Preface

This volume contains the pre-proceedings of the 7th International Workshop on Quantum Physics and Logic (QPL 2010), which will be held May 29–30, 2010 at Oxford University.

The goal of this workshop series is to bring together researchers working on mathematical foundations of quantum physics, quantum computing and spatio-temporal causal structures, and in particular those that use logical tools, ordered algebraic and category-theoretic structures, formal languages, semantic methods and other computer science methods for the study of physical behavior in general. Over the past few years, there has been growing activity in these foundational approaches, together with a renewed interest in the foundations of quantum theory, which complement the more mainstream research in quantum computation. Earlier workshops in this series, with the same acronym under the name “Quantum Programming Languages”, were held in Ottawa (2003), Turku (2004), Chicago (2005), and Oxford (2006). The first QPL under the new name Quantum Physics and Logic was held in Reykjavik (2008), followed by Oxford (2009).

The workshop program is comprised of invited lectures by

- John Baez (UC Riverside and Singapore),
- John Barrett (Nottingham),
- Louis Crane (Kansas State), and
- Benjamin Schumacher (Kenyon College),

as well as 22 contributed talks. The workshop includes a special session dedicated to the memory of Itamar Pitowsky.

The contributed talks were selected, based on submitted abstracts, by a program committee whose members were Howard Barnum (Perimeter), Dan Browne (UCL, London), Bob Coecke (Oxford), Andreas Döring (Oxford), John Harding (NMSU), Viv Kendon (Leeds), Keye Martin (NRL, Washington), Prakash Panangaden (McGill), Simon Perdrix (Grenoble), Peter Selinger (Dalhousie), and Alex Wilce (Susquehanna).

The local organizers are Bob Coecke and Ross Duncan.

The workshop enjoys support from

- EPSRC Advanced Research Fellowship The Structure of Quantum Information and its Applications to IT (EP/D072786/1);
- EC FP6 STREP Foundational Structures in Quantum Information and Computation (QICS).

The workshop is preceded by a QICS School on “Foundational Structures in Quantum Computation and Information”, held in Oxford May 24–28.

Oxford, May 2010

Bob Coecke, Prakash Panangaden and Peter Selinger
iv
Contents

Howard Barnum, Ross Duncan, and Alexander Wilce
Convexity, categorical semantics and the foundations of physics 1
Howard Barnum, Carl Philipp Gaebler, and Alexander Wilce
Ensemble steering, weak self-duality, and the structure of probabilistic theories 9
Bob Coecke and Ray Lal
Causal categories: a backbone for a quantum-relativistic universe of interacting processes 17
Bob Coecke and Robert W. Spekkens
Picturing classical and quantum Bayesian inference ... 27
Tanner Crowder and Keye Martin
Information theoretic representations of qubit channels 37
Andreas Döring
Some steps towards noncommutative Gel’fand duality .. 43
Johnny Feng
A domain of unital channels .. 49
Christian Herrmann and Martin Ziegler
Computational complexity of geometric quantum logic 59
Chris Heunen
Complementarity in categorical quantum mechanics .. 69
Bart Jacobs
Involutive categories and monoids, with a GNS-correspondence 79
Bart Jacobs and Jorik Mandemaker
Coreflections in algebraic quantum logic ... 89
Matthias Kleinmann, Otfried Gühne, José Portillo, Jan-Åke Larsson, and Adán Cabello
Classical simulation of quantum contextuality ... 99
Vladimir E. Korepin
Reduced density matrix in spin models ... 105
Sanjeevi Krishnan
Strict algebraic models of weak ω-categories ... 119
Marco Lanzagorta
Kinematic noise .. 123
Mehrnoosh Sadrzadeh
A quantitative algebraic analysis of BB’84 with maximal entropy 133
Benjamin Schumacher and Michael D. Westmoreland
Isolation and information flow in quantum dynamics ... 141
Benjamin Schumacher and Michael D. Westmoreland
Modal quantum theory .. 145
Peter Selinger
Autonomous categories in which $A \cong A^*$... 151
Bas Spitters
The space of measurement outcomes as a spectrum for non-commutative algebras ... 161
Benoît Valiron
Orthogonality and algebraic lambda-calculus ... 169