
Encoding Logical Words as Quantum Gates:
The Higher Dimensional Case

Marco Fernandez
marco.fernandez@stx.ox.ac.uk; fernandez@maths.ox.ac.uk

St. Cross College

University of Oxford

A thesis submitted in partial fulfilment of the requirements for the degree of

MSc in Mathematics and Foundations of Computer Science

September 2010

Supervisors: Bob Coecke, Mehrnoosh Sadrzadeh
Oxford University Computing Laboratory

bob.coecke@comlab.ox.ac.uk, mehrnoosh.sadrzadeh@comlab.ox.ac.uk

Contents

0.1 Motivation and Origins . 2

1 Research Procedure 4

2 Introduction
Encoding Logical Words as Quantum Gates: The Higher Dimensional Case 5

2.1 Syntax and Semantics . 5

2.2 Pregroups . 8

2.3 Pregroup Grammars . 11

3 Logical Negation 13

3.1 Meaning Evaluation . 13

3.2 Negative Transitive Sentence . 15

3.3 Negative Truth-Theoretic Meaning. 17

3.4 Higher Dimension . 19

3.5 Modern Negation . 23

4 Orthogonal Negation 29

4.1 Orthogonal Negation Method . 30

4.1.1 Higher Dimension . 31

ii

4.1.2 Implementation in Computational Linguistics 32

5 Diagrammatic Calculus 34

5.1 Diagrammatic Calculus of Compact Closed Categories 34

5.1.1 Categories . 34

5.1.2 Syntax in Graphical Calculus . 36

5.1.3 Semantics Implemented in Diagrammatic Calculus 36

iii

Acknowledgements

I want to express my sincere gratitude to both supervisors Dr. Bob Coecke and Dr. Mehrnoosh
Sadrzadeh from the Oxford University Computing Laboratory (OUCL) with their support and
patience for the regular meetings. On several occasions they lasted more than two hours and some-
times also lead to very long abstract emails from my side and helpful response. It is their work,
expanded from work in recent years by Professor Pulman, head of the computational linguistics
group, that provides the basis for this thesis and the very strong proposal of a mathematical frame-
work that unifies the compositional theory of grammatical types with a distributional theory of
meaning. I highly appreciate that the opportunity was granted to pursue something new and on my
own with many parts that may never have been done before.

During the research for the thesis I also got to consult the advice of Professor Pulman who
enlightened me with his expertise in the field of computational linguistics, theoretical linguistics
and logics. I was also granted the chance to give an additional short presentation of the initial work
in the computational linguistics seminar where Professor Pulman gave me a very good insight
into a logical and philosophical issue of meaning. It was him and Dr. Stephen Clark, at Oxford
University’s Computing Laboratory before and then at Cambridge’s, who came up with the first
ideas for such a framework combining symbolic and distributional models of meaning [7]. This
had a major influence on the main work pursued and for all the support I am very grateful.

I want to thank Edward Grefenstette who is pursuing his DPhil at the Computing Laboratory
towards the same mathematical and computational goal, however using Combinatory Categorial
Grammar (CCG) and by setting up the mathematical meaning by the numbers of grammatical
relations to the other constituents of a sentence. His thorough explanations and data base provide
the logical background for some of the types associated to the basic sentences under consideration.

Furthermore, I also want to thank Prof. Claudia Casadio, Prof. Joachim Lambek, Dr. Dominic
Widdows, Prof. Samson Abramsky and Prof. Laurence R. Horn for the brilliant contributions to
the main papers and books that provided the input for the new result in the thesis.

1

0.1 Motivation and Origins

An important feature in quantum computer science and computational linguistics is the involve-
ment of quantum gates, the analogue to the classical logic gates to build up digital circuits. They
play a vital role in many quantum protocols, some of which are significantly more efficient in
comparison to classical algorithms, e.g. in search algorithms and they also provide the blocks
needed for constructions of quantum computers. Moreover, in the analysis and implementation
of computational linguistics in categorial grammars they can similarly be implemented and, for
instance, be used to calculate or compare the meaning of sentences. This has been introduced in an
algebraic approach from a computational linguistics and logics point of view in [4] and [11]. The
mathematical framework for the quantum theoretical application is expanded in [6].

Joachim Lambek introduced the algebraic structure of pregroups for analysing the syntax of
individual languages, see [11]. Together with vector spaces they can be used as a mathematical
framework to associate and calculate meanings of sentences in various philologies and even to
compare the meanings of different sentences. The paper by both the supervisors [6] applies this to
determine the two-dimensional truth-theoretic meaning by implementing ”NOT” in analogy to the
Pauli X-gate in quantum computer science:

X =

(
0 1

1 0

)
→ X

(
a

b

)
=

(
b

a

)

This is then also expressed in the diagrammatic calculus as introduced in the quantum computer
science course. It corresponds to a basis or coefficient swapping for the quantum superposition and
is, therefore, essentially two-dimensional and cannot be generalised uniformly in the same manner.
The development of a canonical matrix of negation that works uniformly for higher dimensions is
left open as future work and is pursued in this master thesis. The situation is similar for other
logical words, such as ”And” or ”If then”.

An approach in information retrieval for uniform expansion to higher dimensions is suggested
in [17], by means of projections to orthogonal subspaces.

2

Abstract

The open problem and topic to be covered in this master thesis is the development
of logical words with focus on “NOT” as quantum gates in the three and higher di-
mensional cases. This is undertaken in the associated framework of vector spaces,
pregroups and the diagrammatic calculus of compact closed categories as in [6]. It
involves the development of canonical matrices or other maps that work uniformly
for higher dimensions. The maps are then validated by means of implementation in
well-chosen grammatical sentences in several languages as well as their mathematical
meaning calculations.

Various approaches will be inspected using linguistic and quantum mechanical in-
tuition. One idea that is investigated was first expressed by supervisor Mehrnoosh
Sadrzadeh by having a multi-dimensional gate in the form of a linear map; e.g. to
be able to distinguish mathematically the semantic difference among the various uses
of these logical words, such as predicative or non-predicative use of the associated
verb. This leads to both syntactic, but also semantic differences, such as having or not
having a noun phrase as the header of their linguistic tree diagram (cf. [9]).

For negation the distinction does not accurately apply as worked out in the thesis,
hence the main philosophical and logical interpretations of negation will be investi-
gated. Higher-dimensional maps are set up for each one of them. In some cases it
will be proven that no such linear maps exist and non-linear maps are set up instead.
A second investigation consists in another possible way for an expansion to higher
dimension as aforementioned by means of projections to orthogonal subspaces. This
is then also implemented in the diagrammatic calculus.

Future work can then contain expansion to other important logical words and sentences
in the same manner and application in the categorical approach as undertaken by su-
pervisor Bob Coecke and several of his DPhil students. Eventually, this can contribute
significantly to quantum computer science, computational linguistics, information re-
trieval and A.I. by implementation in quantum protocols and machine translation.

Chapter 1

Research Procedure

I attended the excellent quantum computer science course by Dr. Andreas Doering and Dr. Bob
Coecke during Hilary term with substantial reading in the topic and a significant amount of time
invested into the final mini-project and current research. Over the spring break the potential su-
pervisors were contacted and current research papers on the topic (viz. [4], [6], [15] and [17])
identified, read and discussed with the two supervisors to determine the open problem that was
to be pursued. The questions took on their current shape in further discussion and analysis dur-
ing the first two weeks of Trinity term together with the two supervisors as well as advice for the
computational linguistics aspect of the thesis from Professor Pulman and DPhil student Edward
Grefenstette at the OUCL. Trinity term was invested to pursue the research via the approaches
explained in regular contact with the supervisors, besides English linguistics preparation for the
GRE and one further successful course at the Mathematics Department. This led to less time avail-
able than for co-students in the course, but to successfully getting the last required exam score for
a possible distinction depending on a good thesis of 80%. Writing up was partly undertaken on
the way for the drafts and results. The final evaluation and major writing up was then done from
mid-July throughout August with the viva voce outstanding on 24th September, 2010.

Table 1.1 shows the plan for completion of the research.

Timeline Work Progress
Contact supervisors and define the topic in proposal completed

May. Reading and research completed
July/August Thesis writing completed
September Viva voce outstanding

Table 1.1: Plan for completion of my research

4

Chapter 2

Introduction
Encoding Logical Words as Quantum
Gates: The Higher Dimensional Case

2.1 Syntax and Semantics

Definition 2.1.1 (Natural Language). A natural language is a language that has developed natu-

rally in use, as contrasted with an artificial language or computer code.1

The scientific study of such natural languages is undertaken by the field of linguistics and
computational implementations thereof in the field of computational linguistics. There are two
important sub-fields of linguistics of interest in this thesis, namely the study of the structure of
the language (grammar) and the study of meaning. They can also be analysed in mathematical
linguistics as syntax and semantics, respectively.

1Def. as in: ”natural language”, Oxford Dictionaries, Oxford University Press, April 2010.

