the procedures are pretty

much the same as the previous functoriality lemma. Finally, we obtain a single state

with a pair of outputs plugged to each other. This can be eliminated by applying the

trace lemma, which completes the proof.

Lemma 73 (Absorption). For all diagrams in pre-normal form, a null diagram elim-

inates all the white vertices; that is,

z2z1 zm
=

.

(3.35)

Proof. Take the bottom black diamond vertex and do the same trick as the functori-

ality proof to connect to all the white vertices. Then, the diagram can be simplified

using Proposition 69.(a, b). With some further simplification, we obtain what we

require.

Lemma 74. Any diagram in pre-normal form can be rewritten in normal form.

Proof. This proof is the same as Lemma 59.

Theorem 75 (Completeness). The interpretation functor iezw : EZW → LFM is a

monoidal equivalence.

Proof. We start writing the binary white vertex with parameter z ∈ Z:

z =
2(d),

67.(e)

z 3(d)
= 1 z

.

For the black monoid, fermionic swap, and structural swap we use the fact that

we know how to rewrite the tensor product of two dualities in normal form, then plug

them on top.

This concludes the proof.
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Chapter 4

The ZX calculi

Overview:

• Section 4.1 — We introduce the core of the ZX calculus, which is in-
teracting complementary observables as a pair of Frobenius algebras
interacting via Hopf algebra. We then show a heuristic on determining
the scalars that may appear in diagram equalities. Finally, we introduce
the progress of the calculus, till the point just before the stuff in the
next section.

• Section 4.2 — This section summaries the results of the completeness
of the Clifford+T ZX calculus by Jeandel, Perdrix and Vilmart. The
important message is their technique to complete the calculus.

• Section 4.3 — This section is the main original contribution of this
chapter. We improve on the work by Jeandel et al., and give a procedure
to complete any universal diagrammatic calculus without a clear normal
form, by translating to a already complete calculus. The technique is
essentially making the two calculi monoidally equivalent, and hence
complete. This is based on the published work [33] by Ng and Wang.

• Section 4.4 — We apply our technique developed in the previous sec-
tion to the Clifford+T fragment. We also notice that with this new
improved technique, we proved a more general result, which is that the
calculus is complete for Rbit, for all commutative ring R containing
a ring Z[1

2
, ei

π
4 ]. This result is not yet reported, and it generalises the

result in [37] where they state the completeness for the rings Z[1
2
, ei

π
2n ]

for n ≥ 2.

4.1 Basic properties of the ZX calculus

In this section, we shall give an operational overview of the ZX calculus. We will

mainly be dealing with qubits systems in the discussions. Readers should refer to
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the book [17] for a more complete introduction of the calculus. There are also many

references in the book which readers can further dig into.

4.1.1 ZX calculus and quantum circuits

The ZX calculus also lives in a self-dual, compact closed PROP. The crux of the ZX

calculus is a pair of special commutative Frobenius algebra, draw as such:

, , , ,

(4.1)

, , , .

(4.2)

where the comonoids is the canonical transposition of the monoids.

Given a Frobenius algebra, it uniquely determines an orthonormal basis, and vice

versa. The elements of the basis v are the copyable states, that is:

=
v

,

v v
=

v

.

v v

In qubits systems, we will interpret the green Frobenius algebra as the copier for the

computational basis {| 0 〉, | 1 〉}, which is commonly called the Z-basis. The red one

is then the copier for the complementary basis

|+ 〉 =
1√
2

(| 0 〉+ | 1 〉),

| − 〉 =
1√
2

(| 0 〉 − | 1 〉),

called the X-basis. Hence, we can set up an interpretation map izx as such:

7→ | 00 〉〈 0 |+ | 11 〉〈 1 |, 7→ 〈 0 |+ 〈 1 |,

7→ | + + 〉〈+ |+ | − − 〉〈− |, 7→
√

2〈 0 |.
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It is clear from this interpretation that

=

,

=

.

Hence we can take this as a definition for the (co)unit. The (co)monoids are obviously

commutative, forms a Frobenius algebra, and the specialness comes almost for free.

Remark 76. The copyable states are sometimes called classical states. They are

classical with respect to their respective copiers.

Remark 77. Because of the names of the bases, this calculus is called the ZX calculus.

The ZW calculus retains the Z Frobenius algebra, which is a GHZ state, and defines

a W state in the Z basis.

Under this interpretation izx, we see that

= =

,

which means that we can bend one of the output wires of the comonoid down to obtain

a monoid. Hence, what matters in the drawing is the connectivity of the vertices.

The green unit is proportional to the |+ 〉 state, and the red unit is proportional

to the | 0 〉 state. Hence, the green copier copies the red unit, and the red copier copies

the green unit (up to scalar):

=

,

=

.

When viewed in the Z basis, the green comonoid is the copier and the red monoid

is the adder modulo 2 (up to scalar). Together, they form a bialgebra

=

.

We call the two Frobenius algebras strongly complementary if they satisfy the bial-

gebra equation. In fact, we can prove that it forms a Hopf algebra with the identity
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wire as the antipode:

= = = =

.

(4.3)

The Hopf algebra equation is a statement showing the principle of complementarity

in quantum physics.

We see that there are a few scalars in the diagrammatic equations. They are there

to balance the
(√

2
)m

for m ∈ Z that originated from the red vertices; the unary red

vertex contributes a
√

2 while a ternary red vertex contributes a 1√
2
. So, an informal

way of checking whether the scalar balances is to count the number of wires from the

red vertices. A unary red vertex counts as −1, while the ternary one counts as +1.

Take for example the first and last of the proof of the Hopf equation in 4.3. The first

one counts as −1 − 1 + 1 and the last one counts as −1. We see that their counts

balances, so we know that we got the right scalars. Another example is the following:

=

,

where both sides counts to 0. However, one must be careful when applying this rule

because there are cases where it fails:

= = = = =

.

The specialness breaks this rule.

We can introduce phases with respect to the two bases:

φ 7→ | 0 〉+ eiφ| 1 〉, φ 7→ |+ 〉+ eiφ| 1 〉.

Their respective (co)monoids are adder for the phase angles:

=

φ θ ,

φ + θ =

φ θ ,

φ + θ

This means that the phases form a U(1) cyclic group.
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A direct calculation shows that the following phases are copyable states (up to

scalar):

π 7→ | 0 〉 − | 1 〉, π 7→
√

2〈 1 |,

that is,

=
π

,

π π
=

π
.

π π

All the equations we have introduced so far are completely symmetric with the

exchange of colours. We will add in a colour changing operation, known as the

Hadamard gate in quantum information, which is changing between the Z and X

bases:

7→ | 0 〉〈+ |+ | 1 〉〈− |.

A matrix representation of the Hadamard gate may be more enlightening on its

properties:
1√
2

[
1 1
1 −1

]
.

The Hadamard gate is a self transpose, and involutive:

=

,

=

.

Hence, we have

=

,

=

,

=
φ

,

φ
=

φ

.

φ

We could then define the ZX calculus entirely using just green vertices and a Hadamard

gate, and the red vertices are by definition the green vertices plugged with the
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Hadamards. This ensures that the axioms for the green vertices also applies to the

red. For example, the Frobenius equation for the red now can be proved as such:

= = = = =

.

The ZX calculus is also related to quantum circuits in a natural way; the basic

components of a quantum circuit can be expressed in the ZX language easily. We

already have the Hadamard gate, the computational basis, and there is an obvious

way to get the phase shifts:

:=φ

.φ

We are left with the CNOT gate, which can be constructed as such:

.

The left input is the control input, while the right is the target.

