
Understandable Proofs
in Graphical Calculi

Michael Wang
Worcester College

University of Oxford

A thesis submitted for the degree of
Master of Mathematics and Computer Science

Trinity 2019

Acknowledgements

I thank my supervisors, Bob and Dan, for their great advice, for proposing
this fascinating investigation, and for welcoming me into the community. I also
thank the other wonderful people in the ZX-calculus group at Oxford, especially
Hector and Miriam, for their encouragement.
I furthermore thank my tutors, Michael, Andrzej, Hongseok, Robin, Rich, David,
Geraint, Alessandro, and Stephen for their innumerable hours of teaching, sup-
port, and encouragement over the course of my degree.
I give thanks to my other teachers over the course of my degree: the lecturers,
class tutors and practical demonstrators who worked hard to ensure we properly
understood the material.
I also give thanks to all my teachers at school, who stimulated and inspired me
to get to this point.
I thank the staff at Worcester College for their support and help, and for helping
me navigate the labyrinth of university organisation and life.
Finally, I thank my friends in Oxford.

Abstract

A new layout algorithm for graphical proofs, rewrite rule-based drawing, is de-
veloped. It aims to produce understandable proofs in graphical calculi that use
double-pushout (DPO) rewriting. Although interactive theorem provers have
been successful at ensuring the correctness of proofs, proof readability and un-
derstandability is often damaged in comparison to conventional mathematical
practice. This work resolves this issue by developing, practically implementing,
and evaluating new layout algorithms, directed by the characteristics of effective
layouts. The Quantomatic proof assistant’s internal layout architecture is also
refactored for extensibility and correctness. This culminates in a novel graphi-
cal proof layout system that is efficient, extensible, and practical, and produces
semantically meaningful output.

Contents

1 Introduction 1
1.1 Related Work . 2
1.2 Contributions . 4
1.3 Outline . 4

2 Preliminaries 5
2.1 Graph theory . 5
2.2 Graph rewriting . 7
2.3 Spider calculi . 8

3 Algorithm Design 10
3.1 Scope . 10
3.2 Goals . 11
3.3 Brute-force drawing . 12
3.4 Rewrite rule-based drawing . 13

4 Software Architecture and Implementation 21
4.1 Existing document architecture . 21
4.2 Revamped layout architecture . 22
4.3 Enhanced graphical user interface . 26

5 Experimental Evaluation 27
5.1 Benchmarking . 27

5.1.1 Method . 27
5.1.2 Results . 28
5.1.3 Analysis . 29

5.2 Human quality evaluation . 29
5.2.1 Method . 29
5.2.2 Results . 30
5.2.3 Analysis . 31

6 Conclusion 33

A Layout interface specification 37

B Layout implementation 42

C References 52

i

Chapter 1

Introduction

How do you ensure that a correct proof is understandable?

Through the computer-based technology of interactive theorem proving, the opposite has

been achieved: well-understood proofs can be verified as formally correct. Such tools are now

commonly used by researchers in theoretical computer science and formalist mathematics.

However, computers have no care for human readability preferences, or even for producing

proofs that are practical for humans to read and understand. This combination has led to

the production of unreadable proofs.1

The problems with interactive theorem proving and other computer-aided proof tools

have resulted in the vast majority of mathematicians continuing to work in human language,

where proofs can be easily written and understood. The better understood the proof, the eas-

ier it is to verify, whether by human or computer. Indeed, mathematics is so well-understood

that the ‘social process of mathematics’ [DeMillo, Lipton, and Perlis, 1979] is sufficient to

make conjectures, prove theorems, and verify the work of others, with extraordinarily high

accuracy. Even when there are errors, the intuition of mathematicians is surprisingly ac-

curate: prior to the publication of the collected papers of David Hilbert [Rota, 1997], Olga

Taussky-Todd spent three years reading through, understanding the material, and correct-

ing the mistakes. In the end, only one mistake was found to be uncorrectable: Hilbert’s

proof of the continuum hypothesis. Today, the continuum hypothesis is known to be, in
1A particularly egregious example, largely generated by computer, is [Garvie and Duncan, 2017].

Another example is [Duncan and Lucas, 2013, appendix A].

1

fact, independent of the axioms of Zermelo-Fraenkel set theory [Cohen, 1963].

Thus, understandable theorem proving should be a high priority for future computer-

aided proof tools. In this thesis, I present two novel algorithms to automate understand-

able proof layout for graphical calculi, a software implementation of the most effective

algorithm in the Quantomatic interactive theorem prover, and evaluate the effectiveness

of the system in practice. Graphical calculi are (essentially) rewriting systems for graphs;

rewriting typically uses the double-pushout (DPO) algorithm (although other rewriting al-

gorithms exist). Due to their visual nature, graphs are significantly more intuitive than

terms of formal languages, which have traditionally dominated research in formalist math-

ematics and computer-aided proof tools. Examples of these calculi are the ZX-calculus

[Coecke and Kissinger, 2017, Backens, 2016], ZW-calculus [Hadzihasanovic, 2015], and ZH-

calculus [Backens and Kissinger, 2018].

1.1 Related Work

Human-readable proof display in proof assistance and automation tools is largely underex-

plored, although some do recognise it as a barrier to mainstream adoption of proof assistance

and automation tools [Bundy, 2011]. However, the [NuPRL] proof assistant is able to gen-

erate hypertext where the reader may examine the proof and its structure by selecting the

subgoals that interest them, in the order that they choose. [Matita] also provides hypertext

which enables definitions to be looked up easily, and also provides mathematical typesetting

through MathML [Asperti et al., 2007]. Many popular tools, such as [Coq] and [Isabelle],

support incremental proof verification, which allows readers to watch tactics generate, re-

duce, and eliminate proof subgoals. Other tools, such as [Mizar] provide syntax highlighting

and/or code folding.

The field of graph layout is quite large: many books have been written about it, and

there is even an annual conference dedicated to the topic, the International Symposium

on Graph Drawing. Many software packages for graph layout, such as [Graphviz], are

distributed on the Internet; they usually provide multiple algorithms. The idea to provide

multiple algorithms is good, because this facilitates the communication of disparate concepts.

2

However, typical off-the-shelf software packages are designed to present a single static graph;

they are not intended to present the evolution of one graph into another using rewriting

rules, and therefore they create sudden changes between consecutive graphs. This issue of

‘dynamic graph drawing’ is considered in [Branke, 2001], in the context of operations which

either add or remove vertices and/or edges, and primarily discusses how existing algorithms

can be adapted to avoid sudden, distracting layout changes. However, the most important

problem with existing graph layout work is that there is little consideration of string and

spider diagrams, which have a characteristic structure distinct from graphs that are random

or arise from applied network theory; the latter are the focus of most research in undirected

graph layout, such as [Kaufmann and Wagner (eds.), 2001]. In comparison, my research

specifically concerns the dynamic layout of graphical proofs.

The development of the [Quantomatic] theorem prover and its underlying theory is

well-documented in the literature, particularly in past Doctor of Philosophy theses from

Oxford. The theory of graphical calculi for quantum information and the initial devel-

opment of Quantomatic are explained in detail in [Kissinger, 2012]. A more recent, but

technically outdated (in that the software architecture of Quantomatic has, since, changed)

is [Kissinger and Zamdzhiev, 2015]. The theory that allows reasoning on string diagrams

of categories (with sufficient structure) to be treated as reasoning on graphs is introduced

in [Dixon and Duncan, 2009] for compact closed categories, and then is given a categorical

description in [Dixon, Duncan, and Kissinger, 2010] which [Dixon and Kissinger, 2013] con-

nects with the structure of adhesive categories. The theory of rewriting on !-graphs, which

allows graph equations to be treated as universally quantified on natural numbers of par-

ticular subgraphs, is developed in [Merry, 2013]. Layout-wise, Quantomatic, prior to this

thesis, supported calling [Graphviz] to run the ‘dot’ algorithm (which needs to be separately

installed), and implemented a layout algorithm for single graphs and single (incremental)

rewrites that is similar to finding equilibrium of physical forces using the forward Euler

numerical method. (The latter technique is referred to as ‘force-directed’ in the literature

[Hu, 2006].)

3

1.2 Contributions

The novel contributions of this thesis are:

• Two novel algorithms for graphical proof layout are presented.

• Time and space complexity of the algorithms are considered.

• The most practical of the algorithms is implemented in the Quantomatic theorem

prover.

• In the Quantomatic theorem prover, the internal software architecture of the layout

components is revamped to be cleaner and more compositional.

• I evaluate the performance and quality of the layout algorithms’ output, using the

software implementation.

1.3 Outline

The remainder of my thesis is structured as follows.

In chapter 2, I summarise the background material, including graph theory and graphical

calculi, more formally.

In chapter 3, I define the scope and goals of proof layout algorithms for graphical calculi,

and then describe two novel algorithms. I also evaluate the theoretical time and space

complexity.

In chapter 4, I describe the software architecture and implementation of my revamp to

the layout components in the Quantomatic proof assistant, which implements the automatic

diagram layout system described above. I also describe graphical user interface changes.

In chapter 5, I evaluate the diagram layout system that I have designed using experimen-

tal data: I benchmark the software implementation for efficiency, and more importantly, I

verify whether humans prefer the output of the new diagram layout system.

In chapter 6, I summarise my novel developments and methodology, evaluate the effec-

tiveness, and suggest possibilities for future work.

4

Chapter 2

Preliminaries

I first introduce the preliminary mathematical theory, in order to introduce the foundational

concepts, and specify the particular definitions that are used in this thesis. Elementary

knowledge about numbers and sets is assumed.

2.1 Graph theory

A digraph, or directed graph, is a quadruple of a set of vertices 𝑉 , a set of edges 𝐸, a function

source ∶ 𝐸 → 𝑉 , and a function target ∶ 𝐸 → 𝑉 . A digraph can equivalently be defined

as a pair (𝑉 , 𝐸), where 𝑉 is a set of vertices and 𝐸 is a multiset containing elements from

𝑉 × 𝑉 , representing the edges of the graph by pairs of their source and target vertices.

What is referred to in this thesis as a digraph may be known in other literature as a quiver,

multidigraph, or directed multigraph.

An (undirected) graph is a triple of a set of vertices 𝑉 , a set of edges 𝐸, and a function

ends ∶ 𝐸 → {{𝑢, 𝑣} ∣ 𝑢, 𝑣 ∈ 𝑉 }. An (undirected) graph can equivalently be defined as

a pair (𝑉 , 𝐸), where 𝑉 is a set of vertices and 𝐸 is a multiset containing elements from

{{𝑢, 𝑣} ∣ 𝑢, 𝑣 ∈ 𝑉 }, representing the edges of the graph by their end vertices. (Note that

edges from a vertex to itself may occur in the graph; in other words, both 𝑢 = 𝑣 and

𝑢 ≠ 𝑣 may occur inside the set comprehensions in this paragraph.) What is referred to in

this thesis as an (undirected) graph may be known in other literature as an (undirected)

multigraph.

5

The advantage of the edge-and-functions definition (the former in the two paragraphs

above) over the edge-multiset definition (the latter in the two paragraphs above) is that the

former allows each edge to be distinguished; each element of 𝐸, in the edge-and-functions

definition, represents the identity of an edge (in the philosophical and object-oriented pro-

gramming sense). Additional values can be associated with each edge by defining new

functions with domain 𝐸. The analogous construction in the edge-multiset definition is

more complicated. (Adding information to each edge in a graph may be known in other

literature as edge labelling.) (Of course, vertices can also have associated values; this may

be known in other literature as vertex labelling).

In other literature, it may be common to abbreviate, in the definition of a digraph, the

functions source and target to 𝑠 and 𝑡, respectively. Examples include [Dixon and Duncan, 2009],

[Dixon, Duncan, and Kissinger, 2010], and [Dixon and Kissinger, 2013]. A detailed source

for these definitions follows [Derksen and Weyman, 2005], which refers to quivers, heads,

and tails for what (in this thesis) are called directed graphs, sources, and targets. Quiver

theory and category theory (mentioned in the next section) also have many connections,

although they will not be discussed in this thesis.

In much literature, the restriction is imposed that each pair of vertices can have either

zero or one edge (in a directed graph) from the first vertex to the second, or (in an undi-

rected graph) between them. This restriction is not imposed here. In this thesis, adding

this restriction creates (respectively, directed or undirected) unigraphs. Unlabelled multi-

graphs can be viewed as unigraphs where edges are labelled with nonzero natural numbers

corresponding to the number of edges in the multigraph represented by the single edge in

the unigraph.

A finite (directed or undirected) graph is one where 𝑉 and 𝐸 are finite sets.

Any undirected graph can be considered as a directed graph (𝑉 , 𝐸, source, target) where

there exists a bijection 𝑓 ∶ 𝐸 → 𝐸 such that for every edge 𝑒 ∈ 𝐸, source(𝑒) = target(𝑓(𝑒))
and target(𝑒) = source(𝑓(𝑒)).

A homomorphism between directed graphs (𝑉 , 𝐸, source, target) and (𝑉 ′, 𝐸′, source′, target′)
is a pair of functions 𝑓 ∶ 𝑉 → 𝑉 ′ and 𝑔 ∶ 𝐸 → 𝐸′ such that for every 𝑒 ∈ 𝐸, source′(𝑔(𝑒)) =
𝑓(source(𝑒)) and target′(𝑔(𝑒)) = 𝑓(target(𝑒)). Similarly, a homomorphism between undi-

6

Figure 2.1: Example of a graph and a possible drawing in two dimensions

rected graphs (𝑉 , 𝐸, ends) and (𝑉 ′, 𝐸′, ends′) is a pair of functions 𝑓 ∶ 𝑉 → 𝑉 ′ and

𝑔 ∶ 𝐸 → 𝐸′ such that for every 𝑒 ∈ 𝐸, ends′(𝑔(𝑒)) = 𝑓[ends(𝑒)]. (On labelled graphs,

the conditions on the functions are extended to the label functions similarly, in that they

should commute with 𝑓 or 𝑔 as appropriate.) In both directed and undirected cases, if 𝑓
and 𝑔 have inverses 𝑓−1 ∶ 𝑉 ′ → 𝑉 and 𝑔−1 ∶ 𝐸′ → 𝐸 which form a homomorphism in the

reverse direction, then the homomorphism is an isomorphism.