5

Syntax:

A classic way to analyse the syntax of a language is the Chomsky2 way by formulating so called
“rewrite rules” for the grammatical rules of a language.

An alternative, modern way is by an algebraic approach using type-logical (categorial) gram-
mars. The latter approach proved mathematically very efficient and, hence will be applied in this
framework. Here types are associated to the constituents of a phrase and these are then composed
in a second step in order to get the type of the whole phrase.

Semantics:

To analyse the semantics of natural languages there are two very distinct ways of approach.

1.) One can either go by symbolic meaning; whereby sets are assigned to the types of the
language and these are then connected using logical connectives.

2.) On the other hand, one can associate high-dimensional vector spaces to the constituents of
sentences and thereby derive a so called distributional meaning approach. The bases are selected
appropriately to the domain of meaning.

Both methods have their advantages and disadvantages. The first one is compositional, but
only qualitative in the sense of yielding true-false. It gives rise to model-theoretic semantics as
developed by the logician Richard Montague. This is based largely on higher-order predicate
calculus and the lambda calculus, allowing the cross to formal languages. However, it is not so
effective for lexical semantics or for real world texts.

The second one, on the other hand, is the opposite by being quantitative, but not compositional.
For the sub-field of lexical semantics it is efficient.

2Noam Chomsky is one of the main contributors to linguistics of the 20th century and professor emeritus of
linguistics at MIT.

6

A modern, sophisticated way for an overall analysis of a natural language was suggested by the
mathematician Joachim Lambek with his syntactic calculus that is highly regarded in the logic
and linguistic community (see [6] and [11]). In the last few years he refined his syntactic calculus
to the algebraic structure of so called pregroups that allow to analyse the structure of natural
languages in an algebraic setting. It has been successfully applied to many languages, such as
English, French, Arabic, Italian and Persian (by supervisor Sadrzadeh in [15]) over the last few
years. This is particularly interesting because pregroups share a common structure with vector
spaces and tensor products in category theory, as will be shown in the last part of this thesis. In
their very recent paper from this year ([6], 2010) the supervisors achieve to unite the benefits of the
two opposing approaches outlined above by relying on types from pregroups to model the syntax
and on vector spaces to model the semantics so that using the tensor product to combine the two
structures even the meaning of whole sentences can be calculated. The application of the tensor
product is analogue to the use in Hilbert spaces in quantum computer science.

The categorial unification thereof gives a very strong unified framework for the field. In ad-
dition, implementation in the diagrammatic calculus allows a significant simplification of the
calculation and higher efficiency.

Each step of the procedure for the meaning association to sentences will be discussed in detail
in the following sections. A short overview is as follows:

In a first step, a type pi is associated to each word wi of a sentence to make up for the syntax.
These types can then be reduced by using the axioms and rules of the associated pregroup grammar.

The second step then consists in also assigning a vector space to each constituent of a sentence
depending on its type assignments to cover the semantics of the sentences.

In a final step, the tensor product is applied to the created vector spaces for all the words in
the sentences. In combination with the associated diagram of the syntactic reduction, this allows
to efficiently evaluate the meaning of sentences.

7

2.2 Pregroups

This gives the algebraic setting of pregroups to model the syntax as set up and defined by Lambex
in [11].

Definition 2.2.1 (Semigroup). A semigroup is an algebraic structure consisting of a set S 6= ∅
together with a binary operation, denoted by juxtaposition, that satisfies the associative law:

(xy)z = x(yz).

Definition 2.2.2 (Monoid). A monoid is a semigroup with an identity element 1 such that:

x1 = x = 1x.

Definition 2.2.3 (Partially Ordered). A set is partially ordered, if it is equipped with a binary op-

eration ≤ such that:

x ≤ x (reflexive law),

if x ≤ y and y ≤ z, then x ≤ z (transitive law),

if x ≤ y and y ≤ x, then x = y (antisymmetry law).

In the case of a semigroup or monoid to be partially ordered one also requires the following:

if x ≤ y and x′ ≤ y′, then xx′ ≤ yy′ (compatibility),

or equivalently :

if x ≤ y, then uxv ≤ uyv (substitutivity).

Definition 2.2.4 (Left Adjoint). An element x in a partially ordered monoid (S, ≤, ·, 1) is said to

have a left adjoint denoted xl, if:

xlx ≤ 1 ≤ xxl.

Lemma 2.2.5. Left adjoints are unique.

Proof. As usual for uniqueness proofs proceed by starting with another left adjoint as follows. Let
xm be such another left adjoint of x, then:

xm = xm1 ≤ xm(xxl) = (xmx)xl ≤ 1xl = xl.

8

Analogously, xl ≤ xm.
Then it follows from the antisymmetry law that: Since xm ≤ xl and xl ≤ xm, then xm = xl.

Definition 2.2.6 (Left Pregroup). A partially ordered monoid in which every element has a left

adjoint is called a left pregroup.

Theorem 2.2.7. For a partially ordered monoid:

If x ≤ y, then yl ≤ xl (contravariance).

Proof. Assume that x ≤ y, then using substitutivity, one gets the following:

yl = yl1 ≤ ylxxl ≤ ylyxl ≤ 1xl = xl.

Furthermore, double contravariance yields: If x ≤ y, then xll ≤ yll.

Definition 2.2.8 (Group). A group is a monoid with every element x having a left inverse x−1 such

that x−1x = 1.

Theorem 2.2.9. For a group the left inverse is also a right inverse.

Proof. Consider the left inverse x−1 for x so that x−1x = 1, then also:

xx−1 = 1xx−1 = (x−1)−1x−1xx−1 = (x−1)−11x−1 = (x−1)−1x−1 = 1.

Remark: If one were to use groups for the mathematical analysis, then e.g. assigning a type,
such as nini−1 = 1 (for i = 1, 2, 3) to one of the constituents of a sentence would allow to place
that constituent anywhere in the sentence and still reduce the sentence to s making it grammatical,
if it was mathematically grammatical as in definition 2.3.3 without it. The reduction when assign-
ing a type from a pregroup such as ninil instead, will depend on the neighbouring constituents.
That is one of the main reasons why so called pregroups are used in the linguistic application. All
this is defined and derived in the following.

Definition 2.2.10 (Right Pregroup). A right pregroup is a partially ordered monoid in which each

element x has a right adjoint xr with:

xxr ≤ 1 ≤ xrx.

9

Definition 2.2.11 (Pregroup). A pregroup is both a left and a right pregroup.

Theorem 2.2.12. In a pregroup every adjoint is unique and order reversing, the latter meaning

contravariance as follows:

If x ≤ y, then yl ≤ xl and yr ≤ xr

Proof. This follows from lemma 2.2.5, theorem 2.2.7 and the analogue proofs for right adjoints.

Definition 2.2.13. Furthermore, denote the left adjoint of xr as: xrl, and analogously for the

opposite.

Theorem 2.2.14. For a pregroup it also holds that opposite adjoints annihilate each other:

xrl = x = xlr.

Proof. Since xxr ≤ 1 ≤ xrx, then x is some left adjoint of xr. Moreover, since left adjoints are
unique, it follows that x is the left adjoint of xr.

Example 2.2.15. Examples of pregroups are on the one hand obviously partially ordered groups,

meaning partially ordered monoids where each element has an inverse which serve as the adjoints.

Proof. A group is a monoid in which every element has a left inverse, therefore the left pregroup
property is satisfied. By theorem 2.2.9 it follows that every left inverse is also a right inverse, and
hence the right pregroup property is also satisfied.

Remark: A pregroup that is not a partially ordered group is, for instance, the monoid of all

order preserving maps from Z to Z.

Definition 2.2.16 (Free Pregroup). As defined in [2]: “Let (P,≤) be a partially ordered set of

primitive types, P (Z) = {p(i)|p ∈ P, i ∈ Z} is the set of atomic types and Cat(P,≤) = (P (Z))∗ =

{p(i1)
1 · · · p(in)

n |1 ≤ k ≤ n, pk ∈ P, ik ∈ Z} is the set of [compound] types. For X, Y ∈
Cat(P,≤), X ≤Y iff this is deducible in the system for pregroup grammars as below where: p, q ∈
P ;n, k ∈ Z, and X, Y, Z ∈ Cat(P,≤). Wojciech Buszkowski [3] has proposed this construction to

define a pregroup that extends ≤ on P to Cat(P,≤).

X ≤ X(Id),

10

XY ≤ Z

Xp(n)p(n+1)Y ≤ Z
(AL),

Xp(k)Y ≤ Z

Xq(k)Y ≤ Z
(INDL),

X ≤ Y Y ≤ Z

X ≤ Z
(Cut),

X ≤ Y Z

X ≤ Y p(n+1)p(n)Z
(AR),

X ≤ Y q(k)Z

X ≤ Y p(k)Z
(INDR).

Whereby for the last one: q ≤ p, if k is even and p ≤ q, if k is odd.”

