
Convexity, Categorical Semantics and the
Foundations of Physics

Howard Barnum
Perimeter Institute for Theoretical Physics

Ross Duncan
Oxford University

Alexander Wilce
Susquehanna University

Abstract

We consider symmetric monoidal categories of convex operational models, and
adduce necessary and sufficient conditions for these to be compact-closed or dagger-
compact. Compact closure amounts to the condition that all processes be implementable
by means of a “remote evaluation” protocol (generalizing standard conclusive quantum
teleportation protocols), which amounts to a form of classical conditioning. This re-
quires the existence, for each system, of a bipartite state involving a further system,
whose corresponding conditioning map is an isomorphism, and an an effect whose cor-
responding map is the inverse of this isomorphism. Degenerate compact closure, in
which systems act as their own duals in the compact structure, means that one may
take this extension to be the system itself, so the isomorphism implies that systems
are weakly self-dual as ordered vector spaces. Degenerate dagger compact categories
emerge from a further restriction, namely, that the bipartite “isomorphism” state and
effect be symmetric.

It is natural to model physical theories as categories, with objects representing phys-
ical systems and morphisms, processes. It is reasonable to expect such a category to be
symmetric monoidal, to allow for a treatment of composite systems. In the categorical ap-
proach to the foundations of quantum theory, associated with Abramsky and Coecke [1],
Baez [2], Selinger [8, 9] and others, the focus is on compact closed, or, more narrowly,
dagger-compact, categories. As a systematization of existing quantum protocols, this ap-
proach has been very successful. However, if our aim is more broadly foundational, then
these strong structural constraints require independent physical motivation, or at any rate,
characterization.

It is useful to contrast the categorical approach with the older “convex operational” tra-
dition (deriving from the work of Mackey [7], Davies and Lewis [4], Ludwig [6] and others
in the 1950s and 60s). Here, state spaces of individual probabilistic systems are represented
by essentially arbitrary compact convex sets, and physical processes by affine (convex-
linear) mappings between these. This setting is conservative of classical probabilistic ideas,
but entirely liberal as to the structures it embraces, so long as this content is respected. We
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show that almost any symmetric monoidal category can be represented as a category of
concrete convex-operational models, with a “non-signaling” tensor product. This suggests
that compact closure and dagger-compactness are rather special constraints. As we’ll show,
compact closure amounts to the condition that all processes be implementable by means of
a “remote evaluation” protocol (generalizing standard conclusive quantum teleportation
protocols) — which amounts to a form of classical conditioning. Degenerate dagger com-
pact categories emerge from a further restriction, namely, that a composite of two copies of
a system in the theory admit a symmetric bipartite “isomorphism” state that can be used to
teleport.

1 Some Categorical Preliminaries

Let C be a symmetric monoidal category. Recall that a dual for an object A ∈ C consists of
an object B and two morphisms, a unit, η : I → B ⊗ A and co-unit, ε : A ⊗ B → I , such
that

A
idA⊗η

// A ⊗ B ⊗ A
ε⊗idA

// A = idA

B
η⊗idB

// B ⊗ A ⊗ B
idB⊗ε

// B = idB.
(1)

We shall be particularly interested in the case in which A = A′ (not just up to a canonical
isomorphism, but on the nose). In this case, we shall say that C is degenerate.

Adjoints In any compact closed category C, assignment A 7→ A′ extends to a canonical
contravariant functor (−)′ : Cop → C taking φ ∈ C(A, B) to φ′ ∈ C(B′, A′) defined by

B′
ηA⊗idB′

//

φ′

��

A′ ⊗ A ⊗ B′

idA′⊗φ⊗idB′

��

A′ A′ ⊗ B ⊗ B′.
idA′⊗εB

oo

(2)

There are natural isomorphisms wA : A′′ → A, with σ◦ηA = (1A⊗wA)◦ηA′ In the classic
treatment of coherence for compact closed categories, one has that σ◦ηA = (1A⊗wA)◦ηA′ ;
a similar condition holds for ε ([5], eq. (6.4)ff.). In the case of a degenerate category, this
becomes

σ ◦ ηA = (1A ⊗ wA) ◦ ηA. (3)

To say that ′ is involutive is to say that A′′ = A and φ′′ = φ; note that this does not imply
that wA = idA.

It is easy to show that if the units – or, equivalently, co-units – are symmetric, in the
sense that, for every object A ∈ C, ηA = σA,A ◦ ηA or, equivalently, εA = εA ◦ σA,A,
then the the functor ′ is involutive. However the converse does not necessarily hold, unless
wA = idA. In general, it is a delicate matter what coherence requirements are appropriate
for degenerate compact closed categories, and in particular whether the functors involved
should be strict. Therefore we will establish explicitly that the involutiveness of the adjoint
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is equivalent to the symmetry of the unit and co-unit for the compact closed categories of
convex operational models considered in this paper.