Graphs can be visualised in 𝑛-dimensional (real) space, ℝ𝑛, by drawing. Graphs are

often drawn in two or three dimensions, because typical readers are familiar with these

dimensionalities. One-dimensional graph drawings are almost always ambiguous, so this

dimensionality is only used in unambiguous situations (e.g. for graphs with up to two

vertices) or where context resolves the ambiguity (e.g. in timelines). Figure 2.1 is an

example of a two-dimensional drawing of an undirected graph.

2.2 Graph rewriting

There are many definitions of graph rewriting. The double-pushout definition is used for

the definition of graphical calculi based on string diagrams [Kissinger, 2012]. It is typically

given for directed graphs, but is general for adhesive categories [Lack and Sobociński, 2004]

(which, conversely, can be seen as abstracting the graph-like structures which support rewrit-

ing). Here, I give a definition based on [Lack and Sobociński, 2004] and [Kissinger, 2012,

§4.3], but attempting to avoid (or make optional) the terminology of category theory. For

brevity, I also avoid diagrams, but [Kissinger, 2012, §4.2] has excellent diagrams and is

highly recommended. When the word “graph” is used in this section, it can be read to

mean a directed or undirected graph, labelled or unlabelled, as long as it is consistently

7

read in the same way.

A rewrite rule (or production in the parlance of [Lack and Sobociński, 2004]) is a triple

of three graphs 𝐾, 𝐿, and 𝑅, where 𝐾 is a subgraph of both 𝐿 and 𝑅. Abstractly, this

subgraph constraint can be expressed as requiring two injective graph homomorphisms

𝐾 → 𝐿 and 𝐾 → 𝑅 (which should be seen as inclusion homomorphisms). Intuitively, 𝐿
and 𝑅 are the left and right sides of the rewrite rule, while 𝐾 is a subgraph common to 𝐿
and 𝑅 which provides a ‘boundary’ for the rewrite rule and acts as an ‘interface’ to the rest

of the graph. The 𝐾 → 𝐿 homomorphism is often called 𝑙, and the 𝐾 → 𝑅 homomorphism

is often called 𝑟.

A set of rewrite rules defines a graphical calculus (or grammar in the parlance of

[Lack and Sobociński, 2004]).

To rewrite a graph 𝐺 into a graph 𝐻 using a rewrite rule (𝐾, 𝐿, 𝑅, 𝑙, 𝑟), we require

an injective graph homomorphism from 𝐿 to 𝐺, (𝑚, 𝑛) ∶ (𝑉𝐿 → 𝑉𝐺) × (𝐸𝐿 → 𝐸𝐺), such

that for every vertex 𝑣 ∈ 𝑉𝐿 � 𝑉𝐾, every edge 𝑒 ∈ 𝐸𝐺 that satisfies target(𝑒) = 𝑚(𝑣) (or,

for undirected graphs, 𝑚(𝑣) ∈ ends(𝑒)) is in the image of the function 𝑛 [Kissinger, 2012,

theorem 4.3.13]. Intuitively, 𝐿 embeds into 𝐺, and touches its surroundings using only the

vertices from the graph 𝐾. Form 𝐼 , which is 𝐾 extended with the surroundings of 𝐺 and

𝐻, and a subgraph of 𝐺 and 𝐻. Alternatively, 𝐼 is formed by removing the vertices and

edges in 𝐺 that come from 𝐿 and are not also from 𝐾. Then, the vertices and edges that

are in 𝑅 (that do not come from 𝐾) are added, connecting up with the interface 𝐾 found

in 𝐼 , to form 𝐻. Abstractly, there are injective graph homomorphisms from 𝐾 into 𝐼 , and

from 𝐼 into 𝐺 and 𝐻.

Graph rewriting enables diagrammatic reasoning on drawn graphs, and is the primary

mechanism for proof in Quantomatic. A derivation in Quantomatic is a series of applications

of graph rewriting.

2.3 Spider calculi

For a detailed treatment of this topic, see [Coecke and Kissinger, 2017].

Spider calculi are a special case of string diagram calculi. The boxes in spider calculi

8

are spiders, which are families of boxes (morphisms), with a box for each number of input

and output wires (which are all of the same wire type (system type/object)). There may be

different kinds of spiders. Spiders may be decorated with phases. All spider families satisfy

the following rules:

• is equal to itself composed with arbitrary permutations of the order of inputs and the

order of outputs

• is equal to another spider of the same kind when inputs are bent to outputs or vice

versa

• merge with spiders of the same kind which are connected by at least one wire

Spider calculi may also satisfy additional axioms. These axioms primarily describe how

spiders of different kinds interact. Complementarity and strong complementarity are impor-

tant axioms in ZX-calculus, where the Z spider and X spider represent different, strongly

complementary bases (of linear algebra). A single spider calculus cannot have more than

2 kinds of spiders which are pairwise strongly complementary [Coecke and Kissinger, 2017,

theorem 9.65].

Spider calculi can be viewed mathematically as † special commutative Frobenius algebras

on a vector space. [Coecke and Kissinger, 2017, proposition 8.101] Strongly complementary

spider calculi are then recognisable as Hopf algebras [Coecke and Kissinger, 2017, §9.6.1].

9

Chapter 3

Algorithm Design

3.1 Scope

The aim is to develop a proof layout algorithm for the Quantomatic proof assistant which

lays out proofs so that they are understandable. Quantomatic introduces these additional

considerations:

• It is not possible to control the geometry of the rendered wires beyond adding addi-

tional wire vertices. By default, for each pair of vertices, the edges between them are

drawn as curves centred densely around the straight line between the vertices.

Overall, this is a benefit. For layout purposes, all multigraphs can be considered

as unigraphs, as multiple edges between the same pair of vertices are treated the

same when rendered to an image. Furthermore, this display is ideal from a semantic

perspective, as such edges are not inherently distinguishable and therefore have similar

meaning.

• Quantomatic supports !-boxes, which can contain vertices and edges, and semantically

represent a subgraph which can be duplicated any number of times or deleted, and

enable Quantomatic to prove more general theorems. Edges can cross from outside

to inside a !-box, and they are duplicated or deleted with the !-box.

Layout of !-boxes needs extra care. Contents of !-boxes should be laid out together;

however, laying them out too close could introduce ambiguity and spacing issues).

10

This project primarily focuses on two-dimensional drawing, because this is what is sup-

ported by Quantomatic’s architecture. However, the novel algorithms later will be presented

generally for any dimensionality.

3.2 Goals

The algorithm should lay out graphs in a way that visually establishes semantically im-

portant concepts, such as symmetry, common substructures, and the stasis of parts not

involved in a rewrite step.

Symmetry is a recurring concept in mathematics with an effective visual representation.

Many formulae are described as symmetric. For example 𝑥2 +𝑥𝑦 +𝑦2 (in ℝ) is symmetric in

the variables 𝑥 and 𝑦, because swapping 𝑥 and 𝑦 results in an equivalent formula. Symmetry

in diagrammatic and graphical notations is more striking, invoking the intuitive notion of

geometric symmetry to represent semantic symmetry. Thus, in order to ease understanding,

diagrams and diagram equations with semantic symmetry should ideally be laid out with

syntactic, visual symmetry.

Diagrams, especially equations between diagrams, will contain common and recurring

substructures. These common substructures form familiar ‘units’ with particular mean-

ings and which become rewritten in similar ways. Therefore, these common substructures

should ideally receive a consistent layout throughout any proof, and across different proofs,

including while they are being rewritten to related structures. This facilitates a common

understanding of the structure, both within a proof and between different proofs.

For proofs where rules are applied to subgraphs of some graph in order to rewrite them,

it is crucial that only rewritten graph elements move and that non-rewritten graph elements

are static. In particular, this is the case for double-pushout graph rewriting, where the

left-hand and right-hand sides of a rule are literally included inside any of its applications.

Semantically, it is the inclusion of the (left-hand side of the) rule inside the larger graph

which is being rewritten. Therefore, syntactically, this inclusion should receive a new layout,

while the layout of the parts which are not being rewritten should remain static across the

rewriting step.

11

3.3 Brute-force drawing

There is a simple, brute-force algorithm, using dynamic programming to maintain important

characteristics: symmetry, common layouts between substructures, and changing only the

layout of rewritten subgraphs.

Given a derivation, we can collect every possible connected subgraph in each graph in

the derivation, up to isomorphism (where graphs with different labels are not isomorphic),

into a set. Then, the principle of dynamic programming can be applied. Given each

subgraph, from smallest to largest, compute a layout with optimal symmetry. Then, rewrite

all the larger subgraphs, replacing the current subgraph with a special node representing

the current subgraph. The output graph layouts (for each step of the derivation) are then

obtained by replacing (by graph rewriting) the special nodes with the corresponding laid-out

subgraphs.

The advantage of this algorithm is its simplicity, and hence that it can easily be verified

to generate graphs which have the characteristics above. The algorithm clearly respects

substructures of diagrams by design, and does so across the entire derivation. It can also be

seen that the reuse of subgraph layouts across the entire derivation causes only the rewritten

parts in each step to change layout.

The primary problem with this algorithm is its time and space complexity. The number

of connected subgraphs is, in general, superpolynomial [Eppstein, 2013]. Furthermore, the

graph isomorphism problem (which decides whether two graphs are isomorphic) is not

known to be solvable in polynomial (or less) time [Schöning, 1987]. (Readers are advised

not to confuse this with the subgraph isomorphism problem, which decides for two graphs

whether the first has a subgraph isomorphic to the second. Set data structures typically are

tree-based or table-based, and therefore the relevant time complexity is that of the graph

isomorphism problem.) Therefore, the worst-case time and space complexity of this drawing

algorithm is superpolynomial.

12

3.4 Rewrite rule-based drawing

I now suggest an algorithm based on the structure of the graph rewriting process. In

particular, this algorithm is modelled on the operation of double-pushout (DPO) rewriting,

as described in §2.2, although the technique generalises to other rule-based graph rewriting

algorithms. This algorithm can operate individually on each proof step, and can also operate

on a whole proof in a simple, compositional manner.

The core idea is to lay out each rewriting step by incorporating a well-known layout of

the rule into the inclusions of the rule in the graph being rewritten. The well-known layouts

are typically designed or identified by people. Often, one person will design the well-known

layout and then share it with others, as already happens with the Quantomatic sample

project library. It is assumed that these well-known layouts are semantically meaningful and

understandable to human readers. Although there is human labour involved in specifying

such well-known rule layouts, it needs only be done once for each rule, and is much easier

than having to specify the layouts of entire proofs (which would necessarily involve more

steps involving larger graphs).

For each step where a rule is applied, the algorithm aims to incorporate a well-known

layout for that rule in the ‘best’ way. This is done by finding the affine transformation that

minimises the sum of squared vertex distances between the image of the rule’s left-hand side

under the affine transformation and the inclusion of the rule’s left-hand side in the left-hand

side of the proof step. This affine transformation is then applied to the rule’s right-hand

(and, optionally, the left-hand) side, and then these new coordinates are used to lay out the

inclusion of the rule’s right-hand (and left-hand) sides in the proof step. Informally, the

algorithm finds the affine transformation that best ‘lines up’ the rule’s left-hand side and

its inclusion in the proof step’s left-hand side, and then applies the algorithm in order to

fully ‘line up’ the rule and its inclusion in the proof step.

Formally, let 𝑉 be the (nonempty) set of vertex names in the left-hand side of a rule,

(w𝑣)𝑣∈𝑉 represent the coordinate of vertex 𝑣 in the rule’s left-hand side, and (z𝑣)𝑣∈𝑉 repre-

sent the coordinate of the inclusion of vertex 𝑣 in the proof step’s left-hand side (representing

all 2D coordinates directly as 2D column vectors).

13

A general 𝑛-dimensional affine transformation has the form 𝑔(x) = Ax+b for some 𝑛×𝑛
matrix A and an 𝑛-dimensional column vector b. A 2-dimensional affine transformation

therefore has the form 𝑔(x) = (𝑎 𝑏
𝑐 𝑑) x + (𝑒

𝑓) for 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ∈ ℝ.