It is well known that the quantum gate set consisting of arbitrary phase shifts,

the CNOT gate and the Hadamard gate, together with ancilla bits is universal with

respect to Qubit. This implies the universality of of the ZX calculus with respect to

Qubit [13].

Theorem 78 (Universality of the ZX calculus). The interpretation functor izx :

ZX → Qubit is full.

Remark 79. We have a natural way to embed quantum circuits into the ZX language.

However, the converse is not that obvious. This is an active area of research, to find

what is the optimum way to convert a ZX diagram to a circuit.

This is the essence of the ZX calculus. We can define different fragments of the

ZX calculus by restricting the angles φ: real stabiliser has φ a multiple of π, stabiliser

has φ a multiple of π
2
, and Clifford+T has φ a multiple of π

4
.

For many years, there are some axioms added to the calculus, but they serve a

more operational purpose. We will list a couple of them here:
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• K commutation axiom:

=
α

π
.

−α

π

π
α

This axiom tells us how a classical point in one colour commutes with any

arbitrary angle of another colour.

• Hadamard decomposition [23]:

=

.

π
2

π
2

−π
2

This axiom tells us that a Hadamard gate can be decomposed into some red

and green vertices with phases.

• Supplementarity [46]:

=
α α + π

.

2α + π

The supplementarity axiom connects angles that are π apart.

Even with these rules, the calculus is still not complete in general [22]. However,

some fragments have been completed: stabiliser fragment by Backens [3], real sta-

biliser fragment by Duncan and Perdrix [24], and single qubit Clifford+T fragment

by Backens [4]. The multi-qubit Clifford+T fragment and the general ZX calculus

was still not complete.

A ground breaking completeness result came from Jeandel, Perdrix and Vilmart

where they added some axioms and proved the completeness of the ZX calculus for

the Clifford+T fragment [36]. Their technique is interesting, and is the focus for the

next couple of sections.

4.2 Completeness of the Clifford+T ZX calculus

This section is based on the paper [36] which is not by us. However, it contains many

results that we may use in the next section. So we will state their results here for

easy reference.
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4.2.1 The completing procedure

The paper provides a set of axioms for the ZX calculus that is complete for the

Clifford+T fragment of the qubit theory. We will write the ZX calculus for Clifford+T

as ZXπ
4
. Perhaps, their most important result is the proving technique. Their proof

involves setting up two functors, T1 : ZXπ
4
→ ZWZ[1/2] and T2 : ZWZ[1/2] → ZXπ

4
,

and requires them to have some properties. We will state that in the procedure below:

1. First, prove that the ZXπ
4

is universal for Z[1
2
, ei

π
4 ]. With this step, we can

encode the ZX calculus into the ZW calculus.

2. Pick a suitable ZW calculus for the encoding. In their case, the commutative

ring chosen is Z[1
2
]. Set up a translation map T1 : ZXπ

4
→ ZWZ[1/2] and make

sure that it is functorial. The functor should also have the property that two

ZX diagrams D1 and D2 have the same interpretation izx(D1) = izx(D2) if

and only if they have the same interpretation after translating to ZW diagrams

izw(T1(D1)) = izw(T1(D2)). By the completeness of the ZW calculus, we can

conclude that T1(D1) = T1(D2).

3. Then, set up a translation map T2 : ZWZ[1/2] → ZXπ
4

and also make sure this

is functorial.

4. Finally, set up a decoding endofunctor f : ZXπ
4
→ ZXπ

4
such that f ◦ T2 ◦ T1

is the identity functor.

We will explain how this procedure proves completeness. The idea is to encode the

information from ZX to ZW, then encode back to ZX. The encoding processes should

preserve the information contained in the diagram. Then, we apply a decoding map

to recover the original diagram. More explicitly, suppose we have two ZX diagrams

D1 and D2 that have the same interpretation under izx. We send them through the

translation functor T1 such that izw(T1(D1)) = izw(T1(D2)). By the completeness of

the ZW calculus, we have T1(D1) = T1(D2). Then send it through the functor f ◦T2,
we obtain D1 = f ◦ T2 ◦ T1(D1) = f ◦ T2 ◦ T1(D2) = D2 as desired.

Each encoding step is non-trivial. That is because there is a need to ensure that

the encodings are functorial. We are not going to explain how this is done.

The crucial step in completing the ZX calculus is setting up T2. We want this

to be functorial, and that means every axiom in the ZW calculus must be derivable,

after translating, in the ZX calculus. This step will be the key step in the subsequent

few sections of the chapter when completing other fragments of the ZX calculus.
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4.2.2 The (old) calculus

We present the ZX calculus as in version 1 of the paper. This is because version

1 is more relevant to our work, and using the latest version introduces unnecessary

complications.

The ZX calculus for the Clifford+T fragment, written as ZXπ
4
, is a self dual,

compact closed PROP with the following generators TzxCT and interpretation izx:

φ 7→ | 0 . . . 0 〉〈 0 . . . 0 |+ eiφ| 1 . . . 1 〉〈 1 . . . 1 |,

7→ 1√
2

(| 0 〉〈 0 |+ | 0 〉〈 1 |+ | 1 〉〈 0 | − | 1 〉〈 1 |),

where φ = k π
4
, k = 0, 1, . . . , 7. Define the red vertex as

:=φ

.

φ

Remark 80. We have used the spider presentation of the green vertices. This is the

same as the white vertices in the ZW calculus.

The following are the axioms EzxCT for the calculus:

S1
=α

β

,

α + β S2
=

,

S3
=

,

E
=

π
4

−π
4 ,

B1
=

,

B2
=

,

EU
=

,

π
2

π
2

−π
2

K2
=

α

π

,
−α

π

π

α
SUP
=

α β

π

βα

,

α β

π

βα

C1
=

α

α

π β

β

,

α

α

πβ

β
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C2
=α

α α
α

π

,

α

αα
α

π

C3
=

π
4

π
4

π
4

π
4

π
2

−π
4

π
4

π
4

π
4

π
4

π

.

π
4

π
4

π
4

π
4

π
2

π
4

−π
2

π
4

π
4

π
4

π

Lemma 81. Defining the triangle node as such with its interpretation:

:=

−π
4

−π
4

π
4

π
4

π
2

7→
[
1 1
0 1

]
,

the following are derived rules:

(1)
=

,

(2)
=

,

(3)
=

π
,

πππ

(4)
=

,

(5)
=

α
π

β
π

,

α + β

π
(6)
=

α

,

(7)
=

,

(8)
=π

,

(9)
=

,

(10)
=α α + π

,
2α + π

(11)
=

π
2

,

π
4

π
(12)
=

π
2

,

−π
2

π
4

π

(13)
=

,

π
2

π
π
2

π
2

−π
4

(14)
=π

2
π
2

,

π
2

π (15)
=

,
π
4

π
4

π
4

π
4

π
π

−π
2

(16)
=

π

,
π

(17)
=

,

(18)
=π

,

(19)
=

,

(20)
=π

,

π
(21)
=π

,

(22)
=

π

π

,

π
(23)
=

,

(24)
=π

,
π
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(25)
=

,

(26)
=

,

(27)
=

,

(28)
=

,π

π

(29)
=

α

α

β

β ,

α− β

α + β

π

β

(30)
=−π

4
−π

4
−π

4
−π

4

π

,−π
2

π

(31)
=

,

(32)
=

π

,

(32)
=

,

(33)
=

π

.

π

4.2.3 The completeness

Proposition 82. The interpretation functor izx : ZXπ
4
→ Z[1

2
, eπ/4]bit is full.

Their proof made improvements on Giles and Selinger’s work to obtain the uni-

versality result [29]. We will state another proof which is more direct in the next

section.