For an arbitrary degenerate compact closed category, there is no guarantee that ηA will
be symmetric. (We thank Peter Selinger for supplying a nice example involving a category
of planar tangles.) Thus, it is a non-trivial constraint on such a category that the canonical
adjoint be an involution.

Daggers A dagger on C is an involutive functor (−)† : Cop → C acting as the identity on
objects. We say that f ∈ C(A, B) is unitary iff f † = f−1. A dagger-monoidal category
is a symmetric monoidal category equipped with a dagger such that (i) all the canonical
isomorphisms defining the symmetric monoidal structure are unitary, and (ii) (f ⊗ g)† =
f †⊗g† for all morphisms f and g in C. Finally, a †-monoidal category C is dagger-compact
if it is compact closed and ηA = σA,A′◦ε†A for every A. In the case of a degenerate compact
closed category, the canonical adjoint ′ functions as a dagger if it is involutive. However,
as remarked above, this is a nontrivial condition.

2 (Categories of) Convex Operational Models

In the convex approach to physical theories, any compact convex set Ω can serve as a state
space. A measurement outcome is represented as an affine functional f : Ω → [0, 1]
— an effect — with f(α) understood as the probability of that outcome in state α ∈ Ω.
Note that the complementary event, that f not occur, is represented by the effect u − f ,
where u is the unit effect is the effect u : α ≡ 1. This apparatus can be linearized in a
canonical way. Let Aff(Ω) denote the space of bounded affine functionals Ω → R, ordered
point-wise on Ω. Embed Ω in Aff(Ω)∗ by evaluation. Define V (Ω) to be the span of Ω
in Aff(Ω)∗, ordered by the cone V+(Ω) consisting of all µ ∈ V with µ(f) ≥ 0 for all
f ≥ 0 in Aff(Ω)+. One can show that Ω is a base for V+(Ω), and, indeed, that V (Ω) is a
complete base-normed space. Every bounded affine functional on Ω – in particular, every
effect – extends uniquely to a linear functional in V (Ω)∗, so that Aff(Ω) = V (Ω)∗. It is
often assumed that every effect represents a physically accessible measurement outcome;
however, to allow for flexibility on this point, we make the following

Definition: A convex operational model is a triple (A, A#, uA) where A a complete base-
normed space with order unit uA ∈ A∗, and A# is a weak-∗ dense subspace of A∗, ordered
by a generating cone A#

+ (which may be smaller than A∗
+ ∩ A#). By an effect on A, we

mean a functional a ∈ A#
+ with a ≤ uA. The normalized state space of A is ΩA :=

u−1
A (1) ∩ A+. If α ∈ ΩA and a is an effect, we regard a(α) as the probability that a is

observed in state α.

The basic example to bear in mind is that of a quantum-mechanical system with associ-
ated Hilbert space H: here, A is the space of trace-class Hermitian operators on H, ordered
by the usual cone of positive operators; the order-unit is uA(ρ) = Tr(ρ). We have some
flexibility in the choice of A#: we might take A# = A∗, the space of all bounded Her-
mitian operators on H, but we might also take A# to consist, say, of bounded Hermitian
operators with discrete spectrum. (In finite dimensions, of course, the density assumption
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requires that A# = A∗ as a vector space. Most of the work done thus far in the categorical
idiom is motivated by finite-dimensional QM.)

Mackey Triples The following construction will be important below. A Mackey triple is a
structure (X, Σ, p) where X and Σ be any non-empty sets, understood as sets of measure-
ment outcomes and of states, respectively, and p : Σ × X → [0, 1] is a function assigning,
to x ∈ X and α ∈ Σ, a probability p(x|α). Given a Mackey triple (X, Σ, p), let Ω ⊆ R

X

be the point-wise closed (hence, compact), convex hull of the functions p(·|α), α ∈ Σ.
Construct V (Ω) as described above; identifying X with its image in V (Ω)∗ and letting A#

+

be the cone in V (Ω)∗ generated by X , we have a convex operational model.

Processes A process from a convex operational model A to a convex operational model B,
is a positive mapping φ : A → B such that φ∗ is positive as a mapping B# → A#, and
φ∗(uB) ≤ uA (so that if α ∈ ΩA, uB(φ(α)) ≤ 1). We interpret φ as representing a process,
for which an input state α ∈ ΩA is transformed to a (possibly sub-normalized) state φ(α) ∈
B+. We interpret this last quantity as the probability that the process represented by φ takes
place. It is clear that processes compose, and that every convex operational model has an
identity process, so we have here a concrete category, Com, of convex operational models
and processes. We shall write FdCom for the full sub-category of finite-dimensional
convex operational models.