Lagrangian optimisation is now used to find the matrix A and vector b that minimises

the objective function 𝐿(A, b) = ∑𝑣∈𝑉 |z𝑣 − (Aw𝑣 + b)|2, which is the sum of squared Eu-

clidean distances between corresponding vertices. The partial derivatives of 𝐿 with respect

to each entry of the matrix A and the vector b are:

𝜕𝐿
𝜕(A)𝑖𝑗

= 𝜕
𝜕(A)𝑖𝑗

∑
𝑣∈𝑉

|z𝑣 − (Aw𝑣 + b)|2

= 𝜕
𝜕(A)𝑖𝑗

∑
𝑣∈𝑉

𝑛
∑
𝑚=1

((z𝑣)𝑚 − (
𝑛

∑
𝑘=1

(A)𝑚𝑘(w𝑣)𝑘) − (b)𝑚)
2

= ∑
𝑣∈𝑉

𝑛
∑
𝑚=1

𝜕
𝜕(A)𝑖𝑗

((z𝑣)𝑚 − (
𝑛

∑
𝑘=1

(A)𝑚𝑘(w𝑣)𝑘) − (b)𝑚)
2

(sum rule)

= ∑
𝑣∈𝑉

𝜕
𝜕(A)𝑖𝑗

((z𝑣)𝑖 − (
𝑛

∑
𝑘=1

(A)𝑖𝑘(w𝑣)𝑘) − (b)𝑖)
2

(eliminate zero terms)

= ∑
𝑣∈𝑉

−2(w𝑣)𝑗 ((z𝑣)𝑖 − (
𝑛

∑
𝑘=1

(A)𝑖𝑘(w𝑣)𝑘) − (b)𝑖) (chain rule)

= −2 ∑
𝑣∈𝑉

((w𝑣)𝑗(z𝑣)𝑖 − (
𝑛

∑
𝑘=1

(w𝑣)𝑗(A)𝑖𝑘(w𝑣)𝑘) − (w𝑣)𝑗(b)𝑖) (distributivity)

= −2 ((∑
𝑣∈𝑉

(w𝑣)𝑗(z𝑣)𝑖) − (
𝑛

∑
𝑘=1

(A)𝑖𝑘 ∑
𝑣∈𝑉

(w𝑣)𝑗(w𝑣)𝑘) − (∑
𝑣∈𝑉

(w𝑣)𝑗) (b)𝑖)

𝜕𝐿
𝜕(b)𝑖

= 𝜕
𝜕(b)𝑖

∑
𝑣∈𝑉

|z𝑣 − (Aw𝑣 + b)|2

= ∑
𝑣∈𝑉

𝑛
∑
𝑚=1

𝜕
𝜕(b)𝑖

((z𝑣)𝑚 − (
𝑛

∑
𝑘=1

(A)𝑚𝑘(w𝑣)𝑘) − (b)𝑚)
2

(as before)

= ∑
𝑣∈𝑉

𝜕
𝜕(b)𝑖

((z𝑣)𝑖 − (
𝑛

∑
𝑘=1

(A)𝑖𝑘(w𝑣)𝑘) − (b)𝑖)
2

(eliminate zero terms)

= ∑
𝑣∈𝑉

−2 ((z𝑣)𝑖 − (
𝑛

∑
𝑘=1

(A)𝑖𝑘(w𝑣)𝑘) − (b)𝑖) (chain rule)

= −2 ((∑
𝑣∈𝑉

(z𝑣)𝑖) − (
𝑛

∑
𝑘=1

(A)𝑖𝑘 ∑
𝑣∈𝑉

(w𝑣)𝑘) − (b)𝑖|𝑉 |) (distributivity)

14

Setting each partial derivative to 0 results in a system of 𝑛(𝑛 + 1) simultaneous linear

equations with 𝑛(𝑛+1) variables. However, by inspecting the structure of the simultaneous

equations more closely, the system can be separated into 𝑛 systems of 𝑛 + 1 simultaneous

linear equations (with each system having 𝑛 + 1 variables). This is achieved because for

each 𝑖 ∈ [1..𝑛], 𝜕𝐿
𝜕(A)𝑖𝑗

and 𝜕𝐿
𝜕(b)𝑖

vary only with the 𝑛 + 1 variables (A)𝑖𝑘 for each 𝑘 ∈ [1..𝑛]
and (b)𝑖, and do not vary with any other parameters of 𝐿. For each 𝑖 ∈ [1..𝑛], each system

of 𝑛 + 1 simultaneous equations can then be represented as an equation of a symmetric

matrix (which is the same for any 𝑖 ∈ [1..𝑛]), a vector of constant terms (which does depend

on 𝑖 ∈ [1..𝑛]), and a vector of the system’s variables: (Lines have been added to clarify the

matrix structure.)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∑
𝑣∈𝑉

(w𝑣)1(w𝑣)1 ∑
𝑣∈𝑉

(w𝑣)1(w𝑣)2 … ∑
𝑣∈𝑉

(w𝑣)1(w𝑣)𝑛 ∑
𝑣∈𝑉

(w𝑣)1

∑
𝑣∈𝑉

(w𝑣)2(w𝑣)1 ∑
𝑣∈𝑉

(w𝑣)2(w𝑣)2 … ∑
𝑣∈𝑉

(w𝑣)2(w𝑣)𝑛 ∑
𝑣∈𝑉

(w𝑣)2

⋮ ⋮ ⋱ ⋮ ⋮
∑
𝑣∈𝑉

(w𝑣)𝑛(w𝑣)1 ∑
𝑣∈𝑉

(w𝑣)𝑛(w𝑣)2 … ∑
𝑣∈𝑉

(w𝑣)𝑛(w𝑣)𝑛 ∑
𝑣∈𝑉

(w𝑣)𝑛

∑
𝑣∈𝑉

(w𝑣)1 ∑
𝑣∈𝑉

(w𝑣)2 … ∑
𝑣∈𝑉

(w𝑣)𝑛 |𝑉 |

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(A)𝑖1

(A)𝑖2

⋮
(A)𝑖𝑛

(b)𝑖

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∑
𝑣∈𝑉

(w𝑣)1(z𝑣)𝑖

∑
𝑣∈𝑉

(w𝑣)2(z𝑣)𝑖

⋮
∑
𝑣∈𝑉

(w𝑣)𝑛(z𝑣)𝑖

∑
𝑣∈𝑉

(z𝑣)𝑖

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The systems of simultaneous linear equations can then be solved for all variables by

any suitable method, e.g. Gaussian elimination or matrix inversion. The optimal solution

of the variables then give the optimal matrix A and the optimal vector b. Note that

Lagrangian optimisation will never produce a maximum in this case, because the objective

function 𝐿 has no maximum: for any 𝑥 ∈ ℝ, take A = (1 0
0 1) and b = z𝑢 − w𝑢 − (√|𝑥|+1

0)
for some arbitrarily chosen 𝑢 ∈ 𝑉 . Then, for this particular 𝑢 ∈ 𝑉 , |z𝑢 − Aw𝑢 − b|2 =
|z𝑢 −w𝑢 −z𝑢 +w𝑢 +(√|𝑥|+1

0) |2 = | (√|𝑥|+1
0) |2 = √|𝑥| + 12 +02 = |𝑥|+1 > |𝑥| ≥ 𝑥. As every

summand of ∑𝑣∈𝑉 |z𝑣 −(Aw𝑣 +b)|2 is non-negative, 𝐿(A, b) = ∑𝑣∈𝑉 |z𝑣 −(Aw𝑣 +b)|2 ≥
|z𝑢 − Aw𝑢 − b|2 > 𝑥. Therefore, 𝐿 has no maximum.

For the two-dimensional case, which is used in Quantomatic, there are 2 systems of

15

2 + 1 = 3 simultaneous equations, where system 𝑖 is represented by the matrix equation:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∑
𝑣∈𝑉

(w𝑣)1(w𝑣)1 ∑
𝑣∈𝑉

(w𝑣)1(w𝑣)2 ∑
𝑣∈𝑉

(w𝑣)1

∑
𝑣∈𝑉

(w𝑣)2(w𝑣)1 ∑
𝑣∈𝑉

(w𝑣)2(w𝑣)2 ∑
𝑣∈𝑉

(w𝑣)2

∑
𝑣∈𝑉

(w𝑣)1 ∑
𝑣∈𝑉

(w𝑣)2 |𝑉 |

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

(A)𝑖1

(A)𝑖2

(b)𝑖

⎞⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∑
𝑣∈𝑉

(w𝑣)1(z𝑣)𝑖

∑
𝑣∈𝑉

(w𝑣)2(z𝑣)𝑖

∑
𝑣∈𝑉

(z𝑣)𝑖

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Unfortunately, simultaneous equations do not always have a unique solution, or even a

solution at all. The algorithm resolves this in 2D by successively trying more restricted

types of affine transformation until one provides a unique solution. First, it is well known

that (in 2D) three vertices are required to define an affine transformation, so the general

case of affine transformations need not be tested if |𝑉 | < 3. If |𝑉 | < 3 or no unique solution

is found, the algorithm then attempts to find the optimal scale, rotation, and translation

(an affine transformation of form 𝑔(x) = (𝑎 𝑏
−𝑏 𝑎) x + (𝑐

𝑑) for 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ), thus attempting to

solve the matrix equation shown in figure 3.1. If this also fails, the algorithm then attempts

to find the optimal scale and translation (a transformation of form 𝑔(x) = 𝑎x + (𝑏
𝑐) for

𝑎, 𝑏, 𝑐 ∈ ℝ), solving a similar matrix equation. If this also fails, then the algorithm resorts

to using a simple translation of the rule’s LHS. This always succeeds, as the algorithm

simply computes the mean deviation between each z𝑣 and w𝑣.

It is possible for a rule to have multiple well-known layouts, and the most appropriate

of these would be selected algorithmically (by selecting the well-known layout for which,

under its optimal affine transformation, had the least sum of squared vertex distances, as

already shown) for each proof step. However, this technique could not be implemented in

Quantomatic (for reasons explained in §4.1), although important groundwork for such an

implementation was laid.

The affine transformation so derived is then applied to each vertex coordinate of both

the left-hand and right-hand graphs in the proof step’s rule, in order to compute a new

layout for the inclusion of both those graphs in the proof step. When laying out a whole

proof, the new layout of the left-hand graph in each proof step is discarded, except for the

root graph. (This is because the layout has nowhere else to go, although this could easily

16

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝(∑ 𝑣∈
𝑉

(w
𝑣)

1(
w

𝑣)
1)

+
(∑ 𝑣∈

𝑉
(w

𝑣)
2(

w
𝑣)

2)
0

∑ 𝑣∈
𝑉

(w
𝑣)

1
∑ 𝑣∈

𝑉
(w

𝑣)
2

0
(∑ 𝑣∈

𝑉
(w

𝑣)
1(

w
𝑣)

1)
+

(∑ 𝑣∈
𝑉

(w
𝑣)

2(
w

𝑣)
2)

∑ 𝑣∈
𝑉

(w
𝑣)

2
−

∑ 𝑣∈
𝑉

(w
𝑣)

1

∑ 𝑣∈
𝑉

(w
𝑣)

1
∑ 𝑣∈

𝑉
(w

𝑣)
2

|𝑉
|

0

∑ 𝑣∈
𝑉

(w
𝑣)

2
−

∑ 𝑣∈
𝑉

(w
𝑣)

1
0

|𝑉
|

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝𝑎 𝑏 𝑐 𝑑⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

=⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝(∑ 𝑣∈
𝑉

(w
𝑣)

1(
z 𝑣

) 1)
+

(∑ 𝑣∈
𝑉

(w
𝑣)

2(
z 𝑣

) 2)

(∑ 𝑣∈
𝑉

(w
𝑣)

2(
z 𝑣

) 1)
−

(∑ 𝑣∈
𝑉

(w
𝑣)

1(
z 𝑣

) 2)

∑ 𝑣∈
𝑉

(z
𝑣)

1

∑ 𝑣∈
𝑉

(z
𝑣)

2

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

Fi
gu

re
3.

1:
T

he
m

at
rix

eq
ua

tio
n

to
so

lv
e

w
he

n
fin

di
ng

th
e

op
tim

al
affi

ne
tr

an
sfo

rm
at

io
n

th
at

is
on

ly
a

sc
al

e,
ro

ta
tio

n,
an

d
tr

an
sla

tio
n.

17

be changed by adding reflexivity (a.k.a. no-op) proof steps.)

To illustrate the core operation of the algorithm, the output of the algorithm when laying

out the step disconnect-0 in the derivation n-disconnect from the Quantomatic sample

project zh, which applies the axiom disconnect (from the same project), is shown in figure

3.2. First, the algorithm reads the proof step, and its current left-hand side. Then, the rule

is loaded, and the algorithm finds the most optimal affine transformation to transform from

the rule’s left-hand into the proof step’s left-hand inclusion of the rule (highlighted in red).

This transformation is then applied to the inclusions of the rule on both sides (highlighted

in red and blue on the left-hand and right-hand sides respectively), thus creating a new

layout for the proof step based on the rule.

In terms of the goals of graphical proof layout, rewrite rule-based drawing obviously

maintains the stasis of non-rewritten graph elements, and only changes the layout of rewrit-

ten subgraphs. Similarly, common substructures inherently share a similar (sub-)layout,

due to the well-known layouts of each rule’s left-hand and right-hand side being included

into the proof step. (Smaller substructures are also maintained if the well-known layouts

also have common layouts for common substructures.) However, symmetry is only achieved

if the well-known layouts for the rewrite rules have symmetry. Fortunately, it is almost

always the case (for the Quantomatic sample projects) that well-known rule layouts have

symmetry.

The time complexity, in terms of the number of vertices in the rule’s left-hand |𝑉 | and

the number of vertices in the rule’s right-hand |𝑅|, is Θ(|𝑉 | + |𝑅|). (This holds both for a

single proof step, and for a whole proof.) This is justified thus. Computing various sums

over the coordinates of the vertices (with no nesting below the top level of summation) is

Θ(|𝑉 |). These sums then participate in matrix operations which are constant-time with

respect to |𝑉 | (since their size and number depends only on the dimensionality). Applying

the computed affine transformation then occurs for each vertex on both sides of the rule,

and is Θ(|𝑉 | + |𝑅|). Adding these time complexities gives the result.

Taking the dimensionality of the drawing space 𝑛 into account, the asymptotic time

complexity of the algorithm is 𝑂((|𝑉 | + |𝑅|)𝑛2 + 𝑛3.373…).1 This will be seen thus.
1If the conjecture that matrix inversion is 𝑂(𝑛2) holds, then the total asymptotic time complexity is

18

Ru
le

:
=

St
ep

:
=

=

Fi
gu

re
3.