Remark: In the categorial setting as well as in [11] the binary operator→ is used for a partial
order, instead of the mathematically reserved ≤.

2.3 Pregroup Grammars

Let B be a partially ordered set and Σ be the set of words of a natural language. Also let T(B) be
the free pregroup that is generated over the partial ordered set B as constructed by Lambek.

Definition 2.3.1 (Pregroup Dictionary). A pregroup dictionary for Σ on the underlying set B is a

binary relation:

D ⊆ Σ× T (B).

Definition 2.3.2 (Pregroup Grammar). A pregroup grammar is a pair of a pregroup dictionary and

a set of distinguished elements α ⊂ B:

G = 〈D, α〉.

Remark: It was also Buszkowski who, using the so called Switching Lemma, proved that pre-
group grammars are context-free, see [11].

Definition 2.3.3 (Grammatical Sentence). Let w1 . . . wn be a string of words in Σ with each

(wi, ti) ∈ D. Such a string is grammatical if and only if

t1 · · · tn ≤ s ∈ α, for ti ∈ T(B), ∀i = 1, . . . , n.

11

Example 2.3.4. Let us consider some of the main examples of grammatical sentences discussed in

this thesis: ”Bob likes Diet-Coke” and the negation thereof: ”Bob does not like Diet-Coke”.

One can set up a dictionary that generates these sentences using the primitive types n, j, s, a, o
and σ, abbreviations for noun, infinitive, statement, attribute, object and index type, respectively.

They then build up further atomic types as follows nl, nr, jl, jr . . . and compound types, such as

nrsnl. As set above a sentence will be grammatical according to the mathematical definition, if the

juxtaposition of the associated types reduces to a statement s (or a question).

The following types are associated to the constituents of the phrase so that the sentences are
grammatical. The reductions are morphisms in T(B).

Bob : n

likes : nrsnl

Diet-Coke : n

does : nrsjlσ

not : σrjjlσ

like : σrjnl

Proof. We can show that based on these types the above sentences are in fact grammatical by
considering the following composition for the sentences in discussion and their reductions. Note
that the brackets are only for simplification to the reader. The linear maps of meaning in the
graphical calculus are drawn besides them.

Bob likes Diet-Coke. → statement

n (nrsnl) n ≤ s

Bob does not like Diet-Coke. → statement

n (nrsjlσ) (σrjjlσ) (σrjnl) n ≤ s

12

Chapter 3

Logical Negation

An approach for modelling the logical NOT-gate was worked out in a categorical approach to
distributed meaning by the two supervisors of this thesis Dr. Bob Coecke and Dr. Mehrnoosh
Sadrzadeh at the Oxford University Computing Laboratory and Dr. Stephen Clark then at the
University of Cambridge Computer Laboratory. This also contains a last investigation of the dis-
tinction between predicative and non-predicative position of the NOT in a grammatical sentence
for its meaning. As an example, the following shows the distinction that is made:

Bob does not like Diet-Coke ∼= Bob dislikes Diet-Coke.

It is not the case that Bob likes Diet-Coke � Bob dislikes Diet-Coke.

The second because the meaning expressed can be that Bob in this case may be indifferent to
Diet-Coke or may prefer another beverage more.

3.1 Meaning Evaluation

Definition 3.1.1. Define the vector of the −−−−−→w1 · · ·wn of the meaning of a string of words w1 · · ·wn
to be the following:

−−−−−→w1 · · ·wn := f(−→w1 ⊗ · · · ⊗ −→wn).

The linear map f is constructed by substituting each type pi ∈ [p1 · · · pn ≤ x] with the associated

meaning Wi in (Wi, pi), the meaning space of the word.

13

Remark: If the string of words forms a grammatical sentence, then the reduced type x of the
sentence should be the basic grammatical type s of a sentence, as defined beforehand.

The linear maps that were worked out by the supervisors are essentially 1, 2 or 3-dimensional
and in the last case having free parameters. The following will discuss these and set up the required
definitions and examples for the expansion to higher dimension afterwards.

One can span the vector space V by all men {−→mi}i and W by all kinds of (inorganic) matter
{
−→
d j}j . Then for the two-dimensional or Boolean meaning case applied one spans the truth-space

S by two vectors denoted in Dirac notation as |1〉 =

(
0

1

)
and |0〉 =

(
1

0

)
for true and false,

respectively. This results in the following superposition for the verb
−−→
likes:

−−→
likes =

∑
ij

−→mi ⊗−→s ij ⊗
−→
d j.

Note: The following consideration is for the set of grammatical sentences with the negations as-
sociated to a verb. This does not include ungrammatical sentences as used for instance in English
sometimes, e.g.: ”Not so much”, which is short for some grammatical sentence, such as ”I do not
want so much”.

Definition 3.1.2. In order to get a truth-theoretic meaning define:

−→s ij =

{
|1〉, if mi likes dj.
|0〉, otherwise.

Example 3.1.3. As an example consider one of the fundamental questions discussed in quantum

physics. Let the famous physicists:
−−−−−−−−−−−−−−−→
Christiaan Huygens,

−−−−−−−−−−→
Issac Newton and

−−−−−−−−−−−→
Thomas Y oung

be elements in V . These correspond to the mi ∈ V in a chronological order. Similarly, W may

contain:
−−−−−−→
Particles,

−−−−→
Waves and

−−−−−→
Duality as dj , for i, j = 1, 2, 3 in that order. Then the meaning

of sentences expressing which physicist likes or came up with which hypothesis for the composition

and propagation of light can be encoded using the Kronecker function as follows:∑
ij

〈−→m1|−→mi〉 ⊗ −→s ij ⊗ 〈
−→
d j|
−→
d 2〉 =

∑
ij

δ1i
−→s ijδj2 = −→s 12 = |1〉.

∑
ij

〈−→m2|−→mi〉 ⊗ −→s ij ⊗ 〈
−→
d j|
−→
d 1〉 =

∑
ij

δ2i
−→s ijδj1 = −→s 21 = |1〉.

∑
ij

〈−→m3|−→mi〉 ⊗ −→s ij ⊗ 〈
−→
d j|
−→
d 3〉 =

∑
ij

δ3i
−→s ijδj3 = −→s 33 = |1〉.

14

3.2 Negative Transitive Sentence

Investigate the main negated transitive sentence under consideration:

−−→
Bob
−−→
does

−→
not
−−→
like
−−−−−−−→
Diet-Coke.

Following [6]: “The meaning space of the auxiliary verb is (V ⊗ S ⊗ J ⊗ V, nrsjlσ), that of the
negation particle is (V ⊗ J ⊗ J ⊗ V, σrjjlσ), and that of the verb is (V ⊗ J ⊗W,σrjnl). The
‘from-meaning-of-words-to-meaning-of-a-sentence’ linear map f as developed in [6] in this case
is:

f = (1S ⊗ εJ ⊗ εJ) ◦ (εV ⊗ 1S ⊗ 1J∗ ⊗ εV ⊗ 1J ⊗ 1J∗ ⊗ εV ⊗ 1J ⊗ εW) :

V ⊗ (V ∗ ⊗ S ⊗ J∗ ⊗ V)⊗ (V ∗ ⊗ J ⊗ J∗ ⊗ V)⊗ (V ∗ ⊗ J ⊗W ∗)⊗W → S

This is drawn in the graphical calculus as follows:
v wΨnot

When applied to the meaning vectors of words one obtains:

f(−→v ⊗
−−→
does⊗−→not⊗

−→
Ψ ⊗−→w),

which is depicted as:

v wΨdoes not

The trick to implement NOT will be to take this linear map to be the linear matrix representing

the logical NOT. Concretely, while the matrix of the identity is

(
1 0

0 1

)
, the matrix of the logical

NOT is

(
0 1

1 0

)
. In Dirac notation, the vector corresponding to the identity is |00〉 + |11〉, while

the vector corresponding to the logical NOT is |01〉+ |10〉. Where for
−−→
does set S = J , then:

−−→
does =

∑
i

−→e i ⊗ (|00〉+ |11〉)⊗−→e i ∈ V ⊗ J ⊗ J ⊗ V ,

15

We will set:
−→
not =

∑
i

−→e i ⊗ (|01〉+ |10〉)⊗−→e i ∈ V ⊗ J ⊗ J ⊗ V .

Diagrammatically we have:

−−→
does =

−→
not =

not

Substituting all of this in f(−→v ⊗
−−→
does⊗−→not⊗

−→
Ψ ⊗−→w) one obtains, diagrammatically:

v wΨnot

By the diagrammatic calculus of compact closed categories this is equal to:

v wΨ
v w

Ψ=

not not (3.1)

This is a consequence of the fact that from the axioms for categories one has:

not not

=

The configuration on the left always encodes the transpose and the matrix of the NOT is obviously
self-transpose. The two ”cups“ then cancel out as a direct consequence of the axioms. In the
language of vectors and linear maps, the left-hand side of eq. (3.1) is:(

εV ⊗

(
0 1

1 0

)
⊗ εW

)
(−→v ⊗

−→
Ψ ⊗−→w) .