Composite Systems and Monoidality If A and B are convex operational models, one can
show that any joint probability weight ω : [0, uA] × [0, uB] → [0, 1] extends to a unique
positive bilinear form on A# × B#. We define the maximal tensor product of A and B to
be the space A⊗B = B(A#, B#), ordered by the cone of bilinear forms that are positive
as functions on A#

+ × B#
+ , and with (A ⊗ B)#+ the cone generated by product effects.

In finite dimensions, A⊗minB and A⊗maxB both coincide with A⊗B as vector spaces,
i.e., disregarding their ordered structure. However, the minimal tensor cone (A⊗min B)+ is
generally much smaller than the maximal tensor cone, (A ⊗max B)+, unless at least one of
the two systems is classical. With the maximal TP or the minimal TP, the category Com is
symmetric monoidal. Equipped with both, it is linearly distributive. Notice, however, that
the usual tensor product of quantum systems — obtained by forming the tensor product of
the underlying Hilbert spaces — coincides with neither the maximal nor the minimal tensor
product. Rather, the cone of bipartite density operators of the composite quantum system
lies strictly between the minimal and maximal tensor cones.

Definition: A symmetric monoidal probabilistic theory is a sub-category C of Com,
equipped with a monoidal product ⊗ such that, for all A, B ∈ C, A ⊗min B ≤ A ⊗ B ≤
A ⊗max B.

By way of example, the theory corresponding to finite-dimensional QM has, for ob-
jects, the real vector spaces of Hermitian operators on finite-dimensional complex Hilbert
spaces, and, for objects, completely positive mappings between such spaces. One can also
construct a symmetric monoidal category by freely combining such spaces using the max-
imal tensor product, and using arbitrary positive mappings as morphisms.
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Representation Theorem The following observation shows that our terminology, “sym-
metric monoidal probabilistic theory”, does not overreach. Let C be a SMC having the
property that C(A, I)×C(B, I) separates points of C(I, A⊗B), and let S = C(I, I) be the
associated commutative monoid of scalars. Given any mapping p : S → [0, 1], whereby
scalars can be interpreted probabilistically, we can construct a Mackey triple (XA, ΣA, p)
where XA = C(A, I), ΣA = C(A, I), and p(x, α) = p(x ◦ α). If p is a monoid homomor-
phism, i.e, p(s⊗t) = p(s)p(t), the linearization construction described leads to a monoidal
probabilistic theory:

Proposition 1: Let C be as above. For every monoid homomorphism p : S → [0, 1], there
exists a symmetric monoidal category Vp(C) of convex operational models, and a monoidal
functor V : C → V (C) such that for all objects A ∈ C, and all a ∈ C(A, I), α ∈ C(I, A),
we have V a(V α) = p(a ◦ α). If p is injective, V is an embedding.

3 Remote Evaluation, Compact Closure and Dagger-com-
pactness

Let C be a symmetric monoidal probabilistic theory, and let ω : I → A ⊗ B and f :
A ⊗ B → B be respectively a bipartite state and effect on the composite system A ⊗ B.
Then there are canonical mappings ω̂ : C(A, I) → C(I, B) and f̂ : C(I, A) → C(B, I)
given by

I
ω //

ω̂(a)
""E

E

E

E

E

E

E

E

E

E

E

A ⊗ B

a⊗idB

��

B

and B
α⊗idB//

f̂(α)
""E

E

E

E

E

E

E

E

E

E

E

A ⊗ B

f

��

I

. (4)

If C is already a category of COMs, then ω̂(a)(b) = ω(a, b), and hence, ω̂(a)/uB(ω̂(a)) is
exactly the conditional state of B given that the effect a has occurred on A. Accordingly,
we call ω̂ the conditioning map associated with ω. A consequence of the Lemma is that, for
every bipartite state ω ∈ C(I, A ⊗ B), the conditional states ωB|a and ωA|b are legitimate
states of A and B, i.e., elements of C(I, A) and C(I, B),respectively. An easy diagram-
chase gives us

Lemma 2 [Remote Evaluation]: Let ω : I → B ⊗ C and f : A ⊗ B → I in C. Then, for
all α ∈ C(I, A),

ω̂(f̂(α)) = (f ⊗ idC) ◦ (idA ⊗ ω) ◦ α = (f ⊗ idC) ◦ (α ⊗ ω) (5)