2:
Ex

am
pl

e
of

ap
pl

yi
ng

ru
le

-b
as

ed
dr

aw
in

g
to

st
ep

di
sc
on
ne
ct
-0

in
de

riv
at

io
n
n-
di
sc
on
ne
ct

,w
hi

ch
us

es
th

e
ru

le
di
sc
on
ne
ct

(a
n

ax
io

m
).

N
ot

ic
e

ho
w

bo
th

th
e

le
ft-

ha
nd

an
d

th
e

rig
ht

-h
an

d
sid

es
of

th
e

de
riv

at
io

n
st

ep
ar

e
la

id
ou

t
to

m
at

ch
th

e
la

yo
ut

of
th

e
ru

le
.

19

First notice that the matrix used to calculate the optimal affine transformation is the

same for each system. Therefore, the matrix only needs to be computed once, and its

inverse also only needs to be computed once. Each entry of the matrix is a single sum

over the vertices, except for the bottom-right entry. Taking advantage of the matrix’s

symmetry, 𝑛(𝑛+1)
2 + 𝑛 = 𝑛(𝑛+3)

2 entries need to be computed. Since each sum takes Θ(|𝑉 |)
time, the overall computation of the matrix has time complexity Θ(𝑛(𝑛+3)|𝑉 |

2) = Θ(|𝑉 |𝑛2).
The vectors (on the right-hand of the matrix equations, of which there are 𝑛) also need to

be computed. Each of the vectors’ 𝑛 + 1 entries contains a sum, so computing the vectors

also has time complexity Θ(𝑛(𝑛 + 1)|𝑉 |) = Θ(|𝑉 |𝑛2).
Matrix inversion has asymptotic time complexity at least 𝑂(𝑚2) (where 𝑚 × 𝑚 is the

dimensionality of the square matrix): the best known algorithm, Coppersmith-Winograd-

Stothers, has time complexity 𝑂(𝑛2.373…) [Davie and Stothers, 2013] [Williams, 2014]. Other

algorithms have higher asymptotic time complexity (but possibly smaller constant factors).

Thus, the splitting of a system of 𝑛(𝑛 + 1) linear equations into 𝑛 systems of 𝑛 + 1 linear

equations gives a performance boost, from 𝑂((𝑛(𝑛 + 1))2.373…) = 𝑂(𝑛4.746…) (where the

system is not split) to 𝑂((𝑛 + 1)2.373…𝑛) = 𝑂(𝑛3.373…) (where the system is split into 𝑛
systems).2

Finally, computing the new layouts is done for each vertex, and evaluating a general

affine transformation has time complexity Θ(𝑛2 + 𝑛) = Θ(𝑛2). Since there are |𝑉 | + |𝑅|
vertices to lay out, this final step has time complexity Θ((|𝑉 | + |𝑅|)𝑛2).

The asymptotic space complexity of this algorithm is Θ(𝑛2), because the only data that

is stored is the inverse of the (𝑛 + 1) × (𝑛 + 1) matrix, a3 vector of size 𝑛 + 1, and the affine

transformation (which is (𝑛 + 1) × (𝑛 + 2) values).

𝑂((|𝑉 | + |𝑅|)𝑛2 + 𝑛3)
2If the conjecture that matrix inversion is 𝑂(𝑛2) holds, then the improvement in asymptotic time

complexity gained from splitting the linear system as described is from 𝑂((𝑛(𝑛 + 1))2) = 𝑂(𝑛4) to
𝑂((𝑛 + 1)2𝑛) = 𝑂(𝑛3).

3The storage used for each of the 𝑛 vectors can be reused for the next vector.

20

Chapter 4

Software Architecture and

Implementation

I designed and implemented a new architecture for layout of all document types supported

by Quantomatic, which is written in the Scala programming language. Using this framework,

I then cleanly implemented rewrite rule-based drawing. I also enhanced the graphical user

interface to support the new layout functionality.

4.1 Existing document architecture

Quantomatic’s document types (representing the top-level user-editable objects) are Graph,

Rule, and Derivation. In broad strokes, a Rule comprises both a left-hand and a right-hand

Graph. A Derivation comprises a root Graph, a set of named DSteps1, and a partial map of

DStep names to DStep names, representing the parent of each DStep in the Derivation. A

DStep comprises a Rule and an output (right-hand) Graph to the parent DStep. The source

(left-hand) graph for a DStep is the output of its parent DStep, or, if there is no parent, the

root Graph of the Derivation tree. In Quantomatic, data objects, including documents,

are immutable; modification occurs by assigning new data to reassignable variables outside

of the data objects, such as in the user interface’s model.

Objects inside a document are represented using name values and mappings from names
1‘derivation step’

21

to object properties. This is similar to the Entity-Component pattern [Martin, 2007]. For

example, Derivation names its DSteps using DSNames, which are the Entities, and its two

Components are the map from DSNames to DSteps and the parent-step map from DSNames to

DSNames. A more sophisticated example is Graph, which contains vertices, edges, and !-boxes.

These are the kinds of Entity, while the data about them is represented in Components:

mappings of vertex names to VData (a triple of coordinate, vertex type, and annotation),

of edge names to EData (a triple of directedness, edge type and annotation), from !-box

names to BBData (merely an annotation), from !-box names to parent !-box names, and two

mappings, called source and target, from edge names to vertex names. Interestingly, these

last two mappings replicate the edge-and-functions definition from §2.1. Indeed, the edge-

and-functions definition of a graph can be viewed as an application of the Entity-Component

pattern in mathematics.

Unfortunately, the fact that vertices are bound to a single coordinate each in the VData

type means that each Graph stores exactly one layout. Multiple layouts for a single Graph

are not possible. As mentioned in §3.4, this prevents support for multiple well-known layouts

for a single Rule. The GraphLayoutData interface, introduced in the next section §4.2, acts

as a container of layout data (and as a Component of a Graph) and therefore can become

the foundations of a future improvement to Quantomatic to support multiple layouts for a

single Graph.

4.2 Revamped layout architecture

I designed a revamped architecture for computing layouts. Each of the types Graph,

Rule, DStep, and Derivation is associated with a LayoutStrategy interface, instantiating

the Strategy design pattern, which provides a common interface to different algorithms

[Gamma et al., 1994]. Implementations of each LayoutStrategy interface may provide ad-

ditional configuration methods and constructors. Each LayoutStrategy interface outputs

values of a Layout interface, corresponding to the document type and representing the

layout data for that document’s content. To simplify the design, Rule and DStep, each

composed of two Graphs, simply output in the form of two GraphLayoutData instances.

22

Document type Graph Rule
LayoutStrategy interface GraphLayoutStrategy RuleLayoutStrategy
Layout interface GraphLayoutData —
Document type DStep Derivation
LayoutStrategy interface DStepLayoutStrategy DerivationLayoutStrategy
Layout interface — DerivationLayout

Table 4.1: Associations between each document class and its layout interfaces.

The specific names of the interfaces for each document type are shown in table 4.1, and the

interfaces’ definitions are listed in appendix A. (The GraphLayoutData interface would be

named simply GraphLayout, but that conflicts with the name of the legacy GraphLayout

mixin, which was previously used for Graph layout. Also, each DStepLayoutStrategy oper-

ates on both a DStep and the source Graph that it rewrites.) Particular layout algorithms

are thus expressed by implementing the LayoutStrategy and Layout interfaces for the

respective document type. Since Layout is merely an interface, implementations of algo-

rithms need not generate a large table of vertex coordinates, enabling deferred computation

and computational and memory savings.

The overall design follows the mantra of software architecture, “Program to an ‘interface’,

not an ‘implementation’.”, from [Gamma et al., 1994]. Furthermore, I deliberately kept

the interfaces as simple as practicable, in order to enable the widest possible range of

implementations.

Unfortunately, the legacy layout algorithms were implemented with a problematic in-

terface, GraphLayout. Its scope is too maximal, implementing (in the interface) ‘vertex

locking’, which is handled poorly by most, if not all, algorithms implemented using the

legacy interface. (A code inspection suggests that ‘vertex locking’ was designed purely to

support the stasis of non-rewritten graph elements, as described in §3.2. This intention is

better solved by the more general DStepLayoutStrategy, which allows the layout algorithm

to explicitly keep non-rewritten graph elements static, encouraging implementations to prop-

erly support the behaviour. Implementations of graph layout algorithms which do support

‘vertex locking’ are also supported within the new design, which explicitly accommodates

algorithm-specific parameterisation.) By default, the legacy interface also randomises the

23

coordinate data before executing the layout algorithm. This behaviour should also be left

to individual layout algorithms, since some layout algorithms may simply be designed to

enhance an existing layout, like filters in image editing programs, where randomisation-by-

default is inappropriate. Furthermore, GraphLayout is implemented by mutating a Graph

instance, which is then returned to the caller. This makes it possible for a buggy imple-

mentation of the GraphLayout interface to corrupt graph data, e.g. by adding or removing

vertices or edges. This is particularly dangerous for a proof assistant, as the implementa-

tions of GraphLayout become part of (and enlarge) the proof assistant’s trusted computing

base. Finally, the original GraphLayout interface was completely undocumented.

Nonetheless, the large quantity of work on the legacy layout algorithms must be acknowl-

edged. I have documented every public attribute and method in the GraphLayout interface,

and additionally made several efficiency improvements, such as eliminating repeated tests

of a variable which remains constant. Furthermore, I implemented the Adapter design

pattern [Gamma et al., 1994], so that GraphLayout implementations can be adapted to

the GraphLayoutStrategy interface using the GraphLayoutAdapterGraphLayoutStrategy

class. This makes previously-developed Graph layout algorithms available to newer code.

Furthermore, the use of this this adapter class moves GraphLayout implementations out of

the trusted computing base (since the GraphLayoutData interface is designed to prevent

implementations from altering Graph data other than the coordinates of vertices). Finally,

I updated the pre-existing derivation layout implementation, which was merely a class

DeriveLayout (which provided a totally fixed implementation of a single layout algorithm,

force-based layout with clustering), to implement the DerivationLayoutStrategy and

DerivationLayout interfaces, as classes ForceClusterDerivationLayoutStrategy and

ForceClusterDerivationLayout.

Most importantly, I implemented the rewrite rule-based drawing algorithm described in

§3.4. The implementation exists as the classes RuleDStepLayoutStrategy and RuleDStepLayout,

implementing the DStepLayoutStrategy and DStepLayout interfaces respectively. The im-

plementation has some additional optimisations for cases where the number of vertices in

the left-hand side of the rule are 0 or 1: this often is the case for rules made up mostly of

24

boundary vertices, which inherently disappear in Quantomatic’s rewriting system (as wires2

are matched up to homeomorphism, and often normalised to single edges) [Kissinger, 2012].

(I also updated Graph.expandWire so that the new wire vertex that it inserts is at a de-

fined, sensible location: namely, the midpoint of the edge that the wire vertex splits.) In

the 0-vertices case, there is simply no transformation, and no transformation is applied

to either side, leaving the vertices as-is. In the 1-vertex case, the affine transformation is

immediately resolved to a pure translation. To perform the matrix inversion, the [Breeze]

library was used, which claims to be efficient. Matching Quantomatic’s existing numerical

precision, all numerical computations were performed using 64-bit floating point Doubles.

In order to deal with !-boxes, a simple post-processing algorithm was introduced (which was

not considered notable enough for chapter 3): overlapping vertices (which Quantomatic’s

rewriting engine generates when matching with !-box Rules) are simply detected and moved

towards their adjacent vertices (in the direction of the vector mean) by 1
3 of the distance to

the nearest adjacent vertex.

However, the rewrite rule-based drawing algorithm can also be applied to whole Derivations.

Rather than implement new classes RuleDerivationLayoutStrategy and RuleDerivationLayout

for this case, I implemented general lifting classes. In particular, LiftedDStepLayout

DerivationLayoutStrategy and LiftedDStepLayoutDerivationLayout extend any lay-

out algorithm for single proof steps to a layout algorithm for whole proofs in the same

way this is done for rewrite rule-based drawing in §3.4. Furthermore, LiftedGraphLayout

DStepLayoutStrategy and LiftedGraphLayoutRuleLayoutStrategy extend any Graph

LayoutStrategy to a RuleLayoutStrategy or DStepLayoutStrategy respectively, simply

by applying the GraphLayoutStrategy to both left-hand and right-hand sides. LiftedDStepLayout

DerivationLayoutStrategy and LiftedGraphLayoutDStepLayoutStrategy can even be

composed in order to extend a GraphLayoutStrategy to a DerivationLayoutStrategy.

Ultimately, being able to lift layout algorithms from smaller to larger document structures

shows the compositionality and functoriality of the document data structures.
2paths of edges connected by wire vertices and starting and ending at non-wire vertices, including the

case of a single edge between non-wire vertices

25

4.3 Enhanced graphical user interface

I enhanced the graphical user interface for editing Derivations. Architecturally, the exist-

ing Quantomatic GUI is mostly inspired by the Model-View-Controller pattern. I therefore

made changes in the classes gui.DerivationPanel and gui.DerivationController, rep-

resenting respectively View and Controller.

For drawing of whole Derivations, I chose to introduce a new submenu under the

‘Derivation’ menu, replacing the previously existing menu item which used the legacy

DeriveLayout code. By maintaining the same location, existing users are less disturbed.

Two menu items are currently available, one using the legacy ForceClusterDerivation

LayoutStrategy and one using my new algorithm, RuleDStepLayoutStrategy with Lifted

DStepLayoutDerivationLayoutStrategy. The menu itself is defined in QuantoDerive.

DeriveMenu.LayoutDerivation, and calls out to DerivationController.layoutDerivation,

which has been abstracted to take a DerivationLayoutStrategy parameter. I deliber-

ately kept this implementation general, so adding new algorithms (that implement the

DerivationLayoutStrategy interface) to the menu is easy: all you need is to duplicate a

single line and change the name and DerivationLayoutStrategy parameter.