Remark: The above pictures are very similar to the ones encountered in quantum information
protocols such as quantum teleportation and entanglement swapping (see [13] and the extensive
papers by supervisor Bob Coecke). There the morphisms η and ε encode Bell-states and corre-
sponding measurement projectors.

16

3.3 Negative Truth-Theoretic Meaning.

The meaning of the sentence

−−−−−−−−−−−−−−−−−−−−−→
Bob does not like Diet-Coke.

is then calculated as follows. Assume that the truth-space S is spanned by the vectors |0〉 and |1〉,

as in the previous example. Set X =

(
0 1

1 0

)
,
−−→
Bob = −→m1 ∈ V,

−−−−−−−→
Diet-Coke =

−→
d 4 ∈ W .

Furthermore, the vector of like is also equivalent to before:

−−→
like =

∑
ij

−→mi ⊗
−−→
likeij ⊗

−→
dj for

−−→
likeij =

|1〉, if mi likes dj.

|0〉, otherwise.

Then apply the from meaning of words to meaning of a sentence linear map f . One gets the
simple diagrammatic reduction shown before, and thereby obtains the following straightforward
evaluation:

(εV ⊗X ⊗ εW)
(−→m1 ⊗

−−→
likes⊗

−→
d 4

)
=
∑
ij

〈−→m1 | −→mi〉X(
−−→
likesij)〈

−→
d j |
−→
d 4〉 =

∑
ij

δ1iX(
−−→
likesij) δj4 = X(

−−→
likes14) =

{
|1〉, if

−−→
like14 = |0〉.

|0〉, if
−−→
like14 = |1〉.

=

{
|1〉, if m1 does not like d4.

|0〉, otherwise.

One can also go through the whole calculation in Dirac notation as follows. Abbreviate |10〉+

|01〉 to
−→
not and |00〉+ |11〉 to

−−→
does, and set f = h ◦ g with

h = 1J ⊗ εJ ⊗ εJ and g = εV ⊗ 1J ⊗ 1J ⊗ εV ⊗ 1J ⊗ 1J ⊗ εV ⊗ 1J ⊗ εW

The meaning of the sentence is then calculated on the next page by applying the meaning map f
to the tensor product of the meanings of the words within the sentence.

17

f

(
−→m1 ⊗

(∑
l

−→m l ⊗
−−→
does⊗−→m l

)
⊗
(∑

k

−→mk ⊗
−→
not⊗−→mk

)
⊗
(∑

ij

−→mi ⊗
−−→
likeij ⊗

−→
d j

)
⊗
−→
d 4

)

= h

(∑
ijkl

〈−→m1 | −→m l〉
−−→
does 〈−→m l | −→mk〉

−→
not 〈−→mk | −→mi〉

−−→
likeij〈

−→
d j |
−→
d 4〉

)

= h

(∑
ijkl

δ1l
−−→
does δlk

−→
not δki

−−→
likeijδj4

)
= h

(−−→
does⊗−→not⊗

−−→
like14

)
= h

(
(|00〉+ |11〉)⊗ (|10〉+ |01〉)⊗

−−→
like14

)
= h

(
|0010

−−→
like14〉+ |0001

−−→
like14〉+ |1110

−−→
like14〉+ |1101

−−→
like14〉

)
= |0〉〈0 | 1〉〈0 |

−−→
like14〉+ |0〉〈0 | 0〉〈1 |

−−→
like14〉+

|1〉〈1 | 1〉〈0 |
−−→
like14〉+ |1〉〈1 | 0〉〈1 |

−−→
like14〉

= |0〉〈1 |
−−→
like14〉+ |1〉〈0 |

−−→
like14〉

=

{
|1〉, if

−−→
like14 = |0〉.

|0〉, if
−−→
like14 = |1〉.

Hence, the meaning of Bob does not like Diet-Coke is true, if
−−→
like14 is false, i.e. if the meaning of

Bob likes Diet-Coke is false.”

A main distinction for the implementation of the logical NOT-gate is given by the syntax in
terms of predicative versus non-predicative NOT.

Definition 3.3.1. A NOT that acts on a verb is defined in linguistics to be predicative when it is

used in a predicate noun phrase (predicate NP) following a linking verb, such as usually to be, and

a noun that limits or defines the subject of the main clause. Otherwise, such a NOT is defined as

non-predicative. For details and examples see [9].

Example 3.3.2. For the example treated beforehand such a distinction can be formulated as:

Bob does not like Diet-Coke. versus: It is not the case that Bob likes Diet-Coke.

18

3.4 Higher Dimension

First one may think of generalizing the negation as modelled by the two-dimensional Pauli X-
gate to the n-dimensional case corresponding to the matrix with all 1s on the off-diagonal and all
other entries equal to 0. This matrix is obviously involutary for any dimension and thereby also
allows to cover for Boolean cancelling out in the case of double negation as will be discussed
later. Moreover, it does even allow to send each state in the truth-space to its opposite, which
fulfils the satisfied conditions for the non-predicative NOT as long as all the entries each have one
unique, semantically antisymmetric partner as opponents in the truth-state space. However, often
this condition may not be given, such as in a 3-dimensional truth-space for the example sentence
discussed before. In fact this does not hold in any odd-dimensional truth-space or truth-space that
does not have all entries as antisymmetric pairs in meaning. This will be demonstrated in detail in
the following section.

Therefore, in a first step, the predicative and non-predicative NOT for higher-dimensional truth
sentence space was worked out. For the non-predicative NOT implementation the supervisors
suggested in a presentation: “On a categorical approach to distributed meaning” to use a linear
map as in the following definition.

Definition 3.4.1. Define the linear map ANOT for a 3-dimensional implementation of the non-

predicative NOT as:

ANOT =

 0 − 1

0 − 0

1 − 0

 ,

where the values in the second column are free parameters.

Definition 3.4.2. In the 3-dimensional case using the same vector spaces V and W for the given

grammatical sentence, define:

−→s ij =

−→e 1, if mi likes dj.
−→e 2, if mi is indifferent to dj.
−→e 3, if mi dislikes dj.

with −→e k =

 0

k=1

0

 , for row k = 1,2,3.

If we want to model a NOT-gate for the 3-dimensional truth-space derived from this −→s ij , then
the simple generalization of the Pauli X-gate does not work. This is due to the fact that from the
linguistic and logical interpretation the negation of the indifferent state should be either of the other
two states as they stand for a fixed, strong opinion. That means the indifferent state does not have

19

a unique semantically antisymmetric partner. Instead, it has two of them −→e 1 and −→e 3. This fixes
the values of the second column of ANOT as well.

Theorem 3.4.3. To model the non-predicative NOT-gate for a 3-dimensional truth-space derived

from −→s ij as defined in 3.4.2, including the indifferent state, the following linear map applies:

ANOT =

 0 1 1

0 0 0

1 1 0

Proof. ANOT applied to −→e 1 or −→e 3 returns the desired opposite, as fixed in 3.4.1. For −→e 2:

ANOT · −→e 2 = −→e 1 +−→e 3

Hence, implementing this linear map gives the desired result of mapping the indifferent state to
either of the two others in the 3-dimensional case.

This non-predicative version of NOT can also be expanded to the n-dimensional case in the same
manner, if one considers further degrees of attitude or degrees of truth in the n-dimensional truth-
space that for instance, are antisymmetric pairs. This is demonstrated in the example below.

Example 3.4.4. Set up a 5-dimensional version of −→s ij by considering an example of a 5-dimensional
vector with each entry from the standard basis. This represents a logical disjunction of the five
states in the truth-space. Here

−−→
love is the semantically antisymmetric partner to

−−→
hate, and sim-

ilarly
−−→
like to

−−−−→
dislike. This means each entry in any row j is opposite in meaning to its unique

partner state at n − j + 1, except for the indifferent state in the middle that has no such unique
partner state.

−−→
love
−−→
like

−−−−−−−−−−−−−−→
feel indifferent to

−−−−→
dislike
−−→
hate

Alternatively, one can combine these with adverbs to cover the “degrees of quantity” of the verb

under consideration, such as for the same verb
−−→
like:

−−−−−−−−−−→
like extremely
−−−−−−→
quite like
−−→
like

−−−−−−−−−→
quite not like

−−−−−−−−−−−−−→
extremely not like

20

Theorem 3.4.5. If one includes the state of being indifferent without any antisymmetric partner

for it, but all the other states having their antisymmetric partner, then n will always be odd for this

scenario and the linear map for the logical NOT-gate can then be implemented as follows:

ANOTn−dim
=

0 0 · · · 0 1 0 · · · 0 1

0 0 · · · · · · · · · · · · 0 1 0

0 0 · · · · · · · · · · · · 1 0 0
...

...
...

...
...

...
...

...
...