Proposition 83. The interpretation functor izw : ZWZ[1/2] → Z[1/2]bit is a monoidal

equivalence.

Theorem 84. The interpretation functor izx : ZXπ
4
→ Z[1

2
, eπ/4]bit is a monoidal

equivalence.

Proof. Set up two translation maps, T1 : ZXπ
4
→ ZWZ[1/2] and T2 : ZWZ[1/2] → ZXπ

4
,

which are described in their paper, such that:

• T1 is functorial. This can be checked by checking all the translated axioms from

ZXπ
4

are provable in ZWZ[1/2];

• T1 ◦ i−1zx and izx ◦ T−11 are well define;

• T2 is functorial. This can be checked by checking all the translated axioms

from ZWZ[1/2] are provable in ZXπ
4
. Any (seemingly) unprovable axiom is then

promoted to an axiom;
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• There exist an endofunctor f : ZXπ
4
→ ZXπ

4
such that f ◦T2 ◦T1 is the identity

functor.

This guarantees that for any ZX diagrams D1 and D2 such that izx(D1) = izx(D2),

D1 = f ◦ T2 ◦ T1(D1) = f ◦ T2 ◦ T1(D2) = D2, which completes the proof.

4.3 Completeness of the general ZX calculus

This section is based on the paper [33].

We have seen that the proof for the completeness of the ZXπ
4

is constructive;

the axioms are obtained from constructing the translations. Hence, the axioms are

dependent on the translation, that is, we get different presentation of the same theory

via different translation. In this section, we will give a ZX calculus that is complete

for Qubit. We made improvements on the technique used in the previous section by

choosing a suitable ZW calculus, ZWC, and give a more direct translation, that is,

the decoding functor f can be omitted. This immediately shows a stronger result, a

monoidal equivalence between ZX and ZWC.

4.3.1 The completing procedure

The aim of the translation is to find out from the perspective of the ZW calculus

what are the axioms needed for the ZX calculus to be complete. Therefore, when

translating between the two graphical calculi, it is easier if we make them as similar

to each other as possible. For this purpose, we will introduce two generators, the

triangle and the lambda box, to the ZX calculus:

7→
[
1 1
0 1

]
,

λ 7→ | 0 〉〈 0 |+ λ| 1 〉〈 1 |,

for real λ > 0.

Remark 85. We are allowed to introduce these two generators because of the univer-

sality of the calculus. We have to take note not to alter the calculus by introducing

generators that are not expressible in the original calculus.
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Remark 86. A close examination of the sub-lemmas in Lemma 81 reveals that the

triangle vertex plays an important role. It contains the power of the W state, which

is a natural consequence since we are translating from the ZW calculus. Because of

this, we chose to promote it to a generator instead of a shorthand for some connected

red and green vertices. The axioms containing the triangle don’t depend on the

decomposition of the triangle, but instead take the connected red and green vertices

as a whole. That is, different choices of decomposition lead to different axiomatisation.

As we want to complete the ZX calculus, we should translate the calculi (ZX and

ZW calculi) with the theory in mind, in this case the category Qubit. Hence, we

set up a pair of assignments t1 : ZX → ZWC and t2 : ZWC → ZX such that they

respect the interpretations in Qubit, that is,

izw = izx ◦ t2,

izx = izw ◦ t1.

This implies that

izw = izw ◦ t1 ◦ t2,

izx = izx ◦ t2 ◦ t1,

and we want t2 ◦ t1 and t1 ◦ t2 to be the identity map because they have the same

interpretation as before the translations.

Finally, we want t1 and t2 to be functorial. The translation t1 is already functorial

because it respect the interpretations and ZWC is complete, so all we need to do is

to make t2 functorial. This step will tell us what axioms we need. This will give an

isomorphism of PROPs, which completes the procedure.

This procedure can be applied to all universal string diagrams S which we want

to complete with respect to a theory T :

1. Take an already known complete diagrammatic calculus C and set up a pair of

translation assignments t1 : S → C and t2 : C → S such that they respect the

interpretation in T . This then requires that the translations to be inverse of

each other;

2. Then, make t2 functorial. In the process, we will identify the axioms from C

that we may need to make S complete. This completes the procedure.

Remark 87. Using this completion method, we could, in principle, build a diagram-

matic calculus with a whole bunch of generators and axioms that is relatively easy to

complete, then translate this to a calculus that we are interested in.
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4.3.2 The calculus

As before, the ZX calculus has the following set of generators Tzx with the interpre-

tation izx:

φ 7→ | 0 . . . 0 〉〈 0 . . . 0 |+ eiφ| 1 . . . 1 〉〈 1 . . . 1 |,

7→ 1√
2

(| 0 〉〈 0 |+ | 0 〉〈 1 |+ | 1 〉〈 0 | − | 1 〉〈 1 |),

7→ | 0 〉〈 0 |+ | 0 〉〈 1 |+ | 1 〉〈 1 |,

λ 7→ | 0 〉〈 0 |+ λ| 1 〉〈 1 |,

where φ ∈ [0, 2π), and real λ > 0. The red vertex is defined in the same way:

:=φ

.

φ

We split the set of axioms Ezx, which is sound by a direct calculation, in three

groups:

1. The following are the axioms for the traditional generators of the ZX calculus:

(a)
=

α

β
,

α + β
(b)
=

,

(c)
=0 (c)

=

,

(d)
=

,

(e)
=

,

(f)
=

,

π
2

π
2

−π
2 (g)

=

,
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(h)
=

,

(i)
=

π

α

,

π

−α

π

α

(j)
=

π
4

π

−π
4 ,

for α, β ∈ [0, 2π). It is derivable that the axioms are also true for the interchange

of the red and green colours, and for simplicity we will give them the same axiom

labels.

2. The following are the axioms for the extended generators of the ZX calculus:

(a)
=

λ

,

λ

(b)
=1

,

(c)
=

λ1

λ2

,

λ1.λ2

(d)
=

π (e)
=

π

,

π

(f)
=

,

(g)
=

π

,

(h)
=

π

,

π (i)
=

,

(j)
=

,

(k)
=

,

(l)
=

,

π

π

(m)
=

,

(n)
=

λ

α

λ

α ,

λ

α

(o)
=

λ1

α1

λ2

α2 ,

α

λ

for 0 < λ, λ1, λ2 ∈ R, α, α1, α2 ∈ [0, 2π), and in (o), λeiα = λ1e
iα1 + λ2e

iα2 .

The axioms in group 1 are the traditional axioms that we know already, and reflects

that “only topology matters”; only the connectivity of the vertices are important.

There is a new scalar axiom 1(j). The axioms in group 2 say that the green box acts

in the same way as the green vertex. The rest of group 2 characterises the triangle

by axioms with a small number of nodes. Some of the triangle axioms are inspired

by [36]. Below is a list of where the axioms came from:
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Axiom Lemma 81
(d) 24
(e) 16
(f) 17
(g) 18
(j) 25
(k) 27
(l) 28
(m) 33

The triangle has an implicit directionality, meaning that not only just topology

matters, but there is a difference between input and output. It is possible to mitigate

this as suggested by axiom 2(e), but we will not write the axioms using the undirected

triangle because there are some nice applications with the directed one. Axiom 2(h)

is a statement showing the inverse of the triangle, shown below as a triangle with a

−1 in it:

:=−1

,

π

π

Axiom 2(n, o) are directly from the black monoid in the ZW calculus.