I also added two new toolbar buttons, to enable the layout of individual proof steps

in a derivation. The first button simply applies RuleDStepLayoutStrategy to the cur-

rently shown DStep, replacing the layout of both the LHS and the RHS. The second applies

RuleDStepLayoutStrategy, replacing the layout of the RHS, but inserting a new, empty

proof step before the current proof step which has no logical rewriting, but merely changes

layout from the old LHS layout to the new LHS layout. Both buttons are only available when

editing a DStep, and are disabled when editing the root or a head of the Derivation. To im-

plement these additions, in the View, new attributes DerivationPanel.LayoutStepButton

and DerivationPanel.InsertLayoutStepButton of type scala.swing.Button were cre-

ated, along with appropriate custom-drawn icons, and appended to DerivationPanel.

derivationButtons and DerivationPanel.DeriveToolbar. In the Controller, click han-

dlers were added to DerivationController.reactions and logic was added to Derivation

Controller.state_ so that the buttons would be disabled and enabled as described.

26

Chapter 5

Experimental Evaluation

5.1 Benchmarking

It’s important to experimentally verify that the layout system is efficient and responsive.

This shows both that the algorithm and implementation are efficient and that the imple-

mentation is usable in practial scenarios.

5.1.1 Method

1. Derivations are identified and selected for this experiment. I intentionally selected for

variation, and proof length.

2. The program was started, and a project was loaded, and the whole-derivation rewrite

rule-based drawing algorithm was executed 25 times on randomly picked derivations.

This is to ‘warm up’ the Java Just-In-Time compiler and avoid sudden performance

spikes as the code is compiled to native code and optimised.

3. The program was timed while executing the rewrite rule-based drawing algorithm on

each whole derivation. The timing is performed by patching the DerivationController.

layoutDerivation method to measure times with nanosecond precision. Each deriva-

tion is closed and re-opened twice so that the timing can be performed three times.

4. I analysed the timings.

27

The proofs selected in step 1 were all taken from Quantomatic sample project data. Note

that for variety, roughly half of the derivations selected were for ZX-calculus, which is the

most popular graphical calculus in Quantomatic, roughly half were for ZH-calculus, which

is the other major (and more theoretically general) graphical calculus in Quantomatic, and

one was from Spekkens’ toy theory for ZX-calculus.

Sample project Derivation

zx-stabilizer sample_simplified

zx-stabilizer rotate_lem

zx-stabilizer rotate

zx-stabilizer gss_cc(n,n)

zh n-disconnect

zh gen-n-disconnect

zh disconnect-4

zh gen-disconnect-4

spekkens HadamardAnnihilation

5.1.2 Results

Sample project Derivation Times (nanoseconds)

zx-stabilizer sample_simplified 10710739 9817536 10516417

zx-stabilizer rotate_lem 5053901 5051618 5688947

zx-stabilizer rotate 5213494 2247499 4300676

zx-stabilizer gss_cc(n,n) 4283259 4184278 5156822

zh n-disconnect 8380444 8594880 8901109

zh gen-n-disconnect 7222373 6057077 6821178

zh disconnect-4 5977731 8137147 7609095

zh gen-disconnect-4 7032735 8495643 7361482

spekkens HadamardAnnihilation 6180974 4462645 4807371

28

5.1.3 Analysis

The rewrite rule-based layout algorithm, including glue code, never took more than 11
milliseconds for any of the derivations listed above, not even the large ones. If the derivation

‘zx-stabilizer/sample_simplified’ is ignored, then the new algorithm, including glue code,

never took more than 9 milliseconds. Both of these values are clearly less than even 2
3 of the

time between consecutive refreshes of a 60 Hz computer display (occurring, approximately,

every 162
3 milliseconds). Therefore, it is clear that the new layout algorithm performs well,

with no delay to the user experience.

5.2 Human quality evaluation

More importantly, we should experimentally verify that the layout produced by the new

proof layout system is preferred by people to the layouts produced by the previous Quan-

tomatic layout algorithm.

5.2.1 Method

1. Short equational proofs (up to 3 steps) are selected for this experiment (see listing

below). Variety was intentionally sought. The limit of 3 steps is to prevent fatigue

among survey participants, and to enable a wider variety of proofs to be displayed.

2. The equations were laid out using two algorithms: the Quantomatic layout algorithm

(force-based layout with clustering) prior to this thesis (as the previous best algorithm),

and the new layout algorithm (rule-based layout) from this thesis.

3. Each graph in the equations was rendered to an image using Quantomatic’s Java2D

display renderer, with highlighting from the left hand side of each rule. The zoom

level was kept the same throughout each equation laid out, unless one graph in the

equation differed, in which case this graph was presented at its own appropriate zoom

level. Note that the background grid shows the zoom level.

4. The rendered equations were then laid out on the pages of the survey, using one page

for each question. (The names of the equations from the sample projects were not

29

laid out on the page.) Where possible, each algorithm was given equal space and a

consistent scale in each question. The order of the algorithms in each question was

randomised. (Pages of the survey could be landscape or portrait.)

5. The survey was distributed to participants (self-selected members of the University1),

who then completed and returned the survey. Informed consent was requested from

participants for the survey (which received ethical approval from the Computer Sci-

ence Departmental Research Ethics Committee, reference CS_C1A_19_022). The

survey did not collect any personal data, and the completed, received surveys are

anonymous. Each participant was asked to circle the layout that they found more

readable. Participants were not informed of which algorithms produced the layouts.

6. Returned surveys were then aggregated. Each question was aggregated separately,

counting the number of votes for each algorithm.

7. I analysed the data.

The proofs selected in step 1 were all taken from Quantomatic sample project data. Note

that for variety, half of the proofs selected were for ZX, and the other half were for ZH-

calculus. The randomised order for each question, selected in step 4, is also listed.

Q Sample project Derivation ‘First’ layout ‘Second’ layout

1 zx-cliffordt HadamardAnn Force-based Rule-based

2 zx-qutrit-stabilizer S1-red Rule-based Force-based

3 zh gen-split-example1 Rule-based Force-based

4 zh sp-lem1 Force-based Rule-based

5.2.2 Results

In total, 9 responses were received. Unfortunately, on one of the received responses, the

statement of participant consent (on the survey cover sheet) was not circled (or marked in

any other way that showed agreement to consent), and therefore this response was discarded.

This left 8 valid responses.
1Participation was voluntary and without any reward of any kind. Both existing Quantomatic users and

non-Quantomatic users were permitted to participate; this is intentional, since existing Quantomatic users
might prefer the previous algorithm out of familiarity.

30

The per-question aggregated results are:

Q Sample project Derivation Force-based Rule-based

1 zx-cliffordt HadamardAnn 5 3

2 zx-qutrit-stabilizer S1-red 7 1

3 zh gen-split-example1 6 2

4 zh sp-lem1 5 3

5.2.3 Analysis

A statistical hypothesis test is performed for each question on the number of votes 𝑁 for

rewrite rule-based drawing, at the 5% level of significance. (Note that the independent

variable is the layout algorithm and the dependent variable is the voting distribution. The

derivation to be laid out is thus a control variable, so each question must be analysed

separately.) The null hypothesis 𝐻0 is that participants were indifferent about the derivation

layout algorithm, i.e. 𝑁 ∼ Bin(8, 1
2) (𝑝 = 1

2). The alternative hypothesis 𝐻1 is that

participants preferred one of the algorithms, i.e. 𝑝 ≠ 1
2 . This is a two-tailed test.

The critical values for the two-tailed test are 0 and 8, because if 𝑁 ∼ Bin(8, 1
2), then:

ℙ(𝑁 ≤ 0) = ℙ(𝑁 ≥ 8) = 0.00390625 ≤ 0.025

ℙ(𝑁 ≤ 1) = ℙ(𝑁 ≥ 7) = 0.03515625 > 0.025

Therefore 0 is the largest value 𝑐 for which ℙ(𝑁 ≤ 𝑐) ≤ 0.025 = 0.05
2 , and 8 is the smallest

value 𝑑 for which ℙ(𝑁 ≥ 𝑑) ≤ 0.025 = 0.05
2 . (The value of 0.05 comes from the 5% level of

significance.)

Applying the critical value to each question, we see that rewrite rule-based drawing

always received between 1 and 7 votes inclusive. The number of votes was never 0 or 8 (or

below 0 or above 8). Therefore, on each question, the conclusion is that participants were

indifferent about the derivation layout algorithm.

Performing a meta-analysis across all questions, with the null hypothesis 𝐻0 that par-

ticipants were indifferent about the derivation layout algorithm, i.e. the sum of votes for

rewrite rule-based drawing 𝑀 ∼ Bin(32, 1
2) (𝑝 = 1

2), and the alternative hypothesis 𝐻1

31

that participants preferred one of the algorithms, i.e. 𝑝 ≠ 1
2 , the critical values for a 5%

level of significance are 9 and 23 respectively. In this case, 𝑀 = 3 + 1 + 2 + 3 = 9 and so

the meta-analysis finds that (across different derivations) participants did prefer one of the

algorithms, specifically, force-based drawing.

Overall, although no algorithm was preferred by participants for individually considered

proofs, when participants considered multiple proofs, they slightly preferred force-based

drawing.

I acknowledge that there is definitely room for improvement in the rewrite rule-based

drawing algorithm, as particularly shown by Question 2, where several vertices were placed

close enough to a !-box to trigger warnings from the Quantomatic renderer, seriously com-

promising what would otherwise be a successful example of the assumptions and behaviours

of rewrite rule-based drawing. However, the methodology had weaknesses which particu-

larly impacted rewrite rule-based drawing. My algorithm was designed primarily to handle

derivations using large, complex rewrite rules, such as in figure 3.2. However, Questions

1 and 4 only used rules where every vertex was in a straight line. As the straight line is

a simple shape and therefore difficult to identify within a larger graph, rewrite rule-based

drawing generally performs less well with it. In Question 4, it produced a good output

which emphasised local symmetry, comparable to the force-based layout algorithm, which

emphasised global symmetry, but in Question 1, rewrite rule-based drawing was noticeably

less successful. Furthermore, almost all of the rules involved in the derivations used in the

questions had at most 2 non-boundary vertices on the left-hand side. This triggers the

non-general affine transformation cases, which intrinsically performs less well since it does

not have enough information to determine the correct layout of the rewritten subgraphs,

and can only use weak scale-and-translate or even translate-only approximations.

32

Chapter 6

Conclusion

In this thesis, I have developed a new layout system for understandable proof layout for the

Quantomatic theorem prover. This has included defining the problem, its scope, and its

specific goals, designing novel, semantically meaningful algorithms, with analysis of how the

specific goals are fulfilled and of time and space complexity, and efficiently implementing

the most promising new algorithm, rewrite rule-based drawing, within a tidy, effective

architecture for all layout algorithms in Quantomatic, enabling future developments in the

field of graphical proof layout.

Rewrite rule-based drawing can be adapted for use in another major field: chemistry.

Molecules (and similar entities, e.g. complexes, molecular ions, molecular radicals) can be

drawn using structural formulae: diagrams on the page, with (typically) points representing

atoms and lines representing covalent bonds. Reaction equations describe processes that

transform reactant molecules into product molecules. In organic chemistry, molecules are

often large and structurally complex, with recognisable, frequently occurring substructures,

such as benzene (and similar) rings, the carboxylic acid group, and the phosphate group.

Moreover, synthesis of complex organic molecules often involves multiple reactions, using

many intermediate products, reactants, and catalysts. On the page, these reactions are

often written in series, with no repetition of intermediate products: each intermediate

product immediately becomes the reactant for the next reaction. However, each reaction

often changes only one or a few functional groups on the molecule, building the molecule

from its pieces. The strong similarities between these properties of equations for organic

33

synthesis processes and the characteristics identified in §3.2 (bar symmetry) show that

rewrite rule-based drawing is usable in computer-based tools that assist organic chemists.

Furthermore, the core of rewrite rule-based drawing, finding the best affine transfor-

mation relating a set of vector pairs, has immediate applications in machine learning: su-

pervised learning of a function ℝ𝑚 → ℝ𝑛 using a set ⊆ ℝ𝑚 × ℝ𝑛 of training data, where

the function is modelled as an affine transformation and the metric for ℝ𝑛 is taken to be

Euclidean. Using the same techniques as in §3.4, the affine transformation can be computed

by solving 𝑛 systems of 𝑚 + 1 linear equations, with 𝑂(𝑚2.373…𝑛) time complexity, which is

a significant improvement on the naïve technique of solving one system of 𝑛(𝑚 + 1) linear

equations, with 𝑂(𝑚2.373…𝑛2.373…) time complexity.

Rewrite rule-based drawing was most effective under the assumptions (and thus in the

situations) which it was designed for. Specifically, the algorithm performed well with long

proofs containing rewrites using large rules with clear well-known layouts, such as zh’s

disconnect. The algorithm performed less well on proof steps where the rule’s left-hand

side contained less than 3 vertices and all vertices were arranged in a straight line, such as

zh’s z-id. In these cases, the general affine transformation could not be identified sensibly,

leading the algorithm to use arbitrary restrictions of the classes of affine transformation,

producing a suboptimal result in many (but not all) cases. However, the algorithm def-

initely met the most important criterion that was identified: the stasis of non-rewritten

parts. The algorithm also performed well at the other criteria of common substructures

and symmetry. Nonetheless, modifications to improve performance regarding these crite-

ria might be possible. However, these criteria that were identified in §3.2 and that the

algorithm was then designed to address did not capture all aspects of a desirable layout.