0 0 0 · · · 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

0 0 1 0 · · · · · · · · · · · · 0

0 1 0 0 · · · · · · · · · · · · 0

1 0 · · · 0 1 0 · · · 0 0

Theorem 3.4.6. For the predicative NOT in the 3-dimensional case with the same indifferent state

in −→s ij one can use the following linear map:

PNOT =

 0 1 1

1 0 1

1 1 0

Proof.

PNOT (−→e 1) = −→e 2 +−→e 3

PNOT (−→e 2) = −→e 1 +−→e 3

PNOT (−→e 3) = −→e 1 +−→e 2

Definition 3.4.7. Define the matrix J as the square matrix with all entries equal to 1.

→ (PNOT)2 = I3×3 + J3×3.

Remark: Note that PNOT is not involutary. Double negation would correspond to a uniform
shift by 1 of each state in the meaning vector of the associated verb.

21

Theorem 3.4.8. The 3-dimensional predicative NOT-gate can be expanded to an n-dimensional

predicative version in the same way. One linear map for an n-dimensional predicative NOT-gate

under these conditions is PNOTn−dim
= −In×n + Jn×n, explicitly as follows:

PNOTn−dim
=

0 1 1 · · · · · · · · · 1 1 1

1 0 1 1 · · · · · · 1 1 1

1 1 0 1 · · · · · · 1 1 1
...

...
...

...
...

...
...

...
...

1 1 1 · · · · · · 1 0 1 1

1 1 1 · · · · · · 1 1 0 1

1 1 1 · · · · · · · · · 1 1 0

Remark: The expansion even holds generally for any n ∈ N, and for any degree of quantity of
the verb. Even the assumption of having symmetric or antisymmetric pairs in the truth-space is not
required for this map to hold. This allows e.g. to cover for a grammatical sentence, such as Bob
prefers or does not prefer . . . , as a further degree of like. Furthermore, this is unique in respect to a
given basis (standard basis here) only depending on the scaling, e.g for linguistic emphasis, of the
vectors in the truth-space. Hence, this yields a linear map that can be implemented very generally
in the framework.

However, when one thinks of the general semantics of negation of sentences, one can see that
even the non-predicative NOT does not necessarily need to oppose the meaning to a unique or a
few partner states. In many interpretations it is grasped as yielding any of the other states in the
truth-space as well, as outlined in the example below.

Example 3.4.9. Bob does not like Diet-Coke ∼= Bob loves Diet-Coke. OR Bob is indifferent to

Diet-Coke. OR Bob dislikes Diet-Coke. OR Bob hates Diet-Coke. OR . . .

This also holds vice-versa for predicative NOT. Hence, noting this difficulty and relative in-
accurate interpretation of the language meaning in this distinction, advice by Professor Pulman
was followed and then the corresponding worked out under some of the modern philosophical and
logical interpretations of negation as in [8].

22

3.5 Modern Negation

Professor Horn’s book on the logic of negation [8] states that the main difference between predica-
tive and non-predicative NOT is in one sense just that the predicative NOT makes the statement a
little weaker compared to the predicative use, which in the vector space and pregroup framework
may be modelled by a multiplication with a certain factor. However, it also points out the main
opposite ideas of the conception of negation. It starts with the initial and very distinct philosoph-
ical ideas of Aristotle’s versus Plato’s. Aristotle’s opinion as expressed in his: Categories, is that
by using NOT with a verb, we mean the contradictory (Affirmative to Negative) and thereby the
actual opposite, or mathematically orthogonal or negative of the statement. This corresponds to
the interpretation of the first n-dimensional matrix that I set up when looking into the picture of
non-predicative NOT. On the other hand, Plato’s view is very different and explained in an extract
in his rebuttal:

When we say not-being, we speak, I think, not of something that is the opposite of
being, but only of something different.

This is a so called contrary view for the conception of negation, and corresponds to what
Professor Pulman pointed out and thereby to the matrix set up beforehand for the predicative
NOT back then, where negation is to make all other states in the n-dimensional space possible.
From a logical point of view the main distinction between these two philosophical views on the
interpretation of negation lies in the law of contradiction (LC) and the law of excluded middle
(LEM). As shown in [8]: “LC holds for both contradictory as well as contrary views, but LEM
only for contradictory.”

LC: ¬(p ∧ ¬p)

LEM: p ∨ ¬p

Semantically this is expressed as:
LC: Two contradictory sentences are not true together
LEM: Two contradictory sentences are not false together

In the quantified, term-based version:
LCterm : ¬∃x(Px ∧ ¬Px)

LEMterm : ∀x(Px ∨ ¬Px)

For the multiple reasons argued beforehand, predicative versus non-predicative position of
NOT does not really have a meaningful influence on the semantics except for a strengthening

23

or weakening, respectively. In this sense, I think it is more sensible to consider this distinction
that was and in many ways still is the main logical distinction for the NOT according to the book.
The weakening of the predicative position can then just be undertaken by a multiplication with a
constant lambda or similar, as was the idea of Dr. Coecke for a similar case when

−−→
does is used to

emphasize. Another advantage of this picture of philosophical or logical distinction is that it may
be linguistically universal, meaning the idea applies to all natural languages, at least for grammat-
ical sentences and when we consider the NOT applied to a verb, from my thinking in all of where
I can judge: English, German, French, Spanish, Italian, Swiss, Latin, Greek and also Chinese,
since it is about the conceptual philosophical distinction. There are some special cases such as the
French: “j‘espere que non” versus “je n‘espere pas que” of contrary versus contradictory that flow
together in e.g. their German counterpart: “Ich hoffe nicht”, which can be interpreted as both of
the concepts. The choice will mostly depend on the context and thereby not present a problem.

For the case of double negation from a propositional logic point of view, naturally the negation
should cancel out in both non-predicative as well as predicative use of NOT (Duplex Negatio Af-
firmat). For the Stoics (following Plato’s view) this is represented by the Law of Double Negation:

¬¬P
∴ P

(LDN)

Let us add LDN to e.g an intuitionistic logic concept giving a sense of a linear logic and let
the entries in the truth-space of even dimension be symmetric. Consequently, any linear map for
the logical NOT-gate in the interpretation of contrariety as seen by the Stoics would have to be
involutary, meaning square roots of the n-dimensional square matrix and so have to satisfy all of
the following properties simultaneously.

i.) P =
√
In×n → det(P) = ±1

ii.) till n+i.) P

0
...
0

j=1

0
...
0

= [k]

1
...
1

j=0

1
...
1

24

The factor k in the conditions stands for a possible renormalization in the end as is often the
case in quantum computer science as well as information retrieval. However, this does not change
the theorem and proof to hold as shown below, since it corresponds just to an affine transformation
of all the values; nor does any possible linear shift associated to emphasis etc., since that will take
place on both sides of the equality. There are many papers from the 50s and 60s investigating such
general square roots of the identity matrices and many of the additional properties can be satisfied
in a linear map as was searched and found using Matlab and Mathematica. However, it turns out
that there is no such linear map satisfying all these properties as is proven next.

Theorem 3.5.1. There exists no linear map for such a logical NOT-gate satisfying the properties

of Plato’s logic that can satisfy all these n+1 distinct conditions, including LDN.

Proof.

From ii.) P = (J − I)

→ P
2

= (J − I)2 = J2 − 2IJ + I = (n− 2)Jn×n + In×n

6= In×n .

Alternatively, one could also allow factors λi for non-polar terms. Analysing and proving for
instance the 4-dim. case (analogously for higher dimensions) the following adjusted properties
would have to be satisfied in addition to the matrix being involutary:

ii.) P

1

0

0

0

 =

0

λ

λ

1

 iii.) P

0

1

0

0

 =

λ

0

1

λ

iv.) P

0

0

1

0

 =

λ

1

0

λ

 v.) P

0

0

0

1

 =

1

λ

λ

0

25

Proof. From these properties that have to be satisfied it follows that:

P =

0 λ λ 1

λ 0 1 λ

λ 1 0 λ

1 λ λ 0

 → P
2

=

2λ2 + 1 2λ 2λ 2λ2

2λ 2λ2 + 1 2λ2 2λ

2λ 2λ2 2λ2 + 1 2λ

2λ2 2λ 2λ 2λ2 + 1

 6= In×n,

since the λs cannot be 0 for the properties to hold and give the desired interpretation of the
NOT-gate as being contrary.

Aristotle on the other hand, introduced contradictory negation in such a way as to be inca-
pable of applying to its own output, hence LDN is not included in the term logic of Aristotelians.
Therefore, for this philosophical interpretation the matrix ANOT as set up before can in fact be
implemented. Aristotle may not have been aware of linear maps in the modern sense back then,
but he clearly recognized the difficulty from a logical and linguistic point of view. As a matter of
fact it does turn out that there is no such linear map either. Such a map for the logical NOT-gate
would have to fulfil all of the following n+ 2 conditions, plus possibly further properties that may
be relevant:

i.) A =
√
In×n → det(A) = ±1

ii.) For the indifferent state: A

0
...
1
...
0

=

1
...
0
...
1

iii.) till n+ii.) For the indifferent state: A

0
...

j=1
...
0
...
0

=

0
...
0
...