When ω(1) ∈ A ⊗ B is a normalized state, and f : B ⊗ C → I is an effect, the Lemma
says that the mapping ω̂ ◦ f̂ is represented, within the category C, by the composite mor-
phism (f ⊗ idC) ◦ (idA ⊗ ω). In other words, preparing B ⊗ C in joint state ω, and then
measuring A ⊗ B and obtaining f , guarantees that the “un-normalized conditional state”
of C is ω̂(f̂(α)), where α is the state of A. Thus, any process that factors as ω̂ ◦ f̂ can
be understood as an instance of “un-normalized classical conditioning”. In particular, there
is no need to invoke any mysterious “collapse” of the state, nor for that matter, any other
physical dynamics at all.
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If C = A, and ω̂ : B# → A is an isomorphism of ordered linear spaces, we can re-
scale ω̂−1 to obtain a bilinear form f on A⊗B that is positive on A+×B+ (i.e. an effect for
the minimal tensor product), given by f(α, β) = cf̂(α)(β) for a suitable constant c > 0. If
a measurement on A⊗B yields outcome f , with the composite system A⊗B⊗C in state
α⊗ω, the un-normalized conditional state of C is ω̂(f̂(α)) = cα, whence, the normalized
state of C is α. In other words, we have here a conclusive, correction-free teleportation
protocol. Moreover, ω̂# : B# ' A, together with its inverse, supplies a protocol for
teleporting B’s states through A. We shall say that A and B teleport one another when
there exist such an isomorphism state ω ∈ A ⊗ B and effect f ∈ (A ⊗ B)#. It is clear
that, in this case, ω and c−1f supply a unit and co-unit for a duality. This gives us the
implication (b) ⇒ (a) in:

Proposition 2: Let C be a monoidal category of COMs. The following are equivalent.
(a) C is compact closed.
(b) For every A ∈ C there is some B ∈ C such that A and B teleport one

another.
(c) Every morphism in C has the form ω̂ ◦ f̂ for some bipartite state ω and

bipartite effect f .

Dagger Compactness In order to obtain a dagger-compact category, it is natural to consider
the case in which every A ∈ C supports an automorphism state ω ∈ A⊗A with ω̂ : A# '
A, and an automorphism effect f on A⊗A with f̂ : A ' A#, with f̂ a multiple of ω̂−1. In
the language used above: A teleports itself. In this case, we say that C is weakly self-dual
(WSD). Where ω can be chosen to be symmetric, we say that C is symmetrically WSD.
Note that, by Proposition 2, such a theory is a degenerate compact closed category, and we
have:

Proposition 3: A monoidal category C of convex operational models is weakly self-dual
iff it is compact closed, and can be equipped with a degenerate compact structure.

Proposition 4: Let C be a WSD probabilistic theory. Then C is dagger-compact with respect
to the canonical adjoint ′, if and only if C is symmetrically WSD.

A symmetric isomorphism state on a convex operational model A, amounts to a sym-
metric, non-degenerate bilinear form on A. If this form is also positive-definite, i.e, an inner
product, then the cone A+ is said to be self-dual. Finite dimensional homogeneous self-
dual cones (those whose automorphism groups act transitively on their interiors) are exactly
the positive cones of euclidean (or formally real) Jordan algebras, by classical results of
Koecher and Vinberg. This is close to narrowing things down to standard quantum theory,
as such cones are direct convex sums of the irreducible ones which are either Lorentz cones
(cones with a ball as base), mixed-state spaces for real, complex, and quaternionic quantum
theory, and an isolated a three-dimensional octonionic analogue of quantum theory. This
connection will be pursued in another paper.

Conclusion and Prospectus:
In the present work we have established, within a relatively loose framework of sym-

metric monoidal categories of convex operational models, that compact closure and dagger



Convexity, categorical semantics and the foundations of physics 7

compact closure impose very significant restrictions on the convex structure of state spaces.
For example, degenerate compact closure imposes weak self-duality of the cone of unnor-
malized states, while dagger compact closure imposes that the bilinear form associated
with the map implementing weak self-duality is symmetric, a stronger property that moves
us in the direction of what is usually called self-duality tout court (for which the form is
not just symmetric but in fact positive semidefinite), and hence in the direction of quantum
theory. The compact closed structure is associated with information-processing capacities
of the theory, notably, as expected, the capacity to teleport systems, and also with concep-
tual properties of the theory, notably the fact that any process can be interpreted in terms of
conditioning.

Several directions for further study suggest themselves. It would be interesting to iden-
tify necessary and sufficient conditions for the COM representations of Proposition 1 to
yield finite dimensional models – and, equally, one would like to know how far our other
results can be extended, with suitable adaptation, to infinite-dimensional systems. Our def-
inition of category of weakly self-dual state spaces assumes the existence of a state that
induces, by conditioning, an isomorphism from the state cone to the effect cone, and an ef-
fect inducing its inverse; it would be interesting to investigate conditions under which this
follows just from weak self-duality of the objects. As already mentioned, the consequences
of homogeneity of the state-spaces should also be explored. Perhaps the most urgent task,
though, is to identify operational and category-theoretic conditions equivalent to the strong
self-duality of a probabilistic theory.
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