Other important criteria include syntactic concerns of graph layout, such as unambiguity

(achieved by separating vertices, increasing angles between edges, etc.) and higher-level

semantic concepts in the graphical calculi, such as taking advantage of the amalgamating

and de-amalgamating nature of spider nodes in order to establish visual grouping (which is

particularly important when using rewrite rules that introduce or remove spider nodes).

Hosting the implementation inside Quantomatic had benefits, but also created chal-

lenges. One benefit is that Quantomatic is used regularly by researchers working with

34

graphical calculi, and this project has immediately improved their experience by revamping

internal code and offering rewrite rule-based derivation drawing. Another benefit is that

foundational code, such as graph and derivation data structures and the double-pushout

rewriting algorithm, did not need to be re-implemented. The Scala programming language,

in which Quantomatic is implemented, also shares many similarities with Java, such as a

strong object-oriented type system, which enabled many errors to be discovered at compile-

time, rather than at run-time, which would require more effort to uncover. Java-style

object-oriented functionality, such as abstract classes and concrete implementations, was

also crucial to implementing the new, clean, extensible layout architecture. However, reusing

Quantomatic’s framework was also problematic because the existing codebase, even inside

the trusted computing base, is poorly documented: comments are uncommon and many

variable names are ambiguous. For example, the Graph class, one of the most foundational,

only make any attempt at documenting the interface to 33 of its 101 public methods, and

only 12 were documented systematically, describing parameters and return values. Further-

more, Quantomatic’s use of the SBT compilation tool for Scala obstructed the development

of the implementation by taking roughly 3 minutes to recompile the program each time.1

Although it was not the subject of an extended discussion in this thesis, the software

implementation was indeed tested at multiple stages during its development, using both

automated and manual techniques, in order to verify the correct functioning and suitability

of the system. However, this work was felt to be too trivial and implicit in the provision of

an implementation which was evaluated in more sophisticated ways, including performance

benchmarking and opinion surveys with human participants. As such, these were the topics

that chapter 5 focused on.

The evaluation of rewrite rule-based drawing occurred both on a theoretical level, where

properties of the algorithm, such as its time and space complexity, and criteria fulfilment,

were examined during the design phase, and on a practical level, where the implementation’s

performance was benchmarked and human participants were asked to compare the output

of rewrite rule-based drawing with the output of another algorithm for the task. Typical
1This is caused by Scala’s design impeding effective incremental recompilation. Unlike in Java, compiled

class files and source files do not correspond. Consequently, determining which source files to recompile
cannot be done by comparing modification times between compiled class files and source code files.

35

research in programming language design lacks rigorous empirical evidence for effectiveness

[Stefik and Hanenberg, 2017], and this also holds of the closely related field of interactive

theorem proving. In particular, independent human participants rarely take part in interac-

tive theorem proving research. On the other hand, I performed a study, with approval from

the Research Ethics Committee, into whether people prefer rewrite rule-based drawing to

the prior best available algorithm, force-based rewriting with clusters. This provided robust

scientific evidence, and also a high ethical standard of scientific conduct. Further rigour

was achieved by using statistical hypothesis testing to determine whether a significant result

had occurred, instead of simplistic claims about ‘how many people liked it’.2 Therefore, this

thesis, by presenting both theoretical and experimental evidence for the effectiveness of its

proposed algorithm, exceeds the typical level of scientific rigour in the field.

My algorithms are intentionally not derived from existing research in graph drawing,

because existing solutions in dynamic graph drawing typically only handle small changes

in graphs, and are not intended. Additionally, avoiding existing graph drawing research

highlights the design of the algorithm around semantically meaningful notions, such as

compositionality, as opposed to syntactic notions, which prevail in existing graph drawing

research. Nonetheless, a hybrid approach could provide the benefits of both syntactic and

semantic paradigms, optimising for the goals of both, including stasis of non-rewritten parts,

similarity of substructures, symmetry, equal spacing, similar line length, equally spaced

angles around each vertex, etc. Such a hybrid could produce output that users prefer to

both rewrite rule-based drawing and existing syntactic graph drawing algorithms (which

performed similarly in §5.2), and thus outperform both.

In wider society, many symbols have non-mathematical meanings. Some symbols have

offensive or discriminatory meanings. In order to be useful to the widest possible audi-

ence, new layout algorithms, or adaptations of existing ones, could be designed to prevent

inappropriate graph layouts. Such an algorithm might avoid solutions containing inappro-

priate well-known layouts, contrasting with rewrite rule-based drawing, which aimed to

incorporate (appropriate) well-known layouts.

2More worrying are claims about ‘how many students liked the new technology when they were taking a
course where they would get a higher grade for using the new technology’.

36

Appendix A

Layout interface specification

/// Builds a GraphLayoutData object containing the computed layout for a
graph.

abstract class GraphLayoutStrategy {
/// Secondary constructor, which allows the Graph to be provided at

construction.
def this(graph : Graph) {

this();
this.setGraph(graph)

}

/// Provide a Graph for which the layout can be computed with
DStepLayoutStrategy.layout().

/// @param graph the Graph that is to be laid out
def setGraph(graph : Graph) : Unit;

/// Implementations may provide additional methods for setting parameters
for the layout algorithm.

/// Implementations may also provide additional constructors for setting
parameters for the layout algorithm.

/// Create a GraphLayoutData object containing the layout data for the
graph.

/// The graph must have been previously provided to the
GraphLayoutStrategy (by constructing with the data or by calling
GraphLayoutStrategy.setGraph).

/// @return a GraphLayoutData containing the layout data for the graph.
def layout() : GraphLayoutData;

}

/// Represents the layout of a Graph.
/// Users do not construct objects of this class directly, but obtain

instances from a GraphLayoutStrategy instead.

37

/// Note that for legacy reasons, although the GraphLayout class represents
the Strategy design pattern, it does not generate GraphLayoutData

objects.
abstract class GraphLayoutData {

/// Get the layout's coordinates for the vertex named v.
/// @param v the name of the vertex in the graph selected by dso
/// @return the layout's coordinates for the queried vertex.
def getCoords(v: VName) : (Double, Double);

/// The original Graph, with the previous layout, that this layout was
computed for.

def graph : Graph;

/// Get a new Graph exactly equal to the input, but having the layout
from this GraphLayoutData object. The Graph that was computed on is
not modified. This method is part of the trusted computing base.

/// @return a new Graph exactly equal to the input, but having the layout
from this GraphLayoutData object.

final def asGraph() : Graph = {
var newGraph = graph
// For each vertex in the graph, replace its coordinate with the new

coordinate of the vertex.
for (v <- graph.verts) {
newGraph = newGraph.updateVData(v) { vd => vd.withCoord(getCoords(v))

}
}
return newGraph

}
}

/// Builds GraphLayoutData objects containing the computed layouts for a
rule.

abstract class RuleLayoutStrategy {
/// Secondary constructor, which allows the Rule to be provided at

construction.
def this(rule : Rule) {

this();
this.setRule(rule)

}

/// Provide a Rule for which the layout can be computed with
RuleLayoutStrategy.layout().

/// @param rule the Rule that is to be laid out
def setRule(rule: Rule) : Unit;

/// Implementations may provide additional methods for setting parameters
for the layout algorithm.

/// Implementations may also provide additional constructors for setting

38

parameters for the layout algorithm.

/// Create a GraphLayoutData object containing the layout data for the
Rule's RHS graph.

/// The Rule must have been previously provided to the RuleLayoutStrategy
(by constructing with the rule or by calling RuleLayoutStrategy.

setRule).
/// @return a GraphLayoutData containing the layout data for the output

of the Rule.
def layoutRHS() : GraphLayoutData;

/// Create a GraphLayoutData object containing the layout data for the
Rule's LHS graph.

/// The Rule must have been previously provided to the RuleLayoutStrategy
(by constructing with the rule or by calling RuleLayoutStrategy.

setRule).
/// @return a GraphLayoutData containing the layout data for the source

graph.
def layoutLHS() : GraphLayoutData;

}

/// Builds GraphLayoutData objects containing the computed layouts for a
derivation step.

abstract class DStepLayoutStrategy {
/// Secondary constructor, which allows the DStep to be provided at

construction.
def this(step : DStep, sourceGraph : Graph) {

this();
this.setStep(step, sourceGraph)

}

/// Provide a DStep for which the layout can be computed with
DStepLayoutStrategy.layout().

/// @param step the DStep that is to be laid out
/// @param sourceGraph the source graph of the derivation step
def setStep(step : DStep, sourceGraph : Graph) : Unit;

/// Implementations may provide additional methods for setting parameters
for the layout algorithm.

/// Implementations may also provide additional constructors for setting
parameters for the layout algorithm.

/// Create a GraphLayoutData object containing the layout data for the
output of the DStep.

/// The DStep and source graph must have been previously provided to the
DStepLayoutStrategy (by constructing with the data or by calling
DStepLayoutStrategy.setStep).

/// @return a GraphLayoutData containing the layout data for the output

39

of the DStep.
def layoutOutput() : GraphLayoutData;

/// Create a GraphLayoutData object containing the layout data for the
source graph.

/// The DStep and source graph must have been previously provided to the
DStepLayoutStrategy (by constructing with the data or by calling
DStepLayoutStrategy.setStep).

/// @return a GraphLayoutData containing the layout data for the source
graph.

def layoutSource() : GraphLayoutData;
}

/// Builds a DerivationLayout object containing the computed layout for a
derivation.

abstract class DerivationLayoutStrategy {
/// Secondary constructor, which allows the Derivation to be provided at

construction.
def this(derivation : Derivation) {

this();
this.setDerivation(derivation)

}

/// Provide a Derivation for which the layout can be computed with
DerivationLayoutStrategy.layout().

/// @param derivation the Derivation that is to be laid out
def setDerivation(derivation : Derivation) : Unit;

/// Implementations may provide additional methods for setting parameters
for the layout algorithm.

/// Implementations may also provide additional constructors for setting
parameters for the layout algorithm.

/// Create an object of type DerivationLayout containing the data of the
new derivation layout.

/// A Derivation must have been previously provided to the
DerivationLayoutStrategy (by constructing with a Derivation or by
calling DerivationLayoutStrategy.setLayout).

/// @return a DerivationLayout corresponding to the previously provided
Derivation

def layout() : DerivationLayout;
}

/// Represents the layout of all the graphs in a Derivation.
/// Users do not construct objects of this class directly, but use the

DerivationLayoutStrategy instead.
abstract class DerivationLayout {

/// Get the layout's coordinates for the vertex named v in: the root

40

graph if dso is None, or the graph generated by derivation step ds if
dso is Some(ds)

/// @param dso None to query the root graph, otherwise the DSName of the
DStep generating the graph to query

/// @param v the name of the vertex in the graph selected by dso
/// @return the layout's coordinates for the queried vertex.
def getCoords(dso : Option[DSName], v: VName) : (Double, Double);

/// The Derivation that this layout was computed for.
def derivation : Derivation;

/// Get a new Derivation exactly equal to the input, but having the
layout from this DerivationLayout object. The Derivation that was
computed on is not modified. This method is part of the trusted
computing base.

/// @return a new Derivation exactly equal to the input, but having the
layout from this DerivationLayout object.

final def asDerivation() : Derivation = {
def asGraph(dso : Option[DSName], graph : Graph) : Graph = {

var newGraph = graph
// For each vertex in the graph, replace its coordinate with the new

coordinate of the vertex.
for (v <- graph.verts) {
newGraph = newGraph.updateVData(v) { vd => vd.withCoord(getCoords(

dso, v)) }
}
return newGraph

}
// Insert the new layout of the root graph.
var newDerivation = derivation.copy(root = asGraph(None, derivation.root

))
// For each derivation step, insert the new layout of the graph

generated by that derivation step.
for (ds <- newDerivation.steps.keys) {
newDerivation = newDerivation.updateGraphInStep(ds, asGraph(Some(ds),

derivation.steps(ds).graph))
}
return newDerivation

}
}

41

Appendix B

Layout implementation

All interfaces and implementations, both for layout and for the GUI, are described in

chapter 4. To prevent this thesis from becoming too long, only RuleDStepLayoutStrategy,

RuleDStepLayout, LiftedDStepLayoutDerivationLayoutStrategy and LiftedDStepLayout

DerivationLayout have been presented below.

/// Implements DStepLayoutStrategy which uses the layouts from each Rule to
compute the layout of a Derivation.

class RuleDStepLayoutStrategy extends DStepLayoutStrategy {
var step : DStep = null
var root : Graph = null

var automaticVertexSeparationEnabled : Boolean = true

// Cache of the optimal affine transformation for the pair (step, root)
above.

var affineTransform : Option[((Double, Double)) => (Double, Double)] =
null

/// Provide a DStep for which the layout can be computed with
DStepLayoutStrategy.layout().

/// @param step the DStep that is to be laid out
/// @param sourceGraph the source graph of the derivation step
def setStep(step : DStep, root : Graph) : Unit = {

this.step = step
this.root = root
this.affineTransform = null // Clear the cached optimal affine

transformation.
}

42

/// Set whether to automatically separate vertices in the output with
equal coordinates. When the matching algorithm matches a subgraph of
the source graph with a rule containing !-boxes, the vertices
generated by expanding the !-box are all placed with equal coordinates
. This layout is then copied into the target diagram.