(n−j+1) = 1
...
0

26

Theorem 3.5.2. There is no linear map for such a logical NOT-gate satisfying the properties of

Aristotle’s logic that can satisfy all these n+2 distinct conditions, including LDN.

Proof. In order to satisfy property ii.), one has:

A
2

0
...
1
...
0

= A

1

0
...
0

1

=

 | | |
a1 a2 a3

| | |

1

0
...
0

1

=

 |
a1

|

+

 |
a3

|

!
= k

1

0
...
0

1

= k

 |
a2

|

→

 |
a1

|

+

 |
a3

|

 !
= k

 |
a2

|

→ det(A) = 0

This is a contradiction to i.) and, therefore, no such linear map exists. Again any possible renor-
malization factor k does not change the proof to hold as shown above, since the second column
will still be a linear combination of the other two; nor does any possible linear shift associated to
emphasis etc. because that will take place on both sides of the equality.

However, even though the two theorems 3.5.1, 3.5.2 and their proofs show that there are no
non-linear maps satisfying all the required properties, one can set up outputs of non-linear maps
that do the job. For each case of input independently they are actually linear, and in fact satisfy
all the n + 1 required properties for the former and all the n + 2 required properties for the latter
philosophical interpretation of the logical NOT-gate.

27

Definition 3.5.3. Define the non-linear outputs of such maps A(v) and P (v) applied to an input

vector v as follows:

A(v) :=

{
ANOTn−dim

· v, if v = −→e i, for i ∈ {1, . . . , n}.
−→e i, otherwise v = ANOTn−dim

· −→e i.

P (v) :=

{
PNOTn−dim

· v, if v = −→e i, for i ∈ {1, . . . , n}.
−→e i, otherwise v = PNOTn−dim

· −→e i.

Then these maps can be used for the logical NOT-gate in any higher dimensions and also cover
for cancelling out in the case of double negation corresponding to the requirements of propositional
logic or Plato’s view of double negation. This can be implemented, since the only times that
ANOTn−dim

or PNOTn−dim
cannot be applied directly with LDN as an axiom is when they are applied

to already negated vectors that are not of the form −→e i for i ∈ {1, . . . , n}. Hence, they can all be
distinguished from the case when the matrices can be applied directly and so be implemented.

According to Jaakko Hintikka ([8], 1968), a leading Finnish philosopher and logician:

while a proposition or predicate may be logically equivalent to its double negation, the
doubly negated form tends to convey one of the three ”residual meanings”:

1.) to indicate hesitation or uncertainty
2.) to signal diffidence
3.) to express irony

This will also depend on the context. We may not want the matrices to be involutary, but
possibly yield some free variables in relation to the context or certain categories of verbs that it
is referring to, depending on the text and implementation. Evidently, in this very recent picture,
compared to the classical two opposite philosophical ideas of negation in linguistics, LDN does not
apply either. It may model the semantics of languages more accurately. As a matter of fact many of
the modern views agree or incorporate this picture of the semantics of negation. Since LDN does
not apply, one can actually implement the n-dim. matrices and thereby linear maps ANOTn−dim

and
PNOTn−dim

that were set up in section 3.4 on higher dimension. The square of the second matrix
(predicative or contrary view) yields the n-dim. identity matrix as desired and in addition n · J ,
so that in fact similar to a possible indication of emphasis by a constant factor, this adds the same
value to every state of the output in the truth-space, as one would want when modelling by the
same means the additional irony or hesitation that is expressed.

28

Chapter 4

Orthogonal Negation

Alternatively, one can approach the problem of setting up such a logical NOT-gate as mentioned
before by using projections to orthogonal subspaces. Dominic Widdows, former member of the
faculty at Oxford’s Computing Laboratory, presents an important theorem in [17] that allows to
implement this approach and from which also a version for concatenation of several logical NOTs
or ANDs can be set up.

He points out that standard information retrieval systems when processing an input, such as A
NOT B to return all the results that include A, but not B are not very efficient. This is because
the way they usually work is by searching the whole space Ω for A, and then in a second step
taking the A ⊂ Ω and look for any B in it that are then cancelled out. This means that the whole
search procedure has to be processed essentially twice. In his paper during his research at Stanford
University Dominic Widdows describes a method using projections onto orthogonal subspaces that
allows to remove unwanted terms directly from the initial query. In addition, it even allows to not
only remove unwanted strings, but unwanted meaning. “Compared to standard Boolean methods
this reduces the occurrence of synonyms and neighbours by as much as 76%,“ according to his
paper [17] that will be applied in the following.

29

4.1 Orthogonal Negation Method

This orthogonal negation method is also based on a vector model and uses the same vector negation
operator as in quantum logic. The main idea is to use orthogonality in the sense of the following
definition in order to model irrelevance in vector spaces.

Definition 4.1.1. Two words a and b are considered irrelevant to one another, if their vectors are

orthogonal. This means that a and b are mutually irrelevant, if a · b = 0.

Definition 4.1.2. Let a, b ∈ V and A,B ≤ V . By NOT A we mean A⊥ and by NOT a, we mean

〈a〉⊥, where 〈a〉 = {λa : λ ∈ R} is the 1-dimensional subspace generated by a. By a NOT B we

mean the projection of a onto B⊥ and by a NOT b we mean the projection of a onto 〈b〉⊥.

The following demonstrates how to use these notions to perform calculations with individual
term or query vectors in a form which is simple to program and efficient to run.

Theorem 4.1.3. Let a, b ∈ V . Then a NOT b is represented by the vector

a NOT b ≡ a− a · b
|b|2

b, (4.1)

where |b|2 = b · b is the modulus of b.

Proof. One can give a straightforward proof by applying the trick suggested from definition 4.1.1
as in [18] of taking the scalar product with b on both sides of the equality:

(a NOT b) · b = (a− a · b
|b|2

b) · b = a · b− (a · b) · (b · b)
|b|2

= a · b− (a · b) · (b · b)
(b · b)

= 0

→ (a NOT b) ⊥ b.

Hence, from definition 4.1.1, it follows that a NOT b is exactly the part of a which is irrelevant to
b.

Remark: Theorem 4.1.3 takes a particularly simple form for normalized vectors:

a NOT b = a− (a · b)b, (4.2)

which in practice is then renormalized for consistency just like in quantum physics.

30

One computational benefit is that theorem 4.1.3 gives a single vector for a NOT b, so finding
the similarity between any other vector and a NOT b is just a single scalar product computation.
Disjunction is also simple to envisage, the expression b1 OR . . . OR bn being modelled by the
subspace B = {λ1b1 + . . . + λnbn : λi ∈ R}. Theoretical motivation for this formulation can
be found in (Birkhoff and von Neumann, 1936, 1, 6) and [18]: for example, B is the smallest
subspace of V which contains the set {bj}. Computing the similarity between a vector a and this
subspace B is computationally more expensive than for the negation of theorem 4.1.3 because the
scalar product of a with (up to) n vectors in an orthogonal basis for B must be computed.

4.1.1 Higher Dimension

The gain we get by comparing each document with the query a NOT b using only one scalar
product operation is absent for disjunction. However, this benefit is regained in the case of negated

disjunction. Suppose we negate not only one argument, but several. If a user specifies that they
want documents related to a but NOT b1, b2, . . . , bn, then (unless otherwise stated) it is clear that
they only want documents related to none of the unwanted terms bi (rather than, say, the average
of these terms).

This motivates a process which can be thought of as a vector formulation of the classical de
Morgan equivalence ¬a ∧ ¬b ≡ ¬(a ∨ b), by which the expression:

a AND NOT b1 AND NOT b2 . . . AND NOT bn.

is translated to:

a NOT (b1 OR . . . OR bn). (4.3)

Using Definition 4.1.2, this expression can be modelled with a unique vector which is orthog-
onal to all of the unwanted arguments {b1}. However, unless the vectors b1, . . . , bn are orthogonal
(or identical), we need to obtain an orthogonal basis for the subspace b1 OR . . . OR bn, before
we can implement a higher-dimensional version of Theorem 4.1.3. This is because the projec-
tion operators involved are in general non-commutative, one of the hallmark differences between
Boolean and quantum logic. In this way vector negation generates a meaning vector which takes
into account the similarities and differences between the negative terms.

31

A query for

chip NOT computer, silicon

is treated differently from a query for

chip NOT computer, potato.

Vector negation is capable of realising that for the first query, the two negative terms are refer-
ring to the same general topic area, but in the second case the task is to remove radically different
meanings from the query. This technique has been used to remove several meanings from a query
iteratively, allowing a user to ’home in’ on the desired meaning by systematically pruning away
unwanted features.