Proposition 88. The following are derived rules:

(i)
=

π

,
π ππ

(ii)
=

,

(iii)
=

,

(iv)
=

,

(v)
=

1
2

,

(vi)
=

π

,

π

(vii)
=

α

λ

,

(viii)
=

,

(ix)
=

,

(x)
=

,

(xi)
=

,

(xii)
=

,

π

(xiii)
=

π

,

π

(xiv)
=

π

,

(xv)
=

.

π
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(xvi)
=

.

(xvii)
=

π

.

(xviii)
=

λ

α

.
λ

α

Proof. (i, iii) are proved in [6], (ii) is proved in [7], and (vi, viii, x) are proved in [36].

The theorem references and axioms/rules used are

(i): Lemma A.15 (with inverted colours). The rules used are 1(a, b, c, d, e, f, g, h),

(iv).

(ii): Lemma 45. The rules used are 1(a, c, d, g, h), (iii).

(iii): Lemma A.3. The rules used are 1(a, b, c, d, e, g, h).

(vi): Lemma 33. The rules used are 1(g), 2(f), (iii, iv).

(viii): Lemma 19. The rules used are 1(g), 2(f), (iii, iv).

(x): Lemma 26. The rules used are 1(a, h), 2(j).

(iv):

1(j)
=

1(a)
=
1(g)

π−π
4

π
4 π−π

4
π
4

(iii)
=

1(g)
=

π−π
4

π
4

1(a)
=
1(j)

π−π
4

π
4

.

(v):

2(b)
=
2(c)

2(o)
=

2

1
2

1
2

(i)
=

(i)
=
(iv)

1
2

(iv)

1(a)
=
2(i)1

2

.

1
2

Finally, the scalars can be eliminated using (viii) with a red unary vertex attached

on top, then applying (iv).

(vii): First, we note that the green vertex can be eliminated, that is,

=

α

,

after applying 1(g) and (iv), the equation follows immediately from Lemma 3.4 in [6]

using 1(a, g, i), (i, iv). Hence it suffices to show that it is also true for the green box.

Given how the green box can be expressed in terms of the triangle, green and red
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vertices, it should be clear that using 1(g), 2(f) and the result stated above, we can

eliminate all the vertices to obtain what we need.

(ix): A topological move of the vertices as stated in the discussion of the axioms.

Axiom 1(e) and (ii) are used.

(xi): A topological move of the vertices in axiom 2(k) as stated in the discussion of

the axioms. Rule (ii) is used.

(xii): A straightforward application of axiom 1(f).

(xiii):

2(e)
=
(i)

π

(i)

(x)
=
2(e)π

π

π
.

π

(xiv): The proof is as follows: write the right-hand side using 2(f), then create a pair

of red π vertices on top and use 2(d), and finally use 2(g) and 1(a) to simplify.

(xv): Starting from 2(l), attach a unary red vertex to the left wire. Using 2(f) and

(vii), the right-hand side is the left-hand equation in (xv) (rotated and a green π

vertex on top). So it suffices to prove

=

.

This can be proved in a straightforward manner by plugging a unary red π vertex on

the left wire of (xiii).

(xvi): Starting from 2(m), connect the two bottom wires with a ternary green vertex.

Then apply (iii) to the left-hand diagram (with (iv)), and one of the triangles can be

removed using (viii). The scalars can then be taken care of using (iv).

(xvii): This can be proved from 2(m) by attaching a unary red π vertex to all the

wires and moving them around using (i) and 2(e). (xviii): This is a simple application

of 1(a) and 2(a).

Remark 89. It was later found that the axiom 2(g) is derivable:

2(i)
=

1(g)
=

2(f)
=

1(a)
=
1(c)

,

and apply a red π (with rule (i)) to get the direction of the triangle right. This serves

as a reminder that we are not sure whether all the axioms are independent.
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4.3.3 The completeness

We will start the completeness proof with noting what is it universal to. From The-

orem 78, it is universal with respect to Qubit. Therefore, we will choose the ZW

calculus where R = C. We will modify the ZW calculus, as suggested in the subSec-

tion 3.2.2.1, where we separate the white vertices into a phase part and a length part

for the elements in C:

→z

.

eiφ

λ

Then, we have to set up a pair of invertible translations that respect their respec-

tive interpretations. The translation from ZW calculus to ZX calculus is similar to

the one by [36], but the one from ZX calculus to ZW calculus is made simpler.

Lemma 90. Let t1, t2 be the following assignments of diagrams in ZWC to the gen-

erators of ZX, and vice versa:

1. 7→α

,

eiα 7→λ

,

λ 7→

,

7→

,

e
π
4

e
−π

4

1
2

2. 7→eiα

,

α 7→λ

,

λ 7→

,

π

7→

,

π

7→

.

Then t1 and t2 respect the interpretations of diagrams in Qubit, and for all generators

G of ZX, and G′ of ZWC, we have t2(t1(G)) = G, and t1(t2(G
′)) = G′.

Proof. It is easy to check that the assignments respect the interpretations. Then,

t1(t2(G
′)) = G′ follows from completeness of ZW and soundness of ZX.

The claim that t2(t1(G)) = G for all generators of ZX is trivial to check for the

green vertex and green box. Checking the triangle is a simple application of some
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axioms:

t17−→ t27−→ 1(a)
=

π
π

1(g)
=

π
π

.

For the Hadamard gate, we will get

,

1
2π

π
4 π

−π
4

and after some simplifications using the derived rule (vi), axiom 1(a) and 1(j), we

are left to show

=1
2

π

.

This can be done by applying rule (v) to replace the green box, then

1(a)
=

π
(i)
=
2(f)

π
(iv)
=
2(f)

.

Theorem 91 (Completeness of the ZX calculus). The functor ZX → Qubit is an

isomorphism of PROPs.

Proof. We only need to show that extending t2, as defined in Lemma 90, to composite

diagrams defines a monoidal functor; it will then automatically be an isomorphism.

For this, it suffices to check that the translations of all axioms of ZWC can be derived

from the ZX axioms. For convenience, we will list the ZW (expanded) axioms here:

1. The following are the axioms for the crossings:

(A)
=

,

(B)
=

,

(C)
=

,

(D)
=

,

(E)
=

.
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2. The following are the axioms for the black vertices:

(A)
=

,

(B)
=

,

(C)
=

,

(D)
=

,

(E)
=

(E)
=

,

(F )
=

(F )
=

,

(G)
=

,

(H)
=

,

(I)
=

,

(J)
=

,

(K)
=

.

3. The following are the axioms for the white vertices:

(A)
=

,

(B)
=

,

(C)
=

(C)
=

,

(D)
=

,

(E)
=

,

1 (F )
=

,

(G)
=

,

(H)
=

,

(I)
=

,

(J)
=−1

,

(K)
=

r s

,

r + s (L)
=

s

r

,

rs
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(M)
=

r

,

r r

(N)
=

r

,

r (O)
=

r

.

for r, s ∈ C.

Many of the ZW axioms have been proved to be true in ZX in [36] version 1, and

will be proved in exactly the same way with our axioms; we will not repeat those

proofs but will simply indicate the theorem number (e.g. Proposition 7 part . . . ) and

the our axioms needed to prove them.

1(A):

7→ 1(a)
=
(ix)

1(d)
=

(iii)
=

1(c)

1(a)
=
1(f)

← [

.

1(B):

7→ 1(a)
=

7→ 1(a)
=

.

1(C):

7→ 1(b)
=
1(c)

1(d)
=
(iii)

1(b)
=
1(d)

←[

.
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1(D): Similar to 1(C).

1(E):

7→ 1(b)
=
1(c)

1(d)
=
(iii)

,

π

7→ 1(b)
=
1(c)

1(d)
=
(iii)

.

π

This also proves 3(J).

2(A) Proposition 7 part 7a. The rules used are 1(a, h), (ix).