/// @param enabled true to enable this behaviour
def setAutomaticVertexSeparation(enabled : Boolean) : Unit = {
automaticVertexSeparationEnabled = enabled

}

/// Compute affineTransform for the present values of (step, root).
private[this] def computeAffineTransform() : Unit = {

this.affineTransform = null
// Compare the layout of the LHS of the rule applied with the layout of

the match in the source (matched) graph. Compute the optimal affine
transformation that minimises the sum of squared distance between
each vertex of the LHS of the rule and its match in the source graph.
The thesis contains a derivation of the below method.

val verts = (step.rule.lhs.verts intersect root.verts).toArray // The
vertices need to be in a consistent order for the following
numerical computations, which read coordinates elementwise.

if (verts.size == 0) {
// If there are no vertices to transform, don't bother.
this.affineTransform = None

}
else if (verts.size == 1) {

// Translate only.
// Don't bother with least-squares optimisation here. Just pick the

first vertex.
val v = verts.head
val (x1, y1) = root.vdata(v).coord
val (x0, y0) = step.rule.lhs.vdata(v).coord
this.affineTransform = Some(RuleDStepLayoutStrategy.affineTransform

(1.0, 0.0, 0.0, 1.0, x1 - x0, y1 - y0))
}
else if (verts.size >= 2) {

// The optimisation is expressed in terms of linear algebra. See the
thesis for a derivation.

val nverts : Double = verts.size.toDouble
val Wx : linalg.DenseVector[Double] = linalg.DenseVector(verts.map(v =

> step.rule.lhs.vdata(v).coord._1))
val Wy : linalg.DenseVector[Double] = linalg.DenseVector(verts.map(v =

> step.rule.lhs.vdata(v).coord._2))
val Zx : linalg.DenseVector[Double] = linalg.DenseVector(verts.map(v =

> root.vdata(v).coord._1))
val Zy : linalg.DenseVector[Double] = linalg.DenseVector(verts.map(v =

> root.vdata(v).coord._2))
val sumWx : Double = linalg.sum(Wx)

43

val sumWy : Double = linalg.sum(Wy)
val sumZx : Double = linalg.sum(Zx)
val sumZy : Double = linalg.sum(Zy)
val sumWxWx : Double = Wx.dot(Wx)
val sumWyWy : Double = Wy.dot(Wy)
val sumWxZx : Double = Wx.dot(Zx)
val sumWxZy : Double = Wx.dot(Zy)
val sumWyZx : Double = Wy.dot(Zx)
val sumWyZy : Double = Wy.dot(Zy)
if (verts.size >= 3) {

// Fully generic affine transformation.
val sumWxWy : Double = Wx.dot(Wy)
val matrix : linalg.DenseMatrix[Double] = linalg.DenseMatrix(List(

sumWxWx, sumWxWy, sumWx),
List(sumWxWy,

sumWyWy,
sumWy),

List(sumWx,
sumWy,
nverts))

val matchVector1 : linalg.DenseVector[Double] = linalg.DenseVector[
Double](sumWxZx, sumWyZx, sumZx)

val matchVector2 : linalg.DenseVector[Double] = linalg.DenseVector[
Double](sumWxZy, sumWyZy, sumZy)

try {
val output1 : linalg.DenseVector[Double] = matrix \ matchVector1 //

a, b, e
val output2 : linalg.DenseVector[Double] = matrix \ matchVector2 //

c, d, f
this.affineTransform = Some(RuleDStepLayoutStrategy.

affineTransform(output1(0), output1(1), output2(0), output2(1),
output1(2), output2(2)))

} catch {
case _ : linalg.MatrixSingularException => {}

}
}
if (this.affineTransform == null) {

// Scale, rotate, and translate only (i.e. [[a, b], [-b, a]] @ w + [
e, f]).

val matrix : linalg.DenseMatrix[Double] = linalg.DenseMatrix(List(
sumWxWx + sumWyWy, 0.0, sumWx, sumWy),

List(0.0,
sumWxWx +
sumWyWy,
sumWy, -
sumWx),

List(sumWx,
sumWy,

44

nverts, 0.0),

List(sumWy, -
sumWx, 0.0,
nverts))

val vector : linalg.DenseVector[Double] = linalg.DenseVector[Double
](sumWxZx + sumWyZy, sumWyZx - sumWxZy, sumZx, sumZy)

try {
val output : linalg.DenseVector[Double] = matrix \ vector // a, b,

e, f
this.affineTransform = Some(RuleDStepLayoutStrategy.

affineTransform(output(0), output(1), -output(1), output(0),
output(2), output(3)))

} catch {
case _ : linalg.MatrixSingularException => {}

}
}
if (this.affineTransform == null) {

// Scale and translate only (i.e. [[a, 0], [0, a]] @ w + [e, f]).
val matrix : linalg.DenseMatrix[Double] = linalg.DenseMatrix(List(

sumWxWx + sumWyWy, sumWx, sumWy),
List(sumWx,

nverts, 0.0),

List(sumWy, 0.0,
nverts))

val vector : linalg.DenseVector[Double] = linalg.DenseVector[Double
](sumWxZx + sumWyZy, sumZx, sumZy)

try {
val output : linalg.DenseVector[Double] = matrix \ vector // a, e,

f
this.affineTransform = Some(RuleDStepLayoutStrategy.

affineTransform(output(0), 0.0, 0.0, output(0), output(1),
output(2)))

} catch {
case _ : linalg.MatrixSingularException => {}

}
}
if (this.affineTransform == null) {

// Translate only (i.e. [[1, 0], [0, 1]] @ w + [e, f]).
// This least-squares minimisation has a simple form: the mean.
// This is guaranteed to successfuly produce an affine

transformation.
this.affineTransform = Some(RuleDStepLayoutStrategy.affineTransform

(1.0, 0.0, 0.0, 1.0, sumZx / nverts, sumZy / nverts))
}

}
}

45

/// Post-process a set of coordinates and the vertices to separate
vertices with the same coordinates.

private[this] def separateVerticesAutomatically(graph : Graph, coords :
mutable.HashMap[VName, (Double, Double)]) : mutable.HashMap[VName, (
Double, Double)] = {

// Invert the coords map to find vertices with the same coordinates.
val vertsAt = new mutable.HashMap[(Double, Double), mutable.HashSet[

VName]]()
for ((vert, coord) <- coords) {

if (!vertsAt.contains(coord)) {
vertsAt(coord) = new mutable.HashSet[VName]()

}
vertsAt(coord) += vert

}
// Separate the vertices.
val layout = new RuleGraphLayoutData(graph, coords)
val newCoords = new mutable.HashMap[VName, (Double, Double)]()
newCoords ++= coords
for ((coord, verts) <- vertsAt) {

// Skip vertices which have unique coordinates.
if (verts.size > 1) {

// Calculate the adjacent vertices of each vertex (which do not
share the coordinate), and the least distance to each such
adjacent vertex.

for (vert <- verts) {
// Calculate the adjacent vertices of each vertex (which do not

share the coordinate).
val adjacents = graph.adjacentVerts(vert) &~ verts
// Calculate the least distances and cumulative distances to each

adjacent vertex.
var leastSqrDistance : Option[Double] = None
var sdx = 0.0
var sdy = 0.0
for (adjVert <- adjacents) {

val dx = coord._1 - layout.getCoords(adjVert)._1
val dy = coord._2 - layout.getCoords(adjVert)._2
sdx += dx
sdy += dy
val sqrDistance = dx * dx + dy * dy
if (leastSqrDistance.isEmpty || sqrDistance < leastSqrDistance.

get) {
leastSqrDistance = Some(sqrDistance)

}
}
if (!leastSqrDistance.isEmpty) {

// Move each vertex towards its adjacent vertices by at most 1/3
of the minimum distance to each such adjacent vertex.

46

val moveDistance = scala.math.sqrt(leastSqrDistance.get) / 3.0
val scaleFactor = moveDistance / scala.math.sqrt(sdx * sdx + sdy

* sdy)
val changeLimit = moveDistance * 60.0
newCoords(vert) = (coord._1 + (((sdx * scaleFactor) min

changeLimit) max (-changeLimit)), coord._2 + (((sdy *
scaleFactor) min changeLimit) max (-changeLimit)))

}
}

}
}
return newCoords

}

/// Create a RuleGraphLayoutData object containing the layout data for
the output of the DStep.

/// The DStep and source graph must have been previously provided to the
RuleDStepLayoutStrategy (by constructing with the data or by calling
RuleDStepLayoutStrategy.setStep).

/// @return a RuleGraphLayoutData containing the layout data for the
output of the DStep.

def layoutOutput() : GraphLayoutData = {
// Compute the affine transformation, if not already computed.
if (affineTransform == null) {
computeAffineTransform()

}
// Apply the affine transformation to the inclusion of the rule's RHS

inside the target (generated) graph.
var newCoords = new mutable.HashMap[VName, (Double, Double)]()
if (!affineTransform.isEmpty) {

val affineTransform = this.affineTransform.get
for (v <- (step.rule.rhs.verts intersect step.graph.verts)) {
newCoords(v) = affineTransform(step.rule.rhs.vdata(v).coord)

}
}
// Apply automatic vertex separation, if enabled.
if (this.automaticVertexSeparationEnabled) {
newCoords = separateVerticesAutomatically(step.graph, newCoords)

}
return new RuleGraphLayoutData(step.graph, newCoords)

}

/// Create a RuleGraphLayoutData object containing the layout data for
the source graph.

/// The DStep and source graph must have been previously provided to the
RuleDStepLayoutStrategy (by constructing with the data or by calling
RuleDStepLayoutStrategy.setStep).

47

/// @return a RuleGraphLayoutData containing the layout data for the
source graph.

def layoutSource() : GraphLayoutData = {
// Compute the affine transformation, if not already computed.
if (affineTransform == null) {
computeAffineTransform()

}
// Apply the affine transformation to the inclusion of the rule's LHS

inside the source (matched) graph.
var newCoords = new mutable.HashMap[VName, (Double, Double)]()
if (!affineTransform.isEmpty) {

val affineTransform = this.affineTransform.get
for (v <- (step.rule.lhs.verts intersect root.verts)) {
newCoords(v) = affineTransform(step.rule.lhs.vdata(v).coord)

}
}
// Apply automatic vertex separation, if enabled.
if (this.automaticVertexSeparationEnabled) {
newCoords = separateVerticesAutomatically(root, newCoords)

}
return new RuleGraphLayoutData(root, newCoords)

}
}

/// Implements a RuleGraphLayout which uses the layouts from each Rule to
compute the layout of a Graph.

class RuleGraphLayoutData private[this] extends GraphLayoutData {
private[this] var _graph : Graph = null;
private[this] var coords : mutable.Map[VName, (Double, Double)] = null;

/// Not part of the public interface. Constructs a RuleDerivationLayout.
private[layout] def this(graph : Graph, coords : mutable.Map[VName, (

Double, Double)]) = {
this()
this._graph = graph
this.coords = coords

}

/// Get the layout's coordinates for the vertex named v.
/// @param v the name of the vertex in the graph selected by dso
/// @return the layout's coordinates for the queried vertex.
def getCoords(v: VName) : (Double, Double) = {

return coords.getOrElse(v, _graph.vdata(v).coord) // Unset coordinates
remain as-is.

}

/// The original Graph, with the previous layout, that this layout was
computed for.

48

def graph : Graph = {
return _graph

}
}

object RuleDStepLayoutStrategy {
/// Compute the 2D affine transformation:
/// [a b] [e]
/// [c d] @ coord + [f]
/// @param a, b, c, d, e, f affine transformation entries as above
/// @return pair of values equal to above equation
def affineTransform(a : Double, b : Double, c : Double, d : Double, e :

Double, f : Double)(coord : (Double, Double)) : (Double, Double) = {
val x = coord._1
val y = coord._2
return (a * x + b * y + e, c * x + d * y + f)

}
}

/// Builds a LiftedDStepLayoutDerivationLayout object containing the
computed layout for a derivation.

/// Lifts a DStepLayoutStrategy to a DerivationLayoutStrategy.
class LiftedDStepLayoutDerivationLayoutStrategy extends

DerivationLayoutStrategy {
private[this] var strategy : DStepLayoutStrategy = null;
private[this] var derivation : Derivation = null;

/// Secondary constructor, which allows the DStepLayoutStrategy to be
provided at construction.

def this(strategy : DStepLayoutStrategy) {
this();
this.setStrategy(strategy)

}

/// Secondary constructor, which allows the DStepLayoutStrategy and
Derivation to be provided at construction.

def this(strategy : DStepLayoutStrategy, derivation : Derivation) {
//this(derivation); // Secondary constructors cannot call superclass

constructors
this();
this.setDerivation(derivation);
this.setStrategy(strategy)

}

/// Provide a DStepLayoutStrategy to lift when computing
LiftedDStepLayoutDerivationLayoutStrategy.layout().

/// @param strategy the DStepLayoutStrategy to lift

49

def setStrategy(strategy : DStepLayoutStrategy) : Unit = {
this.strategy = strategy;

}

/// Provide a Derivation for which the layout can be computed with
LiftedDStepLayoutDerivationLayoutStrategy.layout().

/// @param derivation the Derivation that is to be laid out
def setDerivation(derivation : Derivation) : Unit = {

this.derivation = derivation;
}

/// Create an object of type LiftedDStepLayoutDerivationLayout containing
the data of the new derivation layout.

/// A Derivation must have been previously provided to the
LiftedDStepLayoutDerivationLayoutStrategy (by constructing with a
Derivation or by calling LiftedDStepLayoutDerivationLayoutStrategy.
setLayout).

/// @return a LiftedDStepLayoutDerivationLayout corresponding to the
previously provided Derivation

def layout() : DerivationLayout = {
var layouts = new mutable.HashMap[Option[DSName], GraphLayoutData]();
// Lay out each step, in breadth-first order.
for (ds <- breadthFirstDSteps()) {

val parentDSO = derivation.parentMap.get(ds);
// Special case for first iteration, when no graph layout exists for

the root of the derivation.
if (parentDSO.isEmpty && !layouts.contains(parentDSO)) {
strategy.setStep(derivation.steps(ds), derivation.root);
layouts(Some(ds)) = strategy.layoutOutput();
layouts(None) = strategy.layoutSource();

}
else {
strategy.setStep(derivation.steps(ds), layouts(parentDSO).asGraph())

;
layouts(Some(ds)) = strategy.layoutOutput();

}
}
return new LiftedDStepLayoutDerivationLayout(derivation, layouts);

}

/// Get a list of the DStep names of a Derivation in breadth-first order,
excluding the root node.