Theorem 4.1.4. In order to derive an orthogonal basis for the subspace b1 OR . . . OR bn, one

can apply the Gram-Schmidt orthogonalization process on any given basis. Normalization in each

step of the process even allows to get an orthonormalized basis so that the simpler version of the

theorem above eq. 4.2 can be applied for a higher-dimensional implementation of the result.

4.1.2 Implementation in Computational Linguistics

Example 4.1.5. One can use this approach of orthogonal projections to subspaces and apply it to

the examples discussed beforehand e.g. in the 5 or 6-dimensional example. Let V be the vector

space spanned by the meanings of all the verbs or a possible subset thereof, if one wants to apply

the model to a specific context. Then set up the following:

a =
−−→
does, and A the associated vector subspace of V.

b ∈ B, and B ≤ V.

Thereby the subspace B may be spanned by the following corresponding to the standard basis:

B = {
−−→
love,

−−→
like,

−−−−−−−−−−−−−−→
feel indifferent to,

−−−−→
dislike,

−−→
hate}.

Then one can either apply the general theorem using eq. 4.1 for the case when one is also having

linear combinations of the meanings in the vector space, or one can use the simpler eq. 4.2, when

one is only dealing with the states outlined before that are given by the vectors of the standard

basis and thereby already fulfil the condition of being normalized.

32

→ aNOTb =
−−→
does NOT b.

W.l.o.g. assign the meaning vector such that: a 6= b, and e.g. let b =
−−→
like, then:

→ aNOTb =
−−→
does NOT

−→
like = a− λb, for some scalar λ.

This corresponds to an expression that is a linear combination of:

−−−→
does and some −→v ∈ V \{b},

which is orthogonal to
−−→
like.

= (does) love . . . OR (does) feel indifferent to . . . OR (does) dislike . . .OR (does) hate . . .

Or it can take on any linear combination of these verbs Or in the case when B is a proper

vector subspace of V , then it can be even other verbs in the vector space V of all the verbs,

followed by the rest of the sentence as indicated by the dots. Hence, this fast search procedure will

then treat the vector b that is now orthogonal to the query term as irrelevant, and instead return

sentences or documents containing linear combinations of the form above as desired.

Any additional emphasis in meaning returned through
−−→
does is automatically handled by the

renormalization that takes place in practice as stated by Widdows.

This is exactly what is wanted for the interpretation of NOT as being contrary as seen by Plato,
since only the “orthogonal” or irrelevant verb meanings in the vector space are cancelled out for
any dimension of the meaning space.

For Aristotle’s conception of negation this single NOT-version only works up to the two-
dimensional case, since through this NOT all the other states or verb actions become possible
except for the initial unwanted that is negated. However, using several NOTs as in theorem 4.1.4,
one can cancel out the other states through orthogonality as desired and thereby also derive a NOT-
gate that works for Aristotle’s contradictory logic. With the high efficiency that was shown by
Widdows in statistical analysis this can be a very efficient method for an implementation of NOT.

33

Chapter 5

Diagrammatic Calculus

5.1 Diagrammatic Calculus of Compact Closed Categories

5.1.1 Categories

Definition 5.1.1 (Compact Closed Categories). A monoidal category is defined in [6] to be com-

pact closed in the diagrammatic calculus, if for each object A there are also objects Ar and Al and

the following for the category morphisms ηl, εl, ηr, εr, respectively:

A Al A A

A Al

r

A Ar

that fulfil the axioms:

=

A

A

A

A

=A

A A

A

r

r

=

A

A

A

A

=A

A A

Al l

ll

r

r

34

In the main paper that is expanded here [6] it is shown that vector spaces, linear maps as well
as the tensor product form such a compact closed category. Furthermore, it then also shows that
even pregroups form a compact closed category as well. As a demonstration, the following shows
that compact closure holds:

Proof. For pregroups the morphisms for compact closure, listed in the same order of the mor-
phisms as before, are:

ηl = [1 ≤ ppl] εl = [plp ≤ 1]

ηr= [1 ≤ prp] εr= [ppr≤ 1]

Juxtaposition of these types clearly reduces to identity in all cases and, hence pregroups fulfil the
compact closure property too.

The following proves the correspondence between compact closed categories and the diagram-
matic calculus as expanded in [16]. It is this correspondence that allows to use the straightforward
reductions in the diagrammatic calculus in order to be able to do such very efficient calculations as
seen in chapter 3.

Theorem 5.1.2. A well-typed equation between morphisms in the language of compact closed

categories follows from the axioms of compact closed categories iff it is true, up to diagrammatic

isomorphisms, in the diagrammatic calculus.

Proof. This was implicitly proven in [10] by Kelly and Laplaza in 1980.

The following gives the equivalent for so called “strongly” or “dagger compact closed cate-
gories” as introduced by Samson Abramsky and supervisor Bob Coecke at Oxford University as
an axiomatic framework to quantum mechanics.

Theorem 5.1.3. A well-typed equation between morphisms in the language of strongly compact

closed categories follows from the axioms of strongly compact closed categories iff it is true, up to

diagrammatic isomorphisms, in the diagrammatic calculus.

Proof. Soundness follows by induction. Completeness can then be proven using the additional
axiom for a strongly or dagger compact closed category, and theorem 5.1.2 for compact closed
categories as shown above following the same procedure as in the proof of Theorem 3.10 in [16].

35

5.1.2 Syntax in Graphical Calculus

If we construct the sentence considered beforehand so that it has double negation where the first is
predicative and the second is non-predicative, then one gets e.g. the following types and represen-
tations in the graphical calculus. It is to be noted that these types are exemplary and not derived
from a linguistic corpus as usual in categorical treatment so that they reduce the sentence in order
for it to be grammatical. Besides, they also satisfy the semantic requirements of the framework.
The following first example is to show the types associated to the two versions of predicative and
non-predicative

−→
not in one grammatical sentence. The two are equivalent except for a strengthen-

ing in one of them as outlined before according to [8].

not the caseisIt that does likeBob not

(asrsal) (nrsjlσ) nan (nrsal) (srssl) n (σrjjlσ) (σrjnl)

Diet-Coke

5.1.3 Semantics Implemented in Diagrammatic Calculus

Example 5.1.4. The next picture gives the equivalent representation in the diagrammatic calculus

of compact closed categories. The arcs that indicate the type reductions in a pregroup grammar

are exactly the “cups” of the compact closed structure as a corrolary from the proofs above. The

triangles represent the meanings of the individual words and in the quantum analogy correspond

to the states of a quantum system involved in an information protocol. The
−−→
does is defined as in

section 3.2 and similarly the
−→
not where for higher dimensions the matrices that were worked out

in the thesis apply to the box operator.

case
the

not like
Coke

BobisIt not that
Diet-

36

This can be simplified applying the reduction of the right-hand side as outlined in section 3.2.
Reversed triangles indicate the corresponding functionals in the dual space or the bra-ket relation
in Dirac notation.

case
the

isIt not that like

not
Bob

Coke
Diet-

Further reduction thereof:

that like

the
case

is

not
It

notBob
Coke
Diet-

The next section will also cover the law of double negation (LDN) for Plato’s or Hintikka’s
conception up to an emphasis. The emphasis is modelled in the vector spaces corresponding to
the triangles and, hence has no influence on the diagrammatic calculus. In the example discussed
the main clause is predicative and refers to the following clause without adding anything new to
the meaning, except for a strengthening or weakening of the following clause. Therefore, from
intuition it makes sense in this case logically and semantically when such an input applies to the
−−→
that operator to consider the

−→
not boxes as double negation of the same positive statement in the

clause of reference. One can then apply LDN for the
−→
not operators to cancel each other out and

return the positive sentence.

Logical Interpretation I: In order to apply LDN in the diagrammatic calculus, when the
main clause acts to negate the verb after the

−−→
that operator, we introduce the following logical

interpretation for
−−→
that in this case, since the

−−→
that functions as the connective between the clauses

and so also between the various
−→
not operators.

that

f

thatthat

f f
= =

37

In this case the action of the
−−→
that correspondes to the logical XOR-gate that implements exclu-

sive disjunction. If the two inputs to it, corresponding to two
−→
not operators, are both false or both

true, then it will return true; as wanted when including LDN. On the other hand, if only one of the
inputs is false, corresponding to a negative sentence as input to the

−−→
that, then false is returned and

thereby the single negation remains. A quantum version of the XOR-gate that operates in arbitray
dimensional Hilbert spaces and is used for generalized quantum teleportation as well as state pu-
rification is presented in [1]. Hence, such an XOR-gate can be implemented for the function of the
−−→
that operator and even cover the case of higher-dimensional vector spaces that were set up.

Then first use the logical interpretation to shift the
−→
not gates and in a second step apply LDN.