2(B) Proposition 7 part 1a. The rules used are 1(a, h), 2(k), (x, xi).

2(C) A simple application of 1(a, c).

2(D) Proposition 7 part 1b. The rules used are 1(a, c, d, f, j), (iii, viii).

2(E) Proposition 7 parts 0b and 0b’. The rules used are 2(e), (i, ii, x).

2(F )

7→ (ix)
=

π

1(h)
=

π π

1(a)
=

π

1(d)
=

(xii)
π

π

1(a)
=
(xv)

π

.

=

π

We then recover case 2(E).

2(G) Proposition 7 part 7b. The rules used are 1(a, d), (i).

2(H) Proposition 7 part 5a. This was proved in eight parts, (i-viii). Note that these

roman numerals refer to the parts in that paper, and are not the derived rules

in this paper. The rules used are:

i 1(a, d, h), (i, xv).

ii 1(a, h), 2(e), (i, x, xvii).

iii 1(a), 2(d, k), (i, x).
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iv 1(a, h), (i, x, xvii).

v (i) and the previous parts (i).

vi 1(a, i), 2(e, l), (i, iii, x) and the previous part (i,ii,iii,v).

vii 1(a, h), 2(e, j), (i, x, xvii).

viii 1(a, d, h), (i, iii, xii)

Finally, the proof combines these parts and the rules 1(a, h), 2(e), (i, ii, iii, x, xiii).

2(I) Proposition 7 part 5c. The rules used are 1(g), 2(f), (vi).

2(J) Proposition 7 part 5c. The rules used are 1(a, g), (iv, vi).

2(K) Proposition 7 part 5d. The rules used are 1(a, g), (iii, xiv, xvi) and the result

of 3(J).

3(A) Follows trivially from 1(a).

3(B) The translation is trivial, hence we only have to prove that the green vertices

are special:

1(a)
=

(iii)
=
(iv)

2(f)
=

1(a)
=
2(e)

π π

2(g)
=

(iv)
=

.

3(C) Follows directly from (ii).

3(D) Proposition 7 part 6a. The rules used are 1(a, h), (xvi).

3(E) This is just 2(b).

3(F ) Proposition 7 part X. The rules used are 1(a, h), (ix, xii, xv).

3(G) This is simply a combination of 3(J) and 1(a).

3(H) This is (i).

3(I) Proposition 7 part X. The rules used are 1(a, h), (ix, xii, xv).

3(J) This is proved in 1(E).
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3(K) This follows directly from 1(h), 2(j, o).

3(L) This is 1(a) and 2(c).

3(M) This is 2(n).

3(N) This is 1(a) and 2(a).

3(O) This is (vi) combined with (vii).

4.4 Completeness of its different fragments

This section is based on the last part of the paper [33].

With the new improved completion technique, it will be nice to see how it can

be applied to obtain a complete axiomatisation for the Clifford+T fragment different

from the one by Jeandel et al as described in Section 4.2; as a result of our design

choices, our axiomatisation has a larger number of axioms, which, on the other hand,

involve a smaller number of vertices. In fact, our technique suggests a stronger com-

pleteness result, that is, completeness with respect to Rbit for any commutative ring

R containing a subring Z[1
2
, ei

π
4 ].

The Clifford+T fragment of quantum mechanics is traditionally defined by re-

stricting the Z basis phases to integer multiples of π
4
. Therefore, the generators of

the ZXπ
4

calculus are those of the ZX calculus where the labels of the green vertices

are restricted to integer multiples of π
4
. However, we would like to have the extended

generators – the triangle vertex and green boxes – just like in the general ZX calculus

described in the previous section, to aid in the completeness. If we are able to show

that the extended generators are expressible in the Clifford+T fragment, then we get

the completeness result for free since the axioms can be define to be the same as the

general case, and the proof goes through in exactly the same manner. We first need

to give a suitable definition for the green box. We are going to define the label on

the green box as 0 < λ ∈ Z[1
2
].

Remark 92. We do not know, at the moment, whether all our axioms are mutually

independent.

Lemma 93. The triangle and green box are expressible in the Clifford+T ZX calculus.

Proof. We will explicitly construct the two vertices. A representation of the triangle

has been given in [17, 36]:
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=

,

−π
4

π
4

−π
4

π
4 .

−π
4

−π
4

π
4π

4

π
2

To represent the green box, we first notice that we are allowed to sum numbers

using axiom 2(o), and multiply numbers using axiom 2(c). Hence, it suffice to show

that the generators of the ring Z[1
2
] are expressible. The 1 labelled green box is axiom

2(b), and the 1
2

labelled green box is shown in Proposition 88.(v).

This automatically gives us the universality of the ZXπ
4

with respect to Z[1
2
, ei

π
4 ]bit,

a proof different from the one given by Jeandel et al as described in Section 4.2.

Lemma 94. The interpretation functor ZXπ
4
→ Z

[
1
2
, ei

π
4

]
bit is full.

Proof. It is clear from the interpretation of the generators that the ZXπ
4

calculus

is interpreted in the subcategory Z
[

1√
2
, ei

π
4

]
bit = Z

[
1
2
, ei

π
4

]
bit of Qubit. Fur-

thermore, restricting the functor defined in Lemma 90 we obtain a full functor

ZXπ
4
→ ZWZ[ 12 ,e

i π4 ], which then implies that ZXπ
4
→ Z

[
1
2
, ei

π
4

]
bit is full.

With this, we are ready to state a complete ZX calculus for the Clifford+T frag-

ment: The ZXπ
4

calculus features the same axioms as the ZX calculus, with restricted

phases α = k π
4
, k = 0, 1, . . . 7, lengths 0 < λ ∈ Z

[
1
2

]
; moreover, we will modify the

conditions of axiom 2(o) to 0 < λ, λ1, λ2 ∈ Z
[
1
2

]
, α ≡ α1 ≡ α2(mod π).

The reason for the new condition for axiom 2(o) is because the interpreted matrices

are over the ring Z
[
1
2
, ei

π
4

]
, where each element can be written as

∑7
j=0 λje

i kπ
4 for

λj ∈ Z
[
1
2

]
. Since −ei kπ4 = ei(

kπ
4
+π), we can simplify the expression of each element to∑3

j=0 λje
i kπ

4 for λj ∈ Z
[
1
2

]
. This explains why we have the mod π condition. This

rule is analogous to the addition rule (3(k)) of the ZW calculus for the Clifford+T

fragment, only being more compressed.

Theorem 95 (Completeness of the ZXπ
4

calculus). The interpretation ZXπ
4
→

Z
[
1
2
, ei

π
4

]
bit is an isomorphism of PROPs.

The power of the translation is that we get to see how are the two calculus related.

The ZX calculus and ZW calculus are related by the triangle vertex; as long as we

can construct a triangle in ZX calculus, we can, in principle, always complete it

using the ZW calculus. With the triangle, we essentially get a universality over

matrices over a commutative ring because we can start doing addition via axiom

2(o), and multiplication is just plugging them together. In view of this, the stabiliser

fragment has no triangle in it. However, any fragment after the Clifford+T fragment
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is complete, that is, for any commutative ring R containing a subring Z[1
2
, ei

π
4 ], the

ZX calculus with the same axioms as the general one we presented is complete with

respect to Rbit. This generalises the result in [37], where they state this result for

fragments defined by restricting the Z phase angles to integer multiples of π
2n

for

n ≥ 2.

Theorem 96. The ZX calculus is complete with respect to Rbit for any commutative

ring containing a subring isomorphic to Z[1
2
, ei

π
4 ].
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Chapter 5

Generalisations of the ZW and ZX
calculus

Overview: This chapter is about work in progress.