/// @param derivation
/// @return the DSNames in breadth-first order
private[this] def breadthFirstDSteps() : mutable.Queue[DSName] = {

val out = new mutable.Queue[DSName]()
val q = new mutable.Queue[DSName]()
q ++= derivation.firstSteps

50

while (!q.isEmpty) {
val ds = q.dequeue()
out += ds
q ++= derivation.children(ds) // This assumes that the children are

unordered and that Derivation objects are trees (hence do not
contain cycles and therefore will never revisit an already-seen
vertex).

}
return out

}
}

/// Represents the layout of all the graphs in a Derivation.
/// Users do not construct objects of this class directly, but use the

LiftedDStepLayoutDerivationLayout instead.
class LiftedDStepLayoutDerivationLayout private extends DerivationLayout {

private[this] var _derivation : Derivation = null
private[this] var layouts : mutable.Map[Option[DSName], GraphLayoutData]

= null

/// Not part of the public interface. Constructs a
LiftedDStepLayoutDerivationLayout.

private[layout] def this(derivation : Derivation, layouts : mutable.Map[
Option[DSName], GraphLayoutData]) = {

this()
this._derivation = derivation
this.layouts = layouts

}

/// Get the layout's coordinates for the vertex named v in: the root
graph if dso is None, or the graph generated by derivation step ds if
dso is Some(ds)

/// @param dso None to query the root graph, otherwise the DSName of the
DStep generating the graph to query

/// @param v the name of the vertex in the graph selected by dso
/// @return the layout's coordinates for the queried vertex.
def getCoords(dso : Option[DSName], v: VName) : (Double, Double) = {

return layouts(dso).getCoords(v)
}

/// The Derivation that this layout was computed for.
def derivation : Derivation = {

return _derivation
}

}

51

Appendix C

References

Bundy, Alan (editor), Atiyah, Michael (editor), Macintyre, Angus (editor), and MacKenzie,

Donald (editor). (2005) ‘The nature of mathematical proof: Papers of a Discussion Meeting

Issue organized and edited by Alan Bundy, Michael Atiyah, Angus Macintyre and Donald

MacKenzie’ (special issue), Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, vol. 363, no. 1835, pp. 2329-2461. London, United

Kingdom: Royal Society.

52

Bibliography

[Asperti et al., 2007] Asperti, Andrea, Coen, Claudio Sacerdoti, Tassi, Enrico, and Zac-

chiroli, Stefano. (2007) ‘User Interaction with the Matita Proof Assistant’, Journal of

Automated Reasoning vol. 39, no. 2, pp. 109–139. Berlin, Germany: Springer.

[Backens, 2016] Backens, Miriam K. (2016) Completeness and the zx-calculus. Doctor of

Philosophy Thesis, University of Oxford.

[Backens and Kissinger, 2018] Backens, Miriam and Kissinger, Aleks. (2018) ‘ZH: A Com-

plete Graphical Calculus for Quantum Computations Involving Classical Non-linearity’,

Proceedings of the 15th Annual Conference on Quantum Physics and Logic (QPL). Wa-

terloo, New South Wales: Electronic Proceedings in Theoretical Computer Science.

[Branke, 2001] Branke, Jürgen. (2001) ‘Dynamic Graph Drawing’. In: Kaufmann, Michael

and Wagner, Dorothea (eds.). Lecture Notes in Computer Science 2025: Drawing Graphs:

Methods and Models. Berlin, Germany: Springer-Verlag. ch. 9.

[Bundy, 2011] Bundy, Alan. (2011) ‘Automated theorem provers: a practical tool for the

working mathematician?’, Annals of Mathematics and Artificial Intelligence vol. 61 no.

1 pp. 3–14. Berlin, Germany: Springer.

[Coecke and Kissinger, 2017] Coecke, Bob and Kissinger, Aleks. (2017) Picturing Quantum

Processes. Cambridge, England: Cambridge University Press.

[Cohen, 1963] Cohen, Paul J. (1963) ‘The Independence of the Continuum Hypothesis’,

Proceedings of the National Academy of Sciences of the United States of America vol.

50, no. 6, pp. 1143–1148. Washington, D.C.: National Academy of Sciences.

53

[Davie and Stothers, 2013] Davie, Alexander M. and Stothers, Andrew James. (2013) ‘Im-

proved bound for complexity of matrix multiplication’, Proceedings of the Royal Society

of Edinburgh: Section A: Mathematics, vol. 143 no. 2 pp. 351–369. Cambridge, England:

Cambridge University Press.

[DeMillo, Lipton, and Perlis, 1979] DeMillo, Richard A., Lipton, Richard J., and Perlis,

Alan J. (May 1979) ‘Social processes and proofs of theorems and programs’, Commu-

nications of the ACM, vol. 22, no. 5, pp. 271–280. Cited in Pierce, Benjamin C. (2002)

Types and Programming Languages. Cambridge, Massachusetts: MIT Press.

[Derksen and Weyman, 2005] Derksen, Harm and Weyman, Jerzy. (2005) ‘Quiver Repre-

sentations’, Notices of the American Mathematical Society vol. 52 no. 2 pp. 200–206.

Providence, Rhode Island: American Mathematical Society.

[Dixon and Duncan, 2009] Dixon, Lucas and Duncan, Ross. (2009) ‘Graphical Reasoning

in Compact Closed Categories for Quantum Computation’, Annals of Mathematics and

Artificial Intelligence, May 2009 vol. 56, pp. 23–42. Berlin, Germany: Springer.

[Dixon, Duncan, and Kissinger, 2010] Dixon, Lucas, Duncan, Ross, and Kissinger, Aleks.

(2010) ‘Open Graphs and Computational Reasoning’, Proceedings of the Sixth Work-

shop on Developments in Computational Models: Causality, Computation, and Physics.

Waterloo, New South Wales: Electronic Proceedings in Theoretical Computer Science.

[Dixon and Kissinger, 2013] Dixon, Lucas and Kissinger, Aleks. (2013) ‘Open Graphs and

Monoidal Theories’, Mathematical Structures in Computer Science vol. 23, no. 2, pp.

308–359. Cambridge, England: Cambridge University Press.

[Duncan and Lucas, 2013] Duncan, Ross and Lucas, Maxime. (2013) ‘Verifying the Steane

code with Quantomatic’, Proceedings of the 10th International Workshop on Quantum

Physics and Logic (QPL). Waterloo, New South Wales: Electronic Proceedings in The-

oretical Computer Science.

[Eppstein, 2013] Eppstein, David. (2013) ‘Which subgraphs

have polynomially many connected subgraphs?’, 11011110.

54

https://11011110.github.io/blog/2013/01/26/which-graphs-have.html. Ac-

cessed November 2018.

[Gamma et al., 1994] Gamma, Erich, Helm, Richard, Johnson, Ralph, and Vlissides, John.

(1994) Design Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley: Boston, Massachusetts.

[Garvie and Duncan, 2017] Garvie, Liam and Duncan, Ross. (2017) ‘Verifying the smallest

interesting colour code with Quantomatic’, original preprint edition arXiv:1706.02717v1.

Later abridged for publication in Proceedings of the 14th International Workshop on

Quantum Physics and Logic (QPL). Waterloo, New South Wales: Electronic Proceedings

in Theoretical Computer Science.

[Hadzihasanovic, 2015] Hadzihasanovic, Amar. (2015) ‘A Diagrammatic Axiomatisation for

Qubit Entanglement’, Proceedings of the 2015 30th Annual ACM/IEEE Symposium on

Logic in Computer Science. Washington DC: IEEE Computer Society.

[Hu, 2006] Hu, Yifan. (2006) ‘Efficient, High-Quality Force Directed Graph Drawing’, The

Mathematica Journal vol. 10, no. 1, pp. 37–71. Champaign, Illinois: Wolfram Media.

[Kaufmann and Wagner (eds.), 2001] Kaufmann, Michael and Wagner, Dorothea (eds.).

(2001) Lecture Notes in Computer Science 2025: Drawing Graphs: Methods and Models.

Berlin, Germany: Springer-Verlag.

[Kissinger, 2012] Kissinger, Aleks. (2012) Pictures of Processes: Automated Graph Rewrit-

ing for Monoidal Categories and Applications to Quantum Computing. Doctor of Phi-

losophy Thesis, University of Oxford.

[Kissinger and Zamdzhiev, 2015] Kissinger, Aleks and Zamdzhiev, Vladimir. (2015) ‘Quan-

tomatic: A Proof Assistant for Diagrammatic Reasoning’, Proceedings of the 25th Inter-

national Conference on Automated Deduction. Berlin, Germany: Springer.

[Martin, 2007] Martin, Adam. (2007) ‘Entity Systems are the future of MMOG devel-

opment - Part 2’, T-machine.org. http://t-machine.org/index.php/2007/11/11/

55

entity-systems-are-the-future-of-mmog-development-part-2/. Retrieved May

2019.

[Merry, 2013] Merry, Alexander. (2013) Reasoning with !-Graphs. Doctor of Philosophy The-

sis, University of Oxford.

[Lack and Sobociński, 2004] Lack, Stephen and Sobociński, Paweł. (2004) ‘Adhesive Cat-

egories’, Proceedings of the 7th International Conference in Foundations of Software

Science and Computation Structures, held as part of the Joint European Conferences

on Theory and Practice of Software, March 29 – April 2 2004, Barcelona, Spain pp.

273–288. Berlin, Germany: Springer.

[Rota, 1997] Rota, Gian-Carlo. (1997) ‘Ten Lessons I Wish I Had Been Taught’, Notices of

the American Mathematical Society vol. 44 no. 1 pp. 22–25. Providence, Rhode Island:

American Mathematical Society.

[Schöning, 1987] Schöning, Uwe. (1987) ‘Graph isomorphism is in the low hierarchy’, Pro-

ceedings of the 4th Annual Symposium on Theoretical Aspects of Computer Science, pp.

114–124. Berlin, Germany: Spinger-Verlag.

[Stefik and Hanenberg, 2017] Stefik, Andreas and Hanenberg, Stefan. (2017) ‘Methodolog-

ical Irregularities in Programming-Language Research’, Computer vol. 50, no. 8, pp.

60–63. Washington, District of Columbia: Institute of Electrical and Electronics Engi-

neers Computer Society.

[Williams, 2014] Williams, Virginia Vassilevska. (2014) ‘Multiplying matrices faster than

Coppersmith-Winograd’, Proceedings of the 44th annual ACM symposium on Theory Of

Computing (STOC ’12), pp. 887–898. Association for Computing Machinery: New York,

New York.

[Breeze] Hall, David, Ramage, Daniel, et al. (far too many people to list here; see

https://github.com/scalanlp/breeze/blob/releases/v1.0-RC2/README.md).

Breeze. http://www.scalanlp.org. Accessed January 2019.

56

[Coq] Action for Technological Development Coq (far too many people to list here; see

https://coq.inria.fr/about-coq, section ‘Credits’). Coq. https://coq.inria.fr.

Accessed July 2018.

[Graphviz] Ellson, John, Gansner, Emden, Hu, Yifan, Janssen, Erwin, and North, Stephen.

Graphviz. https://www.graphviz.org. Accessed July 2018. See also Ellson, John,

Gansner, Emden R., Koutsofios, Eleftherios, North, Stephen C., and Woodhull, Gor-

don. (2004) ‘Graphviz and Dynagraph — Static and Dynamic Graph Drawing Tools’.

In: Jünger, Michael and Mutzel, Petra (eds.). Graph Drawing Software pp. 127–148.

Berlin, Germany: Springer-Verlag.

[Isabelle] Paulson, Lawrence C. et al. (far too many people to list here; see

https://isabelle.in.tum.de/dist/Isabelle2017/CONTRIBUTORS). Isabelle.

https://isabelle.in.tum.de. Accessed July 2018.

[Matita] Asperti, Andrea, Guidi, Ferruccio, Ricciotti, Wilmer, Coen, Claudio Sacerdoti,

Tassi, Enrico, Zacchiroli, Stefano, Padovani, Luca, Schena, Irene, Di Lena, Pietro,

Galatá, Michele, Griggio, Alberto, Selmi, Matteo, and Tamburreli, Vincenzo. Matita.

http://matita.cs.unibo.it. Accessed July 2018.

[Mizar] Trybulec, Andrzej, Bylinski, Czeslaw, Grabowski, Adam, Kornilowicz, Artur, Nau-

mowicz, Aam, Pąk, Karol, Urban, Josef, Bancerek, Grzegorz, and Milewski, Robert.

Mizar. http://mizar.org. Accessed July 2018.

[NuPRL] Constable, R. L., Allen, S. F., Bromley, H. M., Cleaveland, W. R., Cremer, J. F.,

Harper, R. W., Howe, D. J., Knoblock, T. B., Mendler, N. P., Panangaden, P., Sasaki,

J. T., and Smith, S. F. Implementing Mathematics with the NuPRL Proof Development

System. http://www.nuprl.org/book. Accessed July 2018.

[Quantomatic] Kissinger, Aleks, Merry, Alex, Frot, Ben, Coecke, Bob, Quick, David, Miller-

Bakewell, Hector, Dixon, Lucas, Soloviev, Matvey, Duncan, Ross, and Zamdzhiev,

Vladimir. Quantomatic. https://quantomatic.github.io/. Accessed June 2018.

57