As a result, the two
−→
not gates now cancel out so that further reduction is reached to the desired:

that

Coke
the
case

is

It Bob

that

the
case

is

It Bobnot

not

like(s)

like(s)

=

Coke
Diet-

Diet-

Logical Interpretation II: The clause “it is not the case that” does not add any significant
meaning other than a predicative strengthening. Its subtle treatment is complex and can be part
of future work. A simplification is implemented through another logical interpretation setting the
sentence equal to the identity.

the
case

is

It

that

=

38

This allows to reduce the statement to the positive sentence: Bob like(s) Diet-Coke. Conju-
gation adaptation can be handled separately in an intermediate step or in the end. The compact
representation in the diagrammatic calculus then reduces to the following final output:

Bob Coke

like(s)

Diet-

This gives the required abstractions for the higher-dimensional matrices to do the same effi-
cient vector calculations for the meaning as in section 3.3 as an alternative to the extensive Dirac
calculations.

Example 5.1.5. The next example investigates a sentence with double negation that negate the

same object, followed by a third negation in form of the negated transitive sentence considered

earlier. The types are the same as before and also satisfy the reduction of the sentence for it to be

grammatical and the semantic properties in the category.

It is not
the
case that is not

the
case that Bob does not likeit Coke

n n a n n(nrsal) (asrsal) a (nrsal) (asrsal) (srssl) (σrjnl)(srssl) (nrsjlσ) (σrjjlσ)

Diet-

The whole picture in the diagrammatic calculus is then quite complex as follows:

not like CokeBobcase
theisIt not that case

theis not thatit Diet-

39

This reduces to the following:

that

the
case

is

not
It

is

not the
case

that

Bob
Coke

it not

like

Diet-

Using logical interpretation I for the
−−→
that, leads to the further reduction thereof:

that

the
case

is

It

is

the
case

that

Bob
Coke

it not
not

not

like

Diet-

that

the
case

is

It

is

the
case

that

Bob
Coke

it not

like

=

Diet-

40

Then applying twice logical interpretation II, gives the final reduction to the sentence: “Bob
does not like Diet-Coke”.

not Coke
Bob

like

Diet-

Alternatively, one could also first cancel out the negations in the second
−−→
that. Since eventually

using logical interpretation I to shift the remaining
−→
not box that is attached to the remaining

−−→
that

operator from the left to the right, will yield the same result.

41

Conclusion

A great excitement was achieved with the thesis and several distinct and promising approaches to
the problem in question were followed. All of them achieve to provide such a higher-dimensional
logic gate with distinct means and properties. A main focus and implementation was worked out
for logical negation. Similar ideas towards the logical AND-gate and implementations in the dia-
grammatic calculus thereof were worked out by two other MFoCS students under the supervision
of Dr. Bob Coecke.

Direct generalizations of the logical NOT-gate in the form of a swapping as in quantum com-
puter science do not allow to cover certain desired properties such as non-symmetric (or non-
antisymmetric in meaning) states in the truth-space. To be able to also handle such cases two
distinct matrices as suggested by the supervisors were expanded to higher dimensions. It was
recognised in the treatment that the main idea that provides the principal challenge in implement-
ing a higher-dimensional version of such gates lies in the fulfilment of the logical and semantic
properties, rather than the syntactic. From this a matrix that works uniformly for any dimension of
the truth-space was explored and elaborated.

Then an important refinement of these various NOT-gates as suggested by the supervisors that
are treated in modern linguistics was undertaken in accordance with logical philosophies and liter-
ature. The two main distinct philosophical conceptions of negation of the Aristotelians versus the
Stoics were considered. It was discovered and proven that, if one also wants to follow the Stoics
conception and cover the law of double negation (LDN) as in Boolean or Linear Logics, then there
are no such linear maps that can fulfil the required properties simultaneously. Stepwise linear ver-
sions were set as outputs instead for possible implementations. It was shown that the n-dimensional
matrices for any n ∈ N that were set up, adjusted appropriately, hold for the modern conception of
negation with the extra meaning conveyed by double negation as defined by Hintikka.

42

Afterwards, an alternative approach for a mathematical implementation of such a logical NOT-
gate using quantum logic was followed as suggested by David Widdows, and also expanded to
higher dimensions. The method was adapted and worked out for the problem in question. It proofs
very fruitful for applications in IR because irrelevance of search terms, modelled by the orthogo-
nality of the terms trough the NOT-gate, can be handled in the initial query already. In addition,
this gives a very significant benefit in the modelling of the meaning over Boolean methods.

Eventually, the higher-dimensional versions of the NOT-gate were incorporated in the diagram-
matic calculus as this provides a simplification and much more efficient approach for evaluation of
the meaning calculation due to the fact that vector spaces, linear maps and the tensor product all
form a closed compact category. This included also approaching the challenge of double negation
in the various conceptions. To conquer this an original implementation of the that connective was
constructed using the XOR-gate (resp. the analogue quantum computer science version). This al-
lows to reach the same diagrammatic reduction as in simpler one-negation examples that had been
worked out in the recent papers by the supervisors. Moreover, specific types were associated for the
complex sentences to guarantee them to be grammatical as in definition 2.3.3 and simultaneously
also fulfilling the semantic property requirements in the category.

Analogue or similar methods and expansions as above can also be used to expand other logical
gates or words in future work. As a generalization of the framework one can similarly work with
subspaces instead of vectors. This may be less efficient in an actual implementation, but would
allow to model disjunction for contrary negation by the vector sum, since that corresponds to the
smallest subspace containing the two components in the sum. Then the inverse could correspond
to the semantically antisymmetric partner states and linear scaling to an additional emphasis.

Moreover, future work can consist in further exploring the implementations and meaning cal-
culations in various languages on real corpus data with the type structure given by the pregroups
and generalized by the categories. At that point, one will also have to deal with complexity and
efficiency of the framework and thereby optimization. It would be brilliant, if one day one can also
exploit and incorporate the use of entanglement as in quantum computer science for high-efficiency
of such algorithms and an automated system.

The research group at the Oxford University Computing Laboratory is holding a workshop in
fall together with some of the leading experts in the field where the framework will be presented
and discussed. The goal is to establish cooperation with some of the leading science universities
in the United Kingdom, including the University of Sussex as well as the University of Cambridge
in order to expand the framework. This may also result in implementations of this in an automated
meaning translation or information retrieval system.

43

Bibliography

[1] G. Alber, A. Delgado et al., Generalized quantum XOR-gate for quantum teleportation and
state purification in arbitrary dimensional Hilbert spaces, Abteilung für Quantenphysik, Uni-
versität Ulm, Germany, 2008.

[2] D. Bechet, A. Foret et al., Learnability of Pregroup Grammars, Studia Logica 87(2-3), 2007.
http://hal.archives-ouvertes.fr/docs/00/19/11/12/

PDF/bechet-foret-tellier.pdf

[3] W. Buszkowski, Lambek grammars based on pregroups, Logical Aspects of Computational
Linguistics, 2001.

[4] C. Casadio and M. Sadrzadeh, Clitic Movement in Pregroup Grammar a Cross-linguistic
Approach, Oxford University, 2010.
http://www.comlab.ox.ac.uk/files/2953/CliticMovement.pdf

[5] S. Clark, B. Coecke and M. Sadrzadeh, A Compositional Distributional Model of Meaning,
QI, College Publications, University of Oxford, 2008.

[6] S. Clark, B. Coecke and M. Sadrzadeh, Mathematical Foundations for a Compositional
Distributional Model of Meaning, Linguistic Analysis 36 (Lambek Festschrift), 2010.
http://arxiv.org/abs/1003.4394

[7] S. Clark and S. Pulman, Combining symbolic and distributional models of meaning, AAAI
Press, Proceedings of AAAI Spring Symposium on Quantum Interaction, 2007.

[8] L. Horn, A Natural History of Negation, Yale University, 1989.

[9] R. Huddleston, English Grammar: An Outline, Cambridge University Press, 1988.

[10] G. M. Kelly and M. L. Laplaza, Coherence for Compact Closed Categories, Journal of Pure
and Applied Algebra 19, 1980.

44

[11] J. Lambek, From Word to Sentence, A Computational Algebraic Approach to Grammar,
Polimetrica, Monza (MI), 2008.

[12] J. Lambek, The Mathematics of Sentence Structure, American Mathematics Monthly 65,
154169, 1958.

[13] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cam-
bridge University Press, 2000.

[14] C. J. van Rijsbergen, The Geometry of Information Retrieval, Cambridge University Press,
2004.

[15] M. Sadrzadeh, Pregroup Analysis of Persian Sentences, University Paris-Diderot, Paris 7.

[16] P. Selinger, Dagger compact closed categories and completely positive maps, Electronic
Notes in Theoretical Computer Science 170, 139–163, 2007.

[17] D. Widdows, Orthogonal negation in vector spaces for modelling word-meanings and doc-
ument retrieval, 41st Annual Meeting of the Association for Computational Linguistics,
Japan, 2003.

[18] D. Widdows and S. Peters, Word Vectors and Quantum Logic: Experiments with negation
and disjunction, Stanford University, 2003.

45