• Section 5.1 — This section talks about the prospect of using the ZX
calculus for a hybrid system of quantum and classical computing. In
particular, we noted that the classical gates can also be expressed nat-
urally in the ZX language. As a by-product, the Toffoli gate can be
expressed elegantly using the triangle vertex as introduced in the pre-
vious chapter on ZX calculus.

• Section 5.2 — This section is about generalising the ZW and ZX calculus
to model higher (finite) dimension quantum mechanics.

• Section 5.3 — This section talks about the possibility to generalise the
ZW calculus to model Rbit where R is a commutative semiring. This
may find applications in a wider range of problems, like the axiomati-
sation of stateless connectors.

In the previous couple of chapters, we have explored the ZW and ZX calculus that

is complete for Rbit for some suitable commutative ring R. In this chapter, we will

look at some on going work on generalising the results. This involves generalising the

ZX calculus to model a hybrid system of quantum and classical computing, gener-

alising the ZW and ZX calculi to model Quditd for some fix dimension d > 2, and

generalising the ZW calculus for Rbit where R is a commutative semiring.
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5.1 ZX calculus for hybrid system

One of the main reason for having the triangle vertex in the ZX calculus is its relation

to the Toffoli gate. The Toffoli gate is the control control not gate,

,

Toffoli

where the left two qubits are controls, and the last qubit is a not gate if either of the

left two qubits are | 1 〉. The Toffoli gate can be expressed using the triangle vertex

as such:

,

−1

=−1

,

π

π

where the triangle with a −1 label is the inverse of the usual triangle.

Remark 97. A similar presentation of the Toffoli gate appeared in the book [17], and

it is expressed using an analogous triangle node drawn as a slash box.

We can prove the correctness of the expression of the Toffoli gate by a direct

verification:

1(g)
=

−1
2(f)
=

−1 1(g)
=
(iv)

−1 (viii)
=
(iv)

−1
1(a)
=

.

(i)
=

−1

π

2(e)
=

(viii)

−1π

π

1(a)
=

−1

π

=
−1

π

.

π

It is well-known that the core of the Toffoli gate is the AND gate. Hence, it

shouldn’t be surprising the three triangle cluster forms a AND gate:

=AND

,

−1

=ANDn

.

−1
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Hence, the generalised Toffoli gate with n controls has the following elegant diagram:

.

ANDn

Another interesting logic gates, the OR gate, can also be expressed simply using

the triangle:

=OR

,

−1

=ORn

.

−1

The not gate is simply a binary red vertex with a π phase. Therefore, all the

classical gates has a natural expression in the ZX language. In other words, we have

a diagrammatic language that incorporates both classical and quantum processes.

This language is a natural starting point to design a programming language for a

hybrid system of classical and quantum computing.

5.2 Qudits ZW and ZX calculi

In this section, we will only be dealing with matrices over the complex.

5.2.1 Qudits ZW calculus

Due to its link to fermionic circuits, Hadzihasanovic sees some potential for the ZW

calculus to model behaviours of abelian anyonic oscillators. As with the fermionic

systems, the fundamental component of the anyonic calculus is the anyonic swap:

7→
d−1∑
j,k=0

qjk| jk 〉〈 kj |.

where q = ei
2π
d is the primitive dth root of unity. As can be seen from the diagram,

the anyonic swap is no longer symmetric. It is now a “braiding” where plugging d of

them together gives the identity or structural swap, depending whether d is even or

odd.
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We can define a dagger of the anyonic swap:

7→
d−1∑
j,k=0

q−jk| jk 〉〈 kj |.

With these, we obtain a some aesthetically pleasing rules:

=

,

=

.

The first equation tells us that wires that crosses each other with one above and one

below passes through each other. The second equation tells us that the self crossing

is invariant under conjugation.

Then, we can define the black monoid as

7→
∑
j+k<d

ajk| j + k 〉〈 jk |

where

ajk =

√
[j + k]q!

[j]q![k]q!

and

[n]q =
n−1∑
j=0

qj, [n]q! =
n∏
j=1

[j]q, [0]q! = 1, (5.1)

and the unit is the vacuum state

0 7→ | 0 〉.

This is inspired by q-deformed algebra, which by construction forms a bialgebra with

its transpose comonoid and the braiding the is anyonic swap:

=

.

In fact, it forms a Hopf algebra if we define a state for | d− 1 〉,

d− 1 7→ | d− 1 〉,
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and the antipode is

.

d− 1

d− 1

7→
d−1∑
n=0

q
n(n−1)

2 (−1)n|n 〉〈n |,

We can make it into a creation a† and annihilation a operator by introducing a

| 1 〉 state:

1 7→ | 1 〉,

a† =

,1

a =

.

1

Note that the creation and annihilation operators are not dagger of each other; they

are transpose of each other. These operators satisfies the q-commutation relation:

=
1

1

+ q

.

1

1

Next is to define a binary white vertex as such:

λ 7→
d−1∑
j=0

λj| j 〉〈 j |,

for λ ∈ C. The binary white vertex copies through the black comonoid as such:

=
λ

.

λλ

However, the sum axiom doesn’t hold. . . , that is,

6=λλ′

.

λ + λ′
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Finally, we define a ternary white vertex:

7→
d−1∑
j=0

√
[j]q!| j 〉〈 jj |,

where this forms a comonoid with a unary white vertex define as
∑d−1

j=0
1√
[j]q !
〈 j |. This

then satisfies the bialgebra like equation

=

,

and

=d

.

0

0

With all these generators, Hadzihasanovic obtained the universality of this qudits

ZW calculus for Quditd by defining a normal form:

.

n

m

λ̃1 λ̃mλ̃2

1

7→
m∑
i=1

λi| ki1, . . . , kin 〉,

where

λ̃i := λi

n∏
j=1

√
1

[kij]q!
.

This is where Hadzihasanovic stopped.

We first make some slight improvement to the universality result. We don’t need

the unary black vertex with a label as a generator because any state |n 〉 can be

obtained by a projection like construction:

q−n 7→ d|n 〉〈n |.

Then, we can, in principle, construct a ZW calculus that is complete for Quditd by

having axioms telling us how to do plugging and juxtaposition of normal forms, and
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telling us how each generator can be written to normal form. The challenge is how do

we get meaningful axioms, rather than the very primitive axioms that are no different

from matrix calculation. This requires more looking into.

In anyonic quantum mechanics, there are also other choices of defining the black

monoid. Hadzihasanovic used the one where the “numbers” are the q-numbers (see

Equation 5.1). We can define the “numbers” differently, and one such way is

[n] =
qn − q−n

q − q−1
,

as suggested in [27]. The form of the axioms are more or less the same. It will be

nice to see how the two different ways of defining the numbers are related from a

diagrammatic perspective. As for now, there are much more to investigate.

We can also study at the calculus qualitatively, that is, ignoring the coefficients.

The anyonic swap is essentially a swap, and the black monoid can be decomposed

like in the qubit case:

7→
∑

i+j+k<d

f(i, j, k)| ijk 〉, 7→
∑
i+j<d

g(i, j)| ij 〉.

It may be helpful to analyse the qudits ZW calculus with these finer and symmet-

rical vertices. A lot more work has to be done in this area.

5.2.2 Qudits ZX calculus

This subsection is a short introduction to the qudits version of ZX calculus, in col-

laboration with Quanlong Wang.

We could generalise the Z spiders to

~φ 7→
d−1∑
j=0

eiφj | j . . . j 〉〈 j . . . j |,

where ~φ = (φ0, φ1, . . . , φd−1), φ0 = 0, φj ∈ [0, 2π). The Hadamard gate is generalised

to the Fourier transform

7→
d−1∑
j=0

|hj 〉〈 j |,
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where |hj 〉 = 1√
d

∑d−1
k=0 q

jk| k 〉 are the Fourier basis. There is a dagger version of the

Hadamard

† 7→
d−1∑
j=0

| j 〉〈hj |,

We then can define the red vertices:

=~φ ~φ
† † †

The green vertices play nice with the self dual maps, meaning that the wires can

be bent up or down freely. After all, the self dual maps are defined with the Z basis.

However, the wires of the red vertices cannot be transposed freely, as suggested by

the box shaped vertex. There is an implicit difference between the input and output.

The red and green vertices also forms a Hopf algebra, just like in qubit case, except

that the antipode is the dualiser :

.

There are some interesting quantum gates that can be constructed from these

generators:

, , .

From left to right, the first one is the CNOT gate, the second is the CZ gate, and

the last one is the multiplicity gate. The multiplicity gate is also shown in Example

1, and the number of wires connecting the vertices is modulo d.

The Fourier gate also displays a decomposition into phases: the decomposition is,

up to scalar,

,

~φ
~φ
~φ

where the phases ~φ = (0, φ1, . . . , φd−1) depends on the parity of the dimension. For

even dimensions, there are two solutions:

φj = j2
π

d
+ jπ,
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φj = j2
π

d
.

For odd dimensions, there is only one solution

φj = j2
π

d
+ jπ.

With the tools at hand, we can use the ZX calculus for qudits graph states. This

will be left for future research, and we feel that it is another low hanging fruit. Of

course, we can also do a translation from the qudits ZW calculus to get a complete

ZX calculus for qudits. The challenge is again about getting meaningful axioms.

5.3 ZW calculus for semiring

The ZW calculus is complete for Rbit, for some commutative ring R. Rather than

extending it for dit, we can ask what if we have a commutative semiring instead.

Having semirings instead of rings has a major implication: the crossing do not

exist. There is no need for the crossing anyway; the normal form doesn’t have a

crossing. However, the bialgebra structure of the black vertices is gone, and that is

a huge blow to the proof of the completeness since the proof relies heavily on the

fact that the vertices can pass through each other relatively freely. However, we can

introduce a pseudo-bialgebra:

=

.

The white vertices on the right-hand side are all connected to a central black vertex,

which the black vertex acts as a control making sure no two wires have the state | 1 〉
flowing through them.

The completeness of this calculus should go through roughly in the same manner.

However, we need to check through carefully before making any conclusion.

The motivation for studying this is its application to a wider range of problems.

Take for example, in [11], the authors presented a diagrammatic calculus that is very

similar to the ZW calculus for Rbit where R is the semiring of two-element Boolean

algebra. It will be interesting to translate the axioms in the paper into the ZW

language and find the similarities.

We will conclude by stating an example we have slipped in subtly. The Example 1

at the start is a ZW calculus for (countably) infinite dimension over the two-element
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Boolean algebra. This has another name, called resource calculus, which the mo-

tivation behind is to axiomatise the PROP of open Petri nets of [12]; this PROP

axiomatises the stateless part of the PROP in [12]. A complete axiomatisation has

been given, and indeed a “division” axiom has to be included as suggested in the

question when explaining the concept of completeness in the example. This calculus

is explored in Robin Piedeleu Ph.D. thesis on Picturing Resources in Concurrency,

which is not available yet when this thesis was written. It is interesting to further

generalise this to any arbitrary semiring.
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Chapter 6

Conclusion

I will just say some simple concluding words. The ZW and ZX calculi are complete.

The proof for the completeness for ZW calculus is to perform operations that are

similar to matrix operations, that is, we have multiplication and addition of ring

elements via plugging and convolution of the fermionic black monoid, and we have

matrix multiplication by the bialgebra structure of the black (co)monoid. The ZX

calculus is complete by translating to the ZW calculus, which reminds me of the idea

of the proof of the Turing completeness of a machine by simulating another Turing

complete machine. Now, it’s time to find some applications for these two calculi.

There are some work in abstracting error correction algorithms and something

along those lines using the ZX calculus [21], and not much have been done with the

ZW calculus since it is relatively new. More research can be done in these areas, like

having measurements and probabilistic mixing in the fermionic ZW calculus.

I see the ZX and ZW calculi as an intermediary step to further abstraction. I

feel that it is still relatively low level programming language when compared to our

modern programming language in the classical counterpart. I see a lot of potential in

this step, since now we have a natural way of expressing classical operations in the ZX

calculus with the triangle vertex. Using assistance software like Quantomatic [42] is

definitely a direction to do so. Future quantum programming language may be based

on diagrammatic calculi that is not the ZX or ZW calculi, but they are definitely a

prototype for future theories.

Lastly, generalising these two calculi to other systems is my next interest. Gen-

eralising to qudits systems may advance our understanding of general quantum com-

puting, or even quantum mechanics in general, and mixing different dimensions is a

good exercise to understand how to connect different quantum computers running on

different architecture. Furthermore, it will be also nice to apply these diagrammatic

techniques to solve other real world problems like in the case of Petri nets. Experience
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and lesson learnt from solving multiple different problems may be give us a better

understanding of the whole diagrammatic business.

There are a lot more to be done in the field of diagrammatic calculus, and I see a

lot of potential in it. Let’s hope that more resources and manpower can be pooled in

to help advance this.
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Appendix A

Axioms of ZW calculi

A.1 ZW calculus

The generators

Let R be a commutative ring. The ZW calculus is a self dual, compact closed PROP

with the following generators Tzw and interpretation izw:

7→
1∑

j,k=0

(−1)jk| j k 〉〈 k j |,

7→ | 001 〉+ | 010 〉+ | 100 〉, 7→ | 01 〉+ | 10 〉,

7→ | 000 〉+ | 111 〉,
r

7→ | 00 〉+ r| 11 〉,

for r ∈ R.

It doesn’t matter how we define the partial transpositions of the black and white

vertices. One possible definition is the following:

:=

,

:=

,

:=

,

:=

,

:=

,

:=

.
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We will not explicitly list the definition of partial transpositions for the other calculi

as it should be clear from how the diagrams are depicted.

The axioms

1. The following are the axioms for the crossings:

(A)
=

,

(B)
=

,

(C)
=

,

(D)
=

,

(E)
=

.

2. The following are the axioms for the black vertices:

(A)
=

,

(B)
=

,

(C)
=

,

(D)
=

,

(E)
=

(E)
=

,

(F )
=

(F )
=

,

(G)
=

,

(H)
=

,

(I)
=

,

(J)
=

,

(K)
=

.

3. Given a commutative ring R, the following are the axioms for the white vertices:

(A)
=

,

(B)
=

,
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(C)
=

(C)
=

,

(D)
=

,

(E)
=

,

1 (F )
=

,

(G)
=

,

(H)
=

,

(I)
=

,

(J)
=−1

,

(K)
=

r s

,

r + s (L)
=

s

r

,

rs

(M)
=

r

,

r r

(N)
=

r

,

r (O)
=

r

.

for r, s ∈ R.

The condensed axioms

The condensed generators are

:= 7→ 0, := 7→ | 1 〉,

:=

n n− 1

7→
n∑
k=1

| 0 . . . 0︸ ︷︷ ︸
k−1

1 0 . . . 0︸ ︷︷ ︸
n−k

〉,

:=
r

r 7→ | 000 〉+ r| 111 〉,

:=
r r

7→ 2 + r, :=
r

r 7→ | 0 〉+ r| 1 〉,
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:=
r

n n− 1

r

7→ | 0 . . . 0︸ ︷︷ ︸
n

〉+ r| 1 . . . 1︸ ︷︷ ︸
n

〉.

1. The following are the axioms for the crossings:

(a)
=

,

(b)
=

,

(c)
=

,

(d)
=

,

(e)
=

.

2. The following are the axioms for the black vertices:

(a)
=

,

(b)
=

,

(c)
=

,

(d)
=

,

(e)
=

(f)
=

,

(g)
=

,

(h)
=

n

m ,

n

m

for all m,n ∈ N.

3. Given a commutative ring R, the following are the axioms for the white vertices:

(a)
=

r

s

,

rs

(b)
=

,

(c)
=

,

(d)
=

n

m

r rr

,

n

m

r
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3(e)
=

3(e)
=

,

1 (f)
=

r

,

(g)
=

,

(h)
=

,

(i)
=r s

,

r s

(j)
=−1

,

(k)
=

r s

,

r + s

for r, s ∈ R, m,n ∈ N such that either m = n = 0 or m > 0.

To better suit different rings, for instance the complex numbers C to model Qubit

and its Clifford+T fragment Z
[
1
2

]
bit, a small modification to the ZW calculus can

be done to reflect the ring structures. Please refer to main text for more elaborations.

A.2 Fermionic ZW calculus (FZW)

The generators

Let R be a commutative ring with a multiplicative inverse to 2, written as 1
2
. The

fermionic ZW calculus is a self dual, compact closed PROP with the following gener-

ators Tfzw and interpretation ifzw:

7→
1∑

j,k=0

(−1)jk| j k 〉〈 k j |,
,

r 7→ | 0 〉〈 0 |+ r| 1 〉〈 1 |,

7→ | 001 〉+ | 010 〉+ | 100 〉, 7→ | 01 〉+ | 10 〉,

for r ∈ R. The partial transpositions are defined as before.

The axioms

Defining a quaternary white vertex:

:=

.
1/2

1/2
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1. The following are the axioms for the fermionic swap:

(a)
=

,

(b)
=

,

(c)
=

,

(d)
=

,

(e)
=

,

(f)
=

,

(g)
=

,

(h)
=

, z

(i)
= z

.

2. The following are the axioms for the black vertices:

(a)
=

,

(b)
=

(b′)
=

(c)
=

,

(d)
=

,

(e)
=

,

(f)
=

,

(g)
=

,

(h)
=

,

(i)
=

,

(j)
=

.

3. The following are the axioms for the white vertices:

z

(a)
=

z

,

z z (b)
=

z
,

(c)
=

z
,

1
(d)
=

,

0
(e)
=

,

wz
(f)
= z+w

,

w

z

(g)
= zw

,

(h)
=

,

(i)
=

.

for w, z ∈ R.
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A condensed version of the fermionic ZW calculus is presented as propositions in

Proposition 50 and 51.

A.3 Even ZW calculus (EZW)

The generators

Let R be a commutative ring with a multiplicative inverse to 2, written as 1
2
. The

even ZW calculus is a self dual, compact closed PROP with the following generators

Tezw and interpretation iezw:

7→
1∑

j,k=0

(−1)jk| j k 〉〈 k j |,
,

r 7→ | 0 〉〈 0 |+ r| 1 〉〈 1 |,

7→ | 0 〉〈 00 |+ | 1 〉〈 01 |+ | 1 〉〈 10 |.

for r ∈ R.

Defining a binary odd projector:

:=

1
2

7→ | 1 〉〈 1 |,

and the quaternary white vertex:

:=

.

1
2

1
2

The axioms

1. The following are the axioms for the fermionic swap:

(a)
=

,

(b)
=

,

(c)
=

,
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(d)
=

,

(e)
=

,

(f)
=

,

(g)
=

,

(h)
=

, z

(i)
= z

.

2. The following are the axioms for the black vertices:

(a)
=

,

(b)
=

(c)
=

,

(d)
=

,

(e)
=

,

(f)
=

,

(g)
=

,

(h)
=

,

(i)
=

(j)
=

.

3. The following are the axioms for the white vertices:

z

(a)
=

z

,

z z (b)
=

z
,

(c)
=

z
,

1
(d)
=

,

0
(e)
=

,

z w
(f)
= z+w

,

w

z

(g)
= zw

,

(h)
=

,

(i)
=

.

for w, z ∈ R.
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Appendix B

Axioms of ZX calculi

B.1 ZX calculus

The generators

The ZX calculus has the following set of generators Tzx with the interpretation izx:

φ 7→ | 0 . . . 0 〉〈 0 . . . 0 |+ eiφ| 1 . . . 1 〉〈 1 . . . 1 |,

7→ 1√
2

(| 0 〉〈 0 |+ | 0 〉〈 1 |+ | 1 〉〈 0 | − | 1 〉〈 1 |),

7→ | 0 〉〈 0 |+ | 0 〉〈 1 |+ | 1 〉〈 1 |,

λ 7→ | 0 〉〈 0 |+ λ| 1 〉〈 1 |,

where φ ∈ [0, 2π), and real λ > 0. The red vertex is defined in the same way:

:=φ

.

φ
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The axioms

1. The following are the axioms for the traditional generators of the ZX calculus:

(a)
=

α

β
,

α + β
(b)
=

,

(c)
=0 (c)

=

,

(d)
=

,

(e)
=

,

(f)
=

,

π
2

π
2

−π
2 (g)

=

,

(h)
=

,

(i)
=

π

α

,

π

−α

π

α

(j)
=

π
4

π

−π
4 ,

for α, β ∈ [0, 2π). It is derivable that the axioms are also true for the interchange

of the red and green colours, and for simplicity we will give them the same axiom

labels.

2. The following are the axioms for the extended generators of the ZX calculus:

(a)
=

λ

,

λ

(b)
=1

,

(c)
=

λ1

λ2

,

λ1.λ2

(d)
=

π (e)
=

π

,

π

(f)
=

,

(g)
=

π

,

(h)
=

π

,

π (i)
=

,

(j)
=

,

(k)
=

,

(l)
=

,

π

π

150



(m)
=

,

(n)
=

λ

α

λ

α ,

λ

α

(o)
=

λ1

α1

λ2

α2 ,

α

λ

for 0 < λ, λ1, λ2 ∈ R, α, α1, α2 ∈ [0, 2π), and in (o), λeiα = λ1e
iα1 + λ2e

iα2 .

B.2 Clifford+T ZX calculus, and more

The generators

The generators are pretty much the same as the ZX calculus, only with some re-

striction on green box and green vertex: the label on the green box is restricted to

0 < λ ∈ Z[1
2
], and the angle on the green vertices is restricted to integer multiples of

π
4
.

The axioms

The ZXπ
4

calculus features the same axioms as the ZX calculus, with restricted phases

α = k π
4
, k = 0, 1, . . . 7, lengths 0 < λ ∈ Z

[
1
2

]
; moreover, we will modify the conditions

of axiom 2(o) to 0 < λ, λ1, λ2 ∈ Z
[
1
2

]
, α ≡ α1 ≡ α2(mod π).

Remark 98. In fact, with suitable small modifications, the ZX calculus is complete

with respect to Rbit for any commutative ring containing a subring isomorphic to

Z[1
2
, ei

π
4 ].
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Process theory, 5, 6

PROP, 38
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Signature, 28

SLOCC, 42

Snake/yanking, 25

Sound, 18, 30

Special, 13, 16

State, 33

Strict monoidal category, 21

Strict monoidal functor, 24

Strict symmetric monoidal category, 7, 23

String diagram, 8, 25
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Tensor product, 34
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